tngmath::SparseArpack Class Reference
Eigen analyses solver for sparse matrices based on ARPACK.
More...
#include <sparsearpack.hpp>
List of all members.
|
Public Types |
|
typedef Matrix | MatrixType |
| | the dense matrix/vector type for communication
|
|
typedef SparseMatrix | SparseMatrixType |
| | the base type of sparse input
|
Public Member Functions |
|
const MatrixType & | Eigenvalues () const |
| | returns the eigenvalues after solving them
|
|
const MatrixType & | Eigenvectors () const |
| | returns the eigenvectors after solving them
|
| bool | Largest (const SparseMatrixType &A, const SparseMatrixType &B, SparseSolver &solver, const unsigned int number) |
| bool | Largest (const SparseMatrixType &A, const unsigned int number) |
|
const unsigned int | MaxIterations () const |
| | returns m_maxIter
|
|
const double | Precision () const |
| | returns the current precision
|
|
void | SetMaxIterations (unsigned int it) |
| | sets the max. number of allowed iterations in ARPACK
|
|
void | SetPrecision (double prec) |
| | sets the precision of ARPACK
|
| bool | ShiftInvert (const SparseMatrixType &A, const SparseMatrixType &B, SparseSolver &solver, const double &shift, const unsigned int number) |
| bool | ShiftInvert (const SparseMatrixType &A, SparseSolver &solver, const double &shift, const unsigned int number) |
|
| SparseArpack () |
| | default constructor
|
|
virtual | ~SparseArpack () |
| | destructor
|
Protected Member Functions |
|
MatrixType & | Eigenvalues () |
|
MatrixType & | Eigenvectors () |
Protected Attributes |
|
MatrixType | m_eigenvalues |
| | stores the eigenvalues
|
|
MatrixType | m_eigenvectors |
| | stores the eigenvectors
|
|
unsigned int | m_maxIter |
| | stores the number of iterations for ARPACK
|
|
double | m_precision |
| | stores the set precision for ARPACK
|
Detailed Description
Eigen analyses solver for sparse matrices based on ARPACK.
Member Function Documentation
given a generalized symmetric eigen problem, this method computes the largest eigenvalues using a shift-inverse transformation.
- Parameters:
-
| A | the input matrix A (stiffness) |
| B | the input matrix B (mass) |
| solver | the solver object used for factorizing B |
| number | the number of eigenvalues to be computed |
- Returns:
- true if successful.
| bool tngmath::SparseArpack::Largest |
( |
const SparseMatrixType & |
A, |
|
|
const unsigned int |
number | |
|
) |
| | |
given a standard symmetric eigen problem, this method computes the largest eigenvalues using a shift-inverse transformation.
- Parameters:
-
| A | the input matrix |
| number | the number of eigenvalues to be computed |
- Returns:
- true if successful.
given a generalized symmetric eigen problem, this method computes the smallest eigenvalues using a shift-inverse transformation.
- Parameters:
-
| A | the input matrix A (stiffness) |
| B | the input matrix B (mass) |
| solver | the solver object used for factorizing A |
| shift | the shifting parameter (lower bound) |
| number | the number of eigenvalues to be computed |
- Returns:
- true if successful.
| bool tngmath::SparseArpack::ShiftInvert |
( |
const SparseMatrixType & |
A, |
|
|
SparseSolver & |
solver, |
|
|
const double & |
shift, |
|
|
const unsigned int |
number | |
|
) |
| | |
given a standard symmetric eigen problem, this method computes the smallest eigenvalues using a shift-inverse transformation.
- Parameters:
-
| A | the input matrix |
| solver | the solver object used for factorizing A |
| shift | the shifting parameter (lower bound) |
| number | the number of eigenvalues to be computed |
- Returns:
- true if successful.
The documentation for this class was generated from the following file:
- modules/tngmath/tngmath/sparsearpack.hpp