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Xv

GENERAL PREFACE

This two-volume text-book on Pure Mathematics has been designed
to cover completely the requirements of the revised regulations for the
B.Sc. General Degree (Part I) of the University of London. It presents
a serious treatment of the subject, written to fill a gap which has long
been evident at this level. The author believes that there is no other
book addressed primarily to the General Degree student which covers
the ground with the same self-contained completeness and thorough-
ness, while also indicating the way to further progress. On the
principle that ‘ the correct approach to any examination is from above’,
the book has been constructed so that those students who do not
intend to take the subject Mathematics in Part IT of their degree
course will find included some useful matter a little beyond the
prescribed syllabus (which throughout has been interpreted as an
examination schedule rather than a teaching programme); while
those who continue with Mathematics will have had sound prepara-
tion. As it is the author’s experience that many students who begin
a degree course have received hasty and inadequate training, a com-
plete knowledge of previous work has nof been assumed.

Although written for the purpose just mentioned, this book will
meet the needs of those taking any course of first-year degree work in
which Pure Mathematics is studied, whether at University or Tech-
nical College. For example, most of the Pure Mathematics required
for a one-year ancillary subject to the London Special Degrees in
Physics, Chemistry, ete. is included, and also that for the first of the
two years’ work ancillary to Special Statistics. The relevant matter
for Part I (and some of Part II) of the B.Sc. Engineering Degree is
covered. The book provides an introduction to the first year of an
Honours Degree in Mathematics at most British universities, and
would serve as a basis for the work of the mathematical specialist in
the Grammar School. Much of the material is suitable for pupils
preparing for scholarships in Natural Sciences.

By a natural division the subject-matter falls conveniently into two
volumes which, despite occasional cross-references, can be used
independently as separate text-books on Calculus (Vol. I) and on
Algebra, Trigonometry and Coordinate Geometry (Vol. IT). According
to the plan of study chosen, the contents may be dealt with in turn,
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or else split up into two or even three courses of reading in Calculus,
Algebra-Trigonometry and Geometry taken concurrently. Throughout
it has been borne in mind that many students necessarily work without
much direct supervision, and it is hoped that those of even moderate
ability will be able to use this book alone.

A representative selection of worked examples, with explanatory
remarks, has been included as an essential part of the text, together
with many sets of ‘exercises for the reader’ spread throughout each
chapter and carefully graded from easy applications of the bookwork
to ‘starred’ problems (often with hints for solution) slightly above the
ultimate standard required. In a normal use of the book there will
not be time or need to work through every ‘ordinary’ problem in
each set; but some teachers welcome a wide selection. To each chapter
is appended a Miscellaneous Exercise, both backward- and forward-
looking in scope, for revision purposes. Answers are provided at the
end of each volume. It should be clear that, although practice in
solving problems is an important part of the student’s training, in no
sense is this a eram-book giving drill in examination tricks. However,
those who are pressed for time (as so many part-time and evening
students in the Technical Colleges unfortunately are) may have to
postpone the sections in small print and all ‘starred’ matter for a
later reading.

Most of the problems of ‘examination type’ have been taken from
Final Degree papers set by the University of London, and I am grate-
ful to the Senate for permission to use these questions. Others have
been collected over a number of years from a variety of unrecorded
(and hence unacknowledged) sources, while a few are home-made.

It is too optimistic to expect that a book of this size will be com-
pletely free from typographical errors, or the Answers from mathe-
matical ones, despite numerous proof readings. I shall be grateful if
readers will bring to my notice any such corrections or other sug-
gestions for possible improvements.

Finally, I thank the staff of the Cambridge University Press for
the way in which they have met my requirements, and for the ex-

cellence of their printing work.
F. GERRISH
DEPARTMENT OF PHYSICS AND MATHEMATICS
THE TECHNICAL COLLEGE
KINGSTON-UPON-THAMES




PREFACE TO VOLUME I

This volume deals with Calculus and some of its applications to topics
like areas and arc-lengths, centroids and moments of inertia, and the
geometry of plane curves.

The discursive introductory Chapter 1, which assembles ideas of
use in the sequel, should help the reader to decide what he is expected
to know from previous work. In the past he has probably regarded
Mathematics as a collection of techniques for solving ‘problems’;
now he has to be persuaded that there is a deeper aspect of the subject
—a system of thought as well as a process of action. Although apprecia-
tion of the need for rigour comes only gradually, yet the ideas pre-
sented in Chapter 2 are fundamental to a genuine understanding of
Calculus. The third chapter employs these ideas in a re-examination of
the process (here called derivation) of finding the derivative of a
function, and many familiar results are systematically proved from
the definitions without appeal to graphical appearances.

The remaining chapters in this volume need not be read in numerical
order. For example, the early part of Chapter 9 on partial derivatives
may well follow Chapter 3; the rest of it can be read whenever required.
Further, only Part (A) of the long chapter on integration is necessary
in order to start differential equations (Chapter 5), and Part (B) can
be taken later as revision.

In treating linear differential equations with constant coefficients,
a direct method for finding the complementary function has been
given as an alternative to the usual ‘trial exponentials’; complex
numbers are easily avoided until the formal section on the symbolic
use of D for calculating a particular solution. However, the customary
methods can be employed without inconvenience by teachers who
prefer them. It may be felt, particularly by those who favour use of
the now fashionable Laplace transform (which is not considered in
this book), that too much has been said about symbolic D; but the
author’s teaching experience does not confirm this.

The early parts of Chapters 6 and 7 will undoubtedly be found
difficult, but they contain important matters which will repay careful
study. Chapter 6leads up to Taylor’s theorem, a result so often merely
stated with the remark that a proof is beyond the reader’s range; the
present treatment may dispel this illusion. (The corresponding
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infinite series finds its natural place in Volume II.) Chapter 7 opens
with a descriptive introduction to Riemann’s theory of the definite
integral. No rigorous approach can be made in a book of this kind,
but it is essential for the student to understand definite integration
as a limiting summation of contributions from elements, and be able
to use it thus,

Chapter 8 continues the geometrical applications, and concludes
with a discussion of ‘curvature’ and ‘envelopes’ more comprehensive
than is usual at this level.



REFERENCES AND ABBREVIATIONS

Tn a decimal reference such as 12.73 (2),
12 denotes chapter (Ch. 12),
12.7 denotes section,
12.73 denotes sub-section,
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(ii) refers to equation (ii) in the same section.

ex. (ii) refers to worked example (ii) in the same section.
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Ex. 12 (b), no. 6 refers to problem number 6 in Exercise 12 (B).
wo means with respect to.

In the text, matter in small type (other than ‘ordinary’ worked
examples) and in ‘starred’ worked examples is subsidiary, and may be
omitted at a first reading if time is short.

In an exercise
no. 6 refers to problem number 6 in the sume Exercise.

a ‘starred’ problem either depends on matter in small type
in the text, or on ideas in a
later chapter;

or  is above the general standard of
difficulty.
matter in [...] is a hint for the solution of a problem.

matter in (...) is explanatory comment.




1

REVIEW OF SOME FACTS,
DEFINITIONS AND METHODS

1.1 Numbers, variables and functions

1.11 Numbers

When we speak of a ‘number’, our meaning depends on the stage
which we have reached in the study of mathematics. In early arith-
metic we are concerned with the ‘natural numbers’ 1,2,3,..., to-
gether with the number 0; later we deal with fractions or ‘rational
numbers’, and learn how to express a given fraction as a decimal
(either terminating or recurring) and conversely. When the need has
arisen in algebra, we meet ‘signed numbers’ like +2, —5, —2.

However, we soon find that these types of number are not adequate
for all mathematical purposes. For example, the theorem of Pytha-
goras shows that a right-angled isosceles triangle whose equal sides
are of unit length has hypotenuse of length z units, where 22 = 2. It
is easy to prove (see below) that x cannot be a rational number; so
that, in particular, it cannot be expressed as a decimal which ter-
minates or recurs. The length of the hypotenuse therefore corresponds
to a new kind of number, which is denoted by /2 and called an
‘irrational number’.

Suppose that the number z satisfying z? = 2 were rational; then it could be
written in the form = = p/q where p, ¢ are natural numbers. Without loss of
generality we may assume that the fraction p/q is already in its lowest terms,
i.e. that p and q have no common factor. Then p2/g® = 2, so that p? = 2¢%, and
hence p?is even (i.e. divisible by 2). Therefore p must be even, say p = 2r. Thus
4r? = 2¢%, ¢ = 22, and by the same argument, ¢ must be even, say g = 2s.
This shows that p, ¢ have the common factor 2, contradicting the hypothesis.
Hence x cannot be expressed in the form p/g, i.e. it is not a rational number.

It is helpful to represent numbers geometrically. Take a line (for
convenience drawn ‘horizontally’ across the page) and a point O on it.
Starting from O, there are two directions in which we could proceed
along the line; let us agree (as in all graphical work) to take the right-
hand one as positive. Choose a point I on this part, and let OI be taken
as the unit of length. Then all rational numbers can be represented
uniquely by points of the line. Our remarks above about /2 can now

I GPMI



2 FACTS, DEFINITIONS AND METHODS [1.11

be expressed as follows: if we construct a right-angled triangle with
sides of length OI, and lay off its hypotenuse along the line in fig. 1,
with one end at O, then the other end will not fall on any point of the
line which has already been labelled with a rational number. In other
words, although every rational number can be represented by a point
of the line, not every point on the line corresponds to a rational number.
To complete the correspondence between points and numbers we have
to admit irrational numbers (i.e. those that are not rational).

0 I
-3 -2 -1 0 #3 1 2 3
Fig. 1 '

The term ‘irrational number’ includes all numbers like /2, ¥5, ...
(called surds) which arise from the need to solve equations like 2% = 2,
23 = B, ... whose solutions cannot be expressed rationally. However,
it includes more than these: the number 77, met at an early stage as the
length of the circumference of a circle with unit diameter, and accepted
on trust, is an example of an irrational number which is not a surd
(this can be proved, but not easily); others will be met in this book.
In practice the existence of irrational numbers causes no difficulty if
we are able to obtain approximations as near to them as we please by
means of rational numbers. For example, the square root process can
be used to express /2 approximately as a decimal to as many places
asrequired; experiments with circular objects show that  lies between
3-14 and 3-15, and later theoretical work enables us (12.74) to obtain
a decimal approximation as accurate as we please. It is easy to see that
between any two rational numbers there lies another rational number,
and therefore infinitely many rational numbers; and it can be shown
(but not here) that between any two rational numbers lies also an
irrational one. Thus the ‘rational points’ of the line are packed in-
definitely closely, yet ‘between’ any two of these lies an ‘irrational
point’.

All the sorts of number mentioned above are included under the
title real number;t so that by ‘number’ we may mean

(i) tntegers (the numbers 0, +1, +2,...);

(ii) rational numbers (those which can be expressed in the form p/q
where p, g are integers and ¢ + 0; the integers are included, since any
integer p can be written p/1);

+ The reason for this curious name will appear in 13.12.
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(ili) ¢rrational numbers (these consist of all the real numbers which
are not rational, e.g. /2, ¥5,3 — /6, 7).

We shall not attempt to discuss further the concept of ‘real number’,
a matter for a book on the foundations of mathematics. Here we shall
be concerned with developing the subject from approximately the
stage which the reader has attained prior to beginning General Degree
work. So we continue to use numbers with the confidence which we
have shown in the past, noting the types of number mentioned in
(i)—(iii) above (especially the need for type (iii)), to which we shall refer
in the sequel.

1.12 Constants and variables

In algebra, letters are used to denote unspecified numbers. When
using them we learn to think of some (called constants) as representing
the same number throughout the work, while others (called variables)
are regarded as successively representing many numbers (possibly in
some limited range). In some contexts the variables may be restricted
to take integral values only, or rational values only; in others they may
range over the real numbers.

All the values of z for which a < z < b form what is called a closed
interval. It would be represented in fig. 1 by the segment between a
and b, end-points included. When the end-points are excluded, we
obtain the open interval a < x < b.

1.13 Functions

Throughout mathematical work we meet the situation of one
variable being dependent on another. For example, in the kine-
matics of straight line motion, the distance moved may depend on the
time; in a graph of y against x, the ordinate y depends on the abscissa z;
the volume of a gas depends on the pressure to which it is subjected.
In all cases we understand that, when a definite value for one variable
is assigned, then one or more definite values for the other are deter-
mined. We do not imply that every assignment of the first variable
must give rise to a value of the other; thus there is no pressure which
will produce a negative volume. The choice may therefore be re-
stricted to those values for which the variable to be calculated has
a meaning.

The variable whose value we choose to.select is called the indepen-
dent variable, and the one whose value or values are determined
thereby is called the dependent variable. The relation is expressed by

I-2
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saying that the dependent variable is a function of the independent
variable. If  is the independent and y the dependent variable, the
reader will know that we write this general relationship as y = f().
Thus f(x) denotes some (unspecified) variable whose value depends
on that of z, much in the way that x denotes some (unspecified)
number. When we need to consider more than one function of z in the
same piece of work, we naturally use different functional symbols
such as g(x), F(x), ¢(z), ete.

Although elementary work is concerned with functions of one
independent variable, yet many examples arise in which several
independent variables are present. For instance, the volume of a right
circular cone depends on both the radius and the height. In general,
if ,y,2, ... are independent variables and » depends on them, we
write u = f(x,¥, 2, ...) to express this functional relationship.

In elementary work the relationship between dependent and in-
dependent variables is almost always expressed by a mathematical
formula (valid perhaps over a limited range). However, the general
concept of ‘function’ is wider than that of ‘formula’; all that is
necessary is a rule to relate the two variables. Thus one could define
y as a function of x as follows:

if x is prime, then y = 0; if x is not prime, then y = 1.

Further, a function may need more than one formula to specify it;
e.g. the function whose graph is shown in fig. 2 would have to be
defined as

y=0 if 2z>1 orif z<-1,
y=1+z if —1<x<0,

4y
1

-1 0 1 x

Fig. 2

In this book we shall be concerned only with functions expressible by
one or more mathematical formulae.




1.14] FACTS, DEFINITIONS AND METHODS 5

1.14 The function |x|

The symbol ||, called the modulus, absolute value, or numerical
value of x, denotes the value of x regardless of sign. Thus

T if z>0, Ay
|z = . '
—x if <0,

Its graph is shown in ﬁg 3. The

properties
Iwyl = || |y| _ 0 Y
and |_ai| (y + O) Fig. 3
||
are easily verified. _
The important result .
P Je+9] < ol + o] ()

(sometimes called the triangle inequality, for a reason which will be
clear in 13.33) can also be verified from the above definition.t For
if both x and y are positive, each side reduces to z+y; if both are
negative, each side is —x —y; if 2, y have opposite signs, say z < 0
and y > 0, then |z+y| < || +|y].

By writing x —y instead of z, it follows from (i) that

|x—9)+y| < |z~y|+y],
so le—] > [« - Ju]-
By interchanging x and y, and noting that |y —x| = |z —y]|, we get
2yl > ly| - |=]-
These two results can be combined to give
2=y > ||z - [y]- ' (ii)
Replacing y by —y in (ii) and noting that | —y| = |y| gives
lz+y] > [|=] ~9l]-
Finally, by applying (i) twice we have
lz+y+z| < 2] +y| + |25
and there are similar extensions for any number of variables.

T A neater proof is given in 1.21, ex. (iv).
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1.2 Simple inequalities
1.21 Fundamental results

In elementary mathematics much prominence is given to equations,
but in more advanced work inequalities (statements that one number
is greater or less than another) become of increasing importance.
Some have just been given in 1.14. We state here some principles for
manipulating inequalities; many of these are analogous to those for
equations, but there are important distinctions which should be
noticed.

Therelation a > b (ais greater than b) is equivalent to the statement
that @ — b is positive. We can interpret @ < b (@ is less than b) to mean
either that b > a or that @ —b is negative. The following results are
given for > ; similar ones can be formulated for <.

I If a > b, then a+x > b+ for any number z. (‘We can add or
subtract the same number on both sides of an inequality.’) For

(@ +2z)—(b+2x) = a—b = positive number because ¢ > b.

CoroLLARY. 4 term can be transferred from one side of an inequality
to the other provided that its sign is changed.

For example, if a +b > ¢ +d, then subtraction of b from both sides
gives a > c+d—b.

II. Ifa > b, then ax Z bx according as x Z 0.

For ax—bx = (a—b)x which is positive if z is positive, and is
negative if x is negative.

CororraryY Il (@). If @ > b > 0, then 1/a < 1/b.

Take = 1/ab in II.

CororLLARY 1L (b). Ifa, > b, > O forr=1,2,...,n, then

@10y ...0, > by by...0,.

(‘Inequalities between positive numbers can be multiplied.”) For,
successive applications of II give

Q905 ...Q, > b as0s...0, > bybyas...0, > ... > bby...0,.

Cororrary Il(c). If a > b > 0, then a™ Z b™ according as n Z 0
(where n is rational, and a?/e denotes the positive gth root of a? in the
case when 7 is the fraction p/q with g even).

Proof. If n is a positive integer, the result follows from Corollary
II (b) by putting a, = a, b, = b for each r.
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If » is a positive rational number p/g, then we have ale > bVg;
for a'? < b¥2 would imply @ < b, by applying to this the case just
considered, with » = ¢q. Hence (a¥2)? > (bV/a)»,

If » is a negative rational number —p/q, then since 1/b > 1/a by
Corollary II (a), we can apply the above to this inequality with index
+p/q to give the result.

The above corollaries may be false if some or all of the numbers are
negative. This is easily verified by numerical examples.

III. If a > b and ¢ > d, then a+c > b+d. (‘Inequalities can be
added.’) For

(a+c)—(b+d) = (a—b)+ (c—d) = positive number.
Observe that

(@) inequalities cannot be subtracted: a > b and ¢ > d do not imply
a—c>b—d; for (a—c)—(b~d)= (a—b)—(c—d), which may be
negative;

(b) inequalities cannot be divided: a > b and ¢ > d do not necessarily
imply afc > b/d; e.g. takea = 4,6 =38,¢=2,d = 1.

Examples
(i) If a < b+c and a, b, ¢ are positive, prove

a < b + ¢
1+a 145 1+4¢
We have £>i,
a b+e
1 1
80 . 1+(;>l+b_+c’
1+a 1+4+b+¢
—_—>
a b+e
a < b+c _ b + c < b + c
l14a l+b+c 1+b+c 1+b+c 1+4b l4c

i.e.

(ii) If ay,ay,...,a, are positive numbers whose sum is s, then
(14+a)(1+ay)...(1+a,) > 1+s.
For (1+a))(1+ap) = 1+(a,+a,) +a,a3 > 1+ (a, +ay);
hence  (1+ay)(1+ay) (1+as) > {1+(a; +a,)} (1 +a5) > 1+(a, +a;+ay)

as in the previous step; and so on.
In particular, taking e, = a, = ... = a,, = @, we obtain

(1+a)* >1+na (a> 0, n = positive integer),

a result sometimes called Bernoulli’s inequality.
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(iil) With the notation of ex. (ii),

1
(1=ay) (1=ay) .. (1 =) < 7.

For (1-a)(l+a)=1-at<1,
80 1—a, < 1/(1+a,), and the result follows from ex. (ii).
(iv) Prove that |z +y| < |z|+ |y
From the definition of || (1.14) it follows immediately that

—lz] <z <[]

Similarly —lyl <y <yl
Adding these, — (|| +|y) < z+y < |2|+]y|.
Therefore le+y| < || +]yl

1.22 Arithmetic, geometric, and harmonic means
In this section all letters denote positive numbers.

(1) Given two positive numbers @, b, write

2ab
—_ 1 = = —
A =13}a+d), G@=,(ab), H "

Then 4, @, H are called the arithmetic, geometric, and harmonic means
of a and b. We shall prove that

A > G, where equality occurs only if a = b.
For (,Ja—4/b)? > 0, with = only when a = b; hence
a+b—2,J(ab) > 0, ie. 43>0G.

Since 1/H is the arithmetic mean of 1/a and 1/b, the preceding result
with a, b replaced by 1/a, 1/b shows that G > H.

Examples
If a, b, ¢ are not all equal, prove that
. (1) a?+b24c? > be+ca+ab;
(i) 2(a®+0%+c®) > be(b+c)+cal(c+a)+abla+Db).

Since b24¢? = 2be, ete., result (i) follows by adding. The relation is >,
not >, because in at least one of the three separate inequalities the relation is
certainly >. Alternatively,

a?+b2+c2—bec—ca—ab = 3{(b—c)?+(c—a)?+(a—b)2 > 0.

Also b2 4-¢c2—be = be, 80 b3+ ¢? = be(b + ¢) on multiplying both sides by b+c.
Adding the three such results gives (ii), with > for the same reason as before.
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(2) More generally, if a,, a,, ..., a, are all positive,

ot ... +a, . .. }
A= ai-*-—z_;———'_—” is their arithmetic mean

and G = ¥(a,0a,...a,) is their geometric mean.
Tt is still true that A > @, with equality occurring only when
Ay =0y = ... = a,.

This it the ‘theorem of the means’; the following proof was given by
Cauchy.
By direct calculation,

Applying this type of result twice,

0y ay0,a, < ( 1-2|-a2) (a3-2|-a4) < ( 1+a21-a3+a4)

b

with = occurring in the first place if a, = a, and a, = a,, and in the
second place if a, +a, = a;+a,. Hence, unless a, = a, = a; = a,, we

have
0+ +ag+ag)t
018030 < | =g | .

Similarly, if n is a power of 2, we can prove step by step that,
unless all a’s are equal,
a1+a2+...+an)”. )

alaz...an<( p

If n is not a power of 2, then it lies between two consecutive powers
of 2,8ay 21 < m < 2™ Put k = (@, +ay+... +a,)/n, and apply (i) to
the numbers a,, a,, ..., @, together with the 2™ —n numbers k:

a3+ + ...+, + (2" —n) k}z’" —

QM _.
a0y ... 0,k ”<{ om

2

b

n
™ 010y ...a, < kv = (BTt
n

giving G < 4.
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Examples
(iii) Prove 9a2b%? < (bc+ ca+ ab) (at+b*+c?) if a, b, ¢ are not all equal.
By the theorem of the means applied to be, ca, ab,
3(be+ca+ab) > Y(be.ca.ab) = H(a2bc?).
By the same theorem applied to a4, b4, ¢,
Hat+ bt +ct) > J(atbich).
Multiplying, the result follows.

(iv) If 22+ By = 3 and = > 0, find the greatest value of z3y®.

If x > 0 and y > 0, we can apply the theorem to the five positive numbers
4z, $z, 3z, By, By, getting

Vi(32)® (39)% < $(2z+6y) = ¢
unless §z = $y, in which case < is replaced by =. Hence, provided that z > 0
and y > 0, the greatest value of (3x)% (8y)? is (£)%, and that of 232 is
(B)° @ () = 3/(57.2).
If z > 0 and y < 0, 2%y? takes the same set of values as when y > 0. Hence

the required greatest value is 3%/(57.2). It occurs when %x = 3y; this together
with 224 5y = 3 gives z = &%, ¥y = %.

Exercise 1(a)
1 Find for what values of x
2¢+1
xz—2

1
z—3"
2 If @, b are unequal positive numbers, prove the following:
(i) a®*—a?>a2—a"? (¢ + 1). [Consider left-hand side minus right-hand
gide.]
(ii) @mtr4pmtn > gmpn 4+ gnb™, m and n being positive integers.
3 The two sets a,, @, ..., a,; by, bs, ..., b, of positive numbers are such that

. 1
i —2< <1; (i) -2_:5<

m <& <M(r=1,2,...,m). Prove that
T

b
a,+ag+...+a, ,,/(%%---an)
<biibatogb, M <" \op,0,) <
4 If 1 < r < n, prove 7(n+1—7) = n, and deduce that (n!)? > n=.
5 If @ > 0 and n is a positive integer, prove (1 —a)" < 1/(1+na). [Use 1.21,
ex. (iii).]
In nos. 6, 7, a,, a,, ..., a, are positive numbers whose sum 13 8.
6 If 0<a,<1 (r=1,2,..,n), prove (1—a;)(1—ay)...(1—a,)>1-—s.
[Method of 1.21, ex. (ii).]
7 If s <1, prove (1+a,)(1+ay)...(1+a,) < 1/(1—sg). [1.21, ex. (iii); use
no. 6.]
8 Prove at+bt = 2a%b2, at+bt+ct+dt > 4abed,

and . (a? 4 b2)2 4 (c? +d?)2 = 2(ab + cd)?.
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Also prove at+ b+ ¢t = b2+ c2a? 4+ a?b? = abe(a+b+-c).

o L ca @b
b+c c+a a+b
[(b+c¢)? = 4be, 0 be/(b+c¢) < H(b+c).]

10 (i) Prove (y+z)(z+x)(z+y) > 8zyz, where z, y, 2 are positive.
(ii) If @, b, ¢ are the sides of a triangle, prove that

abc = (b+c—a)(c+a—>b)(a+b—c).

11 Ife > 0andb > 0, prove that the least value of ax +b/x forz > 0is 2./(ab).
12 (i) If=, y are positive, and m, n are positive integers, prove

9 Prove < $a+b+eo).

w"tyﬂ m?ﬂn”
(x+y)mtn = (m+n)ymtn :

(i) If p, q are positive integers, prove

V'
(p+a)*+
[For (i), apply 4 > G to the m numbers z/m together with the » numbers y/n.]

13 If w, z, y, # are all positive and w+z+y+2z = 1, prove wayz® < 1/1728
and find the values of w, x, y, z for which equality is obtained.

14 Find the greatest positive value of a?y3z¢ when

sin?? @ cos??6 <

(1) 22+y2+22=1; (i) 2°+2y3+323 = 1.
[(i) Consider 2%y%z8 and take
a =0y =322 ay=a,=a;=3%y, ag=...=a, = }z2]

*15 Prove that the length of the shortest line which can be drawn to bisect
the area of triangle ABC is ,/(2bc) .sin 34, where 4 is the smallest angle.

1.3 Quadratic functions and quadratic inequalities

1.31 Sign of a quadratic function

We consider the quadratic function y = ax?+bdx+c. The reader
will be familiar with the general method of solving the corresponding
quadratic equation a4+ bz 4c = 0
by ‘completing the square’, and will know how the sign of b2—4ac
decides the nature of the roots. The expression 52— 4ac is called the
discriminant of the quadratic equation and also of the quadratic
function.

(a) If b2 > 4ac, the equation y = 0 has distinct roots, say « and g
where o < f, and hence

Yy = alx—a)(@—p).
Thus y will be positive for some values of , zero for z = a and « = g,
and negative for others. For example, if @ > 0, then y > 0 for those
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values of « which give the factors the same sign, viz. x < a or z > §;
and y < 0 when the factors have opposite signs, i.e. when & < z < S.
Similar results can be stated when a < 0.

¥y by

ER |

S
S
=
|y
=
R
=

a>0 a<0

Fig. 4

(b) If % = 4ac, then

a” ' 4a?
. Y _— b2 .
since o= I
b\2
hence ES a(x +§5‘) .
A by
-~ b/2a
2 z
0 -b/2a y
a>0 a<0
Fig. 5
Therefore y is zero when = —b/2a, and has the same sign as a for
all other values of z. T
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(c) If b2 < 4ac, then

QI

9 b ¢

=gt —pt—

e a
R
- %) a 4a2

on completing the square, so

e af(es 2) 4025, 0

Both terms in the outer bracket are positive, the first being zero
when x = —b/2a; hence the contents of this bracket are always
positive. Therefore y has the same sign as a for all values of x.

y 1} l}y

vy

a>0 a<0

Fig. 6
If the quadratic expression ax? + bx + ¢ is positive for all values of z,
it is said to be positive definite. The work under (¢) shows that
if @ > 0 and b% < 4ac, then ax®+ bx + ¢ is positive definite.

The two conditions imply ¢ > 0, since @ and b are positive. Similarly
the two conditions ¢ > 0, % < 4ac imply @ > 0. Hence the two sets
of conditions are equivalent. Conversely,

if ax? + bx + ¢ is positive definite, then @ > 0, b% < 4ac, and ¢ > 0.
For since az®+ bx + ¢ > 0 for all values of z, the equation
ax:+bx+c=0

has no roots; hence b2 < 4ac. When 2 = 0, the hypothesis gives ¢ > 0.
These conditions imply a > 0, as above.
If the expression ax? + bx + ¢ is negative for all values of z, it is said
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to be negative definite. The reader should show that equivalent necessary
and sufficient conditions for negative definiteness are

a<0, b2<4dac or b2 <dac, ¢c<O.

1.32 Cauchy’s inequality

If we are given two sets a@,,a,,...,@,; by, by, ..., b, each of n numbers (not
necessarily positive), we shall prove that
(@ by +agby+ ... +a,b,)? < (ai+al+...+a2) (B3+bI+...4+b2) (ii)
e, a a
l 2= =
unless b = b, b
@n which case there is = instead of <.
Consider the expression
Y = (@12 4+b1)% + (@2 +0p)* + ... + (2, +b,)% (i)
For all z, y > 0; and we can have y = 0 only if there is an z such that
a,x+b, = 0 foreachr = 1,2,...,n, i.e.if
@ _ Gy _Gn_

bl_bz_."_bn

It is then easily verified that the two sides of (ii) are equal.
Excluding this case, we have (after expanding the brackets in (iii) and
rearranging) that for all z,
(@l +al+...+a)a?+2(a, b+ ... +a,b,) x+ (b2 4... +52) > 0;
i.e. this quadratic expression is positive definite. Hence by the converse result
in 1.31
! ' 4ayby+ ...+ ayb)? < 4(a2+ ... +a2) (B4 ... +B2),

which gives the result stated.

Exercise 1(b)

Find for what values of x the following expressions are positive.

1 2x2—Tx+3. 2 2—x—322 3 3x2—2x+5.
4 4o +4x+1. 5 (22+2)(x2—1). 6 (z—1)(x—2)(x—3).
(@—1)(z—2)
—1)2(3— 3_ 9,2 Sl Sl
7 (x—1)*(3—=x). 8 23—3x%—2+3. 9 @)@t d)

10 Find for what values of « the function 2% — 6z + 7 lies between + 1.

11 Find the greatest value of 4 4 2z — 322, and the least value of 222 — 3z + 1.

12 Use equation (i) of 1.31 to prove that (i) if @ > 0, then y has a least value,
viz. (4ac—b?%)/4a; (ii) if a < 0, then y has a greatest value, viz. (4ac—b?)/4a;
(iii) in either case this value is attained when z = — b/2a.

13 Prove that the quadratic equation

(a?+b2) 22+ 2(a?+ b2+ c?)z+ (b2+¢c?) = 0

always has roots.
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14 If a > b > 0, prove that 2(x —a) = A(z—b) has roots for any A. Can these
roots ever be equal?

15 Find the values of A for which the expression
5% 4 8% + 14 + A{a? 4+ 102 +7)
is a perfect square. Hence find constants 4, B, C, D, p, ¢ such that
5224 8r+14 = A(x—p)2+B(x—q)* and 224+10z+7 = C(x—p)2+ D(z—q)2.
*16 Prove (a?+b%+c?)? < (a+b+c)(a®+b® +¢®) when a, b, ¢ are not all equal.
[Apply Cauchy’s inequality to the sets at, b}, c}; at, bi, ¢t.]
*17 ' Ifi24+m2P4+n? = land I+ m'2+n’2 = 1, prove —1 < W +mm’+nn’ < 1.

1.4 Graphs

To fix ideas in a problem it is frequently helpful to sketch a graph
of the function concerned; thus in 1.31 we used sketch-graphs to
illustrate the behaviour of a quadratic function. The reader will
already be familiar with the general forms of graphs representing
such simple functions as 22, 23, 1/ and the trigonometric functions.
In this section we propose to illustrate some considerations which are
useful in graph-sketching.

1.41 Examples
(i) Sketch the graph of _ =z
Y=oyt
There is one value of y for each value of z. Since y = 0 when and only when
« = 0, the graph cuts the axes only at the origin.

Y

3

I
-
S
—
8Y

Fig. 7

If we change the signs of both x and y, the equation is essentially unaltered;
hence the graph is ‘symmetrical about the origin 0.

When z is large, y = z/2* = 1/x, and this becomes small when « increases.
If « is large and positive, y is small and positive, so that the graph approaches
Oz from above. Similarly, when x is large and negative, the graph approaches
Oz from below.
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It can be shown that the value of y is never numerically greater than .
For by considering 1/y and applying the theorem of the means, we have when

h.
x > 0 that 1 1 1
—=x+-22 [lex~-)=2,
y z xz

with = only when z = 1/z, i.e. z = 1. Hence y < %, and y = 4 when = = 1.
When & < 0, the symmetry about O shows thaty > — }, with y = — } only when
x = — 1. The graph therefore lies between the lines y = + 1.

