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PREFACE.

TaE preceding editions of this work were published in 1830,
1832, 1835, and 1840. This fifth edition differs from the
three preceding, as to the body of the work, in nothing
which need prevent the four, or any two of them, from
being used together in a class. But it is considerably aug-
mented by the addition of eleven new Appendixes,* relating
to matters on which it is most desirable that the advanced
student should possess information. The first Appendix, on
Computation, and the sixth, on Decimal Money, should be
read and practised by every student with as much attention
as any part of the work. The mastery of the rules for in-
stantaneous conversion of the usual fractions of a pound
sterling into decimal fractions, gives the possessor ‘the greater
part of the advantage which he would derive from the intro-
duction of a decimal coinage. .

At the time when this work was first published, the
importance of establishing arithmetic in the young mind
upon reason and demonstration, was not admitted by many.
The case is now altered: schools exist in which rational

* Some separate copies of these Ai)pendixes are printed, for those

#ho may desire to add them to the former editions.
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arithmetic is taught, and mere rules are made to do no more
than their proper duty. There is no necessity to advocate
a change which is actually in progress, as the works which
are published every day sufficiently shew. And my principal
reason for alluding to the subject here, is merely to warn
those who want nothing but routine, that this is not the
book for their purpose.
A. De MogregaN.
London, May 1, 1846.
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ELEMENTS OF ARITHMETIC.

BOOK 1.

PRINCIPLES OF ARITHMETIC.

SECTION 1.
NUMERATION. .

1. ImaINE a multitude of objects of the same kind assembled
together; for example, a company of horsemen. One of the first
things that must strike a spectator, although unused to counting, is,
that to each man there is a horse. Now, though men and horses are’
things perfectly unlike, yet, because there is one of the first kind to
every one of the second, one man to every horse, a new notion will be
formed in the mind of the observer, which we express in words by
saying that there is the same number of men as of horses. A savage,
who had no other way of counting, might remember this number by
taking a pebble for each man. Out of a method as rude as this has
sprung our system of calculation, by the steps which are pointed out in
the following articles. Suppose that there are two companies of horse-
men, and a person wishes to know in which of them is the greater
number. and also to be able to recollect how many there are in each.

2. Suppose that while the first company passes by, he drops a pebble
into a basket for each man whom he sees. There is no connexion
between the pebbles and the horsemen but this, that for every horseman

B
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there is a pebble; that is, in common language, the number of pebbles
and of horsemen is the same. Suppose that while the second company
passes, he drops a pebble for each man into a second basket: he will
then have two baskets of pebbles, by which he will be able to convey
to any other person a notion of how many horsemen there were in
each company. When he wishes to know which company was the
larger, or contained most horsemen, he will take a pebble out of each
basket, and put them aside. He will go on doing this as often as-he
can, that is, until one of the baskets is emptied. Then, if he also find
the other basket empty, he says that both companies contained the same
number of hor s if the d basket still contain some pebbles,

he can tell by them how many more were in the second than in the
first.

3. In this way a savage could keep an account of any numbers in
which he was interested. He could thus register his children, his cattle,
or the number of summers and winters which he had seen, by means
of pebbles, or any other small objects which could be got in large
numbers. Something of this sort is the practice of savage nations at
this day, and it has in some places lasted even after the invention of
better methods of reckoning. At Rome, in the time of the republic,
the pretor, one of the magistrates, used to go every year in great pomp,
and drive a nail into the door of the temple of Jupiter; a way of
remembering the number of years which the city had been built, which
probably took its rise before the introduction of writing.

4. In process of time, names would be given to those collections of
pebbles which are met with most frequently. But as long as small
numbers only were required, the most convenient way of reckoning
them would be by means of the fingers. Any person could make with

" his two hands the little calculations which would be necessary for his
purposes, and would name all the different collections of the fingers.
He would thus get words in his own language answering to one, two,
three, four, five, six, seven, eight, nine, and ten. As his wants in-
creased, he would find it necessary to give names to larger numbers;
but here he would be stopped by the immense quantity of words which



$ 4-5. NUMERATION. 3

he must have, in order to express all the numbers which he would be
obliged to make use of. He must, then, after giving a separate name
‘to a few of the first numbers, manage to express all other numbers by
means of those names,

5. I now shew how this has been done in our own language. The
English names of numbers have been formed from the Saxon: and in
the following table each number after ten is written down in one
column, while another shews its connexion with those which have pre-
ceded it.

One eleven ten and one*
- two twelve ten and two
three thirteen  ten and three
four fourteen  ten and four
five fifteen ten and five
six sixteen ten and six
seven seventeen ten and seven
eight eighteen  ten and eignt
nine nincteen  ten and nine
ten twenty two tens
twenty-one two tens and one fifty five tens
twenty-two two tens and two sixty six tens
&ec. &c. &ec. &e. seventy seven tens
thirty three tens eighty eight tens
&e. &e. ninety nine tens
forty four tens a hundred ten tens
&e. &e.
a hundred and one ten tens and one
&e. &ec.
a thousand ten hundreds
ten thousand

* It has been supposed that eleven and {welve are derived from the 8axon for one

left and two left (meaning, after ten is removed); but there seems better reason to

thini that leven 18 a word ing ten, and d with decem.
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a hundred thousand
a million ten hundred thousand
or one thousand thousand
ten millions
a hundred millions
&e.

6. Words, written down in ordinary language, would very soon be
too long for such continual repetition as takes place in calculation.
Short signs would then be substituted for words; but it would be im-
possible to have a distinct sign for every number: so that when some
few signs had been chosen, it would be convenient to invent others
for the rest out of those already made. The signs which we use are
as follow:

° 1 2 3 4 5 6 7 8 9
nought ore two three four five six seven eight nine

I now proceed to explain the way in which these signd are made to
represent other numbers.

7. Suppose a man first to hold up one finger, then two, and so
on, until he hss held up every finger, and suppose a number of men
to do the same thing. It is plain that we may thus distinguish one
number from another, by causing two different sets of persons to hold
up each a certain number of fingers, and that we may do this in many
different ways. For example, the number fifteen might be indicated
either by fifteen men each holding up one finger, or by four men each
holding up two fingers and a fifth holding up seven, and so on. The
question is, of all these contrivances for expressing the number, which
is the most convenient? In the choice which is made for this purpose
consists what is called the method of numeration.

8. I have used the foregoing explanation because it is very probable
that our system of numeration, and almost every other which is used
in the world, sprung from the practice of reckoning on the fingers,
which children usually follow when first they begin to count. The
method which I have described is the rudest possible; but, by a little
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alteration, a system may be formed which will enable us to express
enormous numbers with great ease.

9. Suppose that you are going to count some large number, for
example, to measure a number of yards of cloth. Opposite to yourself
suppose a man to be placed, who keeps his eye upon you, and holds up
a finger for every yard which he sees you measure. When ten yards
have been measured he will have held up ten fingers, and will not be
able to count any further unless he begin again, holding up one finger at
the eleventh yard, two at the twelfth, and so on. But to know how
many have been counted, you must know, not only how many fingers
he holds up, but also how many times he has begun again. You may
keep this in view by placing another man on the right of the former,
who directs his eye towards his companion, and holds up one finger the
moment he percéives him ready to begin again, that is, as soon as ten
vards have been measured. Each finger of the first man stands only for
one yard, but each finger of the second stands for as many as all the
fingers of the first together, that is, for ten. In this way a hundred
may be counted, because the first may now reckon his ten fingers once
for each finger of the second man, that is, ten times in all, and ten tens
is one hundred (5).* Now place a third man at the right of the second,
who shall hold up a finger whenever he perceives the second ready to
begin again. One finger of the third man counts as many as all the
ten fingers of the second, that is, counts one hundred. In this way we
may proceed until the third has all his fingers extended, which will
signify that ten hundred or one thousand have been counted (5). A
fourth man would enable us to count as far as ten thousand, a fifth
as far as one hundred thousand, a sixth as far as a million, and sv
on.

10. Each new person placed himself towards your left in the rank
opposite to you, Now rule columns as in the next page, and to the
right of them all place in words the number which you wish to repre-

sent ; in the first column on the right, place the number of fingers

® The references are to the preceding articles.
B2
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which the first man will be holding up when that number of yards has
been measured. In the next column, place the fingers which the second
man will then be holding up ; and so on.

AR L: t W N -
HEEEEEE
I 5 | 7 | fifty-seven.
I1. 1|0 |4 | one hundred and four.
I1I. 1| 1|0 |one hundred and ten.
IV. 23| 4|8 |two thousand three hundred and forty-
eight.
V. 1{5|9 |06 [fifteen thousand nine hundred and six.
VI. 1/8|7|0 |04 |one hundred and eighty-seven thousand
and four.
VIL.[3|6|9]7|2]|8](5|three million, six hundred and ninety-
seven thousand, two hundred and
eighty-five.

11. In L. the number fifty-seven is expressed. This means (5) five
tens and seven. The first has therefore counted all his fingers five
times, and has counted seven fingers more. This is shewn by five
fingers of the second man being held up, and seven of the first. In II.
the number one hundred and four is represented. This number is (5)
ten tens and four. The second person has therefore just reckoned all
his fingers once, which is denoted by the third person holding up one
finger; but he has not yet begun again, because he does not hold up
a finger until the first has counted ten, of which ten only four are
completed. When all the last-mentioned ten have been counted, he
then holds up one finger, and the first being ready to begin again, has
no fingers extended, and the number obtained is eleven tens, or ten
tens and one ten, or one hundred and ten. This is the case in I1I.
You will now find no difficulty with the other numbers in the table.

12.'In all these numbers a figure in the first column stands for
only as many yards as are written under that figure in (6). A figure
in the second column stands, not for as many yards, but for as many
tens of yards ; a figure in the third column stands for as many hundreds
of yards; in the fourth column for as many thousands of yards; and so

on: that is, if we suppose a figure to move from any column to the one
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on its left, it stands for ten times as many yards as before. Recollect
this, and you may cease to draw the lines between the columns, be-
cause each figure will be sufficiently well known by the place in which
it is; that is, by the number of figures which come upon the right hand
of it.

13. It is important to recollect that this way of writing numbers,
which has hecome so familiar as to seem the natural method, is not
more natural than any other. For example, we might agree to signify
one ten by the figure of one with an accent, thus, 1’; twenty or two
tens by 2’; and so on: one hundred or ten tens by 1”; two hundred
by 2”; one thousand by 1”; and so on: putting Roman figures for
accents when they become too many to write with convenience. The
fourth number in the table would then be written 2™ 3” 4’ 8, which
might also be expressed by 8 4’ 3" 2", 4’ 8 3” 2”’; or the order of the
figures might be changed in any way, because their meaning depends
upon the accents which are attached to them, and not upon the place
in which they stand. Hence, a cipher would never be necessary; for
104 would be distinguished from 14 by writing for the first 1”4, and for
the second 4. The common method is preferred, not because it is
more exact than this, but because it is more simple.

14. The distinction between our method of numeration and that
of the ancients, is in the meaning of each figure depending partly upon
the place in which it stands. Thus, in 44444 each four stands for four
of something; but in the first column on the right it signifies only four
of the pebbles which are counted ; in the second, it means four col-
lections of ten pebbles each; in the third, four of one hundred each;
and so on,

15. The things measured in (11) were vards of cloth. In this case
one yard of cloth is called the unit. The first figure on the right is
said to be in the units® place, becausé it only stands for so many units
as are in the number that is written under it in (6). The second
figure is said to be in the fens’ place, because it stands for a number
of tens of units. The third, fourth, and fifth figures are in the places
of the hundreds, thousands, and tens of thousands, for a similar reason.
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16. If the quantity measured had been acres of land, an acre of
land would have been called the unit, for the unit is one of the things
which are measured. Quantities are of two sorts ; those which contain
an exact number of units, as 47 yards, and those which do not, as 47
yards and a half. Of these, for the present, we only consider the first.

17. In most parts of arithmetic, all quantities must have the same
unit. You cannot say that 2 yards and 3 feet make 5 yards or 5 feet,
because 2 and 3 make §; yet you may say that 2 yards and 3 yards
make 5 yards, and that 2 feet and 3 feet make 5 feet. It would be
absurd to try to measure a quentity of one kind with a unit which isa
quantity of another kind; for example, to attempt to tell how many
yards there are in a gallon, or how many bushels of corn there are in a
barrel of wine,

18. All things which are true of some numbers of one unit are true
of the same numbers of any other unit. Thus, 15 pebbles and 7 pebbles
together make 22 pebbles; 15 acres and 7 acres together make 22 acres,
and so on. From this we come to say that 15 and 7 make 22, meaning
that 15 things of the same kind, and 7 more of the same kind as the
first, together make 22 of that kind, whether the kind mentioned be
pebbles, horsemen, acres of land, or any other. For these it is but
necessary to say, once for all, that 15 and 7 make 22. Therefore, in
future, on this part of the subject I shall cease to talk of any particular
units, such as pebbles or acres, and speak of numbers only. A number,
considered without intending to allude to any particular things, is called
an abstract number: and it then merely signifies repetitions of a unit,
or the number of times a unit is repeated.

19. T will now repeat the principal things which have been men-
tioned in this chapter.

I. Ten signs are used, one to stand for nothing, the rest for the
first nine numbers, They are o,1,2,3,4, 5, 6, 7, 8, 9. The first of
these is called a cipher.

II. Higher numbers have not signs for themselves, but are signified
by placing the signs already mentioned by the side of each other, and
agreeing that the first figure on the right hand shall keep the value
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which it has when it stands alone; that the second on the right hand
shall mean ten times as many as it does when it stands alone; that the
third figure shall mean one hundred times as many as it does when it
stands alone ; the fourth, one thousand times as many ; and so on.

II1. The right-hand figure is said to be in the wunits® place, the
next to that in the tens’ place, the third in the Aundreds’ place, and
80 on.

IV. When a number is itself an exact number of tens, hundreds,
or thousands, &c., as many ciphers must be placed on the right of it as
will bring the number into the place which is intended for it. The
following are examples :

Fifty, or five tens, 50: seven hundred, 700.

Five hundred and twenty-eight thousand, 528000,
If it were not for the ciphers, these numbers would be mistaken for
5, 7, and 528.

V. A cipber in the middle of a number becomes necessary when any
one of the denominations, units, tens, &c. is wanting, Thus, twenty
thousand and six is 20006, two hundred and six is 206. Ciphers might
be placed at the beginning of a number, but they would have no
meaning. Thus 026 is the same as 26, since the cipher merely shews
that there are no hundreds, which is evident from the number itself.

20. If we take out of a number, as 16785, any of those figures which
come together, as 67, and ask, what does this sixty-seven mean? of
what i8 it sixty-seven? the answer is, sixty-seven of the same collections
as the 7, when it was in the number; that is, 67 hundreds. For the
6 is 6 thousands, or 6 ten hundreds, or sixty hundreds; which, with
the 7, or 7 hundreds, is 67 hundreds: similarly, the 678 is 678 tens.
This number may then be expressed either as

1 ten-thousand 6 thousands 7 hundreds 8 tens and 5 ;
or 16 thousands 78 tens and §; or 1 ten thousand 678 tens and 5 ;
or 167 hundreds 8 tens and 5; or 1678 tens and §, and so on.

21, EXERCISES.
1. Write down the signs for ;—four hundred and seventy-six ; two
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thousand and ninety-seven ; sixty-four thousand three hundred and
fifty ; two millions seven hundred and four; five hundred and seventy-
eight millions of millions.

II. Write at full length 53, 1805, 1830, 66707, 180917324, 66713721,
90976390, 2 5000000,

III. What alteration takes place in a number made up entirely of
nines, such as 99999, by adding one to it ?

IV. Shew that a number which has five figures in it must be greater

than one which has four, though the first have none but small figures in-

it, and the second none but large ones. For example, that 10111 is
greater than 9879.

22. You now see that the convenience of our method of numeration
arises from a few simple signs being made to change their value as they
change the column in which they are placed. The same advantage
arises from counting in a similar way all the articles which are used
in every-day life. For example, we count money by dividing it into
pounds, shillings, and pence, of which a shilling is 12 pence, and a
pound 2o shillings, or 240 pence. We write a number of pounds,
shillings, and pence in three columns, generally placing points between
the columns. Thus, 263 pence would not be written as 263, but as
£1.1.11, where £ shews that the 1 in the first column is a pound.
Here is a system of numeration in which a number in the second column
on the right means 12 times as much as the same number in the first ;
and one in the third column is twenty times as great as the same in the
second, or 240 times as great as the same in the first. In each of the
tables of measures which you will hereafter meet with, you will see a
separate system of numeration, but the methods of calculation for all
will be the same.

23. In order to make the language of arithmetic shorter, some other
signs are used. They are as follow:

I. 15+38 means that 38 is to be added to 15, and is the same thing
as 53. This is the sum of 15 and 38, and is read fifteen plus thirty-
eight (plus is the Latin for more).

II. 64—12 means that 12 is to be taken away from 64, and is the
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same thing as 52. This is the diffcrence of 64 and 12, and is read sixty-
four minus twelve (minws is the Latin for less).

III. 9x8 means that 8 is to be taken 9 times, and is the same thing
as 72. This is the product of 9 and 8, and is read nine info eight.

IV. %8 means that 108 is to be divided by 6, or that you must
find out how many sixes there are in 108; and is the same thing as 18,
This is the quotient of 108 and 6; and is read a hundred and eight
by six.

V. When two numbers, or collections of numbers, with the fore-
going signs, are the same, the sign = is put between them. Thus,
that 7 and § make 12, is written in this way, 7+5=12. This is called
an eguation, and is read, seven plus five equals twelve. It is plain that

we may construct a3 many equations as we please. Thus:
12
7H9=3=1241 5 — —14 3x2=11, and so on.

24. It often becomes necessary to speak of something which is true
not of any one number only, but of all numbers. For example, take
10 and 7; their sum* is 17, their difference is 3. If this sum and
difference be added together, we get 20, which is twice the greater of
the two numbers first chosen. If from 17 we take 3, we get 14, which
is twice the less of the two numbers. The same thing will be found to
hold good of any two numbers, which gives this general proposition,—
If the sum and difference of two numbers be added together, the result
is twice the greater of the two ; if the difference be taken from the sum,
the result is twice the lesser of the two. If, then, we take any numbers,
and call them the first number and the second number, and let the first
number be the greater ; we have

(18t No.+2d No.)+(18t No.—2d No.)=twice 1st No.
(18t No.+2d No.)—(1st No.—2d No.)=twice 2d No.

The brackets here enclose the things which must be first done, be-
fore the signs which join the brackets are made use of. Thus,

* Any little computations which occur in the rest of this section may be made on
the fingers, or with counters,
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8—(2+1)x(1+7) signifies that 2+1 must be taken 1+1 times, and the
product must be subtracted from 8. In the same manner, any re-
sult made from two or more numbers, which is true whatever numbers
are taken, may be represented by using first No., second No., &c., to
stand for them, and by the signs in (23). But this may be much
shortened ; for as first No., second No., &c., may mean any numbers,
the letters @ and 4 may be used instead of these words; and it must
now be recollected that @ and 5 stand for two numbers, provided only
that @ is greater than 5. Let twice a be represented by 2a, and twice
b by 25. The equations then become
(a+d)+(a—bd)=2a, and (a+b)—(a—b)=2).

This may be explained still further, as follows :

25. Suppose a number of sealed packets, marked a, b, ¢, d, &c., on
the outside, each of which contains a distinct but unknown number
of counters. As long as we do not know how many counters each
contains, we can make the letter which belongs to each stand for its
number, so as to talk of the number a, instead of the number in the
packet marked a. And because we do not know the numbers, it does
not therefore follow that we know nothing whatever about them ; for
there are some connexions which exist between all numbers, which we
call general properties of numbers. For example, take any number,
multiply it by itself, and subtract one from the result ; and then sub-
tract one from the number itself. The first of these will always contain
the second exactly as many times as the original number increased by
one., Take the number 6 ; this multiplied by itself is 36, which dimi-
nished by one is 35: again, 6 diminished by 1 is §; and 35 contains
5, 7 times, that is, 6+1 timea. This will be found to be true of any
number, and, when proved, may be said to be true of the number con-
tained in the packet marked a, or of the number 4. If we represent a
multiplied by itself by aa,* we have, by (23)

aa—1

=a+1.
a—1

* This should be (23) axa, but the sign X is unnecessary here. It is used with
numbers, as in 2X 7, to prevent confounding this, which is 14, with 27.
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26. When, therefore, we wish to talk of a number without specify-
ing any ome in particular, we use a letter to represent it. Thus:
Suppose vve wish to reason upon what will follow from dividing a num«
ber into three parts, without considering what the number is, or what
are the parts into which it is divided. Let a stand for the number,
and b, o, and d, for Yhe parts into which it is dividled. Then, by our
supposition, '

a=>b+ct+d.
On this we can reason, and produce results which do not belong to any
particular number, but are true of all. Thus, if one part be taken away
from the number, the other two will remain, or
a—b=c+d.
If each part be doubled, the whole number will be doubled, or
2a = 2b+2¢+2d.

If we diminish one of the parts, as d, by a number 2, we diminish the
whole number just as much, or

0~z = bto+(d=z).
27. EXERCISES,
What is a+258—¢, where a =12, =18, ¢=7 ?—Answer, 41.
‘What is aa—bb , where a=6 and d=2 >—A4ns. 8.
a—b

What is the difference between (a+d) (c+d) and a+be+d, for the
following values of a, b, 0, and d ?

a | b ] d Ans,
] 2 3 4 10
2 72 7 T | 2§

-
—
—

1
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SECTION II.

ADDITION AND SUBTRACTION.
E ]
28. There is no process in arithmetic which does not consist entirely

in the increase or diminution of numbers. There is then nothing which
might not be done with collections of pebbles. Probably, at first, either
these or the fingers were used. Our word calculation is derived from
the Latin word calculus, which means a pebble. Shorter ways of
counting have been invented, by which many calculations, which would
require long and tedious reckoning if pebbles were used, are made at
once with very little trouble. The four great methods are, Addition,
Subtraction, Multiplication, and Division; of which, the last two ares
only ways of doing several of the first and second at once.

29. When one number is increased by others, the number which is
as large as all the numbers together is called their sum. The process
of finding the sum of two or more numbers is called AppirioN, and,
as was said before, is denoted by placing a cross (+) between the
numbers which are to be added together.

Suppose it required to find the sum of 1834 and 2799. In order to
add these numbers, take them to pieces, dividing each into its units,
tens, hundreds, and thousands : '

1834 is 1 thous, 8 hund. 3 tens and 4 ;
2799 is 2 thous. 7 hund. g tens and 9.

Each number is thus broken up into four parts. Ifto each part of
the first you add the part of the second which is under it, and then put
together what you get from these additions, ybu will have added 1834 and
2799. In the first number are 4 units, and in the second 9 : these wiil,
when the numbers are added together, contribute 13 units to the sum.
Again, the 3 tens in the first and the 9 tens in the second will contri-
bute 12 tens to the sum. The 8 hundreds in the first and the 7 hunareas
in the second will add 15 hundreds to the sum ; and the thousand in




§ 29-31. ADDITION AND SUBTRACTION. 15

the first with the 2 th ds in the d will contribute 3 thousands
to the sum ; therefore the sum required is '

3 thousands, 15 hundreds, 12 tens, and 13 units.
To simplify this result, you must recollect that—

13 units are . . . . . . . . . Itenand 3 units
12 tens .are « « « + « 1hund and 2 tens.

15 hund. are 1 thous. and § hund.

- 3 thous. are 3 thous.

Now collect the numbers on the right-hand side together, as was
done before, and this will give, as the sum of 1834 and 2799,
4 thousands, 6 hundreds, 3 tens, and 3 units,
which (19) is written 4633.
30. The former process, written with the signs of (23) is as follows :

1834 = I1x1000 + 8X 100 4 3x10+ 4
2799 = 2X1000 4 7X100+ 9x10+9

‘Therefore,
1834 4 2799 == 3xX10004 15X100 4 12X10 + 13
But 13= X104 3
I2X 10= IXIOO 4 2XI0
I§X 0O == IXJO00+4 §xI100
3x1000=3x1000  Therefore,
1834 42799 = 4x10004 6x1004 3xI04 3
=4633.

31. The same process is to be followed in all cases, but not at the
sume length. In order to be able to go through it, you must know
how to add together the simple numbers. This can only be done by
memory; and to help the memory you should make the following table
three or four times for yourself:
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1-f2 ] 3| 4| 5| 6| 7| 8f9
x| 2| 3| 4| 5| 6] 7 9|10
2 3| 4| s 6] 7| 8| 9] 10| 12
3| 4| s| 6 9l 10| 11 ) 12
4 s| 61 7 9|10 1x|12]f13
5 6| 7] 8| 9|ro|1x|12|13]14
6 7| 8] 9|10 1x | 12|13 14] 15
7| 8| 9|0 1| 1213|124/ 15]16
8 9|10 xx| 12| 13|14 125]|16]|17
9 | 10| xx |12 |13)14]| 15| 16| 17|18

The use of this table is as follows: Suppose you want to find the
sum of 8 and 7. Look in the left-hand column for either of them,
3, for example; and look in the top column for 7. On the same line
as 8, and underneath 7, you find 15, their sum.

32. When this table has been thoroughly committed to memory, so
that you can tell at once the sum of any two numbers, neither of which
exceeds 9, you should exercise yourself in adding and subtracting two
numbers, one of which is greater than 9 and the other less. You should
write down a great number of such sentences as the following, which
will exercise you at the same time in addition, and in the use of the
signs mentioned in (23).

1246 =18 2246=28 19+8=27
54+9=163 56+7=63 22+8=30
100—9=91 27-8=19 44—6=18, &c.
33. When the last two articles have been thoroughly studied, you

will be able to find the sum of any numbers by the following process,*
which is the same as that in (29).

* In this and all other processes, the student is strongly recommended to look at
and follow the first Appendix.
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Ruie I. Place the numbers under one another, units under units,
tens under tens, and so on. .

II. Add together the units of all, and part the whole number thus
obtained into units and tens. Thus, if 85 be the number, part it into
8 tens and 5 units; if 136 be the number, part it into 13 tens and
6 units (20).

III. Write down the units of this nymber under the units of the
rest, and keep in memory the number of tens.

IV. Add together all the numbers in the column of tens, remember-
ing to take in (or carry, as it is called) the tens which you were told to
recollect in III., and divide this number of tens into tens and hundreds.
Thus, if 335 tens be the number obtained, part this into 33 hundreds
and 5 tens.

V. Place the number of tens under the tens, and remember the
number of hundreds.

VI. Proceed in this way through every column, and at the last
column, instead of separating the number you obtain into two parts,
write it all down before the rest.

ExampLE.—What is

1805+ 36+19727+43+1474 +2008

1805 The addition of the units’ line, or 8+4+3+7+6+5, gives
36 33, that is, 3 tens and 3 units. Put 3 in the units’ place, and
19727 add together the line of fens, taking in at the beginning the
3 3 tens which were created by the addition of the units’ line.
1474 That is, find 3+o+7+2+3+0, which gives 15 for the number
2008  of tens ; that is, 1 hundred and §tens. Add the line of hun-
25053 dreds together, taking care to add the 1 hundred which arose
in the addition of the line of tens; that is, find ‘1+04+4+7+8, which
gives exactly 20 hundreds, or 2 thousands and no hundreds. Put a

cipher in the hundreds’ place (because, if you do not, the next figure

will be taken for hundreds instead of thousands), and add the figures in

the thousands’ line together, remembering the 2 thousands which arnse

from the hundreds’ line; that is, find 242+1+9+1, which gives 15
c2
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thousands, or 1 ten thousand and § thousand. Write § under the
line of thousands, and collect the figures in the line of tens of thousands,
remembering the ten thousand which arose out of the thousands® line ;
that is, find 1+1, or 2 ten thousands. Write 2 under the ten thousands’
line, and the operation is completed

1 4

34. As an exercise in addition, you may satisfy yourself that what I
now say of the following square is correct. The numbers in gvery row,
whether reckoned upright, or from right to left, or from corner to
corner, when added together give the number 24156.

20164212 1656/3852|1296/3492| 936(3132| §576|2772| 216)

252{2052/4248|1692(3888(1332/3528| 972{3168| 612(241

P

2448| 288(2088{4284/1728|3924/1368]3564]1008/2808| 648

684{2484) 324{212414320/176413960(140413204{104412844

2880| 720[2520| 360|2160|4.356/1800]3600|1440{3240(108

1116{2916] 756/2556| 396|2196/3996|1836/3636/1476|3276

3312!1152[2952| 792|2592( 36/2232{4032|1872(3672|1512

1548(3348(1188/2988 432(2628| 72/2268/4068|1908(3708

3744{1584|3384] 828|3024] 468|2664] 10812304{4704{1944;

1980|3780|1224/3420| 864 3060| 504/27 144/2340/414
4176(16203816 1260 3456| 900(3096] 540[2736| 180[2376

35. If two numbers must be added together, it will not alter the
sum if you take away a part of one, provided you put on as much to
the other. It is plain that you will not alter the whole number of a
collection of pebbles in two baskets by taking any number out of one,
and putting them into the other. Thus, 15+7 is the same as 12+10,
since 12 is 3 less than 15, and 10 is three more than 7. This was the
principle upon which the whole of the process in (29) was conducted.

86. Let a and & stand for two numbers, as in (24). It is impossible
to tell what their sum will be until the numbers themselves are known.

In the mean while a+b stands for this sum. To say, in algebraical
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language, that the sum of @ and b is not altered by adding ¢ to @, pro-

vided we take away ¢ from 4, we have the following equation :
(a+c)+(b—c) = a+bd;
which may be written without brackets, thus,
a+ct+b—e = a+b.

For the meaning of these two equations will appear to be the same, on
consideration. .

37. If a be taken twice, three times, &c.‘, the results are represented
in algebra by 2a, 3a, 4a, &c. The sum of any two of this series may
be expressed in a shorter form than by writing the sign + between
them ; for though we do not know what number a stands for, we know
that, be it what it may, 2a+2a=4a, 3a+26=5a, 4a+9a=13a ; and gene-
rally, if a taken m times be added to a taken m times, the result is a
taken m+n times, or

ma+na = (m+n)a.

38. The use of the brackets must here be noticed. They mean,
that the expression contained inside them must be used exactly as a
single letter would be used in the same place. Thus, pa signifies that
a is taken p times, and (m+n)a, that a is taken m+n times, It is,
therefore, a different thing from m+nae, which means that a, after
being taken » times, is added to m. Thus (3+4)x2 i8 7x2 or 14 ; while
3 +4.xz-is 3+8, or 11.

39. When one number is taken away from another, the number
which is left is called the difference or remainder. The process of
finding the difference is called suBrracrioN. The number which is to
be taken away must be of course the lesser of the two.

40. The process of subtraction depends upon these two principles.

L. The difference of two numbers is not altered by adding a number
to the first, if ):o‘u add the same number to the second; or by sub-
tracting a number from the first, if you subtract the same number from
the second. Conceive two baskets with pebbles in them, in the first
of which are 100 pebbles more than in the second. If I put 50 more
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pebbies into each of them, there are still only 100 more in the fist than
in the second, and the same if I take 5o from each. Therefore, in
finding the difference of two numbers, if it should be convenient, I
may add any number I please to both of them, because, though I alter
the numbers themselves by so doing, 1 do not alter their difference.

II. Since 6 exceeds 4 by 2,
and 3 exceeds 2 by 1,
and 12 exceeds §5 by 7,

6, 3, and 12 together, or 21, exceed 4, 2, and § together, or 11, by 2,
1, and 7 together, or 10: the same thing may be said of any other
numbers.

41. If a, b, and ¢ be three numbers, of which & is greater than b
(40), I. leads to the following,

(a+c)—(b+c) = a—b.
Again, if ¢ be less than a and 3,
(a—c)—(b—c) = a—>.

The brackets cannot be here removed as in (36). That is, p;(q—r)
is not the same thing as p—¢—r. For, in the first, the difference of ¢
and r is subtracted from p; but in the sccond, first ¢ and then s are
subtracted from p, which is the same as subtracting as much as ¢ and »
together, or g+r. Therefore p—g—r is p—(g+r). In order to shew
how to remove the brackets from p—(g—r) without altering the value
of the result, let us take the simple instance 12—(8—5). 'If we subtract
8 from 12, or form 12—8, we subtract too much; because it is not 8
which is to be taken away, but as much of 8 as is left after diminishing
it by 5. In forming 12—8 we have therefore subtracted 5 too much.
This must be set right by adding 5 to the result, which gives 12—8+5
for the value of 12—(8—5). The same reasoning applies to every case,

and we have therefore,
p—(g+7) =p—g—r.
p—(g—r) =p—g+r.

By the same kind of reasoning,
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a—(b+c—d—e) = a—b—c+d+e.
2a+3b—(a—258) = 2a+3b—a+2b = a+5b.
42+y—(172—9y) = 4x+y—174+9y = 10y—132.
42, I want to find the difference of the numbers 57762 and 34631.
Take these to pieces as in (29) and
' §7762 is § ten-th. 7 th. 7 hund. 6 tens and 2 units.
34631 is 3 ten-th. 4 th. 6 hund. 3 tens and 1 unit.

Now 2 units exceed . . . 1unit . . . . . by Iunit
6tens., . . . . . jtens . . . . . 3 tens.
7 hundreds . . . . 6 hundreds . . . 1 hundred.
7 thousands. . . . 4 thousands . . . 3 thousands.
5 ten-thousands ., . 3 ten-thous. . . . 2 ten-thous.

Therefore, by (40, Principle I1.) all the first column logether exceeds
all the second column by all the third column, that is, by

2 ten-th., 3th, x1hund. 3tens and I unit,
which is 23131. Therefore the difference of §7762 and 34631 is 23131,
or §7762—34631=23131.

43. Suppose I want to find the difference between 61274 and 39628,
Write them at length, and .

61274 is 6 ten-th, 1 th. 2 hund. 7 tens and 4 units,
39628 is 3 ten-th. 9 th. 6 hund. 2 tens and 8 units.

If we attempt to do the same as in the last article, there is a diffi-
culty immediately, since 8, being greater than 4, cannot be taken from
it. But from (40) it appears ‘that we shall not alter the difference of
two numbers if we add the same number to both of them., Add ten .0
the first number, that is, let there be 14 units instead of four, and add
ten also to the second number, but instead of adding ten to the number
of units, add one to the number of tens, which is the same thing. The
numbers Vwill then stand thus,

6 ten-thous, 1 thous. 2 hund. 7 tens and 14 units.*
3 ten-thous. ¢ thous, 6 hund. 3 fens and 8 units,

* Those numbers which have been altered are put in italics,
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You now see that the units and tens in the lower can be subtracted
from those in the upper line, but that the hundreds cannot. To remedy

this, add one thousand or 10 hundred to both numbers, which will not

alter their difference, and remember to increase the hundreds in the
upper line by 10, and the thousands in the lower line by 1, which are
the same things. And since the thousands in the lower cannot be
subtracted from the thousands in the upper line, add 1 ten thousand
or 10 thousand to both numbers, and increase the thousands in the
upper line by 10, and the ten thousands in the lower line by 1, which
are the same things; and at the close the numbers which we get
will be,

6 ten-thous. 11 thous. 12 hund. 7 tens and 14 units.

4 ten-thous. 10 thous. 6 hund. 3 fens and 8 units,

These numbers are not, it is true, the same as those given at the
beginning of this article, but their difference is the same, by (40).
With the last-mentioned numbers proceed in the same way as in (42),
which will give, as their difference,

2 ten-thous. 1 thous. 6 hund. 4 tens, and 6 units, which is 21646.

44, From this we deduce the following rules for subtraction :

I. Write the number which is fo e subtracted (which is, of course,
the lesser of the two, and is called the subfrahend) under the other, so
that its units shall fall under the units of the other, and so on.

II. Subtract each figure of the lower line from the one above it, if
that can be done. Where that cannot be done, add ten to the upper
figure, and then subtract the lower figure ; but recoilect in this case
always to increase the next figure in the lower line by 1, before you
begin to subtract it from the upper one.

45, If there should not be as many figures in the lower line as in
the upper one, proceed as if there were as many ciphers at the begin-
ning of the lower line as will make the number of figures equal. You
do not alter a number by placing ciphers at the beginning of it. For

example, 00818 is the same number as 818, for it means

o ten-thous. o thous, 8 hunds. 1 ten and 8 units;

i
i
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the first two signs are nothing, and the rest is
8 hundreds, 1 ten, and 8 units, or 8§18.

The second does not differ from the first, except in its being said that
there are no thousands and no tens of thousands in the number, which
may be known without their being mentioned at all. You may ask,
perhaps, why this does not apply to a cipher placed in the middle of a
number, or at the right of it, as, for example, in 28007 and 39700?
But you must recollect, that if it were not for the two ciphers in the
first, the 8 would be taken for 8 tens, instead of 8 thousands; and if it
were not for the ciphers in the second, the 7 would be taken for 7 units,
instead of 7 hundreds.
46. EXAMPLE,

What is the difference between 3708291640030174

and 30813649276188

Difference 3677477990753986

EXERCISES,

1. What is 183374149263200—6472902 ?—Answer 142808635,

What 18 1000—464+3279—646 P—Ans. 3169,
I1. Subtract
64+76+144—18 from 33—2+100037.—Ans. 99802.

IIT. What shorter rule might be made for subtraction when all the
figures in the upper line are ciphers except the first? for example,
in finding

10000000—2731634.

IV. Find 18362+2469 and 18362—2469, add the second result to
the first, and then subtract 18362; subtract the second from the first,
and then subtract 2469.—Answer 18362 and 2469.

V. There are four places on the same lire in the order a, B, c,
and p. From a to p it is 1463 miles; from a to ¢ it is 728 miles; and
from B to p it is 1317 miles. How far is it from a to B, from B to c,
and from c to »P—Answer. From A to B 146, from B to c §82, and
from c to D 735 miles.
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VL In the following table subtract B from A, and B from the re-
mainder, and so on until B can be no longer subtracted. Find how
many times B can be subtracted from a, and what is the last remainder.

A B No. of times. Remainder.
23604 . . . . 9999 i . 2 . . . 3606
209961 37173 5 24096
74712 6792 11 o

4802469 654321 7 222222
18849747 3141592 6 195
987654321 123456789 . 8 9

SECTION III.

MULTIPLICATION.

47. I have said that all questions in arithmetic require nothing
but addition and subtraetion. I do not mean by this that no rule
should ever be used except those given in the last section, but that all
other rules only shew shorter ways of finding what might be found,
if we pleased, by the methods there deduced. Even the last two rules
themselves are only short and convenient ways of doing what may be
done with a number of pebbles or counters,

48. I want to know the sum of five seventeens, or I ask the
17  following question: There are five heaps of pebbles, and seven-
17 teen pebbles in each heap; how many are there in all? Write
17  five seventeens in a column, and make the addition, which gives
17 85. In this case 85 is called the product of 5 and 17, and the
17  process of finding the product is called murTIPLICATION, Which
8? gives nothing more than the addition of a number of the same
quantities, Here 17 is called the multiplicand, and 5 is called the
multiplier.

49. If no question harder than this were ever proposed, there would
be no occasion for a shorter way than the one here followed. But if

Yo
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there were 1367 heaps of pebbles, and 429 in each heap, the whole
number is then 1367 times 429, or 429 multiplied by 1367. I should
have to write 429 1367 times, and then to make an addition of enor-
mous length. To avoid this, a shorter rule is necessary, which I now
proceed to explain.

50. The student must first make himself acquainted with the pro-
ducts of all numbers as far as 10 times 10 by means of the following
table,* which must be committed to memory.

1) 2| 3| 4| 5| 61 7| 8] 9| 0}1x]12
2| 4| 6| 8|10 12| 14|16 18] 202224
3| 6| 9frzfagla8 21)24]27|30]|33]/36
4| 81216 i 20 ‘ 24 28 32 | 36 | 40 | 44 | 48
§1 10| 15'20 |25 30| 35]|40|45| 505560
6|12 | 18| 24|30]36|42|48 ]| 54| 60|66 _77
7|14 f21)28|35/|42)|49)|56|63|70|77]384
8| 16|24 |32|40 (|48 | 56|64 72| 807 85| 96

9|18 |27|36]45 5463|7281 g0]0g9|ros

10|20 30 49'50 6o | 70 | 80 | 9o l100 Ir10 l120

|—_—
‘nlzz 33 4.4.|55 66 | 77 | 88 | 99 (110 121 |132

12 | 24 | 36| 48 ' 60 | 72 | 84 | 96 |108 [120 |132 144

If from this table you wish to know what is 7 times 6, look in the
first upright column on the left for either of them; 6 for example.
Proceed to the right until you come into the column marked 7 at the
top. You there find 42, which is the product of 6 &nd 7.

51. You may find, in this way, either 6 times 7, or 7 times 6, and

for both you find 42. That is, six sevens is the same number as seven

® As it 13 usual to learn the product of numbers up to 12 times 12, I have
extended the table thus far. In my opinion, all pupils who shew a tolerable capacity
should slowly commit the products to memory as far as 20 times 20, in the courss
of their progress through this work.
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sixes, This may be shewn as follows: Place seven counters in a line,
and repeat that line in all six times. The number of counters in the
whole is 6 times 7, or six sevens, if I reckon the rows from the top to

. « « « « . . the bottom; but if I count the rows that stand
. . . . . side by side, I find seven of them, and six in each

. « . « . . row, the whole number of which is 7 times 6, or

« +« « « .« .« . seven gixes. And the whole number is 42, which-
« +« + . . ever way I count. The same method may be

e . . . applied to any other two numbers. If the signs
of (23) were used, it would be said that 7x6="6x7.

52. To take any quantity a number of times, it will be enough to
take every one of its parts the same number of times. Thus, a sack of
corn will be increased fifty-fold, if each bushel which it contains be
replaced by 50 bushels. A country will be doubled by doubling every
acre of land, or every county, which it contains. Simple as this may
appear, it is necessary to state it, because it is one of the principles on
which the rule of multiplication depends.

53. In order to multiply by any number, yoﬁ may multiply sepa-
rately by any parts into which you choose to divide that number, and
add the results. For example, 4 and 2 make 6. To multiply 7 by 6
first multiply 7 by 4, and then by 2, and add the products. This will
give 42, which is the product of 7 and 6. Again, since §7 is made up
of 32 and 2§, §7 times §o is made up of 32 times §o0 and 25 times 5o,
and so on. If the signs were used, these would be written thus:

7%x6 = 7x4 + Tx2.
§0%357 = §0x32+4§0X25.

54. The principleg in the last two articles may be expressed thus:
If @ be made up of the parts x, y, and =, ma is made up of mz, my,
and mz; or,

if a=2x +y +a.
ma = my+my+ms.
or, m(2+y+2) = ma+my+me.

A similar result may be obtained if a, instead of being made up of
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£, y, and 2, is made by combined additions and subtractions, such as
T+y—=, x—y+3, *—y—=, &c. To take the first as an instance :

Let =r +y -2z

then . ma = mr+my—ms.
For, if ¢ had been z+y, ma would have been mz+my. But since a
is less thun #+y by 2, too much by = has been repeated every time
that x+y has been repeated ;—that is, mes too much has been taken ;
consequently, ma is not max+my, but mr+my—ms. Similar reason-
ing may be applied to other cases, and the following results may be
obtained :

m(a+bt+o—d) = mat+mbtmo—md,

a(a~b) = aa—ab. 7a(7420) = 49a+14ab.
b(a—b) = ba—bbd. (aa+a+1)a = aas+aata.
3(2a—4b) = 6a—12b. (3ab—2¢)4abe = 12aabbo—8abec.

55. There is another way in which two numbers may be multiplied
together. Since 8 is 4 times 2, 7 times 3 may be made by multiplying
7 and 4, and then multiplying that product by 2. To shew this, place
7 counters in a line, and repeat that line in all 8 times, as in figures
1. and II.

1L
L e et e e e
al oo
Bl o o o oo ot

The number of counters in all is 8 times 7, or §6. But (as in fig. L)

enclose each four rows in oblong figures, such as Ao and B. The num-
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ber in each oblong is 4 times 7, or 28, and there are two of those ob-
longs; so that in the whole the number of counters is twice 28, or
28x2, or 7 first multipled by 4, and that product multiplied by 2.
In figure II, it is shewn that 7 multiplied by 8 is also 7 first multiplied
by 2, and that product multiplied by 4 The same method may be
applied to other numbers. Thus, since 8o is 8 times 10, 256 times 80
is 256 multiplied by 8, and that product multiplied by 10. If we use
the signs, the foregoing assertions are made thus :

7x8 = 7x4x2 = 7x2%4.

256x80 = 256x8x10 = 256x10x8.
EXERCISES,

Shew that 2x3x4x§ = 2x4x3x§ = 5x4x2x3, &c.

Shew that 18x100 = 18x57418x43.

