
1

1 Installation

In order to compile you need:

• ocaml

• ocamlbuild

• make

You can simply type make in the root directory to build everything, or you can
specify which part you want to build with

• make bin to build the compiler

• make test to compile the examples

• make doc to compile this document

• make archive to build tar and zip source archives.

2 The Language

This is a minimalist functional language with strict left to right evaluation. Here is
the grammar of the language. The terminals are:

• Identifiers (IDENT) are sequences of character matching the regular expression
[A-Za-z][A-Za-z0-9]*.

• Integers (INT) are sequences of character matching the regular expression -?[0-9]+.

• Strings (STRING) are sequences of character enclosed by double quotes.

• Booleans are true and false

A program is an expression (EXPR) composed of:

• constants: INT, booleans and STRING.

• variables : IDENT.

• functions: fun IDENT1 . . . IDENTn -> EXPR. For example:

fun x y z -> y

2

• applications: (EXPR0 EXPR1 . . . EXPRn). It applies the arguments (EXPRi)i>0 to
EXPR0. Do not forget the brackets or you’ll be surprised!

• let-in: let IDENT = EXPR1 in EXPR2. It computes expression EXPR1, assigns its
value to variable IDENT and computes EXPR2.

• sequences: (EXPR1 ; . . . ; EXPRn). It computes sequentialy the expressions
EXPR1 to EXPRn. The last one is the value of the expression. Do not forget the
brackets or you’ll be surprised!

• if-then-else: if EXPR1 then EXPR2 else EXPR3. If EXPR1 evaluates to true, then
EXPR2 is evaluated otherwise EXPR3 is. The value of the expression is the one of
the branch being evaluated.

3 Primitives

Primitives are functions written directly in TEXor in shell.
Primitives written in TEXmust have an argumet pattern of the form #1. . .#n. They
must return a value by redefining the macro acc. Finally, they must be placed
in the file tex/extern.tex. For example, the addition over integers is defined in
tex/extern.tex by:

\def\wcplus#1#2%
{{%
\count255=#1%
\advance\count255 by #2%
\xdef\acc{\the\count255}%
}}%

Primitives written in shell must return a value by redefining the variable ACC. They
must be placed in the file shell/extern.sh. For example, the addition over integers
is defined in shell/extern.sh by:

wcplus () {
ACC=$(($1 + $2))

}

Primitives can be used as identifiers. But they must be declared first. A primitive
is declared by the statement: extern primitive-name arity ;; at the begining if the
program. For example, wcplus is declared by:

extern wcplus 2 ;;

3

4 Compiling and Executing

A program is compiled to TEXby:

wc.native -t -i input-file -o output-file

and to POSIX shell by:

wc.native -s -i input-file -o output-file

output-file can be run as any other shell script or TEXfile. For example, the
program first.wc:

extern myprint 1 ;;
extern newline 1 ;;
extern printstats 1 ;;

let phrase = fun qui ->
let action = fun quoi ou -> ((myprint "The great ") ;

(myprint qui) ;
(myprint " eats ") ;
(myprint quoi) ;
(myprint " in the ") ;
(myprint ou) ;
(newline 0)

)
in let pommes = action "apples"

and poires = action "pears"
in ((pommes "garden.") ;

(pommes "garage.") ;
(poires "castle.") ;
(poires "linvngroom.")

)
in ((phrase "Pierre") ;

(phrase "Paul") ;
(phrase "Jaques")

)

can be compied and ran to TEXand shell by

wc.native -t -i first.tex -o first.tex
wc.native -s -i first.tex -o first.sh

4

Its output is:

The great Pierre eats apples in the garden.
The great Pierre eats apples in the garage.
The great Pierre eats pears in the castle.
The great Pierre eats pears in the linvngroom.
The great Paul eats apples in the garden.
The great Paul eats apples in the garage.
The great Paul eats pears in the castle.
The great Paul eats pears in the linvngroom.
The great Jaques eats apples in the garden.
The great Jaques eats apples in the garage.
The great Jaques eats pears in the castle.
The great Jaques eats pears in the linvngroom.