(i) Sketch the graph of _x—1
-2
There is one value of y for each value of x except x = 2: there is no point
on the graph corresponding to z = 2.

The graph cuts the y-axis where z = 0, and then y = 4. It cuts the z-axis
where y = 0, and then z = 1.

y b ]
|
|
|
|
I
—_ | —
iy }
* L P
0 1 iz P
]
|
|
|
|

Fig. 8

‘When «z has values near to 2 but just less than 2, the denominator is smali and
negative, and the numerator is positive; hence y is large and negative. Similarly,
when z is just greater than 2, y is large and positive. This indicates the behaviour
near the line z = 2.

When z is large, y = z/z = 1; and

z—1 1
—l=—-1=—.
Y z—2 x—2
Thus for x large and positive, ¥ — 1 is small but positive; and for x large and
negative, y — 1 is small but negative. The graph therefore approaches the line
y = 1 as shown (fig. 8).

(iii) Sketch the graph of x

There is one value of y for each x except = + 1: the graph has no points
corresponding to these values. Writing

x

Y= oD@+
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we see that when x is just less than +1,
number near + 1
~ (small negative number) (number near + 2)

y

= large negative number.

Similarly, when z is just greater than + 1, y is large and positive. The neigh-
bourhood of # = — 1 can be discussed similarly.
If we now apply considerations illustrated in exs. (i), (ii), we obtain fig. 9.

:
| |
|

Fig. 9

Remarks

(2) In ex. (ii), the lines x = 2 and y = 1 are each approached indefinitely
closely by the curve, yet are never crossed or even reached. They are called
asympiotest of the curve. In ex. (i) the z-axis is an asymptote; for although the
curve does actually cross it at O, it also approaches Oz indefinitely closely
(without meeting it) as x becomes large (positive or negative). Similarly, in
ex. (iii) the lines 2 = + 1 and Ox are asymptotes. The essential property of an
asymptote is that, as we recede along it, the curve approaches it indefinitely
closely yet never reaches it; whether the curve may cross the asymptote at a
‘finite’ point is immaterial.

(f) The graph in ex. (i) illustrates that the function can take values only in
the interval —4 < y < , whatever value x may have. Those in exs. (ii), (iii)
show that the function can take any value whatever, with the exception of
y = 1 in ex. (ii). We may enquire whether these properties could have been
discovered without first sketching the graphs.

(iv) Find the range of possible values of
a2 42
222 —2x+1’

and use this information to assist in sketching the graph.

If k is a possible value, then the equation

P 32242

222 —2x+1°
+ See 18.12(2) for a general definition.

2 GPMI
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ie. (2k—8) a2 —2kx +(k—2) = 0,

must have roots (possibly coincident).tf Hence, applying the condition

‘bz 2 4 ’,
@ 4k > 4(2%—3) (k—2),
i.e. 2 > 2k —Th+ 6,
ie. 03> k2—Tk+6 = (k—1) (k—6).

This product will be zero if £ = 1 or 6, and will be negative if and only if the
factors £ — 1, k— 6 have opposite signs, i.e. if £ > 1 and k < 6. Hence we must
have 1 < k < 6, s0 the expression can take all values between 1 and 6 inclusive.

When k=1 or 6, the above quadratic equation satisfies the condition
‘b2 = 4ac’ for equal roots; the root is then ‘z = —b/2a’, i.e.

-2k Kk
2(2k—3)  2k-—3°
When k& = 1, x = —1; and when k = 6, x = . Hence the greatest value 6 is
attained when z = %, and the least value 1 when z = —1.

xr =

y -

Fig. 10

To sketch the graph of 32?42

Y= o241’

we first see from the above work that the graph lies entirely between the lines
y =1, y = 6, and touches these at the points ( — 1, 1), (%, 6) respectively; these
are the turning-points on the curve.

The curve cuts Oy where ¢ = 0, and then y = 2. It does not cut Ox since
32242 > 0 for all 2. Since

222~ 2x+1=2(x—%)*+4>0 forallx,

the denominator can never be zero, and hence there is one value of y for each
value of z.
When « is large, y = 32%/2x? = . A closer approximation is
L 32 3=
Y~ ow—22 2w-1)

which shows that when z is large and positive, then y > ; and that when z is
large and negative, then y < 4. Hence the graph approaches the horizontal
asymptote y = $ from above when « is large positive, and from below when
z is large negative. It cuts y = 3 where x = — }; see footnote 1 below. We can
now sketech the curve.

1 If k = § the equation is not quadratic, but becomes —3x—} = 0. Thus § is the
value of the function when z = —1$.
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The preceding examples illustrate the steps to be taken before sketching the
graph of a function of the type (az?+ bx +c)/(Axz2+ Bz +C):

(a) Find where (if at all) the graph cuts Ox and Oy.

(b) Find how the graph behaves when « is large (positive and negative), and
howit approaches the horizontal asymptote; also whether it cuts this asymptote.

(¢) If the denominator has factors, there will be asymptotes parallel to Oy
through the points which make the denominator zero. Find how the graph
behaves when « approaches such points from both left and right.

(d) Find the possible range of values of y, and where the curve reaches the
extreme positions (if any); these are the turning points.

1.42 Further examples

The functions in the preceding examples were ‘algebraic fractions’, and the
steps (a)-(d) just indicated can be taken before sketching the graph of any such
function, even when the denominator is not linear
or quadratic. We now consider some simple func- 4
tions involving root extractions.

(i) y = ya.

Since this equation can be written z = y2, we
can sketch the graph just as we would for y = a2,
but with the roles of z, y interchanged; i.e. we 0
regard x as a function of y. See fig. 11.

(il) y = y(1—a?).

If we write this free of therootsignasy? = 1—a2,
or better as z2+y? = 1, we see that the equation
is the condition for the point (z,y) to lie at unit
distance from the origin. The graph is therefore
the circle with centre O and radius 1.

In each of these examples we have assumed that both the positive and
negative square roots are possible values of y. If we interpret ,/ to mean
‘the positive square root of z’, then only the upper half of each graph would
be required.

8y

Fig. 11

Exercise 1(c)
Sketch the graphs of the following functions.

1 a2 2 a8 3 1. 4 1/x%
1 x+1 1 x

5 et 6 7% T emDe=n P @—h@=9"
9 — % . 108 1+ 12 ot

@1 @=9) Y. 7= x*.

1 1

3

13 2t o (R R e

16 Prove that (x—2)/{(x—1) (x — 3)} can take any value. Sketch the graph.

17 Show that (22 —2x+4)/(x*+22x44) lies between % and 3. Sketch the
graph.

18 Prove that {(x— 5) (52— 13)}/{(2x — 7) (4 — 11)} has no values between 1
and 4, and sketch the graph.
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19 Find the possible range of values of (z + 1)/(z — 1)2, and sketch the graph.

20 Prove that (1 —x2?)/(ax?+ bx +¢) can take any value if b2 > (a+c)2.

21 Prove that (x*+ 2z + c)/(«? + 4 + 3¢) can take any value if 0 < ¢ < 1.

22 Show that {(x — a) (x — b)}/(x — ¢) takes any value if ¢ lies between a and b.
*23 Prove that the maximum and minimum values of

ax®+br+c
Ax*+Bx+C

are the values of k (if any) for which ax?®+bx +c¢—k(Ax?+ Bx+ C) is a perfect
square. [This is the condition for the line y = k to touch the curve.]

*24 If a = ¢, prove that (ax?+bx+c)/(cx®+bxr+a) can take any value if
b2 > (a+c)2. [Thisimplies b2 > 4ac; use the conditions for positive definiteness.]

Show also that there will be two values between which it cannot lie if
4ac < b? < (a+c)?, and two values between which it must lie if 2 < 4ac. [This
implies (a+¢)? > b2.]

1.5 Types of function

1.51 Classification by structure

(1) Functions can be classified according to the manner in which
they are formed. If we start with a variable # and write down its
positive integral powers ° = 1, 2! = x, 22,23, ..., 2", and then combine
any constant multiples of these by addition or subtraction, we obtain
a polynomial function of x (in short, a polyrnomial in x) of degree n.
Thus 3x¢—2a%+3x+5, 223 +ax*+br+1 are polynomials in 2 of
degrees 4, 3 respectively, the latter having a, b as literal coefficients.

If we divide one polynomial in 2 by another polynomial in z, we
obtain arational function of x (i.e.a ‘ratio’ of polynomials—an algebraic

fraction). Thus " 1 3234 B+ y2

are rational functions of x. Notice that the term ‘rational’ makes no
reference to the coefficients of powers of = in the function: these can
be any sort of number. The rules of algebra show that rational func-
tions of x are generated by applying to  and numbers the operations
of addition, subtraction, multiplication and division in any finite
combination.

Similar considerations apply for polynomial and rational functions
of several independent variables. For example, if x, ¥ are independent
variables, then 8xz*—2x% +5y® is a polynomial in x and y, and
(x®+ 3y)/(62% — /2 y?) is a rational function of z and y.

(2) Consider now the equation 3x*—2x% + 5y3 = 0. This can be
regarded as a cubic equation in y whose coefficients are functions of .
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It will determine y as a function of x; for when a numerical value is
assigned to z, we obtain an ordinary cubic for y which determines at
least onet numerical value of y. We say that the equation defines y as
an wmplicit function of x. If we were to solve the equation for y in
terms of # by a mathematical formula (which in fact is possible,
although not easy) we should have the same function y expressed as
an explicit function of x.

All the above types of function can be included under the heading
algebraic; that is, they can all be defined (explicitly or implicitly) by
polynomial equations in y whose coefficients are polynomials in 2.
For example, the rational function y = z/(#2+1) can be defined
(implicitly) by the polynomial equation

ry—x+y=0,
and is easily obtained explicitly by solving for y. Similarly, the
equation 22+ 4% = 1 defines the (two-valued) function y = +,/(1 —2?)
for —1 <2 <1;in 1.42, ex. (ii) we sketched its graph by actually
using the defining equation instead of the explicit expression for y.
On the other hand, the equation

Yy—zy+1=0
defines y as a function of z which cannot be obtained explicitly by
any formula involving roots, powers, sums, differences, products or
quotients (this fact can be proved, but we shall not do so in this book).
This sort of example shows that consideration of implicit functions
will be necessary.

We may wonder how information about the last function can be
obtained, and in particular how its graph can be sketched. It happens
in this case that the defining equation can easily be solved explicitly

for x in terms of y: ¥+1

Y

Hence, if we choose values for y and calculate the corresponding
ones for z,we shall be able to plot a graph of  considered as a function
of y; see Ex. 1(d), no. 10. A much simpler example of this method was
given in 1.42, ex. (i).

In general, a polynomial equation in z and y can be regarded in two
ways: (@) as a polynomial equation in y whose coefficients are poly-
nomials in z, which defines y as an algebraic function f(x) of x; or

+ We shall prove later that every cubic equation has at least one root, and may
have two or three roots.
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(b) as a polynomial equation in x whose coefficients are polynomials
in y, which defines z as an algebraic function g(y) of y. The two
functions f(z), g(x) so obtainedt are called inverses of each other. Our
graphical method above amounts to sketching the inverse function
of y when this is easily done. Consideration of inverse functions is
thus seen to be useful.

(3) Any function which is not ‘algebraic’ in the above sense is
called a transcendental function. It can be proved (but not in this
book) that log,,, sinx and the other trigonometrical functions are
of this type; and we shall meet others later. They too may be explicit
(like the examples just given) or implicit (e.g. the function y of z
defined by xy = siny); and as in the case of algebraic functions, they
can be associated in inverse pairs: thus 10% is the inverse of log,,z,
and sin «/z is that of the implicit function y given by xy = siny.

Irrational numbers are classified similarly: those such as /2, ¥5, \/2+3./5,
J(2+4/8), ... that can be obtained as roots of polynomial equations in one

variable  with integer coefficients are called algebraic numbers; all others
(and this can be proved to include ) are transcendental numbers.

1.52 Classification by properties

A different sort of classification (which may cut across the one just
given) can be made by considering general properties which functiens
may possess.

(1) Oddness, evenness. If f(x) is defined for pairs of equal and opposite
values of z, and f(—x) = f(x), then f(x) is an even function: it is un-
altered by changing the sign of x throughout. The graph of y = f(x)
is therefore symmetrical about the y-axis (e.g. fig. 12 (a)).

Similarly, if f(—2) = —f(x), then f(z) is an odd function. Its graph
is ‘symmetrical about the origin’ (e.g. fig. 12 (b)).

For example, 24+ 32%— 2, cosz, tan?z are even; 23+ 5z, 23/(x%+ 1),
sinz, tan3x are odd. Functions like x3+a%+4x, 3sinx 4+ 2cosz, in
which some terms are even and others odd, are neither odd nor even;
also see Ex. 1 (d), no. 3.

(2) Periodicity. If there is a positive number p such that
f@+p) = f(x)

t It is immaterial whether we write g(x) or g(y) when the functions are being
discussed. The relation between them is that if y = f(x), then @ = g(y), and conversely.
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for all 2, and if p is the smallest such number, then f(z) is periodic,
with period p. Thus the period of sin z, cos z, ist 27; of tan z, cot z is 7;
and of sinnx is 27/n. The graph of a periodic function consists of an

y

0 z

(a)

(»
Fig. 12

y A

4 B
//-217\\\—7 0 \B %D/z'ﬂ\\:’yf

y=cosz
Fig. 13

arc of a curve repeated infinitely often in both directions of the
z-axis. Thus the graph of y = cosz (fig. 13) consists of the curve
ABCDE, which represents the function for 0 < = < 27, repeated over
subsequent intervals of 277 in both directions of Oz.

1 The proof that 27 is in fact the smallest number p is difficult, and will not be
given in this book.
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It is known that (@) no periodic function can be rational (unless, trivially, it
is constant); (b) no periodic function can be algebraic. Such a function must
therefore be transcendental.

(3) Many-valuedness. If n different possible values of f(z) corre-
spond to a general value of z, then f(x) is an n-valued function.

Examples
. 21
0y = 32+4

is single-valued because there is just one value of y corresponding to each value
of z except x = — % (for which y is not defined).

(ii) The function y defined implicitly by 22442 = 9 is two-valued because
there are two values of y for each x when —3 < x < 3, even though there is
only one when z = + 3 and y is not defined when = > 3 or z < —3. (All this
follows because we can find y explicitly as + /(9 —2).)

(iii) The equation y3— 6y2+ 11y = = gives three values of y for some values
of z; e.g. if z = 6, the equation can be written (y— 1) (y —2) (y —3) = 0, so that
y =1, 2 or 3 when & = 6. Hence y is a three-valued function of x.

Graphically, a line parallel to Oy will cut the curve (if at all) in (i) one, (ii) two,
(iii) three points, in general.

The inverse circular functions.

(iv) If —1 < z < 1, then the equation cosy = x defines y (implicitly) as a
function of z, written y = Cos—'z. Since z = cosy, the graph (fig. 14) can be
obtained from that of y = cosz by interchanging the axes of  and y, and then
reversing the sense of Oz to restore right-handedness. A line parallel to Oy cuts
the graph (if at all) infinitely often. Thus y is infinitely many-valued.

When z is given, let ¥y = a be the smallest positive angle for which cosy = x;
a is acute if > 0 (fig. 15(a)), obtuse if z < 0 (fig. 15(d)). It is called the prin-
cipal value of Cos—lz, and is written cos~'z. Thus (using radian measure)
0<coslz<m.

All other angles having their cosine equal to x are bounded by OX and one
of the rays OP, OP’ (figs. 15 (a), (b)). Those bounded by OP can be expressed as

2r+a, 4m+o, 67+, ... or a—2m, o-—4m, ...

according as we add complete positive or negative revolutions to «; and those
by OF" as 2n—a, 4m—0at, ... or —2m—a, —4m-—q,
All these are given by the expression 2nm + a, where n is any integer (positive,
negative, or zero). Hence Cos-! % — 2n7 + cos-! %.
Each value of n determines a branch of the many-valued function Cos—'z.
The principal branch is shown thickened in fig. 14.

(v) For —1 <z <1, siny =z similarly defines a many-valued function
y = Sin~tz. The graph (fig. 16) is obtained from that of ¥ = sinz as described
in (iv).

Given z, the principal value sin—! z is the smallest acute angle y = g (positive
or negative) for which siny = «; thus —§7 < sin—lx < {=.
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Any other angle whose sine is z is one of either

or+B, 4m+p, ... or —-2m+f, —4m+pB, ..,
which are included in 2mm + 8,
or n—pB, 8m—p, .. or —mw—f, =2n-4, ..,

which are included in (2m+ 1) 7 — f. These two expressions can be combined
into nwr 4 (—1)* 4. Hence

Sin~! # = nw+ (— 1)*sin~! .

(vi) Forany value of z, tany = x defines a many-valued function y = Tan-1x
whose graph, obtained from that of ¥ = tan z, is shown in fig. 18. The principal

y4 } P
d
|
_________ S I 5 Y x
/ l/;
e [ P | >0
- = i g |
| (@
_/"
e T —— .
0 z
B P
i
___:_.’;_/—"___-,_-——-— [\i
- : X
I "N
———————— — y<0 | P
(v
Fig. 18 Fig. 19

value tan—1z is the smallest acute angle y = y (positive or negative) for which
tany = x; thus — {7 < tan—1z < }7. All angles whose tangent is  are given by
nm+y; hence

Tan~! ¥ = nrw+tan—! x.
In Ch. 2 we shall consider functions which have the property of
continusty, and in Ch. 3 those that are derivable.

(4) Homogeneous polynomials and functions.

Turning now to functions of more than one variable, we may
enquire whether there is a useful extension of the idea of ‘degree of
a polynomial in 2’ for polynomials in two variables z, y (which consist
of the sum of a number of terms like ax?y?, where a is a constant).

The expression axPy? is said to have total degree p +q in (z,y).

A polynomial each of whose terms has the same total degree n is
said to be komogeneous of degree n.
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These definitions extend in the obvious way to cases of three or
more variables. Thus the polynomials

P2+ay+2y%, xT—y+z, 24 32%—Say%

are each homogeneous in their variables, with degrees 2, 1, 4 respec-
tively.
If f(z,y) is a homogeneous polynomial of degree n, then

fltx, ty) = t"f(z, y)
for all values of x, y, t.

Proof. Each term of f(x,y) is of the form axPy?, where p+¢ = n and
a is a constant. The corresponding term of f(tx, ty) is therefore of the
form a(tx)? (ty)? = tP+tazPy? = traxPyd.

Hence " is a factor of f(iz, ty), and the other factor is clearly f(z, y).

The theorem generalises obviously for more than two variables. It
can be used to extend the concept of homogeneity to functions other
than polynomials.

Definition. If f(tz, ty) = t*f(x, y) for all values of , y, t for which the
function is defined, then f(z, y) is said to be homogeneous of degree n
in (z,9).

For example, the functions

23—y 9
P2ty —y? ad+ady?’

/(22 —y?+22%), tan (g)

are each homogeneous in their variables, with degrees 1, —2, 2, 0,
respectively.

In 10.22 we shall consider functions having the property of sym-
metry or of skewness.

1.53 Inadequacy of graphical representation

We may enquire whether a graphical representation of a given
function is always possible.
(i) Consider first the function
_x?-9
y=%=3"

Provided that « + 3, this can be simplified to give y = z+3; but the
latter is not the same as the given function because the first is not
defined when « = 3 (it takes the meaningless form 0/0), while the
second is defined for all values of #, and in particular has the value 6
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when x = 3. The graph of the given function would have no point

corresponding to « = 3; but for all other values of z, however near

to 3, it would be the same as that of y = x + 3. Thus the graph would

betheline y = x + 8 withthe single point

(3, 6) omitted; and this situation cannot vl |

berepresented adequatelyinadiagram.
(ii) A more complicated example is

the function y of z defined by the rule: /

y=0 when « isrational,

wph——————

Ry

y=1 when =« is irrational. /-3 0

Its ‘graph’ would consist of an in- Fig. 20

definitely closely packed row of points

along the z-axis ¥ = 0, and another such row along the line y = 1,
neither row making up a complete ‘continuous’ line. No adequate
diagram can be given, yet a formula can be obtained to give y explicitly
in terms of x: see Ex. 2(c), no. 12.

yA

<
|
\:

8 Y

-1

Fig. 21

(iii) Finally, consider the function y = sin (1/x), which is defined
for all values of x except z = 0. Since the sine of any angle always lies
between + 1 inclusive, the graph lies between the lines y = + 1. It
cuts Oz at points for which 1/x = nsr, where n is any integer (positive
or negative), i.e. where 2 = 1/nzr. Similarly, it meets the line y = 1
where z = 1/(2n+3)7 and y = — 1 where « = 1/(2n— }) 7. The curve
oscillates between these lines, and does so more and more rapidly as x
becomes closer to zero. The curve does not cut Oz for x > 1/m or for
x < —1/m; and when z becomes large, 1/« and hence also sin (1/x)
becomes small. Hence the z-axis is an asymptote. The deficiency in
the graph (of which only the part for « positive is shown in fig. 21—
the rest is easily supplied since the function is odd) is that it cannot
indicate clearly the behaviour of the function near z = 0.
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These illustrations should convince the reader that, although
graphical representation of a function is usually helpful, it has its
limitations, and that any systematic study of the properties of
functions cannot be based on graphical appearances only.

Exercise 1(d)

1 Classify the following functions as (a) odd, even, or neither; (b) periodic
or not, and state the period if it exists.

(i) sinz; (ii) cos2x; (iii) zsinz; (iv) z+sinz;
(v) x+cos(l/z); (vi) sin(2?); (vii) cosz+tan?x; (viil) |a|;
(ix) (1 —=?); (x) zJ(1—22);  (xi) J(1+23); (xii) tan—lz.

2 If an odd function f(z) is defined at 2 = 0, show that it must be zero there.

3 If f() is defined for all values of z, verify that ¢(z) = f(z)+f(—z) is even
and that Y(z) = f(z) —f(—) is odd. Deduce that f(x) can be expressed as the
sum of an odd and an even function of «.

4 Verify that the product of two even or of two odd functions is even; but
that of an even and an odd function is odd. State corresponding results for sums.

*5 Construet polynomial equations in x, y which are satisfied by the following

algebraic functions y.
. . 1)-1 1)-
O was 6 Jotyols ) IR ) A

6 Pick out from the following functions those which are homogeneous in
their variables, and state the degree in each such cage.

(iv)

(i) o®— 3a2y® 4 Bay; (ii) 23+ 3a%y + 3xy +y°; (iii) y(22+y%—2%);
, 1 2 3 4 oo (Y
(iv) 1/(3zxyz); (v) po- +;2 +;-2 +Z§; (vi) sin (;),

(vii) tan (zy).

7 (i) Prove that every homogeneous function of degree n in (x,y) can be written
in the form xvg(y/x). [Take ¢ = l/xr in the definition in 1.52 (4); write
9(y/z) = f(1,y/x).]

(ii) Conversely, verify that every function of the form xg(y/x) is homogeneous
of degree n in (x,y). [Replace z, y by tx, ty in the function.]

8 If f(x,y), g(x,y) are homogeneous of degree m, n respectively, what can
be said about: (i) f(z, y) g(x, y); (ii) f(x, y) /g(x, ); (iii) f(2, y) + g(z, y)?

*9 If f(u, ) is homogeneous of degree » in (u,v), and each of u, v is a homo-
geneous function of degree m in (z,y), prove that when f(u,) is expressed in
terms of z and y, it is homogeneous of degree mn in (z,y). [Let f(u,v) become
$(x,y); then d(ix, ty) = f(tmu, t™) = (t™)"f(u, v) = t"P(x, y).]

10 Sketch the graph of the implicit function y defined by y*—zy+1 = 0 by
first finding the inverse function .

11 Consider the behaviour near = = 0 of the following functions, and explain
why those in (ii), (iii) cannot be fully represented by a graph.

(i) xsinz; (ii) wsin(1/z); (iii) 22sin(1/x).



30 FACTS, DEFINITIONS AND METHODS [1.6

1.6 Plane curves

1.61 Parametric equations

In 1.5 we have illustrated various properties which a function may
possess by means of sketch-graphs. Given two graduated coordinate
axes Oz, Oy, each such property of a function can be interpreted as
a geometrical property of a curve in the plane xOy.

By plane curve we mean the set of points in the plane xOy whose
coordinates (z, ) satisfy some equation F(z,y) = 0. This equation can
be thought of as determining y (implicitly) as a function y = f(z) of z;
or, if more convenient, z as a function « = g(y) of .

It may be possible to discover functions ¢(t), {(¢) of a third variable
t which are such that 2= @), y=v) @)

will satisfy the equation F(xz,y) = 0 for all values of ¢ (or, at any rate,
for all £ in some range). Geometrically this means that the point whose
coordinates are $(t), i(t) will lie on the curve for all relevant values oft.
Ast varies, this point will trace out the curve (or part of the curve, since
there may also be points of the curve not expressible in the form (i)).
We therefore say that equations (i) are parametric equationsof the curve
F(z,y) = 0, and call ¢ the parameter. If each value of ¢ gives just one
point on the curve, and if also every point of the curve can be obtained
from (i) by giving ¢ just one suitable value, then equations (i) are called
a proper parametric representation of the curve. If rational functions
@(t), ¥(t) can be found, the curve is said to be unicursal.

The reader will already have used such a representation for some
simple kinds of curve; e.g. = at?, y = 2at are proper parametric
equations of the parabola y? = 4ax (see 16.12); and x = acost,
y = asint properly represent the circle 22+ y* = a2. Sometimes the
parametric equations arise naturally.

Example

The cycloid

The path of a point on the circumference of a circle which rolls without slipping
along a fixed straight line is a plane curve called a cycloid.

Let the circle of centre C and radius ¢ roll along Oz, and let the tracing point
P start from O, so that the circle begins by touching Oz at O. Let the coordinates
of P be (z, y) when the circle has turned through an angle 6. Since no slipping
ocecurs, arc NP = ON. After constructing PK as shown, we have

2 =0M = ON—-PK = arc NP—PCsinf = af —asinb,
y=MP = NC~-KC =a—acosé.
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Parametric equations of the cycloid are therefore
z = a(0—sinf), y = a(l—cosb).

From the definition we see that the cycloid is composed of an infinity of
identical arches all lying above Oz, having height 2a (the diameter of the

)
zu/ r
e
P M- {K
ol M N Q z

Fig. 22

generating circle) and bagse of length 27a (the circumference of this circle).
The parametric equations confirm all this. An (z,y)-equation for the cycloid
could be obtained by eliminating 0; but it is

much less simple and less useful than the y

parametric representation. \ P
Sometimes (e.g. in the dynamics of the /\

cycloidal pendulum) we require the equations ' — 3

of the curve when placed base upwards (fig. 23). O] @

The reader may verify that they are
z = a(f+sinb), y = a(l—cosb).

1.62 Polar coordinates

Although in elementary work the position of a point P in a plane is
specified by coordinates{ (z, y) referred to perpendicular axes Oz, Oy,
this is not the only way available. If O is a fixed point (the pole) and
OX is a fixed line (the initial line), we may join OP and consider the
angle POX = ¢ (measured positively in the counterclockwise sense from
OX, as in trigonometry) and the distance OP = r (fig. 24). Then to any
given pair of numbers (r, 6) corresponds a unique point P in the plane;
but, unless we make some restrictions, a given point P will be specified
by many different pairs. For example, (c,a), (c,a+27), (—c,a+7)
give the same point, where in the last case we locate the point by first
turning the radius OP through angle « +#, and then measuring off a
distance c along it from O in the sense from P towards O.

If we restrict 7 to be positive and 6 to lie in the range —7 < 6 < 7,

1 Called cartesian coordinates after Descartes who introduced their use in 1637.
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then the numbers r, 6 corresponding to a given point are unique.t In
certain applications (e.g. to complex numbers, Ch. 13) it is desirable
to have these limitations, but in geometry it is usually convenient to
leave r and 6 unrestricted. In either case we call (r, 6) polar coordinates
of P; r is the radius vector, 0 the vectorial angle.

P

Fig. 24 Fig. 25

If the origin O 1s taken for pole and Ox for initial line (and this is
usually done, without comment), the relations between the cartesian
and polar coordinates of the same point P are seen (fig. 25) to be

xz=rcost, y=rsind. (ii)

Hence if polar coordinates are given, these formulae determine z, y
uniquely.
Conversely, when z, y are given, we have

r=J@+y?), 6= Tan—lg . (i)

This last formula will not determine 6 uniquely, even if the restrictions
are imposed, for it gives fwo distinct values of & in the range

—nm <0<
we should require the one for which

cos@:sinf:1=x:y:r. (iv)

1.63 Polar equation of a curve

A relation F(r,0) = 0 between polar coordinates corresponds to
some curve in the plane, and is called the polar equation of the curve.
As in the case of cartesian equations, it can be thought of in the form
r=f(0) or 8 =g(r) when convenient, or even parametrically as

r=¢(t), 0 = (1)

+ The range 0 < 6 < 27, or any range covering an interval of 2w, would serve
equally well for our purpose.
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We now illustrate by a few examples how a curve can be sketched
from its polar equation. First observe that

(@) if the equation F(r,8) = 0 is unaffected when 6 is replaced by
— 0, the curve is symmetrical about Oz (for if (r,, 0,) lies on the curve,
so does (ry, —6,));

(b) if F(r,0) = 0is unaffected when @ is replaced by 7 — 0, the curve
is symmetrical about Oy;

(c) the locus r = ¢ is a circle with centre O and radius ¢; = o is
a ‘half-line’ or ray through O making angle o with Oz.

Examples

(i) The cardioid. Given a fixed point O on a fixed circle of diameter a, draw
any chord OP’ and produce it to P so that P’P = a. The locus of P as P’ varies
on the circle is called a cardioid (fig. 26). Since

r=0OP =0P +P'P =acosf+a,
the polar equation is 7 = a(l +cos6).

The equation shows that

(a) the curve is symmetrical about Ox;

(b) as 0 increases from 0 to 37, r decreases from 2a to a;
(¢) as 0 increases from 4 to 7, r decreases from a to 0.

Fig. 26 Fig. 27

More generally, if we take P’P = ¢ in the above definition, the locus of P is
a limagon, whose polar equation is

r=acosf+ec.
If ¢ > a, then r is always greater than 0. If ¢ < a, r can take negative values;
we illustrate with the case ¢ = }a.
(ii) Sketch the limagon r = }a(1 +2cos 6).

It is symmetrical about Ox. As 6 increases from 0 through the values 1, 17,
gm, to m, r decreases from $a through a, a, 0 to — 4a. To plot the last point, we

3 GPMI
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face along Oz and rotate through angle 7 counterclockwise, then mark off a
distance 4a in the opposite sense, i.e. actually in the direction Oz. The curve is
completed by using the symmetry about Oz (fig. 27). It is seen to have a loop,
with a ‘double point’ at 0. The ‘cusp’ at O of the cardioid (the case ¢ = a)
can be thought of as a loop which has shrunk to a point.

(iii) The lemniscate (22 +y?)? = a?(x?—y?).

The given equation is unchanged by writing —« instead of x, or —y instead
of y. The curve is therefore symmetrical about Oz and Oy. To sketch it, first
transform to polar coordinates by putting = rcos§, y = rsin8:

(r?)? = a?(r2cos? 0 —r2sin?6),
ie. 72 = a?cos 20.

The polar equation shows that

(a) as 0 increases from 0 to 1, r decreases from a to 0;

(b) as 6 increases from } to §m, cos 20 < 0 and so no part of the curve lies
in the region between the lines 6 = }m, 6 = im;

(c) as @ increases from 37 to 7, r increases from 0 to a.

We use symmetry about, Oz to complete the curve (fig. 28).

y A

Fig. 28

Exercise 1(e)

1 When the graph of y = f(x) is given, how can those of (i) y = f(x)+¢;
(ii) ¥ = ¢f(x); (ili) ¥ = f(z+ c) be deduced?

1-—¢2 2at

2 Venfythat “":“'IW’ y=i—+_t§

are parametric equations of the circle 2%+ y2 = a2 Is every point of the circle
given by these equations?

3 Prove that the line ¥ = ¢z cuts the curve 2%+ y® = azy at the origin and the
point (at/ (1+23), at?/(1+ ts)). Hence write down parametric equations for
this curve.

4 A circle of radius a rolls along Oz without slipping. Prove that parametric
equations of the locus of the mid-point of a given radius are x = a(f— 4sin 8),
y = a(1 — }cos 0), and sketch the curve (a trochoid).
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Transform the following equations into polar coordinates.
5 2?—y?=ql 6 xy =c2. 7 (2% +9y°%)? = alry(z? —y?).
8 Transform the equation » = asin 2@ into cartesian coordinates.