56. Articles /51) and (55) may be expressed in the following way,
where by @b we mean a tuken b times; by abec, a taken b times, and
the result taken ¢ times.

ab = ba.
' abec = ach = beca = bac, &c.
abe = ax(bc) = dx(ca) = cx(ab).

If we would say that the same results are produced by multiplying
by 5, 0, and d, one after the other, and by the product dcd at once, we
write the following :

axbxexd = axbed.

The fact is, that if any numbers are to be multiplied together, the
product of any two or more may be formed, and substituted instead of
those two or more; thus, the product abcdef may be formed by mul-
tiplying

ab cde f
abf de c
abe def &ec.,

*

57. In order to multiply by to, annex a cipher to the right hand of
the multiplicand. Thus, 10 times 2356 is 23560, To shew this, write
2356 at 'ength which is

e e . . A . E—— L —  o—t— e, e
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2 thousands, 3 hundreds, ;5 tens, and 6 units.

Take each of these parts ten times, which, by (52), is the same as
multiplying the whole number by 10, and it will then become

2 tens of thou. 3 tens of hun, 5 tens of tens, and 6 tens,
which is 2 ten-thou. 3 thous. 5 hun, and 6 tens.

This must be written 23560, because 6 is not to be 6 units, but 6 tens.
Therefore 2356x10 = 23§60, R

In the sume way you may shew, that in order to multiply by 100
you must affix two ciphers to the right; to multiply by 1000 you must
affix three ciphers, and 8o on. The rule will be best caught from the
following table ;

13X 10= 130 142x 1000 = 142000
13X 100= 1300 23700% 10= 237000
13X 1000= 13000 3040X I000= 3040000
13X10000 == 130000 10000X 00000 == 1000000000

58. I now shew how to multiply by one of the numbers, 2, 3, 4, 5,
6, 7,8, or 9. I do not include 1, because multiplying by 1, or taking
the number once, is what is meant by simply writing down the number.
I want to multiply 1368 by 8. Write the first number at full length,
which is

1 thousand, 3 hundreds, 6 tens, and 8 units,
To multiply this by 8, multiply each of these parts by 8 (50) and (52),
which will give
8 thousands, 24 hundreds, 48 tens, and 64 units.

Now 64 units are written thus . . . 64

48 tens . . . . . . . . . 48
24 hundreds . . . . . . . 2400
8 thousands . . . . . . . 8ooo

Add these together, which gives 10944 as the product of 1368 and 8, or
1368x8=10944. By working a few examples in this way you will see
for following rule,

D2
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59. I. Multiply the first figure of the multiplicand by the multiplier,
write down the units’ figure, and reserve the tens.

II. Do t.he same with the second figure of the multiplicand, and
add to the product the number of tens from the first ; put down the
units’ figure of this, and reserve the tens.

III. Proceed in this way till you come to the last figure, and then
write down the whole number obtained from that figure.

IV. If there be a cipher in the multiplicand, treat it as if it were
a number, observing that ox1 = o, ox2 =o, &c.

60. In a similar way a number can be multiplied by a figure which
is accompanied by ciphers, as, for example, 8oco. For 8oco is 8x1000,
and therefore (55) you must first multiply by 8 and then by 1000,
which last operation (57) is done by placing 3 ciphers on the right.
Hence the rule in this case is, Multiply by the simple number, and
place the number of ciphers which follow it at the right of the product.

EXAMPLE.

Multiply 1679423800872

by 6ooco
100765428052320000
61. EXERCISES.
° What is 1007360%7 ? Answer, 7051520,

123456789x9+10 and 123x9+4 P—Ans. TITIII1IIX
and 1111,

‘What is 136x34129x4+4147x8427x3000 P—Ans. 83100.

An army is made up of 33 regiments of infantry, each containing
800 men; 14 of cavalry, each containing 600 men; and 2 of artillery,
each containing 300 men. The enemy has 6 more regiments of infantry,
each containing 100 more men; 3 more regiments of cavalry, each con-
tainirq.,r 100 men less; and 4 corps of artillery of the same magnitude as
those of the first : two regiments of cavalry and one of infantry desert
from the former to the latter. How many men has the second army
more than the first >—dnswer, 13400,

62. Suppose it }equire(l to multipl); 23707 by 4567. Since 4567 ie
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made up of 4000, 500, 60, and 7, by (53) we must multiply 23707 by
each of these, and add the products.

Now (58) 23707x 7 is 165949
(60) 23707x 60 is 1422420
23707x §00 is 11853500
23707x4000 is 94828000

The sum of these is 108269869

which is the product required.

It will do as well if, instead of writing the ciphers at the end of each

line, we keep the other figures in their places without them. If we take

away the ciphers, the second line is one place to the left of the first, the

third one place to the left of the second, and so on. Write the multiplier

and the multiplicand over these lines, and the process will stand thus :

23707
4567
165949
142242
118535
94828

108269869

63. There is one more case to be noticed ; that is,
where there is a cipher in the middle of the multiplier.
The following example will shew that in this case
nothing more is necessary than to keep the first figure'
of each line in the column under the figure of the
multiplier from which that line arises. Suppose it re-

quired to multiply 365 by 101001. The multiplier is

made up of 100000, 1000 and 1. Proceed as before, and

365x1 is 365
(57) 365x1000 is 365000
365%x100000 is 36500000

The sum of which is 36865365

and the whole process with the ciphers struck off is :

365
101001

365
365
365
36865365

it came,

64. The following is the rule in all cases:

1. Place the multiplier under the -multiplicand, so
that the units of one may be under those of the other.

II. Multiply the whole multiplicand by each figure
of the multiplier (59), and place the unit of each line in
the column under the figure of the multiplier from which
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ITI. Add together the lines obtained by IL. column by column.

65. When the multiplier or multiplicand, or both, kave ciphers on
the right hand, multiply the two together without the ciphers, and then
place on the right of the product all the ciphers that are on the right
both of the multiplier and multiplicand. For example, what is 3200
x13000? First, 3200 is 32x100, or one hundred times as great as 3z.
Again, 32x13000 is 32x13, with three ciphers affixed, that is 416, with
three ciphers affixed, or 416000. But the product required must be
100 times as great as this, or must have two ciphers affixed. It is
therefore 41600000, having as ﬁany ciphers as are in both multiplier
and multiplicand.

66. When any number is multiplied by itself any number of times,
the result is called a power of that number. Thus:

6 is called the first power of 6

6x6 . . second power of 6

6x6x6. . third power of 6

6x6x6x6 ., fourth power of 6
&e. &e.

The second and third powers are usually called the square and cube,
which are incorrect names, derived from certain connexions of the se-
cond and third power with the square and cube in geometry. As exer-
cises in multiplication, the following powers are to be found.

Number proposed. Square. Cube.
972 944734 918330048
1008 1016064 1024192512
3142 9872164 31018339288
3163 10004569 31644451747
5555 30858025 171416328875
6789 46090521 312908547069

The fith powerof 36 is 60466176
.. fourth . . 50 ... 62 50000
.. fourth . . 108 ... 136048896
. fourth . . 277 ... 5887339441
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67. It is required to multiply a+b by c+d, that is, to take a+b as
many times as there are units in ¢+d. By (53) a+b must be taken ¢
times, and d times, or the product required is (a+b)c+(a+d)d. But
(52) (a+b)c is ac+be, and (a+b)d is ad+bd ; whence the product required
is ac+bc+ad+bd ; or,

(a+b)(c+d) = ao+bo+ad-+bd.

By similar reasoning (a—b)(c+d) is (a—b)e+(a—b)d, or,
(a—b)(c+d) = ac—be+ad—bd.

To multiply a—b by ¢—d, first take a—b ¢ times, which gives ac—bc.
This is not correct; for in taking it ¢ times instead of ¢—d times, we
have taken it d times too many ; or have inade a result which is (a—b)d
too great. The real result is therefore ac—bo—(a—b)d. But (a—b)d is
ad—bd, and therefore

(a—b)(c—d) = ac—bc—(ad—bd)
= ac—be—ad+bd (41)

From these three examples may be collected the following rule for
the multiplication of algebraic quantities: Multiply each term of the
multiplicand by each term of the multiplier; when the two terms have
both + or both — before them, put + before their product; when one
has + and the other —, put — before their product. In using the first
terms, which have no sign, apply the rule as if they had the sign +.

68. For example, (a+b)(a+b) gives aat+ab+ab+bb. But ab+ab is
2ab; hence the square of a+b is aa+zab+bb. Again (a—b)(a—b) gives
aa—ab—ab+bb. But two subtractions of ab are equivalent to subtract-
ing 2ab ; hence the square of a—b is aa—2ab+bb. Again, (a+b)(a—b)
gives aa+ab—ab—bb. But the addition and subtraction of ab makes no
change ; hence the product of a+b and a—b is aa—5b.

Again, the square of a+b+c+d or (a+b+ct+d)(a+b+c+d) will be found
to be aa+zab+zac+2ad+bb+2bc+2bd+ec+2cd+dd; or the rule for squaring
such a quantity is: Square the first term, and multiply all that come
after by twice that term; do the same with the second, and so on to

the end.
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SECTION 1V.
DIVISION.

69. Suppose 1 ask whether 156 can be divided into a number of
parts each of which is 13, or how many thirteens 156 contains; I pro-
pose a question, the solution of which is called pivision. In this case,
156 is called the dividend, 13 the divisor, and the number of parts re-
quired is the quotient; and when I find the tiuotient, I am said to
divide 156 by 13.

70. The simplest method of doing this is to subtract 13 from 156,
and then to subtract 13 from the remainder, and so on; or, in common
language, to tell off 156 by thirteens. A similar process has already
occurred in the exercises on subtraction, Art. (46). Do this, and mark
one for every subtraction that is made, to remind you that each sub-
traction takes 13 once from 156, which operations will stand as follows :

156 Begin by subtracting 13 from 156, which leaves 143. Sub-
13 1

143
13 1 only remains, from which when 14 is subtracted, there remains

l?; ¢ nothing. Upon counting the number of times which you have

117 subtracted 13, you-ﬁnd that this number is 12 ; or 156 contains

tract 13 from 143, which leaves 130; and so on. At last 13

13 1

I 0: twelve thirteens, or contains 13 twelve times.
131 This method is the most simple possible, and might be done
91

13 1 with pebbles. Of these you would first count 156, You would

78 then take 13 from the heap, and put them into one heap by
—;—:—‘ themselves. You would then take another 13 from the heap,
13 T and place them in another heap by themselves ; and so on until

f; ; there were none left. You would then count the number of

39 heaps, which you would find to be 12.
:2 i 71. Division is the opposite of multiplication. In multi-

13 I plication you have a number of heaps, with the same number

13
13 1

) there are in all. In division you know how many there are

of pebbles in each, and you want to know how many pebbles
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in all, and how many there are to be in each heap, and you want
to know how many heaps there are.

*72. In the last example a number was taken which contains an
exact number of thirteens. But this does not happen with every num-
ber. Take, for example, 159. Follow the process of (7C), and it will
appear that after having subtracted 13 twelve times, there remains 3,
from which 13 cannot be subtracted. We may say then that 159 con-
tains twelve thirteens and 3 over ; or that 159, when divided by 13,
gives a guotient 12, and a remainder 3. If we use signs,

159 = I3xI243.
EXERCISES,
146 = 24x6+42, or 146 contains six twenty-fours and 2 over.
146 = 6x24+2, or 146 contains twenty-four sixes and 2 over.
300 = 42x7+6, or 300 contains seven forty-twos and 6 over.
39624 = 7277x543239.
73. If a contain b ¢ times with a remainder r, a must be greater
than b¢ by r; that is,
a=bg+r.
If there be no remainder, a=bg. Here a is the dividend, b the divisor,
g the quotient, and ~ the remainder. In order to say that a contains
b g times, we write,
a
Z=q,ora:b=q,
which in old books is often found written thus :
a+b=gq.
74. If I divide 156 into several parts, and find how often 13 is
contained in each of them, it is plain that 156 contains 13 as often as
all its parts together. For example, 156 is made up of 91, 39, and 26.

Of these
91 contains 13 7 times,

39 contains 13 3 times,
26 contains 13 2 times;
therefore 91+39+26 contains 13 7+3+2 times, or 12 times.
Again, 156 is made up of 100, 50, and 6.
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Now 100 contains 13 7 times and o over,
50 contains 13 3 times and 171 over
6 contains 13 o times* and 6 over.
Therefore 100+50+6 contains 13 7+3+0 times and 9+11+6 over ; or
156 contains 13 10 times and 26 over. But 26 is itself 2 thirteens;
therefore 156 contains 10 thirteens and 2 thirteens, or 12 thirteens.
75. The result of the last article is expressed by saying, that if

d
a=b+c+d, then £ =—b-+—c-+—~
m m m m

76. In the first example I did not take away 13 more than once at
a time, in order that the method might be as simple as possible. But
if T know what is twice 13, 3 times 13, &c., I can take away as many
thirteens at a time as I please, if I take care to mark at each step how
many I take away. For example, take away 13 ten times at once from
156, that is, take away 130, and afterwards take away 13 twice, or tauke
away 26, and the process is as follows :
156
130 ’IO times 13.
26
26 2 times 113,

o
Therefore 156 contains 13 10+2, or 12 times.

Again, to divide 3096 by 18.

3096 Therefore 3096 contains 18 1oo+50+20+2, or

1800 100 times 18, 172 times.

1296 77. You will now understand the following
goo o times 18. eentences, and be able to make similar assertions
3;6— of other numbers.

360 2o times 18. 450 is 75x6; it therefore contains any number,
—33 as §, 6 times as often as 75 contains it.

36 2 times 18.

o
* To speak always in the same way, instead of saying that 6 does not contai 13,
1 say that it contains it 0 times and € over, which is merely saving that 6 is 6

more than nothing.
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135 26 times; therefore,

Twice 135 52 or twice 26

®
o
10 times 135 260 or 10 times 26 ;az

contains
W W W w
more than

50 times 135 1300 or 50 times 26

. 472 contains 18 more than 21 times ; therefore,
4720 contains 18 more than 210 times,
47200' contains 18 more than 2100 times,

472000 contains 18 more than 21000 times,

32 12 2 E 3

20 12 20 o
3 E 3 g 3 i

Iy -

200 3 12 g 200 2 30 g
2

32000  ° 12 & 2000 g 3c00

&ec. & £ &e.

78. The foregoing articles contain the principles of division. The
question now is, to apply them in the shortest and most convenient way
4068

3 (23).

If we divide 4068 into any number of parts, we may, by the process

followed in (74), find how many times 18 is contained in each of these

parts, and from thence how many times it is contained in the whole.

Suppose it required to divide 4@68 by 18, or to find

Now, what separation of 4068 into parts will be most convenient ?
Observe that 4, the first figure of 4068, does not contain 18 ; but that
40, the first and second figures together, does contain 18 more than twice,
but less than three times.* But 4068 (20) is made up of 40 hundreds,
and 68 ; of which, 40 hundreds (77) contains 18 more than 200 times,
and less than 300 times. Therefore, 4068 also contains more than 2co
times 18, since it must contain 18 more times than 4000 does. It also
contains 18 less than 3co times, because 300 times 18 is 5400, a greater
number than 4068. Subtract 18 200 times from 4068 ; that is, subtract
3600, and there remains 468. Therefore, 4068 contains 18 200 times,
and as many more times as 468 contains 18.

It 1emains, then, to find how many times 468 contains 18. Proceed

*+ If you have any doubt as to this expression, recollect that it means ‘contains
more than two eighteens, but not so much as three.”
E
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exactly as before. Observe that 46 contains 18 more than twice, and
less than 3 times ; therefore, 460 contains it more than 20, and less
than 30 times (77) ; as does also 468. Subtract 18 20 times from 468,
that is, subtract 360 ; the remainder is 108. Therefore, 468 contains
18 20 times, and as many more as 108 contains it. Now, 108 is found
to contain 18 6 times exactly ; therefore, 468 contains it 20+6 times,
and 4068 contains it 200+20+6 times, or 226 times. If we write down
the process that has been followed, without any explanation, putting
the divisor, dividend, and quotient, in a line separated by parentheses,
it will stand, as in example (A).
Let it be required-to divide 36326599 by 1342 (B).

B.
1342)36326599(20000+7000+60+9

26840000
_ A.
9486599 18)4068(200+20+6
9394000 3600
92599 1468
80520 - 360
12079 108
12078 108
1 o

As in, the previous example, 36326599 is separated into 36320000
and 6599 ; the first four figures 3632 being separated from the rest,
because it takes four figures from the left of the dividend to make a
number which is greater than the divisor. Again, 36320000 is found to
contain 1342 more than 20000, and less than 30000 times ; and 1342x
20000 is subtracted from the dividend, after which the remainder is
9486599. The same operation is repeated again and again, and the
result is found to be, that there is a quotient 20000+7000+60+9, or
27069, and a remainder 1.

Before you proceed, you should now repeat the foregoing article at
length in the solution of the following questions. What are

10093874 66779922 2718218
3207 114433 ° 13352
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the quotients of which are 3147, 583, 203; and the remainders 1443,
65483, 7762.

79. In the examples of the last article, observe, 1st, that it is useless
to write down the ciphers which are on the right of each subtrahend,
provided that without them you keep each of the other figures.in its
proper place: 2d, that it is useless to put down the right-hand figures
of the dividend so long as they fall over ciphers, because they do not
begin to have any share in the making of the quotient until, by con-
tinuing the process, they cease to have ciphers under them: 3d, that
the quotient is only a number written at length, instead of the usual
way. For example, the first quotient is 2004+20+6, or 226; the second
i8 20000+7000+60+9, or 27069. Strike out, therefore, all the ciphers
and the numbers which come above them, except those in the first
line, and put the quotient in one line; and the two examples of the
last article will stand thus:

18)4068(226 1342)36326599(27069
36 . 2684
46 9486
36 9394
108 9259
108 8052
o 12079
12078

1
80. Hence the following rule is deduced :

1. Write the divisor and dividend in one line, and place parentheses
on each side of the dividend.

I1. Take off from the left hand of the dividend the least number of
figures, which make a number greater than the divisor ; find what num-
ber of times the divisor is contained in these, and write this number as
the first figure of the quotient.

II1. Multiply the divisor by the last-mentioned figure, and subtract
the product from the number which was taken off at the left of the
dividend.
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IV. On the right of the remainder place the figure of the cividend
which comes next after those already separated in IL.: if the remainder
thus increased be greater than the divisor, find how many times the
divisor is contained in it; put this number at the right of the first
figure® of the quotient, and repeat the process: if not, on the right place
the next figure of the dividend, and the next, and so on until it is
greater ; but remember to place a cipher in the quotient for every figure
of the dividend which you are obliged to take, except the first.

V. Proceed in this way until all the figures of the dividend are
exhausted.

In judging how often one large number is contained in another, a
first and rough guess may be made by striking off the same number of
figures from both, and using the results instead of the numbers them-
selves. Thus, 4,732 is contained in 14,379 about the same number of
times that 4 is contained in 14, or about 3 times. The reason is, that
4 being contained in 14 as often as 40co is in 14000, and these last only
differing from the proposed numbers by lower denominations, viz. hun-
dreds, &c. we may expect that there will not be much difference be-
tween the number of times which 14000 contains 4000, and that which
14379 contains 4732: and it generally happens so. But if the second
figure of the divisor be 5, or greater than 5, it will be more accurate to
increase the first figure of the divisor by 1, before trying the method
just explained. Nothing but practice can give facility in this sort of
guess-work. :

81. This process may be made more simple when the divisor is not
greater than 12, if you have sufficient knowledge of the multiplication
table (50). For example, I want to divide 132976 by 4. At full length
the process stands thus :

— g G ) & ——  oa
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4)132976(33244 ?mt you will recollect, without the necessity of
12 writing it down, that 13 contains 4 three times with

12 a remainder 1; this 1 you will place before 2, the
i next figure of the dividend, and you know that 12
9 contains 4 3 times exactly, and so on. It will be more
f_ convenient to write down the quotient thus:
17 4)132976
16
. 33244
16 While on this part of the subject, we may men-
16

» tion, that the shortest way to multiply by 5 is to

o annex a cipher and divide by 2, which is equivalent
to taking the half of 10 times, or 5 times. To divide by 5, multiply by
2 and strike off the last figure, which leaves the quotient ; half the last
figure is the remainder. To multiply by 25, annex two ciphers and
divide by 4. To divide by 25, multiply by 4 and strike off the last
two figures, which leaves the quotient; one fourth of the last two
figures, taken as one number, is the remainder. To multiply a number
by 9, annex a cipher, and subtract the number, which is equivalent to
taking the number ten times, and then subtracting it once. To mul-
tiply by 99, annex two ciphers and subtract the number, &ec.

In order that a number may be divisible by 2 without remainder,
its units’ figure must be an even number.* That it may be divisible
by 4, its last two figures must be divisible by 4. Take the example
1236 : this is composed of 12 hundreds and 36, the first part of which,
being hundreds, is divisible by 4, and gives 12 twenty-fives ; it depends
then upon 36, the last two figures, whether 1236 is divisible by 4 or
not. A number is divisible by 8 if the last three figures are divisible
by 8 ; for every digit, except the last three, is a number of thousands,
and 1000 is divisible by 8 ; whether therefore the whole shall be divi-
sible by 8 or not depends on the last three figures: thus, 127946 is not
divisible by 8, since 946 is not so. A number is divisible by 3 or 9
only when the sum of its digits is divisible by 3 or 9. Take for example
1234 ; thisis
® Among the even figures we include 0.

2
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1 thousand, or 999 and 1
2 hundred, or twice 99 and 2
3 tens, or three times g and 3
and 4 OF . « . + « « 4

Now 9, 99, 999, &c. are all obviously divisible by 9 and by 3, and so
will be any number made by the repetition of all or any of them any
number of times. It therefore depends on 1+2+3+4, or the sum of the
digits, whether 1234 shall be divisible by 9 or 3, or not. From the
above we gather, that a number is divisible by 6 when it is even, and
when the sum of its digits is divisible by 3. Lastly, a number is divi-
sible by 5 only when the last figure is o or 5.

82, Where the divisor is unity followed by ciphers, the rule becomes
extremely simple, as you will see by the following examples :

100)33429(334 This is, then, the rule: Cut off a8 many
300 figures from the right hand of the dividend
; as there are ciphers. These figures will be

300 the remainder, and the rest of the dividend
429 will be the quotient.
400 Or we may prove these results thus: from
—z— (20), 2717316 is 271731 tens and 6; of which

10)2717316

the first contains 10 271731 times, and the
. 271731 and rem. 6. )

second not at all; the quotient is therefore
271731, and the remainder 6 (72). Again (20), 33429 is 334 hundreds
and 29 ; of which the first contains 100 334 times, and the second not
at all; the quotient is therefore 334, and the remainder 29.

83. The following examples will shew how the rule may be short-
ened when there are ciphers in the divisor. With each example is
placed another containing the same process, all unnecessary figures
being removed ; and from the comparison of the two, the rule at the
end of this article is derived.
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1. 1782000)6424700000( 3605 1782)6424700(3605
5346000 5346
10787000 10787
10692000 10692
9500000 9500
8910000 8910
590000 590000
II. 12300000)42176189300(3428 123)421761(3428
36900000 369
52761893 527
49200000 492
35618930 356
24600000 246
110189300 1101
98400000 984
11789300 11789300

The rule, then, is: Strike out as many figures® from the right of the
dividend as there are ciphers at the right of the divisor. Strike out all
the ciphers from the divisor, and divide in the usual way ; but at the
end of the process place on the right of the remainder all those figures
which were struck out of the dividend.

84,
Dividend.

9694

175618

23796484

14002564

310314420

3939040647

22876792454961

EXERCISES,
Divisor. Quot Remaind
47 206 12
3136 56 2
130000 183 6484
1871 7484 °
7878 39390 °
6889 571787 +
43046721 531441 o

* Including both ciphers and others.
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Shew that
1COX JOOXT00=43X43X43 )
I P 100X 100+ 100X4-344-3%4-3.
100XI00X1004+43X43%43
II. Toota3 = I00XI00=—100X43+43%43.
1L 76x7642x76x 52452x52 = 76452,
76452
12X12X12XT2=1
IV. 1412412X12412X12XI2 = —_—

What is the nearest number to 1376429 which can be divided by
36300 without remainder >—Answer, 1379400.

If 36 oxen can eat 216 acres of grass in one year, and if a sheep eat
half as much as an ox, how long will it take 49 oxen and 136 sheep
together to eat 17550 acres P—Answer, 25 years. '

85. Take any two numbers, one of which divides the other without
remainder; for example, 32 and 4. Multiply both these numbers by
any other number ; for example, 6. The products will be 192 and 24-
Now, 192 contains 24 just as often as 32 contains 4. Suppose 6 baskets,
each containing 32 pebbles, the whole number of which will be 192.
Take 4 from one basket, time after time, until that basket is empty.
It is plain that if, instead of taking 4 from that basket, I take 4 from
each, the whole 6 will be emptied together: that is, 6 times 32 contains
6 times 4 just as often as 32 contains 4 The same reasoning applies
to other numbers, and therefore we do not alter the quotient if we mul-
tiply the dividend and divisor by the same number.

86. Again, suppose that 200 is to be divided by so. Divide both
the dividend and divisor by the same number ; for example, 5. Then,
200 is 5 times 40, and 50 is § times 10. But by (85), 4o divided by 10
gives the same quotient as § times 4o divided by § times 10, and there-
fore the quotient of two bers is not altered by dividing both the divi-
dend and divisor by the same number.

87. From (55), if a number be multiplied successively by two others,
it is multiplieti by their product. Thus, 27, first multiplied by 5, and
the product multiplied by 3, is the same as 27 multiplied by § times 3,
or 15. Also, if a number be divided by any number, and the quotient
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be divided by anothel, it is the same as if the first number had been
divided by the product of the other two. For example, divide 6o by 4,
which gives 15, and the quotient by 3, which gives 5. It is plain, that
if each of the four fifteens of which 6o is composed be divided into three
equal parts, there are twelve equal parts in all ; or, a division by 4, and
then by 3, is equivalent to a division by 4x3, or 12.

88. The following rules will be better understood by stating them
in an example. If 32 be multiplied by 24 and divided by 6, the result
is the same as if 32 had been multiplied by the quotient of 24 divided
by 6, that is, by 4 ; for the sixth part of 24 being 4, the sixth part of
any number repeated 24 times is that number repeated 4 times ; or,
multiplying by 24 and dividing by 6 is equivalent to multiplying by 4.

89. Again, if 48 be multiplied by 4, and that product be divided by
24, it is the same thing as if 48 were divided at once by the quotient of
24, divided by 4, that is, by 6. For, every unit which is repeated 6
times in 48 is repeated 4 times as often, or 24 times, in 4 times 48,
or the quotient of 48 and 6 is the same as the quotient of 48x4 and
6x4.

90. The results of the last five articles may be algebraically expressed

thus :
ma a
ws = (85)
If n divide a and & without remainder,
e g
_n_ga (86) L _a (87)
k4 b ¢ bo
n
ab b ac _ a 89
';- = ax—b-‘ (88) 'E' = 2 ( )
¢

It must be recollected, however, that these have only been proved
in the case where all the divisions are without remainder.

91. When one number divides another without leaving any re-
mainder, oris contained an exact number of times in it, it is said to be
a measure of that number, or to measure it. Thus, 4 is a measure of

136, or measures 136 ; but it does not measure 137. The reason for
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using the word measure is this: Suppose you have a rod 4 feet long,
with nothing marked upon it, with which you want to measure some
length; for example, the length of a street. If that street should
happen to be 136 feet in length, you will be able to measure it with
the rod, because, since 136 contains 4 34 times, you will find that the
street is exactly 34 times the length of the rod. But if the street should
happen to be 137 feet long, you cannot measure it with the rod ; for
when you have measured 34 of the rods, you will find a remainder,
whose length you cannot tell without some shorter measure. Hence 4
is said to measure 136, but not to measure 137. A measure, then, is a
divisor which leaves no remainder.

92. When one number is a measure of two others, it is called a
common measure of the two. Thus, 15 is a common measure of 180
and 75. Two numbers may have several common measures. For
example, 360 and 168 have the common measures 2, 3, 4, 6, 24, and
several others. Now, this question may be asked: Of all the common
measures of 360 and 168, which is the greatest? The answer to this
question is derived from a rule of arithmetic, called the rule for finding
the GREATEST COMMON MEASURE, which we proceed to consider.

93. If one quantity measure two others, it measures their sum and
difference. Thus, 7 measures 21 and §6. It therefore measures 56+21
and §6—21, or 77 and 35. This is only another way of saying what
was said in (74).

94. If one number measure a second, it measures every number
which the second measures. Thus, 5§ measures 15, and 15 measures 30,
45, 60, 75, &c. ; all which numbers are measured by 5. It is plain
that if

15 contains 5 3 times,
30, or 15+15 contains § 3+3 times, or 6 times,
45, or 15+15+15 contains § 3+3+3 or g times ;
and so on. .

95. Every number which measures hoth the dividend and divisor
measures the remainder also. To shew this, divide 360 by r12. The
quotient is 3, and the remainder 24, that is (72) 360 is three times 112
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and 24, or 360 = 112x3424. From this it follows, that 24 is the differ-
ence between 360 and 3 times 112, or 24 = 360—112x3. Take any num-

ber which measures both 360 and 112 ; for example, 4 Then

4 measures 360,
4 measures 112, and therefore (94) measures 112x3,

or I112+I112+112,

Therefore (93) it measures 360=~112x3, which is the remainder 24. The
same reasoning may be applied to all other measures of 360 and 1123
and the result is, that every quantity which measures both the dividend
and divisor also measures the remainder. Hence, every common measure
of a dividend and divisor is also a common measure of the divisor and
remainder.

96. Every common measure of the divisor and remainder is also a
common measure of the dividend and divisor. Take the same example,
and recollect that 360 = 112x3424. Take any common measure of the

remainder 24 and the divisor 112 ; for example, 8. Then

8 measures 24 ;
and 8 measures 112, and therefore (94) measures 112x3.

Therefore (93) 8 measures 112x3+24, or measures the dividend 360.
Then every common measure of the remainder and divisor is also a
common measure of the divisor and dividend, or there is no common
measure of the remainder and divisor which is not also a common mea-
sure of the divisor and dividend.

97. I. It is proved in (95) that the remainder and divisor have all
the common measures which are in the dividend and divisor.

II. It is proved in (96) that they have no others.

It therefore follows, that the greatest of the common measures of
the first two is the greatest of those of the second two, which shews how
to find the greatest common measure of any two numbers,* as follows :

98. Take the preceding example, and let it be required to find the
g c. m. of 360 and 112, and observe that

® For shortness, I abbreviate the words greatest common measure into their ‘nitial
letters, g. ¢. m.
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360 divided by 112 gives the remainder 24,

112 divided by 24 gives the remainder 16,
24 divided by 16 gives the remainder 8,
16 divided by 8 gives no remainder.

Now, since 8 divides 16 without remainder, and since it also divides
itself without remainder, 8 is the 3. c. m. of 8 and 16, because it is im-
possible to divide 8 by any number greater than 8; so that, even if
16 had a greater measure than 8, it could not be common to 16 and 8.

Therefore 8isg.c.m.of 16and 8,
(97)g.c. m. of 16and 8isg.c.m.of 24and 16,
g.c.m. of 24 and 16isg. c. m. of 112 and 24,
g. c. m. of 112 and 24 is g. c. m. of 360 and 112,

Therefore 8 is g. ¢. m. of 360 and 112.

The process carried on may be written down in either of the follow-

ing ways:
112)360(3 The rule for finding the greatest common mea-
ﬁ sure of two numbers is,

24)112(4 1. Divide the greater of the two by the less.
f II. Make the remainder a divisor, and the

16)24(x divisor a dividend, and find another remainder.
1_6 IIL. Proceed in this way until there is no
8)16(2 remainder, and the last divisor is the greatest

l_6 common measure required.

° 99. You may perhaps ask how the rule is to
1z 36o 3 shew when the two numbers have no commeon

96 | 336 4 measure. The fact is, that there are, strictly

16 | 24 1 speaking, no such numbers, because all numbers
16 16 2 are measured by 1; that is, contain an exact
-_c;- 8 number of units, and therefore 1 is a common

measure of every two numbers. If they have no other common mea-
sure, the last divisor will be 1, as in the following example, where the

greatest common measure of 87 and 25 is found,

— -
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EXERCISES,
298703 Numbers g.c.m.
Zf 6197 9521 1
12)25(2 58363 2602 1
24
— 5547 147008443 1849
112(12 6281 326041 571
i 28915 31495
° 1509 300309 3

What are 36x36+2x36x724+72x72
and 36x36x36472x72x72;
and what is their greatest common measure ? —A4nswer, 11664.

100. If two numbers be divisible by a third, and if the quotients be
again divisible by a fourth, that third is not the greatest common mea-
sure. For example, 360 and 504 are both divisible by 4. The quotients
are go and 126. Now go and 126 are both divisible by 9, the quotients
of which division are 10 and 14. By (87), dividing a number by 4, and
then dividing the quotient by g, is the same thing as dividing the num-
ber itself by 4xg, or by 36. Then, since 36 is a common measure of 360
and 504, and is greater than 4, 4 is not the greatest common measure.
Again, since 10 and 14 are both divisible by 2, 36 is not the greatest
common measure. It therefore follows, that when two numbers are
divided by their greatest common measure, the quotients have no com-
mon measure except 1 (99). Otherwise, the number which was called
the greatest common measure in the last sentence is not so in reality.

101. To find the greatest common measure of three numbers, find
the g. c¢. m. of the first and second, and of this and the third. For
since all common divisors of the first and second are contained in their
g. ¢. m., and no others, whatever is common to the first, second, and
third, is common also to the third and the g. c. m. of the first and second,
and no others. Similarly, to find the g. c. m. of four numbers, find the
g. c. m. of the first, second, and third, and of that and the fourth.

102. When a first number contains a second, or is divisible by it
without remainder, the first is called a multiple of the second. The
words multiple and measure are thus connected : Since 4 is a measure

F
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of 24, 24 is a multiple of 4. The number g6 is a multiple of 8, 12, 24,
48, and several others. It is therefore called a common multiple of 8,
12, 24. 43, &c. The product of any two numbers is evidently a common
multiple of both, Thus, 36x8, or 288, is a common multiple of 36 and
8. But there are common multiples of 36 and 8 less than 288 ; and
because it is convenient, when a common multiple of two quantities is
wanted, to use the least of them, I now shew how to find the least
common multiple of two numbers.

103. Take, for example, 36 and 8. Find their greatest common
mesasure, which is 4, and observe that 36 is 9x4, and 8 is 2x4. The
quotients of 36 and 8, when divided by their greatest common measure,
are therefore g and 2. Multiply these quotients together, and multiply

the product by the greatest common re, 4, which gives 9x2x4, or
72. This is a multiple of 8, or of 4X2 by (55) ; and also of 36 or of
4x9. Itisalso the least common multiple ; but this cannot be proved
to you, because the demonstration cannot be thoroughly understood
without more practice in the use of letters to stand for pumbers. But
you may satisfy yourself that it is the least in this case, and that the
same process will give the least common multiple in any other case
whkich you may take. It is not even necessary that you should know
it is the least. Whenever a common multiple is to be used, any one
will do as well as the least. It is only to avoid large numbers that the
least is used in preference to any other.

When the greatest common measure is 1, the least common multiple
of the two numbers is their product.

The rule then is: To find the least common multiple of two num-
bers, find their greatest common measure, and multiply one of the num-
Lgrs by the quotient which the other gives when divided by the greatest
common measare. To find the least common multiple of three num-
bers, find the least common multiple of the first two, and find the least
common multiple of that multiple and the third, and so on.
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EXERCISES.
Numbers proposed. 1 Least common multiple.
14, 21 i 42
16, 5, 24 ] 240
1,2, 3 4 5 6,7, 8 9, 10 I 2520
6, 8, 11, 16, 20 2640
376, 864 | 63072
868, 854 52948

A convenient mode of finding the least common multiple of several
numbers is as follows, when the common measures are easily visible:
Pick out a number of common measures of two or more, which have
themselves no.divisors greater than unity., Write them as divisors, and
divide every number which will divide by one or more of them. Bring
down the quotients, and also the numbers which will not divide by any
of them. Repeat the process with the results, and so on until the num-
bers brought down have no two of them any common measure except
unity. Then, for the least common multiple, multiply all the divisors
by all the numkers last brought down. For instance, let it be required
to find the least common multiple of all the numbers from 11 to 21.

2,2, 3, §, 7)I1 12 13 14 1§ 16 17 18 19 20 21
I1 113 1 1 417 319 1 1

There are now no common measures left in the row, and the least com-
mon multiple required is the product of 2, 2, 3, 5, 7, 11, 13, 4, 17, 3, and
19 ; or 232792560.

SECTION V.
FRACTIONS,

104. Suppose it required to divide 49 yards into five equal parts, or,
as it is called, to find the fifth part of 49 yards. If we divide 45 by s,
the quotient is 9, and the remainder is 4 ; that is (72), 49 is made uv of
5 times g and 4. Let the line A B represent 49 yards:
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A B
C— 7 —
D——  K—
E—0—— L--
F——  M—

IKLMN

H 1T
Take § lines, C, D, E, P, and G, each 9 yards in length, and the line =,
4 yards in length. Then, since 49 is 5 nines and 4, ¢, b, B, F, G, and H,
are together equal to A B. Divide m, which is 4 yards, into five equal
parts, 1, K, L, M, and N, and place one of these parts opposite to each
of the lines, c, D, E, F, and . It follows that the ten lines, c, b, E,
P, G, I, K, L, M, N, are together equal to A B, or 49 yards. Now p and K
together are of the same length as c and 1 together, and so are & and L,
F and M, and 6 and N. Therefore, ¢ and 1 together, repeated 5 times,
will be 49 yards ; that is, c and 1 together make up the fifth part of 49
yards.

105. ¢ is a certain number of yards, viz. 9 ; but 1 is a8 new sort of
quantity, to which hitherto we have never come. It is not an exact
number of yards, for it arises from dividing 4 yards into § parts, and
taking one of those parts. It is the fifth part of 4 yards, and is called
& FPRACTION of a yard. It is written thus, 4 (23), and is what we must
add to 9 yards in order to make up the fifth part of 49 yards.

The same reasoning would apply to dividing 49 bushels of corn, or
49 acres of land, into 5 equal parts. We should find for the fith part
of the first, g bushels and the fifth part of 4 bushels ; and for the second,
9 acres and the fifth part of 4 acres.

We say, then, once for all, that the fith part of 49 is 9 and %, or

9+4§' ; which is usually written 9%, or if we use signs, ng = 9?,
5

EXERCISES,

- .

What is the seventeenth part of 1237 P—Answer, 77.:—;.
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10032 663819 and 22773399 ?

‘What are —1'97—4, 23710 'y

162 23649 2343
Answer, 5—, ===,
L. * 51978 *Ta3710" P24
106. By the term fraction is understood a part of any number, or the
sum of any of the equal parts into which a number is divided. Thus,

49 4 20, are fractions. The term fraction even includes whole num-

bers :* for example, 17 is —7- s 50 2, &e.

The upper number is ca.lled the numerator, the lower number is
called the denominator, and both of these are called Zerms of the fraction.
As long as the numerator is less than the denominator, the fraction is
less than a unit: thus, ;6; is less than a unit; for 6 divided into 6 parts
gives 1 for each, part, and must give leas when divided into 17 parta.
Similarly, the fraction is equal to a unit when the numerator and de-
nominator are equal, and greater than a unit when the numerator is
greater than the denominator.

107. By 2 js meant the third part of 2. This is the same as twice
the third part of 1.

To prove this,. let A B be two yards, and divide each of the yards a ¢
and c B into three equal parts.

5% ¢ 7 & 31

Then, because A E, EF, and F B, are all equal to one another, 4 & is

the third part of 2. It is therefore ; But a E is twice A D, and A D
is the third part of one yard or- therefore — is twice — ; that is, in
order to get the length —, it makes no difference whether we divide two
yards at once into three parts, and take one of them, or whether we
divide one yard into three parts, and take #wo of them. By the same
reasoning, g may be found either by dividing 5 into 8 parts, and taking
one of them, or by dividing 1 into 8 parts, and taking five of them. In
future, of these two meanings I shall use that which is most convenient
at the time, as it is proved that t'bey are the same thing. This prin-

* Numbers which contain an exact number of units, such as 5, 7, 100, &e., are
called whole numbers or integers, when we wish to distinguish them from fractions.
F2
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ciple is the same as the following: The third part of any number may
be obtained by adding together the thirds of all the units of which it
consists, Thus, the third part of 2, or of two units, is made by taking
one-third out of each of the units, that is,

2
3

Zta,
3

This meaning appears ambiguous when the numerator is greater than
the denominator : thus, 5 would mean that 1 is to be divided into 7
parts, and 15 of them are to be taken. We should here let as many
units be each divided into 7 parts as will give more than 15 of those
parts, and take 15 of them.

108. The value of a fraction is not altered by multiplying the nume-
rator and denominator by the same quantity. Take the fraction —, mul-
tiply its numemtor and denominator by 5, and it becomes 2—5, wh.lch is the
same thing u-' that is, one-twentieth part of 15 yards is the same
thing as one-fourth of 3 yards: or, if our second meaning of the word
fraction be used, you get the same length by dividing a yard into 20
parts and taking 15 of them, as you get by dividing it into 4 parts and
taking 3 of them. To prove this,

l||||*1|||*1|| Illll

let A B represent a yard ; divide it into 4 equal parts, A ¢, ¢ D, D g, and
E B, and divide each of these parts into 5 equal parts. Then 4 & is 3.
But the second division cuts the line into 20 equal parts, of which At
contains 15, It i xs therefore ch> —=. Therefore, -2-‘;5)- and 3

Again, since ; is made from ?g by dividing both the numerator and
denominator by 5, the value of a fraction is not altered by dividing both
its numerator and denominator by the same quantity. This principle,
which is of so much importance in every part of arithmetic, is often

used in common language, as when we say that 14 out of 21 is 2 out of

are the same thing,

3, &e.
109, Though the two fmctions-z and :75) are the same in value, and
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either of them may be used for the other without error, yet the first is
more convenient than the second, not only because you have a clearer
idea of the fourth of three yards than of the twentieth part of fifteen
yards, but because the numbers in the first being smaller, are more con-
venient for multiplication and division. It is therefore useful, when a
fraction is given, to find out whether its numerator and denominator
have any common divisors or common measures. In (98) was given a
rule for finding the greatest common measure of any two numbers; and
it was shewn that when the two numbers are divided by their greatest
common measure, the quotients have no common measure except I,
Find the greatest common measure of the terms of the fraction, and
divide them by that number. The fraction is then said to be reduced to
its lowest terms, and is in the state in which the best notion can be
formed of its magnitude.

EXERCISES,
With each fraction is written the same reduced to its lowest terms,

2794 _ 2ax1z7 _ 22
2921 23x127 23
2788 _  17x164 _
4920  30x164 30
93208  764x122 - 764
13786  113x122 113

888800 22X40400 22

40359600  999x40400 _ 999

95469 121x789 121

359784 456x789 456
110. When the terms of the fraction given are already in factovs,*
any one factor in the numerator may be divided by a number, provided
some one factor in the denominator is divided by the same. This fol-
lows from (88) and (108). In the following examples the figures altered

by division are accented.

* A factor ofa number is a number which divides it without remainder: thus,
4, 6, 8, are factors of 24, and 6Xx4, 8x 3, 2X2x2X 3, are several ways of decomposing
24 into factors.
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12x1IXI0  3'XIIX10  I'xIIx§’
= ’ = /, ’ / =
2x 3x 4 2x3xI  I'xr'xI

55

18xx5x13 _ 2'x3'x1’  rxr’xr’ 1

20x54x52  4'x6'xq4’  2'x2'xg 16
6
ry

27x28 3'x4’ 3'x2’
gx70  Tx10 x5’

111. As we can, by (108), multiply the numerator and denominator
of a fraction by any number, without altering its value, we can now
readily reduce two fractions to two others, which shall have the same
value as the first two, and which shall have the same denominator.
Take, for example, 2 and -4-; multiply both terms of 2 by 7, and both
terms of %' by 3. It then appears that 3

2, 27 14
3 3x7 21
R P kY —-2-'.
7 7x3 21
Here are then two fractions E and -;—;, equal to 2 and —4—, and

having the same denominator, 21; in this case, Zanad are said to be
reduced to a denominator. 3 7

It is required to reduce %, %, and % to a common denominator.
Multiply both terms of the first by the product of 6 and 9 ; of the se-
cond by the product of 10 and 9; and of the third by the product of
10 and 6. Then it appears (108) that

1x6x9 or 54

10x6%9 540

3 jg 2029 o 450 : !
6 6xrox9 540 -

7

I
— 18
(o]

-

is 7x10%6 ;42
9  gxioxb 540

On looking at these last fractions, we see that all the numerators
and the common denominator are divisible by 6, and (108) this division
will not alter their values. On dividing the numerators and deno-
minators of _Si’ 4—5—0, and $2° by 6, the resulting fractions are, i, E,

70 540" 540 540 90 9o

and v These are fractions with a common denominator, and which
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are the mmeas-l—:-). g, and z; and therefore these are a more simple
answer to the question than the first fractions. Observe also that g40
is one common multiple of 10, 6, and 9, namely, 10x6x9, but that go is
the least common multiple of 10, 6, and g (103). The following pro-
cess, therefore, is better. To reduce the fractlons — %, and z, to others
having the same value and a common denominator, begm by finding the
least common multiple of 10, 6, and 9, by the rule in (103), which is
g9o. Observe that 10, 6, and g are contained in go 9, 15, and 10 times.
Multiply both terms of the first by 9, of the second by 15, and of the
third by 10, and the fractions thus produced are =, 2, 75, and 70, the same
as before, 99" 90 g

If one of the numbers be a whole number, it may be reduced to a
fraction having the common denominator of the rest, by (106).