Sketch the curves given by the following polar equations. (Label the results and
retain them for future use.) Negative values of r are allowed.

9 r=acosé. 10 r = af. 11 70 =a. 12 72 = a?®sin 20.
13 r =asin26. 14 r=acos30. 15 rcosf = acos20.

16 r=asecG+b (a>0,b> 0).

17 Answer the questions in no. 1 for the polar graph r = f(8).

18 A circle of radius a rolls without slipping on the outside of an equal fixed
circle with centre O. Show that a point P on the circumference of the rolling
circle has coordinates = = a(2cos 0 —cos 20), y = a(2sin 0 —sin 26), the origin
being O, Oz the line through the original position 4 on the fixed cirele of the
tracing point P, and the 6 angle turned through by the the line of centres.

By taking 4 for pole and Oz as initial line, show that the locus has polar
equation 7 = 2g(1 — cos 8), and hence sketch the curve.

Miscellaneous Exercise 1(f)
1 Ifa,+a,+...+a, = 8, ’prove l/a, + 1/ay+... + 1/a, = n?/s.
2 Ifs, =14+34+4+%+...+1/n, prove that forn > 2,
TTio < 1 <%‘+ 1
[Apply A > G t0 &, 4 4, ..., (n+1)/n and to their reciprocals.]
3 Prove
@) #Hn+1) > 3/ny; (ii) (n!)® <n™{Hn+1));
(iil) n! > (n+1)Hn-D,
[Apply 4 > G to
() 1,2,...,n; (i) 13,29,...,n%;
(iii) 1/(1.2),1/(2.8),...,1/{n(n+1)}.]

4 If 2% = at?+ bt and ¢ > z, where a, b, t, 2, y are all positive, prove that
y = 2./(ab). [x®y/P® = ajt+bt = 2./(ab) by the theorem of the means.]

5 Prove ab < {}(e¢+0b)}* and deduce that abed < {#a+b+c+ad)}4, with
equality only when a = b = ¢ = d. By giving d a suitable value in terms of a, b, c,
prove abe < {¥(a+bd+c)}.

*6 Prove

(@1b101+ G3bgCy+ ... +anbac,)® < (@l +...+a2) (B2 +... +b%) (c2+...+c2).

7 Find necessary and sufficient conditions for az? + bz +¢ to be positive for
all values of «. By expressing 2t — 82° 4 3222 — 64x + 48 in the form

(@*+ Az +p)2—p,

show it is not negative for any value of z.
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Investigate the range of values and sketch the graph of
—3%—1. 0 7x%+8x+ 10 10 3x2— 2247
22— 6x+8 22—8x—2 xt—2x+3 "
11 Prove that (cx?+ 3x— 4)/(c + 3z — 4x?) can take all valuesif 1 <c < 7.
12 Find the values of z for which (22— 2z — 2)/(x?2—2) < 2.
13 Find the ranges of x for which (4x2+ 6x+ 1)/(22+ 3z + 2) > 4.

2%+ 2ax+b

14 Writing flz) = Tl (@ £ 0),
prove that there are two numbers k such that f(x) — k is of the form
(Az+ B)?
D@2+1)"

If these numbers are k;, k, (£, < k), prove

{1—k,)x+a}?
Py A G L e
J@ =k = @+ 1)
Provealso that (1 — k;) (1 — k,) = —a? and deduce that forallz, k, < f(z) < k,
Sketch the curve y = f(x) when a > 0, indicating its position with respect
tothelinesy =1,y =k, y = k,.
15 Show that for all k£ % 0, the line y = k meets the curve
Yx—3)(x+1) =ax+b
if b lies between — 3a and a.
Sketch the curve when (i)a = —3,b=T7; (li))a=+3,b=1T.

16 If (ax?+br+c)y+(a’x2+b'z+c’) =0, find the condition for z to be
expressible as a rational function of y.
: y—F _ j@-br

<
iy =Kemay @<h

prove that (i) if K > 0, then a <y < f; (ii) if K <0, then y <a or y > f.
Deduce that y is a function of the form (Ax?+ Bz + C)/(px? + qx +r) which has
turning-points (a,a), (b, ). Taking a =2, f=5,a=—1, b= 2, K =2, con-
struct the example in no. 10.

18 If u = aa?+ 2hxy+by2+2g9x+2fy+c¢, a +£0 and ab—Ah% %+ 0, show by
two applications of ‘completing the square’ that

af—gh)z_l_ A

(r=12).

17 If

ab—h? ab—h?’
where A = abc + 2fgh— af?— bg? — ch?.

Hence show that sufficient conditions for » to be positive for all x, y are
a>0,ab—h?> 0, A > 0. (Given that a, ab— h? are non-zero, these conditions

are also necessary.)
If ab— k2 = 0, show that sufficient conditions are a > 0, af —gh = 0, ac > g¢°.

19 Ifa % 0, ab—h? + 0, A = 0 in no. 18, show that « is of the form

1 b — h?
=~ (az+hy+g)i+= (y+
a a

Yexeyq (@b—n) vy,
a

and deduce that « can be resolved into linear factors if A = 0 and ab— A2 < 0.
Write down conditions sufficient for « to be a perfect square.
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20 A circle of radius @ rolls without slipping on the outside of a fixed circle
of radius 3a and centre 0. Taking O for origin and Ox along the initial position
of the line of centres, show that the coordinates of the point P of the rolling
circle which was initially on the fixed circle are

z = a(4cosf—cos40), y = a(4sinf—sin40),
where 6 is the angle turned through by the line of centres. Sketch the curve
(an epicycloid).

21 Answer the question in no. 20 when the small circle rolls inside the large
one. (The curve generated is a hypocycloid.)
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2

LIMITS. CONTINUOUS FUNCTIONS

2.1 Limits: some examples from previous work

2.11 Given a function y = f(z), early work in Calculus is concerned
with the following process.

(a) Let 6« denote any change (positive or negative) in the value
of 2, and let dy be the corresponding change caused in y. This change
0y is calculated from the functional relationship y = f(z), and will in
general depend on both dz and x.

(b) Write down and simplify the ratio dy/dx (which in general also
depends on 8z and z).

(¢) Letting Jx approach zero, see whether the ratio Jy/dx
approaches a definite value (in general a function of x). If this is the
case, we call this value the derivative of y with respect to z, and denote
it by any one of the symbols

dy r g d
d—:E’ -Dy’ Da:y, Yy, f(x): ;i_x'f(w)’

using whichever is most convenient for our purpose.
We express the property in (c) by saying that dy/dx tends to dy/dx
when 8z tends to zero, and write

dy dy .

3 dx when dz - 0. (i)

We also call dy/dx the limit of dy/dx when dx tends to zero, and write
. Oy dy .

wZa “

The statements (i), (ii) are equivalent.

2.12 A well-known limit is that of sinz/z when x — 0 (angles here
being in radian measure). If sin x and the other trigonometrical ratios
are defined in the usual way by means of a right-angled triangle, and
certain assumptions are made about the ‘area’ of a circular sector,
it is proved in any book on elementary trigonometry or calculus that

gsinx < < tanz when 0<x < 3m. (iii)
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It follows that

1<—.§-<—1— when 0<z< . (iv)
sinz  cosz

When « decreases towards zero (or, as we may say, approaches 0
through positive values—conveniently written x - 0+), cosz in-
creases towards 1, and so 1/cosx decreases towards 1. Hence x/sinz
also decreases towards 1, by (iv). This will also be true when z ap-
proaches zero through negative values (x —~ 0—), because zfsinz is.

an even function of . We conclude that

2,1 when z—0 in any manner;
sinz
i.e. in the limit-notation,
m— =1, (V)
o0 SINT

Notice that in the above statements nothing is said about

(@) whether or not z/sin « actually takes the value 1 for some value
of z; or. A

(b) whether or not z/sin z has a value when we put z = 0.

In fact for (b), z/sin z is not defined when x = 0, being of the form 0 /0.
For (a), the inequality (iv) shows that z/sinz > 1 however small and
positive  may be (and hence also for small negative z, since z/sinx
is even): there is no value of # for which z/sinz = 1, and we say that
the limit 1 is unattained. The statement (v) means that when  becomes
close to 0, x/sinz becomes close to 1, and that we can make z[sinx
as close as we please to 1 for all values of x sufficiently near to 0. -

2.13 Another example is given by the function (1.53, (i))

_2*-9
y—' x_3’

which is not defined when z = 3. For any other value of z, however
close to 3, we have y = #+ 3; and when x -> 3, we see that y—6. Yet
there is no value of y when « = 3, nor is there any value of # which
makes y = 6.

2.14 On the other hand, there are many functions whose limit is also
an actual value of the function. For example, if ¥ = 322, then when
x — 2 we see that y - 12; and y = 12 when we put z = 2. Such func-
tions (for which the limit is attained) form an important class which
will be discussed in 2.8.
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2.15 A well-known geometrical example of a limit is the tangent to
a curve at a point P, defined as the position to which a chord PQ
approaches when @ approaches P along
the curve. If the curve has an ‘angle’ at P,
as in fig. 29, then the chord P@ approaches
different positions according to whether
approaches P from left or right, and in this
case there is no ‘tangent at P’ in the
‘ordinary sense.

2.2 The general idea of a limit

2.21 Informal definition

The idea pervading the preceding ex-
amples is expressible as follows.

If the values of f(x) can be made as close as we please to the number
by making z sufficiently close to the number a, then we say that f(x)
approaches or tends to or converges to the limit [ when x tends to a.

We write either

Fig. 29

f(x)>1 when x-—>a

or lim f(x) =1,
r—>a

but of course no sort of mixture of these two statements.

Remarks

“(a) By the words ‘z tends to a’ we understand that z must be
allowed to approach a from either side, i.e. through values less than a
(z - a—) and also through values greater than a (x - a + ). If f(x) can
be made arbitrarily close to ! only when z—+a+, or only when
x — a—, then l would not be ‘the limit’ of f(x) in the sense envisaged.
(Tt was for this reason that we mentioned what happens when 2 — 0 —
in the case of z/sin x (2.12) before writing down the statement (v).)

(8) We do not imply that f(x) must approach steadily down to the

limit ! (as does z/sinx towards 1) or steadily up to it (as for sinz/z);
when z is close to a, f(x) may take values some of which are greater
and some less than . For example, zsin (1/x) — 0 when x — 0, although
this funetion is positive for some values of x near 0 and is negative for
others (cf. Ex. 1(d), no. 11 (ii)). The essential requirement is that the
difference between f(x) and ! can be made as (numerically) small as
we please.
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(y) Moreover, it is not enough that we can make this difference as
small as we please for some (but not all) values of z sufficiently neara.
Thus from 1.53, (iii) the function sin (1/x) is zero for all values x=1/n7
where 7 is an integer (positive or negative, however large), and is as
small as we please if we consider values of z sufficiently close to these;
but this function does not have 0 as limit when z — 0 because it does
not remain close to 0 for all small z. In fact, the function oscillates in
value between + 1, and does not approach a limit when 2 — 0.

- (6) Asin 2.12, no mention is made of f(a), because the function may
not even be defined when = = a. Hence when we speak of ‘all values
of z sufficiently close to a’, we mean all z in some small interval
a—1 < x < a+17 excluding a itself; this is conveniently written

0<|z—a| <.

We call such values of  a neighbourhood of a. Clearly a number o has
infinitely many neighbourhoods, one corresponding to each choice of 7.

2.22 Formal definition

We can now express the requirements of our informal definition
more precisely. Suppose we'are given some positive number ¢ as our
‘standard of closeness’ of f(z) to I; then we must be able to make

—e<flx)-l<e

for all values of x sufficiently close to a. That is, we must be able to
give some positive number 5 such that the above condition is satisfied
for all z for which 0 < |x—a| < . Our final definition of ‘limit’ is
accordingly as follows.

f(x) tends to the limit I when x tends to a if, given any positive number
¢ however small, we can find a corresponding positive number 7

such that
[fx)—!I| <e forallzforwhich 0< [x—a| < 7.

Remark. As a simple though useful deduction we have: if f(x) = &
for all  in some neighbourhood of a, where & is constant, then

lim f(z) = k.

2.3 Some general properties of limits

We now prove, directly from the definition just given, some pro-
perties of limits which would be expected on intuitive grounds. The
results of 1.14 are required.
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If f(x) > o and g(x) - £ when x — a, then
(i) kf(x) — ko where k is constant;
(i) f(@)+g() > o+ B;
(iii) f(@)g(z) > s
(iv) 1/f(x) - 1]ec provided that a & 0;
(v) f(x)/g(x) - o/ provided that S + 0.
Proofs. Our hypotheses are that
(@) to any number ¢, > 0, however small, corresponds a number 7,
such that

|[f(x)—a| < €& for all x for which 0 < |z —a| < 5y;

(b) to any number e, > 0, however small, corresponds a number 7,
such that
|g(x)—pB] < e, forall « for which 0 < |z—a| < 7,.

In (i) we have to prove that, given any number ¢ > 0, however
small, we can find a number # such that

|kf(x)—ka| < ¢ for all # for which 0 < |x—a] < 7.
Now |&f (@) — ker| = |k(f(2)—)| = |k].|f(x)—a
< |k|e Whenever. 0< [xz—a| <y;
and we can choose ¢, in the first place so that |k|e; < €. Then
|kf(x)—kee| < € whenever 0 < |x—a| < 7;.

Taking % = #,, we have result (i).
For (ii), we have
(@) +9(@) - (@+8)| = |(f@)—2) +(9(z)—B)|
< |f(@) - +|g(x) - B|
< € +6y
whenever 0 < [#—a| < thesmaller of7,,7,. We can choosee, = ¢, < 4¢
and 7 to be the smaller of 7, 7,; then
|f(x)+g(x)—a—p| <€ whenever 0 < |z—a| <7,
and this proves (ii).
For (iii) we write
|f@)g@) —af| = |(f(2) ) (9(2) — B) + 2(9(x) — B) + B(f () )|
< |f(@)—a|.19(@)— Bl + o] - [g(x) - B| + 8] . | f(@) — e

< &6+ || e+ Bl e
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whenever 0 < |x—a| < 9, where 7 is the smaller of 7,, ,. We can
choose €; and ¢, so that |x| €, < ¢, |§] €; < ¢ and also ¢, ¢, < %¢; then

[fx)g(x)—ap| < e whenever 0< [x—a| <7,

and (iii) follows.

Ifa+0, 11 Je—f@)] _ 1f@)-qf

f@) « af(x) | |af.|f@)]
Now  |f@)] = |a+(f@)~a)] > Jo] ~ |f@) ~a] > || —&;

when 0 < |z—a| < 7,, and also |f(x)—a| < ¢; under the same con-
dition. Hence

f(ix)—é < FICES (,ZII_el) when 0 < |z—a| <7,.
We can choose ¢, < } |«|, so that then |a| —¢, > } ||, and
1 1 €
f@) e = lap

We can also choose €, < } |a|2¢ if this is not already implied by the
requirement ¢, < 4 |a| above; so that

1
f(:v_)_o_cl < e whenever 0< |x—a| <7,
proving (iv).

Result (v) follows from (iii) and (iv) since f(x) > « and 1/g(z) > 1/4
if #40.

2.4 Other ways in which a function can behave

(1) If & = 0 in 2.3, (iv), then the hypothesis means that f(z) is as
small as we please for all z sufficiently near a. Hence 1/f(x) will become
numerically large when « -> a. For example, let f(x) = 22; then when
x is small (positive or negative), 2% is small and positive, and so 1/z2
is large and positive. In fact we can make 1/2? as large as we please
for all values of « sufficiently close to 0: given any positive number K
however big, we shall have 1/2% > K if 22 < 1/K, i.e. for all x such
that |x| < 1/J/K. We say that 1/22 tends to infinity when x tends to 0,
and write

1
Z when - 0.

Graphically, the curve y = 1/2 has the line = 0 for an asymptote
(1.41, Remark («)).
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In the general case, the statement
flx) >0 when x—>a

means that, given any positive number K however large, a corre-

sponding number % can be found so that f(x) > K for all « for which

0 < [x—a| < 5. Graphically, the line z = a is an asymptote of the

curve y = f(z).
Similarly, flx)>—0c0 when z—>a

means that, given any negative number — K however large, # can be

found so that f(x) < — K for all  for which 0 < |z—a| < 7.

(2) The function 1/ is large and positive when x is small and
positive, and can be made as large as we please for all such x sufficiently
small. However, if z is small and negative, the function is large and
negative. All we can assert in this case is that

1 1
E—>oo when z—-04+ and 5—>—-oo when z—»>0-—.

In 1.53, (iii) we saw that sin (1/x) takes all values between +1 in
any interval however small which encloses the value x = 0. Since 1/x
can be made as numerically large as we please for all x sufficiently
small, it follows that the function (1/x)sin (1/x) can take any value
however large, whether positive or negative. However, this function
does not remain large for all values of x near 0; e.g. it is zero when
x = 1/nm (n being an integer). The condition (1/x)sin (1/z) > K is not
satisfied for all z sufficiently near 0, so the function does not tend to
infinity when z — 0 (nor even when z - 0+ or - 0—); similarly it
does not tend to minus infinity.

We say that sin (1/x) oscillates finitely (between + 1 and —1) when
x — 0, and that (1/x)sin (1/x) oscillates infinitely.

(3) We also say that 1/2?% 1)z, (1/x)sin (1/x) are unbounded near
x = 0 because they can take arbitrarily large values in this neighbour-
hood. The function sin (1/x) is said to be bounded near x = 0 because it
lies between two fixed numbers (namely +1 and —1) for all small «
(and indeed for all ). Similarly, the terms ‘bounded’ or ‘unbounded’
can be applied to the behaviour of a function in the neighbourhood
of any number x = a.

Any function which has a limit when x — a is certainly bounded near
x = a; this follows directly from the definition of ‘limit’.
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If a function is bounded in the neighbourhood of every z in some
interval, it is said to be bounded in this interval. For example, sin (1 [x)
and the functions in 1.41, (i) and (iv), are bounded for all z; that in
(i) is bounded in every interval which excludes the number 2, but is
unbounded near x = 2.

2.5 Limits when x - w0, x >—0o

If « becomes large and positive, the function 1/x becomes small
and positive; it can be made as small as we please for all z sufficiently
large. Similarly, sinx/z can be made as small (positive or negative)
as we please for all z sufficiently large. We say that 1/x and sinz/x
tend to 0 when x tends to infinity.

f(x) >l when x - oo if, given any positive number ¢ however small,
a positive number N can be found so that [f(z)—!| < € for all x for
which x > N. We write lim f(x) = 1.

x>
Similar definitions can be given for ‘f(x) -1 when z—>—0’,
‘f(x) - oo when z — o0’ etc. The reader should formulate them for
himself.

2.6 Continuity

2.61 Definition of ‘continuous function’

The intuitive idea of a ‘continuous curve’ is that of a graph with
no breaks (‘missing points’) in it, so that it could be drawn without
raising the pencil from the paper. We should naturally say that the
function represented by this curve is a ‘continuous function’. Thus
the curves and functions in 1.41, (i), (iv) and 1.53, (iii) are ‘con-
tinuous’; but that in 1.41, (ii) is ‘discontinuous’ at z = 2, that in
1.41, (iii) at * = +1, — 1, and that in 1.53, (i) has a different sort of
‘discontinuity’ at z = 3.

Taking these notions as a temporary basis, we observe first that
‘continuity’ is a property of each point of the curve rather than of a
complete piece of it: the curve in fig. 31 is ‘ continuous’ at most points,
but not at = a, or = a,; while that in fig. 30 is ‘eontinuous’ even
at a point like @ where the direction of the curve changes abruptly
(cf. 2.15).

If fig. 30 is the graph of y = f(z), we now list some properties of
f(x) which must be associated with the point P at which # = @ and
the curve is ‘continuous’.
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(@) f(x) must be defined at x = a (otherwise the curve would be
broken there).

(b) f(x) must be defined in the neighbourhood of a (same reason).

(c) When z - a— and when x - a+, we must have f(z) - f(a).

Fig. 30 suggests other properties which we should expect a ‘con-
tinuous’ function to possess; one of these will be mentioned in 2.65,
and others later (6.1) when they are needed, but (a)—(c) above are
sufficient on which to base a precise definition of ‘continuity at a
point’,

Definition. f(x) is continuous at x = a if lim f(x) = f(a).

r—>a

yi
. P
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Fig. 30
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Fig. 31

We can paraphrase this by saying that ‘limits coincide with values’.
Using the formal definition of ‘limit’ given in 2.22, the definition
above can be restated as follows.

f(z) is continuous at z = a if, given any positive number ¢ however
small, there is a corresponding number 7 such that

|[f(z)—f(a)] < e for all # for which |z—a| <.
If we write # = a + h, we can present these inequalities in the form
|fl@+h)—f(a)| < € for all b for which |h| < 7.

Less precisely, by writing ¥ = f(z) and % = dz, the condition can
be expressed as
dy -0 when 6x—>0, or limdy=0. (1)

dx—0
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If f(x) is continuous at each point for which a < z < b, we say that
f() is continuous in the open interval a < x < b (1.12).

Remark. To define continuity in the closed interval a < < b in
this way, a difficulty about the ends x = a,x = bhas to be surmounted,
because the function may not be defined for x < a or for z > 6. In
order to keep within the interval, the most we can require is that
f(x) > f(a) when 2 - a + and that f(z) - f(b) when x - b—.

2.62 Some properties of continuous functions -

(1) The sum, difference, product, and quotient of continuous functions
18 also a continuous function, provided that in the last case the denominator
s non-zero at the point considered.

The results follow immediately from the definition of continuity
at a point’ and the theorems on limits in 2.3.

(2) 4 continuous function of another comtinuous function is itself
continuous.
We are given that

u=g@)>gle)=>0 when z->a,
and that f(u) > f(b) when % —b.
We have to prove that N
f(g(x)) -> f(g(a)) when z-—a.
Given e > 0, there corresponds a number & such that
|f(u)—f(8)] <€ whenever |u—b| < 4.
Taking & as the ‘¢’ in the second hypothesis, there corresponds a

number 7 such that

|u—b] <& whenever |z—a| <.
Hence |#(9(x)) —f(9(a))] <& whenever |z—a| <9,
and the result follows.

2.63 Examples of some continuous functions

(1) 2™ is a continuous function for all values of x when n is a positive
integer ; the same is true except at ¢ = 0 when n is a negative integer.

The function f(x) = « is certainly continuous everywhere. Hence
by 2.62 (1) the product x.x.x ... x (n factors) is continuous everywhere.
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Hence, again by 2.62 (1); the quotient 1/z" is continuous everywhere
except where the denominator is zero, viz. at x = 0.

It follows by repeated applications of 2.62 (1) that

(@) all polynomials are continuous everywhere ;

(b) all rational functions are continuous everywhere except at the
points which make the denominator equal to zero.

(2) sinx, cosx are continuous everywhere.
For |sin (z+h)—sinz| = |2 cos (z+ }h) sin h|
< 2|sindh| since |cos(z+3%h)| <1
< [A| since [sinh| < %A
Hence, given €, we have
|sin (z+h)—sinz| < e whenever |h| <e.

Therefore sin z is continuous for any . A similar proof holds for cos x.

By 2.62 (1), it follows that tan x is conttnuous except where cosx = 0,
i.e. except when x = (k+ )7 where k is any integer (positive, negative,
or Zzero).

2.64 Removable discontinuities
In certain cases lim f(z) may exist and be equal to I, while f(a) is

r—>a
not defined. We can ‘remove the discontinuity’ at = a by ‘com-

pleting the definition’ of the function: we may define f(a) to be I.
The new function (defined by means of two formulae) is then con-
tinuous at x = a. For example, we can write

x

fl@) = sin x

f(0)=1;

then f(x) is. continuous at z = 0.

On the other hand, no such attempt will make the function tanz
into a continuous function at = }m; for when z — {7+, tanx - — oo,
and when z — 7 —, tanz —+oco. Thus tanx does not approach any
limit when x — 7. The same remark applies to sin (1/x) when x — 0;
see 1.53, (iii).

when x40,

2.65 Another property of continuous functions

If A, B are points corresponding to # = a, = b on a continuous
curve y = f(x), with 4 below and B above Oz, then geometrical
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intuition asserts that the curve must cut Oz somewhere (possibly
more than once) between 4 and B. We give a formal statement.
If f(a) and f(b) have opposite signs, then there is at least one number £
between a and b for which f(£) = 0. y
This result can in fact be deduced from
the definition in 2.61 with the help of
some deeper theorems on ‘bounds’ of a .

function. We shall assume it because a 7] a:' £ b pe
rigorous proof would deflect us too far /{/_/

AN

from the course in view. 4

If we apply the result to the con-
tinuous function g¢(z) = f(z)—c, we de- Fig. 32
duce the

CoroLrarY. If f(a) < ¢ < f(b), then there is at least one value x = £
between a and b for which f(£) = c.

yi

()

fa)

Fig. 33
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Fig. 34

This can be expressed also as follows: when x varies from a to b, the
continuous function f(x) takes every value between f(a) and f(b) at least
once. The reader should illustrate by a sketch.

The converse result, that ‘if f(z) takes every value between fla)
and f(b) as z varies from a to b, then f(x) is continuous,’ is clearly false,
as fig. 33 shows.

4 GPMI
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The result is in general false for a function which is discontinuous
in @ < « < b: in fig. 34, the function takes no values between «, £
as z varies from a to b.

Exercise 2(a)

Find the following limits if they exist; if they do not, state the behaviour of the
Jfunction.

2. .2
1 r-e when x - a.
r—~a
x2—4x+3 . .. .
2 b when (i) ¢ - 1; (ii) & = o0; (iii) 2 ->=—o00; (iv) z - 0.
b —ab 1
3 ——a when z - a. 4 ;{J(l+x)—J(1—x)} when z - 0.
sin 3. in 2
5 mxwhenx—>0. 6S{n xwhenx—»O.
sin bx
tanx—sinz cos~lz
7 WWhenx»O. 8 mwhenw»l.
ta; 11—
9 —%lfwhenxao. 10 CO8% when z - 0.
1—
11 ~=°22% Shen z > 0. 12 zsinz when (i) z - 0; (i) & - co.

1
13 xsiniwhen (i) ¢ - 0; (il) z »> 0. 14 eos; when (i) z - 0; (ii) © - o0.

sin? pz —sin? g

when z - 0.
1—cosx

1.1
15 ;sin; when (i) # - oo; (i) z - 0. 16
sec (z+h)—secx
tan (x+h)—tanz

sm(x+h)+su;z§x—h)-—2smx when b — O.

19 If f(x) = zsin(1/z) (x % 0), f(0) = 0, prove that f(x) is continuous at x = 0
(and therefore for all values of z by 2.62(1)). Verify that the graph of f(x) lies
in the angles between the lines ¥ = + which contain the z-axis. Sketch the
graph.

20 Iff(z) = «?sin(1l/z) (@ * 0), f(0) = 0, prove that f(z) is continuous every-
where, and sketch the graph.

17 when h - 0.

18

2.7 Functions of n: some important limits

2.71 Sequences

Although we have considered functions of a ‘ continuous’ variable z
which can range over all values for which the function is defined, we
shall also need to consider functions f(n) where n takes only integral



2.71] LIMITS. CONTINUOUS FUNCTIONS 51

values. For example, f(r) may denote ‘the sum of the first » positive
integers’ and is defined only when  is a positive integer.

Definition (a). If f(n) is a one-valued function of n which is defined
for all positive integers n, f(n) is called a sequence, and its values

f), f@), f@),

are called terms of the sequence. Even if f(n) is defined only for all n
greater than some fixed positive integer m, it is still called a sequence.

Thus 72, ", sin {7/(n—2)} are sequences, the latter being defined
for all n > 2; but tan n is not a sequence because it is undefined for
odd values of » however large.

Remark («). A sequence is not completely specified when its first
few terms are given. For example, although the simplest sequence
beginning with

1, 4, 9, 16
is n?, yet n?+(n—1)(n—2) (n—3) (n—4) ¢(n)

(where ¢(n) is an arbitrary sequence defined for all n > 1) begins in
the same way. Sometimes even the ‘simplest’ sequence is not obvious:

thus
1, 3, 5 7

could be continued as 9, 11, 13, 15, ... oras 11, 13, 17, 19, ... according
to whether it is interpreted as the ‘arithmetical progression’ 2n—1,
or as the sequence of odd prime numbers.

If f(n) has a meaning when » is not a positive integer, we may regard
the terms of the sequence as the values of a function f(z) when x takes
positive integral values; e.g. sin 2n7 could be thought of as the value
of sin 2772 when 2 = n. On the other hand, some functions are defined
only for positive integral values of the variable; z! is an example.

We shall need to know the behaviour of certain sequences when n
becomes large. Accordingly we give the general

Definition (b). The statements

lim f(n) =1,

n—>on
fm) >l when n-—>o

each mean that, given any positive number ¢ however small, there
corresponds a positive number N (which need not be an integer)

such that [fn)—1| <€ forall n>N.



52 LIMITS. CONTINUOUS FUNCTIONS [2.72

The terms ‘tends to infinity’, ‘tends to minus infinity’, ‘osecillate’
are similarly defined for a sequence when 7z - co. The reader should
formulate precise definitions like those in 2.4.

Remark (§). If there is a function f(x) corresponding to the sequence
f(n), the fact that lim f(n) = I does not imply that f(x) approaches a

n—>w

limit. For example, limsin 2n7 = 0 because sin2n7 = 0 for all in-
’ n—>w

tegers n, but sin 27z oscillates between + 1. However, the converse

is true: if limf(x) =1 then lm f(n)=1.
n—»o

T—>w

For if |f(x)—1| can be made as small as we please for all numbers
2 > N, then it will certainly be so for all infegers > N.

We now consider some important sequences which will be required
later.

2.72 a»
First suppose 0 < @ < 1. Then

a>a2>a®> .. >a",

a— a'n+1 a
l—a l-a

and hence na® < a+at+...+a" =

by summing the geometrical progression. Therefore

a

n
<n(1—a)’

and the right-hand side can be made as small as we please for all n
sufficiently large. Consequently a® -> 0 when n — co.

If —1 < a < 0, then we have 0 < |a| < 1 and the above argument
shows that |a|* - 0, and therefore a™ — 0, when n > o0. If ¢ =0,
then a” = 0 for all », and the limit is still zero. Hence

if -1<a<1, lima®=0.
n->o

If @ > 1, then a = 1+b where b > 0. By Bernoulli’s inequality
(1.21, ex. (i), an = (1+b)" > 1+nb.

Since nb can be made as large as we please for all n sufficiently large,
so can a™. Therefore

if a>1, a*~>w when n->w.
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If a < -1, the preceding shows that a” is large and positive for
even values of n, and is large and negative for odd values, when
n — 0. Hence a” oscillates infinitely when a < — 1.

If a = 1, then @™ = 1 for all n, and so the limit when % — o0 is 1.

If @ = -1, then a” is +1 for even # and —1 for odd ». Thus a»
oscillates finitely (between + 1, — 1) when n — co.

2.73 a*/n

If -1 <a <1, then a» > 0 by 2.72, and hence certainly a*/n — 0
when n +o0. If @ = +1, then a" = (+ 1)/n, and this also tends to
zero when n — co. Therefore

an
if -1<ax1, then lim—=0.
n—>o NN

Ifa > 1, then a = 1+b where b > 0. Writing f(n) = a®/n,

fo+l) n  n
RS S TS Ll
> 1+1b, say,
if n(l+b) > (n+1)(14+3b), ie. }nb>1+14b,
ie. n>2—-l|;b=N, say.
Hence for n > N, we have
an+1 am
bl 1
nyl” n(l+2b)’
and so
a™ n—1 b anr—2 9 aN N N
—_— — R N—.
p >n_1(1+§~ )>n__2(l+%b) > .. > N(1+2b) .

When 7 —> 00, (1+ 4b)" - o0 by 2.72; hencet
an
if a>1, i when n-w.

If @ < —~1, a”/n oscillates infinitely because it takes positive values
for » even, negative values for #» odd, and by the preceding case these
can be made as numerically large as we please.

T An alternative proof is given in the last part of ex. (vi), 12.52,
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2.74 av/n!
First suppose @ > 0, and choose N > 2a; then for n > N,
a_aa a a a
n! 1'2"N—1'N'""n
aa a
<T'§'"N—1°%'"%

av

Since (4)" - 0 when n — 0o, this expression also tends to zero.
If @ < 0, then |a™/n!| = |a|®/n! - 0 when n — co by the preceding
case. If a = 0, then a”/n! = 0 for all n. Hence

for all values of a, lim _a_"' =0.
n—>o 112
2.75 m(m—1) ... (m—n+1) a/nl, m constant

If m is a positive integer, then the function is zero for alln > m+ 1.
Ignoring this simple case, write

m(m—l)...(m—n+1)an

1) m—n m+1
1f fnt1) ——(1- _)
@+ 0 O S G TS VAR
and we can make the modulus of this as close to |a| as we please for
all n sufficiently large.

If |a| <1, then clearly |a| < §(1+|a|) <1, and we can make
|f(n+1)/f(n)| less than }(1 + |a|) for all n > N, say. Writing

k=31+]al),
then for » > N we have

[f)| < E|f(n—1)] < B?|f(n—2)| < ... < k»N|f(N)|.

Since 0 < k < 1, then k" - 0 when n oo and so also |f(n)| - 0.
Hence

it —1<a<1, lim2m=D.(m-nil),,
n—>w n:

0.

We shall not need to consider values of a outside the range
—1 < a < 1, but a similar argument would show that if |a| > 1, then
|f(n)| - oo when n — co.
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2.76 Further examples
(i) Prove that for any a > 0, lim Ja = 1.

n—»-w
If a > 1, then Ja > 1 (1.21, Corollary II(c)); let Yo = 1+b, so that b > 0.
Th
en a=(14+b)"> 14nb>nb

by Bernoulli’s inequality (1.21, ex. (ii)). Hence b < afn, and so
a
0<f—-1< o

Since a/n can be made as small as we please for all n sufficiently large, hence
Ja—1 - 0 when n - .

If 0 <a <1, then 1/a > 1, and so by the preceding case with 1/a instead
of @ we have 1/%a - 1 when n — o0, i.e. Zlg — 1.

Ifa = 1, then Ja = 1 for all n.

The function is not defined for all » if a < 0, and is zero for all n if @ = 0.
The required result has thus been established.

@ii) If —1 < a < 1, prove that limn*a™ = 0 for any fixed integer r.
n—>oo
If r is negative, the result is evident from 2.72; the particular case r = —1
appeared in 2.73. We may assume 0<a <1 in the following (cf. 2.72).
If r is a positive integer, let b denote the positive (r+ 1)th root of a, so that
0 < b < 1and b"*! = q. Then, as in 2.72,

nb® < L4btbit.. otz 20 1
T 1-b "1-0
. 1
1.e. na™r+ < I--W‘ﬁ?
1
Hence ntigr <

(1 — glir+0yr+1°

1

ran —_— .
and so wat < n(1 — gir+oyri1’

and this last expression tends to zero when n - co.

2,77 Monotonic functions

Iff(n+1) > f(n) for all values of n, then f(n) is said to be a steadily
increasing function or to be monotonic increasing. If the property
holds only for all » beyond a certain integer N, f(n) is monotonic
increaging for » > N.

There are two ways in which such a function can behave when n
increases:

(i) it may increase indefinitely with =, i.e.f(n) - co when 7 - c0; or

(ii) it may remain less than some fixed number £, i.e. f(n) < k for
all n (so that the function is bounded, 2.4 (3)).
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In case (ii) it can be shown that f(n) approaches some limit I when
n —> 00, where I < k. Although a strict proof of this assertion cannot
be given in this book, the reader may convince himself of its truth by
the following geometrical illustration.
L
. |

.0 P, P, P P, &
Fig. 35

Let the values f(1), f(2), ..., f(»), ... be represented by lengths
OP,, OP,, ..., OPF,, ... measured off along a fixed line OX. Since the
points P move steadily to the right, then either (i) they will eventually
pass beyond any point whatever which one cares to select on the line;
or (ii) there will be some point K of the line which they can never pass.
Clearly any point to the right of K will have the same property; but
a point to the left of K may or may not. The assertion is that there is
some point L of the line, either to the left of K or coinciding with K,
to which the P’s approach indefinitely closely, i.e. such that the length
P, L is as small as we please, for all sufficiently large values of n.

It should be noticed that although f(n) < k for all n > N, we
may yet have lim f(n) = k. For example, 1—1/n < 1 for all n, but

n—>w

1—1/n — 1 when n — co. Hence we must allow / < ¥ and not merely
Il < k in general.

Similarly, if f(n + 1) < f(n) for all n (or perhaps only for all n > N),
then f(n) is said to be monotonic decreasing (perhaps for n > N).
When n — oo, either f(n) -—o0; or f(n) > k' for some constant &',
and in this event f(n) - I', where I’ > k'.

The results stated above are important because they enable us to
decide whether a monotonic function has a limit without our first
needing to know what that limit must be.7 If the definition (b) in 2.71
were to be used to show directly that lim f(n) = I, we must know [ at

n—>0
the start; and this is not always the case (see ex. (ii) below). Rather,
we can define a number by the property of being the limit of a bounded
monotonic function, as in ex. (ii) and 4.43 (8).

Examples
(i) Discuss ima™ when a > 0. (Cf. 2.72.)

n—>aco
Taking f(n) = a®, then f(n+ 1) = af(n).
1 The first will be basic in convergence tests: see 12.32(5).
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If a > 1, then f(n) is steadily increasing for all n, and so it either tends to
infinity or to some limit . If f(n) -, then I > 1 (since f(1) = a > 1 and the
function is increasing), and

! = lim f(n+ 1) = lim {af(n)} = alim f(n) = al.

The relation I = al is impossible because a > 1 and I > 1. Hence when a > 1,
a®™ — co when n — oo,

If 0 < a < 1, then f(n) is steadily decreasing for all n, and so either f(n) - — o
or f(n) - I’, where as before we find I’ = al’, 80 I’ = 0. Thus when 0 <a < 1,
a™ - 0 when n - oo,

*(ii) Provethat (1+ 1/n)® has a imit whenn — co. Calling this limit e, show that

2} <e<3.

(This example may be postponed until the binomial theorem (12.1) has
been revised.)
We first prove that, for all positive integers n,

1 n+1 l n
(1+n_ﬁ) > (1+;) .
The (+1)th term in the expansion of (1+ 1/n)"is (for 7 = 1,2, ...,7n)
ST TR YA

r! nt 7! n n

which is positive because each factor is positive. Similarly, the (r+ 1)th term
in the expansion of (1+1/(n+1))*is (forr = 1,2,...,n+1)

1 1 2 r—1
rz(l‘m) (I‘m)"'(“nﬂ) @

which is positive. Each factor in (b) which involves # is greater than the corre-
sponding factor in (a).

Hence, apart from the first terms (which are both 1), the expansion of
(1 +1/(n+ 1))""'1 is greater term-by-term than the expansion of (1+ 1/r)"; and
the (n+ 2)th term of the first, to which there is no corresponding term of the
second, is positive. Hence the required inequality follows; it shows that
(14 1/n)" is @ monotonic increasing function of n.

When n = 2, the function has the value 2}; so for all n > 2, we have
2} < (1+1/n)™

The expression (@) shows that the (r+ 1)th term in (1 + 1/n)" is less than 1/r!,
and hence

1\» 1 1 1 1
I+—) <l4+—+—+—+...+—.
Lo n!

1t 21 3!
Sincen! =1.2.3...n>1.2.2...2 = 271 if n > 2, therefore
I ARy 1 1 1 .
(1+;) <1+1+§+§‘+...+2—"_—1 if n>2
=14+{1-(3)"}/(1—%) on summing the g.p.,
1
=3—2n—1

< 3.
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We have now shown that (1+ 1/n)* is an increasing function which remains
less than 3 for all n. Hence (14 1/n)" tends to a limit, say e, when n — co, and
2} <e<3.

The number e, which we shall meet by a different approach in Ch. 4, is very
important in mathematics and its applications.

Exercise 2(b)
State the behaviour of the following functions when n - co.
1 n4 (=1 2 {n+(—1)"/n. 3 14+(—D™
4 n{l+(—1)". 5 n{2+(—1)7. 6 n{l+(—2)".
7 nt4 (=1 n. 8 sin . 9 S———m:"".
10 22 1n =2 12 L4 cos .
N n

Calculate the limits of the following functions when n - co.
1+2+3+..4n  _ 14+3+5+...4+(2n+1)

13 " 14 por
15 %(nz_ l)sin%. 16 n”{cos (507;) —co8 (g)} , where 0 is constant.
7 ﬁ%_‘;l", 18 I(a"+b"), where a > 0, b > 0.

o 41",

20 Discuss the behaviour of n*a® where r is a fixed positive integer and |a| > 1.

21 Prove that §(n!) - co whenn - co. [By 2.74, a™/n! - 0 for any a, however
large; so n! > a” for all n sufficiently large. Alternatively, use Ex. 1(a), no. 4.]

*22 (i) If f(n) is monotonic increasing or decreasing, prove that

_fQ+f@)+... +f()

n

g(n)

has the same property.
(ii) Iff(n) increases and has limit 7, prove that g(n) tends to a limit <.
‘What can be said if f(n) decreases and has limit [?

Miscellaneous Exercise 2(c)

1 Prove lim 2= (1) 2m 4 man
z->1 (1—=)*

[Use the result 1+ +22+... +2?1 = (1—=z?)/(1—2), = + 1.]

2 Ifn > 1, then #n = 1+a where a > 0. Use the binomial theorem to prove
that (1+a)* > 3n(n— 1) a?, and hence show that

0<a< 2
n—-1"

= n(n+1).
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Deduce that lim #/n = 1, and state the value of lim Y(n") where r is a fixed

n—>0 7n-—>00
integer.

For convenience we write f(n) = u,, in nos. 3-7.
*3 The values of u, are defined for n = 1,2, 3, ... in succession by the recur-
rence formula .y = Hu,+afju,). Assuming @ > 0, prove that
(i) if 0 < u, < Ja, then u,,, > Ja;
(ii) if u, > Ja, then u,,, > Ja and also u,,, < u,.
Deduce that if «; > 0, then
(iil) u, > /a for all n > 2, and u,, is monotonic decreasing;
(iv) u, > sJa when n - 0.
What is the conclusion when u,; < 0?
*4 Solve no. 3 by showing that

Unia=fa _ (u1~4a) -
U tya  \w e

*S Tt is given that 4w, g— 55U,y +u, = 0 for all n> 1, and that u, =7,
u, = 4. By writing the relation in the form

Uprg—Uns1 = Hobpyy —Us),
prove that w,,,—u, = —3(})"1. Hence express u, as a function of n, and

prove limwu, = 3
n—rw

6 If u, > 0 and lim (u,4,/4,) > 1, prove u, - o when n - co0. [Method of

n—-»o0
2.73.]
7 Iflim(w,,,/u,) = I'where —1 < < 1, prove limu,, = 0. [Method of 2.75.]
n—>co

n—>co

Obtain results from nos. 6, 7 by taking u, to be the following functions.
m(m—1)...(m—n+1)
n!

8 %:: (a constant). 9 a® (a, m constant).

10 n'a® (a, r constant).
*11 Find the behaviour of u = (2?+ 2y)/(y*— 2x) when 2 and y both tend to 0
(i) along the line y = ma; (ii) along the curve 23+ y® = zy. [Use the parametric
equations x = ¢/(1+8), y = #/(1+*) (Ex. 1 (e), no. 3) to express % in terms of ¢,
and observe that both = and y tend t6 0 when ¢ - 0, 4 00, or —0.]
*12 If §p(2) = lim {cos (m!mz)}2", prove that ¢,,(x) is always 0 if z is irrational,

n—>w
and is 1 if  is rational provided that m is sufficiently large. Hence show that
lim ¢,,(x) is 0 if = is irrational and 1 if  is rational. Write down a function y
m—>w
which is 0 when « is rational and 1 when z is irrational.
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3

THE DERIVATIVE. SOME APPLICATIONS

3.1 The derivative of a function of one variable
3.11 Definitions
Let f(x) be a one-valued function defined at and near x = a. Then

in the process described in 2.11 we can put dz = h, and express the
corresponding change dy caused by changing x from a to a + 4 as

0y = fla+h)—f(a),

dy _fla+h)—fla) -
so that w (1)
The definition given in 2.11 can now be formulated more precisely as
follows.
If the ratio (i) tends to a limit when A — 0 in any manner, this limit
is called the derivative of f(x) at « = a, and is written f’'(a). The
function f(x) is said to be derivable at x = a.

yﬁ\
Q vh
\Q
T
YA . P
¢ ‘/IéR
vy M N - -~
) a a+h z (4] a a+h z
Fig. 36 Fig. 37

Writing = a+A in (i), so that ‘A - 0’ is equivalent to ‘z > a’,
we obtain another form of the definition:

im T =@ _ 1y, (i)

z>a T—aQ

The reader will know that the derivative f’(a) is interpreted
geometrically as the gradient of the tangent to the curve y = f(x) at
the point (a, f(a)): see fig. 36.
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If the function f(z) were not one-valued, the difference f(a+h)—f(a) may
approach a limit other than zero when 2 — 0 (fig. 37), so that the ratio (i) would
not tend to a limit. To deal with a many-valued function we must consider its
branches separately.

If f(x) has a derivative for all z between a and b, we say that f(x) is
derivable in the (open) interval a < x < b. We also say that f'(x) exists
fora < z < b, and call f'(z) the derived function of f(x). Other notations
have been mentioned in 2.11, the chief ones being dy/dx and y'.

Remark. If f(x) is defined only for @ < « < b, there is no derivative
at x =a or at x = b because k cannot tend to zero in any manner
without @ + % or b+ A passing outside the range of definition of f(x).

Given f(x), the process of calculating f'(z) is called derivation of f(x)
with respect to x (abbreviated to ‘wo x’). The details of this process
depend on the function itself.

Examples

(i) If f(x) = c, where c is constant, then f'(z) = 0. For
1hnw) —mS=C = lim-(—) =1im0 = 0:
10 h PR R ANY )
see the Remark in 2.22.

We are not yet justified in asserting the converse of this result; see 3.82.
(ii) If f(x) = z, then f'(x) = 1. For
lim[EHN @ _ @R mi=1
B0 Rk o R a0 po -
(iii) If ¢ s constant, d{cf(x)}/dx = ¢f’(x). For
i TEEW =A@ _ R —f@) e+ —fe)
R0 h B0 h 20
by 2.3, (i), and this last expression is ¢f’(x).

3.12 A derivable function is continuous
If f(x) is derivable at o = a, then

J@-ﬂz—‘f@ —>f'(@) when k->0.

We can therefore write

f(a'l_h’})b_f(a) =f,(a)+77,

where 7 (in general depending on both % and a) tends to zero when
h — 0. Hence
fla+h)—f(a) = K{f'(a)+79} -0 when k-0,
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ie. lim f(a +h) = f(a),
h~>0

which shows that Sflz)is continuous at z = a.
The converse of this result is false, as the following examples

show.

Examples
(i) f(x) = «? is continuous at z = 0, but {f(2) —f(0)}/h = »~! which tends to
+oowhent - 0+ ,and to — cowhen s —>0—. Hencef(x)isnotderivableatx = 0.

(ii) f(z) = |=| is continuous at z = 0; but

f(h)-f(o)_l_h_l_ +1 if A>0,
B h T |-1 if k<O,

so that this ratio does not approach a limit when % — 0. Consequently f(x) is
not derivable at = 0.

(iii) Let f(x) = zsin(1/x), z + 0, and f(0) = 0. Then (Ex. 2(a), no. 19) f(z)
is continuous at z = 0; but

f(k) ;fw) _ hsin ;1/’” = sin (1/h),

and when % — 0 this oscillates between + 1. Hence f(z) is not derivable at
z=0.

In all these examples the functions fail to be derivable at a single
point (the origin); but continuous functions of = have been con-
structed which do not possess a derivative for any value of z. It should
now be clear that derivability of a function requires much more than
its continuaty.

We also remark that, even if f’(x) exists everywhere, it may not be
a continuous function of z. An example is given in Ex. 3 (a), no. 39.

3.2 The rules of derivation

The following rules should be familiar to the reader from early work
in Calculus, but we formulate and prove them here for completeness.

Let u, v be functions of x which are derivable at x = a. Then

(1) the sum y = u+v is derivable, and has derivative u’ +v';

(2) the product y = uv is derivable, and has derivative vu'+uv';
and ~
(3) if v & O when z = a, the quotient y = ufv is derivable, and has
derivative (vu' —uv')[v2.
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Proofs. A change 6z in x from a to a+ 8z causes changes du, 6v in
%, v, and these in turn cause a change dy in y, given by

(1) oy = (u+8u+v+'8v)—(u+v) = du+dv;
(2) Oy = (u+0u)(v+v)—uv = vou+udv + dudv;

u+ou u véu—udv

@) Tvtev v v(v+0v) ’

where we assume in (3) that the change dx is such that v+ év + 0; by
continuity of v and the hypothesis that v & 0 when 2 = a, this will be
the case for all 8z sufficiently small.

Divide both sides by dz, and then let 8z — 0. Since u, » are derivable
at = a, du/éx - u’ and dv/d0z — ', and by 3.12 du - 0 and év — 0.
Hence dy/dx tends to a limit, given by

(l)v w' +v, (2) vu'+uv, (3)

4

vu’ —up
02

(4) Function of a function. Suppose y = f(x) and = = @(t); then we
can express y directly in terms of ¢ as y = f(¢(t)) = g(t), say.

If ¢(t) is derivable at ¢ = t,, and if f(x) is derivable at x = x,, where
Ty = @(ty), then we prove that g(t) is derivable at t = t, and

9' (ko) = f' (o) &' (to)-
"Proof. Since x = ¢(¢) is derivable at ¢ = £,, then as in 3.12 we can
write

ox ,
3; = ¢ (t0)+7la

where 7 (depending in general on £, and &) tends to 0 when ¢ -> 0; so

8z = {'(to) + 7} . (i)
Similarly, as y = f() is derivable at x = z,,
0y = {f"(@o) + 7.} O, (i)

where 7, (in general a function of z, and dx) tends to 0 when 8z - 0,
and hence certainly 7, — 0 when & — 0, by equation (i).}
From (i) and (ii),
0y = {f'@o) + 9} {$'(to) +7} &,

t #, is undefined if 8z = 0; but (cf. 2.64) we may then define 7, = 0. Equation (ii)
is now significant even if &z, given by (i), happens to be zero for some values of 8.
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so that % = {f'(zo) + 1} {$'(to) + 7}
— f'(xy) §'(ty) When & —>0.

Hence g'(t,) exists and is f'(x,) ¢’ (f)-

The reader may wonder why we give this elaborate proof instead of the usual
one in the elementary books, which goes as follows:
By properties of fractions, Sy 8?/ X ox
&t oz ot
Letting 6¢ — 0, then also dz ~ 0 (3.12 and 2.61, (i)) and so, using the limit
theorem about products (2.3, (iii)), we have
dy dy dx

dt dx dt’

This proof fails if x is a function of ¢ such that dx vanishes infinitely many
times in the neighbourhood of &, i.e. as 8 - 0. For example,

:t" sin(1/2) (¢ 0),

=9 = (t=0)
is derivable at ¢ = 0, and ¢’(0) = 0; for

¢(6)—¢(0) ¢(°) — tsin(ljt) >0 when -0 (Ex.2(a), no.19).

However, there is no interval including ¢ = 0 throughout which 8z # 0; for

o1
Sx = ¢(8t) — $(0) = ()2 sin =

vanishes infinitely many times in any interval —T < 8¢ < T', however small T'
may be.

(5) Inverse functions. The inverse x = g(y) of a given function
y = f(x) was defined in 1.51(2). We suppose that f(z) is derivable at
x = x,, with f'(x,) + 0, and that g(y) is continuous at y = Yo, where
Yo = f(xo). Then g(y) is derivable at y = yo, and

Proof. Asin 3.12,

%g=f'(x0)+77 where 7 —>0 when dxz—0.

Provided that f'(z,) +% + O, this gives

ox 1

g/ @)t
As f'(z,) + 0, the proviso will be satisfied for all y sufficiently small,
and this will be the case for all 8z sufficiently small.

(1)
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Since x = g(y) is continuous at y,, hence (2.61,(i)) éz — 0 when
dy — 0, and consequently # — 0 when dy -> 0. Letting 8y — 0 in (iii),

do 1
8y f'(ao)’
i.e. g'(y,) exists and is 1/f(x,).

3.3 Derivatives of some well-known functions
3.31 The function x™

Case 1: m 1is a posttive integer n.
We have by summing the geometrical progression that

a™14a"2 +an3p2 + ... + b1

-ty
= an-1x “b

1—-=
a

if a%b

_an_bn
T a=b "

Taking b = z, a = z+h, we get

CEM =2 o (W=t @ B2t .. 4271 (n torms)

—>arlpgn-ly 4271 when h—>0
= na™L,
d . P
Hence T (™) = ma™-1  when m is a positive integer.
Case 2: m is a negative integer —n.
y = a™ =z = 1/z", and so by the quotient rule and Case 1,

dy a*.0—na" 1.1 i
= e T
= ma™1,

Case 3: m is a fraction plq.
From y = 27 we have y? = x?. Derive this relation wo , using the
‘function of a function’ rule on the left-hand side, and Cases 1, 2:
dy
—-1-9 — p—1
U ol

5 GPMI
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80 dy par?t p P
A =LT  — Lyp-1(gpla)—et+l = L ppie-1
dz gyt ¢ @) q
= ma™-1,

Conclusion. For all rational values of m,

d
—_—am) — m—1
dxx)_mx .

The function 2™ has not yet been defined for m irrational; see
4.41(6) (d).

3.32 The circular functions (angles in radians)
If y = sinz, then

Oy = sin (x + k) —sinz = 2 cos (x + }h)sin }h,

50 %=2cos(x+%h)s——u;—%—’—b—>cosxxl when % -0,
d
Hence — sin & = cos ¥.
dx
Similarl -fi- cos ¥ = —sinx
¥ dx a ’

For y = tanz = sin z/cos z, the quotient rule gives

dy cosz.cosx—sinz(—sinz) cos’z+sin’x

pat: A = secZ«.
dx cos?x cos2x

3.33 The inverse circular functions
These functions and their graphs were discussed in 1.52(3), exs.
(iv)—(vi).
1 y= Sin-1z. Since z = siny,
dz 0
&y cosy = +4/(1—22).

Assuming that we are considering one branch of Sin—lz (say that
whose values lie in the range nm—3m < y < nw+4m) so that the
function is continuous, we have by 3.2 (5) that

dy_, 1
de ~J(1-2%"
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If we consider only the principal branch y = sin—1z, then cosy > 0,
and we must choose the positive sign of the square root:

d .
a;(sm 1x)=+m.

(2) y = Cos™'2. Since z = cosy, dajdy = —siny = + /(1 —2?), and

y_, 1
de ™ ~\(1—-22)"
On the principal branch y = cos—1, siny > 0, and hence we choose
the negative sign: 1

d—x(COS" x) = -—m.

(3) y = Tan~'z. From « = tany we have dz/dy = sec?y = 1+a2.
Hence, on any one branch,

d 1
= -1y
prr Tan-1x T

3.4 Implicit functions and functions defined parametrically
3.41 Derivative of a function defined implicitly

In all cases we shall assume that the given equation in z and y
does in fact define y as an implicit function of z (see 1.51 (2)) and
that this function is derivable.t The method of finding dy/dx is
to derive both sides of the equation wo , using the rules of 3.2 and
treating functions of y as ‘functions of the (implicit) function’ y of z.

Examples

(i) If z* 4+ y" = gn, then
dy dy z\ "1
n-1_v< LSV .
0 and so (y)

ne™14ny

(ii) If asinmx+bcosny = ¢, then
dy _ amcosmx

. dy
amcosmx—bnsmnyd—x—o, 80 o W.

(iii) If 2°+ 62% + 2y® = 0, then
dy dy
2 3 _Y -
5x4+6(y.3x +z )+2.5y4 =0,

d; 4 1822
and %Y _ _ M
dx 628 + 10y*
t Sufficient conditions can be given for existence and derivability of implicit
functions.

. 52
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3.42 Derivative of a function defined parametrically

Given two functions z = ¢(f), y = ¥(!), we may think of the
elimination of ¢ as leading to a relation F(z,y) = 0 defining y as an
implicit function of . Assuming the existence and derivability of the
functions concerned, we require dy/dx; it can be found directly in
terms of ¢ without performing the elimination, and it is this form of the
result which is particularly convenient in geometrical problems, where
the given equations are the parametric equations of a curve (see 1.61).

By ‘function of a function’

dy _ dy dx
i dx a’
dy _ dy dw _y'e)
and so Te = ¢ Ok
Example

If x = a(6 —sin ) and y = a(1 —cos b), find dy/dz.
dy dy[dv  asinf  2sin}fcosif
dz dffdf a(l—cos0) 2gin? 16
= cot 40.

This result gives the gradient at P of the cycloid (see 1.61, ex.). If 7'is the other
extremity of the diameter along NC (fig. 22), then

30 = QP@‘N PTN,
and hence the gra,dlent at P is cot PPN = tan TPK. Therefore PT is the
tangent at P. Since TPN =1 right-angle, PN 1is the normal at P.

Exercise 3(a)
1 Find from first principles the derivative of (i) 1/x; (ii) 4/z; (iii) «¥; (iv) tan .

Write down the derivatives of the following.

2 (i) (®— 3)%; (i) (a?+2%); (i) 1/(1—a)*,

3 (i) sin®z; (ii) sinme; (iii) sin®ma; (iv) tan® .

4 If v = ds/dt and f = dv/dt, prove f = vdv/ds = }d(v?)/ds.

5 If x = y*+ 5y + 2, find dy/dz (i) in terms of y; (ii) in terms of x.

6 Obtain the quotient rule (3.2(3)) by applying the product rule to u = vy
(assuming that y so defined is derivable). .

7 If u, v, w are derivable functions of x, prove

i (uvw) = vwd +wudv+ o
dz dz" T
8 If y = f(x), = ¢(t), t = F(u) are derivable functions, express the deri-

vative of ¥ wo u as a function of u.
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9 Deduce the derivative of cosz from that of sinz by using the relation
cosz = sin (z + 3) and ‘function of a function’.

10 Calculate d(sin z)/dz by writing 8y in the form

Oy = cosz sin h —sinz(1 —cos h)

and using umE“h‘—"= , liml—ZOSh=0.
Treat cosz similarly.

11 The following incorrect ‘proof” that d(sin x)/dz = cosx is sometimes given
by students:

‘We have sin(x+h) = sinz cosh+cosz sinh, and we know that when
h - 0, cosh - 1 and sinh - h; hence sin (z +h) - sinz + hcosz, so

sin(x+h)—sinz > hcosz and {sin(x+h)—sinz}/h - cosz.’

Criticise this argument.

Verify the following (x being in radians unless otherwise stated).

d ‘ d
12 d—xsecx—tanzseox. 13 -d—xcosecx——cotxcosecx.
14 d cotx = 2

o x = —cosec2zx.

d . T A
15 ‘-i—xsmm_i—sacosw,xbemgmdegrees.

16 Deduce the result of 3.33 (2) from the relation cos—lz+sin-1z = .

Write down the derivatives of
17 sin-1(5x). 18 tan-l( - i”x,). [Put = = tan 30.]
19 zsin-lz+.(1—2Y). 20 sin‘lg if (i) @ > 0; (ii) @ < 0.

21 008‘1:—if(i)a>0; (i)a <0 22 tan‘lz.

By using the relations

1 . 1
secly = cos-l(; , cosec—lzx = sin-! 2) cot—lz = }m—tanlz,

or otherwise, prove that

d 1

—gee-lg = o~ .
23 dxsec z +xJ(m’—l) (z>1)

d 1

- S P .
24 7 o0sec T ® s d@=1) (x>1)
25 icot-lac=— !

dx 1422
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26 If u, v are derivable functions of z, prove

d u v’ —uv’
—(tan1—) = ———.
dx v u? 4 o2

Find dy|dx from each of the following equations.
22 yn 2\ ¥ y 3 . s
30 If y is a function of z, write down in terms of z, y, ¥’ the derivative of
x%*y® wo .

Find dy/dx in terms of the parameter from the following pairs of equations.

31 z=ct,y=cft 32 z=acos¢, y = bsing.
3at 3at?
33 2= 1+t3’y —-1+t3'

34 Find the equation of the tangent at the point (at?, 2af) on the curve
y? = 4ax, and interpret ¢ geometrically. Also give the equation of the normal.

35 Find the equation of the tangent to the curve z = acos*f, y = asintf
at the point 6. Prove that the sum of its intercepts on Oz, Oy is always a.
*36 Prove theresult of 3.31, Case 1, by using the binomial expansion of (x + k)"
*37 Prove that lim (a™—bm)/(a—b) = ma™ ! for all rational values of m.
b—a
[If m = p/q, put @ = 29, b = y*:
y JuY) 4 -1
limit = lim ——% =2 |
Y-z 29— yﬂ qxq-l

If m = —s, then

-1
1imit=lim /(a b)_—s‘;; =..1]

*38 If f(x) = wtan—1(l/z) (z + 0), f(0) = 0, prove that f(z) is continuous at
2 = 0. Also prove that {f(h) —f(0)}/k tends to + 47 when 4 - 04, and to —inw
when & - 0—, so that f’(z) does not exist at « = 0.

*39 Iff(x) = a*sin (1/z) (= % 0), /(0) = 0, show that
F'(x) = 2xsin (1/x) —cos (1/x) (% 0) and f/(0) = 0.

Also show that f'(z) is not continuous at x = 0 because cos(1/x) oscillates when
z—>0. ,

3.5 Derivatives of second and higher orders

3.51 Notation

The derivative of a derivable function y = f(x) will in general also
be a derivable function, and will possess a derivative which is denoted

by
d2 d2 ” ”
T ZmY D D, DY@, f@), o

and is called the second derivative of y wo x.
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Similarly d?y/dx? may possess a derivative. In general, the result of
n repeated derivations of y = f(x) wo z is denoted by

f®x), y™, Dmy, ete.

dx"

When ¢ is the independent variable (as is frequently the case in
mechanics), the first few derivatives wo ¢ are written

v ¥ ° ..
but this notation beyond third order becomes clumsy.

3.52 Implications of the existence of f)(a), n>1

If dry/dax™ exists at 2 = a, then d"ly/dz"—! must exist at and near
z = a, and is continuous at x = a; for the function d»ly/daz"1 is
derivable at = a (which implies its existence near a also), and it is
continuous at = a by 3.12. It follows in turn that the lower deri-
vatives d"2y[/dan-2, ..., dy/dx and the function y itself all exist and
are continuous at and near x = a.

3.53 Examples

dy

. 1 .
i) Ify = ;(acoskx-{-bsmkx),prove o

+ -—= + k2y = 0.
In cases like this it is easier to work with products than with quotients; we
therefore begin by writing the given equation as

zy = acos kx +bsin kx,
and derive both sides wo z:

y+x3—‘z = —aksin kx + bk cos kx.

Derive again wo z:

d_y.|.(g_.i+ %) = — ak®cos kx — bk?sin kz,
. @y,
ie. Tat2 = — k*zy,

from which the result follows.

This result, which is a relation between z, y, dy/dz, d*y/dz?, is called a differ-
ential equation. As it does not contain the constants a, b, it could be regarded as
the result of eliminating these constants from the given equation by use of the
derivatives of y. The converse problem (of finding the function y in terms of z
when the differential equation is given) is more difficult; some manageable
cases are discussed in Ch. 5.
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(ii) If = acos®t, y = bsin®¢, find d?y/dx? in terms of t.

dy__dy dz 3bsin®¢ cost - btant
de dt|dt  —3acosttsint a

iy dy d (dy\| [d=
da? d:z: dz) ~ \dt\dz)|/ @
b . b
= | —-sec?t) [(—3acos?¢sint) = — sectt cosect.
a 3a?

(iii) Calculate d?y/dx? if y is defined implicitly by the equation
22+ 3axy +y® = ad.
Derive both sides wo z:

3x2+3a(y+:v: )+3y2dm 0,

dy
i.e. z?+ ay + (ax + y?) o 0. (a)
Derive both sides of (a) wo z:

2w+agg 23/

dy dy
o dx(a+2ydx) (@x+y*) 5=0,

dy dy
D 2 __ A
AN (a,x+y) 2x+2a +2y( )

2 2 2
_ 2{x—aw +ay+y(x +ay) }
ax ax -+ y?

by using (a). After some calculation, this reduces to
o TY* — Py + 2ty + Saxy?
(az+y%)?
y*+ 3azy +2° —ao®
(az+y*)*
=0 from the given equation.
d’y
da?
The result is explained thus: the given equation can be written
(z+y—a)(@*+y*+a*—ay+ax+ay) =0
and the second bracket is
Hz—-y)*+(x+a)+(y+a)},

which is positive for all values of z, ¥ except x = ¥ = —a, when the expression
is zero. Hence either 2 = y = —a, or z+y—a = 0. The ‘curve’ consists of the
isolated pomt (—a, —a) and the straight line #+y = a. It is now clear why
d?y/da? =

Hence =0.