EXERCISES.
FPractions proposed duced to a d i
2 1 1 20 6 [
3 5 6 ° 3 30
1 2 3 12 3 28 24 18 48 63
37 4 u o4 8 84 B8 8 B
3 £ 5 8 oo 40 so 6
10 I00 IGO0 1000 1000 1000 1000
33 281 22341 106499
379 677 256583 256583

112. By reducing two fractions to a common denominator, we are
able to compare them; that is, to tell which is the greater and which
the less of the two. For example, take 5 and ll These fractions
reduced, without alteration of their value, to a common denominator,
are 5 and ;z Of these the first must be the greater, because (107) it
may be obtained by dividing 1 into 30 equal parts and taking 15 of them,
but the second is made by taking 14 of those parts.

It is evident that of two fractions which have the same denominator,
the greater has the greater numerator ; and also that of two fractions

which have the same numerator, the greater has the less denominator.
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Thus, —s-ia greater than g, since the first is a 7th, and the last oniy a

gth part of 8. Also, any numerator may be made to belong to as small

a fraction as we please, by sufficiently increasing the denominator.
I0, 1 10, 1 . 1

Th“s’E 18 10’ Tooo ° 100" and 1000000 100000 (108).

We can now also increase and diminish the first fraction by the

second. For the first fraction is made up of 15 of the 30 equal parts
into which 1 is divided. The second fraction is 14 of those parts. The
sum of the two, therefore, must be 15+14, or 29 of those parts; that
is,-i+xls is :—Z. The difference of the two must be 15—14, or 1 of those
parts ; that is, ;’—!l = 318'

113. From the last two articles the following rules are obtained :

I. To compare, to add, or to subtract fractions, first reduce them to
a common denominator. When this has been done, that is the greatest
of the fractions which has the greatest numerator.

Their sum has the sum of the numerators for its numerator, and the
common denominator for its denominator.

Their difference has the difference of the numerators for its nume-

rator, and the common' denominator for its denominator.

EXERCISES,

11,1183 44153 18329
234 -5 6o 3 427 1281
LI S . a— 1422 253
I0 100 1000 1000 7 13 91
8,9 3 163 97 _ 93066
2 16 188 2 521 881 459001

114. Suppose it required to add a whole number to a fraction, tor
example, 6 to i. By (106) 6 is -51', and ﬁ.,.ﬁ

4 . 58 9. 9 . . .
it is usually written, 61, is =—. The rule in this case is: Multiply the

is—5—8-; that is, 6+i, or as
whole number by the denominator of the fraction, and to the product
add the numerator of the fraction ; the sum will be the numerator of
the result, and the denominator ot the fraction will be its denominator.
13 323 =293 5,2 =272 This rule is the opposite of

9 9 55 55

that in (105).
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115. Frgm the last rule it appears that 1723—~—— 7 is 2113';917'

667—— 225 67“5 and 23 99 5 2300099 Hence, when a whole
1000 ° 1000 100000 100000

number is to be added to a fraction whose denominator is 1 followed by
ciphers, the number of which is not less than the number of figures in
the numerator, the rule is: Write the whole number first, and then the
numerator of the fraction, with as many ciphers between them as the
number of ciphers in the denominator exceeds the number of figures in
the numerator. This is the numesator of the result, and the denomi-
nator of the fraction is its denominator. If the number of ciphers in
the denominator be equal to the number of figures in the numerator,
write no ciphers between the whole number and the numerator.

EXERCISES.
Reduce the following mixed quantities to fractions: 23797 2457—6-
299 2210 60000
1207: , and 233
10000000 100C0°

116. Suppose it required to multlply by 4. This by (48) is taking
2 four times ; that is, tinding 222 This by (112) is f; so that to
13nultiply a fraction by a whgle num3ber the rule is: Multiply the nu-
merator by the whole number, and let the denominator remain.

117, If the denominator of the fraction be divisible by the whole
number, the rule may be stated thus: Divide the denominator of the
fraction by the whole number, and let the numerator remain. For
example, multiply _3—6 by 6. This (116) is —, which, since the numerator
and denommator are now divisible by 6, is (108) the same aa% It is
plain that 2 3 is made from 3l6 in the manner stated in the rule.

118. Multiplication has been defined to be the taking as many of
one number as there are units in another. Thus, to multiply 12 by 7
is to take as many twelves as there are units in 7, or to take 12 as many
times as you must take 1 in order to make 7. Thus, what is done with

1 in order to make 7, is done with 12 to make 7 times 12. For example,

7 i8S T+I41514+14141.

7 times 12 is I2+12+12+12+12+12+12,

When the same thing is done with two fractions, the result is still
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called their product, and the process is still called multiplication. There
is this difference, that whereas a whole numbher is made by adding 1 to
itself » number of times, a fraction is made by dividing 1 into a number
of equal parts, and adding one of these parts to itself a number of times.
This being the meaning of the word multiplication, as applied to frac-
tions, what. is = multxphed by ; H
make 3 must now be done with 1; but to make Z, 1 is divided into 8
parts, and 7 of them are taken. Therefore, to make %x%, % must be di-
vided into 8 parts, and 7 of them must be taken. Now %is,by( 108),

the same thing as 2% Since z_:. is made by dividing 1 into 32 parts, and

‘Whatever is done with 1 in order to

taking 24 of them, or, which is the same thing, taking 3 of them 8 times,
if — 24 be divided into 8 equal parts, each of them is %; and if 7 of these
parts be taken, the result is 3— (116) : therefore i multiplied by i -3—'- ;
and the same reasoning may be applied to any other fra.ctlons. But
;—:- is made from 2 and% by multiplying the two numerators together
for the numerator, and the two denominators for the denominator ;

which furnishes a rule for the multiplication of fractions.

119. If this product —1s to be multiplied by a third fraction, fer
example, by 5, the result. is, by the same rule, 8:’ and so on. The
general rule for multiplying any number of fractions together is therefore :

Multiply all the numerators together for the numerator of the pro-
duct, and all the denominators together for its denominator.

120. Suppose it required to multnply togel;her-—§ and i The pro-
1]65 x8 , and is To’ which reduced to its lowest
terms (109) is3, This result mlght have been obtained directly, by
observing that 15 and 10 are both measured by g, and 8 and 16 are both
measured by 8, and that the fraction may be written thus: ;;TS::S
Divide both its numerator and denominator by 5x8 (108) and (87), and

the result is at once 3--, therefore, before proceeding to multiply any

duct may be written thus :

number of fractions together, if there be any numerator and any deno-
minator, whether belonging to the same fraction or not, which have a
common measure, divide them both by that common measure, and use
the quotients instead of the dividends.
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A whole number may be considered as a fraction whose denominator
. 16
is 13 thus, 16 is ‘T (106) ; and the same rule will apply when one or

more of the quantities are whole numbers.

EXERCISES
126 268 36448 18224
—_x - . ——————
7470 919 6864930 3432465

v 23 1 2 17 2

X X°x = —x =

2345 5 17 45 4§
2 13,0 6266 23, Sor _ 7R13
59 7 19 7847 461 11 §071

Fraction proposed 8q Cube.

701 491401 344472101
158 24964 3944312
140 196c0 2744C00
141 19881 2803221
355 126025 44738875
113 12769 1442897

From 100 acres of ground, two-thirds of them are taken away; 5o
acres are then added to the result, and 3 of the whole is taken; what
number of acres does this produce 7—Answer, 59;.

121, In dividing one whole number by another, for example, 1c8
by 9, this question is asked,—Can we, by the addition of any number
of nines, produce 108 ? and if 80, how many nines will be sufficient for
that purposs ?

Suppose we take two fractions, for example, 2 and %, and ask, Can
we, by dividing % into some number of equal parts, and>tu1ding a num-
ber of these parts together, produce 2 ? if so, into how many parts must
we divide i, and how many of thsem must we add together? The
solution of this question is still called the division of 2 by i'; and the
fraction whose denominator is the number of parts into which %
divided, and whose numerator is the number of them which is taken,
is called the quotient. The solution of this question is as follows:
Reduce both these fractions to & common denominator (111), which

12

does not alter their value (108) ; they then become -;—? and Y The

G
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question now is, to divide -:3 into a number of parts, and to produce -1—9
by taking a number of these parts. Since :—2- is made by dividing 1
into 15 parts and taking 12 of them, if we divide :—: into 12 equal
parts, each of these parts is — ; if we take 10 of these parts, the result
ils2 ;—‘;. 4.'l‘hel-efore. in order tso produce ;2 or - (108), we must dwnga
1—5 or = mto 12 parts, and take 10 of them ; that is, the quotient is =
If we call 2 the dividend, and 4 the divisor, as hefore, the quotient in
this case is derived from the following rule, which the same reasoning
will shew to apply to other cases:

The numerator of the quotient is the numerator of the dividend
multiplied by the denominator of the divisor. The denominator of the
quotient is the denominator of the dividend multiplied by the numerator
of the divisor. This rule is the reverse of multiplication, as will be
seen hy comparing “hat is required in both cases. In multiplying 4
by ) I ask, if out of be taken 10 parts out of 12, how much of a umst
i8 taken, and the answer is ;—, or 2, Agum, in dmdmg by =, I ask
what part of 4; is —., the answer to w%nch is 1—

122, By taking the following mstance,zwe shall see that this rule
can be sometimes simplified. Divide !—6- by :—8 Observe that 16 is
4x4, and 28 is 4x7; 33 is 3x11, and 153i3s 35 ;S therefore the two frac-
4 and ﬂ, and their quotient, according to the rule, is
AX4x3x5 ,::’r): x\:}uch 4x3 is found both in the numerator and denominator.

IXTIX4XT 4 5 20
The fraction is therefore (108) the same as —=, or P The rule of

tions are

the last article, therefore, admits of this modlhcatlon : If the two nume-
rators or the two denominators have a common measure, divide by that
common measure, and use the quotients instead of the dividends.

123. In dividing a fraction by a whole number, for example, 2 by
15, consider 15 as the fraction ITS The rule gives 2 as the quotient.
Therefore, to divide a fraction by a whole number, multiply the deno-

winator hy that whole number.
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EXERCISES,
Dividend, Divisor. Quotient.
41 Gé 41
33 11 189
467 907 47157
151 101 136957
7813 601 13
5071 11 461
111 2 2 2 8 8 3 3
$%s 17a7 a7 TR ]
W hat are 555 117 7, and ?
1 2 8 1
§ 17 1111
Answer, 559, and r
7225

A can reap a field in 12 days, B in 6, and C in 4 days; in what time
can they all do it together ?*—A nswer, 2 days.

In what time would a cistern be filled by cocks which would sepa-
rately fill it in 12, 11, 10, and 9 hours ?>—d nswer, z‘%{' hours.

124. The principal results of this section may be exhibited algebrai-
cally us follows ; let a, b, ¢, &c. stand for any whole numbers. Then

a I a
(107) 3= xa (108) 7,=-7':—:
« ') ad be
(l]l) l;an\l—arethcsame Handw
(1g) 24l e_b_at
c ¢ c c ¢ c
a ¢ ad+be a ¢ ad-be
M3) 3+~ 3 "d” w
a
3.0.% 21) Cdiv by Sor B m ¥
(118) ZxZ=3= (121) 3 divd. by * or T i
a4

* The method of solving this and the following question may be shewn thus: If
the number of days in which each couid reap the field is given, the part which each
could do in a day by himself can be lound, and thence the part which all could do
together ; this beivg known, the number of days which it would take all to do the
whole can be found.
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125. These results are true even when the letters themselves re-
a

present fractions. For example, take the fraction %, whose numerator

: d
and denominator are fractional, and multiply its numerator and deno-
ae

of d]
minator by the fraction ;, which gives '-—;f——q which (121) is %v
df
which, dividing the m tor and d inator by ef (108), is a_d'
a a_ e be
ad P57

But the original fraction itself is which corre-

b )
; hence — =
c c e

be

sponds to the second formula* in (124). In : simil:.r manner it may
be shewn, that the other formula of the same article are true when the
letters there used either represent fractions, or are removed and fractions
introduced in their place. All formula established throughout this
work are equally true when fractions are substituted for whole numbers.
For example (54), (m+n)a = ma+na. Let m, n, and & be respectively

the fractions 2, Z, and é. Then m+n is £+, or 2 +qr’ and (m+n)a is
q s c g s gs

-+ [ b b b
nigr 2 m_(ps+qr) or 22 :qrb. But this (112) is P° +¢E—é~ which

gs @ gsc gse gsc  gsc’

. . b b b

is p—b+'—b-, smce}—”i--nl,—, andﬂ=-r—b-(108) Butpb=£x—, and jag
gc s gse gc gse  sc g g ¢ se

= rxé. Therefore (m+n)a, or (£+') ‘o ’—’xb-i-:xb. In a similar man-
s o g s/le qge s ¢

ner the same may be proved of any other formula.
The following examples may be useful :

2l alx?
SXa¥PXh _ acfhibdeg
8. Lyl aedhtbify
37 fTd7h
b
1~ abtr
o+
1 1 be+1
= T Gbotate
1 [ abe
a+ 1 at be+1
b+ =

® A formulais a name given to any algebraical expression which is ly used,
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! 57
Thus’ 6 I 6+ _“_. 350
+ 1 57

7+3

The rules that have been proved to hold good for all numbers may
be applied when the numbers are represented by letters,

SECTION VI

DECIMAL FRACTIONS.

126. We have seen (112) (121) the necessity of reducing fractions
to a common denominator, in order to compare their magnitudes. We
have secn also how much more readily operations are performed upon
fractions which have the same, than upon those which have different,
denominators. On this account it has long been customary, in all those
parts of mathematics where fractions are often required, to use none but
such as either have, or can be easily reduced to others having, the same
denominators. Now, of all numbers, those which can be most easily
managed are such as 10, 100, 1000, &c., Where 1 is followed by ciphera,

These are called DECIMAL NUMBERS ; and a fraction whose d inator

is any one of them, is called a DECIMAL FRACTION, or more commonly, a

DECIMAL.
127. A whole number may be reduced to a decimal fraction, or one
decimal fraction to another, with the greatest ease. For example,
949 o 2820, oy 2400 (100); s 30 or 32 (108)

94 is =——, or 5 OF —— 100’ Troes’ or
The placing of a cipher on the right hand of any number is the same

10 100 1000

thing as multiplying that number by 10 (57), and this may be done as
often as we pl in the tor of a fraction, provided it be done as

often in the denominator (108).
128. The next question is, How can we reduce a fraction whick is
not decimal to another which is, without altering its value? Take,

for example, the fraction —6-, multiply both the numerator and deno-
minator successively by 10, 100, 1000, &c., which will give a series of

. . . . 7 . 70 700 700
fractions, each of which is equal to;a (108), viz. 765 1608 16500

¢?2
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70000

160000’
without remainder by 16, the quotients of which divisions form the series

&c. The denominator of each of these fractions can be divided

of decimal numbers 10, 100, 1000, 10000, &c. If, therefore, one of the
numerators be divisible by 16, the fraction to which that numerator be-
longs has a numerator and denominator both divisible by 16. When
that division has been made, which (108) does not alter the value of
the fraction, we shall have a fraction whose denominator is one of the
series 10, 100, 1000, &c., and which is equal in value to ;73 The ques-
tion is then reduced to finding the first of the numbers 70, 700, 7000,
70000, &c., which can be divided by 16 without remainder.

Divide these numbers, one after the other, by 16, as follows :

18)70(4  16)700(43 16)7000(437 16)70000(4375

64 64 64 64
6 60 60 60
48 48 48

12 120 120

112 112

8 8o

30

(-]

It appears, then, that 70000 is the first of the numerators which is
divisible by 16. But it is not necessary to write down each of these
divisions, since it is plain that the last contains all which came before.
It will do, then, to proceed at once as if the number of ciphers were
without end, to stop when the remainder is nothing, and then count the

number of ciphers which have been used. In this case, since 70000 is

16 . . .
;%So, or -;%3.1—.50, gives the fraction required.

Therefore, to reduce a fraction to a decimal fraction, annex ciphers
to the numerator, and divide by the denominator until there is no re-
mainder. The quotient will be the numerator of the required fraction,
and the denominator will be unity, followed by as many ciphers as were
used in obtaining the quotient.

l6x4§75, Z;mio’ which is
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EXERCISES,
Reduce to decimal fractions
112 1 3927 0453

= =y —y = , ar 3
2" 4’ 25" 50’ 1250 625
5 25 8 2 31416 and 7248

Answer, —, ——, —, ——, )
10’ 100’ 100" 100’ 10000’ 100C0

129. It will happen in most cases that the annexing of ciphers to
the numerator will never make it divisible by the denominator without
remainder. For example, try to reduce ltoa decimal fraction.

} 7)1000000000000000000, &¢.
142857142857142857, &c.

The quotient here is a continual repetition of the figures 1, 4, 2,

8. 5, 7, in the same order; therefore 2 cannot be reduced to a decimal

fraction. But, nevertheless, if we take as a numerator any number
of figures from the quotient 142857142857, &c., and as a denon inator
1 followed by as many ciphers as were used in making that pn.rt of the
quotient, we shall get a fraction which differs very little from = 7 and
which will differ still less from it if we put more figures in the numerator

and more ciphers in the denominator,

Thus, ',15 {m Iess}l by 3 {whlch is not so} a

than § 7 70 much as 10
14 1 2 1
Ea‘ - . 3 ; . . ;02 . . . . R
142 1 6 1
m « e e ; . . 70_6; Y . . P ;O_O-O
1428 1 4 1
EO?O‘ . . . '7‘ . 70000 . . . . . 10000
14285 1 5 1
Toocoo © ° * 7 *700000° ° ° ' 100000
142857 1 1 1
m « o o ‘7‘ 7 o . ]
&ec. -&e.  &e, &e.

In the first column is a series of decimal fractions, which come nearer
and nearer to 1, as the third column shews. Therefore, though we can-
not find a decimal fraction which is exactly -71-, we can find one which

differs from it as little as we please.
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This may also be illustrated thus: It is required to reduce z toa
decimal fraction without the error of say a millionth of a unit ; multiply
the numerator and denominator of ; by a million, and then divide both

by 73 we have then

1000000  142857%

I
7 70000G0 1000000

If we reject the fraction L in the numerator, what we reject is really
the 7th part of the millionth part of a unit ; or less than the millionth

1428 . :
part of a unit. Therefore 142557, is the fraction required.
1000000

EXERCISES,

or 143’ 247

" Make similar tables with) 3 17
these fractions 123’ 0

The recurring) 3 . y
quotient of 5 o is 329670,329670, &c.

i...u8881,u8881,&c.
143
« v e e ;—:;...4.04858299595141700,4048582 &ec.

130. The reason for the recurrence of the figures of the quotient
in the same order is as follows: If 1000, &c. be divided by the number
247, the remainder at each step of the division is less than 247, being
either o, or one of the first 246 numbers. 1If, then, the remainder never
become nothing, by carrying the division far enough, one remainder
will occur a second time. If possible, let the first 246 remainders be
all different, that is, let them be 1, 2, 3, &c,, up to 246, variously dis-
tributed. As the 247th remainder cannot be so great as 247, it must be
one of these which have preceded. From the step where the remainder
becomes the same as a former remainder, it is evident that former figures
of the quotient must be repeated in the same order.

131. You will here naturally ask, What is the use of decimal frac-
tions, 1f the greater number of fractions canndt be reduced at all to
decimals? The answer is this: The addition, subtraction, multiplica-

tion, and division of decimal fractions are much easier than those of



§ 131-133. DECIMAL PRACTIONS. 69

common fractions ; and though we cannot reduce all common fractions
to decimals, yet we can find decimal fractions so near to each of them,
that the error arising from using the decimal instead of the common
fraction will not be perceptible. For example, if we suppose an inch
to be divided into ten million of equal parts, one of those parts by itself
will not be visible to the eye. Therefore, in finding a length, an error
of a ten-millionth part of an inch is of no consequence, even where the
finest measurement is necessary. Now, by carrying on the table in
(129), we shall see that Tlo%?c!a does not differ from ~ by m ;
and if these fractions represented parts of an inch, the first might be
used for the second, since the difference is not perceptible. In applying
arithmetic to practice, nothing can be measured so accurately as to be
represented in numbers without any error whatever, whether it be
length, weight, or any other species of magnitude. It is therefore un-
necessary to use any other than decimal fractions, since, by means of
them, any quantity may be represented with as much correctness us by

any other method.
EXERCISES.

Find decimal fractions which do not differ from the following frac-
1

tions by ——.
100000000
r  Answ ,33333333' 113 Amw"‘axﬂ;ogxs.
100000C0Q 355 100000000
4 57142857 358 314159292
7 * " ‘Tecooo0es 3 " 100000000

132. Every decimal may be immediately reduced to a quantity con-
sisting either of a whole number and more simple decimais, or of more
simple decimals alone, having one figure only in each of the numerators.

147326 473 26 326
Take, for example, Tooo " By (115) —— is 1475500} and since

- : 326 _ 300 20
326 is made up of 300, and 20, and 6 ; by (112) “o00 m°°+m°°+
3°° e 3

5. But (108) 22 is 3, and 147326
1000 I0 1000

3 6
made up of x4.7+—° -;o—o+ Tooc Now, take any number, for example,

147326, and form a number of fractions having for their numerators this

2
is —. Therefore, ——
1000 100

number, and for their denominators 1, 10, 100, 1000, 1C00O, &C., 8nd
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reduce these fracticns into numbers and more simple decimals, in the

foregoing manner, which will give the table below.

‘DECOMPOSITION OF A DECIMAL FRACTION.

6

-4732 147326 _ o

l.}7326 6

10 14732+ o5

147326 _ +_+i

100 1473 100

147328 i3 2.8

1000 10 ICO 1000

147326= __+ 3. 2 6

10000 © Mt oo Tooo T 10000

736 47,3 2 6

1000000 ~ ° 7 10 100 1000 10000 100000

147326 _ 1. 4,7 .3 ., 2 , 6
1000000 ° " " 10 100 1000 10000 100000 1000000
147326 St 4,7 3 2 . 6
10000000 - ° ° ° 100 1000 I0OCCO 100000 I00000O0 1COOCO00

N.B. The student should write this table himself, and then proceed
to make similar tables from the following exercises.

+ EXERCISES,

Reduce the following fractions into a series of numbers und mcre

simple fractions :

31415926 31415926 ;&c
10 100 *

2700031 2700031 g
10 100 e &e.,

2073000, 2073000’ &e
10 100

3331303 333‘303 &e
1000 10000 ° ‘

133. If, in this table, and others made in the same manner, you look

at those fractions which contain a whole number, you will see that they
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may be made thus: Mark off, from the right hand of the numerator,
us many figures a8 there are ciphers in the denominator by a point, or

any other convenient mark.

6

This will give 14722°6 when the fraction is _‘43"
) 147326
!4-7326-"""'100
i 147326

e e e e 147326 . . . . 1c00
&e. &

The figures on the left of the point by themselves make the whole
number which the fraction contains. Of those on its right, the first is
the numerator of the fraction whose denominator is 10, the second of
that whose denominator is 100, and so on. We now come to those
fractions which do not contain a whole number.

. 147326

134. The first of these is

100c0co’
the denominator is the same as the number of figures in the numerator.

in which the number of ciphers in

If we still follow the same rule, ard mark off all the figures, by placing

the point before them all, thus, ‘147326, the observation in (133) st:ll
147326

in the table, we find it is
1000000

holds good ; for, on looking at

6
4,7 .3 .2

+
10 I1CO 1ICOO 1CCCC ICOOCOfICOCOOO

6
The next fraction is l:‘;i, which we find by the table o be
2 6
I | 3 _

100 ICCO JOOCO ICCOCO 1000000 I0COOCCO

Tn this, 1 is not divided by 10, but by 100 ; if, therefore, we put a
point before the whole, the rule is not true, for the first figure on the
left of the point has the denominator which, according to the rule, the
second ought to have, the second that which the third ought to have,
and 8o on. In order to keep the same rule for this case, we must con-
trive to make 1 the second figure on the right of the point instead of
the first. This may be done by placing a cipher between it and the
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point, thus, "0147326. Here the rule holds good, for by that rule this

fraction is

6
o, 1.4 .7 3 L, .

10 100 10CO 10000 IOOOOO'IOOOOOO 10000000

which is the same as the preceding line, since l% is o, and need not be
reckoned. -

Similarly, when there are two ciphers more in the denominator than
there are figures in the numerator, the rule will be true if we place two
ciphers between the point and the numerator. The rule, therefore,
stated fully, is this :

To reduce a decimal fraction to a whole number and more simple
decimals, or to more simple decimals alone if it do not contain a whole
number, mark off hy a point as many figures from the numerator as
there are ciphers in the denominator. If the numerator have not places
enough for this, write as many ciphers before it as it wants places, and
put the point before these ciphers. Then, if there be any figures b:fore
the point, they make the whole number which the fraction contains.
The first figure after the point with the denominator 10, the second with
the denominator 1co, and so on, are the fractions of which the first
fraction is composed.

135. Decimal fractions are uot usually written at full length. It is
more convenient to write the numerator only, and to cut off from the
numerator as many figures as there are ciphers in the denominator,
when that is possible, by & point. When there are more ciphers in the
denominator than figures in the numerator, as many ciphers are placed
before the numerator as will supply the deficiency, and the point is
placed before the ciphers. Thus, *7 will be used in future to denote
1_75’ o7 for 1_c7>o.' and so on. The following tables will give the whole of
this notation at one view, and will shew its connexion with the decimal
notation explained in the first section. You will observe that the
numbers on the right of the units® place stand for units divided by 10,
100, 1000, &c. while those on the left are units multiplied by 10, 100,

3000, &.c.




or letters which are multiplied together; thus, 15.16, a.5, a+b.0+d stand

v

The reason is, that it is usual in the higher
for the products of those numbers or letters.

DECIMAL FRACTIONS.
The student is recommended always to write the decimal point in
branches of mathematics to use a point placed between two numbers

a line with the top of the figures or in the middle, as is done here, and

never at the bottom,

§ 135.

.

I. 123°4 stands for 1234 or 123 X o :u...»

10 10 o
. 12
1y . ., 23, 34 PRI &
100 100 10 100
. 1”2 2 2
razg .o, . 23, 2% PP SO B 2N
1000 1000 10 100 1000
. 12 1
234 . . . . 3 4
10000 10 100 1000 10000
12
‘01234 . . . L or ..y, ¢
1000C0 100  I000 10000 100000
. 1234
oo1z34 . - ...o......._+u+w++
CO0000 1000 10000 100000 1000000
. . 1003 1 3 1
IL 01003 i8 or — -+ : - 2 8 3
3 100000 100 1CCO00 IIL ‘1283 = o i * o000 * o000
003 i8 ——3 o 2 4 _3_ =1 +%02 +°008 + ‘0003
10000 Ic 10000
= ‘1  +°0283 = ‘12 + ‘0083
S 3
10°0 8 —- 10 + —— = ‘128 + 0003 =" .
3 i * o5 3 =108 + ‘0203
. 1003 3 = °1003+ 028 ="1203+ ‘008
1003 B — or 100t =
10 10

u
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(

1i8 1000 inches
2 is 200 . . *
3 is 30 .
4 is 4 . .
5 is S of an inch
IV. In 1234°56789 10
inches the 6 is LN ..
100
7 is Z . . e
1000
8 is 8 .
10000
: 9
98 fooooo * °

136. The ciphers on the right hand of the decimal point serve the
same purpose as the ciphers in (10). They are not counted as any thing
themselves, but serve to shew the place in which the accompanying
numbers stand. They might be dispensed with by writing the numbers
in ruled columns, as in the first section. They are distinguished from
the numbers which accompany them by calling the latter significans
Jfigures. Thus, "0003747 is a decimal of seven places with foﬁr signi-
ficant figures, *346 is a decimal of three places with three significant
figures, &c.

137. The value of a decimal is not altered by putting any number

of ciphers on itsright. Take, for example, ‘3 and *300. The first (135)
300
1000
both its numerator and denominator by 100, and (108) is the same

is & and the second S, which is made from the first by multiplying
quantity.

138. To reduce two decimals to a common denominator, put as many
ciphers on the right of that which has the smaller number of places as
will make the number of places in both fractions the same. Take,

. . i 54 43297
for example, *54 and 4°3297. The first is o0 and the second Toceo'
Multiply the numerator and denominator of the first by 100 (108),
which reduces it to x?oo;’ which has the same denominator as :ﬂ.

But IS4°° i8 *5400 (135). In whole numbers, the decimal point should

—
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be placed at the end : thus, 129 should be written 129'. It is, however,

usual to omit the point; but you must recollect that 129 and 129°c00
129000

are of the same value, since the first is 129 and the second
139. The rules which were given in the last chapter for addition,
subtraction, multiplication, and division, apply to all fractions, and
therefore to decimal fractions among the rest. But the way of writing
decimal fractions, which is explained in this chapter, makes the appli-
cation of these rules more simple. We proceed to the different cases.
Suppose it required to add 42°634, 45°2806, 2001, and 54. By (112)
these must be reduced to & common denominator, which is done (138)
by writing them as follows: 42'6340, 45°2806, 2°0co10, and §4°cooo.
These are decimal fractions, whose numerators are 426340, 452806,

20010, and 540000, and whose common denominator is 10cco. By
6

(112) their sum is $28340t452806+200104540000 0oy g 1439156
10C00 10000

or 143'9156. The simplest way of doing this is ‘as follows: write the

decimals down under one another, so that the decimal points may fall
under one another, thus:
42°634
452806
2'001
54
143'9156
Add the different columns together as in common addition, and place

the decimal point under the other decimal points.

EXERCISES.
What are  1527+64°732094+2°0013+'00001974 ;
2276°3+°107+°9+26°3172+56732°001 ;
and 1°1147°7+°0039+'00142+°'8838 ?
| Answer, 159373341374, 59035°6252, 969912
140. Suppose it required to subtract 91°07324 from 137°321. These

fractions when reduced to a common denominator are 91°'07324 gnd
13732100—-9107324

100000 ’
or 46°24776. This may be most simply done as fol-

137°32100 (138). Their difference is therefore

6 6
which is L"ﬂ_
10000
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lows : write the less number under the greater, so that its decimal point
may fall under that of the greater, thus:

137°321

91°07324

4624776
Subtract the lower from the upper line, and wherever there is a figure
in one line and not in the other, proceed as if there were a cipher in the

vacant place.

EXERCISES,
Whatis 12362—274"22307+'5 3
9976°2073942—'00143976728;
and  1°24°03+°004—"000§ ?
Answer, 12088°27893, 9976°20595443272;. and 1°2335.
141. The multiplication of a decimal by 10, 100, 1000, &c., i3 per-
formed by merely moving the decimal point to the right. Suppose, for

example, 13°2079 is to be multiplied by 100. The decimal is ——= 131079
which multiplied by 100 is (117) !32 79' or 132079. Again, 1° 309: :x
1309 r3ogooooo

100000 i8 ~oo,X 100000, or (116) “ooo — °F 130900 From these
and other instances we get the following rule : To multiply a decimal
fraction by a decimal number (126), move the decimal point as many
places to the right as there are ciphers in the decimal number. When
this cannot be done, annex ciphers to the right of the decimal (137) until
it can.

142. Suppose it required to multiply 17°036 by 427. The first of
these decimals is !!7:;16, and the second 7. By (118) the product of
these fractions has for its numerator the product of 17036 and 427, and

for its denominator the product of 10co and 100; therefore this product
7 74372
100000
ing the two numbers 17036 and 427, and cutting off by the decimal

s Or 72°74372. This may be done more shortly by multiply-

point as many places as there are decimal places both in 17°036 and
4°27, because the product of two decimal numbers will contain as many
ciphers as there are ciphers in both.

|
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143. This question now arises: What if there should not be us
many figures in the product as there are decimal places in the multiplier
and multiplicand together? To see what must be done in this case,

by ml, The product of these two is
1;7,2200’ or 017372 (135) Therefore, when the number of places in
the product is not sufficient to allow the rule of the last article to be

followed, as many ciphers must be placed at the beginning as will make

multiply 172 by ‘101, or~

up the deficiency.
ADDITIONAL EXAMPLES,
‘00IX'01 8 00001

§6x°c001 i8 ‘oc56.

EXERCISES.
Shew that
3°0C2x3'002 = 3X3+2X3X"00Z4°002X°002
11°5609%5°3191 = 8°44x8°44=3'1209x3'1209
8:217x10°001 = 8xI1048X°00I+10X'2174°00X x*217.
Fraction. Square. Cube.
82°92 6875°7264 570135233088
‘0173 00029929 000005177717
1'43 2'0449 2'924207
009 000081 000000729
15°623x 64 = 1000 ‘1§625% 64 = 1
1°5625x ‘64 = 1 1562°5%°064 = 100
*01§6254°0064 = °*ooCI 1562 5000x"064 = 10000V0

144. The division of a decimal by a decimal number, such as 10,
100, 1000, &c., is performed by moving the decimal point as many
places to the left as there are ciphers in the decimal number. If there
are not places enough in the dividend to allow of this, annex ciphers
to the beginning of it until there are. For example, divide 1734229
by 1000 the decimal fraction is ’71‘20 2734229 which divided by 1c00 (123)

:Zz:zog’ or 1'734229. If, in the same way, 1°2106 be divided by
10c00, the result is ‘ooo121c6.

145, Before procee«iing to shorten the rule for the division of one

H2
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decimal fraction by another, it will be necessary to resume what was
said in (128) upon the reduction of any fraction to a decimal fraction.

It was there shewn that 116 is the same fraction as ﬁ% or °4375.
As another example, convert '!%8' into a decimal fruction. Follow the
same process as in (128), thus:
128)300000000000(234375 430
256 384
40 ' 960
384 896
560 640
512 640
430 o
Since 7 ciphers are used, it appears that 30000000 is the first of the
series 30, 300, &c., which is divisible by 128; and therefore -&5,
or, which is the same thing (108), —ooooo is equal to —223/5_ o
1280000000 10000000

*0234375 (135).

From these examples the rule for reducing a fraction to a decimal
is: Annex ciphers to the numerator; divide by the denominator, and
annex a cipher to each remainder after the figures of the numerator are
all used, proceeding exactly as if the numerator had an unlimited num-
ber of ciphers annexed to it, and was to be divided by the denominator.
Continue this process until there is no remainder, and observe how many
ciphers have been used. Place the decimal point in the quotient so as
to cut off as many figures as you have used ciphers; and if there be
not figures enough for this, annex ciphers to the beginning until there
are places endugh.

146. From what was shewn in (129), it appears that it is not every
fraction which can be reduced to a decimal fraction. It was there
shewn, however, that there is no fraction to which we may not find a
decimal fraction as near as we please. Thus, i, i, ﬁ, 14—28,
14285 10’ 100’ 1000’ 10000
Toooed’ &ec., or ‘1, *14, ‘142, ‘1428, '141.:.85, were shewn to be fractions
which approach nearer and nearer to —. To find either of these frac-

tions, the rule is the same as that in the last article, with this exception,
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that, I. instead of stopping when there is no remainder, which never
happens, stop at any part of the process, and make as many decimal
places in the quotient as are equal in number to the number of ciphers
which have been used, annexing ciphers to the beginning when this can-
not be done, as before. II. Instead of obtaining a fraction which is
exactly equal to the fraction from which we set out, we get a fraction
which is very near to it, and may get one still nearer, by using more
of the quotient, Thus, 1428 is very near to -I-, but not so near as
142857 ; nor is this last, in its turn, so near as ‘142857142857, &c.

147. If there should be ciphers in the numerator of a fraction, these
must not be reckoned with the number of ciphers which are necessary
in order to follow the rule for changing it into a decimal fraction. Take,
for example, :5 ; annex ciphers to the numerator, and divide by the
denominator. It appears that 1000 is divisible by 125, and that the
quotient is 8. One cipher only has been annexed to the numerator, and
therefore 100 divided by 125 is *8. Had the fraction been -‘—;——, gince
1000 divided by 125 gives 8, and three ciphers would have been annexed
to the numerator, the fraction would have been *co8.

148. Suppose that the given fraction has ciphers at the right of its

denominator; for example, z:;' The annexing a cipher to the nu-

merator is the same thing as taking one away from the denominator ;
for, (108) 5:0 is the same thing as 3710, and 3;2 as 3—: The rule,
therefore, is in this case : Take away the ciphers from the denominator ;
aunex cyphers to the numerator; proceed as before; and in counting

how many cyphers have been used, reckon not only the cyphers which
have been annexed to the numerator, but also those which have been
taken away from the denominator.

BXERCISES.
Reduce the following fractions to decimal fractions :

1 36 297 1
800’ 1250° 64° and 28
Answer, ‘00125, *0288, 4:640625, and ‘0078125,

Find decimals of 6 places very near ta the following fractions :
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27 156 22 jou 2637 1 1 3
' 33" 37005° 13° 907" 908’ 366° ' 77
Answer, *551020, 4'727272, "000594, 14'923076, 266175, ‘000343,
'002145, and ‘010830.
149. From (121) it appears, that if two fractions have the same
denominator, the first may be divided by the second by dividing the
numerator of the first by the numerator of the second. Suppose it

required to divide 17°762 by 6:25. These fractions (138), when reduced
17762 6250
——— and ——,
1000 1000
, which must now be reduced to a

to a common denominator, are 17762 and 6250, or
Their quotient is therefore 270>
decimal fraction by the last rule. The process at full length is as
follows : Leave out the cipher in the denominator, and annex ciphers
to the numerator, or, which will do as well, to the remainders, when it
becomes necessary, and divide as in (145).

625)17762(284192 Here four ciphers have been annexed to the

1250 numerator, and one has been taken from the
5262 denominator. Make five decimal places in the
5000

quotient, which then becomes 2'84192, and this

;g:; is the quotient of 17°762 divided by 6-25.
T200 . 150. The rule for division of one decimal by
625 another is as follows: Equalise the number of
5750 decimal places in the dividend.and divisor, by

5625 annexing ciphers to that which has fewest places.

1250 Then, further, annex as many ciphers to the
1259 dividend * as it is required to have decimal places,
° throw away the decimal point, and operate as in

common division. Make the required number of decimal places in
the quotient.

Thus, to divide 67173 by *o14 to three decimal places, I first write
67173 and ‘o140, with four places in each. Having to provide for three
decimal places. I should annex three ciphers to 6:7173; but, observing

# Or remove ciphers from the divisor; or make up the number of ciphers partly
by removing from the divisor and annexing to the dividend, if there be not a suft-

clent number in the divisor.
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that the divisor o140 has one cipher, I strike that one out and annex
two ciphers to 6°7173. Throwing away the decimal points, then divide
6717300 by 014 or 14 in the usual way, which gives the quotient 479807
and the remainder 2. Hence 479°807 is the answer.

The common rule is: Let the quotient contain as many decimal
places as there are decimal places in the dividend more than in the
divisor. But this rule becomes inoperative except when there are more
decimals in the dividend than in the divisor, and a number of ciphers
must be annexed to the former. The rule in the text amounts to the
same thing, and provides for an assigned number of decimal places. But
the student is recommended to make himself familiar with the rule of
the characteristic given in the Appendix, and also to accustom himself
to reason out the place of the decimal point. Thus, it should be visible,
that 26°119+7°2436 has one figure before the decimal point, and that
26°119-+724°36 has one cipher after it, preceding all significant figures.

Or the following rule may be used: Expunge the decimal point of
the divisor, and move that of the dividend as many places to the right
as there were places in the divisor, using ciphers if necessary. Then
proceed as in common division, making one decimal place in the quotient
for every decimal place of the final dividend which isused. Thus 17°314
divided by 612 is 173°14 divided by 612, and the decimal point must
precede the first figure of the quotient. But 17314 divided by 66175
is 17314 by 66175 ; and since three decimal places of 173°14000. ..
must be used before a quotient figure can be found, that quotient figure
is the third decimal place, or the quotient is ‘0oz .. ...

EXAMPLES,
1 ‘occbz
oczs = 1240, 4 = ‘00096875
EXERCISES.
15'006x15°006 — * K
Shew that 5'000x15 copxcosr 15°002, and that

15°01
O IX OIX"OT#2°'9X2°X2'9
2°91

=2 9X2°'Q — 2'GX'OI4'0IX*0L
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L]

1 1 365
d
3'14159° 2 7182818’ and a9
of decimals P—Answer, *318310, 367879, and 1989°209221.

What are , as far as 6 places

Calculate 10 terms of each of the ‘following series, as far as § places

of decimals.

I b g
I+—r—t——+

1
+&ec. = 1'71824.
2 2X3 2X3X4 2XIX4X§

I 1 11
1+-+—+—+-+&¢c. = 2'92895.
23 435 %59

80+81+82 _8_3+8_4
81 82 83 84 85

+&ec. = 9°88286.

151. We now enter upon methods by which unnecessary trouble is
saved in the computation of decimal quantities. And first, suppose a
number of miles has been measured, and found to be 17846217 miles.
If you were asked how many miles there are in this distance, and a rough
answer were required which should give miles only, and not parts of
miles, you would probably say 17. But this, though the number of
whole miles contained in the distance, is not the nearest number of miles;
for, since the distance is more than 17 miles and 8 tenths, and therefore
more than 17 miles and a half, it is nearer the truth to say, it is 18
miles. This, though too great, is not so much too great as the other
was too little, and the error is not so great as half a mile. Again, if
the same were required within a tenth of a mile, the correct answer is
17'8; for though this is too little by ‘046217, yet it is not so much too
little as 179 is too great; and the error is less than half a tenth, or
zlo' Again, the same distance, within a hundredth of a mile, is more
correctly 17'85 than 17'84, since the last is too little by *c06217, which
is greater than the half of ‘or; and therefore 17°84+'01 is nearer the
truth than 17°84. Hence this general rule: When a certain number of
the decimals given is sufficiently accurate for the purpose, strike off the
rest from the right hand, observing, if the first figure struck off be equal
to or greater than §, to increase the last remaining figure hy 1.

The following are examples of a decimal abbreviated by one place at

a time.
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114159, 31415, 3'142, 3'14, 37, 30
2'7182818. 2'718282, 2°71828, 2'7183, 2'718, 2°72, 2'7, 3'0
1'9919, 1°992, 1°99, 2'00, 2°0

152. In multiplication and division it is useless to retain more places
of decimals in the result than were certainly correct in the multiplier,
&c., which gave that result. Suppose, for example, that 9"98 and 896
are distances in inches which have been measured correctly to two places
of decimals, that is, within half a hundredth of an inch each way. The
real value of that which we call 9°98 muy be any where between 9°97¢
and 9°985, and that of 8'96 may be any where between 8°955 and 8'96s.
The product, therefore, of the numbers which represent the correct dis-
tances will lie between 9°975x8°955 and 9°985x8°965, that is, taking
three decimal places in the products, between 89°326 and 89°516. The
product of the actual numbers given is 89°4208. It appears, then, that
in this case no more than the whole number 89 can be depended upon
in the product, or, at most, the first place of decimals. The reason is,
that the error made in measuring 8°96, though only in the third place of
decimals, is in the multiplication increased at least 9°975, or nearly
10 times; and therefore affects the second place. The following simple
rule will enable us to judge how far a product is to be depended upon.
Let a be the multiplier, and 4 the multiplicand; if these be true only
to the first decimal place, the product is within %é. of the truth; if to
two decimal places, within Soiz; if to three, within %; and so on.
Thus, in the above example, we have 9°98 and 8'96, which are true to
two decimal places: their sum divided by 200 is *0947, and their product
is 89°4208, which is therefore within ‘0947 of the truth. If, in fact, we
increase and diminish 89°4208 by °c947, we get 89°5155 and 89°3261,
which are very nearly the limits found within which the product must
le. We see, then, that we cannot in this case depend upon the first
place of decimals, as (151) an error of ‘o5 cannot exist if this pluce
be correct; and here is a possible error of ‘09 and upwards. It is

hardly nccessary to say, that if the numbers given be exact, their product

* These are not quite correct, but sufficiently so for every practical purpose.
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is exact also, and that this article appli#s where the numbers given are
correct only to a certain number of decimal places. The rule is: Take
half the sum of the multiplier and multiplicand, remove the decimal
point as many places to the left as there are correct places of decimals
in cither the multiplier or multiplicand; the result is the .quantity
within which the product can be depended upon. In division, the rule
is: Proceed as mn the last rule, putting the dividend and divisor in
place of the multiplier and multiplicand, and divide by the square of
the divisor ; the quotient will be the quantity within which the division
of the first dividend and divisor may be depended upon. Thus, if
17°324 be divided by §3'809, both being col;rect to the third place, their
half sum will be 35°566, which, by the last rule, is made 035566, and
is to be divided by the square of 53°8cg, or, which will do as well for
our purpose, the square of 50, or 2500. The result is something less
than ‘0000z, 80 that the quotient of 17°324 and §3°809 can be depended
on to four places of decimals.