(iv) Derivatives of the inverse function. If y = f(x) has derivatives, and there
is an inverse function « = g(y) which also has derivatives, express
d2x diz . dy d¥*% d%

d—yz’ @; in terms of a—x, Ex——x, a;‘a.
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We have by 8.2 (5) that

-2
S T
2
4.

rioip
{2 )t

-

Exercise 3(b)
Calculate d*y[da? for the following functions y.
z—1 2 x® 3 x
2?44 (+1)(z—2)" J(1—22)"
4 cos?zsinz. 5 S'ﬂxa—c (z % 0). 6 cos(msin—lz),

7 If y = acosmaz + bsinme, find d2y/dz? in terms of y.
8 Ify = z/,/(a®—2?), prove that

&y dy
(a’—xz)%é = 3x——.
9 If y = tan—lz, prove that
dy
x2) — 422 .
(1+= ) + o =0

10 Ify = tana, prove that y’ = 1442 Derive this equation twice wo z, and
hence obtain the values of ¥/, y”, ¥ when z = 0.

Write down expressions for the first five derivatives of the following functions, and
by inspection try to write down a formula for the nth derivative.
11 «™ for (i) m a positive integer; (ii) m not a positive integer; (iii) m = — 1.
12 sinz. 13 cosz. 14 (azx+b)™. 15 sin(az+b).
*16 Prove that the nth derivative of 1/(1 —x?2) is
) {1 —2)="14+ (= 1)" (L +2)—"-1}.

17 Ifw, v are functions of z, obtain d?(uv)/dx?, d3(uv)/d2® in terms of u, v and
their derivatives (supposed to exist). Can you write down d4(uv)/dz* without
further calculation?
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Find dy/dx and d2y/dx? when y is defined implicitly by
18 y? = 4az. 19 23+y° = 3axy. *20 «8+y° = Bax?y?.
Find dy/dx and d?y|/dx? in terms of the parameter from the following pairs of
equations.
21 z=at? y=2at. 22 z=acosg, y = baing.

23 2 = a(cosf+6sinb), y = b(sin @ — O cos 0). 24 x=2(t), y = y(t).
25 Ify = sinnf and « = sin 6, find dy/dx and d2y/da?, and prove that
aly  dy
—?) =2 — 2 4 n2y = 0.
1 x)dx’ xdx+ny 0

*26 Writing ¢, a, b for y’, ¥"/2!, /3! and 7, a, § for dx/dy, (1/2!)d%x/dy?,
(1/3!) dz/dy?, express bt —a? in terms of 7, a, f.

Some easy work on partial derivatives of first and second orders
could now be done, e.g. 9.11-9.24 (1), and Ex. 9 (a), nos. 1-4, 6, 7, 10,
12-15.

3.6 Increasing and decreasing functions; maxima and minima

3.61 Function increasing or decreasing at a point

If f(x) is defined at and near z = a, and if f(z) < f(a) for all values
of z just less than a, while f(x) > f(a) for all values of « just greater
than a, then we say that f(x) is ¢ncreasing at = a. A similar definition
can be stated for ‘f(x) is decreasing at z = a’.

If f'(x) exists when x = aandf’'(a) > 0, thenf(x)is increasing atx = a.

Proof. We have _ ‘

HotW=1@) _ gy,

where 97 - 0 when # — 0. Hence for all 4 sufficiently small (positive
or negative), f'(a) + 7 will have the same sign as f’(a), i.e. it will be
positive; and so f(a+k)—f(a) will have the same sign as h. Thus, if
h < 0 then f(a+h) < f(a); and if b > 0, f(a+ k) > f(a). Therefore f(x)
is increasing at x = a.

Similarly, if f'(a) < 0, then f(x) is decreasing at x = a.

The converses may be false; e.g. f(x) = 2® is increasing at z = 0
according to the above definition, yet f'(0) = 0.

3.62 Definition of ‘maximum’, ‘minimum’
(@) f(x) has a maximum value at x = a if f(a) is the largest value of

f(x)in the neighbourhood of @; i.e. if for some sufficiently small positive
number % we have

f(a) > f(xz) for all z for which 0 < |[x—a| < 7.
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'(b) f(x) has a minimum value at x = a if f(a) is the smallest value of
f(x) in the neighbourhood of a; i.e. if

f(a) < f(x) for all x for which 0 < |z—a| < 7.

(¢) If x = a gives a maximum or minimum value of f(x), then a is
called a turning point or extremum of f(z), and f(a) is called a turning
value.

Remarks

() Although in definition (c) we used ‘point’ for ‘value of x’, we
are not implying any dependence on graphical illustration; but the
language is convenient and suggestive.

() Since the terms ‘maximum’, ‘minimum’ refer to a neighbour-
hood of a ‘point’ z = @, & ‘maximum value’ is not necessarily the same
as the greatest value of the function, because the latter is relative to
the values of the function over the whole range of x for which it is
defined. A function may have several different maxima, and may or
may not possess a ‘greatest value’. There is a similar distinction
between ‘minimum value’ and ‘least value’. Further, it is no contra-
diction that a function may have a maximum value which is less than
a minimum value; e.g. see 3.66, ex. (i).

(y) If f(z) is defined only for @ < « < b, then the end-points z = a,
" x=> of this interval are excluded from the title ‘maximum’ or
‘minimum’ because they have no ‘neighbourhood’. They may of
course correspond to greatest or least values of the function.

The above definitions and remarks are given and illustrated graphic-
ally in most elementary courses on Calculus, and the following results
obtained from graphical considerations.

(4) We find possible turning points 2 by solving f’(x) = 0.

(B) We fest each root = a (to see whether it actually gives a
turning point, and also to distinguish between maxima and minima)

either by considering the sign of f'(x) as z increases through a,

or by finding the sign of f"(a).

It is our purpose in 3.63-3.65 to establish these results directly
from the definitions (a), (b) above, independently of graphical con-
siderations. For subsequent illustration we observe that, according
to these definitions,

(i) «% and «* have a minimum at = = 0;
(ii) 22 has neither maximum nor minimum at z = 0.
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For in each case f(0) = 0; in (i), f(z) > O for 2 + 0, but in (ii) we have
f(x) < 0 for z < 0 and f(z) > 0 for x > 0. The reader should confirm
this graphically.

3.63 Iff(x)is derivable at a maximum or minimum, then f'(x) = O there.

In the proof of this theorem (and later in 6.21) we require the
following

Lemma. If §(x) > O for all z just greater than a, and if $(x) approaches
a number | when x — a+, then 1 > 0.

For if I < 0, then since ¢(z) can be made as close to ! as we please
for all « sufficiently near to (and greater than) a, there would be such
values of x for which ¢(x) would be negative, contradicting that
d(x) > 0.

The necessity for allowing ! = 0 is illustrated by the case

$x) = (-1} when 2—>1+.
There are similar results when ¢(z) < 0 and x > a+ orz > a—.

Proof of the theorem

Suppose z = a gives a minimum of f(x). Then f(z)—f(a) > 0 for
all z sufficiently near a. Hence

f@)—f(a)

r—a

>0 when z>a.

From the hypothesis, this fraction has the limit f’(¢) when 2 - a
©n any manner (see equation (ii) of 3.11). Hence in particular it will
approach the value f'(e) when z->a+, and so by the Lemma,
f'(@) = 0.

Similarly, since F@)—f(@)

<0 when =z<a,
z—a

we may let -~ a— and conclude that f’(z) < 0. Combining the two
conclusions, we have f'(a) = 0.
A similar proof and result holds if z = a gives a mazimum.

Remarks

() The converse of this theorem may be false: a root of f’(z) = 0 may
not give either a maximum or a minimum. For example, if f(z) = 23,
then f'(z) = 0 when z = 0, but 2 = 0 is not a turning point.

(8) Not all maxima or minima may be given by f'(x) = 0: they may
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occur where f(x) is not derivable. For example, if f(x) = %, then f’(0)
does not exist (3.12, ex. (i)); yet z = 0 gives a minimum.

(y) In view of (a), (8) we may say that maxima and minima are to
be sought among the values of z for which f'(x) is zero or non-existent.

A root of f'(z) = 0 is called a stationary point of f(x).

3.64 ‘Change of sign”’ test

If (i) f'(x) exists at and near x = a, and f'(a) = 0,

(ii) f'(x) < O for all x less than and sufficiently mear to a, while
f'(@) > 0 for all x greater than and sufficiently near to a,
then x = a is a minimum point of f(x).

Proof. Hypothesis (i) implies that f(x)is continuous at and near x = @
(see 3.52). Since by (ii) f'(z,) < 0 for any x, less than and sufficiently
near a, hence by 3.61 f(z) is decreasing at x,, i.e. f(x;) > f(a). Since
f'(xy) > 0 for any z, greater than and sufficiently near a, f(x) is
increasing at z,, i.e. f(x,) > f(a).

Thus in a sufficiently small neighbourhood of a, f(a) is the smallest
value of f(z); i.e. # = a gives a minimum of f(x).

CoroLLARY 1. Replacing condition (ii) by

()" f'(z) > O for all  less than and sufficiently near to a, and

f'(@) < 0 for all x greater than and sufficiently near to a,
we could prove that x = a gives a maximum of f(x). ‘

COoROLLARY 2. If f'(x) does mot change sign as x increases through a,
then z = a 18 not a turning point.

For if f'(x) > 0 on both sides of a, then in some neighbourhood of
a we have f(z) < f(a) for < a and f(x) > f(a) for > a; i.e. in this
neighbourhood these are some values of f(x) greater and some less
than f(a). The definitions (a), (b) in 3.62 are not satisfied. Similar
remarks hold if f'(z) < 0 on both sides of a.

An example is f(x) = 23: f'(x) = 322 > 0 on both sides of x =0,
which is therefore not a turning point.

3.65 ‘Second derivative’ test
If (i) f'(x) is continuous at x = a,
(i) f'(a) = 0,
(iil) f”"(a) exists and is not zero,
then x = a gives a minimum of f(x) if f"(a) > 0, and a maximum if
f(a) <O.
Proof. If f"(a) > 0, then by 3.61 applied to the function f'(x) we
see that f’(x) is increasing at « = a. Since f'(a) = 0, f’(x) increases
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through the value zero: in the neighbourhood of a we have f'(z) < 0
for x < a and f'(x) > 0 for # > a. Hence by 3.64, x = a gives a
minimum. ‘

If f"(a) < O, then f’(x) is decreasing through the value zero as =
increases through g, i.e. it changes from positive to negative. By 3.64,
Corollary 1, z = a gives a maximum.

Remark. If f"(a) = 0, the test is indecisive, for = ¢ may give a
maximum, a minimum, or neither. For example, f”(0) = 0 for both
2% and 23; but 2 = 0 gives a minimum of %, and is not a turning point
of 3. When this happens we must revert to the more fundamental
test by ‘change of sign’ (3.64).

3.66 Examples
(i) f@) = 2.
T
f'@) = 1_‘%‘ and f(x)=0 when z==1.

vl

Fig. 38

As f”(x) is easily found, we can test these stationary points by using 3.65.
‘We have

Sx) = ;23’ andso f"(1)>0, f"(-1)<0.

Hence z = 1 gives a minimum value of f(z), viz. f(1) = 2; and x = —1 gives a
minimum, viz. f(—1) = —2.



3.66] THE DERIVATIVE. APPLICATIONS 79

The maximum is thus less than the minimum value. Further, f(z) has no
greatest value because it can be made as large as we please by taking  sufficiently
large, or sufficiently small, and positive; similarly f(x) has no least value.
Cf. Ex. 1(a), no. 11,

. 1322 —82+56

(i) f(z) = b —16s 13

It can be verified that
L, —28(3z—2)(2x+1
oy = 22322 @2+ 1)

(62*—16x+3)2 °

except when 622 — 16z + 3 = 0, i.e. whenz = } or 3. For these values the function
itself is not defined. We have f'(xr) = 0 when « = § or — §.

For testing these stationary points the ‘change of sign’ method of 3.64 is
obviously better, owing to the evident complexity of the expression for f”(x).
Since the denominator of f’(x) is positive for all 2 except } or 3, we need con-
sider only the change of sign of the numerator.

yh |

|
______________ 3 T B

]

-3 0 % 3 z

-1 |

|

]

I

|

|

! i

Fig. 39

When z increases through %, f*(x) changes from positive to negative, so that

z = % gives a maximum value, viz. f(§) = — 1. When « increases through —§,
f'(x) changes from negative to positive; £ = —} gives a minimum value
f(=H =1

Again the maximum is less than the minimum; and the function has no
greatest or least value, because it can be made as numerically large as we please
by taking x sufficiently close to } or 3.

This function could also be discussed by an algebraic treatment as in 1.41,
ex. (iv). Its graph, sketched by the methods of 1.41, is shown (not to scale)
in fig. 39.
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3.7 Points of inflexion of a cufve

3.71 Definition and determination

A point of inflexion of f(z) is a point where f’(x) exists and has a
turning value.

Geometrically, a point of inflexion of the curve y = f(x) is one at
which there is a tangent which has maximum or minimum gradient.

Applying 3.64 to the function f’(z), we get the following theorem.

If (i) f"(x) exists at and near x = a, and f"(a) = 0,

(i) f"(x) changes sign as x increases through a,

then x = a is a point of inflexion of f(x).

For, under these conditions, f’(a) is a turning value of f’(x).

Remarks

() The change of sign of f”"(x) is essential: roots of f”(x) = 0 may
not always give points of inflexion of f(z). For example, if f(x) = a4,
then f"(z) = 1222 is zero when z =0, but
=0 gives a minimum. If f(z) =2}, then
f"(x) = 1821 is zero when z = 0, but does not
exist when z < 0; thus = 0 cannot be a point
of inflexion: it is a cusp in this example.

() The gradient at a point of inflexion can —
have any value, for f’(a) is not mentioned in
the above theorem: it is either a maximum or
a minimum value of f'(z). If it happens that
f'(@) =0, then z = a is a point of stationary
inflexion.

Y
y=xi‘

8

Fig. 40

Examples

(i) Find the points of inflexion of f(x) = 6x%— 25z* 4 9.
We find that f*(x) = 6023322~ 5). Hence f”(x) = 0 when = = 0 or +./5.
Since f”(x) does not change sign as 2 increases through zero, x = 0 is not &
point of inflexion. (It is in fact a minimum, by using 3.64.)
J”(z) changes from negative to positive as z increases through /%, and from
positive to negative as x increases through —./§. Each therefore gives a point
of inflexion, '

(ii) If f"(x) 18 continuous, an inflexion occurs between consecutive maxima
and minima.

For at a maximum z,, f”(z,) < 0; and at a minimum z,, f”(x,) > 0. By the
continuity of f”(x), it must be zero for at least one point x; between z, and z,
(2.65), and changes sign as « increases through z;. Hence x, is a point of inflexion.
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3.72 Summary

The points of a continuous curve y = f(x) can be classified as
follows.

singular points

F/(z) does / points of greatest

or least value (3.62,

not exist are
Remark (y)) ima
(from + to —)
turning points
(if f(x) changes sign)
Points of J(x)=0

Y = f(x) (stationary minima
where points) are (from — to +)
stationary inflexions)| (if turning
eneral inflexions points of f’(z))
Slx) 0

(points of

increase or

decrease) are

ordinary points

3.8 A theorem suggested geometrically

3.81 The mean value theorem

Given a continuous curve AB, at every point of which there is a
tangent (cf. 2.15), fig. 41 suggests that there is a point P on the curve
between 4 and B at which the tangent is parallel to the chord AB
(even if 4B is itself tangential to the curve at 4 or B or both). There
may be several such points P (fig. 42). If the curve is not continuous
the result may clearly be false; e.g. fig. 43 shows the graphof y = — 1/
for which every tangent has positive gradient but the gradient of
AB is negative.

Let y = f(x) be the equation of the curve, and let 4, B, P corre-
spond to x = a, b, £. Then we are supposing that f(x) is continuous for
@ < z < b, and that f’(z) exists for @ < z < b. The property can then
be expressed as follows.

If f(x) is continuous for a < x < b and if f'(x) exists for a <z < b,
then there is at least one number £ such that

TOTO ey w<s<n)

6 GPMI
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This result (the first mean value theorem) will be established without
appeal to a figure in Ch. 6. Meanwhile we assume it, and use it to
make the following important deductions.

vh
B
|
P
A i
I
I | -
o a £ b x
Fig. 41
ﬁ ¥
yh B
A
\O -
A
B
o x
Fig. 42 Fig. 43

3.82 If f(x) is continuous for a <z < b and f'(x) =0 for all z in
a < x < b, then f(x) is constant for a < x < b,
Let x,, x, be any two numbers such that a < 2; < 2, < b. Then by
3.81 applied to the interval z, < z < ,,
f(x2) _f(xl) _fr
e f'(€)
for some number £ between z;, and x,, i.e. between @ and b. Since
f'(£) = 0, this shows that f(x,) —f(z,) = 0, so that f(x) takes the same
value for any pair of numbers z, # z, satisfying a < z < b; i.e. f(z)
is constant for a < x < b.
This theorem is the converse of 3.11, ex. (i).
The hypothesis that f'(x) is zero for a <« < b implies (3.12) that f(x) is

continuous for @ < z < b. If we do not include continuity at # = a and = b,
the theorem may be false, For example, if

f@=1 (0<z<l), f(0)=0=f(1),
then f'(x) = 0 for 0 < z < 1(3.11, ex. (i), but f(z)is notconstant for0 <z < 1.
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CororrarY. If f(x) and g(x) are continuous for a < x <b and
f'(@) = g'(x) for a < & < b, then f(x) —g(x) is constant for a < x < b.

This is proved by applying the theorem to ¢(x) = f(x) —g(x). The
result, which can be worded ‘if two continuous functions have the
same derivative then they differ by a constant’, is basic for integra-
tion (4.11).

3.83 Function increasing or decreasing throughout an interval

Definitions. (a) The function f(z) is increasing in the interval
a < z < bif, for any numbers z,, 2, such that @ < z; < 2, < b, we have
f@,) < f(xy). (b) If we have f(z,) > f(x,), then f(z) is decreasing in the
tnterval a < z < b. (¢) In either case f(x) is said to be monotonic in
a<z<b(ef. 2.77).

The definition (a) should be compared with that of ‘function increasing at
a point’ in 3.61. The fact that f(x) is increasing at the point x, does not neces-
sarily imply that f(z) is increasing throughout some interval containing x,: for
details and an example the reader may consult Hardy, Pure Mathematics
{7th—10th ed.), foot of p. 233, and p. 236, penultimate paragraph.

Further, if f(x) is known to be increasing at each point of a < x < b, one may
be tempted to conclude that f(x) is increasing in the interval a < z < b. Although
this is true, it is not obvious from the definitions (loe. cit., p. 208, ex. 19). We
now give a proof of this property, assuming that f'(x) exists in @ < < b. The
converse property is of course always true.

If (i) f(x) s continuous fora < x < b,
(i) f'(x) > O throughout a < x < b,
then f(x) is tncreasing for a < z < b.
Proof. If a < 2, <z, < b, then by 3.81 applied to the interval

USES Ty () —fl@y) = (w—2) F1E) (3 < £ < ).

Since z, —z; > 0, and f’(§) > 0 by hypothesis (ii), hence f(z,) > f(z,).
The result follows.

CoroLLARY 1. Replacing condition (ii) by

(i) f'(z) < O throughout a < x < b,
we can prove that f(x) decreases fora < x < b.

CoroLLARY 2. If f'(z) > O for a < x < b and f(a) > 0, then f(x) > 0
fora <xz<b.

Forif a < < b, then f(z) > f(a) = 0.

CoroLLaRY 3. Replacing condition (ii) by

(ii)” f'(z) > 0 for a < x < b except when x = k (where f’(x) may be undefined,
or zero, or negative), then f(x) is still increasing fora < x < b.

For the conditions of the theorem are satisfied by f(x) in each of the intervals
a<z<kk<z<b(sincef’(x)isrequired toexistonly fora <z < k,k <z < bd).

6-2
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Hence f(x) increases fora < « < k and for k < « < b and therefore fora < = < b.
For example, f(z) = 23 is increasing for all «, although f/(0) = 0.

The result can be extended to allow any finite number of points k& where
J’(x) is not positive.

Examples

(i) If f(x) = z/sinx (z £ 0), f(0) = 0, prove that f(x) increases for 0 < x < 4.
Deduce that sinx > 2z/m for 0 < x < }7, with equality only when x = 0 or .
f(z) is continuous, and if z % 0,

sinzx—xcosz cosz(tanz—x)

(=) =

If 0 < 2 < 3, then cosz > 0 and tanz > z (cf. 2.12, inequality (iii)), so that
f'(xy > 0. Hence f(x) is increasing for 0 < z < .

It follows that, if 0 < # < 4, then f(x) < f(4m), i.e. z/sinz < 4=, and con-
sequently sin 2z > 2x/m. When 2 = 0 or when z = 7, the two sides are equal.

If 0 < x < 47, we now have 2z/m < sinz < x (cf. 2.12, inequality (iii)). Also
see Ex. 3(c), no. 19.

sin%z - sin?x

(ii) If a, b are positive constants and f(x) = a+b+x— 3(abx)} for z > 0, prove
that the least value of f(z) is a+b— 2 .\/(ab), and deduce that for ¢ > 0,
a-+b+c—3(abe)t = a+b~2,/(ab)

with equality only when ¢ = /(ab).

If 2>0, f(x) =1—(ab)tz—-}. Hence f’(x)Z 0 according as z 2 ,/(ad).
Hence for 0 < z < 4/(ab), f(z) is decreasing; and for all z > ,/(ab), f(z) is in-
creasing. The minimum at « = 4/(ab) is therefore the least value of the function
for « = 0, and f(x) > f(,/(ab)) for > 0 unless x = ,/(ab); i.e.

a+b+x—3(abzx)t > a+b+./(ad) — 3{(ab)t}}
= a+b—2,/(ab).

Since a+b—2,/(ab) > 0 unless a = b (1.22(1)), we have a+b+c > 3(abc)t
unless @ = b = ¢. The example can be generalised to give a proof of the theorem
of the means (1.22(2)).

Exercise 3(c)

Find the stationary points of the following functions, and distinguish between
them. Also find any other points of inflexion in nos. 1-3, 6.

1 223+ 322—122417. 2 x84 5a8.
3 9z (x—1)(x—3)
(z-1)* Sx2+4

S acosz+bsinx (verify the results trigonometrically).

6 acos?zx+bsin?z, b>a> 0. 7 2cosz+sin 2.

8 Show that (xz+ 5)2(2®—10) has a minimum when z = 1. Find its other
turning points and its points of inflexion.

9 f(x) is defined by f(x) = 2x(x—1) if z > 1, f(x) = (x—1)(x—2)(x—3) if
z = 1. Verify that f(x) and f’(x) are continuous for all values of z, and find the
turning points and inflexions of f(x).
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10 It is sometimes asserted that ‘between two consecutive maxima of a
continuous function occurs & minimum’. Show that this may not be true by
considering the function f(x) in the interval — 37 < @ < 37, where f(z) = cosz
zmr<—m),flx)=1(—nm<z<m).

11 If f(0) = 4cos®0—3cosf, we may put x = cosf and consider instead
(x) = 423 — 3. Verify that ¢(x) has just two turning points, = + }; but that
Jf(0) = cos 30 has infinitely many turning points, given by ¢ = }nar for all in-
tegers n. Explain this apparent contradiction.

12 Show that the stationary points on the curve 23+ y® = 3wy satisfy 22 = y.
Hence show that they are z = 0, ¥2.

13 Post Office regulations require that the length plus girth of a parcel shall
not exceed 6ft. Find the maximum volume if the cross-section is (i) rectangular;
(ii) circular.

14 AB, CD are cables of equal length. The strain which any section of 4B
can stand varies as the cube of its distance from B, and the strain that any
section of CD can stand varies as the cube of its distance from D. The strain
that can be carried at A is four times that at C. The cables are now woven
together so that D coincides with 4, and C with B. How far from B is the
weakest point of the composite cable?

15 A conical tent has a given volume. Find the ratio of height to diameter of
base for the area of canvas to be a minimum.

*16 Show that y = (x®~2x+4)/(x?+22+4) has three points of inflexion,
which lie on the line 2+ 3y = 6. [y—1 = —4f(x), where f(z) = z/(2? + 22+ 4).
The condition f”(z) = 0 is found to be 2 —122—8 = 0, i.e.

(x—2)(2*+2x+4)— 122 = 0.
The coordinates of the points of in.ﬂeiion therefore satisfy
-2 = 12f(z) = —3(y—1).]
17 If f(z) = cosz— 1+’1}x’, prove that f’(z) > 0 when z > 0. Deduce that
for all z £ 0, cosz > 1 — 2% What happens when z = 0?
18 Using no. 17, show that sinz > £ —3x® when z > 0.

*19 Extend the result of 3.83, ex. (i) to theinterval 7 < z < 7. [Puty = 7—=.]

Hence prove that 2z(m —x)

por for O0<z<m.

sinx >

20 Prove that the greatest value of x2y3, where # and y are positive and
z+y =1, is 22.33/65. (Cf. method of 1.22, ex. (ii).)

21 If f(z) = 2"—1—r(x—1) and » > 1, prove that for 2 > 0 the least value of
f(x) is 0 and occurs when z = 1. Show that this is also true when » < 0. When
x>0,z=*1,and r > 1 or r < 0, deduce the inequality " —1 > r(x—1). Prove
a corresponding result when 0 < r < 1.

3.9 Small changes. Differentials

3.91 Small changes
If y = f(x) is derivable at = a, then as in 3.12,

f(a+h}2_f(a’) =f,(a)+ﬂ’
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where 7 - 0 when % — 0. For small values of 2 we therefore have the

approximation _

f(a+h}z f(a’) #f’(a), (l)
ie. fla+h)—f(a) = bf'(a), (i)
or (less precisely) oy = :;—:Z&v. (iii)

The approximation in (i)-(iii) is in general correct ‘to first order
in k’. For 7 is small when % is small, and so A7 is small compared with 4;
but A7 may not be small compared with any power of A higher than
the first: see Ex. 3 (d), no. 7.

Referring to fig. 36 of 3.11, PR = 0z, QR = dy and tany = dy/dx.
By (iii), dy = PRtanyr = RT. The approximation is therefore equi-
valent to replacing the step RBQ to the curve by the step RT to the
tangent; QT represents the error: cf. 6.42, Remark (/).

Result (i) should be compared with that of 3.81 when b = a + &, viz.

ﬂ_aﬂ%):ﬂ?) =f'(€) (@<f<a+h) (iv)

(@) The latter is exact, although the number £ is known only to lie
somewhere between a and a + .

(b) The approximation (i) assumes only that f(z) is derivable at
x = a, while (iv) requires f(x) to be derivable fora < x < a+#A.

Examples
(i) Calculate f(x) = 32%— Tz + 8 approximately when x = 2-015.
f'(x) = 62—, and f(2) = 6, f'(2) = 5. Hence by (ii) above,
f(2-015) = f(2) +0-0156 x 5 = 6+0-075 = 6-075.
(ii) Calculate Y126 approximately.
Take f(x)=4dz, a=125, h=1. Then f'(x)=}z-¥, f(125)=5, and
f'(128) = 5. Hence £(126) = 5+ = 5:013.
(iii) The area S of a triangle is calculated from the formula S = }becsin A. Find

the approximate error in S owing to (a) a small error 8 A in A (measured in radians) ;
(b) a small error 8b in b.

(@) 08 = g&‘l = $bceos 4 6A.

(b) 68 = gﬁb = 3csin 4 0b.
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(iv) In ex. (iii) suppose there were simultaneous errors 6b, éc, dA in b, ¢, A. The
error in § is then, from first principles,
08 = }(b+0b) (c+dc)sin (A +84)—4bcsin A
= }bdc+cdb)sin A + tbccos A 64
if we expand the brackets, use the approximations sin d4 = §4 and cosd4 = 1,
and neglect all products of the expressions 0b, dc, 64.
The result shows that 8S is approximately what is obtained by adding to-

gether the approximate errors in S which would have been caused if the errors
0b, dc, 4 had occurred separately. We return to this matter in 9.33.

Exercise 3(d)

1 Calculate tan 45° 16’ approximately. [Use d(tanz)/dx = t}zmsec?z, x in
degrees.]

2 Give the approximate error in the volume of a sphere when calculated
from the formula V = 473, if the radius is in error by dr.

3 Taking f(z) = 2™, obtain the approximation (z+ k)™ = 2™ +4ma™ 1k for
small . _

4 If 0 is a small angle in radians, prove tan (¢ +6) = tana + 0sec?a.

5 If pv = RT where R is constant, find the approximate error in » due to
(i) a small error &p in p only; (ii) small errors dp, 67" in both p and T'.

6 If y = uv/w, prove 8y Su v dw

v o wtvTw

[Consider wy = wv.]
‘*7 Find the function 7 in 3.91 when f(x) is (i) 22; (ii) 2®; (iii) 1/«. Verify that
9/h tends to a limit when k — 0, but that in general 7/h™ does not when m is
a constant greater than 1; state the exceptional case in (ii).

3.92 Differentials

(1) The symbol dy/dx for the derivative, although of fractional
appearance, has been defined as a single indecomposable symbol to
represent lim dy/éz when this limit exists. The parts dy, dx cannot be

3x—>0
separated, and so far are meaningless alone. The most we have done

towards splitting the symbol dy/dx is to write it in the ‘operational’
form (d/dx)y. We now define dy, dx separately, in such a way that the
quotient dy + dx is equal to the derivative of y wo .

If y = f(x) is derivable at z, then

8y = f'(x) 8z + 9 oz, ()

where 7 is a function of §z (and usually also of z) which tends to zero
when éz - 0. In 3.91 we deduced for small dz the approximation

8y = f'(x) dz. (i)
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We now define dy by the equation
dy = f'(x) 0. (i)

This equation also defines dx; for dz is dy when y is the function z.
In this case we have f'(x) = 1 (3.11, ex. (ii)), so that

de = 6z (iv)
and we may rewrite equation (iii) more symmetrically as
dy = f'(x)dz. (v)

(iv) shows that dx is identical with the arbitrary increment dx; but
in general dy + dy, because by (i)

0y = dy+nox (vi)

and in general 7 + 0. The approximation (ii) can thus be restated as
0y =dy. In fig. 36 of 3.11, PR = 6z = dx, QR = 8y, and by (v),
dy = tany. PR = RT. Hence dy is represented by the step to the
tangent.

On dividing (v) by dz, we see that dy/dx = f'(x), where here dy/dx
is the quotient dy + dx. The symbol dy/dx can therefore be interpreted
in two ways: (a) as olim dy/dx; (b) as dy-+dx. No confusion arises,

z—>0

because the results are the same, namely, the derivative f'(x) of
y = f(=).

Definition. dy is called the differential of y, and dz is the differential
of z.

In (v), f'(x) is the coefficient of the differential dx in the expression
for dy. Consequently, the derivative f’(z) is sometimes called the
differential coefficient of y wo .

In some books and examination papers the approximation (ii) is
written dy = f'(x)dx; that is, differentials are confused with small
increments. By definition, relation (iii) and hence (v) are exact.

(2) Invariance property. Suppose now that y = f(x) and x = ¢(¢)
are derivable functions; then by 3.2 (4)

W _r@e,
and so dy = f'(z) ¢'(t) dt.
By (v) applied to ¢(t), dx = ¢'(t) dt. Hence we still have
dy = f'(x)dx.
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Thus (v) is more general than it appears to be at first sight, for in
the argument leading to (v)  was the independent variable; we have
now shown that the same relation is true even when x is not the
independent variable in f(x), but is itself a function. We may sum-
marise by saying that formulae in differentials are valid whether the
variable is independent or not. The technical convenience of differ-
entials arises from this property, especially in geometrical applica-
tions of the calculus (Ch. 8).

(3) Second-order differentials. Since d2y/dx?® (as defined in 3.51) is also a
composite symbol, we may enquire whether the part d2y can be defined alone
in such a way that d% - (dz)? = f”(x). It can, but we shall not do so here
because such ‘second order’ differentials lack the advantage which ‘first
order’ ones possess: there is no invariance property because in general

dzy ” dx\?
an ¥I'@ (a;) '
see Ex. 3 (e), no. 22.