153. It is required to multiply two decimal fractions together, so
as to retain in the product only a given number of decimal places, and
dispense with the trouble of finding the rest. First, it is evident that
we may write the figures of any multiplier in a contrary order (for
example, 4321 instead of 1234), provided that in the operation we move
each line one place to the right instead of to the left, as in the following
example:

2221 2221
1234 4321
8884 2221
6663 4442
4442 6663
2221 8884
2740714 2740714

Suppose now we wish to multiply 348:8414 by 51°30742, reserving
only four decimal places in the product. If we reverse the multiplier,

and proceed in the manner just pointed out, we have the following:
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3488414 Cut off, by a vertical line, the first four places
2470315 of decimals, and the columns which produced
17442070 | them. It is plain that in forming our abbre-
3483414 viated rule, we have to consider only, L. all that
1046524} -

24418/898 is on the left of the vertical line; II. all that is
13953656  carried from the first column on the right of
69‘76828 the line. On looking at the first column to the
17898'1522|23188  Jeft of the line, we see 4 4 8, 5, 9, of which the

first 4 comes from 4x1’,* the second 4 from 1x3’, the 8 from 8x7’, the

5 from 8x4’, and the 9 from 4x2’. If, then, we arrange the multiplicand
and the reversed multiplier thus,
3488414
2470315

each ﬁgum of the multiplier is placed under the first figure of the
multiplicand which is used with it in forming the first four places of
decimals. And here observe, that the units® figure in the multiplier
§1°30742, Viz. 1, comes under 4, the fourth decimal place in the multi-
plicand. If there had been no carrying from the right of the vertical
line, the rule would have been: Reverse the multiplier, and place it
under the multiplicand, so that the figure which was the units® figure
in the multiplier may stand under the last place of decimals in the
multiplicand which is to be preserved ; place ciphers over those figures
‘of the multiplier which have none of the multiplicand ahove ther. if
there be any: proceed to multiply in the usual way, but begin each
figure of the multiplier with the figure of the multiplicand which comes
above it, taking no account of those on the right: place the first figures
of all the lines under one another. To correct this rule, so as to allow
for what is carried from the right of the vertical line, observe that this
consists of two parts, lst, what is carried directly in the formation of
the different lines, and 2dly, what is carried from the addition of the
first column on the right. The first of these may be taken into account
by beginning each figure of the multiplier with the one which comes

* The |’ here means that the 1 is in the multiplier.

1
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on its right in the multiplicand, and carrying the tens to the next
figure as usual, but without writing down the units. But both may be
allowed for at once, with sufficient correctness, on the principle of (151),
by carrying 1 from § up to 15, 2 from 15 up to 25, &c.; thatis, by
carrying the nearest ten. Thus, for 37, 4 would be carried, 37 being
nearer to 40 than to 30, This will not always give the last place quite
correctly, but the error may be avoided by setting out 80 as to keep one
more place of decimals in the product than is absolutely required to be
correct, The rule, then, is as follows:

154, To multiply two decimals together, retaining only n decimal
places.

I. Reverse the multiplier, strike out the decimal points, and place
the multiplier under the multiplicand, so that what was its units® figure
shall fall under the n*® decimal place of the multiplicand, placing ciphers,
if necessary, so that every piace of the multiplier shall have a figure or
cipher above it.

II. Proceed to multiply as usual, beginning each figure of the multi-
plier with the one which is in the place to its right in the multiplicand :
do not set down this first figure, but carry its nearest ten to the next,
and proceed.

IIL. Place the first figures of all the lines under one another; add
as usual ; and mark off n places from the right for decimals,

It is required to multiply, 136'4072 by 1°30609, retaining 7 decimal
places.

1364072000
906031

1364072000
409221600
8184432
122766

178°1600798
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In the following examples the first two lines are the multiplicand
and multiplier ; and the number of decimals to be retained will be
! seen from the results.

*4471618 33166248 34641016
37719214 14142136 1732°508

37719214 033166248 346410160

8161744 63124141 8052371

4 15087686 3316625 346410160

1508768 1326650 242487112

264034 33166 1039230§

3772 13266 692820

2263 663 173205

38 33 2778

R 30 1o 6001°58373
1°686659x :
4690415

Exercises may be got from article (143).

155. With regard to division, take any two numbers, for example,
16'80437921 and 3'142, and divide the first by the second, as far as
any required number of decimal places, for example, five. This gives

‘ the following :

3'142)16°80437921(5°34830

15710
10943
9426
—
15177
(A4) 12568
2609 2609I;
2514 2513:6
95 9632
94 94.26

) ] 2l063
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Now cut off by a vertical line, as in (153), all the figures which
come on the right of the first figure 2, in the last remainder 2061. As
in multiplication, we may obtain all that is on the left of the vertical
line by an abbreviated method, as represented at (A). After what has
been said on multiplication, it is useless to go further into the detail ;
the following rule will be sufficient: To divide one decimal by another,
retaining only n places: Proceed one step in the ordinary division, and
determine, by (150), in what place is the quotient so obtained; proceed
in the ordinary way, until the number of figures remaining to be found
in the quotient is less than the number of figures in the divisor: if this
should be already the case, proceed no further in the ordinary way.
Instead of annexing a figure or cipher to the remainder, cut off a figure
from the divisor, and proceed one step with this curtailed divisor as
usual, remembering, however, in multiplying this divisor, to carry the
neargst ten, as in (154), from the figure which was struck off; repeat
this, striking off another figure of the divisor, and so on, until no
figures are left. Since we know from the beginning in what place the
first figure of the quotient is, and also how many decimals are required,
we can tell from the beginning how many figures there will be in the
whole quotient. If the divisor contain more figures than the quotient,
it will be unnecessary to use them : and they may be rejected, the rest
being corrected as in (151): if there be ciphers at the beginning of the
divisor, if it be, for example, ‘co3178, since this is ‘3178, divide by

100
*3178 in the usual way, and afterwards multiply the quotient by 100,

or remove the decimal point two places to the right. If, therefore, six
decimals be required, eight places must be taken in dividing by 3178,
for an obvious reason. In finding the last figure of the quotient, the

nearest should be taken, us in the sccond of the subjoined examples.



§ 155-156. EXTRACTION OF THE SQUARE ROOT. 89

Places required, 2 8
Divisor, . ‘41432 3'1415927
Dividend, 6731489 271828180
41432 2°5§1327416.
258 828 20500764
248 592 18849556
10237* 1651208
8286 1570796
1951 80412
1657 62832
294 17580
290 : 15708
4 1872
4 1571
o 301
283
18
19
Quotient, 1624'73 86525596

Examples may be obtained from (143) and (150).

SECTION VII.
ON THE EXTRACTION OF THE SQUARE ROOT.

156. We have already remarked (66), that a number multiplied by
itself produces what is called the square of that number. Thus, 169,
or 13x13, is the square of 13. Conversely, 13 is called the square roos
of 169, and § is the square root of 25 ; and any number is the square root
of another, which when multiplied by itself will produce that other.
The square root is signified by the sign +/ or +/; thus, 4/25 means
the square root of 25, or §; /1619 means the square root of 16+9,
and is §, and must not be confounded with v 16+4/9, which is 4+3, or 7.

® This is written 7 instead of 6, because the figure which is abardoned in the divi-
dend 18 9 (151). ’
12
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157. The following equations are evident from the definition :
Jaxa = a
Vaa =a
VabxVab = ab
(Vaxv/b)x(vaxa/b). = ~Jaxsax/bxs/b =ab
whence © Waxb = Vab
158. It does not follow that a number has a square root because it
has a square; thus, though 5 can be multiplied by itself, there is ne
number which multiplied by itself will produce 5. It is proved in
algebra, that no fraction* multiplied by itself can produce a whole
number, which may be found true in any number of instances ; therefore
5 has neither a whole nor a fractional square root; that is, it has no
square root at all. Nevertheless, there are methods of finding fractions
whose squares shall be as near to 5 as we please, though not exactly
15 xz7, whose square, viz.

6765
differs from 5 by only

equal to it. One of these methods gives
15127 15127 o 21.8826129, 4 , which is
6765 ~ 6765 45765225 45765225 .

less than ‘ococoor: hence we are enabled to use +/5 in arithmetical

and algebraical reasoning: but when we come to the practice of any
problem, we must substitute for 45 one of the fractions whose square
is nearly 5, and on the degree of accuracy we want, depends what
fraction is to be used. For some purposes, 23 may be sufficient, as its
square only differs from § by 3—04';;; for others, the fraction first given
might be necessary, or one whose square is even nearer to 5. We
proceed to shew how to find the square root of a number, when it has
one, and from thence how to find fractions whose squares shall be as
near as we please to the numbher, when it has not. We premise, what
is sufficiently evident, that of two numbers, the greater has the greater
square ; and that if one number lie between two others, its square lies
between the squares of those others.

159. Let » be a number consisting of any number of parts, for
example, four, viz. a, b, ¢, and d; that is, let

* Meaning, of course, a really fractional number, such as % or :—:, not one which,
though fractional in form, is whole in reality, such as 1—:— or %7-




§ 159-160. EXTRACTION OF TUE SQUARE ROOT, 91
z = at+b+c+d
The square of this number, found asin (68), will be

aa+2a(b+c+d)
+bb+2b(c+d)
+cod2cd
+dd

The rule there found for squaring a number consisting of parts was.
Square each part, and multiply all that come after by twice that part,
the sum of all the results so obtained will be the square of the whole
number. In the expression above obtained, instead of multiplying 2a
by each of the succeeding parts, b, ¢, and d, and adding the results, we
multiplied 2a by the sum of all the succeeding parts, which (52) is the
same thing ; and as the parts, however disposed, make up the number,
we may reverse their order, putting the last first, &c. ; and the rule for
squaring will be : Square each part, and multiply all that come before
by twice that part. Hence a reverse rule for extracting the square root
presents itself with more than usual simplicity. It is: To extract the
square root of a number N, choose a number A, and see if N will bear
the subtraction of the square of A; if so, take the remainder, choose a
second number B, and see if the remainder will bear the subtraction of
the square of B, and twice B multiplied by the preceding part A : if
it will, there is a second remainder. Choose a third number C, and see
if the second remainder will bear the subtraction of the square of C, and
twice C multiplied by A+B: go on in this way either until there is no
remainder, or else until the remainder will not bear the subtraction aris-
ing from any new part, even though that part were the least number,
which is 1. In the first case, the square root is the sum of A, B, C,
&ec. ; in the second, there is no square root.

160. For example, I wish to know if 2025 has a square root. 1
choose 20 as the first part, and find that 400, the square of 20, sub-
tracted from 2025, gives 1625, the first remainder. I again choose 20,
whose square, together with twice itself, multiplied by the preceding
part, is 20x2042x20x20, Or 1200; which subtracted from 1625, the
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first remainder, gives 425, the second remainder. I choose 7 for the
third part, which appears to be too great, since 7x7, increased by 2x7
multiplied by the sum of the preceding parts 20+20, gives 609, which
is more than 425. I therefore choose 5, which closes the process, since
§x5, together with 25 multiplied by 20+20, gives exactly 425. The
square root of 2025 is therefore 20+20+5, or 45, which will be found,
by trial, to be correct; since 45x45 = 2025. Again, I ask if 13340
has, or has not, a square root. Let 100 be the first part, whose square
is 10000, and the first remainder is 3340. Let 10 be the second part.
Here 1ox1o42x10x100 i8 2100, and the second remainder, or 3340—
2100, is 1240, Let § be the third part; then s5x542x5x(100+10) is
1125, which, subtracted from 1240, leaves 115. There is, then, no
square root; for a single additional unit will give a subtraction of
1x142x1x(100+1045), or 231, which is greater than r15. But if the
number proposed had been less by 115, each of the remainders would
have been 115 less, and the last remainder would have been nothing.
Therefore 13340 — 115, or 13225, has the square root 100+:0+5, or
115; and the answer is, that 13340 has no square root, and that 13225
is the next number below it which has one, namely, 115,

161. It only remains to put the rule in such a shape as will guide
us to those parts which it is most convenient to choose. It is evident
(57) that any number which terminates with ciphers, as 4oco, has
double the number of ciphers in its square, Thus, 4o00x4000 =
16000000 ; therefore, any square number,* as 49, with an even number
of ciphers annexed, as 4900co, is a square number. The root} of
490000 is 700, This being premised, take any number, for example,
76176 ; setting out from the right hand towards the left, cut off two
figures ; then two more, and so on, until one or two figures only are
left: thus, 7,61,76. This number is greater than 7,00,00, of which the
first figure is not a square number, the nearest square below it being
4. Hence, 4,00,00 is the nearest square number below 7,00,00, which

® By square number I mean, a number which has a square root. Thus, 25 is a

square number, but 26 is not.
+ The term ‘root’ is frequently used as an abbreviation of square root.
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has four ciphers, and its square root is 200. Let this be the first part
chosen : its square subtracted from 76176 leaves 36176, the first re-
mainder ; and it is evident that we have obtained the highest number
of the highest denomination which is to be found in the square root
of 76176 for 300 is too great, its square, 9,00,00, being greater than
76176 : and any denomination higher than hundreds has a square still
greater. It remains, then, to choose a second part, as in the examples
of (160), with the remainder 36176. This part cannot be as great as
100, by what has just been said ; its highest denomination is therefore
a number of tens. Let N stand for a number of tens, which is one of
the simple numbers 1, 2, 3, &c.; that is, let the new part be 10N,
whose square is8 1oNx10N, or 100NN, and whose double multiplied by
the former part is 20Nx200, or 4000N ; the two together are 4oooN+
100NN, Now, N must be so taken that this'may not be greater than
36176 : still more 4000N must not be greater than 36176, We may
therefore try, for N, the number of times which 36176 contains 4oo0, or
that which 36 contains 4. The remark in (80) applies here. Let us try
9 tens or go. Then, 2xgox200490x90, Or 44100, is to be subtracted,
which is too great, since the whole remainder is 36176. We then try
8 tens or 8o, which gives 2x8ox200480x80, or 38400, which is likewise
too great. On trying 7 tens, or 70, we find 2x70x200470%70, Or 32900,
which subtracted .from 36176 gives 3276, the second remainder. The
rest of the square root can only be units. As before, let N be this
number of units. Then, the sum of the preceding parts being 200+70,
or 270, the number to be subtracted is 270x2N+NN, or 540N+NN.
Hence, as before, 540N must be less than 3276, or N must not be greater
than the number of times which 3276 contains 540, or (80) which 327
containg §4. We therefore try if 6 will do, which gives 2x6x27046x6,
or 3276, to be subtracted. This being exactly the second remainder,
the third remainder is nothing, and the . process is finished. The square
root required is therefore 200+70+6, or 276.

The process of forming the numbers to be subtracted may be
shortened thus. Let A be the sum of the parts alreadv found, and N
a new part: there must then be subtracted 2AN+NN, or (54) 2A+N
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multiplied by N. The rule, therefore, for forming it is: Double the
sum of all the preceding parts, add the new part, and multiply the
result by the new part.

162, The process of the last article is as follows:

7,61,76(200 7,61,76(276
40000 70 4
— ¢ —_
400\3,61,76 47)361
70J329 00 329
400 3276 546)3276
14¢| 3276 3276
6 —
o

In the first of these, the numbers are written at length, as we found
them ; in the sécond, as in (79), unnecessary ciphers are struck off, and
the periods 61, 76, are not brought down, until, by the continuance of
the process, they cease to have ciphers under them. The following

is another example, to which the reasoning of the last article may be

applied,
34,86,78,44,01( 50000 34,86,78,44,01(59049
2500000000 9000 25
100000\ 9 86 78 44 o1 4; 109) 986
9000/ 9 81 00 00 00 " 981
100 578 4401 11804) 57844
18000| * 472 1600 47216
100 1062801 118089) 1062801
18000 1062801 1062801
8| —
o o

163. The rule is as follows: To extract the square root of a
number ;—

I. Beginning from the right hand, cut off periods of two figures each,
until not more than two are left,

II. Find the root of the nearest square number next below the
number in the first period, This root is the first figure of the required
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root ; subtract its square from the first period, which gives the first re-
mainder.

III. Annex the second period to the right of the remainder, which
gives the first dividend.

IV. Double the first figure of the root; see how often this is con-
tained in the number made by cutting one figure from the right of the
first dividend, attending to IX., if necessary; use the quotient as the
second figure of the root; annex it to the right of the double of the
first figure, and call this the first divisor.

V. Multiply the first divisor by the second figure of the root ; if the
product be greater than the first dividend, use a lower number for the
second figure of the root, and for the last figure of the divisor, until the
multiplication just mentioned gives the product less than the first
dividend ; subtract this from the first dividend, which gives the second
remainder.

VI. Annex the third period to the second remainder, which gives the
second dividend. )

VII. Double the first two figures of the root ;* see how often the
vesult is contained in the number made by cutting one figure from the
right of the second dividend ; use the quotient as the third figure of
the root; annex it to the right of the double of the first two figures,
and call this the second divisor.

VIII. Get a new remainder, as in V., and repeat the process until
all the periods are exhausted ; if there be then no remainder, the square
root is found ; if there be a remainder, the proposed number has no
square root, and the number found as its square root is the square root
of the proposed number diminished by the remainder.

IX. When it happens that the dozble of the figures of the root is
not contained at all in all the dividend except the last figure, or when,
being contained once, 1 is found to give more than the dividend, put a
cipher in the square root and in the divisor, and bring down the next
period ; should the same thing still happen, put another cipher in ths
root and divisor, and bring down another period ; and so on,

® Or, more simply, add the second figure of the root to the first divisor,
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EXERCISES,
Numbers proposed. i Square roots.
73441 | 271
i
2992900 i 1730

6414247921 ! 80089

90368789062 { 950625
42420747482776576 i 205962976
134226593101§2401 | 115356201

164. Since the square of a fraction is obtained by squaring the

numerator and the denominator, the square root of a fraction is found
3
8.‘
since §5x 5 is 25, and 8 x 8 is 64. If the numerator or denominator, or

by taking the square root of both. Thus, the square root of :—i is

both, be not square numbers, it does not therefore follow that the
fraction has no square root; for it may happen that multiplication or
division by the same number may convert both the numerator and
denominator into square numbers (108). Thus, Pt . which appears at
first to have no square root, has one in reality, since it is the same as
;%, whose square root is 1.

165. We now proceed from (158), where it was stated that any num-
ber or fraction being given, a second may be found, whose square is
as near to the first as we please. Thus, though we cannot solve the
problem, “ Find a fraction whose square is 2, we can solve the fol-
lowing, “ Find a fraction whose square shall not differ from 2 by so
much as *ocococor.” Instead of this last, a still smaller fraction may
be substituted; in fact, any one however small: and in this process we
are said to approximate to the square root of 2. This can be done to
any extent, as follows: Suppose we wish to find the square root of 2
within — of the truth ; by which I mean, to ﬁnd a ﬁ'action ; whose
square is less than 2, but such that the square of —+-—7 is greater than
2. Multiply the numerator and denominator of 2 by the square of 57,
or 3249, which gives 6498. On attempting to extract the square root
of the numerator, I find (163} that th.re is a remainder 98, and that the.

square number next below 6498 is 6400, whose root is 8o. Hence,
the square of 8o is less than 6498, while that of 81 is greater. The
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square root of the denominator is of course 57. Hence, the square of
i—o is less than -;5—4%. til‘ 2, while that of il is greater, and these two
fractions only differ by — ; which was required to be done.

166. In practice, it is usual to find the square root true to a certain
number of places of decimals. Thus, 1°4142 is the square root of 2 true
to four places of decimals, since the square of 1°4142, or 1'99996 164, is

_less than 2, while an increase of only 1 in the fourth decimal place,
Q‘ving 1°'414.3, gives the square 2°00024449, which is greater than 2.

To take a more general case: Suppose it required to find the sq\gare
1637
I 1000
whose square root is to be found within *ooo1, or v Annex ciphers

root of 1°637 true to four places of decimals. The fraction is

to the numerator and denominator, until the denominator becomes the

1 . . 163700000

, which gives —="———

10000 100000000

numerator, as in (163), which shews that the square number nearest to
12794 .

. , OF 1°2794,

gives a square less than 1°637, while 1°2795 gives a square greater. In

square of . extract the square root of the

it is 163700000 — 13564, whose root is 12794. Hence,

fact, these two squares are 1°63686436 and 163712025.

167. The rule, then, for extracting the square root of a number
or decimal to any number of places is: Annex ciphers until there are
twice as many places following the units® place as there are to be decimal
places in the root; extract the nearest square root of this number, and
mark off the given number of decimals. Or, more simply : Divide the
number into periods, so that the units® figure shall be the last of a
period ; proceed in the usual way ; and if, when decimals follow the
units® place, there is one figure on the .ight, in a period by itself, annex
a cipher in bringing down that period, and afterwards let each new
period consist of two ciphers. Place the decimal point after that figure
in forming which the period containing the units was used.

168. For example, what is the square root of 1% to five places of
decimals? This is (145) 1°375, and the process is the first example
over leaf. The second example is the extraction of the root of ‘081 to
seven places, the first period being 08, from which the cipher is omitted
as useless,
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1,37,5(1°17260 8,1(2846049
1 4 ’
1) 37 48)410
21 384
227)1650 564) 2600
1589 2256
2342) 6100 §686) 34400
4684 34116
23446)141600 §69204) 2840000
140676 2276816
23453) 92400 569208) 56318400
*000002413672221(°001553599
1
25) 141
12§
305) 1636
1525
3103) 11172
9309
21065) 186322
155325
310709) 3099710
2796381
30332900

169. When more than half the decimals required have been found,
the others may be simply found by dividing the dividend by the di-
visor, as in (155). 'The extraction of the square root of 12 to ten
places, which will be found in the next page, is an example. It must,
however, be observed in this process, as in all others where decimals are
obtained by approximation, that the last place cannot always be de-
pended upon: on which account it is advisable to carry the process so
far, that one or even two more decimals shall be obtained than are
absolutely required to be correct. ‘
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A
12(3°46410161513
2 B
64) 300 692920123026)537253550831(77545870549
256 484974226118
686) 4400 52279324713
4116 48497422611
6924) 28400 3781902102
27696 3464101615
69281) 70400 317800487
69281 277128129
6928201) 11190000 40672358
6928201 34641016
69282026) 4261799/c0 6031342
4156921/56 5542562
692820321) 104877/4400 488780
69282(0321 484974
6928203225) 355951407900 3806
34641j016125 3464
69282032301)  954{39177500 342
692{82032301 277
PR SR, —_—
692820323023) 261(571451990C 65
207|8460969069 62
5317253550831 - 3

Iffrom any remainder we cut off the ciphers, and all figures which
would come under or on the right of these ciphers, by a vertical line,
we find on the left of that line a contracted division, such as those in
(155). Thus, after having found the root as far as 3°464101, we have
the remainder 4261799, and the divisor 6928202, The figures on the
left of the line are nothing more than the contracted division of this
remainder by the divisor, with this difference, however, that we have to
begin by striking a figure off the divisor, instead of using the whole
divisor once, and then striking off the first figure. By this alone we
might have doubled our number of decimal places, and got the addi-
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tional figures 615137, the last 7 being obtained by carrying the con-
tracted division one step further with the remainder 53. We have,
then, this rule: When half the number of decimal places have been
obtained, instead of annexing two ciphers to the remainder, strike off a
figure from what would be the divisor if the process were continued
at length. and divide the remainder by this contracted divisor, as
in (155).

As an example, let us double the number of decimal places already
obtained, which are contained in 3°46410161513. The remainder is
537253550831, the divisor 692820323026, and the process is as in (B).

Hence the square root of 12 is,
3'4641016151377545870549 5

which is true to the last figure, and a little too great; but the sub-
stitution of 8 instead of 9 on the right hand would make it too small.

EXERCISES.
Numbers. Square roots.
‘001728 ‘0415692194
. 64°34 8'02122185
8074 898554394
10 3°16227766
157 . 1°2529964086141667788495

SECTION VIIIL
ON THE PROPORTION OF NUMBERS,

170. When two numbers are named in any problem, it is usually
necessary, in some way or other, to compare the two; that is, by con-
sidering the two together, to establish some connexion between them,
which may be useful in future operations. The first method which
suggests itself, and the most simple, is to observe which is the greater,
and by how much it differs from the other. The connexion thus esta-
blished between two numbers may also hold good of two other numbers;
for example, 8 differs from 19 by 11, and 100 differs from 111 by the
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same number, In this point of view, 8 stands to 19 in the same
gituation in which 100 stands to 111, the first of both couples differing
in the same degree from the second. The four numbers thus noticed,
viz, :
8, 19, 100, 111,

are mid to be in arithmetical* proportion. When four numbers are
thus placed, the first and last are called the exéremes, and the second
and third the means. It is obvious that 1r11+8 = 100419, that is, the
sum of the extremes is equal to the sum of the means. And this is not
accidental, arising from the particular numbers we have taken, but
must be the case in every arithmetical proportion; for in 111+8, by
(35), any diminution of 1rx will not affect the sum, provided a cor-
responding increase be given to 8; and, by the definition just given,
one mean i8 as much less than 111 as the other is greater than 8.

171. A set or series of numbers is said to he in continued arith-
metical proportion, or in arithmetical progression, when the difference
between every two succeeding terms of the series is the same. This
is the case in the following series :

1, 2, 3s 4y 5 &e.
3 6, 9 12, IS5, &e.
2 2, 22 : &e

2 9 2 3 3 2 .

The difference between two succeeding terms is called the common
difference. In .the three series just given, the common differences
are, 1, 3, and i

172. If a certain number of terms of any arithmetical series be
taken, the sum of the first and last terms is the same as that of any
other two terms, provided one is as distant from the beginning of the
series as the other is from the end. For example, let there be 7 terms,
and let them be,

a b o d e f g

* This is a very incorrect name, since the term ‘arithmetical’ applies equally to
every notion in this book. It is necessary, nowever, that the pupil should use words
in the sense in which they will be used in his succeeding studies.

K%
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Then, since, by the mature of the series, b is as much above a as fis
below g (170), a+g = b+f. Aguin, since ¢ is a8 much above 4 ase is
below £ (170), b+f = ct+e. But a+g = b+f; therefore a+g = c+e, and
so on, Again, twice the middle term, or the term equally distant from
the beginning and the end (which exists only when the number of terms
is odd), is equal to the sum of the first and last terms; for since ¢ is
2s much below d as ¢ is above it, we have c+e = d+d = 2d. But c+e =
a+g; therefore, atg = 2d. This will give a short rule for finding the
sum of any number of terms of an arithmetical series. Let there be
7, viz. those just given. Since a+g, b+f, and c+e, are the same, their
sum is three times (a+g), which with d, the middle term, or half a+g,
is three times and a half a+g, or the sum of the first and last terms
multiplied by 3;, or Z, or half the number of terms. If there had been
an even number.‘of teims, for example, six, viz. a, b, ¢, d, e, and f, we
know now that a+f, b+e, and c+d, are the same, whence the sum is three
times a_~l;-f, or the sum of the first and last terms multiplied by half tne
number of terms, as before. The rule, then, is: To sum any number of
terms of an arithmetical progression, multiply the sum of the first and
last terms by half the number of terms. For example, what are g9
terms of the series 1, 2, 3, &c.? The ggth term is 99, and the sum
is (99+1)9?9, or Lc:9—9, or 4950. The sum of 5o terms of the series
1, 3. 1, 1'. 5, 2, &c. is (1+2) 5—:, or 17x2§, OF 42§,

3 3173. The first term besing given, and also the common difference
and number of terms, the last term may be found by adding to the first
term the common difference multiplied by one less than the number of
terms. For it is evident that the second term differs from the first by
the common difference, the third term by twice, the fourth term by three
times the common difference; and so on. Or, the passage from the
first to the nth term is mude by n—1 steps, at each of which the common

difference is added.
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EXERCISES,
Gliven. To find.
Series, ! No. of terms. Last term. Sum.
4 62, 9, &c. 33 3 1452
L 3% 5 & 28 55 784
2, 20,. 138, &ec. 100,000 1799984 89999300000

174. The sum being given, the number of terms, and the first term,
we can thence find the common difference. Suppose, for example, the
first term of a series to be one, the number of terms 100, and the sum
10,000. Sin(.e xo,ooo was made by multiplying the sum of the first and
last terms by ~—, if we divide by this, we shall recmer the sum of the
2. divided by 0% (122) 200, and the

first term being 1, the last term is 199. We have then to pass from

10
first and last terms. Now,

1 to 199, or through 198, by 99 equal steps. Each step is, therefure,

198 oy s : P
99 , or 2, which is the common difference; or the series is 1, 3, 5, &c.,

ap to 199.

Given. ~ To find.
Sum. . No. of terms. First term. Last term. Common diff.
1809025 | 1345 1 2689 2
29 14
10 = —
44 5 45
7075600 ‘ 1330 4 10636 8

175. We now return to (170), in which we compared two numbers
together by their difference. This, however, is not the method of
comparison which we employ in common life, as any single familiar
instance will shew. For example, we say of A, who has 10 thousand
pounds, that he is much richer than B, who has only 3 thousand ; but
we do not say that C, who has 107 thousand pounds, is much richer
than D, who has 100 thousand, though the difference of fortune is the
same in both cases, viz. 7 thousand pounds. In comparing numbers
we take into our reckoning not only the difterences, but the numbers
themselves. Thus, if B and D both received 7 thousand pounds, B
would receive 233 pounds and a third for every 100 pounds which he

had before, while D for every 100 pounds would receive only 7 pounds.
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And though, in the view taken in (170), 3 is as near to 10 as 100 is to
107, yet, in the light in which we now regard them, 3 is not so near to
10 a8 100 is to 107, for 3 differs from 10 by more than twice itself,
while 100 does not differ from 107 by so much as one-fifth of itself.
This is expressed in mathematical language by saying, that the ratio or
proportion of 10 to 3 is greater than the ratio or proportion of 107 to
100, We proceed to define these terms more accurately.

176. When we use the term part of a number or fraction in the
remainder of this section, we mean, one of the various sets of equal
purts into which it may be divided, either the half, the third, the fourth,
&ec. : the term multiple has been already explained (102). By the term
multiple-part of a number we mean, the abbreviation of the words
multiple of a part. Thus, 1, 2, 3, 4, and 6, are parts of 12 ; 5 is also a
part of 12, being contained in it 24 times; 12, 24, 36, &c., are multiples
of 12; and 8, 9, S’ &c. are multiple parts of 12, being multiples of
some of its parts. And when multiple-parts generally are spoken of,
the parts themselves are supposed to be included, on the same principle
that 12 is counted among the multiples of 12, the multiplier being 1.
The multiples themselves are also included in this term ; for 24 is also
48 halves, and is therefore among the multiple parts of 12. Each part
is also in various ways a multiple-part; for one-fourth is two-eighths,
and three-twelfths, &c.

177. Every number or fraction is a multiple-part of every other
number or fraction. If, for example, we ask what part 12 is of 7, we
- see that on dividing 7 into 7 parts, and repeating one of these parts 12
times, we obtain 12 ; or, on dividing 7 into 14 parts, each of which
is one-half, and repeating one ot‘ these parts 24 times, we obtain 24
halves, or 12. Hence, 12 is 5 OF -—4, or -3-—- of 7; and so on. Generally,
when a and b are two whole numbem,x expreueo the multiple- part
which a is of 4, and — that which & ls of a. Agmn, suppose it required
to determine what muluple-pm z— is of 35 or —7—5 of ?6 These

fractions, reduced to a common denommator, ;: and ? of which
the second, divided into 112 parts, gives -315, which repeated 75 times
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gives Zé, the first. Hence, the multiple-part which the first is of the

second is xlxsi’ which being obtained by the rule given in (121), shews
that g, or a divided by &, according to the notion of division there given,
expresses the multiple-part which a is of & in every case.

178. When the first of four numbers is the same multiple-part of
the second which the third is of the fourth, the four are said to be
yeometrically* proportional, or simply proportional. This is a word
in common use; and it remains to shew that our mathematical defini-
tion of it, just given, is, in fact, the common notion attached to it. For
example, suppose a picture is copied on a smaller scale, so that a line
of two inches long in the original is represented by a line of one inch
and a half in the copy; we say that the copy is not correct unless all
the parts of the original are reduced in the same proportion, namely,
that of 2 to xi. Since, on dividing two inches into 4 parts, and taking
3 of them, we get Ii, the same must be done with all the lines in the
original, that is, the length of any line in the copy must be three parts
out of four of its length in the original. Again, interest being at § per
cent, that is, £5 being given for the use of £100, a similar proportion
of every other sum would be given; the interest of £70, for example,
would be just such a part of £70 as £5 is of £100,

Since, then, the part which a is of b is expressed by the fraction g,
or any other fraction which is equivalent to it, and that which ¢ is of @
by ;—, it follows, that when a, b, ¢, and d, are proportional,;-z = s. This
equation will be the foundation of all our reasoning on proportional
quantities ; and in considering proportionals, it is necessary to observe
not only the quantities themselves, but also the order in which they
come. Thus, a, b, ¢, and d, being proportionals, that is, a being the
same multiple-part of & which ¢ is of d, it does not follow that a, d, &,
and ¢ are proportionals, that is, that a is the same multiple-part of d

+ The same remark may be made here as was made in the note on the term
arithmetical proportion,’ page 101. The word ‘geometrical’ is, generally speaking,
dropped, except when we wish to distinguish between this kind of proportion and
that which has teen called arithmetical.
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which 3 is of 6. It is plain that a is greater than, equal to, or less than
b, according as ¢ is greater than, equal to, or less than d.

179. Four numbers, a, &, ¢, and d, being proportional in the order
written, ¢ and d are called the exfremes, and b and ¢ the means, of the
proportion. For convenience, we will call the two extremes, or the
two means, similar terms, and an extreme and a mean, dissimilar terms.
Thus, a and d are similar, and so are b and ¢; while a and 4, 4 and «,
d and b, d and ¢, are dissimilar. It is customary to express the pro-
portion by placing dots between the numbers, thus :

a:bile:d

180. Equal numbers will still remain equal when they have been
increased, diminished, multiplied, or divided, by equal quantities. This
amounts to saying that if s = b and p = ¢, a+p = bt+¢,a—p = b—gq,ap =
bg, and = = 8. It is also evident, that a+p—p, a—ptp, 2P, and “xp, are
all equal to a. P P

181. The product of the extremes is equal to the product of the
means. Let g = :_i’ and multiply these equal numbers by the product
5d. Then, 3xbd = “bﬂ (116) = ad, and Sxbd = f‘;ﬂ = cb: bence (180),
ad: bo. Thus, 6, 8, 21, and 28, are proportional, since i~ i = i—:%
=3 (180); and it appears that 6x28 = 8x21, gince both products are
168.

182. If the product of two numbers be equal to the product of two
others, these numbers are proportional in any order whatever, provided
the numbers in the same product are so placed as to be similar terms;
that is, if ab = pg, we have the following proportions :—

ea:p:lqg:. b pialbd:g
a:qg:iip:d pibitaiyg
b:p:ilgqg:a g:a::lb:ip
b:qgiipia g:b:itaip

To prove any one of these, divide both ab and pg by the product of its

second and fourth terms ; for example, to shew the truthofa:g::p: é,
. b

divide both ab and pg by dg. Then, %‘} = g, and ’i—: -;1; hence (180),
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fgg, ora:q::p:b The pupil should not fail to prove every one

of the eight cases, and to verify them by some simple examples, such
as 1x6 = 2x3, whichgives 1 1 2 ::3:6,3: 1::6: 2,&c

183. Hence, if four numbers be proportional, they are also propor-
tional in any other order, provided it be such that similar terms still
remain similar. For since, when §= ;. it follows (181) that ad = be,
all the proportions which follow from ad = bec, by the last article, follow
also from % = s.

184. From (114) it follows that x+f'5=

bra nd m% be less than 1,

b
x—§=b%a,while if3 b groater than 1, ‘E'—x-"%". Also (122), if
’%b be divided by a_%f the result in:-:—:. Hence, a, b, ¢, and d. being
proportionals, we may obtain other proportions, thus :
a ¢
Let Z = ;
a c
Then (114) l+-l; me I+‘—‘
. atb o+d
b d

or a+b:b:ictd:d

That is, the sum of the first and second is to the second as the sum
of the third and fourth is to the fourth. For brevity, we shall not state
in words any more of these proportions, since the pupil will easily supply
what is wanting.

Resuming the proportiona : 6 ::¢c: d

or TS
b d
a ¢ ..a
l—b— = !—-;, lfz be less than
d—o

OF =——— = ———

[ d
thatis,6—a : b :: d—c : d

or.a~b : b ::ec—d: d,if%begreaterthan 8
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b ct+d c—d /
Agan, since —:— =7 and a;b -3 \ 3 being greater than 1)
dividing the first hy the second we have atb = 'id.
a—b c—d

or a+b :a=b::c+d: c—d
and also a+b : b—a :: o+d : d—c, if% be less than 1.

185. Many other proportions might be obtained in the same manner.
We will, however, content ourselves with writing down a few which can
be obtained by combining the preceding articles.
atd i a lcid e

ta-bil e le—d
ate : a—c i l4d : b—d.
In these and all others it must be observed, that when such expressions
as a—b and c—d occur, it is supposed that a is greater than b, and ¢
greater than d.

186. If four numbers be proportional, and any two dissimilar terms

be both multiplied, or both divided by the same quantity, the results are

proportional. Thus, if a : 6:: ¢ : d, and m and n be any two num-

bers, we have also the following :
ma: b:ime:d ma . nb :: me : nd
a ‘mb:: ¢ :md g:i::-c—:i
m m m m
S imbi: S imd a.,8%.¢.4
n n m m n n

and various others. To prove any one of these, recollect that nothing
more is necessary to make four numbers proportional except that the
product of the extremes should be equal to that of the means. Take
the third of those just given; the product of its extremes is —xmd. or
m:d’ while that of the means is mbx - oor '%—“ But nmce a: b teid,
by (181) ad = bc, whence, by (180), mad = mbe, and 2% -= 716_0 Hence,
n' mb. » and md, are proportionals.

187 If the terms of one proportion be multiplied by the terms of a

second, the products are proportional; that is, if @ : 4 :: ¢ : d, and
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plgilr:s,itfollows that ap : dg :: or : ds. For, since ad=
bo, and ps = ¢r, by (180) adps = begr, or apxds = bgxor, whence (182)
ap i bgiior: ds ‘
188. If four numbers be proportional, any similar powers of these
numbers are also proportional ; that is, if
a: b e: d

Then aa : bb :: cc: dd
aaa . bbb .. ccc . ddd
&e. -&e.

For, if we write the proportion twice, thus,

a: b:I e¢: d
a: b:: e¢: d
by (187) aa @ bb :: cc: dd
But a: b:1 e¢: d

Whence (187) aaa : bbb :: ccc : ddd; and so on,

189. An expression is said to be homogeneous with respect to any
two or more letters, for instance, @, 6, and ¢, when every term of it
contains the same number of letters, counting a, b, and ¢ only. Thus,
maab+nabc+rece is homogeneous with respect to a, b, and ¢; and of the
third degree, since in each term there is either a, 6, and o, or one of
these repeated alone, or with another, so as to make three in all. Thus,
8aaabe, 12aboce, maaaaa, naabbe, are all homogeneous, and of the fifth
degree, with respect to @, b, and ¢ only; and any expression made by
adding or subtracting these from one another, will be homogeneous and
of the fifth degree. Again ma+mnb is homogeneouﬁ with respect to a
and b, and of the first degree ; but it is not homogeneous with respect
to m and n, though it is so with respect to @ and n. This being pre-
mised, we proceed to a theorem,* which will contain all the results of
’184), (185), and (188).

190. If any four numbers be proportional, and if from the first two,

* Ath isag 1 math tical fact: thus, that every number is divisible
by four when its last two figures are divisible by four, is a theorem; that in every
proportion the product of the extremes is equal to the product of the means, is another.

L
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a and 3, any two homogeneous expressions of the same degree be formed ;
and if from the last two, two other expressions be formed, in precisely
the same manner, the four results will be proportional. For example, if
a:b::c:d, and if 2aaa+3aab and bbb+abb be chosen, which are both
homogeneous with respect to @ and b, and both of the third degree; and
if the corresponding expressions 2ccc+3ced and ddd+cdd be formed, which
are made from ¢ and d precisely in the same manner as the two former

ones from a and 8, then will

2aaa+3aab © bbb+abb :: 2ccc+3ced : ddd+edd

To prove this, let za be called #. Then, since % =gz, and %= g. it
follows that '—; = 2. But fince a divided by b gives &, # multiplied
by & will give a, or @ = ba. For a similar reason, ¢ = dz. Put b2
and dr instead of @ and ¢ in the four expressions just given, recollecting
that when quantities are multiplied together, the result is the same
in whatever order the multiplications are made; that, for example,

bxbabr is the same as bbbrra.

Hence, 2aaa+3aab = 2bxbrbx+3b2brb
= 2bbbarza+3bbbrr
which is Lbb multiplied by 222z+322
or bbb (2zxx+322)*
Similarly, 2¢cc+3ced = ddd (2xzr+irer)
Also, bbb+ abb = bbb+bxbd

= bbb multiplied by 1+s
or bbb (142)
Similarly, ddd+cdd = ddd (1+2)
Now, bbb : bbb :: ddd : ddd
Whence (186), blb(2xzz+izz) : bbb(14x) :: ddd(2zzr+3rz) : ddd
(1+z), which, when instead of these expressions their equals just found
are substituted, becomes 2aaa+3aab : bbd+abb :: 2ccot+iced . ddd+cdd.

* If bx be substituted for a in any exp fon which is h with re-
spect to a and b, the pupil may easily see that 5 must occur in every term as often as
there are units in the degree of the expression: thus, aa-}-ab becomes dxdx-+bxbd

r bb(xz+x); aaa-+-bbdb hecomes bxrbxdx+-bdb or dbb{xxz4-1); and so on.
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The same reasoning may be applied to any other case, and the pupil
may in this way prove the following theorems:
1f a:biiec:d
2a+3b 1 b il 2¢+3d i d
aa+bd : aa—bb :: ce+dd . co—dd
mab © 2aa+bb .. med : 2cc+dd

191, If the two means of a proportion be the same, that is, if
a:b::b : ¢ the three numbers, a, 6, and ¢, are said to be in
continued proportion, or in geometrical progression. The same terms
are applied to a series of numbers, of which any three that follow one
another are in continued proportion, such as

1 2 4 8 16 32 64 &e.
2 2 2 2 2 2

- = = — — &
3 9 27 81 243 729
Which are in continued proportion, since

2 ai2.. 2.2
1028 H N T
4 3 3 9
g 2 2 2 2
2. .. H R e
4o 4 3 9 9 27

&c. &e.

192. Let a, b, ¢, d, &c. be in continued proportion; we have then

a:b::b6:06 or 2,2 or acw=bb
b ¢
b ¢

b:0:.¢c:4d . <=3 . 6d-¢.:o
d

c.:d:.:d:e .. LA ce =dd
d e

Each term is formed from the preceding, by multiplying it by the same
]

number. Thus, b = %xa (180); ¢ = gxlz; and since = = -, - = 5
d

b b P 1 ) c’ a b
or ¢ = ;xb. Again, d = “xe, but Pl which is = (-‘;t.herefore,
d = %xo, and so on. If, then, % (which is called the common ratio of

the series) be denoted by r, we have
b= ar ¢c = br = arr d = cr = arry

and so on ; whence the series
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Hence
(186)

because, b being ar, bb is arar or aarr,

(186)

Also

" PRINCIPLES OF ARITHMETIC.

] c d
ar arr arrr
al:ci: a. arr
:: aa : aarr

taa i bb
Again,
a:d:: a: arrr
. aaa  aaarrr
. aaa bbb
bbbb,

a e . anaa

&e.
&e.

§ 192-193.

and 8o on;

that is, the first bears to the n'® term from the first the same proportion

as the 't power of the first to the n'» power of the second.
193. A short rule may be found for adding together any number of
terms of a continued proportion. Let it be first required to add together

the terms 1, r, rr, &c. where r is greater than unity.

It is evident that

we do not alter any expression by adding or subtracting any numbers,

provided we afterwards subtract or add the same. For example,

Let us take four terms of the series, 1, r, rr, &c. or,

1t is plain that

P = p—qtq—ri+r—s+s

I+r+rr+rre

7rr—1 = rrrr—rrr+rrr—rr+rr—ri+r—1

Now (54), rr—r = r(r—1), rrr—rr = rr(r—1), rrer—rerr = vy (r—1),

and the above equation becomes rrer—1 = roy (r—1) + rr(r—1) +#(r—1)

+r—1; which is (54) rrr+rr+r+1 taken r—1 times. Hence, rrrr—1

divided by r—1 will give 1+r+rr+rrr, the sum of the terms requred.

In this way may be proved the following series of equations :

I+r

1+r+rr

1rrirrirry

=

rr—1

r—1
rrr—1
r~1

rrrr—1

r—1
rrrrr—1

1+r+rri4rrrirrrr = ————

r—1I1
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If r be less than unity, in order to find 14r+rr+rrr, observe that

1—=r7rr = 1=—r4+r—rr+rr—rrr+rrr—rree
= 1—r4r(1—r)4+rr(1—r)+rrr(1—r) 3
whence, by similar reasoning, 1+r+rr+rer is found by dividing 1—rrre
by 1—r; and equations similar to these just given may be found.
which are,

=1y

I+r = —_—
1-r

1—=rre

1-r

I1+r+rr =

I—rrrr
147r+rr+rrr = P
1—r

1—rerer
I+ Ir T +rrrr =

1-r

The rule is: To find the sum of n terms of the series, 1+r+rr+&e.,
divide the difference between 1 and the (n+1)® term by the difference
between 1 and . .

194. This may be applied to finding the sum of any number of
terms of a continued proportion. Let a, &, ¢, &c. be the terms of which
it is required to sum four, that is, to find a+b+c+d, or (192) a+ar
+arrtarey, or (54) a(1+r+rr4rer), which (193) is ":::l z =
xa, according as r is greater or less than unity. The first fraction is
28 or (192) <=2, Similarly, the second is ——. The rule,

r—1 r—1 1-r
therefore, is: To sum n terms of a continued proportion, divide the

difference of the n+1'™ and first terms by the difference between unity

Xa, or

and the common measure, For example, the sum of 10 terms of the

series 1+3+9+27+&c. is required. The eleventh term is 59049, and

39%49—1 oo 29524, Again, the sum of 18 terms of the series 2+1+

-1 1
11 . . . 131072
-+-+&ec. of which the nineteenth term is . =
2 4 131072 1

131070 2

131072

EXAMPLES.
9 terms of 144+ 16+&c. are 7381

L2
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6 12 847422675

10 terms of3+;+;-§+&c. 201768035
11 1048575
20 tivees ;+;+ §+&c. cee 1043576

195. The powers of a number or fraction greater than unity increase ;
for since :r.—i- is greater than 1, zix zl is zi taken more than once, that
is, is greater than z-!- and so on. Thxs mcrease goes on vnthout limit;
that is, there is no quanuty so great but that some power of z— is greater.
To prove this, observe that every power of z-— is made hy multxplymg the
preceding power by z;, or by l+lz that ls, by adding to the former
power that power itself and its half. There will, therefore, be more
added to the 10th power to form the rith, than was added to the gth
power to form the roth, But it is evident that if any given quantity,
however small, be continually added to zz, the result will come in time
to exceed any other quantity that was also given, however great ; much
more, then, will it do so if the quantity added to z— be increased at
each step, which is the case when the successive powers of z— are formed.
It is evident, also, that the powers of 1 never increase, bemg always 1;
thus, 1x1 = 1, &e. Also, if a be greater than m times 3, the square of @
is greater than mm times the square of . Thus, if @ = 2b+¢, where
a is greater than 25, the square of a, or aa, which is (68) 45b+4bc+co
is greater than 45, and so on.

196. The powers of a fraction less than unity continually decrease ;
thus, the square of Z', or 3xz, is less than E, being only two-fifths of it.
This decrecse continues without limit ; that is, there is no quantity 80
small but that some power of is less.. For lf 5 2, 2 -, and the
powers of; are ;f; m:z, and so on. Since & is greater tha.n 1 (195),
some power of # may be found wlnch shall be greater than a ngen
quentity. Let this be called m ; then ;.- is the corresponding power of 2 F H
and a fraction whose denominator can be made as great as we please, can
itself be made as small as we please (112).

197. We have, then, in the series

b r rr rre rrer &e.

I A series of increasing terms, if » be greater than 1, II. Of terms
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having the same value, if r be equal to 1. IIIL. A series of decreasing
terms, if r be less than 1. In the first two cases, the sum
14+r+rr+rrr+&e.
may evidently be made as great as we please, by sufficiently increasing
the number of terms. But in the third this may or may not be the
case ; for though something is added at each step, yet, as that augment-
ation diminishes at every step, we may not certainly say that we can,
by any number of such augmentations, make the result as great as we
please, To ghew the contrary in a simple instance, consider the series,
T 11 1

l+;+1+§+1—5+&c'
Carry this series to what extent we may, it will always be necessary to
add the last term in order to make as much as 2. Thus,

11\ 1 1r
(x+-—+—)+—= I+—+—=I+1=22
2 4/ & 2 2

PUR-L I PR Y
( 2 4 8) g -

1
]) ?=z,&c.

(1 +—+ 4+— 3
But in the series, every term is only the half of the preceding; con-
sequently no number of terms, however great, can be made as great
as 2 by adding one more, The sum, therefore, of 1, 5, i, %. &ec. con-
tinually approaches to 2, diminishing its distance from 2 at every step,
but never reaching it. Hence, 2 is called the limit of 1+§+1+&c.
‘We are not, therefore, to conclude that every series of decreasing terms
has a limit. The contrary may be shewn in the very simple series,
T +2+§+i+&c. which may be written thus:

"(ll) -l-+utol)+({+ utc.->x+l ml)&
”'z‘* 3+4 +(5 -.up tog gt p !6)‘(x7+...up ; + &c,

We have thus divided all the series, except the first two terms, into
lots, each containing half as many terms as there are units in the deno-
minator of its last term. Thus, the fourth lot contams 16 or 3— terms.

Each of these lots may be shewn to be greater than —. Tn.kethe third,
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1
for example, consisting of— e e TS and W% All except

-’—6, the last, are greater than E; consequently, by substituting -:—6 for
each of them, the amount of the whole lot would be lessened ; and as
it would then become -—6, or —, the lot itself is greater than i Now,
if to :+— - be continually added, the result will in time exceed any
given nnmber. Still more will this be the case if, instead of -. the
several lots written above be added one after the other. But it is thus
that the series 1+£+-;—, &c. is composed, which proves what was said,
that this series has no limit.

198. The series 1+r+rrirrr+&ec. always -has a limit when # is less
than 1. To prove this, let the term succeeding that at which we stop
be a, whence (194) the sum is -;:—:. or (112) x:r
decrease without limit (196), whence we may take a term so far distant
from the beginning, that a, and therefore -ﬁ, shall be as small as we

—~—2_. The terms
1—-r

please. But it is evident that in this case LI ——a—-, though always
-  I—r

less than

= may be brought as near to —l— as we please; that is, the

series 1+r+rr+&c. continually approaches to the limit _r' Thus

l+;+-—+-8-+&c. where r = ;, continually approaches to : !
was shewn in the last article.

or 2, as
L]

EXERCISES.
The limit of 2+ % + 3 +&e.

or z(1+-{+ -5 +&ec.)is 3

3
........ 1+ 243 L &e . 10
10 100
15 . 45
sensusne +—4 — +&c.... 8
5 7 49 i

199. When the fraction = 3 is not equal to < 2 but greater,a is md to

have to b a greater ratio than ¢ hasto d ; and when 5 is less than 2 79

* to have to b a less ratio than o has to d. We propose the fol-
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lowing questions as exercises, since they follow very simply from this
definition.

L. If @ be greater than 3, and ¢ less than or equal to d, a will have
a greater ratio to b than ¢ has to d.

II. If a be less than b, and ¢ greater than or equal to d, a has a less
ratio to b than ¢ has to d.

III. If a beto & as ¢ is to d, and if a have a greater ratio to 4 than ¢
has to #,d is less than ' ; and if 4 have a less ratio to & than ¢ to «, d is
greater than .

IV. a has to b a greater ratio than ax to ba+y, and a less ratio than
ax to ba—y.

200. If a have to b a greater ratio than ¢ has to d, a+c has to b+d a
less ratio than & has to 4, but a greater ratio than c has to d; or, in

¢ ate

other words, 1f be the greater of the two fmctlons 3 and iy dwill be

greater tha.n 7 but less than 7 To shew this, observe that +n!- must
lie between « and g, if # and y be unequal : for if # be the less of the

ma+nr
two, it is certainly greater th
’ nly g i

or than & ; and if y be the greater

of the two, it is certainly less than '"””;-", or than gy, It therefore liea

m
between zandy. Now let 2 be x, and let 7 be y: then a = bz, ¢ = dy.

Now brvdy | is something betwcen x and y, as was just proved; therefore
oo gxethm between — and Again, since &
Tva 1 Something ) gain, since 3

equal to— andcq, and smce,ns has just been proved, P+¢¢l lies be-
tween the two last, it also lies between the two first; ths.t is, if p and
2P*°1 )ies between = and %
bp+dg o d
201, By the last article we may often form some notion of the value
142

of an expression too compllcated to be easily calculated. Thus, r"

and 2 are respectively

g be any numbers or fractions whatsoever,

lies between - T and —. or1 and - —Htﬁ/— lies between _i'i and

azz+bbyy bbyy’

that is, between — ® and —. And it has been shewn that = T hes between
@

a and b, the denominator being considered as 1+1.

b+o+d
202, It may also be proved that a fraction such as % always
lies among —, —b- - and —, that is, is less than the greatest of them, and
s’

greater than the least. Let these fractions be arranged in order of
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c
magnitude ; that is, let 2 be greater than e,-‘- be greater than g—, and "
q9
greater than ‘—: Then by (200)

a+b a b
- - = -— and —
p+g 5 P s 9 r
at+b+e S a+b a § ¢ d
o 3 ~— and - - and —
pHgtr o ptq p 5T s
a+b+c+d . a+b+e a g d
—_— ——-- and - -
protr+s pHg+r P s

whence the proposition is evident.

203. It is usual to signify “ e is greater than 4™ by >3, and “a 1s
less than " by a<b; the opening of A being turned towards the greater
quantity. The pupil is recommended to make himself familiar with
these signs.

SECTION IX.

ON PERMUTATIONS AND COMBINATIONS.

204. If a number of counters, distinguished by different letters, be
placed on the table, and any number of them, say four, be taken away,
the question is, to determine in how many different ways this can be
done. Each way of doing it gives what is called a combination of four,
but which might with more propriety be called a selection of four. Two
combinations or sclections are called different, which differ in any way
whatever; thus, abed and abce are different, d being in one and ¢ in
the other, the remaining parts being the same. Let there be six counters,
a, b, ¢, d, e, and f; the combinations of three which can be made out

of them are twenty in number, as follow :

abe ace bed bef
abd acf bee cde
abe ade bef edf
abf adf bde cef
acd aef bdf def

The combinations of four are fifteen in number, namely,
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abed abde acde adef beef
abee abdf acdf bede bdef
abef abef acef bedf cdef
and so on.
205, Each of these combinations may be written in several different
orders; thus, abed may be disposed in any of the following ways :

abed acbd acdb abde adbe adeb
bacd cabd cadb bade dabe dach
bead chad cdab bdac dbac deab
beda cbda cdba bdca dbca deba

of which no two are entirely in the same order. Each of these is said
to be a distinct permutation of abed. Considered as a combination, they
are all the same, as each contains a, b, ¢,’and d.

206. We now proceed to find how many permutations, each con-
taining one given number, can be made from the counters in another
given number, six, for example. If we knew how to find all the per
mutations containing four counters, we might make those which contain
five thus: Take any one which contains four, for example, abef, in which
d and e are omitted ; write d and e successively at the end, which gives
abqfd, abefe, and repeat the same process with every other permutation
of four ; thus, dabc gives dabce and dabef. No permutation of five can
escape us if we proceed in this manner, provided only we know those
of four; for any given permutation of five, as difea, will arise in the
course of the process from dbfe, which, according to our rule, furnishes
dbfea. Neither will any permutation be repeated twice, for difea, 1f
the rule be followed, can only arise from the permutation dbfe. 1t we

begin in this way to find the permutations of two out of the six,
a b ¢ d e f

each of these gives five; thus,

a gives ab ac ad ae af
b eieee. ba be bd be &f

and the whole number is 6xs, or 30,
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Again, ab gives abe abd abe akf
@c «..... ach acd ace acf
and here are 30, or 6x5 permutations of 2, each of which gives 4
permutations of 3 ; the whole number of the last is therefore 6x5x4,
or 120,
Again abo gives abed abee abef
abd ...... abdc abde abdf
and here are 120, or 6x5x4, permutations of three, each of which gives
3 permutations of four; the whole number of the last is therefore
6x5x4x3, or 360,

In the same way, the number of permutations of § is 6x5x4x3x2,
and the number of permutations of six, or the number of different ways
in which the whole six can be arranged, is 6x5x4x3x2x1. The last
two results are the same, which must be ; for since a permutation of five
only omits one, it can only furnish one permutation of six. If instead
of six we choose any other number, #, the number of permutations of
two will be 2(#—1), that of three will be a(2—1)(#~2), that of four
&(r—1)(2—2)(2—3), the rule being: Multiply the whole number of
counters by the next less number, and the result by the next less, and
80 on, until as many numbers have been multiplied together as there
are to be counters in each permutation: the product will be the whole
number of permutations of the sort required. Thus, out of 12 counters,
permutations of four may be made to the number of 12xr1xioxg, or
11880.

EXERCISES.
207. In how many different ways can eight persons be arranged on
eight seats ? Answer, 40320.
In how many ways can eight persons be seated at a round table, so
that all shall not have the same neighbours in any two arrangements ?*
Anrswer, §040.
If the hundredth part of a farthing be given for every different

® The difference betweer this problem and the last is left to the ingenuity of
the pupil.
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arrangement which can be made of fifteen persons, to how' much will
the whole amount ? Answer, £13621608.

Out of seventeen consonants and five vowels, how many words can
be made, having two consonants and one vowel in each? A4nswer, 4080.

208. If two or more of the counters have the same letter upon them,
the number of distinct permutations is less than that given by the last
rule. Let there be a, a, a, b, ¢, d, and, for a moment, let us distinguish
between the three as ‘thus, a, dy a’. Then, abea’a”d, and a"’bcaa’d
are reckoned as distinct permutations in the rule, whereas they would
not have been so, had it not been for the accents. To compute the
number of distinct permutations, let us make one with &, ¢, and d,
leaving places for the as, thus, ( ) &¢ ( ) ( ) d. If the as had been
" distinguished as @, o/, 4”, we might have made 3x2x1 distinct per-
mutations, by filling up the vacant places in the above, all which six
are the same when the as are not distinguished. Hence, to deduce
the number of permutations of a, a, a, b, ¢, d, from that of ad’a”bcd,

6.
we must divide the latter by 3x2x1, or 6, which gives —xs—;:?ﬁu—l
or 120, Similarly, the number of permutations of aaaabbbec is
9x8x7x6x 5X4X3x2X T
4X3X2XIXFXZXIXZXT

EXERCISE,

How many variations can be made of the order of the letters in the
word antitrinitarian ? Answer, 126126000,

209. From the number of permutations we can easily deduce the
number of combinations. But, in order to form these combinations
independently, we will shew a method similar to that in (206). Ifwe
know the combinations of two which can be made out of a, b, ¢, d, ¢, we
can find the combinations of three, by writing successively at the end of
each combination of two, the letters which come after the last contained
in it. 'Thus, ab gives abc, abd, abe; ad gives ade only. No combination
of three can escape us if we proceed in this manner, provided only we
know the combinations of two ; for any given combination of three, as
acd, will arise in the course of the process from ac, which, according
to our rule, furnishes acd. Neither will any combination be repeated

M
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twice, for acd, if the rule be followed, can only arise from ac, since
neither ad nor cd furnishes it. If we begin in this way to find the
combinations of the five,

a gives ab ao ad as
b ... be bd be
e e cd ]
d ... de
Of these, ab gives abe abd abe
ac ...... acd ace
ad ...... ade
be ...... bed  bee
bd ...... bde
ed ...... cde
ae be ce and de give none.
Of these, abe gives abed  abce
abd ...... albde
acd ...... acde
bed ...... bede

Those which contain ¢ give none, as before.

Of the last, abed gives abcde, and the others none, which is evidently
true, since only one selection of five can be made out of five things.

210, The rule for calculating the number of combinations is de-
rived directly from that for the number of permutations. Take 7
counters; then, since tixe number of permutations of two is 7x6, and
since two permutations, ¢ and abd, are in any combination ad, the
number of combinations is half that of the permutations, or ?
Since the number of permutations of three is 7x6x5, and as each
combination adc has 3x2x1 permutations, the number of combina-
tions of three is -z:% Also, since any combination of four, abed,
contains 4x3x2x1 permutations, the number of combinations of four
is 7x6x5x4 and 80 on. The rule is: To find the number of com-

Ix2x3%4”
binations, each containing n counters, divide the corresponding number
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of permutations by the product of 1, 2, 3, &c. up to n. If » be the
whole number, the number of combinations of two is 'i':%l); that of

three is SE=E=2)  pot of four is
IX2x3 IX2x3%4

211. The rule may in half the cases be simplified, as follows. Out

o) ) amg)

of ten counters, for every distinct selection of seven which is taken, a
distinct combination of 3 is left. Hence, the number of combinations
of seven is as many as that of three, We may, therefore, find the
combinations of three instead of those of seven ; and we must moreover
expect, and may even assert, that the two formul® for finding these
two numbers of combinations are the same in result, though different
in form. And so it proves; for the number of combinations of seven
m_stﬁ.’ in which the product 7x6x5x4 occurs
IXx2X3%4x§5%6x7

in both terms, and therefore may be removed from both (108), leaving
Xoxgx8 which is the number of combinaﬁom.of three out of ten. The

1x2x3

same may be shewn in other cases.

out of ten is

EXERCISES,

How many combinations of four can be made out of twelve things ?

Answer, 495.
‘What number [ 6 ,' 8 1 28
of combinations] 22‘ out of :; Answer, g::
can bemadeof | 6 1:5J 500§

How many combinations can be made of 13 out of 52 ; or how many
different hands may a person hold at the game of whist ?
Answer, 635013559600,
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BOOK II.

COMMERCIAL ARITHMETIC.

SECTION I.

WEIGHTS, MEASURES, &c.

212. IN making the calculations which are necessary in commercial
affairs, no more processes are required than those which have been
explained in the preceding book. But there is still one thing wanted
—not to insure the accuracy of our calculations, but to enable us to
compare and judge of their results. We have hitherto made use of a
sitgle unit (15), and have treated of other quantities which are made
up of a number of units, in Sections IL, III., and IV., and of those
which contain parts of that unit in Sections V. and VI. Thus, if we
are talking of distances, and take a mile as the unit, any other length
may be represented,* either by a certain number of miles, or a certain
number of parts of a mile, and (1 meaning one mile) may be expressed

® It is not true, that if we choose any quantity as a unit, any other quantity of
the same kind can be exactly represented either by a certain number of units, or of
parts of & unit. To understand how this is proved, the pupil would require more
knowledge than he can be supposed to have; but we can shew him that, for any thing
he knows to thé contrary, there may be quantities which are neither units nor parts
of the unit. Take a mathematical line of one foot in length, divide it into ten parts,
each of those parts into ten parts, and so on continually., Ifa point A be taken at
hazard in the line, it does not appear self-evident that if the decimal division be con-
tinued ever so far, one of the points of division must at last fall exactly on A : neither
would the same appear necessarily true if the division were made into sevenths, or
elevenths, or in any other way. There may then possibly be a part of a foot which
is no exact numerical fraction whatever of the foot; and this, in a higher branch of
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either by a whole number or a fraction. But we can easily see that in
many cases inconveniences would arise, Suppose, for example, I say,
that the length of one room is ;%5 of a mile, and of another I—I~ of a
mile, what idea can we form as to how much the second is longer than
the first? It is necessary to have some smaller measure ; and if we
divide a mile into 1760 equal pa.rﬁ, and call each of these parts a yard,
we shall find that the length of the first room is 9 yards and Zofa yard,
and that of the second 10 yards and ;—: of a yard, From this we form
a much better notion of these different lengths, but still not a very
perfect ore, on account of the fractions 7 and ;—?. To get a clearer
idea of these, suppose the yard to be divided into three equal parts, and
each of these parts to be called a foot; then Zofa yard contains P
feet, and %9 of a yard contains %_o of a foot, or a little more thar::
I of a foot. Therefore the length of the first room is now 9 yards,
2 feet, and z of a foot ; that of the second is 10 yards and a little more
than -;— of a foot. We see, then, the convenience of having large mea-
sures for large quantities, and smaller measures for small ones; but this
is done for convenience only, for it is possidle to perform calculations
upon any sort of quantity, with one measure alone, as certainly as with
more than one; and not only possible, but more convenient, as far as
the mere calculation is concerned.

The measures which are used in this country are not those which
would have been chosen had they been made all at one time, and by a
people well acquainted with arithmetic and natural philosophy. We
proceed to shew how the results of the latter science are made useful in
our system of measures. Whether the circumstances introduced are
sufficiently well known to render the following methods exact enough
for the recovery of astromomical standards, may be matter of opinion;
but no doubt can be entertained of their being amply correct for

commercial purposes.

mathematies, is found to~ be the case times without number. What is meant in the
words on which this note is written, is, that any part of a foot can be represented as
nearly as we please by a numerical fraction of it; and this fs sufficient for practical
purposes,

M2
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It is evidently desirable that weights and measures should always
continue the same, and that posterity should be able to replace any one
of them when the original measure is lost. It is true that a yard, which
is now exact, is kept by the public authorities ; but if this were burnt
by accident,* how are those who shall live 500 years hence to know
what was the length which their ancestors called a yard ? To ensure
them this knowledge, the measure must be derived from something
which cannot be altered by man, either from design or accident. We
find such a quantity in the time of the daily revolution of the earth, and
also in the length of the year, both of which, as is shewn in astronomy,
will remain the same, at least for an enormous number of centuries,
unless some great and totally unknown change take place in the solar
system, So long as astronomy is cultivated, it is impossible to suppose
that either of these will be lost, and it is known that the latter is
365°24224 mean solar days, or about 365l of the average interval which
elapses between noon and noon, that is, ﬁetween the times when the sun
is highest in the heavens, Our yea.r. is made to consist of 365 days, and
the odd quarter is allowed for by adding one day to every fourth year,
which gives what we call leap-year. This is the same as adding i ofa
day to each year, and is rather too much, since the excess of the year
above 365 days is not ‘2§ but 24224 of a day. The difference is “00776
of a day, which is the quantity by which our average year is too long.
This amounts to a day in about 128 years, or to about 3 days in 4
centuries. The error is corrected by allowing only one out of four of the
years which close the centuries to be leap-years. Thus, o.n. 1800 and
1900 are not leap-years, but 2000 is 8o,

213. The day is therefore the first measure obtained, and is divided
into 24 parts or hours, each of which i8 divided into 6o parts or minutes,
and each of these again into 60 parts or ds. One d, marked
thus, 1%} is therefore the 86400t part of a day, and the following is the

# Sinoe this was first written, the accident has happened. The standard yard was
so0 injured as to be rendered useless by the fire at the Houses of Parliament.

4+ The minute and second are often marked thus, 1, 1 : but this notation is now
almost entirely appropriated to the mi and second of angular measure.
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MEASURE OF TIME.*
€o seconds are Iminute . . . Im,
6ominutes . . . Thour . . . . 1h
24hours . . . . 1day . . . . 1ds
7days . . . . 1week . . . . 1wk
365days . . . . 1year . . . . IYI

214. The second having been obtained, a pendulum can be con-
structed which shall, when put in motion, perform one vibration in
exactly one second, in the latitude of Greenwich.} If we were m-
venting measures, it would be convenient to call the length of this
pendulum a yard, and make it the standard of all our measures of
length. But as there is a yard already established, it will do equally
well to tell the length of the pendulum in yards. It was found by
commissioners appointed for the purpose, that this pendulum in London
was 39°1393 inches, or about one yard, three inches, and 3%- of an inch,
The following is the division of the yard.

MEASURES OF LENGTH,

The lowest measure is a barleycorn.}

3 barleycorns are 1inch . . 1in,
12 inches . . . . . . Tfoot . . 1ft
3feet . . . . . . . 1yard. . 1Yyd

5% yards. . . . . . . 1pole . . 1po.
40 poles or 220 yards . . 1 furlong . 1 fur,
8 furlongs or 1760 yards . 1 mile . . 1 mi

# The measures in italics are those which it i3 most necessary that the student
should learn by heart.

4 The lengths of the pendulums which will vibrate in one second are slightly dif-
ferent in different latitudes. Greenwich is chosen as the station of the Royal Ob-
servatory. We may add, that much doubt is now entertained as to the system of
standards derived from nature being capable of that extreme accuracy which was
once attributed to it.

3 The inch is said to have been originally obtained by putting together three grains
of barley. ' .
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Also 6feet . . . . . . . 1fathom . 1 fth.
69§miles. .+« « « « . 1degree . 1 deg.or1°

A geographical mile is 6—‘0th of a degree, and three such miles are one
nautical league.

In the measurement of cioth or linen the following are also used :

2~ inches are rmail. . . . . . rnlL
tnails . « « « . rquarter(ofayard). 1gr.
3quarters . . . 1Flemishell . . . 1FlLe.
squarters . . . 1Englishell . . . 1E.e.
6 quarters . . . 1 Frenchell . . . 1Fre

215. MEASURES OF SURFACE, OR SUPERFICIES.
All. surfaces are measured by square inches, square feet, &c.; the
square inch being a square whose side is an inch in length, and so on.
The following measures may be deduced from the last, as will afterwards

appear.
144 square inches are 1 square foot . 1s8q. ft.

9 square feet . . . 1squareyard . 1sq.yd.
30-:-. square yards . . . I square pole . I 8q.p.
4osquarepoles . . rrood . . . 1rd

4roods . . . . . racre . . . 1ac

Thus, the acre contains 4840 square yards, which is ten times a
square of 22 yards in length and breadth. This 22 yards is the lengt?
which land-surveyors’ chains are made to have, and the chain is divided
into 100 links, each ‘22 of a yard or 7°92 inches. An acre is then 10
square chains, It may also be noticed that a square whose side is
69% yards is nearly an acre, not exceeding it by % of a square foot.

216. MEASURES OF SOLIDITY OR CAPACITY.*
Cubes are solids having the figure of dice. A cubic inch is a cube
each of whose sides is an inch, and so on. ’

® ¢Capacity’ is a term which cannot be better explained than by its use, .When
one measure holds more than another, it is said to be more capacious, or to have a
greater capacity.
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1728 cubic inches are 1 cubicfoot . . 1ec. ft.

27 cubicfeet . . . rcubicyard . . 1c. yd

This measure is not much used, except in purely mathematical
questions. In the measurements of different commodities various mea-
sures were used, which are now reduced, by act of parliament, to one,
This is commonly called the imperial measure, and is as follows :

MEASURE OF LIQUIDS AND OF ALL DRY GOODS,
4gills are 1pint . . . 1Dt
2pints. . . 1gquart. . . 1qt
4quarts . . 1gallon . . 1gall
2 gallons . . 1peck®* . . 1pk.
4pecks . . 1bushel . . 1bu.

8 bushels . . 1quarter . . 1qr.
5 quarters . 1load . . . 1ld.

The gallon in this measure is about 277°274 cubic inches; that is,
very nearly :1.77l cubic inches.}

217, The smallest weight in use is the grain, which is thus deter-
mined. A vessel whose interior is a cubic inch, when filled with
water,}* has its weight increased by 252'458 grains. Of the grains so
determined, 7000 are a pound averdupois, and 5760 a pound froy. The

® This m.euure, and those which follow, are used for dry goods only.

+ Since the publication of the third edition, the heaped measure, which was part
of the new system, has been abolished. The following paragraph from the third
edition will serve for reference to it:

¢ The other imperial measure is applied to goods which it is customary to sell by
heaped measure, and is as follows :

2gallons . . . . .. .. 1 peck

4pecks. . . . . . o . . 1bushel

Sbushels . . « . . . . .1lsack

12sacks . « « « « « . . . 1chaldron
The gallon and bushel in this measure hold the same when only just filled, as in the
last. The bushel, however, heaped up as directed by the act of parliament, is a little
more than one-fourth greater than before.”

1 Pure water, cleared from foreign substances by distillation, at a temperature of
62° Fahr,
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first pound is always used, except in weighing precious metals and
stones, and also medicines. It is divided as follows :

AVERDUPOIS WEIGHT.
172 grains are 1dram . . . . . 1dn
163;rams, ordrachms . . Tounce® . . . . 10X
16ounces . . . . . . Ipound . . . . 1lb,

28pounds . . . . . Iquarter . . . . IQr
4 quarters . . . . . 1 hundred-weight . 1 cwt

20 hundred-weight . . ttom. . . . . . 71ton.

The pound averdupois contains 7ooo.gmins. A cubic foot of water
weighs 62°3210606 pounds averdupois, or 9971369691 ounces,

For the precious metals and for medicines, the pound troy, con-
taining 5760 grains, is used, but is differently divided in the two cases.
The measures are as follow :

TROY WEIGHT.
24 grains are I pennyweight . . . 1dwt,
20 pennyweights . . . Ioumce . . . . . . 10
20unces . « . . o tpound. . . . . o 1lb.

The pound troy contains 5760 grains. A cubic foot of water weighs
75°'7374 pounds troy, or 9o8:8488 ounces.

APOTHECARIES® WEIGHT.

20 grains are 1scruple . . . . . D
3soruples . . . . 1dram. . , . . . 3
8drams . . . . Iounce . . . . . %

120unces . , . . . Ipound . . . . ., D

218. The standard coins of copper, silver, and gold, are,—the penny,
which is 10> drams of copper; the shilling, which weighs 3 penny-
weights 15 grains, of which 3 parts out of 40 are alloy, and the rest
pure silver; and the sovereign, weighing 5 pennyweights and ?,1 grains,
of which 1 part out of 12 is copper, and the rest pure gold. 4

# It is more common to divide the ounce into four quarters than into sixteen

drams.
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MEASURES OF MONEY,

The lowest coin is a farthing, which is marked ﬂmu, ? , being one
fourth of a penny.

2 farthings are 1 halfpenny . . . . . ;l'd.

2halfpence . . . . . 1penny . . . . . . 1d
I2pence . . . . . . Ishilling. . . . . . 18
20 shillings . . . . . 1 pound® orsovereign . £1
2x shillings , . . . . 1guineat

219. When any quantity is made up of several others, expressed in
different unpits, such as £1. 14. 6, or 2cwt. 1qr. 3lbs,, it is called a
compound gquantity. From these tables it is evident that any compound
quantity of any substance can be measured in several different ways.
For example, the sum of money which we call five pounds four shillings
is also 104 shillings, or 1248 pence, or 4992 farthings. It is easy to
reduce any quantity from one of these measurements to another; and
the following examples will be sufficient to shew how to apply the same
process, usually called REDUCTION, to all sorts of quantities, .

I. How many farthings are there in £18 . 12 . 6—3-?::

Since there are 20 shillings in a pound, there are, in £18, 18x20, or
360 shillings; therefore, £18 . 12 is 360+12, or 372 shillings. Since
there are 12 pence in a shilling, in 372 shillings there are 372x12,
or 4464 pence; and, therefore, in £18 . 12 . 6 there are 4464+6, or
4470 pence.

Since there are 4 farthings in a penny, in 4470 pence there are

® The English pound is generally called a pound sterling, which distinguishes it
from the weight called a pound, and also from foreign coins.

¢ The coin called a guinea is now no longer in use, but the name is still given,
from custom, to 21 shillings. The pound, which was not a coin, but a note promising
to pay 20 shillings to the bearer, is also disused for the present, and the sovereign
supplies its place; but the name pound is still given to 20 shillings.

b4 Farthlng- are never written but as parts of a penny. Thus, three farthings
Mng of a penny, hvrltten%, or 3. One halfpenny may be written either as i

or ry the latter is most common.
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4470%4, or 17880 -farthings ; and, therefore, in £18 . 12 . 6% there
are 17880+3, or 17883 farthings. The whole of this process may be
written as follows :

£18.n.6—3-
4

20

360+12 = 372
12

4464+6 = 4470
4

17880+3 = 17883
1I. In 17883 farthings, how many pounds, shillings, pence, and
farthings are there ?
Since 17883, divided by 4, gives the quotient 4470, and the remainder
3, 17883 farthings are 4470 pence and 3 farthings (218).
Since 4470, divided by 12, gives the quotient 372, and the remainder

6, 4470 pence is 372 shillings and 6 pence.
Since 372, divided by 20, gives the quotient 18, and the remainder
* 12, 372 shillings is 18 pounds and 12 shillings.
Therefore, 17883 farthings is 44703d., which is 372s. 634.. which is
£18.12.63 4 N
The process may be written as follows :

4)17883
12)4470 «. 3

20)372 v 6
£; 12, 63
4

EXERCISES.

A'has £100. 4. u— a.nd B has 64392 farthings. If A receive 1492
farthings, and B £1 . z 3- which will then have the most, and by how
much P—Answer, A will have £33 . 12 . 3 more than B.

In the following table the quantities written opposite to each other
are the same : each line furnishes two exercises.
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£15 .18 . 95 15302 farthings.
115lbs yoz gdwt 663072 grains.
3bs 400 gir 1001 drams.
3™ 149Y% 2R gl 195477 inches.
g 2Pks ygall pqu 1260 pints,
16h 230 4% 59027 seconds.

220. The same may be done where the number first expressed is
fractional. For example, how many shillings and pence are there in
—3'5 of a pound ? Now,-:'—s of a pound is-:—;_ofzo shillings ; % of 20
is ﬁ:?, or 4—:—4 (110), or 332, or (105) 5% of a shilling. Again, -;— of
a shilling is Zof1z pence, or 4 pence. Therefore, £% = 58. 4d.

Also, *23 of a day is 23x24 in hours, or s"52; and ‘52 of an hour
is *52x60 in minutes, or 31™2; and 2 of a minute is *2x60 in seconds,
or 12*; whence ‘23 of a day is §b 31™ 12,

Again, suppose it required to find what part of a pound 6s. 8d. is.
Since 6s. 8d. is 80 pence, and since the whole pound contains 20x12
or 240 pence, 6s. 8d. is made by dividing the pound into 240 parts, and
taking 80 of them. It is therefore £2% (107), but ;:—o - % (108);
therefore, 6s, 8. = £§.

EXERCISES,
2 ofa day iz gh36m
‘12841 ofaday . . . 3B4™ 54°°624%
257 ofacwt. . . . 28105 1202 8dr g0,
£14936 . . . . . . 28114303856

221, 222, I have thought it best to refer the mode of converting
shillings, pence, and farthings into decimals of a pound to the Appendix
(See Appendix On Decimal Money). 1 should strongly recommend
the reader to make himself perfectly familiar with the modes given in

* When a decimal follows a whole number; the decimal is always of the same unit
as the whole number. Thus, 5*'5 is five seconds and five-tenths of & second. Thus,
0°*5 means five-tenths of a second ; 033, three-tenths of an hour.

.1
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that Appendix. To prevent the subsequent sections from being altered
in their numbering, I have numbered this paragraph as.above.

223, The rule of addition* of two compound quantities of the same
sort will be evident from the following example. Suppose it required
to add £192 . 14 . z§ to £64 . 13. 113, The sum of these two is the
whole of that which arises from adding their several parts. Now

4+ 4= da- £o0.0. - (219)
4 2 4 4

1d+ 2d.=13d = o0.1.X

135.+ 148, =278, = 1.7.0

£64 +£192 = 256.0.0

The sum of all of which is £257.8. zi
This may be done at once, and written as follows :
£ 2
192.14. 2

3

64.13.11=
4 .13 ’
1

£257. 8. 2-
57 ’

Begin by adding together the farthings, an(i reduce the result to
pence and farthings. Set down the last only, carry the first to the line
of pence, and add the pence in both lines to it. Reduce the sum to
shillings and pence ; set down the last only, and carry the first to the
line of shillings, and so on. The same method must be followed when
the quantities are of any other sort ; and if the tables be kept in me-
mory, the process will be easy.

224. SubrrACTION i8 performed on the same principle as in (40),
namely, that the difference of two quantities is not altered by adding the
same quantity to both. Suppose it required to subtract £19. 13 . 103
from £24.5. 75. ‘Write these quantities under one another thus:

* Before reading this article and the next, articles (29) and (42) should be read
again carefulty.
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I
£7-4. 5. 7;
T 19.13. 103
9.13 s

Since 3 cannot be taken from E or f, add 1d. to both quantities,

which will not alter their difference ; or, which is the same thing, add
4 farthings to the first, and 1d. to the second. The pence and farthings
in the two lines then stand thus: 7§d. and 113d. Now subtract 3
from 9, and the difference is é, wluth must be written under th:
farthings, Again, since 11d. cannot be subtracted from 7d., add 1s. to
both quantities by adding 12d. to the first, and 1s. to the second. The
pence in the first line are then 19, and in the second 11, and the
difference is 8, which write under the pence. Since the shillings in the
lower line were increased by 1, there are now 14s. in the lower, and s,
in the upper one. Add 20s. to the upper and £1 to the lower line, and
the subtraction of the shillings in the second from those in the first
leaves 11s. Again, there are now £20 in the lower, and £24 in the
uppef line, the difference of which is £4 ; therefore the whole difference
of the two sums is £4. 11. 8§. If we write down the two sums with
all the additions which have been made, the process will stand thus:

6
£24 . 25 . 19—
24 . 25 9‘|>

20 . 14 . ni

Difference £4 . 11, 8%

225. The same method may be applied to any of the quantities in
the tables. The following is another example:
From 7 cwt. 2 qrs. 21 lbs, 14 0z, .
Subtract 2 cwt. 3 qrs. 27 lbs. 12 oz,
After alterations have been made similar to those in the last article, the
question becomes :
From 7 cwt. 6 grs. 49 Ibs. 14 oz.
Subtract 3 ewt. 4 grs. 27 lbs, 12 oz.
The difference is 4 cwt. 2 grs. 22 Ibs. 2 oz.
In this example, and almost every other, the process may be a little
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shortened in the following way. Here we do not subtract 27 Ibs. from
21 lba., which is impossible, but we increase 21 lbs. by 1 gr. or 28 lbs.
and then subtract 27 lbs. from.the sum. It would be shorter, and lead
to the same result, first to subtract 27 lba. from 1 qr. or 28 lbs. and add
the difference to 21 Ibs.

226. RXERCISES.

A man has the following sums to receive: £193. 14 . ui,
£22.0. 6%, £6473 .0.0, and £49. 14 . 4; s and the following debts
to pay: £200. 19 . 62, £305. 16 . 11, £22, and £19.6 oi How
much will remain after paying the debts ? Answer, £6190 .7 . 43.

There are four towns, in the order A, B, C, and D. Ifa man can
go from A to B in b 20™ 33¢, from B to C in 6% 49™ 2% and from A
to D in 1gb o™ 17*, how long will he be in going from B to D, and from
CtoD? Answer, 138 39 44° and 6" 50® 42%,

227. In order to perform the process of MULTIPLICATION, it must
be recollected that, as in (52), if a quantity be divided into several
parts, and each of these parts be multiplied by a number, and the
products be added, the result is the same as would arise from multi-
' plying the whole quantity by that number.

It is required to multiply £7. 13. 6 by 13. The first quantity is
made up of 7 pounds, 13 shillings, 6 pencet and 1 farthing. And

1 farth. x13 is 13 farth. or £0.0. 3% (219)
6 pence x13is 78 pence, or 0.6.6
13 shill. x13 is 169 shill. or 8.9.0

7 pounds x 13 is 91 pounds, or 91,0.0
The sum of all these is £99 . 15. 9i
which is therefore £7. 13 . 6ix 13.

This process is usually written as follows :

) ¢
£7.13. 6~
734

13

) 1
£99.15.9I
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228, DivisioN is performed upon the same principle as in (74),
viz, that if a quantity be divided into any number of parts, and each
part be divided by any number, the different quotients added together
will make up the quotient of the whole quantity divided by that number.
Suppose it required to divide £99 . 15. 91 by 13. Since 99 divided by
13 gives the quotient 7, and the remaind:;' 8, the quantity is made up
of £13x7, or £91, and £8. 15 . 9i The quotient of the first, 13 being
the divisor, is £7 : it remains to find that of the second. Since £8 is
160s., £8 . 15. 9E is 1758, 914., and 175 divided by 13 gives the quotient
13, and the remainder 6; that is, 1735s. 9:d. is made up of 16gs. and
6s. 91d., the quotient of the first of which i: 13s., and it remains to find
that of the second. Since 6s. is 72d., 6s. 91d. is Sl-ld., and 81 divided
by 13 gives the quotient 6 and remainder 3; that is, 81-d, is 78d. and
3wd., of the first of which the quotient is 6d. Again, since 3d. is —,
(:- 12 farthings, 314. is 13 farthings, the quotient of which is 1 farthing,
or 1, without ren?a.inder. We have then divided £99 . 15. 91 into
fou: parts, each of which is divisible by 13, viz. £91, 169s., 78d., and
13 farthings ; so that the thirteenth part of this quantity is £7., 13 . 6%.
The whole process may be written down as follows ; and the same sort of
process may be applied to the exercises which follow :

£ s d. £ s d

1 1

13)99 15 9;(7 13 6-
91

4
3
20
160415 = 175
13
45
39
12
7249 = 81
78
3
2
1= 13
13
°

x2
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- Here, each of the numbers q9. 175, 81, and 13, is divided by 13 in
the usual way, though the divisor is only written before the first of

them.
EXERCISES.

2 cwt. 1qr. 21 1bs. 7 0z.x  §3 = 129 cwt. I gr. 16 lbs. 3 oz
29 4b m 278x 109 = 2364 10b 16m 3 '
£27.10,8x 569 = £15666.9. 4

£7.4.8x% 123 = £889. 14
£166 x 3%= £40.4. 10—6-

33

3 32

£187.6.7x o0 £5. :2.4425
4. 6£d.x 1121 = £254 . 11 .zi

4s. 4d. x 4260 = 63, 6d. x 2840
229, Suppose it required to find how many times 1s. 4,3d. is contained
in£3.19. 103. The way to do this is to find the num%er of farthings
in each. By (219), in the first there are 65, and in the second 3835
farthings. Now, 3835 contains 65 59 times; and therefore the second
quantity is 59 times as great as the first. In the case, however, of
pounds, shillings, and pence, it would be best to use decimals of a
pound, which will give a sufficiently exact answer. Thus 1s. 4—14. is
£067, and £3.19. 103 is £3'994, and 3°994 divided by ‘067 is 3994
by 67, or 59%';. This is an extreme case, for the smaller the divisor,
the greater the effect of an error in a given place of decimals.
EXERCISES.
How many times does 6 cwt. 2 qrs. contain 1 qr. 14 Ibs. 1 0z. ? and
19 2b om 48 contain 3™ 4687 Answer, 1730758 and 414°367257.
If 2 cwt. 3 qrs. 1 Ib. cost £150. 13 . 10, how much does 1 Ib. cost ?
Answer, 9s. I3,
A grocer mixes 2 cwt. 15 l1bs. of sugar at 11d. per pound with 14 cwt.