3.93 Differentiable functions

Definition. The function y = f(z) is differentiable at x if it is defined at and
near z, and the increment dy caused by changing z to z+ dx can be expressed

in the form 0y = Adz+edx, (vii)

where 4 is in general a function of z, but is independent of z, and ¢ is in general
a function of both 2 and 6z which tends to zero when dz — 0.
In this case, (vii) gives dy/dx = A +e. Letting dx - 0, the right-hand side

of this equation tends to A. Hence lim 8y/éx = A, so that the function f(z) is
Sx->0
derivable at x and A is its derivative, f’(x). We have therefore shown that, if

f(x) is differentiable at a point, then it is also derivable there.

Conversely, if f(z) is derivable at z, then (i) holds, and equation (vii) is
satisfied with 4 = f’(x) and € = 7. Hence f(x) is also differentiable at .

It appears that, for the funection f(x), the properties of being derivable and
of being differentiable are equivalent: one implies the other. It is thus cus-
tomary to speak of differentiating f(x) wo x when we mean the process of cal-
culating f'(z), i.e. of deriving f(z). Strictly, to differentiate y = f(x) is to write
down the equation (v) for its differential dy; but (v) shows that we may pass
directly from differential to derivative on dividing by dz, and conversely, any
equation involving a derivative can be converted into one between differentials
by multiplying by dzx.

In view of the equivalence of ‘derivability’ and ‘differentiability’, the
reader may wonder why the two concepts were introduced. When we consider
functions of more than one variable in Ch. 9 we shall define ‘differentiable
function’ and ‘differential ’ in essentially the same manner as here, but we shall
find that ‘derivability’ and ‘differentiability’ are no longer equivalent; and
we shall justify the introduction of differentials by their great technical con-
venience, which is not so well illustrated by functions of a single variable.
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Miscellaneous Exercise 3(e)
Calculate the derivative of

1 cos(sinz). 2 (1—a?)igin-1z,

3 tan~1!(ntanz). 4 sin"la—-l-b—c?fﬁif a<b.
b+acosz

5 cos™1{2x(1—z2)}}. 6 tan-1 f—\/% .

7 sin—1,/(1—2?), and explain why the result is also the derivative of cos~1z.
8 Show that each of the functions

2sin-1 J z-b , 2tan-? J x—_b , sin~1 (———2 Via-2)(z- b)})
a—b a—x a—b
has derivative 1//{(a—z) (z—b)}.

Calculate the nth derivative of

z+1 z? . .
x2_4. 10 m. 11 sinz sin 3z.

Prove the following properties of a polynomial f(x).

12 If f(x) is divisible by (x— a)™, then f’(z) is divisible by (x —a)™-1.

13 Conwversely, if f(zx) is divisible by z—a and f’(z) is divisible by (x— a)™-1,
then in fact f(x) is divisible by (x—a)™.

14 If a, b are roots of f(z) = 0, then f’(x) = 0 has at least one root between
a and b (Rolle’s theorem for polynomials). [Suppose a, b to be consecutive roots.
Write f(x) = (x—a)™(x—b)"g(x), where g(x) has the same sign for a < =z < b.
Verify that f’(z) = (x—a)™*(x—b)"1h(x) where h(a), h(b) have opposite
signs, so that k(z) and therefore f’(x) is zero for some = between a and b.]

15 Not more than one root of f(z) = 0 can lie between consecutive roots of
J(z) = 0. [Suppose a’, b’ are consecutive roots of f'(x) = 0, and if possible let
there be two roots a, b of 'f(x) = 0 between them. Use no. 17 to show there would
be a root z = ¢’ of f(x) = 0 between a, b, i.e. between a’ and b’.]

16 There is a root of f'(x) + Af(z) = 0 between any pair of roots of f(z) = 0.
[Begin as in no. 14. Cf. Ex. 6 (a), no. 4.]

Prove the following properties of a rational function h(z) = f(x)/g(x).

17 If g(x) has a factor (x —a)™, then the denominator of A’(x) (after h’(x) has
been reduced to its lowest terms) is divisible by (z —a)™*! but by no higher
power of z—a.

18 A rational function whose denominator contains a first degree factor
z—a cannot be the derivative of any rational function. In particular, 1/z ¢s
not the derivative of a rational function.

19 Ify = (tanz+secxz)”, prove dy/dx = nysec z.

20 Ify = azsin (b/z), prove
ddy dy ( dy )

Fy
d2+bzy 0 and xydx’ o E—4y
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21 Transform the equation

%Y

dy
da? y=0

+2

into one in which ¢ is the independent variable, where z = #2.

. *22 Assuming that d?y has been defined so that dy = f”(x)(dx)?, where
y = f(x) and x is the independent, variable, show that if x is a function of ¢, then

d’y "
=@ () + @5
and so a2y = () (dz)? + f/(x) d®x % f"(x) (dx)?
in general.
23 Ify = cos(psin-lz), prove (1 —z?) y” — 2y +py = 0.
24 Ifz = tand, y = tan k6, prove

d
1 +xz)% = 2(Icy—w)d—z.

*25 If y = sinnf/sin @ and = = cosd, prove that
dy
d_
Takmg n = B, verify that the last equation is satisfied if y is a polynomial of
the form 2% + az? +b; and find a, b.

26 Find dy/dz if y = sin {(z +y)%}.

(1 x’)——my+ncosn0 0 and (1- x’)——3x +(n?—1)y = 0.

Investigate the turning points (if any) of

27 (142)2 28 ax+b sin (z +a)
(1—x)®". cx+d’ sin (z+b)°
a+bcosz 2 2—d 21 a3

30 ctdooss’ 31 z(x®+a?)~t—a(x?+b%) b > a).

32 If (z,,¥,) is a stationary point on the curve x®+y?—9xy+1 = 0, prove
that at this point d2y/dx? = 18/(27 —«3). Prove also that the stationary points
are z = (27+3,/78)}, and determine which is a maximum and which is a

33 Prove that 8(}x —sin §x) > z—sinz when = > 0. [Use 3.83, Corollary 2.1

34 Ifsina > 0, prove that zsina—sin—! (sinx sina) increases as x increases

from 0 to 37, « remaining constant. If 0 < a < 37 and a is varied, show that
the expression takes its greatest possible value when z = 4m and a is the positive
acute angle such that cosa = 2/7.
*35 If f(x) = sinz+ 4sin 22+ } sin 3z, find the stationary points of f(x) in
0 < 2 < 7. Over what part of 0 <z < 7 is f(x) (i) increasing; (ii) decreasing?
Prove f(z) > 0 for 0 <« < m, and find where it attains its greatest value in
this interval.

36 If f(x) = a*yf—ax— Py where 2 >0, y>0, a+f=1and O0<a<]l,
and y is a parameter, prove that the greatest value of f(x) is 0 and occurs when
x = y. Deduce that z*y# < az+ fy unless z = y.

37 A horizontal ray of light from a source 4 meets the vertical plane surface
of a block of glass at P, and passes inside to a point B. If v;, v; are thespeeds
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before and after entry, and «, £ are the angles of incidence and refraction show
that the passage from A to B occurs in the least possible time if

sina _ v

sinf~ vy
[Let M, N be the feet of perpendiculars from 4, B to the surface; MP =z,
AM = a, BN =b, MN =¢.]

38 A right circular cone of height %, base radius », and slant height 7 has a
constant volume V. Show that the combined area S of its base and curved
surface is & minimum when ! = 3r. [Express S in terms of V and the semi-
vertical angle 6.]

39 Tind the area of the largest rectangle which can be inscribed in the ellipse
z%[a?+y2[b% = 1. ‘

40 Prove that the length intercepted on the tangent to x?/a?+y2/b2 = 1 by
the axes has one stationary value. Find it, and prove it is a minimum.
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4

INTEGRATION

(A) METHODS OF INTEGRATION. THE LOGARITHMIC,
EXPONENTIAL AND HYPERBOLIC FUNCTIONS

4.1 The process inverse to derivation

4.11 The problem

In Ch. 3 we considered the process of derivation: given a function
y = f(x), find dy/dxz. We now turn to the inverse process: given f(x),
find a function y which is such that dy/dz = f(x).

We do not enter here into general considerations of whether the
problem always has a solution, i.e. whether a function y having the
required property exists; this will depend on f(z), as indicated in
4.16(2). However, if y = ¢(x) is known to be a solution, then
y = ¢(x)+c will also be a solution for any choice of the constant c.
Further, every solution can then be written in this form; forif y = y(x)
is another solution, then from ¢’(x) = f(x) and ¥'(x) = f(x) we have
¥'(x) — ¢'(x) = 0, so that by the corollary in 3.82, ¥(x) — ¢(x) = ¢ for
some constant ¢, i.e. Y (x) = d(x) +c.

The general solution ¥ = ¢(x) + ¢ is written

v = [reda

and is called an indefinite integral of f(x) wo x, or a primitive function
of f(x) wo x. In this expression the dx is not a differential, but in 4.21
we shall prove that it behaves like a differential when a substitution
is made for  (i.e. a change of variable), and that its inclusion in the
symbol is justified. At present, f ... dz is to be regarded as a composite
sign for the operation of finding a function having the derivative ...,
i.e. the inverse of the operation symbolised by d/dx. This inverse
process is called integration wo z, and the function which replaces
the dots ... is called the integrand.

We understand always that = is confined to intervals throughout
which the integrand is continuous.
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4.12 Some standard integrals

For brevity we shall usually omit the arbitrary constant ¢ in this
chapter and in Answers to the Exercises. The results of 3.3 show that

zdx = - ovided n F -

n =

f 1 provu 1,
fOOS zdx = sin x, J.sm zdx = —cos Z,

fseczxdx = tanz, f cosecrxdx = —cot z,
1 1
——dx = tan~lz,
1+
dx =sinx or —coslz.

o=

4.13 Some properties of indefinite integrals
(1) If k is constant, then

f k(@) de = & f (@) da.

For both sides have the same derivative kf(x) wo x (using 3.11,
ex. (iii) for the right-hand side), and hence differ by a constant at most.
As each integral implies the presence of an arbitrary constant, the |
two sides have the same meaning. Similarly,

(2) f (w+v)dze = fudx+fvdx,
because each side has derivative u +v (3.2 (1)).
@3) If

f fla)de = (), then J' flaw+b)dz = 2 g(az-+1)

(where a # 0, b are constants), because each side of the last equation
has derivative f(ax +b), by 3.2 (4).

Property (3) shows that each of the standard integrals in 4.12 can
be generalised by replacing x by the linear function ax+5; (1) and (2)
show that if a given function can be split into sums or differences of
constant multiples of these standard forms, its integral is found by
integrating term-by-term (‘integration by decomposition’).
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Examples

248+ 5 1
()f oY da = f(1+ +) =s-2—go+e.

(ii) f m can be decomposed by first multiplying numerator and

denominator by /(1 +z)— /= (‘rationalising the denominator’), giving

[wra—Jards = 40 +at -1t .
(iii) fsin“xdz = ~f;}(3si1:uv—sin3x)olac = }—3cosxz+}cos3r)+c.

dx 1 1 1
i —_— = —_————— = e e -1 .
(iv) f x3(1 +2?) J. (ac’ l+x’) da 3a8 tan~w+o

dx da
™ f10+12w+4x’ =f1+(2x+3)a = }tan-1(2x+3) +c.

The results of Ex. 4 (a), nos. 2, 3 are very useful.

4.14 Areas

An elementary account of finding the area under a continuous
curve y = f(x) between the ordinates through z =a, x =5 (¢ < b)
proceeds as follows. (We suppose the part 4B of the curve with which
we are concerned does not pass below Oz.)

v
s @
PR
"l
A
B
yll Jy+dy
H N M K _
0 e  x x+6x b 2
Fig. 44

If PN is the ordinate through the point P(z,y) on the curve, the
area AHN Pis afunction of z, say A (x). If Q is the point (x + oz, y + 0y),
then area AHMQ is A+9dA4, so that the strip PNMQ has area 4,
which lies in value between the areas of the inner and outer rectangles
PNMR, SNMQ. Thus

04 lies between ydz and (y + dy) oz,
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50 %f-: lies between y and y + dy.

When dz — 0, then 8y — 0 by continuity of y = f(x); so that A4 /dx,
lying between y (which is fixed) and y+ dy (which tends to y), also
tends to y when dx — 0. By definition, 64 /6x — d4/dx when dx — 0;

hence

dA

dz =Y =f (),
from which A= f f(x)dx

= ¢(x)+c, say.

When PN coincides with AH, i.e. when z = a, the area AHNP is
zero. Hence 0 = ¢(a) +¢, ¢ = — ¢(a), and

4 = $(@)— $(a).
To obtain the complete area, we make PN coincide with BK by putting
z=b: area AHKB = (b)— (a).

To calculate the required area we therefore

(@) write down an indefinite integral ¢(x) of f(x);

(b) find its value when x = b, then when x = a, and subtract.
This process is indicted by the symbol [¢(x)]2.

4.15 Definite integrals; some properties

Although the difference ¢(b) — ¢(a) arises in connection with areas,
it can be considered independently as a number associated with the
function f(x) and two numbers @, . It does not involve any arbitrary
constant of integration.

Definitions
(@) If f(z) is continuous and if ¢'(z) = f(x) for all « for which
b
a < z < b, the symbol f f(x)dz is defined to mean ¢(b) — ¢(a) and is

called the definite integral of f(x) wo x from a to b.
() The numbers a, b are the limits of integration,t and the interval
a < x < b is the range of integration.

1 Here ‘limit’ is used in the sense of ‘end’, not in the technical sense of Ch. 2.
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Remarks
() The definition .
[ 1612 = 30~ g0

is intended to apply even when b < a, and also when f(x) is negative
in all or part of the range of integration, provided that the conditions
in (a) are satisfied throughout the range.

b
(8) Although f f(@)dx depends on the numbers a, b, it does not

depend on the variable of integration x, which could be replaced by
any other letter; e.g.

f:fa) dt = [PO)TE = $(b) - p(a),

b b
80 tha.tf f(x)de, f f(¢) dt are the same symbol. This is not the case for
a a

the corresponding indefinite integral, which is a function of the
variable of integration.
The following properties come immediately from the definition (a):

[ farde =o.
@ [ @iz =~ [ 1.

5 * b
3 j flx)yde = f cf(:o;) dx+ f Jf(x)dx, where ¢ need not lie between
a a [
a and b.
Using 4.13, we have

@) f : kf(@) da = f: () da.

b b
) [t +o@nde = [ fordz+ [ gto)da.
For if yr(x) = fg(x) dz, then the left-hand side is

(@) +¥(@)lg = $(0) + ¥ (8) — $(a) — ¥ (a) = right-hand side.

The reader should illustrate properties (1)-(5) by ‘areas’ under sketch-
graphs.

7 GPMI
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Since the definite integral of f(x) depends solely on the limits a, b,
we may replace b (say) by a variable x and thereby obtain a function

T
f f(t)ydt of z. (To avoid confusion, the variable of integration has been
a

altered from z to ¢: see Remark (f) above.)
T
(6) f f(8)dt is a continuous function of x for a < x < b.
a

For fxf(t) dt = ¢(x)—P(a), and ¢'(x) = f(x) for a < z < b by the

definition (a). Hence ¢(x) is continuous for @ < x < b because it is
derivable (3.12). Thus

7 fw f(t)dt is a derivable function of x for a < x < b, with dertvative
a

flx).
8) If f(x) > 0 fora <z < b, then xf(t) dt is an tncreasing function

ofxfora <x<b.
For it has derivative f(z) which is positive; use 3.83. In particular,
from 3.83, Corollary 2:

9) If f(x) > 0 for a < x < b, then fbf(x)dx > 0.
(10) If m < f(x) < M for a < x < b, then
m(b—a) < fbf(x)dx < M(b-a). .
Replace f(x) by f(x) —m in property (9): then by (4) and (5),
b b b
0< f {f(x)—m}dx = J- f(x)dx—f mdz,

b
i.e. m(b—a) < f f(z) dz.
a
Similarly, writing M — f(x) for f(x), we prove the other inequality.

(11) If f(x) > g{z) for a < x < b, then {bf(x)dx > fbg(x) dex.
Replace f(z) by f(x) —g(z) in (9), and use 4), ().

4.16 Criticism of 4.14, 4.15

(1) The discussion in 4.15 takes for granted that we understand what is
meant by ‘the area under a curve’. More precisely we are assuming that, given
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a function y = f(z) which is continuous for ¢ < z < b, there is associated with
the part of the plane bounded by the curve, the line Oz, and the lines
z = a, # = b a definite number called its ‘area’. Thus the work only suggests
what the formula for this ‘area’ should be, when the term ‘area under a curve’
has been defined to agree as closely as possible with our intuitive ideas of area
as obtained from straight-line figures. The matter will be taken up in Ch. 7.

4
(2) Our definition of f f(z) dz presupposes that, for all z for whiche <z < b,

a
we can find an indefinite integral ¢(z) of f(x). If we cannot, then the symbol
might be meaningless. Also we have required f(z) to be continuous fora < z < b,
but later in this chapter we show how this restriction can be removed in certain
circumstances (4.9).

(3) In Ch. 7 we shall approach the definite integral as the limit of a certain
summation;t such a limit always exists for suitable classes of fungtions (e.g.
continuous ones). We then deduce that a solution y of dy/dx = f(x) exists for
continuous functions f(x) by proving that

y=f7mw
a

is such a solution. We should then be assured that an indefinite integral ¢(z)
of f(x) exists, even if we cannot perform the inverse operation symbolised by
[f(z) dx to express this function in terms of those already known.

Meanwhile, we advance with the practical technique of finding a formula for
J'f(x) dx for as many types of function f(z) as possible.

Exercise 4(a)

Integrate by decomposition
1 1/{J/(x+1)—4/(z—1)}. 2 cos?z. 3 sinlz.
x? z®
] 3 _ =
4 tan?z. 5 coslz. 6 12 7 ]
x 1422 .
8 m. -H—w;-. 10 sinz cos 3.
Write down the integrals of
11 (ax+bd)", n £ —1. 12 cos(ax+bd).
. 1
13 sm(ax+b). 14 m.
1
_r i . . dard i )
15 o= [In 14, 15 write z/a for 2 in the standard integrals.]
1
16 Trany@ray’
By replacing x by a suitable linear function in the standard forms, integrate
1 1 1
17 2?+6z+9 18 2+ 6z+10° 19 J(2x—a?)’

t This is the origin of the sign J.
7-2
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1
*20 TUse 4.15(10) to prove 1:59 < f (10 +23) do < 1-66.
H
*21 Ifn > 1and 0 < z < 1, verify that /(1 —2?) < 4/(1—2%") < 1, and deduce

t dx
05 < J‘om < 0-524.

*22 Use the inequality sinz < 4/(sinz) < 4z (0 < z < }m) to prove

in
1< f J(sinz)de < 1-32.
0 ;

4.2 Some general methods of integration

The purpose of these methods is to reduce a given integral to
another which is already known or can be found easily.

4.21 Integration by substitution (change of variable)
To find f f(x) dx we may proceed as follows. Let

y = |f@@)dz,
so that % = f(x).

Put x = ¢(t); then by ‘function of a function’,
U drdi =f(=)g'¢) = flg)}g'¢).

Hence v= [romaoa. )

For a suitably chosen function g(¢) it may happen that f{g(t)}g'(t)
is a simpler function of ¢ than f(x) is of z, and may be recognised as a
standard form. We should then have y expressed as a function of ¢,
say y = y(t). To restore the variable x, we should use the original
substitution z = g(t) to get ¢ in terms of .

Equation (i) shows that when we transform an integral by putting
x = g(t), we may substitute for x in the integrand, and replace dx by
g'(¢) dt. The dx thus behaves like a differential (cf. 4.11).

Examples

() y = [(3z—2)" da.
This could be calculated by direct expansion, followed by integration
term-by-term. The following is easier.
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Put t = 32 —2, so that = = }(¢+2). Then

dy dydz _ .

= Lt +2) 8 = (&5 +207).
y =330+ = s (4 +9)
= sk (32— 2)* (122 +1).

When surds are involved, we usually choose a substitution which will
rationalise them or reduce them to a single term.

T
(ii =f———-dx.
VY= Te=)
Put — 3 = ¢, so that x = 12+ 3. Then

dy dydx x #+3
L=l = 2 = ——2¢t = 22+ 6.
& d J@—3) : +

y = §84+6t = 3t(°+9)
= §(z—-3)}(z+86).
Alternatively, using the ‘rule’ at the end of 4.21,

z 2+3 _

(iii) [22y/(1+2%)da.
Put ¢ = 1428, so that d¢ = 3z2dz. The integral is

f 1hde = 31t = 3(1+29)h.

The ‘rule’ considerably reduces calculations in this example because some
of the factors in the integrand cancel out before the substitution is made for
z there. The reader should try it by the method of exs. (i), (ii).

The substitution #2 = 1+a® would also rationalise the surd and enable the
integral to be found. The one used was preferred because «? is (apart from a
constant factor) the derivative of the expression 1+ 2% under the root sign.

The same method can be used for _fw"‘l(ax" +b)mdzx.

. x?
(IV) J.I-l-—m“ dex.
Here the denominator prevents direct integration. Putting ¢ = 1+ 2® would
dt
not help because this would give %f— , introducing surds.

t\(t—~1)
Observe that z*dx is almost the differential of z?, and put ¢ = 23:
. jdi - -
integral = 1+ = }tan~1¢ = } tan—1 (a®).

Sometimes more than one substitution is needed: the first leads to a result
which suggests the second.
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) f __
x% /(22 +1)
The reader should verify that putting ¢ = 22+ 1 or #* = 2%+ 1 does not help.
Put x = 1/¢, so that do = — (1/t?) dt:

intogral — J‘ — (/%) dt _ J‘ tdt
&= ] e aimyaTe) T ) yave)
This suggests putting 2 = 1+ %, so that udu = tdt:

d
integral = — Zu—u=—"‘du=—u

=—J(1+8?) = _£4(z2+ 1).

It is now clear that the single substitution z = 1/,/(2—1) would have
reduced the integral directly.

Although the attempt to rationalise by the algebraic substitution #* = 2?41
at the outset was useless, we remark that integrals involving /(a® + 22) are often
reduced by a trigonometrical substitution. In this example put x = tan 6, so that

dx = sec20d0: 2

. sec2ddf cos @
integral = J- tan2fsecd = J sin?0 0.
Now put ¢ = sind, dt = cos 0d0:

. dt
integral = A=

1
= —_—— = == 2
- w«/(w +1),
as before.
(vi) [Y(1-2?)da.
The integrand is defined only for —1 < z < 1, so that an angle 6 between

+ {7 always exists such that 2 = sin §. This substitution is therefore legitimate,
and @ = sin—1z (principal value). '

Integral = f cosf.cos0dl = f cos20d6f

= f%(l +cos 20) d6 = }(0 + } sin 26)

= }(0+sin @ cosb)
= Hsinlz+zy(1—22)}.

4.22 Definite integrals by substitution

The method of substitution can also be used to evaluate definite
integrals. For example, the result of ex. (vi) gives

[Iva-at o = hfsinte (12t = Heint1-sinc10) = .
0

However, for definite integrals it is unnecessary to change back to
the original variable of integration. Thus when x = sin 6§, the values
of sin-lz+2,/(1—22%) when z = 0,1 are the same as the values of
0 + }sin 20 when 6 = 0, m, so that

[sin—z+2./(1 —22)]223 = [0+ }sin 20152}
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In short, when we change the function by the substitution, we also
make a corresponding change in the range of integration. The work
is set out as follows.

(vii) Evaluate flJ(l—x’)dx.
0

Putting « = sin 0, dx = cos 8df; and as « increases from 0 to 1, & increases
from 0 to 47. Hence '

flJ(l—xz)dx = J‘}”cosﬁ.cosﬁdﬁ = f*"§(1+cos20)d0
0 0 0
= [0+ }sin 20)]}" = Y37 —0) = }7.

o V3 de
(vit) f 1 BY@ D)
We saw in ex. (v) that the single substitution z = (u%~1)-¥ reduces the

integral. As 2 increases from 1 to /3, u = +./(1+ 1/42?) decreases from 4/2 to
2/4/3. Thus, using the working of ex. (v),

V3 dx
[} s = e = e

Write ¢(z) = f f(x)dz, and suppose a < b. Let g(t) be a continuous
function of ¢ with a continuous derivative g'(f) in the range between
¢, and t, inclusive, where a = ¢g(¢,) and b = g(t,).

Suppose first that g(t) steadily increases from a to b as t increases from
t, to t,. By equation (i), p. 100,

#) = [Fonade =y, sy,
sothat B0 = V0.
Then [ f@)de = $0)-4(a) = ot} - Hlo(t)

— Yt~ Ylty) = f, ") g @) de.

Secondly, suppose g(t) steadily decreases from b to a as ¢ increases
from ¢, to ¢,; then the above working is unchanged.
'~ Remark. If we use the substitution x = g(t) to transform

b ty
[1eras wto [rgepoma

where t=1 when xr=a and ¢=1¢, when z =25,

care must be taken to ensure that g(¢) steadily changes from a to b as ¢
varies from £, to ¢,; otherwise g(t) is not a legitimate substitution for z,
a steadily changing variable. For example, by direct evaluation

1 dr 1,741 —
f—l 1+_a:-2 = [ta,n a:]_ = %77.
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The substitution # = 1/¢, which gives

+1 da +1 gt
f—l 1422 f—l 1+ —4m
is not legitimate because g(f) = 1/t does not steadily vary from —1 to

+1 as t increases from —1 to + 1. Also see Ex. 4 (b), nos. 29, 30. This
matter will be taken up again in 7.23.

Exercise 4(b)
Integrate each of the following functions by use of a substitution.
z x
] 1) (x— 5)8. . —_—
1 (x+1)(x—5) 2 @13 3 J@+3)
z 3
4 x(1—2%s, S A— —
a(l=a% S @iy 6 Ja+ah
7 coszx sindz. 8 tan3z sec?z. 9 \/(T—l‘i?)'
1
—_ — 2y 2\ —§
10 T i 11 (9—a?)-8. 12 (9 +22)-%.
3 1422)t
2__9)-% _r (
13 (x2—9)-%. 4 @ 15 perat
1 1 tan—lz
16 W-Tls- 17 m)o 18 ‘H—x‘a_‘o
1
19 ———. 20 cos®z sintz.
J@2—=)
1+ . .
21 1-2)" [Rationalise the numerator.]
2 L /2N, put = 1/s]
o =1 [Put ¢ = 1/=.
Evaluate the following definite integrals.
2 da 1 1
23 —_——. 24 4 4 227) d. 3.J(1 —x?) d.
f—1~/(3w+5) foJ(m ) de » fox V=2
i
26 f sinz cos® zdz.
0
27 i"——————dx Put t =t 28 h Sxdx
fo Soosin 1 25emin’ [Put ¢ = tanz.] f”cosxcosec xdx.

Some of the properties in 4.15 will be required in the following.

+1
*29 The substitution ¢ = 2} applied to f dx appears to give
-1

+1 1
f dx = J‘ %t*dt = 0.
-1 1

What is the value of the integral? Apply the change of variable process correctly.
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”
*30 Show that f cos?xdx = }m by using the substitution ¢ = sinz.
0

31 By putting x = }m —¢, show that

I r (7 in
f xsin?zxdxr = —f cos*xdx—f xcos?xdx.
0 2Jo 0

e in o
Deduce that - f cos?zdx = f xdr = —,

EYd
and hence evaluate j cos?xdx.
0

*32 Prove J.+af(x) de = fa{f(x) +f(—2z)}dx. Deduce that (a)if f(x) i3 odd, then
+a - ’ +a a
f(x)dx = 0; (b) if f(x) is even, then flx)de =2 fof(x) dex.
—a —-a

a a
*33 Prove J‘ J(x)dx = f fla—z)dz. Use this result to show that
0 0

i”2sina:+3cosxd b
_ dx=
0 sinz4cosz 4

T zsinz n?
*34 Pr .
34 ovefo 14cos2x a: 4

4.23 Integration by parts

(1) Just as integration by substitution is the analogue of the
‘function of a function’ rule, so integration by parts is that of the
product formula. From

d ’ 4

%(uu) = VU +uv,

we have by integrating both sides wo x that
uw = Jvu' dx+ fzw’ dx.

If one of the integrals on the right is known, then the other can be
found. Supposing f vu' dx is known, we may write the formula as

fuv' dr = uv— fvu’ dx. (i)

Examples

(i) [zcoszda.
Take u = x, v’ = cosx; then v’ = 1, v = sinz.

f:vcosxdx = xsinx—fsinx. 1dx

= zsinx + cosx.
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Had we taken u = cos®, v = &, the integral on the right would have been
f — $22sin zdx, which is more complicated than the given integral.

(ii) [#?sin 3zda.
Take u = x2, v’ = sin 3z; then w’ = 22, v = — } cos 3.

J‘x’sin&cdx = —%x“cos3x—f(—§xcos3x)dx

= —4x?cos 3z + -g J.x cos 3zdzx.

Repeating the process on the last integral, take = x, v’ = cos 3z; then
u’ =1, v = }sin 3z, and

fxcos 3xzdx = xsin 3x—f%sin 3xdx
= 4 sin 3z 4§ cos 3z.

f:cz sin 3zdz = #4(2 — 922) cos 3z + Exsin 3z.

(iii) [=(3z— 2)7d:1: (cf. 4.21, ex. (i)).
Take u = x, v’ = (32— 2)7; then v’ = 1, v = #;(3z— 2)8.
fz(3x —2)dx = fex(3x—2)8 —f%;(?»x —2)8dx
= &2(3z— 2)8 — ;= (3x — 2)°
= gagr( 32— 2)8 {272 — (32— 2)}
= 532(32—2)8(122+ 1), as before.

(2) Taking v = z in equation (ii), we get

fudx = xu—fwu’dx.

=zu— |zrdu,

where we have used the formula (i) in 4.21 for change of variable,
now being supposed a function g(u) of u. Hence, if the integral of
g(u) wo u can be found, then so can the integral wo z of the function %
inverse to x.

(iv) fsm—lmdw.
Take u = sin~1z, v’ = 1; then %’ = 1/{/(1 —=x2?), v = 2.

-1 — -
fsm zdx = xsin~lx J’«/(l—-m‘a) dx
= zsin~1z +,/(1—22)

by using the substitution ¢ = 2 or 2 = sin 0.
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(v) Jotanzde.

Take u = tan~'z, v’ = z; then v’ = 1/(1+%), v = a2

1
Ja;tan'lxdx = éx’ta.n-lx—file_l_madx

1 1
= ix?tan—lag—— -
dxttan—lx f(l 1 2)dac

= jxttan—lz—jx + 4tanlx

= }(=%+1)tan—1x—{x.

Examples (iv), (v) indicate that when the integrand involves a
transcendental function whose derivative is algebraic, we can get
a new integral containing only algebraic functions by taking this
function as u.

4.24 Reduction formulae

If the given integral involves n, an integer, then integration by
parts may reduce the integral to one of similar form but involving a
smaller value of n. The relation between these integrals, known as a
reduction formula, can be used successively until we obtain an integral
corresponding to # = 0 or 1 or some other small value, and this last
integral may be known.

Example
Consider ¢, = J. x*cosaxdr, s, = f z"sin axdr, where a is constant and n

is a positive integer.
In ¢, take u = z*, v = cosaz; then w’ = na", v = (1/a)sinax.

i n .
Cp = —smax-—-—fx"‘lsmaxdx
a a

" n
= —sginar——s8,_;.
p L

. "1 n—1
Similarly, 8y =— cosax+—— | " 2cosaxdx
a a
-1 —
= - cosax + Co—g:
a
wn n n—1 —
Cp = —d—smax—-— - cosax+ [

" n—1 n(n—1)




108 INTEGRATION [4.25

This is a reduction formula for ¢, which reduces the value of n by two at each
application, until either

Cp= f cosazdz (if nis even) or ¢, = f zcosaxdx (if n is odd)
isreached; and these integrals are respectively (see Ex. 4 (c), no. 2 for the latter)
lsinax, :fsinax-—l- cos azx.

a a a?
To calculate J’w‘ cos zdx we should use the formula thus:
c5 = fx‘ coszdr = xbsinx + 5z cos z— 20c,
= z8sin z + 5zt cos & — 20(x? sin z + 322 cos 2 — 6¢;)
= 2%gin 2 + 5% cos x — 2023 sin x — 6022 cos
+ 120(x sin x — cos )
= z(x*— 2022 4- 120) sin z + 5(x* — 1222 — 24) cos x.

A similar reduction formula can be obtained for s,: see Ex. 4(c), no. 12.
Further examples will be met later in this chapter.

4.25 Definite integrals by parts and reduction

The methods of integration by parts and by reduction formula can
be applied to definite integrals. Thus if f'(x), ¢'(x) are continuous,

[1@17 @1 = | @96~ [r@ow dx]"

b
= (@) @) — Lf’(x) 9(2) de.

Examples
(i) f:ﬂxcosxdx = [xsmw]é”—f:”sinmdx
= (37— 0) — [ —cos z]i"
=im—(0+1)
=im-1.

3
(i) Ife, = f z" cos zdz, then as in 4.24, example,
0

i
¢p = [x"sinx + nz"1 cos x]g"—n(n— l)J. a*2cosxzdx
0
=@@Fmr—n(n—1)c,_, if n>1

The case n = 1 has just been considered in ex. (i).




4.3] INTEGRATION 109

Exercise 4(c)

Use integration by parts to calculate the integral of the following functions.
1 zsinaz. 2 zcosaz. 3 a%sina.
4 zcos’z. 5 (x+1)(x—5)s.
6 z(l—2)" (n+£ -1, —-2). 7 cos 1z,
*g taz;l ’. 9 zsin 3z cosz. [Convert the product into a sum.]

10 sin®x. [Put u = sin?z = 1—cos?z, v’ = sinx.] (Cf. 4.13, ex. (iii).)
*11 xsec-lx.

12 Obtain a reduction formula for s, -J'x”sinaxdx. Hence calculate
[#Ssinzda.

Evaluate the following definite integrals.

3 . in
13 f a8in bz dx. 14 f x?sin fxdz. 15 f cosdzdz.
0 [} 0
1 1
16 J. 2}(l—z)"de (n £ -1, — 2, —3). 17 f ztan—ladz.
0 0
The following may require both integration by parts and substitution.
in—1
*18 :/”(Slm xf) da. *19 f (sin—12)? da. *20 f wsin-zdz.
*21 Use integration by parts to integrate
d’y dy
—g oY -9
(1 ) 4o — e +6
twice wo .

4.3 The logarithmic function

4.31 The integral (dx/x

Any systematic investigation of what functions can be integrated
must begin by considering the case n = —1 of fx“ dx, which was
excluded from the first entry in the list of standard integrals in 4.12.
We now take up this investigation. t

It is more convenient to begin with the definite integral

‘13 0
f 15 “n (t > ),
because (i) no arbitrary constant is involved; (ii) we can visualise this
as the ‘area’ under the curve y = 1/x from z =1 to z = . We are

T If there is a function y for which dy/dx = 1/z, then Ex. 3(e), no. 18 shows that
it cannot be a rational function.
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taking for granted the existence of the integral (see 4.16 (2)); or equi-
valently, the existence of a number which measures the ‘area’ (4.16 (1))
shown in fig. 45.

We do not attempt to consider the yA
case t < 0 because the integrand would
then be discontinuous in the range
t <2 <1. The number 1 has been y=1l=
chosen as the lower limit of integration
for later convenience, but any positive
constant would do.

In view of 4.15, Remark (f), the 0] 1 ¢ z
definite integral under consideration is Fig. 45
a function of ¢ only. We write
tdx .
s = [T e>o, 0
1 X

so that ¢(f) represents the ‘area’ shaded in fig. 45, and is not defined
fort < 0. X

4.32 Investigation of ¢(¥)
We now obtain some properties of ¢(t) which will supply enough
information for us to be able to identify the function.

(1) From equation (i) we have ¢(1) = 0.
Also, since 1/ is positive throughout the range of integration, ¢(f)
is continuous (4.15 (6)) and increases as ¢ increases (4.15 (8)) for ¢ > 0.

(2) Functional law for ¢(¢).
We shall prove that, for all rational values of »,
P(t") = ng(t), (ii)

where if n = p/q (¢ even), t* denotes the positive gth root of 1.
Proof. By definition, oy
x
@) = LT

Putting x = 2", we have dz = nz"'dz, so that dz/z = ndz/z. Also, as
« varies from 1 to £7, z varies steadily from 1 to . Hence

Taking n = — 1, we have ¢(—) = —¢(t). (iii)
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(3) Bounds for ¢(1 +u).
If x lies between 1 and 1+wu, where 144 > 0 and u # 0, then 1)z
lies between 1 and 1/(1 +u). Hence by 4.15 (10),

1+u 1 . A
f Zdx lies between % and ——

1z 1+’
ie. d(1 +u) lies between u and 1 (iv)

The argument is easily followed by noticing that the shaded ‘area’
(fig. 46) lies in value between the areas of the small and largerectangles,
whose common base is # and whose respective heights are 1, 1/(1+ %)
(the values of y when z = 1, 1 +u).

Taking u = 1, then by (iv)

<42 <1l (v)
ya ;

y=¢ (x)
0 1 p

Fig. 46 Fig. 47

(4) Range of values of ¢(x).
Given any x > 2, however large, we can find a positive integer n
such that 2" < < 27+1, Since ¢(¢) increases with ¢ (see (1)),

$(x) > ¢(27),
=n$(2) > in

by (ii) and (v). When x — oo, also will n — oo (since 27+ > z), and
the inequality ¢(x) > in shows that ¢(x) - co. Thust

¢(x) >0 when z - o0. (vi)

1 Contrast Ex. 4(d), no. 20,
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By equation (iii), ¢(z) = — ¢(1/x). When = — 0+, 1/x - o0 and so
@(1/x) - oo, by (vi). Hence

¢(x) >—oc0 when x—>0+. (vii)

Combining these results with those of (1), we have:
@ (x) increases continuously from — ooto + oo as x increases from 0to + co.

Recalling from (1) that ¢(1) = 0, we can now sketch the general
form of the graph of y = ¢(), as in fig. 47.

(5) The number e.

Since ¢(x) is continuous, steadily increases, and takes all values,
therefore it can take any given value just once. In particular, there is
a single value of « for which ¢(x) = 1. Calling this value e, we have
effectively defined it by eda

#o) =[5 =

=L (vii)

The reader who has done any work on approximate integration may consider
the following way of estimating the numerical value of e. By using Simpson’s
rule for 10 ordinates of the curve y = 1/z, equally spaced at intervals of 0-1,
we find (7.33, ex.) that

$(2) = f lzd—; = 0-693.

Hence $(2") = ng(2) = 0-693n.

We shall have ¢(27) = 1if n = 1/0-693 = 1.44. Thus ¢(z) = 1 if
@ = 24 = Q15 = /8 = 2.8,

(Use of tables for 214 would give =z = 2:71. In 6.53, example, we shall find the
value more accurately as 2:718282, and in 12.72 (1) it will be shown that e is an
irrational number.)

(6) Identification of P(x).
If « = e¥, where y is rational, we have by (ii) and (viii) that

P(x) = P(e¥) = yple) = y.
But if x = e¥, then also y = log,z by the definition of ‘logarithm’.
Hence, whenever x is a rational power of e,
d(x) = log,x (x> 0). (ix)

A difficulty arises if z is not a rational power of e. In this case log,«
is not defined; the elementary definition ‘the logarithm of z to base e
is the power to which e must be raised to equal z’ is meaningless
because irrational indices have not yet been defined. On the other
hand, ¢(z) is defined for all z > 0. We may ‘complete the definition’
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of log,  when z is not a power of e by defining log, x to be ¢(x); then (ix)
holds for all z > 0. The properties of logarithms proved in elementary
algebra are unchanged: (ii) is the index law; for the addition law, we
have by the substitution ¢ = yu,

z 1/
log,(ay) = 8= [ Lo P[P 1503

1/11

= logex—logeg =log,xz+log,y by (iii).
Similarly, logeg = log,x —log, y.

If z is a rational power of 10, say « = 10, then by the ‘elementary’
definition, y = log;oz. On taking logarithms to base e and using (ii),
wo get log,z = ylog, 10,

log, x

1.e. loglox = I0g7—6 N

the usual ‘change of base’ formula. When « is not a power of 10, this
formula can be used to define log,,x. In particular,

_logee 1
logyge = log, 10  log,10°

Logarithms to base e are called natural, Napierian,t or hyperbolic
logarithms. In future we shall write logz for log,x; and when any
other base (such as 10) is used, we shall indicate this explicitly
(as log,o ).

(7) Derivative of log x.

Since () = dt
we have by 4.15(7) that ¢'(z) = l/x, ie.
” d 1 .
d—x(log x) = ;. (X)
@) f % dz.
From equation (x)
‘—ixf =logx+c (x> 0). (xi)

1 After Napier (1550-1617), the inventor of logarithms.
} Because associated with the ‘area’ under the hyperbola y = 1/z.

8 GPMI
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Ifz < 0, put x = —y; then

dx ~dy dy
— = e = —-—-=10 =10 -—x,
fx J_y y =gy g (—2)

80 f‘}f =log(—x)+c (x<0). (xi)’
We can combine (xi), (xi)’ into the single equation
fﬁlg = log |z| +¢. (xii)

The results of (xi), (xii) conclude the enquiry begun in 4.31, so that
the gap in our list of integrals is filled. We shall continue to omit the
arbitrary constant ¢ for brevity.

4.33 An application to integration
We can generalise (xii) as follows. If u = f(z), then

p ldu_f'(@)
ploglul) =2 == @
Hence f {—;.—% dz = log | f(x)|. (xiii)

Thus any fraction, rational or not, whose numerator is expressible
as a constant multiple of the derivative of the denominator can be
integrated. We usually omit the modulus in Answers to Exercises.

Example

Since tanz = o2 _ _ {%(cosw)} / cosz,

ftanxdx = —log |cosz| = log |secx|.

Exercise 4(d)

Write down the derivative of the following (use properties of logarithms to simplify
the expression before derivation whenever possible).

1 log(2x). 2 log(x?). 3 log(l/x). 4 logsinuz.
5 logsin?ax. 6 logcota. 7 log : +;’. 8 loglogwz.
z
2
fog' 10 (logx)2.

11 Verify that equation (xii) is equivalent to f d—; = }log (2?).
12 Find d(log,,z)/dx. [Use the formula for change of base.]
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Obtain and simplify the derivative of
13 logtan 3. 14 log(tanz+secz). 15 log

16 log(1l +sin 2z) + 2log {sec ({7 —x)}.
17 Find the maximum value of (logz)/x.

18 Prove that logz—(x—1)/J/= is a decreasing function for > 1. Deduce
that logz < (z—1)/4/z for z > 1.

*19 Prove that the nth derivative of logz is (— 1)1 (n—1)!/z".
*20 The result (vi) of 4.32 is not ‘obvious from a figure’. Verify that y = 1/x?
for > 0 has a graph generally similar to that of y = 1/z for 2 > 0; but that, if

1+smx
—sna’

Y(z) = f f:, then yr(x) - 1 when z - co.

Integrate the following.

1 1 1 z
21 3—'zo 22 mo 23 ]-Txo 24 m'
a8 6x—17 2—z
B e B gamers Y aaoimrr 2B OW
sin 2% 1—-tanz 1
29 tan 3x. 30 m- 31 m- 32 xlogx'
sec? {x
33 tanie’ and deduce f cosec zdz.
Using integration by parts, calculate the integral of
34 amloga (m % — 1), and deduce [logzdz. 35 log(x'=), z > 0.
36 tan—lz. 37 (xzlogx). 38 ztan2a.

Evaluate the following definite integrals.

8 de 7 cosx

» f ton B o s a [ e
e 1

42 0 1+wdx 43 fllog(dx)dx. 44 fo zlog (1 +x) dw.

*45 If u, = [a™(logz)"da where n is a positive integer and m # —1, obtain
the reduction formula
M+l

n
Uy = (1 g )" — +1un—1-

e
Hence calculate f xz%(log )% d.
1

*46 If 0=f__g‘fﬁ‘i_x7__ and Szf_ﬂl_fdl__,
acosz+bsinx acosz+bsinx

simplify aC + bS and bC —aS. Hence calculate

7 cosaxdx
o 3cosz+4sinz’
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*47 Find numbers A, x for which
Tsinxz+4cosx = A(sinz + 2 cos x) + p(cos x — 2sin x).

7sinx+4cosx

Hence calculate J‘ -
sinx+2cosx

4.4 The exponential and hyperbolic functions

4.41 The exponential function
(1) If 2 = logy, then by 4.32 (4) x increases continuously from —oo
to + oo as y increases from 0 to co. Thus,t to any given x corresponds
just one value of ¥, and this value is positive. Hence for all « there is
defined a function y which is the inverse of x = logy; it is written
y = ¢® and called the exponential function of .
It obeys the usual laws of indices; this is clear when z is rational,
and is true when z is irrational: putting ¥, = ¢ and y, = €%, so that
= log y, and z, = logy,, then

@+, = logy, +logy, = log (y1,) by 4.32(6),
80 e1t% = y 9, 1.6, €511 = e%1, 6%,
Similarly €%1+ %1 = eh1 %,
(2) e* is an increasing function of x: if z; < x, and y,, y, are the

corresponding values of e, then y, < y,; for y, > y, would imply that
%, > %, since z = log y is an increasing function of y. Thus

€® increases from O to co when x increases from — oo to + co.
In particular we emphasise that e is positive for all x, but that

e - 0+ when x - —o0.

(3) e* is continuous for all values of x.
Proof. Write y = ¢ and let ¢*+* = y+ k. Then

’H"‘dt Y dit ”‘”‘dt
=10g(y+k)-logy=f f f

When % > 0, then by (2) also k > 0. If y < ¢ < y+k we have

1 1 k
S . 1 —_—
t>y+k’ 8o by 4.15(10), h>y+k

+ This assertion is based on the property stated in 2.65, Corollary. We have
already made it in 4.32(5) for the case x = 1.
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When % < 0, then also ¥ < 0 by (2), and if y+% < ¢ < y we have
1/t > 1]y, from which

|h| = —h = @>__’C=M

z/+kt Yy ?/.

Hence when & -> 0, also k - 0; i.e. ¢® is continuous.

(4) The graph of y = €%, i.e. of # = log y, can be obtained from that
of y = log z by interchanging Ox, Oy and then reversing the direction
of Oz to restore right-handedness.

y

y=e”
1

-

o

8Y

Fig. 48

(5) Derivative of €.
If y = ¢*, then from z = logy we have dz/dy = 1/y, and hence

dy .
==Y (xiv)
. d
i.e. a(e") = e*, (xv)

80 that e* is its own derivative.
The corresponding result for integration is

fe"dx = €”. (xvi)

Remarks

(«) The property (xv) is characteristic of €%; i.e. € is essentially the
only function which is equal to its own derivative. This can be shown
by starting from equation (xiv), which expresses the property stated,
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and solving it for y in terms of x. More generally, we will consider

the equation
W _ my, (xvii)

where m is constant. To solve this, write it as da/dy = 1/(my) and
integrate both sides wo y:

1(dy 1
T =~ ?—Elogy+c,
hence logy = m(x—c)
and Y = emEme = gmT g=me — 4 gm3,

where we have written A for the constant e=™¢.

(B) The law expressed by (xvii) is often called the compound interest
- law, and any function obeying it is called a growth function. We have
therefore shown that every growth function is of the form A ™=
where A, m are constants.

A physical example is Newton’s law of cooling: ‘the rate of decrease of tem-
perature of a body is proportional to the excess of this temperature above that
(supposed constant) of the surrounding medium’. If § denotes the excess

temperature, the law is expressed by df/dt = — k0, where k is some positive
constant. :

(6) The function a®.

Except for the case when a = e (see (1) above), a® has been defined
only when « is rational. Suppose now that a is any positive number,
and let « be any rational number p/g. (If ¢ is even, there will be two
values of a?/¢; let y denote the positive value). Then by 4.32, (ii),

logy = gloga = zloga,

80 y = evloga,
We use this equation to define a® when z is irrational :

aF = e=1%8e (g > 0), (xviii)

Then
(@) a® > 0 for all z, by (2).
(b) a* satisfies the usual index laws a®.a¥ = a®t¥, (a*)V = a®.
For a®.q¥ = erl08agyloga — gatnloga — gzty,

and, writing b = e*1084a,

(a®) = (e* logay = pv = e¥ logb — gy.xloga — pgy)loga — gzv,
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(c) E% (a®) = a*log a.

" For % (a®) = % (e*189) = (log @) e* 182 = (log a) a®.

Hence also fawdx = @ .
loga

(d) We can now extend the formula d(z™)/dz = ma™! to irrational
m (x > 0).

d d
—_— M) — ___ (pm] 1
For dx(x )--dx(e ogz) if x>0

m . .
= emlogz x - by ‘function of a function’

=™ x m
z
= ma™L,
Exercise 4(e)
1 Sketch the graphs of (i) y = e~%; (ii) y = }(e*+e7%); (iii) y = He*—e™2).
Write down the derivative of
2 ed=, 3 ze®. 4 e, 5 e3%gin 2.
6 ecosz, 7 log(e®). 8 eloge, 9 evlog2,
10 2=, 11 2* (z > 0).
Write down the integral of
1 1
2z — _—
12 e?2, 13 prd 14 Je=. 15 7o
16 esn®cosz. 17 log(ed").

Using integration by parts, calculate

. n
18 fe“cosxdx. 19 fe“sinx cosxdx. 20 f e®sinxdzx.
0
*21 Writing u,, = 2" e*®*dx, where n is a positive integer and a is a non-zero
constant, obtain the reduction formula

__lneaz
Uy =~-T Up—1.
n n—1

Hence calculate J'x*‘ e**dzx.
22 Find the constant m if e™? satisfies
d*y dy
i de W=

23 If yis a function of z, prove

d d%y dy
—(e%2y) = es2 | —ZL i .
(oY) = ¢ (dw2+2al +a=y)
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Write down the nth derivative of
24 o=, 25 ze®. 26 a* (a > 0).
*27 Find dy/dx when y = e**sinbz, and express the result in the form
r e**sin (b + 6). Hence write down an expression for the nth derivative of y.
28 Find constants p, ¢ in terms of a and b so that

;—; {e** (psin bz + g cos bx)} = €% sin bz,

Hence calculate _[e‘”‘ sin bxdx.
29 Calculate _[ e** cos bz dzx by integrating by parts twice.

30 Find the turning point and points of inflexion of y = ¢~*'. Sketch the
curve.

31 Find the values of # at the maximum, minimum and points of inflexion
of y = x%e~*. Sketch the curve.

32 What is the maximum value of 2" e~ (n > 0)? Prove that n”e=" > z" e
when & > n, and by putting x = n+ 1 deduce that (1+1/n)* < e.

33 If nis a positive integer, prove that

xﬂ
(1+x+ +3'+ o+ )

2!

is a decreasing function of « for z > 0. Deduce that
x? z®
e*>14+z+—+...+— when z>0.
2! n!
*34 If f(x) = 2y —xlogxz—e?~! (x > 0), show that the greatest value of f(x)
is 0, and deduce that for z > 0 and x + e, xy < xlogx +ev-1.
*35 If y = Asin(logx)+ B cos(logx), where 4, B are constants, prove that

Y Ay
@ Eg+xd-;+y =0.
*36 By writing # = ¢, show that the equation
8,
LW e B

da® dz?  dx

becomes d3y/dt® = 24¢*. Hence express y (i) as a function of ¢; (ii) as a function
of z.

4.42 Logarithmic derivation

The rule for deriving a product ¥ = uv can be proved as follows.

First take logarithms: logy = logu +logo.

Then derive each side wo z, using the rule for ‘function of a function’:

Multiply by y = uv:
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A similar method is useful when deriving a continued product of
functions. Thus if y = uow,
logy = logu+log v +logw,
ldy ldu ldv 1dw

and 2 = pw— + WU —

Cf. Ex. 3 (a), no. 7. Any function of the form

_ Ul Uy
V0. Uy

can be dealt with similarly.

Examples
(i) ¥y = e**z®cosz logz.
logy = 22+ 3logx +logcosx + loglog .
ldy_, 8 sina 11
ydx xz cosz logxax

1
zlogz/)”

Although in 4.41 (6) we have defined a® = ¢%198% and thereby written down
its derivative, in practice we usually derive this and similar functions involving
powers as follows.

d; 3
d—g = e“m’cosmlogm(2+;—tanx+

(il) y = a® (a > 0).

1d d
logy = zloga, .. ;d——z = loga, % = a*loga.

(iii) y = 2% (¢ > 0); cf. Ex. 4(e), no. 11.

logy = zlogx, -:;Z—Z =logz+1, :—g = 2%(1+logx).

4.43 The logarithmic inequality. Some important limits
(1) The logarithmic inequality.
Ifu+0andu > ~1,

u
Tra < log (1+u) <u.

This follows from statement (iv) of 4.32, since

u u?

=-——>0
1+4+u 1+u>



122 INTEGRATION [4.43

2) !%Cg—x—>0whenx—>oo.
Put = \/z—1in (1). Thenifz > Oand z + 1,

log Jx < \Jx—1 < |z,

so that }logz < 4z and (logz)/x < 2/\Jx. When z > 1, (logz)/z is
positive. Hence when x — co, (log z)/x — 0.

3) %ﬁ -> 0 when x — oo, where p s any fixed positive number.
Write # = 4P in (2). Then when y — 00, also z — oo, and so
plogy _ log 2 o
y* z
Hence (logy)/y? - 0 when y—>co. Thus logx tends to infinity
slower than any positive power of x.

(4) zlogz — 0 when x> 0+.
Put 2 = 1/y in (2). When y — 0+, then 2 > o0 and

--logy_log:c_>O
lly =~ =

b4

ie. ylogy — 0.

(5) zPlogx — O when x —> 0+, where p is any fixed positive number.
Put z = 1/y? in (2). When y — 0+, then x — oo and

—plogy_log:z:_)O
ljy» =z

ie. yPlogy > 0.

m
6) t—w - 0 when x — o0, for any constant m.

This is obvious if m < 0 by 4.41(2). If m > 0, put p = 1/m in (3),
which shows that (logz)/zY™— 0, and hence (logx)™/xz — 0, when
z — 00. Put x = ¢¥; then when y - o0, also - o0, and so

ﬂ (log )™ — 0.

ey z
Thus e* tends to infinity faster than any positive power of x.
(7) The exponential limit.

x n
lim (1+;L) = ¢%, forall x.

n—>w0
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If n > 0 and n+z > 0, then by (1) with u = n/z,

<1 1+3”)<§
nte 08 n] n’
On multiplying by » we get
"% <log(1 :z_c”<x
vz B ty) <%
When n - o0, nxf(n+x) -> x, and hence
1 2)"
og(1+,;-b) .

Hence for all » sufficiently large,

e
n

where £ — 0 when n — 0. Since ¢* is continuous (4.41 (3)), e*+ — &%,
and hence ’ Z\n
(l +;z) —¢* when n - 0.

In particular, with x = 1,
n
lim (1 +1) =e.
n—>o n

This result is sometimes taken as the definition of ¢ in alternative
presentations of the theory. Cf. 2.77, ex. (ii).

(8) lim (1+;~+§+ +$—logn); Euler’s constant.

n—> w0

1
Write Jfn) = l+1}+§~+...+;—logn.
Then f(n) decreases as n increases, for
: 1 n 1 1
1)— = = 1 _—— 0
Fonb 1) ~flo) = g +log T = s (1- ) <

by (1) with = — 1/(n+1).
Now put v = 1/(r—1), where » > 1, in (1):
1 1
- <logr— - —
; < logr—log(r—1) <r—l
If we write down inequalities of this type corresponding to » = 2, 3, ...,n, and
then add, we obtain

1 1
et <1 oo p—
3+ +n< ogn < 1+4+4+ +n_1.

80 % <f(r)< 1.
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Hence when n — 00, f(n) decreases but remains positive. Therefore by 2.77,
f(n) tends to some limit 7y, where 0 < y < 1. Thus

. 1
lim (1+§+§+...+—-—-logn) =v.
n-—>aow n

The number vy, called Euler’s constant, can be proved to be irrational; its
approximate value is 0-577,215,664,9.....

Exercise 4(f)
Find the derivative of
1 z__ 2 (x4 1)4 (22 + 3)?
(1 —22) (3z—5)2
3 (z—2)} (3z+2) (22 + 5)2. 4 25¢%%sin 2z,
5 & 6 e®sinz(logz)l.
7 ze*tanz. 8 (1+=z)Ve (x> —1).
9 log,2 (z > 0). 10 (logz)® (z > e).

11 Prove that the derivative of (x+ 1) (x+2) ... (x +n) has the value

n!(l+‘}+%+...+%)

when x = 0.

d
12 If y% = 7, prove d_Z = 42 / log (?E/) .

Use the logarithmzic inequality to prove the followmy (nos. 13-17).
13 logm nfr—1) if x > 0.

14 e*> 1+x forallz, and e* < 1(1—2z) if x < 1.
15 — 1+ <e 1/“°<———1f:v> 1.
z -1

16 lim °8%_ 1,

z>12—1

- 1

17 lim w . [This limit is d(loga)/da.]

h—0

18 Calculate lim log (x+h)+1°i£“' h)— 210g:v
h—>0

19 Prove lim % = 1. [This limit is the value of d(¢?)/dx when » = 0; or
x>0
use no. 14.]

. a*—1
20 Prove lim —— =loga (a > 0).
z->0 T

Assuming the exponential limit, write down the limit when n — oo of

2\-n 1\~ (n+2)®
21 (1+;) . 22 (1-;2) . 3 LT
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24 Prove lim (1 + 1 + n—lz) = e. [Use the logarithmic inequality asin 4.43 (7).]
n->w n

*25 If f(xz) > 0 and is continuous for 0 < z < 1, prove

j.l log f(x)dx < log {flf(x)dz}
0 0
1

by first considering the case when | f(x)dx = 1. [Inthiscase,logf(z) < f(x)—1,
80
1 1 1
j logf(z)dz < f flx)de—1=0= log[f f(x)dx}.
0 0 0
1 .
For the general case, Whenf f(x)dx = ¢, apply thespecial case to ¢(z) = f(z)/c.]
0

Assuming Euler’s limit, calculate lim ¢(n) when @(n) is
n->aow

1 1 1 1 1 1
* - _— - * — e “ee ey
26 ittt 2 nritImr2 T o
1 1
*28 %+m+m+p_n’ p being any positive integer.
*29 ——1——+—l—+ +i and ¢ being positive integers, and p >
ol Tgmyat pn’p q g Pp gers, p>gq.

4.44 The hyperbolic functions

(1) Definitions and simple properties.

In the broad sense, logx and e* and any function involving these
are ‘hyperbolic’ functions, because logz is the measure of an ‘area’ -
under the hyperbola y = 1/, and e® is the inverse function. However,

the name is customarily used for two special functions which are
defined as follows:

chz = }(e*+e%), shz = }(e&—e2). i)

These, sometimes written coshz, sinhz, are called the hyperbolic
sine and hyperbolic cosine of x.

The name arises from the fact that these functions bear a relation
to the hyperbola 2% —y? = a2 resembling that between the trigono-
metric or circular functions sinz, cosz and the circle 22 +y2 = a2.
For example, just as the point (a cos 8, a sin 8) lies on the circle for all
values of 6, so does the point (@ chu, ashu) lie on the hyperbola for
all u; this follows because

ch?2y —sh?2u = %(e“' + e—u)Z + i(eu — e—u)z =1

by expanding. The hyperbolic functions possess many other pro-
perties analogous to those of the trigonometric functions. Thus



126 INTEGRATION [4.44

directly from the definitions we verify that ch(—x) = chz (so that
chz is an even function like cosz is), and sh(—z) = —shz (so that
shz is odd). The reason for the similarity of behaviour will be given
in 14.68.

By analogy with the remaining trigonometric functions, we define

sho chz 1
thz (or tanhz) = ha’ cothz = Tz e
1 1
cosechz = i’ sechx = v

All the properties of these functions can be deduced from their
definitions by expressing the functions in terms of powers of e. The
reader should verify the following results.

(i) ch0 =1, (ii) sh0 = 0,
(iii) ch(—x) = chx, (iv) sh(—2) = —shz,
(v) th(—z) = —thz, (vi) ch?x—sh?z =1,
(vil) sech?z = 1 —th?z, (viil) cosech?z = coth?xz—1,

(ix) ch(x+y) = chz chy+shzshy,
(x) sh(z+y) =shz chy+chaxshy.
From these can be deduced the ‘double angle’ formulae, the for-
mulae for converting sums into products, etc., exactly as in trigono-
metry; see Ex. 4 (g), nos. 2-15.

(2) Graphs of shz, chz, the.

Despite their structural similarity to the trigonometric functions,
we shall now see that the range of possible values of the hyperbolic
functions is quite different. Observe that

(@) chz—1=}{e*—2+e%) = }(ed*—e )2 > 0,
so that cha > 1 for all ;

(b) chz—shz =e* > 0, so that chx > sha for all ; but when
x - oo, the difference tends to 0;

(¢) from the definitions, as z increases from — co to 0, ch x decreases
from + o0 to 1, and shz increases from — oo to 0; while as « increases
from 0 to + oo, ch increases from 1 to -+ oo and sh « increases from 0
to 400, :

With this guidance and the results (i)-(iv) above, the graphs of
chx and sh z can be sketched (fig. 49).

For th z, we have from the definitions that
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As z increases from — oo to + 00, e2* increases from 0 to + oo, so that
thz increases from —1 to +1, and remains between these numbers
for all x. Also th0 =0, and th(—x) = —thz, so that the graph is
symmetrical about the origin (fig. 50).

v y
1
y =chaz
y=tha
1 y=shr [ z
4 z
-1
Fig. 49  Fig. 50
(3) Derivatives and integrals.
From the definitions,
d 1d _ L
(—Echx =3 %(e"+e %) = }(e*—e %) = shaz,
d 1d
— = = — (% — e~T) = T 4 o—~L) —
dxshx 2dx(e %) = }(e*+e7%) = chaz,
d d (shz\ ch?x—shx 1 2
d—xthx_%(ﬁ) ~ ch?z  chilz sech?z,
and similarly | %} cothz = —cosech2zx.
The corresponding integrals are:

fshxdx = chuz, fchxdx =shuz,

f sech?zdx = tha, f cosech?xdx = —cothz.

Since thx=m=—cm—,

fthxdx = logchuz;

similarly f coth zdx = log |shz|.
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(4) Relation between formulae for circular and hyperbolic functions.

Comparison of the results of (1) and Ex. 4(g), nos. 2-15 with the
corresponding trigonometrical formulae will verify the following rule,
which can be used as an aid to memory for obtaining hyperbolic
formulae quickly.

Osborn’s rule. In any formula connecting the circular functions of
GENERAL angles and not depending on properties of periodicity or
limits, replace each circular function by the corresponding hyperbolic
function and change the sign of every product (or implied product) of
two sines.

Thus from tanz 4 tany
tan (@ +9) = T ana tany

thz+thy

we may infer th&t th (x + y) = m—y ,

the sign in the denominator being changed because
sin z siny

tanx tany = ———
COSZ COS Y

is an implied product of two sines.
The rule excludes the application to periodicity properties, e.g.
sin (7 — x) = sinz; and to special angles, e.g.

. (sin x4 cos )
17) = .
sin (x + 1) 2 H
and also to limits, e.g. d(cosz)/dx = —sinz. A complete justification

of the rule will be given in 14.68.

Consideration of the integrals in Ex. 4 (g), nos. 40-49, will verify
that the general procedures for integrating circular and hyperbolic
Junctions are the same.

Exercise 4(g)
Prove the following formulae.
1 chax+shx = e®, chx—shx = ¢ %
2 sh2x = 2shx cha.
3 ch2z = ch?x+shZx = 2¢h?z—1 = 1+ 2sh?a.

4 th2x=li-:$11—f§:' 5 sh(x—y) =shzchy—chashy.
thz+thy
6 ch(x—y) =chzchy—shxzshy. 7 th(x+y)—m.

8 Express as sums or differences (i) shz shy; (ii) sho chy; (iii) chz chy.
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9 shS8+shD = 2sh (S +D)ch §S—D).
10 shS—shD = 2sh }(S—D)ch S+ D).
11 chS+chD = 2¢ch (S + D) ch }(S—D).
12 chS—chD = 2sh }(S+ D) sh }{(S— D).
13 sh3z = 3shx+4sh3zx, 14 ch3x = 4ch3x—3chux.

. 1+
15 If 7 = th {z, prove (i) chz = - T

16 Solve the equation 7shz+20chz = 24 (i) by expressing it as a quadratic
in e?; (ii) by using the substitutions in no. 15.

17 Prove (chz +shz)"® = chnz +shn,
and (chz+shz)(chy+shy) = ch(z+y)+sh(z+y).

1+tha\»
P —_—

18 Prove (1 -thx)
19 Ifchax cosz = 1, prove that th }x = + tan jx. [Express all in half-angles.]
20 Prove sin?x ch?y+ cos?a sh?y = (ch 2y — cos 2x).
21 If tanx = thy, prove sin 2z = th 2y.

T 2r .
i (ii) shz = T (iii) thz =

= ch 2nz +sh 2na.