3 Ibs. at 5d. per pound. At how much per pound must he sell the
3153
. I 4 905°

230. There is a convenient method of multiplication called Prac-
TICE. Suppose I ask, How much do 153 tons cost if each ton cost

£z.15.7:? It is plain that if this sum be multiplied by 153, the

mixture 8o as not to lose by mixing them ? Answer, sd.
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product is the price of the whole. But this is also evident, that, if I
buy 153 tons at £2. 15. 7-;- each ton, payment may be made by first
putting down £2 for each ton, then 10s. for each, then 5:., then 6d.,
and then l-d These sums together ma.ke up £2 .15, 7— and the
reason for tlus separation of £2 . 15 . 7- into different parts w1ll be soon

apparent. The process may be camed on as follows :

1. 153 tons, at £2 each ton, willcost . . . . . . £306 o o

2. Since r10s. is £1 153 tons, at 10s. each, will cost
IS3wl:uchzm............76
3. Since s5s. is ~ of 108., 153 tons, at 5s., will cost half
a8 much as the same number at 10s. each, that
ls, of£76.lo,wluchxs. P e s« e e s 38
4. Since 6d 1s — of 58., 153 tons, at 6d. each, will
cost é of w}mt the same number costs at gs.
each, thatns,—of£38 s,whichis . . . . 3
5. Since 1— or3 halfpence is = of 6d. or n. halfpence,
153 tons, at :-d. each, will cost - X of what the
samennmbercostsatGd.each thatm,—of
£3.16,.6,whichis . . . . . . . 4 . o

The sum of all these quantitiesis . . . . . . . . . 425
which is, therefore, £2 . 15. 7: x 153,
The whole process may be written down as follows:

£153 o o £1 per ton.
£2i8 2 x £1 306 o o 2 0 o
k]
loe.i.s:of.ex 76 10 o ‘g o110 o
2
y.is;'flo:. 38 5 o g o § o
2
. X S
6d.|sl—°of5:. 316 6 2 o o 6
l—ld.islofw. o 19 - % o o I+
2 4 2 g 2
Sum . . . £425 10 7& £2 15 72

I0

16

19

10
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ANOTHER EXAMPLE,

What do 1735 lbs. cost at 9: xozd. per 1b.? The price gs. loéd.
is made up of §s., 4., 10d., -d a.nd-d. of which ss. is -of£1,

4:.m—of£1, lod.uzof 58, ;d is ;; of 10d., and LF ;of;d.
Follow the same method as in the last example, which gives the fol-

lowing : :
£1735 o o £1 per Ib.

58, is It £ 433 15 © o 5 o
4 ’ 4
| §
48, is - of £1 347 © o o 4 o
s 3
o 1 3
10d. is s of s5s. 72 § 10 r o o 10
18 I
2d.i8 = of 10d. 312 3-8 o o o
2 20 2 3 2
ldis —l-ofzd. 1 16 15? o o o
4z 2 4 8 4
by addition ... } £358 ¢ 3% £o0 9 xoi

In all cases, the price must first be divided into a number of parts,
each of which is a simple fraction* of some one which goes before. No
rule can be given for doing this, but practice will enable the student
immediately to find out the best method for each case. When that is
done, he must find how much the whole quantity would cost if each of
these parts were the price, and then add the results together.

EXERCISES,
What is the cost of
243 cwt. at £14.18. si per cwt. P—Answer, £3629 . 1., 0=

169 bushels at £2 . 1 . 3; per bushel P—Answer, £348 . 14 . 9-~
273 qrs. at 19s, 2d. per quarter P—Answer, £261 . 12 . 6
2627 sacks at 7s. 8;«1. per sack P —Adnswer, £1012 . 9. 9;

® Any fraction of a unit, whose numerator is unity, is generally called an aliquos

part of that unit. Thus, 25, and 10 are both aliquot parts of a pound, being zl%
and 8;-.
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231. Throughout this section it must be observed, that the rules
can be applied to cases where the quantities given are expressed in
common or decimal fractions, instead of the measures in the tables.
The following are examples :

‘What is the price of 272°3479 cwt. at £2 . 1 . 3— per cwt. ?

Answer, £ 562':,849, or £563. 5. 83,

66;‘11)5. at 13. 4§d. perlb. cost £4 . 11 . 5;. 4

How many pounds, shillings, and pence, will 279°301 acres let for
if each acre lets for £‘3 1076 P—Answer, £867 9558 or £867.19. li

What does ~ of— of 17 bush. cost at ~ Zof2 of £17 . 14 per bushel ?

4 Answer, £2°3146, or £2 .6 . 3—

What is the cost of 191bs. 80z, 12dwt. 8gr. at £4.. 4. 6 per ounee?—-
Answer, £999 . 14 . xi L

232. It is often required to find to how much a certain sum per day
will amount in a year. This may be shortly done, since it happens that
the number of days in a year is 240+120+5; 80 that a penny per day
is a pound, half a pound, and 5 pence per year. Hence the following
rule: To find how much any sum per day amounts to in a year, turn it
into pence and fractions of a penny ; to this add the half of itself, and
let the pence be pounds, and each farthing five shillings; then add five
times the daily sum, and the total is the yearly amount. For example,
what does 12s. 3§d. amount to in a year? This is 14.7§d., and its half
i8 73 sd which :dded to 14.7§d. glves zz!§d wlnch turned into pounds
i8 £221 . 12 ., 6. Also, 126, 3—d.x5 is£3.1. w}uch added to the
former sum gives £224 .14 . o2 for the yearly :l;nount. In the same
way the yea.rly amount of 2s. 3, d. is £41 . 16 ., 5&; that of 6:-.d. is
£10,.5. 3— and that of 11d. m£16 14 .7

233. An inverse rule may be formed, sufficiently correct for every
purpose, in the following way: If the year consisted of 360 days, or
g- of 240, the subtraction of one-third from any sum per year would give
the proportion which belongs to 240 days; and every pound so obtained
would be one penny per day. But as the year is not 360, but 365 days,
if we divide each day’s share into 365 parts, and take 5 away, the whole
of the subtracted sum, or 360r5 such parts, will give 360 parts for each
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of the 5 days which we neglected at first. But 360 such parts are left
behind for each of the 360 first days; therefore, this additional process
divides the whole annual amount equally among the 365 days. Now,
§ parts out of 365 is one out of 73, or the 73d part of the first result
must be subtracted from it to produce the true result. Unless the daily
sum be very large, the 72d part will do equally well, which, as 72
farthings are 18 pence, is equivalent to subtracting at the rate of one
farthing for 18d., or —d for 3: ., or 10d. for £3. The rule, then, is as
follows : To find how much per day will produce a given sum per year,
turn the shillings, &c. in the given sum into decimals of a pound (221);
subtract one-third; consider the result as pence; and diminish it by one
farthing for every eighteen pence, or ten pence for every £3. For
example, how much per day will give £224.14. oi per year? This
is 224'703, and its third is 74°9o1, which subtracted from 224°703, gives
149°802, which, if they be pence, amounts to 12s. §'802d., in which
1s. 6d. is contained 8 times. Subtract 8 farthings, or 2d., and we have
124, 3'802d., which differs from the truth only abont — of a farthing. In
the same way, £100 per year is §s. 5;d per day.
234. The following connexion between the measures of length and
the measures of surface is the foundation of the application of arithmetic
. to geometry.
Suppose an oblong figure, a, B, ¢, D, a8 here drawn (which is called a
rectangle in geometry), with the side 4 B 6 inches, and the side o ¢ 4

A a b o d e B

S = - ®
y
h F]

c ! m =m» o p D

inches. Divide o B and ¢ n (which are equal) each into 6 inches by
the points a, 3, ¢, /, m, &c.; and A ¢ and B p (which are also equal)
into 4 inches by the points f, g, 4, z,y, and 2. Join a and /, 5 and m,
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&c., and fand 2, &c. Then, the figure o B ¢ p is divided into a number
of squares; for a square is a rectangle whose sides are equal, and
therefore A a f & is square, since A a i8 of the same length as 4 f, both
being 1 inch. There are also four rows of these squares, with six
squares in each row; that is, there are 6x4, or 24 squares altogether.
Each of these squares has its sides 1 inch in length, and is what was
called in (215) a sguare inch. By the same reasoning, if one side had
contained 6 yards, and the other 4 yards, the surface would have
contained 6x4 square yards; and so on.

235. Let us now suppose that the sides of 4 B c D, instead of being
a whole number of inches, contain some inches and a
fmct.lon. For example, let o B be 3— inches, or (114)
; of an inch, and let 4 ¢ contain zi inches, or%
¢ L of an inch. Draw A E twice as long as AB, and A P
four times as long as A c, and complete the rectangle
AEFG. The rest of the figure needs no description.
Then, since 4  is twice A B, or twice % inches, it is 7
inches. And since a F is four times a c, or four times 2
¥ e inches, it is g inches, Therefore, the whole rectangle
AEF G contains, by (234), 7x9 or 63 square inches. But the rectangle
A EF G contains 8 rectangles, all of the same figure as A Bcp; and
therefore A B c D is one-eighth part of L EF o, and contains — & g fquare
inches. But -61 is made by multiplying < 2 and Z together ¢ 18) From
this and the lzut article it appears, that, :hether the sides of a rectangle
be a whole or a fractional number of inches, the number of square inches
in its surface is the product of the numbers of inches in its sides. The
square itself is a rectangle whose sides are all equal, and therefore the
number of square inches which a square contains is found by multiplying
the number of inches in its side by itself, For example, a square whose
side is 13 inches in length contains 13x13 or 169 square inches,

A B E

236. EXERCISES,
What is the content, in square feet and inches, of a room whose
sides are 42 ft. 5 inch. and 31 ft. g inch.? and supposing the piece from
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which its carpet is taken to be three quarters of a yard in breadth, what
length of it must be cut off >—Answer, The content is 1346 square feet
105 square inches, and the length of carpet required is 598 feet 6
inches.

The sides of a rectangular field are 253 yards and a quarter of a
mile ; how many acres does it contain 2—Answer, 23.

What is the difference between 18 square miles, and a square of 18
miles long, or 18 miles square ?—Answer, 306 square miles,

237. It is by this rule that the measure in (215) is deduced from
that in (214); for it is evident that twelve inches being a foot, the
square foot is 12x12 or 144 square inches, and so on. In a similar way
it may be shewn that the content in cubic inches of a cube, or paral-
lelepiped,* may be found by multiplying together the number of inches
in those three sides which meet in a point. Thus, a cube of 6 inches
contains 6x6x6, or 216 cubic inches ; a chest whose sides are 6, 8, and §
feet, contains 6x8xs, or 240 cubic feet. By this rule the measure in
(216) was deduced from that in (214).

SECTION II.

RULE OF THREE.

238, Suppose it required to find what 156 yards will cost, if 22
yards cost 17s. 4d. This quantity, reduced to pence, is 208d. ; and if
22 yards cost 208d., each yard costs —d But 156 yards cost 156
times the price of one yard, and therefore cost —sx 156 pence, or
208x156 pence (117). Again, if 25— French fm.ncs be 20 shillings
ste:lmg, how many francs are in £zo 15? Since 25; francs are 20
shillings, twice the number of francs must be twice the number of
shillings; that is, 51 francs are 4o shillings, and one shilling is the

.

* A parallelepiped, or more properly, a rectangular parallelepiped, is a figure of
the form of a brick ; its sides, however, may be of any length; thus, the figure of a
plank has the same name. A cube is a parallelepiped with equal sides, such as
is a die.
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fortieth part of 5y francs, or 31 franes. But £20 153, contain 41§
shillings (219); and since 1 shtllmg is = francs, 415 shillings is L
x 415 franes, or (117) =—— 51"415 francs. # *

239. Such questions as the last two belong to the most extensive
rule in Commercial Arithmetic, which is called the RuLE or THRBE,
because in it three quantities are given, and a fourth is required to be
found. From both the preceding examples the following rule may be
deduced, which the same reasoning will shew to apply to all similar
cases.

It must be observed, that in these questions there are two quantities
which are of the same sort, and a third of another sort, of which last
the answer must be. Thus, in the first question there are 22 and 156
yards and 208 pence, and the thing required to be found is a number of
pence. In the second question there are 20 and 415 shillings and 25:
francs, and what is to be found is a number of francs. Write the three
quantities in a line, putting that one last which is the only one of
its kind, and that one first which is connected with the last in the
question.* Put the third quantity in the middle. In the first question
the quantities will be placed thus:

22 yds. 156 yds, 173. 4d.
In the second question they will be placed thus:

208, £20 1358, 2 52 francs.

Reduce the first and second quantities, if necessary, to quantities of
the same denomination. Thus, in the second question, £20 15s. must
be reduced to shillings (219). The third quantity may also be reduced
to any other denomination, if convenient; or the first and third may

be multiplied by any quantity we please, as was done in the second

# This generally comes in the same member of the sentence. In some cases the
ingenuity of the student must be employed in d ing it. The ing of (238)
is the best guide. The following may be very often applied. Ifitbe evident that
the answer must be less than the .given quantity of its kind, multiply that given

quantity by the less of the other two; if greater, by the greater. Thus, in the first
qnestion, 156 yards must cost more than 22; multiply, therefore, by 156.
(o]
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question 3 and, on looking at the answer in (238), and at (108), it wili
be seen that no change is made by that multiplication. Multiply the
second and third quantities together, and divide by the first. The
result is a quantity of the same sort as the third in the line, and is the
answer required. Thus, to the first question the answer is (238)

8x156 . 44.
-’%— pence, or, which is the same thing, .17.«4:+156..

240. The whole process in the first question is as follows :*

yds. yds. s d.
22 156 i 17.4 .
12

208 pence.
156
1248

1040

208

22)32448( 1474.3& and 3, or ;7-1- of a farthing,
23 or (219) £6.2. 13 L,
— 411
104
88

164
154

108
:

20
(228) 4

80
66

4
The question might have been solved without reducing 17s. 4d. to
pence, thus:

* It is usual to place points, in the manner here shewn, between the quantities,
Those who have read Section VIIIL. will see that the Rule of Three is no more than
the process for finding the fourth term of a proportion from the other three,
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yds, yds. s do
22 : 156 i 17.4
156 (227)
22)£135.4.0(£6.2. 163 L (228)
. 411
32
3x20+4 = 64
44
20X12 == 240
220
20x4 = 80
66
"

The student must learn by practice which is the most convenient
method for any particular case, as no rule can be given.

241. It may happen that the three given quantities me all of one
denomination ; nevertheless it will be found that two of them are of
one, and the third of another sort. For example: What must an
income of £400 pay towards an income-tax of 4s. 6d. in the pound ?
Here the three given quantities are, £400, 4s. 6d., and £1, which are
all of the same species, viz. money. Nevertheless, the first and third
are income; the second is a tax, and the answer is also a tax; and
therefore, by (152), the quantities must be placed thus:

£1 1 £g00 I 4s.6d,

242, The following exercises either depend directly upon this rule,

or can be shewn to do so by a little consideration. There are many

questions of the sort, which will require some exercise of ingenuity
before the method of applying the rule can be found.

RXERCISES,
If 15 cwt. 2 qrs, cost £198 . 15 . 4, what does 1 qr. 22 1bs. cost?
Answer, £5 . 14 . SQ:;Z;.
If & horse go 14 m, 3 fur. 27 yds. in 3® 26® 129, how long will he be
in going 23 miles ? Answer, 5 29® 34% :436:7
Two persons, A and B, are bankrupts, and owe exactly the same
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‘sum ; A can pay 15s. 4.2«1. in the pound, and B only 7s. GEJ. At the

same time A has in his possession £1304 .17 more than B; what do

the debts of each amount to ? Answer, £3340.8. 3% %.

1 . . .
For every 12—~ acres which one country contains, a second contains
7 &

565. The second country 17,300 8q miles. How much
does the first contain? Again, for e.very 3 people in the first, there
are 5in the second; and there are in the first 27 people on every 20
acres. How many are there in each country P—Answer, The number
of square miles in the first is 38444—', and its population 3,321,600; and
the popu]a.ion of the second is §,536,000.

If 42-— yds. of cloth, 18 in. wide, cost £59 . 14.. 2, how much will
st yds cost, if the width be 1 yd.? Answer, £332. 5. z;-';

If £9 . 3. 6 last six weeks, how long will £100 last ?

Answer, 65— weeks.

How much sugar, worth 9—d a pound, must be given fog 'Z cwt. of
tea, worth 10d. an ounce ? Answer, 32 cwt. 3 qrs. 7 lb, 22 33,

243. Suppose the following question asked: How long will it take
15 men to do that which 45 men can finish in 10 days? It is evident
that one man would take 45x10, or 450 days, to do the same thing,
and that 15 men would do it in one-fifteenth part of the time which it
450

employs one man, that is, in T or 30 days. By this and similar

reasoning the following questions can be solved.

EXERCISES.
It 15 oxen ent an acre of grass in 12 days, how long wili it take 26
oxen to eat 14 acres ? Answer, 96-;-3 days,
If 22 masons build 8 wall 5 feet high in 6 days, how long will it
take 43 masons to build 1o feet ? Ansicer, 6— days,
244. The questions in the preceding article form part of 13 more
general class of questions, whose solution is called the DousLe RuLe
or Traree, but which might, with more correctness, be called the Rule
of Five, since five quantities are given, and a sixth is to be found.
The following is an example: If § men can make 30 yards of cloth in
3 days, how long will it take 4 men to make 68 yards? The first
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thing to be done is to find out, from the first part of the question, the
time it will take one man to make one yard. Now, since one man, in
3 days, will do the fifth part of what 5 men can do, he wm in 3 days
make —2, or 6 yards. He will, therefore, make one yard in 3 or in 3—5
ofa day. From this we are to find how long it will take 4 men to make
68 yards. Since one man makes a yard in == 3%5 ofa day, he will make 63
yards in 3568 days, or (116) in 3x5 x68
in one-fox?rth of the time, that is (123), jn 3302

Again, suppose the question to be: If 5 men can make 30 yards in

3 days, how much can 6 men do in 12 days? Here we must first find

days and 4 men will do this

the quantity one man can do in one day, which appears, on reasoning
similar to that in the lnst example, to be =— yn.rds. Hence, 6 men,
6x30 3x5 12x6x30
in one day, will make 53 yards, and in 12 days will make 7—
or 144 yards, 573

From these examples the following rule may be drawn. Write the

" given quantities in two lines, keeping quantities of the same sort under

one another, and those which are connected with each other, in the

same line. In the two examples above given, the quantities must be
written thus:

5 men. 30 yds. 3 days.
4 men. 68 yds.

SECOND EXAMPLE,
5 men. 30 yds. 3 days.

e
~_

6 men, 12 days.
Draw a curve through the middle of each line, and the extremities
of the other. There will be three quantities on one curve and two on
the other. Divide the product of the three by the product of the two,

and the quotient is the answer to the question,
02
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If necessary, the quantities in each line must be reduced to more
simple denominations (219), as was done in the common Rule of
Three (238).

EXERCISES.

If 6 horses can, in 2 days, plough 17 acres, how many acres will
93 horses plough in 4.2 days ? Answer, 59282.

If 20 men, in 3l days, can dig 7 rectangular fields, the sides of each
of which are 40 and 50 yards, how long will 37 men be in digging §3

fields, the sides of each of which are go and 12 52 yards ?
2451

Answer, 7 57.07:.0 days.
If the carriage of 6ocwt. through 20 miles cost £14 10s., what weight
ought to be carried 30 miles for £5.8.97? Answer, 15cwt,

If £100 gain £5 in a year, how much will £850 gain in 3 years and
8 months ? Answer, £155. 16 . 8.

SECTION III.

INTEREST, ETC.

245, In the questions contained in this Section, almost the only
process which will be employed is the taking a fractional part of a sum
of money, which has been done before in several cases. Suppose it
required to take 7 parts out of 40 from £16, that is, to divide £16 into
40 equal parts,and take 7 of them. Each of these parts is £1—6, and 7 of
them make Ex7, or 167 pounds (116). The process nmy40 be written
as below : # 4

£16

7
40)112(£2 . 163,
8o
92
20
640

oiEE
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Suppose it required to take t; parts out of a hundred from
£56 .13, 7;".

v
56 . 13 - 73
13

I 14t
6.17. . -1
100)736 . 17 . 1{£7 . 7 . R
700
36a20+17 = 737
700

37XI2+1 = 445

400
45%x4+2 = 182
100

82

Let it be required to take zi parts out of a hundred from £3 1208
The result, by the same rule is £3—:g'"' r (123) £3 ::'“’
that taking z- out of a hundred is the same as taking 5 parts out of 200,

EXERCISES,

Take 7-!~ parts out of 53 from £1 108, Answer, 4s. l;s—gd.
Take 5 parts out of 100 from £107 138. 4%:1
Answer, £5.7 .8 andf;ofafarthing.
£56 3s. 2d. is equally divided among 32 persons. How much does
the share of 23 of them exceed that of the rest ?
Answer, £24 . 11 . 455.
246, It is usual, in mercantile business, to mention the fraction
which one sum is of another, by saying how many parts out of a hun-
dred must be taken from the second in order to make the first. Thus,
instead of saying that £16 12s. is the half of £33 4s., it is said that the
first is 50 per cent of the second. Thus, £5is z} per cent of £200
because, if £200 be divided into 100 parts, z-:-' of those parts are £5.
Also, £13 is 150 per cent of £8.13. 4, since the first is the second
and half the second. Suppose it asked, How much per cent is 23
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parts out of 56 of any sum? The question amounts to this: If he who
has £56 gets £100 for them, how much will he who has 23 receive ?

This, by (238), is "3’;:’0, or ::o’ or 4.1—4 Hence, 23 out of 56 is
4.:—4 per cent, L6xx 2

Snmlarly 16 psrta out of 18 is 8 5 OF 88; per cent, and 2 parts
out of 5 i i 2 ,or 40 per cent.

From which the method of reducing other fractions to the rate per
cent is evident.

Suppose it asked, How much per cent is £6 . 12 .2 of £12.3?
Since the first contains 1586d., and the second 2916d., the first is 1586
out of1.916 parts of the second that is, by the last rule, it is !: f:o’
or 54.:; 5 OF £54.7. 9— per cent, very nearly. The more expeditious
way of doing this is to reduce the shillings, &c. to decimals of a pound.
Three decimal places will give the rate per cent to the nearest shil-
ling, which is near enough for all practical purposes. For instance, in
the last example, which is to find how much £6608 is of £12°13,
6'608x100 i8 660'8, which divided by 12°15 gives £54°38, or £54. 7.
Greater correctness may be had, if necessary, as in the Appendix,

EXERCISES,

How much per cent is 198% out of 233 parts P—Ans. £85. 1. 83,
Goods which are bought for £193 . 12, are sold for £216.13.4;
how much per cent has been gained by them ?
Answer, A little less than £11. 18, 6,
A sells goods for B to the amount of £230. 12, and is allowed a
commission® of 3 per cent ; what does that amount to ?
. Answer, £6 . 18 4.1 Z
A stockbroker buys £1700 stock, brokerage being at B% per te:ts ;
what does he receive >—Answer, £2 .2 . 6.

¢ Commission is what is allowed by one hant to another for buying or sell-
ing goods for him, and is usually a per-centage on the whole sum employed. Brokez-
age is an allowance similar to commission, under a different name, principally used
in the buying and selling of stock in the funds.

Insurance is a per-centage paid to those who engage to make good to the payers
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A ship whose value is £15423 is insured at 19— per cent what
does the insurance amount to ?—Answer, £3033 . 3 9——

247. In reckoning how much a bankrupt is able to pay lm creditors,
as also to how much a tax or rate amounts, it is usual to find how many
shillings in the pound is paid. Thus, if a person who owes £100 can
only pay £50, he is said to pay 10s. in the pound. The rule is easily
derived from the same reasoning as in (246). For example, £50 out
of £82 is £§§ out of £1, or 3
pound.

248, INTeREST is money paid for the use of other money, and is

i shillings, or 12s. 225 in the
441

always a per-centage upon the sum lent. It may be paid either yearly,
half-yearly, or quarterly ; but when it is said that £100 is lent at 4
per cent, it must be understood to mean 4 per cent per annum ; that is,
that 4 pounds are paid every year for the use of £100

The sum lent is called the principal, and the interest upon it is of
two kinds. Ifthe borrower pay the interest as soon as, from the agree-
mernit, it becomes due, it is evident that he has to pay the same sum
every year; and that the whole of the interest which he has to pay in
any number of years is one year’s interest multiplied by the number of
years. But if he do not pay the interest at once, but keeps it in his
hands until he returns the principal, he will then have more of his
creditor’s money in his hands every year, and (if it were so agreed)
will have to pay interest upon each year's interest for the time during
which he keeps it after it becomes due. In the first case, the interest
is cailed simple, and in the second compound. The interest and principal
together are called the amount.

249, What is the simple interest of £1049 . 16 . 6 for 6 years and
one-third, at 45 per cent? This interest must be 6% times the interest

gny loss they may sustain by accidents from fire, or storms, according to the agree-
ment, up to a cerrain amount which is named, and is a per- age upon this

Tare, tret, and cloff, are allowances made in selling goods by wholesale, for the weight
of the boxes or barrels which contain them, waste, &c.; and are usually either the
price of a certain number of pounds of the goods for each box or barrel, or a certain
allowance on each cwt.
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of the same sum for one year, which (245) is found by multiplying the
sum by 4.5, and dividing by 100. The process is as follows :

(230) (a) |£1049.16. 6

ax4 | 4199. 6.0

1
ax— 524.18.3

(82) 10004724 « 4. 3(£47 . 4. 10 =
20
(228) 434*
12
10,12

1
) £47. 4. 10— Int. for one yr.

66

bx6 283. 9. O—lo—o'
1 37
5,(; 15,14 11 2

3 L
£299. 4. o;lnt.forsg)rs.

EXERCISES.

What is the interest of £105.6.2 for 19 years and 7 weeks at 3
per cent ? Answer, £60 . 9, very nearly.

What is the difference between the interest of £50 . 19 for 7 years
at 3 per cent, and for 8 years at zi per cent ? Answer, 10s. zid.

What is the interest of £157 . 17 . 6 for one year at § per cent ?

Answer, £7 .17 . :oi.

Shew that the interest of any sum for 9 years at 4 per cent is the
same as that of the same sum for 4 years at 9 per cent ?

250. In order to find the interest of any sum at compound interest,
it is necessary to find the amount of the principal and interest at the
end of every year; because in this case (248) it is the amount of both

® Here the 4s. from the dividend is taken in.
+ Here the 34, from the dividend is taken in.
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Trincipal and interest at the end of the first year, upon which interest
accumulates during the second year. Suppose, for example, it is re-
quired to find the interest, for 3 years, on £100, at § per cent, compound
interest. The following is the process :
£100 First principal.
5 First year's interest.
l_o-s Amount at the end of the first year.
(249) 5.« & Interest for the second year on £105.

110, 5  Amount at the end of two years.
§. 10, 3 Interest due for the third year.
_1}_5_15—; Amount at the end of three years.

100. o. o First principal.

15 . 15 . 3 Interest gained in the three years.

When the number of years is great, and the sum considerable, this
process is very troublesome; on which account tables* are constructed
to shew the anmount of one pound, for different numbers of years, at
different rates of interest. To make use of these tables in the present
example, look into the column headed *§ per cent;" and opposite to
the number 3, in the column headed * Number of years,” is found
¥'1576235 ; meaning that £1 will become £1°157625 in 3 years. Now,
€100 must become 100 times as great; and 1°157625x100 is 1157623
(141) ; but (221) £:7625 is 15s. 3d.; therefore the whole amount of
£100 is £115 . 15, 3, as before.

251. Suppose that a sum of money has lain at simple interest 4'
years, at § per cent, and has, with its interest, amounted to £350; it is
required to find what the sum was at first. Whatever the sum was, if
we suppose it divided into 100 parts, 5 of those parts were added every
year for 4 years, as interest ; that is, 20 of those parts have been added
to the first sum to make £350. If, therefore, £350 be divided into
120 parts, 100 of those parts are the principal which we want to find,

® Sufficlent tables for all common purposes are contained in the article on Interest
in the Penny Cyclopsedia; and amaple ones in the Treatise on Annuities and Re-
versions, in the Library of Useful Knowledge.
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and zo parts are interest upon it; that is, the principal is £359x1%0
or £291.13. 4. '3

252. Suppose that A was engaged to pay B £350 at the end of four
years from this time, and that it is agreed between them that the debt
shall be paid immediately ; suppose, also, that money can be employed
at 5§ per cent, simple interest ; it is plain that A ought not to .pa.y the
whole sum, £350, because, if he did, he would lose 4 years’ interest of
the money, and B would gain it. It is fair, therefore, that he should
only pay to B as much as will, with inferest, amount in four years to
£350, that is (251), £291. 13 . 4. Therefore, £58 .6 . 8 must be struck
oft the debt in consideration of its being paid before the time, This is
called Discount ;* and £291 . 13 . 4 is called the present value of £350
due four years hence, discount being at 5 per cent. The rule for tinding
the present value of a sum of money (251) is : Multiply the sum by
100, and divide the product by 100 increased by the product of the
rate per cent and number of years. If the time that the debt has yet
to run be expressed in years and months, or months only, the months
must be reduced to the equivalent fraction of a year.

BXERCISES,
‘What is the discount on a bill of £138. 14 . 4, due 2 vears hence,
discount being at 42 per cent ? Answer, £11.9 . 1,
What is the present value of #£1031 . 17, due 6 months hence,
interest being at 3 per cent ? Answer, £1016 . 12.
253. If we multiply by a+5, er by a—5, when we should multiply
by a, the result is wrong by the fraction ;_%. or ai)' of itself: being
too great in the first case, and too small in the second. Again, if we
divide by a+b, where we should have divided by a, the result is too
small by the fmctxon — of itself; while, if we dxvnde by a-b instead
of a, the result is too great by the same fractlon of itself. Thus, if we

divide by 20 instead of 17, the result is «;; of itself too small; and if

< This rule is obsolete in business. When a bill, for instance, of #£100 having
8 vear to run, is discounted (as people now say) at § per cent, this means that § per
cent of £100, or £5, is struck off.
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we divide by 360 instead ‘of 365, the result is too great by 3%5, ox-7—x§
of itself.

If, then, we wish to find the interest of a sum of money for a portion
of a year, and have not the assistance of tables, it will be found con-
venient to suppose the year to contain only 360 days, in which case its
73d part (the 72d part will generally do) must be subtracted trom the
result, to make the alteration of 360 into 365. The number 360 has so
large a number of divisors, that the rule of Practice (230) may always
be readily applied. Thus, it is required to find the fortion which
belongs to 274 days, the yearly interest being £18 . 9 . 10, or 18'491.

274 18491
180 is ;:- of 360

- 9'246
9%

go is ;l' of 180 4623
- 3

4 is -9—0 of 360 20§

9)14°074

8)1°564

‘196

13'878 = £13.17. 7 Answer.

But if the nearest farthing be wanted, the best way is to take
2-tenths of the number of days as a multiplier, and 73 as a divisor;
since m-+365 is 2m-+730, or :'T)m.;.n. Thus, in the preceding instance,
we multiply by 548 and divide by 73; and 54'8 x18'491 = 10133068,
which divided by 73 gives 13°881, very nearly agreeing with the former,
and giving £13. 17 . 73, which is certainly within a farthing of the
truth.

254, Suppose it required to divide £100 among three persons in
such a way that their shares may be as 6, 5, and 9; that is, so that
for every £6 which the first has, the second may have £5, and the
third £9. It is plain that if we divide the £100 into 6+5+9, or 20
parts, the fitst must have 6 of those parts, the second s, and the third 9.

Therefore (245) their shares are respectively, £ xoox , roox5 and

100x9

£
20

, or £3c, £25, and £45.
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EXERCISES.

Divide £394 . 12 among four persons, so that their shares may he
as 1, 6, 7, and 18.—Answer, £12 . 6. 75; £73.19.9; £86.6. 4—:;
£221.19.3.

Divide £20 among 6 persons, so that the share of each may be as
much as those of all who come before put together.—Answer, The first
two have 12s. 6d. ; the third £1. 5; the fourth £2 . 10; the fith £5;
and the sixth £10.

255. When two or more persons employ their money together, and
gain or lose a certain sum, it is evidently not fair that the gain or loss
should be equally divided among them all, unless each contributed the
same sum. Suppose, for example, A contributes twice as much as B,
and they gain £15, A ought to gain twice as much as B; that is, if the
whole gain be divided into 3 parts, A ought.to have two of them and
B one,or A should gain £10 and B £5. Suppose that A, B, and C
engage in an adventure, in which A embarks £250, B £130, and C
£45. They gain £1000. How much of it ought each to have? Each
one ought to gain as much for £1 as the others. Now, since there are
250+130+45, or 425 pounds embarked, which gain £1c0o, for each

. . 1000 . 1000x25§0
ound there is a gain of £ . Therefore A should gam —_—
P & 425 425

pounds, and c 120045 pounds. On

pounds, B should gain Iooox1s0

these principles, by the process in (245), the following questions may be
answered.

A -ship is to be insured, in which A has ventured £1928, and B
£4963. The expense of insurance is £474 . 10.2. How much ought
each to pay of it P Answer, A must pay £132 . 15 . 2-;:.

loss of £149 is to be made good by three persons, A, B, and C.
Had there been a gain, A would have gained 4 times as much as B,
and C as much as A and B together. How much of the loss must each
bear ? Answer, A pays £59 . 12, B £14 . 18,and C £74 . 10,

256. It may happen that several individuals employ several sums of
money together for different times. In such a case, unless there be a

special agreement to the contrary, it is right that the more time a sum
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is employed, the more profit should be made unon it. If, for exampie,
A and B employ the same sum for the same purpose, but A’s money is
employed twice as long as B’s, A ought to gain twice as much as B,
The principle is, that one pound employed for one month, or one year,
ought to givé the same return to each. Suppose, for example, that A
employs £3 for 6 months, B £4 for 7 months, and C £12 for 2 months,
and the gain is £100; how much ought each to have of it? Now,
since A employs £3 for six months, he must gain 6 times as much as if
he employed it one month only; that is, as much as if he employed
£6x3, or £18, for one month; also, B gains as much as if he had
employed £4x7 for one month; and C as if he had employed £12x2
for one month. If, then, we divide £100 into 6x3+4x7412x2, or 70
parts, A must have 6x3, or 18, B must have 4x7, or 28, and C

12x2, or 24 of those parts. The shares of the three are, therefore,
6x3x100 4X7X1CO 12X2X100

6x344x7412x2° . 6x3b4x7412x2° an 6x344x7412x2°

EXERCISES,

A, B, and C embark in an undertaking; A placing £3 . 6 for
2 years, B £100 for 1 year, and C £12 for 15 years. They gain,
£4276 . 7 How much must each receive of the gain ?

Answer, A £226 ,10.4; B £3432.1.3; C £617.15. 5.

A, B, and C rent a house together for z years, at £150 per annum.

A remains in it the whole time, B 16 months, and C 45 months, during
the occupancy of B. How much must each pay of the rent ?*

Answer, A should pay £190.12.6; B £90.12.6; C £18. 15,

257. These are the principal rules employed in the application of

arithmetic to commerce. There are others, which, as no one who under

stands the principles here laid down can fail to see, are virtually con-

tained in those which have been given. Such is what is commonly

called the Rule of Exchange, for such questions as the following: If

* This question does not at first appear to fuli under the rule. A little thought
will serve to shew that what probably will be the first idea of the proper method of
solution is erroneous.
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20 shillings be worth 2 52 francs, in France, what is £160 worth ? This
may evidently be done by the Rule of Three. The rules here given
are those which-are most useful in common life; and the student who
understands them need not fear that any ordinary question will be above
his reach. But no student must imagine that from this or any other
book of arithmetic he will learn precisely the modes of operation which
are best adapted to the wants of the particular kind of business in which
his future life may be passed. There is no such thing as a set of rules
which are at once most convenient for a butcher and a banker’s clerk,
a grocer and an actuary, a farmer and a bill-broker; but a person with
a good knowledge of the principles laid down in this work, will be able
to examine and meet his own future wants, or, at worst, to catch with
readiness the manner in which those who have gone before him have

done so for themselves,
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I. ON THE MODE OF COMPUTING.

THE rules in the preceding work are given in the usual form, and the
examples are worked in the usual manner. But if the student really
wish to become a ready computer, he should strictly follow the methods
laid down in this Appendix ; and he may depend upon it that he will
thereby save himself trouble in the end, as well as acquire habits of
quick and accurate calculation.

L In numeration learn to connect each primary decimal number,
10, 100, 1000, &c. not with the place in which the unit falls, but with
the number of ciphers following. Call ten a one-cipher number, a
‘hundred a two-cipher number, a million a siz-cipher number, and so
on. If sive figures be cut off from a number, those that are left are
hundred-thousands ; for 100,000 i8 a five-cipher number. Learn to
connect tens, hundreds, thousands, tens of thousands, hundreds of thou-
sands, millions, &e. with 1, 2, 3, 4, §, 6, &c. in the mind. What is a
sevenleen-cipher number ? For every 6 m seventeen say million, for the
remaining § say hundred-thousand : the answer is a hundred thousand
millions of millions. If twelve places be cut off from the right of a
number, what does the remaining number stand for P—Answer, As many
millions of millions as there are units in it when standing by itself.

II. After learning to count forwards and backwards with rapidity,
as in 1, 2, 3, 4 &ec. or 30, 29, 28, 27, &ec., learn to count forwards or
backwards by twos, threes, &c. up to nines at least, beginning from
any number. Thus, beginning from four and procgeding by sevens, we

P3
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have 4, 11, 18, 25, 32, &c., along which series.you must learn to go as
easily as along the series 1, 2, 3, 4, &c.; that is, as quick as you can
pronounce the words. The act of addition must be made in the mind
without assistance: you must not permit yourself to say, 4 and 7 are
11, 11 and 7 are 18, &c.; but only 4, 11,18, &c. And it would be
desirable, though not so necessary, that you should go back as readily
as forward ; by sevens for instance, from sixty, as in 60, §3, 46, 39, &c.

IIL. Seeing a number and another both of one figure, learn to catch
instantly the number you must add to the smaller to get the greater.
Seeing 3 and 8, learn by practice to think of 5 without the necessity
of saying 3 from 8 and there remains 5. And if the sepond number be
the less, as 8 and 3, learn also by practice how to pass up from 8 to
the next number which ends with 3 (or 13), and to catch the necessary
augmentation, five, without the necessity of formally undertaking in
words to subtract 8 from 13. Take rows of numbers, such as

4 2 6 o g 0 1 86 4

and practise this rule upon every figure and the next, not permitting
yourself in this simple case ever to name the higher one. Thus, say 4
and 8 (4 first, 2 second, 4 from the next number that ends with 2, or
12, leaves 8), 2 and 4, 6 and 4, 0 and §, 5§ and 5, q and 1, 1 and 7,
8 and 8, 6 and 8.

IV. Study the same exercise as the last one with two figures and one.
Thus, seeing 27 and 6, pass from 27 up to the next number that ends
with 6 (or 36), catch the 9 through which you have to pass, and allow
yourself to repeat as much as 27 and g are 36.” Thus, the row of figures
17729638109 will give the following practice: 17 and o are 17; 77 ana
sare 82; 72 and 7 are 79; 29 and 7 are 36; 96 and 7 are 103 ; 63 and
sare 68; 38 and 3 are 41; 81 and g are go; 10 and g are 19,

V. In a number of two figures, practise writing down the units at
the moment that you are keeping the attention fixed upon the tens.
In the preceding exercise, for instance, write down the results, repeating
the tens with emphasis at the instant of writing down the units,

VI. Learn the multiplication-table so well as to name the product
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the instant the factors are seen ; that is, until 8 and 7, or 7 and 8, suggest
56 at once, without the necessity of saying « 7 times 8 are §6.” Thus
looking along a row of numbers, as 39706548, learn to name the pro-
ducts of every successive pair of digits as fast as you can repeat them,
namely, 27, 63, 0, 0, 30, 20, 32.

VII. Having thoroughly mastered the last exercise, learn further, on
seeing three numbers, to augment the product of the first and second
by the third without any repetition of words. Practise until 3, 8, 4,
for instance, suggest 3 times 8 and 4, or 28, without the necessity of
saying “ 3 times 8 are 24, and 4 is 28.” Thus, 179236408 will suggest
the following practice, 16, 65, 21, 12, 22, 24, 8.

VIII. Now, carry the last still further, as follows : Seeing four figures,
as 2, 7. 6, 9, catch up the product of the first and second, increased
by the third, as in the last, without a helping word ; name the result,
and add the next figure, name the whole result, laying emphasis upon
the tens. Thus, 2, 7, 6, 9, must immediately suggest * 20 and ¢ are
29, The row of figures 773698974 will give the instances 52 and
6 are 58; 27 and g are 36; 27 and 8 are 35; 62 and 9 are 71; 81 and
7 are 88 ; 79 and 4 are g3.

IX. Having four numbers, as 2, 4, 7, 9, vary the last exercise as fol-
lows: Catch the product of the first and second, increased by the third ;
but instead of adding the fourth, go up to the next number that ends
with the fourth, as in exercise IV, Thus, 2, 4, 7, 9, are to suggest “ 1§
and 4 are 19.” And the row of figures 1723968929 will afford the in-
stances 9 and 4 are 13; 17 and 2 are 19; 15 and 1 are 16; 33 and §
are 38; 62 and 7 are 69 ; 57 and § are 62 ; 74 and § are 79,

X. Learn to find rapidly the number of times a digit is contained
in given units and tens, with the remainder. Thus, seeing 8 and §3,
arrive at and repeat “ 6 and 5 over.” Common short division is the
best practice. Tlu}s, in dividing 236410792 by 7,

7)236410792
33772970, remainder 2.
All that is repeated should be 3 and 2; 3and 5; 7 and §5; 7and 2;
2and 6; gand 4; 7and 03 oand 2. .
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In performing the several rules, proceed as follows :

AppitioN. Not one word more than repeating the numbers written
in the following process: the accented figure is the one to be wrntten
down ; the doubly accented figure is carried (and don't say “ carry 3,”
but do it).

47963 6, 15, 17, 23, 31, 3”4’ 3 11, 12, 21, 22, 31, 3"7"; 9,
;592 17, 24 37, 32, 471’3 10, 14, 20, 21, 2"8'; 7, 9, 7.
2631 ;

54;91 In verifying additions, instead of the usual way of

819 omitting one line, adding without it, and then adding
6636 the line omitted, verify each column by adding it both
138174 upwards and downwards. ’

SusrractioN. The following process is enough. The carriages, being
always of one, need not be mentioned.

From 79436258190 8 and 2, 4 and ¢, 7 and 4, 3 and §, 6 and
Take 58645962738 ¢, 10 and 2/, 6 and ¢, 4 and ¢, 7 and 7',
20790295452 g and o), §and 2. It is useless to stop and
say, 8 and 2 make 10; for as soon as the 2 is obtained, there is no
occasion to remember what it came from.
MurrieLication. The following, put into words, is all that need be
repeated in the multiplying part; the addition is then done as usual
The unaccented figures are carried.

670383

9876
4022298 1%, 49/, 22/, 2/, 42/, 4’0,
4692681 2r, 5%, 26, 2, 49’, 4'6',
5363064 24’y 66', 30', %', 56’ ¢'3%
6033447 27, 74, 34, 3 63, 6%

6620702508

Verify each line of the multiplication and the final result by casting
out the nines. (Appendiz II. p. 166.)

It would be almost a8 easy, for a person who has well practised the
8th exercise, to add each line to the one before in the process, thus:
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670383
9876
4022298 8; 21and g are 30’; §9and 2
50949108 are 61'; 27 and 2 are 29; 2
587255508 °  and 2 are 4”; 49 and o are 49';
6620702 508 46 and 4 are §'0’,

On the right is all the process of forming the second line, which
completes the multiplication by 76, as the third line completes that by
876, and the fourth line that by 9876. )

DivisioN. Make each multiplication and the following subtraction
in one step, by help of the process in the 9th exercise, as foliowss

27693)441972809662(15959730
165042
265778
165410
269459
202226
83756
6772
The number of words by which 26577 is obtained from 165402 (the
muitiplier being §) is as follows: 15and 7’ are 2”2; 47 and 7’ are §"43
35 and §’ are 470; 39 and 6’ are 4”5; 14 and 2’ are 16, .
The processes for extracting the square root, and for the solution
of equations (Appendiz X1.), should be abbreviated in the same manner

as the division.*

® The teacher will find further remarks on this subject in the Companior to the
Almanac for 1844, and iu the Supplement to the Penny Cyclopedia, article Compulation.
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APPENDIX IIL

ON VERIFICATION BY CASTING OUT NINES AND ELEVENS,

THE process of cas&hg out the nines, as it is called, is one which the
young computer should learn and practise, as a check upon his com-
putations. It is not a complete check, since if one figure were made
too small, and another as much too great, it would not detect this double
error; but as it is very unlikely that such a double error should take
place, the check furnishes a strong presumption of accuracy.

The proposition upon which this method depends is the following:
If a, b, 0, d be four numbers, such that

a = be+d,
and if m be any other number whatsoever, and if a, 3, ¢, d, severally
divided by m, give the remainders p, ¢, r, s, then

p and gr+s
give the same remainder when divided by m (and perhaps are themselves
equal), )

For instance, 334 = I7XIQ+I1;
divide these four numbers by 7, the remainders are 3, 3, 5,and 4. And
5 and §x3+4,or § and 19, both leave the remainder 5 when divided by 7.

Any number, therefore, being used as a divisor, may be made a check
upon the correctness of an operation. To provide a check which may
be most fit for use, we must take a divisor the remainder to which is most
easily found, The most convenient divisors are 3, 9, and 11, of which
9 is far the most useful.

As to the numbers 3 and 9, the remainder is always the same as that of
tne sum of the digits. For instance, required the remainder of 246120377
divided by 9. The sum of the digits is 2+4+6+1+2+0+3+7+7, or 32,
which gives the remainder 5. But the easiest way of proceeding is by
throwing out nines as fast as they arise in the sum. Thus, repeat 2,
6 (2+4), 12 (6+6), say 3 (throwing out 9), 4, 6, 9 (throw this away), 7,
14, (or throwing out the 9) 5. This is the remainder required, as would
appear by dividing 246120377 by 9. A proof may be given thus: It
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is obvious that each of the numbers, 1, 10, 100, 1000, &¢. divided by 9,
leaves a remainder 1, since they are 1, 9+1, 99+1, &¢. Consequently,
2, 20, 200, &c. leave the remainder 2; 3, 30, 300, the remainder 3;
and'so on. If, then, we divide, say 1764 by 9 in parcels, 1000 will be
one more than an exact number of nines, 700 will be seven more, and
60 will be six more, So, tl;en, from 1, 7, 6, 4, put together, and the
nines taken out, comes the only remainder which can come from 1764.

To apply this process to a multiplication: It is asserted, in page 52,
that 10004569x3163 = 31644451747,
In casting out the nines from the first, all that is necessary to repeat
is, one, five, ten, one, seven; in the second, three, four, ten, one, four;
in the third, three, four, ten, one, five, nine, four, nine, eight, tweive,
three, ten, one. The remainders then are, 7, 4, 1. Now, 7x4 is 28,
which, casting out the nines, gives 1, the same as the product.

Again, in page 43, it is asserted that

‘ 23796484 = 130c00%183+6484.

Cast out the nines from 13000, 183, 6484, and we have 4, 3, and 4.
Now, 4x3+4, with the nines tast out, gives 7; and 5o does 237964834

To avoid having to remember the result of one side of the equation,
or to write it down, in order to confront it with the result of'the other
side, proceed as follows: Having got the remainder of the more com-
plicated side, into which two or more numbers enter, subtract it from
9, and carry the remainder into the simple side, in which there is only
one number. Then the remainder of that side oughi to be o. Thus,
having got 7 from the left hand of the preceding, take 2, the rest of
9, forget 7, and carry in 2 as a beginning to the left-hand side, giving
2,4y 7y 144 5y 11,2, 6, 14, 5,9, O,

Practice will enable the student to cast out nines with great rapidity.

This process of casting out the nines does not detect any errors in
which the remainder to g happens to be correct. If a process be
tedious, and some additional check be desirable, the method of casting
out elevens may be followed after that of casting out the nines. Ob-
serve that 10+1, 100—1, 1000+1, ToOOO—1, &c. are all divisible by

eleven. From this the following rule for the remainder of division by
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11 may be deduced, and readily used by those who know the algebraical
process of subtraction. For those who have not got so far, it may be
doubted whether the rule can be made easier than the actual division
by 1.

Subtract the first figure from the second, the result from the third,
the result from the fourth, and so on. The final result, or the rest of
11 if the figure be negative, is the remainder required. Thus, to divide
1642915 by 11, and find the remainder, we have 1 from 6, 5; 5 from
4, —13 —1 from 2, 3; 3 from g, 6; 6 from 1, —5; —5 from 5, 10; and 10
is the remainder. But 164 gives —1, and 10 is the remainder; 164291
gives —s5, and 6 is the remainder. With very little practice these re-
mainders may be read as rapidly as the number itself. Thus, for
127619833424 need only be repeated, 1, 6, 0, 1, 8, 0, 3, 0, 4, —2, 6, and
6 is the remainder. )

When a question has been tried both by nines and elevens, there
can be no error unless it be one which makes the result wrong by a num-

ber of times 99 exactly.

APPENDIX IIL

ON SCALES OF NOTATION.

We are so well accustomed to 10, 100, &c., as standing for ten, ten
tens, &c., that we are not apt to remember that there is no reason why
10 might not stand for five, 100 for five fives, &c., or for twelve, twelve
twelves, &c. Because we invent different columns of numbers, and let
units in the different columns stand for collections of the units in the
preceding columns, we are not therefore bound to allow of no collections
except in tens,

If 10 stood for 2. that is, if every column had its unit double of the
unit in the column on the right, what we now represent by 1, 2, 3, 4,
5s 6, &c., would be represeated by 1, 10, 11, 100, 101, T10, ITI, 1000,
1001, 1010, 1011 1100, &c. This is the dinary scale. If we take the

ternary scule, in which 10 stands for 3, we have 1, 2, 10, 11, 12, 20,
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21, 22, 100, 101, 102, 110, &c. In the guinary scale, in which 10 1s
five, 234 stands for 2 twenty-fives, 3 fives, and 4, or sixty-nine. If we
take the duodenary scale, in which 10 is twelve, we must invent new
symbols for ten and eleven, because 10 and 11 now stand for twelve and
thirteen ; use the letters ¢# and e. Then 176 means 1 twelve-twelves,
7 twelves, and 6, or two hundred and thirty-four ; and 1f¢ means two
hundred and seventy-five.

The number which 10 stands for is called the radiz of the scale
qf notation. To change a number from one scale into another, divide
the number, written as in the first scale, by the number which is to
be the radix of the new scale; repeat this division again and again,
and the remainders are the digits required. For example, what, in
the quinary scale, is that number which, in the decimal scale, is
170367

£)17036
5)3407 Rem®. 1 Answer . . 1021121
5)681 ...... 2 Quinary. Decimal.
—_ Verification, 1000000 means 15625
5)136 ..o 1 12
— 20000 ...e0e 50
5)27 seeeee 8 1000 ...... 125
o 100 ...... 25
S)_s_f'"" 2 20 ... X0
51 .ee. O SN 1
O ceeeee 1 1021121 ... 17036

The reason of this rule is easy. Our process of division is nothing
but telling off 17036 into 3407 fives and 1 over; we then find 3407
fives to be 631 fives of fives and 2 fives over. Next we form 681 fives
of fives into 136 fives of fives of fives and 1 five of fives over; and so on.

It is a useful exercise to multiply and divide numbers represented
in other scales of notation than the common or decimal one. The
rules are in all respects the same for all systems, the number carried
being always the radiz of the system. Thus, in the quinary system we
carry fives instead of tens. I now give an example of multiplication
and division :
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Quinary.
432143
1234

324232
232034
134341
42143

114332223

Duodecimal.
449)7624008(16687
4t9
2814
2546
28te
2546
3650
3320

3308
2£33

495

APPENDIX,

means

Decimal.

2798

194

11193
25182

2798

542812
Decimal.

705)22610744(33071

1460
5074

1394
689

Another way of turning a number from one scale into another is as
follows: Multiply the first digit by the old radix in the new scale, and
add the next digit; multiply the result again by the old radix in the
new scale, and take in the next digit, and so on to the end, always
using the radix of the scale you want to leave, and the notation of the

scale you want to end in,

Thus, suppose it required to turn 16687 (duodecimal) into the
decimal scale, and 16432 (septenary) into the quaternary scale :

16687
Duodecimals into Dect:

16432

ies into Q naries.

Ix12+6 = 18

x12+6

‘222
x12+8

2672
x12~7

Answer . . . . 32071

1x746 = 31
x7+4

1133
x7+3

22130
X742

1021012
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Owing to our ‘division of a foot into 12 equal parts, the duodecimal
scale often becomes very convenient. Let the square foot be also divided
into 12 parts, each part is 12 square inches, and the 12th of the 1z2th
is one square inch. Suppose, now, that the two sides of an oblong
piece of ground are 176 feet 9 inches 7-1aths of an inch, and 65 feet
11 inches §-12ths of an inch. Using the duodecimal scale, and duo-
decimal fractions, these numbers are 128'97 and 55'¢5. Their product,
the number of square feet required, is thus found :

128'97 Answer, 68¢8°1446 (duod.) square feet, or
555 11660 square foet 16 square inches % and :T:
617¢¢ of a square inch.
116065 It would, however, be exact enough to allow
61768 2-hundredths of a foot for every quarter of an
617¢¢ inch, an additional hundredth for avery 3
68681446 inches,* and 1-hundredth more if there be a

12th or 2-12ths above the quarter of an inch. Thus, 9% inches
should be *76+°03+"01, or ‘80, and u-l% would be *95 ; and the preceding
might then be found decimally as 176°8x65°95 as 11659°96 square feet,

near enough for every practical purpose.

APPENDIX 1IV.
ON THE DEPINITION OF FRACTIONS.

THE definition of a fraction given in the text shews that Z, for
instance, is the ninth part of seven, which is shewn to be the same
thing as seven-ninths of a unit. But there are various modes of speech
under which a fraction may be signified, all of which are more or less
in use. .

1. In L we have the gth part of 7.

2. 7-9ths of a unit.

3. The fraction which 7 is of 9.

© And at discretion one hundredth more for a large fraction of three inches.
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4. The times and parts of a time (in this case part of a time only)
which 7 contains g.

5. The multiplier which turns nines into sevens.

6. The ratio of 7 to 9, or the proportion of 7 to 9.

7. The multiplier which alters a number in the ratio of g to 7.

8. The 4th proportional to 9, 1, and 7.

The first two views are in the text. The third is deduced thus:
If we divide 9 into 9 equal parts, each is 1, and 7 of the parts are 7;
consequently the fraction which 7 is of g is 7. The fourth view follows
immediately: For a time is only a word uZed to express one of the
repetitions which take place in multiplication, and we allow ourselves,
by an easy extension of language, to speak of a portion of & number
as being that number taken a part of @ time. The fifth view is nothing
more than a change of words: A number reduced to 7 of its amount
has every 9 converted into a 7, and any fraction of 9& 9 which may
remain over into the corresponding fraction of 7. This is completely
proved when we prove the equation Iofa= 7 times 2 The sixth,
seventh, and eighth views are illustrated in the chapter on proportion.

When the student comes to algebra, he will find that, in all the
applications of that science, fractions such as % most frequently require
that @ and & should be themselves supposed to be fractions. It is,
therefore, of importance that he should learn to accommodate his views
of a fraction to this more complicated case.

Suppose we take z—* We shall find that we have, in this case, a
better idea of the views from and after the third inclusivesthan of the
first and second, which are certainly the most simple ways of conceiving
Z. ‘We have no notion of the (4%) th part of zi, nor of zi (4%)&15 ofa
unit ; indeed, we coin a new species of adjective when we talk of the
(4§)th part of anything. But we can readily imagine that 22 is some
frats:tion of 4}»; that the first is some part of a time the second; that
there must be some multiplier which turns every 4.1 in a number into zi;
and so on. Let us now see whether we can invent a distinct mode of
applying the first and second views to such a compound fraction as
the above.
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We can easily imagine a fourth part of a length, and a fifth part,
meaning the lines of which 4 and 5 make up the length in question; and
there is also in existence a length of which four lengths and two-fifths
of a length make up the original length in question. For instance, we
might say that 6, 6, 2 is a division of 14 into P equal parts—2 equal
parts, 6, 6, and a third of a part, 2. So we might agree to say, that
the (zi) th, or (z%)rd, or (1.1 st (the reader may coin the adjective
a8 he pleases) part of 14 is 6. If we divide the dine A B into eleven
equal parts in c, D, E, &c., we must then say that A ¢ is the 1xth part,

]
| [} ] 1
A c D G

A D the 5—)th AE the(3-— h, Arthe()th Aq the( 5)th AN the
(x— h, AX the(li h, Axthe(x—)t , AL e(:—)th unhe 1— h,

and B itself the 1st part of AB. The reader may refuse the languago
if he likes (though it is not so much in defiance of etymology as talking
of mulizplymg by —), but when A B is called 1, he must either call
AF ——, or make one definition of one class of fractions and another of

® -

another ‘Whatever abbreviations they may choose, all persons will
agree that % is a direction to find such a fraction as, repeated b times,
will give 1, and then to take that fraction g times,

So, to get ?—’!,,the simplest way is to divide the whole unit into 46
parts; 1o of these parts, repeated 4% times, give the whole. The

]

2 4|§
‘ﬂllIHIIIlIIIIIHH|IIHHI]l|IIIIIIIlI|HIII|
2 2 4 43
4i 4% '43 43 4

(4. th is then —6’ and z— such parts is 4——2, oroC. The student should
try sevem.l examples of thxs mode of interpreting complex fractions,

But what are we to say when the denominator itself is less than
unity, as in # P Are we to have a (-Z-)th part of & unit? and what
isit? Had there been a 5 in the dengminator, we should have taken

Q2
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the part of which 5 will make a unit. As there is = 2 in the denominator,
we must take the part of which 2 will be a umt.s That part is larger
than a unit; it is zi units ; z;l- is t!hat of w}xich 2 is 1. The above
fraction then directs us to repeat 2z units 3- times. By extending our
word ‘multiplication’ to the taking of a part of a time, all multiplica-
tions are also divisions, and all divisions multiplications, and all the
terms connected with either are subject to be applied to the results of
the other. .

If 2= yards cost 35 shillings, how much does one yard cost? In
such a case as this, the student looks at a more simple question. If
§ yards cost 10 shillings, he sces that each yard costs s —, or 2 shillings,
and, concluding that the same process will give the true result when
the data are fractional, he forms :—*, reduces it by rules to % or li, and
concludes that 1 yard costs 18 pence. The answer happens to be
correct; but he is not to suppose that this rule of copying for fractions
whatever is seen to be true of integers is one which requires no demon-
stration. In the above question we want money which, repeated 2~
times, shall give 3— shillings. If we divide the shilung into 14 equa.l
parts, 6 of these parts repeated 2; times give the shlllmg To get 3—
times as much by the same repetmon, we must take 3— of these 6 parts
at each step, or 21 parts, Hence, —, or l— is the number of shillings
in the price, *

APPENDIX V.

ON CHARACTERISTICS,

WHEN the student comes to use logarithms, he will find what follows
very useful. In the mean while, I give it merely as furnishing a rapid
rule for ﬁhding the place of a decimal point in the quotient before the
division is commenced.

When a bar is written over a number, thus, ;, let the number be
cnlled negative, and let it be thus used: Let it be augmented by addi-
tions of its own specfes, and diminished by subtractions; thus, ; and
2 give 9, and let 7 with 2 subtracted give 5. But let the addition of a
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number without the bar diminish the negative number, and the stb-
traction increase it. Thus, 7 and 4 are _7,-, ; and 12 make ;, ; with 8
subtracted is Tg In fact, consider 1, 2, 3, &c., a8 if they were gains,
and 1, 2, 3, as if they were losses: let the addition ofa gain or the re-
moval of a loss be equivalent things, and also the removal of a gain and
the addition of a loss, Thus, when we say that 4 diminished by 11 gives
7, we say that a loss of 4 incurred at the moment when a loss of 11 is
removed, is, on the whole, equivalent to a gain of 7 ; and saying that 4
diminished by 2 is 6, we say that a loss of 4, accompanied by the removal
of a gain of 2, is altogether & loss of 6.

By the characteristic of a number understand as foll;)wa: ‘When
there are places before the decimal point, it is one less than the number
of such places. Thus, 3°214, 1'0083, 8 (which is 8-00...) 9°999, all have
o for their characteristics. But 17°32, 48, 93°116, all have 1; 126°03
and 126 have 2; 11937264666 has 7. But when there are no places
before the decimal point, look at the first decimal place which is sig-
nificant, and make the characteristic negative accordingly. Thus, ‘612,
‘121, *9004, in all of which significance begins in the first decimal place,
have the characteristic 1; but ‘018 and ‘099 have 2; 00017 has 43
*00o0occo1 has ;

" To find the charactenstic of a quotient, subtract the characteristic
of the divisor from that of the dividend, carrying one before subtraction
if the first significant figures of the divisor are greater than those of the
dividend. For instance, in dividing 146'08 by *0c0279. The character-
istics are 2 and 3 ; and 2 with 3 removed would be 5. But on looking,
we see that the frst significant figures of the divisor, 27, taken by them-
selves, and without reference to their local value, mean a larger number
than 14, the first two figures of the dividend. Consequently, to ; we
carry 1 before subtracting, and it then becomes ;, which, taken from 2,
gives 4. And this 4 is the characteristic of the quotient, so that the
quotient has 5 places before the decimal point. Or, if abedef be the
first figures of the quotient, the decimal point must be thus placed,
abede'f. But if it had been to divide ‘00279 by 146:08, no carriage
would have been required’; and 3 diminished by 2 is §; that is, the first
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significant figure of the quotient is in the 5th place. The quotient, then,
has *coco before any significant figure. A few applications of this rule
will make it easy to do it in the head, and thus to assign the meaning
of the first figure of the quotient even before it is found.

APPENDIX VL
ON DECIMAL MONEY.

OF all the simplifications of commercial arithmetic, none is comparable
to that of expressing shillings, pence, and farthings as decimals of &
pound, The rules are thereby put almost upon as good a footing as if
the country possessed the advantage of a real decimal coinage.
Any fraction of a pound sterling may be decimalised by rules which
can be made to give the result at once.
Two shillings is £°100|
One shilling is £°050
Sixpence s £025
One farthing is £'0ox

1
o4

Thus, every pair of shillings is a unit in the first decimal place; an odd
shilling is a 50 in the second and third places; a farthing is so nearly
the thousandth part of a pound, that to say one farthing is oo1x, two far-
things is 002, &c., is 80 near the truth that it makes no error in the first
three decimals till we arrive at sixpence, and then 24 farthings is exactly
‘025 or 25 thousandths. DBut 25 farthings is ‘026, 26 farthings is ‘027,
&e. Ience the rule for the firet three places is

One in the first for every pair of shillings : 50 in the second and third
for the odd shilling, i any; and ¥ for evsry farthing .dditional, with
1 extra for sixpence. :

oy
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Thus, os. 3£d. = £o14 ; 28, 6d. = £125
os. 7id. = £032 24. 9§d - £139
18, z,:fd. = £-0bo 38 23d. = £161
13, uid. = £'096 138. lo:ﬁ;d. = £694

In the fourth and fifth places, and those which follow, it is obvious
that we have no produce from any farthings except those above six-
pence. For at every sixpence, '00004% is converted into *cor, and this
has been already accounted for. Consequently, to fill up the fourth and
JSifth places,

Take 4 for every farthing® above the last sizpence, and an additional

1 for every siz farthings, or three halfpence.
The remaining places arise altogether from 'ooooo% for every farthing
above the last three halfpence; for at every three halfpence complete,
'ocoooé is converted into "ocoor, and has been already accounted for.
Consequently, to fill up all the places after the fifth,

Let the number of farthings above the last three halfpbnce be a nu-
merator, 6 a denominalor, and annex the figures of the corresponding
decimal fraction.

It may be easily remembered that

The figures of 7 are 166666... | The figures of%m666666...

2 5
IR 3333330 “ e e . 6...833333...
3
R A
os. 3§d. = 'ot458l3333... 25, 6d. = °125l00/0000..,

1
os. 7%41. = '032[29/1666... 28 g-d. = '139153133330'

* The student should remember all the multiples of 4 up to 425, or 100,
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L 34 o 6al
18, z;d. 060I41'6666... 36, z;d. 16114.5!83333...
13, u:-.d. - '096|87 5 138, xoid. - '69¢|79I1666...

The following examples will shew the use of this rule, if the student
will also work them in the common way.

To turn pounds, &c., into farthings: Multiply the pounds by 960,
or by 1000—40, or by 1000(1— ‘%O-) ; that is, from 1000 times the pounds
subtract 4 per cent of itself. Thus, required the number of farthings in

3
£1663 .11. 92
3 9 "
1663*590625x1000 = 1663590625
4 per cent of this, 66543625
No. of farthings required, 1597047

What is 472 per cent of £166 . 13 . 10 and *6148 of £2971.16.9?

166691 2971837
40 p.c 66°6764 6 1783°1022
5 p.c - 83346 ‘o1 29°7184
24 p. c. 4°1673 004 . 118873
o ‘0008 2°
| p— _xs
£79.3. 63 . 18270854 .
* £1827.1. 8;

The inverse rule for turning the decimal of a pound into shillings,
pence, and farthings, is obviously as follows :

A pair of shillings for every unit in the first place ; an odd shilling
Jor 50 (if there be 50) in the second and third places ; and a farthing
for every thousandth left, after abating 1 if the number of thousandths so
left exceed 24. .

The direct rule (with three places) gives too little, the inverse rule
too much, except at the end of a sixpence, when both are accurate.
Thus, £183 is rather less than 3. 8d., and 6s. 4%1. is rather greater than
£:319; or when'the two do not exactly agree, the common money is the
greatest. But £'1z; and £°35 ute exactly 24, 6d. and 7s.
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Required the price of 17cwt. 3x1b. xgioz. at £3.11 9‘3 per cwt.

true to the hundredth of a farthing.

3°590625
17
61°040625
b3
Ib.s6 - 1795313
1
16 - *512946
7 51294/
3 22441
73 24414 )
2 -g *064118
0.8 2 016029
4
I ‘co8or
43 08015
r s 002004
4 .
11
- - 001002
2 2
#£63°664466

b 4
£63.13. 3;

Three men, A, B, C, severally invest £191. 12. 73, £61,14.8,
and £122.1., 95 in an adventure which yields £511, 12, 65 How
ought the proceeds to be divided among them ?

A, 191°63229
B, 6173333

C, 122'08958 - Produce of £1.
375°45520)511°62708(1°362686
136 17188
1362686 1°362686 23 53532 1°362686
92 236191 33 33716 100801 85 980221
1 362686 8 17612 25710 1 362686
1226417 13627 3183 272537
13627 9538 180 27254
8176 409 1090
409 41 122
- 27 4 7
3 8 41231 1
! 1663697

2 611346
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261"134.6 . « o A’ share £261, z.Si

841231 ., . . Bs , .. . 8. 2.5%

1663697 . . . C's , . . . 166. 7.4;3-
5116274 £511. 12, 6%

If ever the fraction of a farthing be wanted, remember that the
ovinage-result is larger than the decimal of a pound, when we use
only three places. From 1oco times the decimal take 4 per cent,
and we get the exact number of farthings, and we need only look at
the decimal then left to set the preceding right. Thus, in

134°6 x23°1 3697
538 4'92 14'79
‘22, ’ 18 ‘91

we see that (if we use four decimals only) the penoe of the above results
are nearly 8d. ‘22 of a farthing, 5—d. '18 and 4—d ‘9I.

A man can pay £2376 . 4 . 4.— his debts being £3293 . 11, o3,
How much per cent can he pay, and how much in the pound ? 4

3293°553)2376°2180("7214756
707309

17
1 5662
2488 Answer, £72. 2. uipereent.
183 T
18 ©.14. 5 per pound.

APPENDIX VIIL

ON THE MAIN PRINCIPLE OF BOOK-KEEPING.

A BRIEP notice of the principle on which accounts are kept (when
they are properly kept) may perhaps be useful to students who are
Jearning book-keeping, as the treatises on that subject frequently give
too little in the way of explanation.

Any person who is engaged in business must desire to know aceu-
rately, whenever an investigation of the state of his affairs is made,
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.

1, What he had at the commencement of the account, or immediately
after the last investigation was made; 2, What he has gained and lost
in the interval in all the several branches of his business; 3, What he
is now worth. From the first two of these things he obviously knows
the third. In the interval between two investigations, he may at any
one time desire to know how any one account stands.

An account is a recital of all that has happened, in reference to any
class of dealings, since the last investigation. It can only consist of
receipts and expenditures, and so it is eaid to have two sides, a debtor
and a oreditor side.

All accounts are kept in money. If goods be bought, they are
estimated by the money paid for them. If a debtor give a bill of
exchange, being a promise to pay a certain sum at a certain time, it
is put down as worth that sum of money. All the tools, furniture,
horses, &c. used in the business are rated at their value in money.
All the actual coin, bank-notes, &c., which are in or come in, being
the only money in the books which really is money. is called cash.

The accounts are kept as if every different sort of account belonged
to a separate person, and had an interest of its own, which every
transaction either promotes or injures. If the student find that it helps
him, he may imagine a clerk to every account: one to take charge of,
and regulate, the actual cash; another for the bills which the house is
to receive when due; another for those which it is to pay when due;
another for the cloth (if the concern deal in cloth); another for the
sugar (if it deal in sugar); one for every person who has an account
with the house ; one for the profits and losses ; and so on.

All these clerks (or accounts) belonging to one merchant, must
account to him in the end—must either produce all they have taken
in charge, or relieve themselves by shewing to whom it went. For all
that they have received, for every responsibility they have undertaken
to the concern itself, they are bound, or are deblors; for everything
which has passed out of charge, or about which they are relieved from
answering fo the concern, they are unbound, or are creditors. These
words must be taken in a very wide sense by any one to whom book-

R
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keeping is not to be a mystery. Thus, whenever any account assumes
tesp;)nsibility to any parties out of the concern, it must be creditor in
the books, and debtor whenever it discharges any other parties of their
responsibility. But whenever an account removes responsibility from
any other acoount in the same books it is debtor, and creditor whenever
it imposes the same. ,

To whom are all these parties, or accounts, bound, and from whom
are they released ? Undoubtedly the merchant himself, or, more properly,
the balance-clerk, presently mentioned. But it is customary to say
that the accounts are debtors fo each other, and creditors by each other.
Thus, tash debtor o bills receivable, means that the cash account (or
the clerk who keeps it) is bound to answer for a sum which was paid
on & bill of exchange due to the house. At full length it would be:
“Mr. C (who keeps the cash-box) has received, and is answerable for,
this sum which has been paid in by Mr. A, when he paid his bill of
exchange.” On the other hand, the corresponding entry in the ac-
count of bills receivable runs—bills receivable, oreditor by cash. At full
length: “Mr. B (who keeps the bills receivable) is freed from all
responsibility for Mr. A’s bill, which he once held, by handing over to
Mr. C, the cash-clerk, the money with which Mr. A took it up.” Bills re-
ceivable creditor by cash is intelligible, but cash debtor #o bills receivable
is & misnomer. The cash account is debtor {0 the merchant by the sum
received for the bill, and it should be cash debtor y bill receivable.
The fiction of debts, not one of which is ever paid to the party so
whom it is said to be owing, though of no consequence in practice, is
a stumbling-block to the learner; but he must keep the phrase, and
remember its true meaning.

The account which is made deblor, or bound, is said to be debited ;
that which is made creditor, nr released, is said to be oredited. All
who receive must be debited ; all who give must be credited.

No cancel is ever made. If cash received be afterwards repaid, the
sum paid is not struck off the receipts (or debtor-side of the cash
account), but a discharge, or credit, is written on the expenditure (or

credit) side.
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The book in which the accounts are kept is called a ledger. It
has double columns, or else the debtor side is on one page, and the
creditor side on the opposite, of each t. The debtor-side is

always the left. Other books are used, but they are only vo help in
keeping the ledger correct. Thus there may be a waste-book, in which
all transactions are entered as they occur, in common language; &
Journal, in which the transactions described in the waste-book are
entered at stated periods, in the language of the ledger. The items
entered in the journal have references to the pages of the ledger to
which they are carried, and the items in the ledger have also references
to the pages of the journal from which tney come; and by this mode
of reference it is easy to make & great deal of abbreviation in the ledger.
Thus, when it happens, in making up the journal to a certain date,
that several different sums were paid or received at or near the same
time, the totals may be entered in the ledger, and the cash account
may be made debtor h:), or creditor by, sundfy accounts, or sundries ;
the sundry accounts being severally credited or debited for their shares
of the whole. The only book that need be explained is the ledger.
All the other books, and the manner in which they are kept, important
as they may be, have nothing to do with the main principle of the
method. Let ug, then, suppose that all the items are entered at once
in the ledger as they arise. It has appeared that every item is entered
twice. If A pay on account of B, there is an entry, “ A, creditor by
B;” and another, *“ B, debtor to A.” This is what is called double-
entry ; and the consequence of it is, that the sum of all the debtor
items in the whole book is equal to the sum of all the creditor items.
For what is the first set but the second with the items in a different
order? If it were convenient, one entry of each sum might be made
a double-entry. The multiplication table is called a table of doubls-
eniry, because 42, for instance, though it occurs only once, appears in
two different aspects, namely, as 6 times 7 and as 7 times 6. Suppose,
for example, that there are five accounts, A, B, C, D, E, and that
each account has one transaction of its own with every other account;
and let the debits be in the columns, the credits in the rows, as follows:
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A, Creditor

B, Creditor

C, Creditor

" D, Creditor

E, Creditor

APPENDIX.
= = = = =
2 2 5] 2 S
3 2 3 2 3
A A A A (=]
A B C D E
23 19 32 4
17 6 11 2§
9 41 10 2
14 28 16 3
15 4 6o I

Here the 16 is supposed to appear in D’s account as D creditor
by C, and in C’s account as C debtor to D. And to say that the sum
of debtor items is the same as that of creditor items, is merely to say

that the preceding numbers give the same sum, whether the rows or

the columns be first added up.
If it be desired to close the ledger when it stands as above, the fol-
lowing is the way the accounts will stand : the lines in italics will pre-

sently be explained.

To B
To C

. 17.ByB
i
. 9iByC

ToD . . 14ByD

To E

To Balance

15| By E
23|

78 |

.

A, Debtor. ] A, Creditor.

23
19
32

B, Debtor.
ToA . . 23
ToC . . 41
ToD . . 28
ToE . . 4

96

B, Creditor.
ByA . . 17
Byc . . 6
ByD . I
ByE . . 235
By Balance 37

96
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C, Debtor. C, Creditor. D, Debtor. D, Creditor.
ToA . . 19(ByA . . 9!ToA . . 32|ByA . . 14
ToB . . 6|ByB . . 41]ToB . . 11|ByB . . 28

ToD . . 16/|ByD . . 10]ToC . . 10/ByC . . 16
ToE .. 6|ByE .. 2|ToE .. 1|ByE . . 3
By Balance 39 | To Balance 7

ro1 | 101 61 (33

E, Debtor. E, Creditor. | Balance, Debtor. | Balance, Cred.
ToA .. 4|ByA . . 3151ToB . . 37|Byd . . 23
ToB . . 25|ByB . . 4|T0QC . . 39|ByD . . 7

ToC .. 2|ByC . . 6o ByE . . 46
ToD .. 3|ByD . . 1 . ; 76
To Balance 46 .

30 %0

In all the part of the above which is printed in Roman letters we
see nothing but the preceding table repeated. But when all the accounts
have been completed, and no more entries are left to be made, there
remains the last process, which is termed éalancing the ledger. To get
an idea of this, suppose a new clerk, who goes round all the accounts,
collecting debts and credits, and taking them all upon himself, that he
alone may be entitled to claim the debts and to be responsible for the
assets of the concern. To this new clerk, whom I will call the balunce-
clerk, every account gives up what it has, whether the same be debt or
credit. The cash-clerk gives up all the cash; the clerks of the two
kinds of bills give up all their documents, whether bills receivable or
entries of bills payable (remember that any entry against which there
is money set. down in the books counts as money when given up, that is,
as money due or money owing); the clerks of the several accounts of
goods give up all their unsold remainders at cost prices; the clerks of
the several personal accounts give up vouchers for the sums owing to or
from the several parties; and so on. But where more has been paid
out than received, the balance-clerk adjusts these accounts by giving -

R2
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instead of receiving; in fact, he so acts as to make the debtor and
creditor sides of the accounts he visits equal in amount, For instance,
the A account is indebted to the concern §5, while payments or dis-
charges to the amount of 78 have been made by it. The balance-clerk
accordingly hands over 23 to that account, for which it becomes debtor,
while the balance enters itself as creditor to the same amount. But
in the B account there is 96 of receipt, and only 59 of payment or
discharge. The balance-clerk then receives 37 from this account, which
is therefore credited by balance, while the balance acknowledges as much
of debt. The balance account must, of course, exactly balance itself,
if the accounts be all right; for of all the equal and opposite entries
of which the ledger consists, so far as they do not balance one another,
one goes into one side of the balance account, and the other into the
other. Thus the balance account becomes a test of the accuracy of
one part of the work : if its two sides do not give the same sums, either
there have been entries which have not had their corresponding balan-

cing entries correctly made, or else there has been errdr in the additions. _

But since the balance account must thus always give the same sum

on both sides, and since balance debior implies what is favourable to
. the concern, and dalance creditor what is unfavourable, does it not
appear as if this system could only be applied to cases in which there
is neither loss nor gain ? This brings us to the two accounts in which
are entered all that the concern began with, and all that it gains or
loses—the stock account, and the profit-and-loss account. In order to
make all that there was to begin with a matter of double entry, the open-

" ing of the ledger supposes the merchant himself to put his several clerks
in charge of their several departments. In the stock account, stock, which
here stands for the owner of the books, is made creditor by all the pro-
perty, and debtor by all the liabilities; while the several accounts are
made debtors for all they take from the stock, and creditors by all the
responsibilities they undertake. Suppose, for instance, there are £500
in cash at the commencement of the ledger. There will then appear
that the merchant has handed over to the cash-box £500, and in the
stock account will appear, “Stock creditor by cash, £500 ;™ while in

-l
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the cash account will appear, “ Cash debtor to stock, £500.” Suppose
that at the beginning there is a debt outstanding of £50 to Smith and
Co., then there will appear in the stock account, * Stock debtor to
Smith and Co. £50,” and in Smith and Co.’s account ‘will appear
¢ Smith and Co. creditors by stock, £50. Thus there is double entry
for all that the concern begins with by this contrivance of the stock
account,

The account to which everything is placed for which an actual
equivalent is not seen in the books is the profit-and-loss account. This
profit-and-loss account, or the clerk who keeps it, is made answerable
for every loss, and the supposed cause of every gain. This account,
then, becomes debtor for every loss, and creditor by every gain. If
goods be damaged to the amount.of £20 by accident, and a loss to
that amount occur in their sale, say they cost £30 and sell for £60
cash, it is clear that there is an entry *“ Cash debtor to goods £60,"
and * Goods creditor by cash £60.” Now, there is an entry of £80
somewhere to the debit of the goods for cash laid out, or bills given, for
the whole of the goods. It would affect the accuracy of the accounts
to take no notice of this; for when the balance-clerk comes to adjust
this account, he would find he receives £20 less than he might have
reckoned upon, without any explanation of the reason; and there
would be a failure of the principle of double-entry. Since it is
convenient that the balance-account of the goods should merely re-
present the stock in hand at the close, the account of goods there-
fore lays the responsibility of £20 upon the profit-and-loss account,
or there is the entry *“ Goods creditor by profit-and-loss, £20,” and
also “ Profit-and-loss debtor to goods, £20.” Again, in all pay-
ments which are not to bring in a specific return, such as house and
trade expenses, wages, &c. these several accounts are supposed to ad-
just matters with the profit-and-loss account before the balance begins.
Thus, suppose the outgoings from the mere premises occupied exceed
anything those premises yield by £2c0, or the debits of the house
account exceed its credits by £zoo, the account should be balanced
by transferring the responsibility to the profit-and-loss account, under
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the entries * House expenses creditor by profit-and-loss, £200,” “ Profit-
mnd-loss debtor to house exp , £200,” In this way the profit-and-
loss account steps in from time to time before the balance account
commences its operations, in order that that same balance account may
consist of nothing but the necessary matlers of account for the next year’s
ledger.

This transference of accounts, or transfusion of one account into
another, requires attentive consideration. The receiving -account be-
comes creditor for the credits, and debtor for the debits, of the trans-
mitting account. The rule, therefore,is: Make the transmitting account
balance itself, and, on whichever gide it is neeeuz&y to enter a balancing
sum, make the account debtor or creditor, as the case may be, to the
receiving account, and the latter creditor or debtor to the former. Thus,
suppose account A i8 to be transferred to account B, and the latter is
to arrange with the balance-accouut. If the two stand as in Roman
letters, the processes in Italic letters will occur before the final close.

A, Debtor. A, Creditor. B, Debtor. | B, Creditor.
To sundries £100 | By sundries £500] To sundries £600 | By sundries £400
ToB .... 400 7o Balance 200|By A ... . 400

£500 £500 £800 £800

And the entry in the balance account will be, * Creditor by B, £200,"
shewing that, on these two accounts, the credits exceed the debits by
£200.

8till, before the balance account is made up, it is desirable that the *
profit-and-loss account should be transferred to the stock account; for
the profit and loss of this year is of no moment as a part of next year's
ledger, except in so far as it affects the stock at the commencement of
the latter. Let this be done, and the balance account may then be
made in the form required.

The stock account and the profit-and-loss account, the latter being
the only direct channel of alteration for the former, differ in a peculiar
manner* from the other preliminary accounts, and the balance account

* The treatises on book-keeping have described this difference in as peculiar a
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is a species of umpire. They represent the merchant: their interests
are his interests; he is solvent upon the excess of their credits over
their debits, insolvent upon the excess of their debits over their credits.
It is exactly the reverse in all the other accounts, If a malicious person
were to get at the ledger, and put on a cipher to the pounds in various
items, with a view of making the concern appear worse than it really
is, he would make his alterations on the debtor sides of the stock and
profit-and-loss accounts, and on the oredifor sides of all the others
Accordingly, in the balance account, the net stock, after the incor-
poration of the profit-and-loss account, appears on the creditor side
(if not, it should be called amount of insolvency, not stock), and the
debts of the concern sppear on the same side. But on the debit side
of the balance account appear all the assets of the concern (for which
the balance-clerk is debtor to the clerks from whom he has taken them).

The young student must endeavour to get the enlarged view of the
words debtor and creditor which is requisite, and must then learn by
practice (for nothing else will give it) facility in allott'ng the actual
entries in the waste-book to the proper sides of the proper accounts.
I do not here pretend to give more than such a view of the subject as
may assist him in studying a treatise on book-keeping, which he will
probably find to contain little more than examples.

manner. They call these ts the fictiti ts. Now they represent the
merchant himself; their credits are gain to the business, their debits losses or liabi-
sities. If the terms real and fictitious are to be used at all, they are the real accounts,
gnd all the others are &s fictitious as the clerks whom we have suppossd to keep
them.
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APPENDIX VIIIL
ON THE REDUCTION OF PRACTIONS TO OTHERS OP NEARLY EQUAL VALUE

TukRE is 8 useful method of finding fractions which shall be nearly
equal to a given fraction, and with which the computer ought to be
acquainted. Proceed as in the rule for finding the greatest common
measure of the numerator and denominator, and bring all the quotients
into a line. Then write down,

1 2d Quot.

18t Quot. , 18t Quot. x2d Quot.+1

Then take the third quotient, multiply the n imerator and denominator
of the second by it, and add to the products the preceding numerator
and denominator. Form a third fraction with the results for a nume-
rator and denominator. Then take the fourth quotient, and proceed
with the third and second fractions in the same way; and so on till
the quotients are exhausted. For example, let the fraction be 9131

13128
913!)13123§l,2 This is the process for finding the
1137 399703, I .

[ ’586(1: 15 8r m of 9131 and
2:; 33 ;sg 13128 in its most compact form, and
8 1 ? the quotients and fractions are :

2 3 1 1 15 1 2 1 8
2 7 9 16 249 265 779 toa gis
3 10 13 23 358 331 1120 I501 13128

e

It will be seen that we have thus a set of fractions ending with
the original fraction itself, and formed by the above rule, as follows :
1

18t Quot.

2d Quot. 2
18t Quot.x2d Quot.+1 3

1st Fraction

I
1

2d Fraction =

4 Fraction 2d Num".x3d Quot.+1st Num". o 2X3t1 7
= - —
e 2d Den". x3d Quot.+ 1st Den". 3x3+1 10

3d Num'.xéth Quot.+2d Num?, 7x1+2 9

.

3d Den'. x4th Quot.+2d Denf, . Ioxi+3 13’

4th Fraction =

e ——

vy

—
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and so on. But we have done something more than merely reascend to
the original fraction by means of the quotients, The set of fractions,
-; 2 % 193, &ec. are continually approaching in value to the original
fraction, the first being too great, the second too small, the third too
great, and so on alternately, but each one being nearer to the given
fraction than any of those before it. Tlms, - u too great, and 2
too smnll- but ~ is not so much too small u is too great. And
agam, , though too great, is not so much too great 28 2 is too small.
Moreover, the difference of any of the fractions from the original
fraction is never greater than a fraction having unity for its numerator
and the product of the denominator and the next denominator for its
denominator. Thus, - ! does not err by so much as l, nor 2 by so much
as -l—, nor -~ by 80 m:wh as -—-, nor -9— by so much 88—, &ec.
%Lastly, no fraction of a Iezm numerator and denommator can come
8o near to the given fraction as any one of the fractions in the list.

Thus, no fraction with a less numerator than 249, and a less denominator
9131 249
as —2,
13128 358
The reader may take any example for himself, and the test of the

than 358, can come so near to

accutacy of the process is the ultimate return to the fraction begun
with. Another test is as follows: The numerator of the difference of
any two consecutive approximating fractions ought to be unity. Thus,
in our instance, we have —: and ;5—3, which, with a common denominator,
23x358, have 5728 and §727 for their numerators.

As another example, let us examine this question: The Iength of
the year is 36524224 days, which is called in common life’ 365- days.

Take the fraction -—4 ::Z, and proceed as in the rule.

24224 )100000(44 75 13 4+ 9 2
2496 3504
64

608
° 32
11 8 39 3% 787
4 29 33 161 1482 312§
d —;15:5 is ‘24224 in its lowest terms. Hence, it appears that the

excess of the year over 365 days amounts to about 1 day in 4 yeurs,
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which is not wrong by 8o much as 1 day in 116 years; more accurately,
to 7 days in 29 years, which is not wrong by so much as 1 day in 957
years ; more accurately still, to 8 days in 33 years, which is not wrong
by so much as 1 day in 5313 years; and so on. ‘

This method may be applied to finding fractions nearly equal to
the square roots of integers, in the following manner:

V43 = 6+.... Set down the number whose

6l1545545166 |154, &c. square root is wanted, say 43.

:763929367 1 1763, & Thig square root is 6 and 8 frac-

IR ERERERE lex 13, &.  tjon. Set down the integer 6 in
the first and third row, and 1 in the second row always, Form the

successive rows each from the one before, in the following manner :

One row The next row has &, a’, ¢/, formed in this order,
being thus,
a a’ = excess of §'c’, already formed, over a.
b b = quotient of 43—a? divided by 5.
] ¢/ = integer in the quotient of 6+a divided by #’.

Thus the second row is formed from the first, as under :

6|1 = excess of 7x1 (both just found) over 6.

1{7 = 43—6x6 divided by 1.

6l1 = integer of 6+6 divided by 7 (just found).

The third row is formed from the second, thus:

T 5 = excess of 1x6 over 1.

7 6 = 43—1x1 divided by 7.

11 = integer of 6+1 divided by 6;
and 80 on. In process of time the second column, 1, 7, 1, occurs
again, after which the several columns are repeated in the same order.
As a final process, take the set in the lowest line (excluding the first, 6),
namely, 1, 1, 3, 1, 5, 1, 3, &c. and use them by the rule given at the
beginning of this article, as follows :
3 5§ 1 3 1 1, &c.

I
4 5 29 3¢ 131 165 296
7 9 52 61 235 296 531

-
D -

L 2R,
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165 ,
Hence, 6-9—2 is very near the square root of 43, not erring by so much as
1

296x531° 1941
If we try it, we shall find 6 t be ——, 5 the square of which is
3767481 7 9

87616 * 743 87616
This rule is of use when it is frequently wanted to use one square

root, and therefore desirable to ascertain whether any easy approximation

exists by means of a common fraction. For example, +/2 is often used.

V2= I+.... Here it appears that 122 does not
11 err by — consequently, -92 or

100—1 7% 169’

P

is, considering the ease of the
x!z 22 2 2 2 operatlon, a fair arprommatlon. In
125 1229 _7_0_ &e. fact, ~6 is 1°4142857... the truth being
2 § 12 29 70 16y 1'4142135...
The following is an additional example :
V19 = g+
4[2 3 3 2 4 4 2
113 5 2 5 3 13
4]213128213::,&(:.
P | 1
R L

APPENDIX IX.
ON SOME GENERAL PROPERTIES OF NUMBERS,
Pror. 1. If a fraction be reduced to its lowest terms, so called,* that
is, if neither numerator nor denominator be divisible by any integer
greater than unity, then no fraction of a smaller numerator and deno-
minator can have the same value.
Let ~ be a fraction in which a and 5 have no common measure

greater than unity: and, if possible, let & be a fracnon of the same value,

c b

¢ being less than a, and d less than b. Now, since z =pve have =3

* This theorem shews that what is called reducing a fraction to its lowest terms

(namely, dividing tor and d i by their great )
is correctly so called.
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let m be the integer quotient of these last fractions (which must exist,
since a>¢, 5>d), and let ¢ and f be the remainders. Then

mete ¢ mo
3 mdf " d md

e . mo+e .
Hence, 7 and —32— must be equal, for if not, mdtf would lie between

:7-'3- and <, instead of being equal to the former. Hence, %= 5_;
so that if a fraction whose numerator and denominator have no com-
mon measure greater than unity, be equal to a fraction of lower
numerator and denominator, it is equal to another in which the nume-
rator and denominator are atlll lower. If we proceed w:th 2=Zina
similar manner, we ﬁnd — = i; where g<e, h<f, and so on. Now, if
there be any process whlch perpetually diminishes the terms of a frac-
tion by one or more units at every step, it must at last bring either the

a v
numerator or denominator, or both, to o. Let ik be one of the

steps, and let a = kv+z, b = kw+y; so that k,::; = %. Now, ifs=o0
but not g, this is absurd, for it gives ,m,w = :—-:u. A similar absurdity

follows if y be o, but not #; and if both 2 and y be = o,then a = kv, b =
kw, or a and b bave a common measure, x. Now ¥ must be greater
than 1, for v and w are less than ¢ and d, which by hypothesis are less
thau @ and 4. Consequently a and b have a common measure k greater
than 1, which by hypothesis they have not. If, then, a and & be in-
tegers not divisible by any integer greater than 1, the fraction ; is really
in its lowest terms. Also a and b are said to be prime {o one another.
Pror.2. If the product ab be divisible by ¢, and if ¢ be prime to &,
it must divide a. Let _ac_b_ = d, then -b- - f Now p is in its lowest terms;
therefore, by the last proposition, dc ang a must have a common mea-
sure. 6Let kthe greatest common measure be k, and let @ = kl, d = km.
m m

m
Then;=—"—l-=-l—, and —I-

therefore we must have m = b, I = ¢, for otherwise a fraction in its

. - . b
is also in its lowest terms; but so is o

lowest terms would be equal to another of lower terms. Therefore
a = ke.ora is divisible by . And fiom this it follows, that if a num-
ler be prime to two others, it is prime to their product. Let a be prime
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to b and ¢, then no measure of @ can measure either & or ¢, and no
such measure can measure the product bc; for any measure of ¢ which
is prime to one must measure the other.

Pror. 3. If a be prime to b, it is prime to all the powers of A.
Every measure* of a is prime to &, and therefore does not divide &
Hence, by the last, no measure of a divides 4?; hence, a is prime to
43, and 8o is every measure of it ; therefore, no measure of a divides 5%,
consequently a is prime to 4% and so on.

Hence, if a be prime to 3, a cannot divide without remainder any
power of b. This is the reason why no fraction can be made into a
decimal unless its denominstor be measured by no primet numbers ex-
cept 2and 5. F or it 3= —-, which last is the general form of a deci-
mal fraction, let — bei m its lowest terms ; then 1%, 18 an integer, whence
(Prop. 2) & must dmde 10%, and 80 must all the divisors of 4. If, then,
among the divisors of 4 there be any prime numbers except 2 and s,
we have a prime number (which is of course a number prime to 10) not

dividing 10, but dividing one of its powers, which is absurd.

Pror. 4. If b be prime to a, all the multiples of b, as &, 25, ... up to
{a—1)b must leave different remainders when divided by a. For if, m
being greater than n, and both less than e, we have mb and nb giving the
same remainder, it follows that mbé—nb, or (m—n)b, is divisible by a;
whence (Prop. 2), a divides m—n, a number less than itself, which is
absurd.

If a number be divided into its prime factors, or reduced to a pro-
duct of prime numbers only (as in 360 = 2x2x2x3x3x5), and if a, b, ¢,
&c. be the prime factors, and a, B, 7, &c. the number of times they seve-
rally enter, so that the number is a®x 5% x¢? x&c., then this can be done

in only one way: For any prime number v, not included in the above

® For that which measures a measure is itself a measure; so that if a measure of
acould have a measure in common with 5, g itself would have a common measure
with b,

+ A prime number is one which is prime to all numbers except its own multiples,
or has no divisors except 1 and itself.
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list, is prime to a, and therefore to a%, to b and therefore to 58, and there-
fore to a®*x58. Proceeding in this way, we prove that v is prime to the
complete product above, or to the given number itself.

The number of divisors which the preceding number a®5°¢”.... can
have, o and itself included, is (a+1)(B+1)(y+1).... For a® has the
divisors 1, @, a®...a® and no others, a+1 in all. Similarly, &® has B+1
divisors, and so on. Now as all the divisors are made by multiplying
together one out of each set, their number (page 202) is (a+1)(8+1)
(y+1).... :

If a number, %, be divisible by certain prime numbers, say 3, §, 7, 11,
then the third part of all the numbers up to n is divisible by 3, the fifth
part by 5, and so on. But more than this: when the multiples of 3
are- omitted, exactly the fifth part of those which remain are divisible
by 5; for the fifth part of the whole are divisible by 5, and the fifth
part of those which are removed are divisible by 5, therefore the fifth
part of those which are left are divisible by 5. Again, because the
seventh part of the whole are divisible by 7, and the seventh part of
those which are divisible by 3, or by 5, or by 15, it follows that when
all those which are multiples of 3 or 5, or both, are removed, the seventh
part of those which remain are divisible by 7 ; and so on. Hence, the
number of numbers not exceeding =, which are not divisible by 3, 5, 7,
or 11,is ;(;’ of -:— of of 2 of m. Proceeding in this way, we find that the
number of numbers which are prime to n, that is, which are not divisible
by any one of its prime factors, @, 8, c,... is

—1 b
aal —;l o-c;I ceeee o1 @* 1511 (g—1)(3—1)(c—1)....

n

Thus, 360 being 23325, its number of divisors is 4x3x2, or 24, and there
are 223.1.2.4 or 96 numbers less than 360 which are prime to it.

Pror. 5. If a be prime to b, then the terms of the series, a, @, a3,...
severally divided by &, must all leave different remainders, until 1
occurs as a remainder, after which the cycle of remainders will be again
repeated.

Let a-+b give the remainder » (not unity) ; then a+5 gives the same

remainder as ra+b, which (Prop. 4) cannot be r: let it be s, Thea
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@%b gives the same remainder as sa+b, which (Prop. 4) cannot be
either # or s, unless s be 1: let it be . Then a*+b gives the same
remainder as {a+b; if £ be not 1, this cannot be either #, &, or #: let
it be u. So we go on getting different remainders, until 1 occurs us
a remainder; after which, at the next step, the remainder of a+b is
repeated. Now, 1 must come at last; for division by & cannot give
any remainders but o, 1, 2,.... 5&—~1; and o never arrives (Prop. 3),
so that as soon us b—2 different remainders have occurred, no one of
which is unity, the next, which must be different from all that precede,
must be 1. If not before, then at a®>! we must have a remainder 1;
after which the cycle will obviously be repeated.

Thus, 7, 7%, 7% 7% &ec. will, when divided by 5, be found to give
the remainders 2, 4, 3, 1, &c.

Prop. 6. The difference of two mth powers is always divisible with-
vut remainder by the difference of the roots; or a™—4™ is divisible by

a—b; for
am—i" = g"—ag™rao—b" = g™ (a—b)+b(a™—bm")

From which, if a™—1—i™1 is divisible by a—b, 80 is a™—4™. But a—b
is divisible by a—b6; so therefore is a®—42; so therefore is a®>-&*; and
80 on,

Therefore, if @ and b, divided by c, leave the same remainder, 4?
and 0%, @® and 83, &c. severally divided by ¢, leave the same remainders;
for this means that a—b is divigible by ¢. Eut a™—b™ is divisible by
" a—b, and therefore by every measure of a—b, or by ¢; but c™—4™ cannot
be divisible by ¢, unless a™ and 4™, severally divided by c, give the
same remainder.

Pror. 7. If 6 be a prime number, and a be not divisible by &, then
a® and (a—1)’+1 leave the same remainder when divided by 4. This
proposition cannot be proved here, as it requires a little more of algebra
than the reader of this work possesses.*

Prop. 8. In the last case, a®—! divided by & leaves a remainder 1.

+ Expand (s—1) by the binomial theorem; shew that when b is a prime number
every coefficient which is not uni'y is divisible by 5, and the proposition follows.
82
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From the last, a’>—a leaves the same remainder as (a—1)’+1—a or
(a—1)*—(a—1); that is, the remainder of a®—a is not altered it a be
reduced by a unit. By the same rule, it may be reduced another unit,
and so on, still without any alteration of the remainder. At last it
becomes 1°—1, or o, the remainder of which is o. Accordingly, a*—a,
which is a(a*'—1), is divisible by 5; and since b is prime to a, it
must (Prop. 2) divide a*~'—1; that is, a*, divided by &, leaves a
remainder 1, if b be a prime number and a be not divisible by &.

From the above it appears (Prop. 5 and 7), that if a be prime to
5, the set 1, a, 4% a3 &c. successively divided by &, give a set of
remainders beginning with 1, and in which 1 occurs again at a7, if
not before, and at a>! certainly (whether before or not), if 4 be a
prime number. From the point at which 1 occurs, the cycle of re-
mainders recommences, and 1 is always the beginning of a cycle. If,
then, a™ be the first po;wer which gives 1 for remainder, m must either
be 5—1, or a measure of it, when b is a prime number.

But if we divide the terms of the series m, ma, ma? ma®, &c. by
b, m being less than &, we have cycles of remainders beginning with m.
If 1, r, 8 ¢, &c. be the first set of remainders, then the second set is
the set of remainders arising from m, mr, ms, mf, &c. If 1 never
occur in the first set before a*—! (except at the beginning), then all
the numbers under 8—1 inclusive are found among the set 1, 7, s, £,
&ec.; and if m be prime to & (Prop. 4), all the same numbers are found,
in a different order, among the remainders of m, mr, &c. But should
it happen that the set 1, r, s, ¢, &c. is not complete, then m, mr, ms,
&c. may give a different set of remainders.

All these last theorems are constantly verified in the process for
reducing a fraction to a decimal fraction. If m be prime to 4, or the
fraction %— in its lowest terms, the process involves the successive
division of m, mx10, mxxc3, &c. by b, This process can never come
to an end unless some power of 10, say 10", is divisible by 4; which
cannot be, if b contain any prime factors except 2 and 5. In every
other case the quotient repeats itself, the repeating part sometimes

commencing from the first figure, sometimes from a later figure. Thus.
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; yields ‘142857142857, &c., but 1—:. gives *07(142857)(142857), &ec.,
and 2_18 gives '03(571428)(571428), &c.

In -'—:—, the quotient always repeats from the very beginning whenever
b is a prime number and m is less than 4; and the number of figures
in the repeating part is then always {—1, or a measure of it. That it
must be so, appears from the above propositions.

Before proceeding farther, we write down the repeating part of a
quotient, with the remainders which are left after the several figures
are formed. Let the fraction be 1—17, we have

010515814842630552169742757137116442272
This may be read thus: 10 by 17, quotient o, remainder 10; 10* by
17, quotient os, remainder 15; 103 By 17, quotient 058, remainder 14;
und so on. It thus uppears that 10'8 by 17 leaves a remainder 1, which
is according to the theorem.

If we multiply 0588, &c. by any number under 17, the same cycle
is obtained with a different beginning. Thus, if we multiply by 13, we
have 7647058823529411
heginning with what comes after remainder 13 in the first number. If
we lmultip]y by 7, we have 4117, &c. The reason is obvious: lix 13,
or -1%, when turned into a decimal fmctixon. starts with the divisor 130,
and we proceed just as we do in forming 7 when within four figures of
the close of the cycle.

It will also be seen, that in the last half of the cycle the quotient figures
are complements to 9 of those in the first half, and that the remainders
are complements to 17. Thus, in 0,,5,,8,,84, &c. and 9,4,1,1,,,
&c. we see 0+9 = 9, 5+4 = 9, 8+1 = 9, &c., and 10+7 = 17, 15+2 = 17,
14+3 = 17, &c. We may shew the necessity of this as follows: }f
the remainder 1 never occur till we come to use a®~!, then, 4 being
prime, b—1 is even; let it be 2k. Accordingly, a*—1 is divisible by
b; but this is the product of a*—1 and a*+1, one of which must be
divisible by 4. It cannot be a*~1, for then a power of a preceding the
(—1)th would leave remainder I, which is not the case in our instance:

it must then be a*+1, o that a* divided by & leaves a remainder b—1;
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and the wth step concludes the first half of the process. Accordingly,
in our instance, we see, b being 17 and a being 10, that remainder 16
occurs at the 8th step of the process. At the next step, the remainder
is that yielded by 10(5—1), or 9b+b—10, which gives the remainder é—10,
But the first remainder of all was 10, and 10+(6—10) = b. If ever this
complemental character occur in any step, it must continue, which we
shew as follows : Let r be a remainder, and 6—r a subsequent remainder,
the sum being 5. At the next step after the first remainder, we divide
1or by b, and, at the next step after the second remainder, we divide
1ch—10r by 4. Now, since the sum of 10r and 1ob—r1or is divisible
by &, the two remainders from these new steps must be such as added
together will give 6, and 80 on; and the quotients added together must
give 9, for the sum of the remainders 1or and 106—10r yields a quotient
10, of which the two remainders give 1.

If — and '63; be taken, the repeating parts will be found to contain
58 and 6o figures. Of these we write down only the first halves, as
the reader may supply the rest by the complemental property just
given.

01694915254237288135593220338, &c.
016393442622950819672131147540, &c,

Here, then, are two numbers, the first of which multiplied by any
number under 59, and the second by any number under 61, can have
the products formed by carrying certain of the figures from one end to
the other. ’

But,  being still prime, it may happen that remainder 1 may occur
before 5—1 figures are obtained ; in which case, as shewn, the number
of figures must be a measure of 4—~1. For éxa.mple, take f; The
repeating quotient, written as above, has only s figures, and § measures
41—1.

0302184163379

Now, this period, it will be found, has its figures merely transposed, if
we multiply by 10, 18, 16, or 37. But if we multiply by any other
number under 41, we convert this period into the period of another
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fraction whose denominator is 41. The following are 8 periods which

may be found.
©10216841635791 ! 152413993155
Og043683273384 ‘ 1104166143104
C30713371307s 296634810258911
©4098173352564 3076945358405

To find ﬂx’ look out for m among the remainders, and take the period
in which it is, beginning after the remainder. Thus, 3—"; is *8292682926,
&c., and i—i- is *3658536585, &c. These periods a4re complemental,
four and four, as 02439 and 97560, 07317 and 92682, &c. And if
the first number, 02439, be multiplied by any number under 41, look
for that number among the remainders, and the product is found in the
period of that remainder by beginning after the remainder. Thus,
02439 multiplied by 23 gives 56097, and by 6 gives 14634

The reader may try to decipher for himself how it is that, with no
more figures than the following, we can extend the result of our divisioﬁ.

The fraction of which the period is to be found is 51;

87)100(01149425
130
430
820 _©1149425x25
370 28735625x25
220 71839062.5x25
460 17959765625x25
25 448994140625
0114942528735625
718390623
1795976 5625
448994

011494252873 5632183908045977[011494

APPENDIX X.’

ON COMBINATIONS,
TJERE are some things connected with combinations which I place in
un appendix, because I intend to demonstrate them more briefly than
the matters in the text.

Suppose a number of boxes, say 4, in each of which there are
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counters, say §, 7, 3, and r1 severally. In how many ways can one
counter be taken out of each box, the order-of going to the boxes not
being regarded. Answer, in §x7x3x11 ways, For out of the first box
we may draw a counter in 5 different ways, and to each such drawing
we may annex a drawing from the second in 7 different ways—giving
5x7 ways of making a drawing from the first two. To each of these
we may annex a drawing from the third box in 3 ways—giving 5x7x3
drawings from the first three; and so on. The following statements may
now be easily demonstrated, and similar ones made as to other cases.

If the order of going to the boxes make a difference, and if a, b, ¢, d
be the numbers of counters in the several boxes, there are 4x2x3xIx
axbxcxd distinct ways. If we want to draw, say 2 out of the first box,
3 out of the second, 1 out of the third, and 3 out of the fourth, and if
the order of the boxes be not considered, the number of ways is

a—1 h—1b—2 Ad—=1d—2
@ X0 xexa
2 2 3 2 3
If the order of going to the boxes be considéred, we must multiply-the
preceding by 4x3x2x1. If the order of the drawings out of the boxes
makes a difference, but not the order of the boxes, then the number

of ways is
a(a—1)b(b—1)(b—2)cd(d—1)(d—2)

The nth power of a, or a®, represents the number of ways in which
a counters differently marked can be distributed in n boxes, order of
plecing them in each box not being considered. Suppose we want to
distribute 4 differently-marked counters among 7 boxes. The first
counter may go into either box, which gives 7 ways; the second counter
may go into either; and any of the first 7 allotments may be combined
with any one of the second 7, giving 7x7 distinct ways; the third
counter varies each of these in 7 different ways, giving 7x7x7 in all;
and so on. But if the counters be undistinguishable, the problem is a
very different thing.

Required the number of ways in which a number can be compounded
of other numbers, diferent orders counting as different ways. Thus,

— e . e b e te—
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1+3+1 and 1+1+3 are 0 be considered as distinct ways of making 5.
It will be obvious, on & little examination, that each number can be
composed in exactly twice as many ways as the preceding number.
Take 8 for instance. If every possible way of making 7 be written
down, 8 may be made either by increasing the last component by a
unit, or by annexing a unit at the end. Thus, 1+3+2+1 may yield
1+3+2+2, or 1+342+1+1: and all the ways of making 8 will thus be
obtained ; for any way of making 8, say a+b+c+d, must proceed from
the following mode of making 7, a+b+c+(d—1). Now, (d—1) is either
o—that is, d is unity and is struck out —or (d—1) remains, a number
1 less than d. Hence it follows that the number of ways of making
n is 2*). For there is obviously 1 way of making 1, 2 of making

2 ; then there must be, by our rule, 2? ways of muking 3, 2% ways of

making 4 ; and so on. .
perar (1AL
T+t T+2+1
1+2
1 + ’ {143
2+1+1
s LA P
341
3o

This table exhibits the ways of making 1, 2, 3, and 4. Hence it
follows (which I leave the reader to investigate) that there are twice
as many ways of forming a+b as there are of forming a and then
annexing to it a formation of 4; four times as many ways of forming
a+b+c as there are of annexing to a formation of a formations of 4 and
of ¢; and so on. Also, in summing numbers which make up a+b, there
are ways in which a is a rest, and ways in which it is not, and as many of
one as of the other.

Required the number of ways in which a number can be compounded
of odd numbers, different orders counting as different ways. If a be
the number of ways in which n can be so made, and b the number of
ways in which n+1 can be made, then a+b must be the number of
wavs in which n+2 can be made; for every way of making 52 out of
odd numbers is either a way of making 10 with the last number
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increased by 2, or a way of making 11 with a 1 annexed. Thus,
1+54+3+3 gives 12, formed from 1+5+3+x giving 10, But r+9+1+1 is
formed from 1+9+1 giving 11. Consequently, the number of ways
of forming 12 is the sum of the number of ways of forming 10 and of
forming 11. Now, 1 can only be formed in 1 way, and 2z can only
be formed in 1 way; hence 3 can only be formed in 1+1 or z ways, 4
in only 1+2 or 3 ways, If we take the series 1, 1, 2, 3, 5, 8, 13, 21,
34+ 55, 89, &c. in which each number is the sum of the two preceding,
then the nth number of this set is the number of ways (orders counting)
in which n can be formed of odd numbers. Thus, 10 can be formed
in 55 ways, 11 in 89 ways, &c.

Shew that the number of ways in which mk can be made of numbers

divisible by m (orders counting) is 2%-1,

Inthetwoseries, * 1 1 2%3 4 6 9 13 19 28, &c.

o1 o011 1 2 2 3 4 5 &c,

the first has each new term after the third equal to the sum of the
last and last but two; the second has each new term after the third
equal to the sum of the last but one and last but two. Shew that
the nth number in the first is the number of ways in which n can be
made up of numbers which, divided by 3, leave a remainder 1; and
that the nth number in the second is the number of ways in which
n can he made up of numbers which, divided by 3, leave a remainder 2.

1t is very easy to shew in how many ways a number can be made
up of a given number of numbers, if different orders count as different
ways. Suppose, for instance, we would know in how many ways 12
can be thus made of 7 numbers. If we write down 12 units, there
are 11 intervals between unit and unit. There is no way of making
12 out of 7 numbers which does not answer to distributing 6 partition-
marks in the intervals, 1 in each of 6, and collecting all the units
which are not separated by partition-marks, Thus, 1+1+3+2+1+2+2,
which is one way of making 12 out of 7 numbers, answers to

[ofom ]

lll 11
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in which the partition-marks come in the 1st, 2d, sth, 7th, 8th, and
1cth of the 11 intervals. Consequently, to ask in how many ways 12
can be made of 7 numbers, is to ask in how many ways 6 partition-
marks can be placed in 11 intervals; or, how many combinations or
selections can be made of 6 out of 11. The answer is,

11x10%9x8x7%6

2x2X3x4X5%6 or 462.
Let us denote by m, the number of ways in which m things can
be taken out of n things, so that m, is the abbreviation for

n—1 n—2 n—m+1
. ... 88 far as

nx

Then m, also represents the number of ways in which m+1 numbers
can be put together to make n+1. What we proved above is, that 6,,
is the number of ways in which we can put together 7 numbers to make
12. There will now be no difficulty in proving the following :

2% = I+Igt2at3necee. 17y

In the preceding question, o did not enter into the list of numbers
used. Thus, 3+1+0+0 was not considered as one of the ways of putting
together four numbers to make 5. But let us now ask, what is the number
of ways of. putting together 7 numbers to make 12, allowing o to be
in the list of numbers. There can be no more (nor fewer) ways of doing
this than of putting 7 numbers together, among which o is not included,
to make 19. Take every way of making 12 (o included), and put on
1 to each number, and we get a way of making 19 (o not included).
Take any way of making 19 (o not included), and strike off 1 from
each number, and we have one of the ways of making 12 (o included).
Accordingly, 6,, is the number of ways of putting together 7 numbers
(o being allowed) to make 12. And (m—1)aym—1 i8 the number of
ways of putting together m numbers to make n, o being included.

This last amounts to the solution of the following: In how many
ways can n counters (undistinguishable from each other) be dietributed
into m boxes? And the following will now be easily proved: The
number of ways of distributing ¢ undistinguishable counters into & boxes

T
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is (3—1)s40-1, if any box or boxes may be left empty. But if there
must be 1 at least in each box, the number of ways is (b—1)e; if
there must be 2 at least in each box, it is (3—1)e—s—13 if there must
be 3 at least in each box, it is (b—1)c—2—1; and so on.

The number of ways in which m odd numbers can be put together
to make #, is the same as the number of ways in which m even numbers
(o included) can be put together to make n—m ; and this is the number
of ways in which m numbers (odd or even, o included) can be put
together to make i(n—m). Accordingly, the number of ways in which
m odd numbers can be put together to make n is the same as the
number of combinations of m—1 things out of —(n—m)+m— 1, or
-(Mm)—r. Unless # and m be both even or both odd, the problem
is evidently impossible. .

There are curious and useful relations existing between numbers of
combinations, some of which may readily be exhibited, under the simple
expression of ms to stand for the number of ways in which m things
may be taken out of n. Suppose we have to take § out of 12: Lot
the 12 things be marked a, B, ¢, &c. and set apart one of them, a.
Every collection of 5 out of the 12 either does or does not include a.
The number of the latter sort must be 5,,; the number of the former
sort must be 4, ,, since it is the number of ways in which the other four
can be chosen out of all but . Consequently, 5,, must be 5,,+4,,,
and thus we prove in every case,

My = Mp_1+(M—1)a1
0a 8nd n, both are 1; for there is but one way of taking mone, and
but one way of taking a/l. And again m, and (n—m)a are the same
things. And if m be greater than m, ms is o; tor there are no ways of
doing it. We make one of our preceding results more symmetrical if
we write it thus,

2% = Opt Tt 2ateee. +1n

If we now write down the table of symbols in which the m+1th



ON COMBINATIONS. 207

o 1 2 3, & number of the nth row represents m,, the

1|0, 1, 2 3, &
2 |0g 1 25 3g, &c. 8ee it proved above that the law of for-

3105 15 25 3, &c.  mation of this table is as follows: Eack
&e.|&e. &e. &e. &e, number is to be the sum of the number
above it and the number preceding the number above it. Now, the
first row must be 1, 1, 0, 0, 0, &c. and the first column must te 1,1, 1, 1,
&c. 80 that we have a table of the following kind, which may be carried

as far as we please :

number of combinations of m out of n, we

o 1 2 3 4+ 5 6 7 8 9 10
1)1 1 o o o o o o o o o
2fr 2 1 o o o o o o o o
3|1 3 31 o o (o] o o [+] o
41 4 6 4 1 o o o o o o
5(1 5§ 10 10 3§ o o o o o
6lr 6 15 20 15 6 1 o o ¢ o
7{r 7 21 35 35 21 7 o o o
8|1 8 28 56 70 56 28 8 1 o o
9|1 9 36 84 126 126 84 36 9 1 o

10/1 10 45 120 210 252 210 120 45 10 I

Thus, in the row 9, under the column headed 4, we see 126, which
is 9x8x7x6+(1x2x3%4), the number of ways in which 4 can be chosen
out of 9, which we represent by 44.

If we add the several rows, we have 1+1 or 2, 1+2+1 or 23, next
14+3+3+1 or 2%, &c. which verify a theorem already announced ; and the
luw of formtation shews us that the several columns are formed thus :

11 121 1331
11 121 1331
121 1331 14641, &ec.

so that the sum in each row must be double of the sum in the preceding.
But we can carry the consequences of this mode of formation further.
If we make the powers of 1+z by actual algebraical 1nultiplication, we
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seo that the process makes the same oblique addition in the formation

of the numerical multipliers of the powers ot z.

+2 1422427
1+ I+2
1+ 1+2x+a2®
r+a3 r+22%42®
1+22+22 1+32+32%+28

Here are the second and third powers of 1+z: the fourth, we can tell
beforechand from the table, must be 1+4r+62%+4a%+a%; and so on.
Hence we have

(1+2)® = Out 142 +2, 2%+ 3020+ o0 o s H 712"

which is usually written with the symbols o,, Ia, &¢. at length, thus,

n—1 n—1t n—2
(1+z)* = l+m+nT¢1m 2 ——3——.:‘-&-&0.

This is the simplest case of what in algebra is called the binomial
theorem.  If instead of 1+z we use a+a, we get

(7+a)® = 2™+ 1,02 142,072 34 3,8%2" 3+, .. 40t
We can make the same table in another form. If we take a row of
ciphers beginning with unity, and setting down the first, add the next,

and tben the next, and so on, and then repeat the process with one
step less, and then again with one step less, we have the following:

1 o n o o o o

1 b ¢ 1 1 1 1 1
1 2 3 4 5 6
<
1 3 0 1§
1 4 10 320
1 5 15
1 6

1

In the oblique columns wesee 11, 121, 1331, &c. the same as in
the original table, and formed by the same additions. 1f, before making
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the additions, we had always multiplied by @, we should have got the
several components of the powers of 1+a, thus,

I [ o o o

1 a a3 a? a*

I 20 3a? 4a®

t 3a 6a*

1 44

H
where the oblique columns 1+a, 1+2a+a% 1+3a+3a%+a3 &c., give the
several powers of 1+a. If instead of beginning with 1, o, o, &c. we
had begun with p, o, o, &e. we should have got p, px4a, px6a’, &c.
at the bottom of the several columns; and if we had written at the
top 2%, 2%, 4%, z, 1, we should have had all the materials for forming
p(&+a)! by multiplying the terms at the top and bottom of each column
together, and adding the results,

Suppose we follow this mode of forming p(a#+a)3+g(z+a)*+r(z+a)+s.

F A 1 2 2 1 x I 1
P o o ° q o o r o s
p pa pat pd g ¢ g3 r o ra

r 2pa  3pa® q 2qa r

p 3pa g

p

PpP+3pard+ipadr+patrgaieqar+qadtravrats
= pa*+(3patq)e’ +(3pattagqatr)etpatrgaiirars
Now, observe that all this might be done in one process, by entering
¢ ryand s under their proper powers of z in the first process, as follows

8 28 z 1

P g r s

P patg pat+qatr pairqairase
P avatq 3pa*+2qa+»

P 3patg

p

2
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This process* is the one used in Appendix XI., with the slight altera-
tion of varying the sign of the last letter, and makirg subtractions
instead of additions in the last column. As it stands, it is the most
convenient mode of writing x+a instead of x in a large class of alge-
braical expressions. For instance, what does 2a%+a%+34%+72+9 become
when x+§ is written instead of # ? The expression, made complete, is,

28+ 1A o + 3+ 7% + 9
1 o 3 7 9

2 1x 55 278 1397 6994
2 21 160 10738 6787

2 31 315 2653

2 41 520

2 51

Answer, 225+ 5124 5200°+265327+67872+6994

APPENDIX XI.

ON HORNER’S METHOD OF SOLVING EQUATIONS,

Taz rule given in this chapter is inserted on account of its excellence
as an exercise in computation. The examples chosen will require but
little use of algebraical signs, that they may be understood by those who
know no more of algebra than is contained in the present work.
To solve an equation such as
22 +a%— 32 = 416793,
or, as it is usually written,
22%4+2%~34—416793 = o,

we must first ascertain by trial not only the first figure of the root, but
also the denomination of it: if it be a 2, for instance, we must know
whether it be 2, or 20, or 200, &e., or *2, or *02, or ‘002, &c. This must

® The principle of this mode of demonstration of Horner’s method was stated in
Young’s Algebra (1823), being the earliest elementary work in which that method
was given.
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be found by trial ; and the shortest way of making the trial is as follows:
Write the expression in its complete form. In the preceding case the

form is not complete, and the complete form is
22'+ox’+127—30—416793.

To find what this is when 2 is any number, for instance, 3000, the best
way i3 to take the first multiplier (2), multiply it by 3000, and take in
the next multiplier (o), multiply the result by 3000, and take in the
next multiplier (1), and so on to the end, as follows:

2%3000+0 == 6000 ; 600cx3000+1 = 18006001
18000001%3000—3 = §4000002997

54000002997%3000~416793 = 162000008574207

Now try the value of the above when # = 30, We have then, for the
steps, 60 (2x30+0), 1801, 54027, and lastly,
1620810—416793,

or ¥ = 30 makes the first terms greater than 416793. Now try 2= 20
which gives 40, 801, 16017, and lastly,

320340—416793,
or & == 20 makes the first terms less than 416793. Between 20 and 30,
then, must be a value of # which makes 2a4+s*—3¥ equal to 416793.
And this is the preliminary step of the process.

Having got thus far, write down the coefficients +2, 0, +1, —3, and
—416793, each with its proper algebraical sign, except the last, in which
let the sign be changed. This is the most convenient way when the
last sign is —. But if the last sign be +, it may be more convenient
to let it stand, and change all which come before. Thus, in solving
2’—122+1 = 0, we might write

-1 o 412 X

whereas in the instance before us, we write
42 o 41 =3 416793

Having done this, take the highest figure of the root, properly named,
which i8 2 tens, or 2o, Begin with the first column, multiply by 20,
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and join it to the number in the next column; multiply that by 20,
and join it to the number in the next column ; and so on. But when you‘
come to the last column, subtract the product which comes out of the
preceding column, or join it to the last column after changing its sign.
When this has been done, repeat the process with the numbers wiuca
now stand in the columns, omitting the last, that is, the subtracung
step ; then repeat it again, going only as far as the last column but two,
and so on, until the columns present a set of rows of the following ap-
Ppearance :

a 14 ¢ d e
S 9 & i
k 4 .
n o

=

to the formation of which the following is the key :
f=120a+b, g=20fto, h=2094d, i=e~20h,
k =20a+f, I=20k+g, m=z20l+h,
n =206+k, o0=20m+l,
P = 20a+n.
We call this Horner's Process, from the name of its inventor. The
result 18 as follows:

2 ) 1 —3 416793 (20
40 8o1 16017 96453
80 2401 64037
120 4801

We have now before us the row

. 2 160 4801 64037 96453
which furnishes our means of guessing at the next, or units’ figure of the
root,

Call the last column the dividend, the last but one the divisor, and
all that come before anlecedents. See how often the dividend contains
the divisor; this gives the guess at the next figure. The guess is a true
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one,* if, on applying Horner’s process, the divisor result, augmented as
it is by the antecedent processes, still go as many times in the dividend.
For example, in the case before us, 96453 contains 64037 once ; let ¥
be put on its trial. Horner's process is found to succeed, and we have
for the second process,

2 160 4801 64037 96453
162 4963  69oc0 27453
164 5127 74127
166 5293
168

As soon as we come to the fractional portion of the root, the process
assumes a moret methodical form.

The equation being of the fourth degree, annex four ciphers to the
dividend, three to the divisor, fwo to the antecedent, and one to the
previous antecedent, leaving the first column as it is ; then find the new
figure by the dividend and divisor, as before,} and apply Homer’s pro-
cess, Annex ciphers to the results, as before, and proceed in the same
way. The annexing of the ciphers prevents our having any thing to do
with decimal points, and enables us to use the quotient-figures without
paying any attention to their Jocal values. The following exhibits the
whole process from the beginning, carried as far as it is here intended
to go before beginning the contraction, which will give more figures, as
in the rule for the square root. The following, then, is the process as

far as one decimal place :

* Various exceptions may arise when an equation has two nearly equal roots.
But I do not here introduce algebraical difficulties; and a student might give himself
a hundred examples, taken at hazard, without much chance of lighting upon one
which gives any difficulty.

+ This form might be also applied to the integer portions; but it is hardly needed
in such instances as usually occur. See the article Involution and Evolution in the

Supplement to the Penny Cyclopzdia.
1 After the second step, the trial will rarely fail to give the true figure.
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2 o 1 =3 416793(213
40 8or 16017 96453
50 2401 64037 27453
120 4801
690co 47339778
160 —_— A
_ 4963 74127000
16,
4 52930 97348376
166 g —
1680 53435
— 539434
1686 544528
1692
1698
1704

If we now i)egin the contraction, it is good to know beforchand on
what number of additional root-figures we may reckon, We may be
pretty certain of having nearly as many as there are figures in the divisor
when we begin to contract—one less, or at least two less. Thus, there
being now eight figures in the divisor, we may conclude that the con-
traction will give us at least six more figures. To begin the contraction,
let the dividend stand, cut off one figure from the divisor, two from the
column before that, three from the one before that, and so on. Thus,
our contraction begins with

|oooz 1|7°4 5445(28 77348376 47339778

The first column is rendered quite useless here. Conduct the process
a8 before, using only the figures which are not cut off. But it will be
better to go as far as the first figure cut off, carrying from the second
figure cut off. 'We shall then have as follows :

b gl mek VRRC
54555 7767570|6
5465)7 78003648
54759

At the next contraction the column 1|704 becomes |001704, and 18 quite
useless. The next step, separately written (which is not, however, neces-
sary in working), is



HORNER'S METHOD OF S8OLVING FQUATIONS. 215

54[759 780036148 734354 (0

Here the dividend 734354 does not contain the divisor 780036, and we,
therefore, write o as a root figure and make another contraction, or begin
with

|54759 78003|648 734354(9
780085 32277
7801314

At the next contraction the first column becomes |0054759, and is quite
useless, so that the remainder of the process is the contracted division.

7801]34)32277(4137
1072
292
58
3
and the root required is 21°36094137.
I now write down the complete process for another equaticn, one
root of which lies between 3 and 4 : it is

2—102+1 =0

b4 ) —10 —1(3°1110390520730990796
3 ~1 2000
6 1700 209000
9o 1791 19769000
oyl 1883c0 743369000000
92 189231 172311710273C00
9 30 19016300 ) 991247447681
9 31 19025631 39462875420
932 19034963c0 0 0 1391491559
9330 1903524299 © 9 58993123
9331 1903552298 2 700 1886047.
9332 1903560698 0 § 9|1 172835
933300 1903569097 8 5/613 1515
933303 1903569144 5 2|2 183
933306 1903569191 1]8[8 12
9 33 30 90 1903569193 o6 1
9 33|30[99 190356919493
9 33{31/08

l°9|33 31(17

The student need not repeat the rows of figures so far as they come
under one another : thus, it is not necessary to repeat 190356. But he
must use his own discretion as to how much it would be safe for him

to omit. I have set down the whole process here as a guide.
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The following examples will serve for exercises

L. 22’~1000~7=0 &= 710581133,

2, #'+8’+2% 2 = 6000  x = 8'531437726,

8. P+31%4r—10=0 = 1895694916504

4. ’+1002°—50r—2173 = 0 & = 4°582246071058464.

5. ¥2 = 1°259921049894873164767210607278.*

6, #'—62=100 2= 5071351748731,

7. 4203430 = 300 & = 5'95525967122398.

8. #+o=1000 &= 9'96666679.

9. 270002%+270002 = 26999999 & = 9°9666666 ... ..
10. #’~6r =100 &= 50713517487,
11, #%—4a*+70°~863 =0 2= 45195507,
12, #—20zr+8 =0 2 = 4'66003769300087278.
13. P42%+r—10=0 &= 1'737370233.
14, 29—462*—36x+18 =0 & = 46°7616301847, or x = "34716231¢y5.
15, #+462%~360—18 =0 & = 1'1087925037.
16. 89912°—1628382%+7462714~81000=0 &="1112223334445550sar
17. 7292°—4862%+992—6 =0 & ="I1I11..., 0T “22224000y OF *33334rus
18. 22%4+32%4a = 500 &= 5°93481796231515279,
19, P+25¥42—150 =0 & = 4'668409014554198325374299120170589¢p.
20. #+2 =a2%+500 2 = 8'24096355814485835269613.
21, #’+22%+3r—10000= 0 & = 20'85290§526009.
22, 2P—4r—2000=0 & = 4581400362,
23. 102°—33r*—110—100 =0 x = 4°146797808584278785.
24, 2*+o3+a%+a = 127694 & = 18:64482373095.
25. 102°+1120%+122 = 100000 » =21'1655995554508805.
26. 2¥+x =13 & =2°209753301208849.
27, P+a*—qr—1600 =0 &= 11482837157,
28, *—2x =3 ,

& = 2°094551481542326591482386540579302963857306105628239.

* The solution of 2340124 0x—=3 = 0.
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29. r*—8cx’+244°~62—80379639 = o r = 123*

30. 2’~2422°-63152+2577096 =0 2 = 123.*

8l. 22'~38%46r—8 =0 &= 1'414213562373095048803.*

32. 2*~194°+1324%-302284200 =0 7 = 1°02804, Or 4, or 6°57653, or
7°19543%.

33. 72'—1123+62% 52 = 21§  » = 2°7064%049385791.F

34, 78462+ 5% +4x¥ 3 =11 & =°770768819622658522379296505.F

35. 424724924 +62P+55%+3% = 792

7=2"05204217687960536 521404 3401281201973460275599545 5417242 14T

36. 2187a%—24308°4+9452°~15024+8 =0  z='1I1II..., Or ‘2222...., OF

*3333 0000 O "4444 .0

APPENDIX XII.

RULES POR THE APPLICATION OF ARITHMETIC TO GEOMETRY,

Tuke student should make himself familiar with the most common terms
of geometry, after which the following rules will “present no difficulty.
In them all, it must be understood, that when we talk of multiplying
one line by another, we mean the repetition of one line as often as
there are units of a given kind, as feet or inches, in another. In any
other sense, it is absurd to talk of multiplying a quantity by another
quantity. All quantities of the same kind should be represented in
numbers of the same unit; thus, all the lines should be either feet
and decimals of a foot, or inches and decimals of an inch, &c. And
in whatever unit a length is represented, a surface is expressed in the
corresponding square units, and a solid in the corresponding cubic units.
This being understood, the rules apply to all sorts of units.

To find the area of a reccangle. Multiply together the units in

* These examples are taken from a paper on the subject, by Mr. Peter Gray, in
the Mechanics’ Magazine.

+ These examples are taken from the late Mr. Peter Nicholson’s Essay on Invo-
lution and Evolution.
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two sides which meet, or multiply together two sides which meet ; the
product is the number of squar}e units in the area. Thus, if 6 feet and
§ feet be the sides, the area is 6.5, or 30 square feet, Similarly, the
area of a square of 6 feet long is 6x6, or 36 square feet (234).

To find the area of a parallelogram. Multiply one side by the per-
pendicular distance between it and the opposite side; the product is the
area required in square units,

To find the area of a trapesium* Multiply either of the two sides
which are not parallel by the perpendicular let fall upon it from the
middle point of the other,

To find the area of a triangle. Multiply any side by the perpen-
dicular let fall upen it from the opposite vertex, and take half the
product, Or, halve the sum of the three sides, subtract the three sides
severally from this half sum, multiply the four results together, and find
the square root of the product. The result is the number of square
units in the area; and twice this, divided by either side, is the perpen-
dicular distance of that side from 1ts opposite vertex.

To find the radius of the internal circle which touches the three sides
of a triangle. Divide the area, found in the last paragraph, by half the
sum of the sides.

Given the two sides of a right-angled triangle, to find the hypothenuse.
Add the squares of the sides, and extract the square root of the sum.

Qiven the hypothenuse and one of the sides, to find the other side.
Multiply the sum of the given lines by their difference, and extract the
square root of the product.

To find the circumference of a circle from its radius, very nearly.
Multiply twice the radius, or the diameter, by 3'1415927, taking as
many decimal places as may be thought necessary. For a rough com-
putation, multiply by 22 and divide by 7. For a very exact computation,
in which decimals shall be avoided, multiply by 355 and divide by 113,
See (131), last example.

To find the arc of a circular sector, very nearly. knowing the radius

* A four-sided figure, which has two sides parallel, and two sides not parallel.
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and the angle. Turn the angle into seconds,® multiply by the radius,
and divide the product by 206265. The result will be the number of
units in the arc.

To find the area of a circle from its radius, very nearly. Multiply
the square of the radius by 3°1415927.

To find the area of a sector, very nearly, knowing the radius and the
angle. Turn the angle into seconds, multiply by the square of the
radius, and divide by 206265x2, or 412530,

To find the solid content of a reclangular parallelopiped. Multiply

together three sides which meet : the result is the number of cubic units

required. If the figure be not rectangular, multiply the area of one
of its planes by the perpendicular distance between it and its opposite
plane,

To find the solid content of a pyramid. Multiply the area of the
base by the perpendicular let fall from the vertex upon the base, and
divide by 3. .

To find the solid conlent of a prism. Multiply the area of the base
by the perpendicular distance between the opposite bases.

To find the surface of a sphere. Multiply 4 times the square of the
radius by 3°1415927.

To find the solid content of a sphere. Multiply the cube of the radius
by 3°141 5927xi', or 4:18879. ‘

To find the3 surface of a right cone. Take half the product of the
circumference of the base and slanting side. To find the solid content,
take one-third of the product of the base and the altitude.

To find the surface of a right cylinder. Multiply the circumference
of the base by the altitude. To find the solid content, multiply the area
of the base by the altitude.

The weight of a body may be found, when its solid content is known,
if the weight of one cubic inch or foot of the body be known. Bus it

* The right angle is divided into 90 equal parts called degrees, each degree into
60 equal parts called minutes, and each minute into 60 equal parts called seconds.
Thus, 20 15’ 40" means 2 degrees, 15 minutes, and 40 seconds. )
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is usual to form tables, not of the weights of a cubic unit of different
bodies, but of the proportion which these weights bear to some one
amongst them. The one chosen is usually distilled water, and the
proportion just mentioned is called the specific gravity. Thus, the
specific gravity of gold is 19°362, or a cubic ot of gold is 19°362 times
as heavy as a cubic foot of distilled water. Suppose now the weight of
a sphere of gold is required, whose radius is 4 inches. The content of
this sphere is 4x4x4x4°1883, or 268:0832 cubic inches; and since, by
(217), each cubic inch of water weighs 252°458 grains, each cubic inch
of gold weighs 252°458x19°362, or 4888-091 grains; so that 2680832
cubic inches of gold weigh 268-0832x4888'091 grains, or zz7-:- pounds
troy nearly. Tables of specific gravities may be found in most works
of chemistry and practical mechanics.

The cubic foot of water is go8:8488 troy ounces, 75°7374 troy pounds,
997°1369691 averdupois ounces, and 62°3210606 averdupois pounds.
For all rough purposes it will do to consider the cubic font of water as
being 1000 common ounces, which reduces tables of specific gravities to
common terms in an obvious way. Thus, when we read of a substance
which has the specific gravity 4°1772, we may take it that a cubic foot
of the substance weighs 4117 ounces. For greater correctness, diminish
this result by 3 parts out of a thousand.

THE END.
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