Find (and simplify if possible) the derivative of

22 sechuz. 23 cosechz. 24 cothaz. 25 logshz.
26 sh(logz). 27 logth {x. 28 tan~!(cothz). 29 tan—!(th ix).
30 chzcosz+shz sina. 31 zche, 32 (chaz)>.

33 Ify = Achnz+ Bshnx where A, B, n are constants, prove d2y/dx? = n2%y.
34 If y = tan—1(shz), prove d%y/dx?®+ (dy/dx)2tany = 0.

Write down the integral of
35 sh2a. 36 sech?3z. 37 thix.
38 e®(thz+sech?z). 39 eszchbe.

Using the formulae of 4.44 (1) and nos. 1-15 when necessary, calculate the integral
of .
40 sh?zx. 41 ch2z. 42 th2z. 43 shz ch 3.

44 sh3z. 45 chz ch 2z ch 3x. 46 ch(logzx).

Using integration by parts, calculate
47 f zchzdz. 48 f zsech?zdz. 49 f z?shzdzx.

50 By expressing sech z in terms of e, prove J'sech zdx = 2tan—1(e%) +c.
51 Reconcile the result of no. 50 with the answer of no. 29 by using
Tan—ta—Tan"1b = Tan-1{(a—b)/(1 + ab)}
to show Tan—1(e®) —Tan—11 = Tan—1(th }z),
i.e. that the results differ only by a constant.
52 Obtain fcosech xdx (i) by use of the definition; (ii) from no. 27.

9 GPMI
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53 Sketch the graph of (i) y = cothz; (ii) ¥ = sech z; (iii) ¥y = cosechz.
54 Prove that shz—x and x— thz are increasing functions for all z. Deduce
that for z > 0, the < 2 <shz < chz.
55 Calculate lim sh /2 and lim thaz/z. [Use no. 54; cf. 2.12.]
z—0

z—>0

4.45 The inverse hyperbolic functions

These functions bear the same relation to shz, chz, tha, ... that
sin—1z, cos~lz, tan—lz, ... bear to sinz, cosx, tanz, ....

(1) Since z = shy is a continuous function of y which increases
steadily from —oo to +oc0 as y increases from —oo to +oo (see
4.44(2) (), hence shy takes every value just once; i.e. to any given
value of = there corresponds a unique value of y, written y = sh—1x
and called the inverse hyperbolic sine of .

The graph of y = sh—!zis obtained from that of y = sh x as described
in 4.41(4).

vh

y=sh™lx

Qo
8Y
(o]
8Y

Fig. 51 Fig. 52

Ify = sh—lx, thenshy = zand so by 4.44 (1), (vi), chy = + /(1 +2?).
Also ¢¥ = shy+chy = z+./(1 +2?). Hence y = log{z+./(x®+1)}, i.e.

sh-1z = log {x +4/(z*+ 1)}.

This shows that sh-1z is continuous for all z, since log { + /(x* + 1)}
is a continuous function of a continuous function (2.62 (2)).

*  (2) Since z = chy is an even continuous function of y which in-
creases steadily from 1 to + 0o as y increases from 0 to +co and also
as y decreases from 0 to — oo, hence chy has the same value for two
(equal but opposite) values of y, except when chy = 1. Thus to any
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given value of > 1 correspond two equal and opposite values of y;
when z = 1, ¥y = 0; and for < 1 the function y of 2 is not defined. The
two-valued function y is denoted by Ch—'z, and the positive value
by ch—1z.

The graph of y = ch—x is the ‘thick’ curve in fig. 52. The complete
curve is that of y = Ch—1z.

From y = Ch~'x we have = chy, shy = +,/(22—1), and

e¥ =chy+shy =z +./(22-1).
Since fr+J(@-1)}H{z—J(@2—-1)} = 22— (22—1) = 1,

1
FENERL

ie. Ch—lz = tlog{r+./(22—1)} (x>1),
and chlz = +log{xr+,/(22—1)} (x> 1).

hence & =z+./(z?~1) or

Thus ch—1z is continuous for 2 > 1.

(3) Since x =thy is a continuous
function of y which increases steadily
from —1 to +1 as y increases from
—o to +o00, hence thy takes every
value between + 1 just once. Thus, given
z(—1 < z < 1), there is a unique corre-
sponding y, written y = th—1a.

From

y=th'x, z=thy=

e —1
eV +1’

8o l1+z l+z
21/= _ = —_—
e == and ¥ élogl_x,

t
——————— e
o
F
—

Fig. 53
ie. th-1z = glog—:% (2| < 1),
which is continuous for all |z| < 1.

(4) The functions Sech—'z, cosech-1z, coth-1x are seldom used

because

Sech—1z = Ch! (l) , cosech—lx = sh—! (l) , cothlz = th—! (l) .
z z x

They could be treated similarly; see Ex. 4 (h), nos. 38—40.
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(5) Derivatives and integrals.
(i) y =sh1x.
From x = shy, de/dy = chy = +,/(1 +sh?y) = +,/(1+2?), the posi-
tive sign being chosen since chy is never negative. Hence

oty L
ElESh x—+J(1+x2) (all x).

(i) ¥y = ch1a.

Since z = chy, dz/dy = shy = +,/(ch?y—1) = +,/(2%~1), the posi-

tive sign being chosen because the values of y = ch™ x are not nega-
tive, and hence sh y is not negative. Therefore

-1 — 1
dch ac—+~/(2 i) (x> 1).
(iii) ¥ = th—1a.

From z = thy, dz/dy = sech?y = 1—-22. So
d,, 1
d—x— th xr = _1 e
The corresponding integrals are:
_dz
Ja+a?)

(|Jz| < 1).

sh—1zx,

dx
1—-22

These should be compared carefully with the last two results of 4.12.

:/_(g:l_) =ch 1z (z>1),
=th~lz (Jz| <1).

Exercise 4(h)

1 Obtain the derivatives of sh—'z, ch—lz, th—'z by using their logarithmic
expressions.

Write down the derivative of the following, stating any restrictions on the values of x.

2 sh™1(%x). 3 ch—1(2z-1). 4 th—1(2z).
5 th-!(taniz). 6 coth-?! {—; (z +£)} . 7 sh-(tanx).
8 th-l(sinz). 9 ch-l(gecx).

10 Calculate J'«/_(ld%ij by the substitution 2 = sht.

11 Calculate g (x > 1) by the substitution z = cht.
J(x2—1)

By writing x/a (@ > 0) for x in the integrals of 4.45(5), prove that

dx z dx x
— =  —sh'Zte. " —ch-1=Z )
12 fd(a2+x2) sh a+c 13 J:/(m’ ) ch a+c (x > a)
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dx 1 x
= — CgpmZ .
14 J.az—xz ath Ste (=] < a)

15 Calculate the integrals in nos. 12-14 by using suitable hyperbolic sub-
stitutions.

16 Show that the logarithmic form of no. 12 is

f :/(5%?) = log{z+/(a* +a%} +¢,

and state the relation between the constants ¢, ¢/. Give similar results for
nos. 13, 14.

Write down the integrals of
17— 18 1 19 L1 20 1
A +25)° J(z2—386)" (422 +25)° J(836—a2)’
1 1 1
! V(42 —9)° 2 V(2 +2x+a?) 23 V(2x+a%)’

24 By putting « = asht and using ch?¢ = }(ch 2t 4 1), prove that ifa > 0,
fJ(x’ +a?)dz = $x./(2®+a?) + $a®sh~1(z/a) +c.
25 By putting « = acht, calculate [,/(z*—a?dz (a > 0). [Contrast 4.21,
ex. (vi).]
By using a suitable hyperbolic substitution, calculate the following.
26 f /(922 — 4) dx. 27 f: /(922 + 4) dz (answer in logarithmic form).

22 3J(x2+ 1)
28 fmdw. 29 J‘l ———xz——dx.

*30 If « < —1, what is the substitution to be used in no. 11? Show that the
result is —log{—=x+./(22—1)}+¢c. [As cht is never negative, the substitution
required is x = —cht.]

*31 (i) Eval f T__ds
i) Evaluate _—
® —13+/(z*—25) B g
(ii) Also evaluate this integral by first reducing it tof —— 55 by the
12 /(2% —26)

substitution # = —y. (This obviates the difficulty of signs indicated in (i).)

by the substitution z = — 5chz.

Using integration by parts, calculate the integrals of
32 ch1z. 33 thlz. 34 zsh—lz. 35 z%th'z.

*36 If ¢, = [z"chawdx and s, = fanshazdx, where a + 0 and n is a positive
integer, prove - n Zn n
Cn =;sham—;s,,_1, 8y =;chax—;c,,_1.

Hence obtain a reduction formula for c,, and for s,,.

*37 Using no. 5, show that [seczdr = 2th=!(tan }z) if |tan }«| < 1. What is
the result when |tan x| > 1? Show that both results are given by the log-
arithmic forms log |tan (3 + }m)| = log |sec z + tanz|.
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*38 Verify the results stated in 4.45 (4), and state for what values of 2 they hold.
Use these results to prove that

i) 2 sech-to = —— 1 :
(i) ‘—i—xsech 1z = P 0<z<]1);
. d g1 .
(it) d—a-:cosech 1y = W) (z + 0);
oo @ .
(iii) d_xmth 1g = T (l=| > 1).

*39 Sketch the graphs of (i) cosech—z; (ii) Sech—1; (iii) coth—1z.
*40 Prove that

(i) sechtz = log {“‘“/#fi)} O<z<1);

l+\/(1+w2)} 1—J(1+2?)
z x

(ii) cosech—lz = log{ if 2 >0, log‘ } if < 0;

(iii) coth—1z = log g—t—%} (|=] > 1).

(B) SYSTEMATIC INTEGRATION

4.5 Revised list of standard integrals

In section (A) of this chapter we gave some general methods of
integration (decomposition, substitution, parts, reduction formula),
and applied them to a variety of functions. In this section we approach
the subject from a different point of view by considering various types
of function and investigating what methods can be used to integrate
them. Although we cannot give rules which will apply for the integra-
tion of all functions, we shall see that certain classes of functions can
always be integrated by following a well-defined procedure. Our
classification of functions will be the ‘structural’ one outlined in 1.51.

The following resultst have been obtained in section (A):

m gm+l )

fx dx=m (m =+ -1); (1)

1 "

~de = log|al; (ii)
Jrae-e i
fsin xdx = —cosw, fcos xdx = sinx; (iv)a,b

1 The arbitrary constant of integration has been omitted for brevity.




4.5) INTEGRATION 135

f sec2zdx = tanz, fcoseczxdx = —cotz; (v)a,b

fshxd:c = chz, fchxdx = shaz; (vi)a,b

f sech?xdx = thz, fcosech%dx = —coth z; (vii) a, b

J‘l-: ;0% = tan'x; (viii)

. JJ(I— dx = sin~lz; (ix)
fm dx = shlx; (x)

fﬁdx =ch-1lz (z> 1). (xi)

The result ff (x)dx = log | ()|

includes the following:

fta.nxdx = —log |cos x|, Jcotxdx = log |sinz|; (xii)a,b

fthxdx = logchz, fcothxdx = log |shz|. (xiii)a,b
We shall show (see 4.81, exs. (i), (ii)) that
f coseczdz = log |tan §x|; (xiv)
fsecxdx =log [tan(}x+47)| or log|secz+tanz|.
(xv)a,b

The reader should know all of these, and should be able to quote
the corresponding results when z is replaced by any linear function
px+q (p + 0). Thus by writing z/e for 2 in nos. (viii)—(xi), we have
when a > 0:

1 1 x
— dx = -tan-1Z- ;
Jaz T xzdx P tan P (xvi)
f - dx = gin— 1x (xvii)
J@ = %

f :/W]:I-—xz—) dx = sh—la or log{z+.(a®+2a?)}; (xviii)a,b
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andif 0 < a < z,

f:/—(—ﬁl_—ﬁ)dx=ch—1z or log{x+.(x®—a?}. (xix)a,b

Similarly, on replacing z by pz + ¢ in (ii),

1 1
f dx:;)loglpx+q|.

pr+q
1 1 r—a
Finall — dr=-— ¢
inally, I xz-—azdx 2alog zta (xx)
because 1 _1 1 ——1
2—a® 2a\z—a z+al’

4.6 Integration of rational functions

4.61 Preliminary considerations

(1) Allrational functions of the form kf’(x)/f(x) (where k is constant)
can be integrated immediately as klog |f(x)|, by 4.33.

(2) When the function is not already of this form, we decompose
it into simpler rational functions. If the degree of the numerator is
not less than that of the denominator, we begin by using ‘long
division’ to reduce the fraction to a polynomial together with a
‘proper’ fraction.

Examples
2
. 14—,
@ z+1 v +w+l
22
hence fx+1dx = ja?—x+log|r+1].
. 224 — 23 — 32% + br — 4 3z2—3
=2r—-14+—F-
@) P —8r+1 et e 1

so the integral of this function is
z2—x+loglad—3x+1]|.

4.62 Digression on partial fractions

We may suppose that, whenever necessary, the above division
process has been done. Our problem is then to decompose a ‘proper’
fraction into a sum of simpler fractions, known as its partial fractions.
When the denominator can be factorised into a product of linear and
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irreducible} quadratic factors (repeated or not), the reader will know
how this decomposition is made. We give here, for convenience,
a summary of the working rules; the theory is in the Algebra section
(10.53), where there is a full formulation of the basis of ‘equating
coefficients’ (10.13).

1(a) For each simple linear factor z — @ assume a partial fraction

A

z—a’
(b) For each squared linear factor (x —b)? assume a sum

B,

2 Az+B
—_I_*____
z—b (x-b)*

or equivalently @b

(c) For each cubed linear factor (x —c)® assume

01+ C, + G Ax®+Bx+C
z—c¢ (x—c)? (x—c)®’ (x—c® ’

or equivalently

and so on.
2(a) For each unrepeated irreducible quadratic factor x2+bx+c
assume a fraction
Axz+ B

a2+ bx+c’
(b) For each squared irreducible quadratic factor (x%+ bx+c)?

assume a sum Az +B, Agw+By
224+-bx+c  (x2+br+c)?’

and so on.

Thus, in general, for a factor of degree n we assume a partial frac-
tion whose numerator is of degree n—1 (cf. the equivalent forms in
Rule 1); but in the case of a repeated factor it is usually better to
express such a fraction as the sum of » simpler ones, as first stated.

Having followed the above procedure for all factors of the denomin-
ator, we convert the relation expressing the equivalence of the given
fraction and the sum of partial fractions into a polynomsal equation,
by multiplying both sides by the given denominator. The constants
A4, B, C, ... can then be determined either by (i) equating coefficients,
or (i) substitution of special values for z, or (most usually) (iii) a
mixture of these methods. The following examples should revise
and clarify all that is necessary.

1 See the definition in 10.52.
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Examples
(i) Simple linear factors.
2241 =i1+ B + c )
z(x?—-4) = xz—2 x2+42
2?41 = A(x?— 4) + Bx(xr + 2) + Cx(x— 2).

Put z = 0: =—44, so A=~}

Put 2 = 2; 5= 8B, so B= §
Put z = -2: 5= 8C, so C= &
2241 1 5 5
H i o SR SR S
enee 2@ —4) 1z 8@—2) 8wt
Repeated linear factor.
(i) Tx—4 _ 4 B + c
(—-1)2@x+2) 2z—1 (x—=1)2 z+2°

Te—4 = A(x—1) (z+2)+ Bl +2) + Clz— 1)

Putz=1: 3 =3B, so B=1,
Put z = — 2: —18=9C, s0 C=-2
Equate coefficients of 22: 0=A4+0, s0 A4 =2.
Hence Te—4 = 2 + 1 2 .
(=12 (x+2) x-1 (x-—-1)* z+2
22243z +1 A B (4 D
(i) (a:—;;"(xtS) “e—2teo2p T em2ptasy

and we could proceed as before. The following variation of the method should
be noticed.

2% +3z+1 = A(x—2)? (x—3) + B(z—2) (x— 3) + C(x — 3) + D(z — 2)°.

Put z = 2: 16=~C, so C=-—15.
Hence
Ax—2)2(x—3)+B(x—2)(x—3)+ D(z— 2)8 = 222+ 32+ 1+ 15(x — 3)
= 22+ 18z —44

= 2(z—2) (z+11).
s A(xe—2) (- 3) + B(x— 3)+ D(xz— 2)2 = 22+ 22,
Put z = 2: — B = 26,
and hence A(x—2)(x—3)+ D(x—2)% = 22+ 22 + 26(x— 3)
= 28(z— 2).
A(x—3)+D(xz—2) = 28.

Putting = 2 gives 4 = — 28, and z = 3 gives D = 28.
When cubic or higher order repetitions occur, it is shorter to use the following
method (equivalent to repeated division).
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Putting y = 2, the fraction given in ex. (iii) becomes
2y+2)°+8(y+2)+1 _ 2y°+11y+15
¥y—-1) ¥y-1)
Nowt 15+ 11y+2y% = —15(y — 1) + 26y + 2y
= —15(y— 1) — 26y(y — 1) + 28y?
= —15(y —1)— 26y(y — 1) — 28y*(y — 1) + 28y°,
15 26 28 28
so the fractionis = @ ————-— i Tt
¥ ¥ oy y-l
_ 28 28 26 15
Tx—-3 z—2 (-2 (z-—2)%
Simple quadratic factor.

(iv)

z+4 £+Bm+0
x(z2+2) =z a2+2°
S od= A2+ 2) 4 2(Bx+0).
Putz =0: 4=24, so A=2,
Equate coefficients of 22: 0=A4+B, so B=-2.
Equate coefficients of 2: 1 =C.
z44 _g_2w—l
x(x®+2) =z 2*42°
? =Az+B+C:c+D.
(x?+4) (22 +9) 2244 2249’
but if we notice that the given fraction is a function of =% and put y = 22, we
have (more easily) y 4 B
T H@+9)  y+i y49’
from which we find 4 = —$, B = £ as in ex. (i). Thus
a2 9 4
(@ +4)(a*+9) Ba*+9) bar+4)

Hence

(v)

at + 28
x3—-1"

Here the fraction is not ‘proper’, so that first the division process must be
applied. It can be combined with the work for finding the constants in the

partial fractions as follows. Since the quotient is of first degree in «, it has the
form azx + b; so, using the factors (x— 1) (z*+2+1) of 23 —1,
xt4ad A Bx+C
Pyt AR R N L
o+ 2% = (ax+0) (a2 — 1)+ A(a2 +2+ 1)+ (Bz+C) (z—1).
Equating coefficients of 24 and of 22 gives respectively 1 =a,1 =b. Putz = 1:

2=34, so A=4%

(vi)

t The following can also be obtained by long division of 15+ 11y +2y® by —1+y
(arranged in ascending powers of y).
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Proceeding as in ex. (iii), first method, we find after a little calculation that
3(Bz+0)(z—1) = —(2z+1) (z—1),
so that 3Bx+3C =—2z—1.

Equating coefficients of 2 gives B = —%; and equating constant terms gives
C = —1}. Hence

x4+ 28 2 2x+1
— = 1 - .
-1 NG T s re D
Repeated quadratic factor.
z+3 A Bx+C Dz+E

(vii) @@+ z-1T 2+l @+

but it is easier to proceed as follows. Write

z+3 _ 4 f(z)
(x—1)(22+1)2  2—1 (22+1)2

z+3 =A@+ 1)+ (x— 1) f(x).
Putz=1: 4=44, so A=1.

flx) z+3 1
(@PB+12 (@z—1)@2+1)2 z—1

-2 —2%—3x—2
(w2+1)2

after combining the fractions and then removing the factor  — 1. We now have
flx)=—28—22—3x—2,
and this can be put in the form (ax +b) + (cx +d) (x2+ 1) either by inspection
or by division by 2%+ 1. We find
f@)=(-22-1)+(—2—1)(x2+1).
The given fraction is therefore
1 z+1 2z+1
a—1 @+l (@+1)7
(viii) Case of linear factors with irrational coefficients.
The method of ex. (i) would apply to a case like
1 1
2(22=2) ~ w(@+2)(@—y2)’
and we could express the result in the form
A B C
> + ;-_':/'é + x_—_ﬁ .
For the purpose of integration, surds can often be avoided by INCOMPLETELY
decomposing the given fraction. Thus

1 A Bz+C
z(@x2—-2) =« at-2°
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and by the usual methods we should find 4 = —§, B = }, C = 0. Then immedi-

ately 1
o dr=- 2_
fm(x’-—2)dz $log|z| + }log |22 —2]
z?—-2
= }log il
Exercise 4(i)
Using the results of the above worked examples, calculate the integrals of
1 2241 Tx—4 22243z +1
2(zt—4) (z—1)%(z+2) (x—-2)3(z—38)"
4 z+4 5 a2 3z + 1)
(22 +2)° (x2+4) (22 +9)° -1
*7 z+3

@=1) @ +17

Express the following completely in partial fractions (using inspection whenever
convenient), and hence calculate their integrals.

1 z241 x+1
8 z2—-1" 9 z:—1" (z—1)%
z241 r—2 2x41
" e 2 2T P e @y
2x—1 22342244 6x+13
14 22— —6" 15 z(z+1) 16 (z+1)(z+2)(2x+3)°
x+ 18 18 20+ 17 1 322 —3x—2
x(x—3) (x—1)(x+2)? 2+ 1)2 °
2412 1 -
20 Ta?+ x+2. 1 2z+3 ) 2 xt+4x—16 i
(x+1)3(x—2) z(x?+1) (x—2)2 (x2 + 4)
28 + 2202 + T + 54 1
3 3a® + 222° + T + . 24

(1—2z) (2 + 3) (22*+1) (32 +2)°

Express the following in partial fractions involving only rational coefficients, and
hence calculate their integrals.

z+2 4x 43 223 4+ 22— 2
25 (2z+3) (x2—3)° 26 (z—2) (2 +4x—-1)" 7T
4.63 Summary

It will now be clear that, provided we can resolve the denominator
into linear and quadratic factors, any given rational function f(x)/g(x)
can be expressed as a sum of partial fractions of the types

A Bx+C
(x—a)y™ (2®+bx+c)™’
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for m = 1,2,3,..., where 22+ bx +¢ has no factors or else has linear
factors with irrational coefficients.

Integration of the first type yields

1 A
1—m(z— a)m-1

We examine the integrals of the second type in 4.64, 4.65.

If the polynomial g(x) cannot be factorised as described above, we
remark that the method of partial fractions becomes powerless.t
Thus it cannot cope with

if m#+1, or Alog|z—a| if m=1.

38+ 52t +a2—22—1 o
(@®—x+1)2 ’
although the expression for this integral is in fact
z2+1
2—-z+1°
Ax+ B
4.64 f x%+bx + c

(1) Constant numerator (case A = 0).
Complete the square in the denominator, thus reducing the in-
tegral to one of the standard forms (xvi), (xx) in 4.5.

Examples
() &
! 2?2+ 6r—4 ) (x+3)2-13"
dx 1 1 1 1 z—a
. _dz 11 1 ,
Since J..'Jz:’-a,2 f2a(w —-a x+a)dx 2 8 z+a
1 z+k—a
Tt LT Y Lot
therefore f(:v+k)2-—a* 2alog i hTa
Hence the given integral is
1 o x+3—,/13
2J13 gm+3+413‘
(i) dx 1 dz
' 4P+ 162+25 4 x’+4x+6i 4 (x+2)3+2i'

Since __dx =1 t;a,n"1 = -l-tan-1x+ k
+a  a a’ (x+lc)’+a3~a a
Hence the given integral is
11 x+2—lta,n—12x+4.

Zﬁt 13 6 3

() dz

T Hermite has shown how to find the rational part of any such integral 7@

without having to factorise g(z).
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Alternatively, put x+ 2 = § tan 8; the integral becomes

1 ($sectfdd _ 1 L2te
_f__._%m’a _GJ'de 30 = 3 tan

In practice the middle step of the working in each example is done mentally.
(2) Linear numerator (A + 0).
.Express the numerator in the form
A (derivative of denominator) + .

Hence split the given integral into a sum of two integrals: the first is

of the form
fj}. ((x)) dx =log |f(x)|;

the second is covered by case (1) above.

Examples
3z—5
W) a®™
Write 32— 5 = A(dx+2) + 4.

Then we find A = $, 4 = —32. Hence the given integral is

3 4r+2 e 13 dz
4) 222422+ 41 2 ) 2224+ 2c+41"

The last integral is

L%+ 2z+1

=14 = tan ==

f (x+1})’+ﬂ o
Therefore the given integral is

$log (222 + 22 + 41) — 13 tan—!

. 2x+17
(V) f11—3w—2m’dx

Write - 22 —T=A(—3—42)+4;
then A = —§, # = 3%, and the given integral is

_1 —3—dx dx+ll dx
2)11—-3x—2z2 2 ) 11 -3z — 222"

2z+1
9 "

The last integral is
_HJ‘ IS B L1 S 1L
1)@ -0 4°2.3y97 C|lzri+iy 01|
Therefore the given integral is
11 4z +3—,/97
—3log |11 — 3z — 222| — 1 .
Hlog |11 - 32— 22%| — 557 log 4x+3+J97l
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4.65 Reduction formula for —ﬁiB— dx
(x%+bx+c)r

As in 4.64(2), begin by finding numbers A, g for which
Ax+B = A2z +b)+p.

Then fﬂ_dxﬂ f__%zvﬂ_dw j;dw_ ,

(2 +bx+c)? (z2+ bz +c)» (x®+ bz +c)"
A 1
T n-—1 (x*+bm+c)"—1+'uu"’
dx
h = -
where Uy, f(x2+bx+c)"
= do by completing the square
= J{@r 1o ro—qonyn Y COMPIOtng the square,
1
= | ———dt
f(t2+k)"

on putting t = z+ 3b and k = ¢— }b% Writing the numerator of the integrand
as (1/k) (82 + k) — (1/k) 3, we decompose the integral:

! dt 1 dt
"TEJ (@R k) (24K

1 1 d 1
=4 gy | {W} &
1 1 t 1
=t o @R Ben—1)
on integrating by parts. Hence

" = 1 t + 2n—3 w
T 2n—1)k (B+E) 2n—1)k "V

Successive applications of this reduction formula will lead to u,, which is
either (xvi) or (xx) of 4.5. In many cases u,, is more easily calculated by means
of a substitution, as in the following.

Example

f -1
(22 + 22 + 5)2

Write 22 —1 = A(22 + 2) + 4.
Then A = 1 and g = — 3, so that the integral is

2x+2 dx
j(w2+2x+5)3dx—3f(x3+2x+5)’

_ 1 _3 dzx
T a4 2245 {(x+1)2+4)2"
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Putting 2+ 1 = 2 tan 0, the last integral becomes

2sec?d 1 1
[ —— = - 2 = — 1 d0
fleee‘ﬂdo 8J.coea 6do 16f( + cos 20)

= #5(0 + }8in 20) = (0 +sin § cos b).

z+1 2
Si inf=——__—_ d 0= —--——,
ince sin @ Jet e and cos KT8
.. 1 z+1 2(x+1)
h — -1 ————,
the expression is 16 {tan 3 @ri)pP+d
Hence the given integral is
1 s z+1 3 =2+1
- tan"! -
22+ 22+ 5 2 822+2zx+5
3x+11 s zr+1
= —_— .8 -1 -
8@+2z+5) 0000 T3
Exercise 4(j)
Integrate each of the following functions.
1
R 2 L 3L
(3z+2)2+16 (3z+2)2—16 x4+ 20+ 2
4 1 3zx—1 6z+5
544w —a?’ 2242 —10" 92— 18z + 25"
24 2x+3 8 22— 3x—4 o Tt T2?—324+4
A+2)(Q+2%)° (x2—1) (x®+22+2)" 24 +at41
2
10— . a1 — 2 * g+s
(z*+ 25)* (@ +4) (2*+2x+5)?
z2 1 1
* . *14 ——. *15 — .,
B i e T+ai+ 2t

4.7 Integration of some algebraical functions

4.71 Linear irrationalities

For functions containing roots of linear expressions, a rationalising
substitution can always be used.

Examples
@) -

zdx 2e3dt .
= by putting z = ¢2

Je+1 T )i+l

1
= 2 -
2j(t t+1 t-l-l)dt

= §t3—12+2t—2log |t + 1]
= gat —x+ 22t — 2log |2t + 1|.

I0 GPMI
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" dz
@ f at 4ot
To rationalise both roots, put z = #® (since 6 is the r.c.m. of 2 and 3). The
integral becomes

6t5dt £
J‘t3+t‘~’_ 6ft+1dt

= 6(}3— 42+t —loglt+1]) asin ex. (i)
= 2at — 32t + 62t — 6log |2t + 1.

dz tdt
i = —-1 =1 = 2
(iii) fx+4(2x—1) J.«}(t2+l)+t’ where 2x—~1 =2, so that .x 3H2+1)

[ 2tdr
T )ere

=2 ! ! dt by partial fractions.
R ATS ERTETIE v partt ’

1

. dw [ 3pdt
(iv) fxy(x—s;)‘ @+8)¢

a2 _, tdt
T e+ T T ) @42) (22t 44)

) 1( t+2 1
= N s—————=)dt b ial fi s .
3f 6 (t*—2t+4 ¢ +2) y partial fractions

1(/3(26—2)+3 1)
= [(BE2T 0 a4
2\ 2+d t+2
30 dt
= 3_ S = __ .
}log (¢ 2t+4)+2ft”—2t+4 3log Jt+2]

The last integral is

where x—8 =13

1, -1

@ _ 1.
j(t—l)*+3‘7§an el

The variable x is now restored l;y putting ¢ = (z—8)}.

4.72 Quadratic irrationalities
For functions containing 4/(ax?+ bx + ¢), the substitution

ax®+bx+c = t?

is not usually successful; but ‘completing the square’ is useful at
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some stage. We illustrate by a few particular cases; but it can be
proved that if R(z,y) is a rational function of z and y, where

Y = \J(ax?+bx +c),

then f R(z,y)dx can always be reduced to the integral of a rational
function by means of a substitution.

Ax+ B
4,73 fm dx
If we remove the factor |a| from under the root sign, we obtain a
multiple of an integral of one of the types

Axz+B - Axz+B dae
J@i+ge+h) " JJ(—at+ga+h)

(1) Constant numerator (case A = 0).
Completing the square in the denominator reduces either type to
one or other of the standard forms (xvii)—(xix) in 4.5.

Examples

(_)J" dzx _ dx _ h_1.'I:+2
! J(:c*+4x+l3)_fJ{(x+2)9+9}_S 3’

.. dzx 1 dx

W j J(B—bz—32%) ﬁf JE—3z—a?)
_ 1 dz _ 1 . _16x+5
"%L{%—(w%ﬁ}‘ﬁsm TR

dx _ dx 1 dx
) f JwE+2m) f Je ) ﬁf J&+1%)
1, 443

_ij_dx__
T N2) -t 42 3

(2) Linear numerator (A + 0).
Since d{\/f(z)}/dz = }f'(x)/|f(x), we begin by writing the numerator
in the form

4A (derivative of expression under the root) + ,

where A, z are constants. The given integral is then split into the sum
of two integrals: the first is of the form

@), )
\/f(x) da = \/f(x),

the second is as in case (1).

10-2
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Examples
1+
() fJ(l “atah)
Write 142 = 3A(—14+2z)+p.

Then A = 1 and g = §; the integral is

3(2x—1) 3 dx
fJ(l “otad) +§f~/<l—x+x*)
e Il ot st §f e
=Jl=atah s | e B

2z—1

73

= (1 —z+a?)+3sh?

J z—1 z—1 d
2x+3 Ji(z—1) (2w+3)} V@2t +z—3)
by ‘rationalising the numerator’. Write
z—1= 3A(4z+1) +p.
Then A = } and g = —§; the integral is
1f _dte+1) 8 f e
2) 2t +2—3)" 1) J(2?+2-3)

. 5
= 4 +x~3>-472f NV

= 32 45— 3) - 442 ch- 14”;1

Examples (i)-(v) could also have been done by using a trigono-
metric or hyperbolic substitution. Thus, after the preliminary steps
in ex. (v), we could proceed as follows.

Putting z + } = § chu, the integral is

f d S(chu—1). $shudu
V2 «/{(av+%)2 «/2 "§shu
4\/2f(ehu 1)du = 42(Shu u).

4x+1
From % = ch-14(z+}) = ch—1! + we have

o = Jinru—n = [{(2F 1)2— 1) = 101607+ 8224

= 2—;L2J(2x3+m—3);

this gives the result as before.
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dx
4.74 f (x—k) J(ax®*+bx+c)
This can be reduced by the substitution 2 —k = 1/¢ to the form
- considered in 4.73,

Examples
dx

@+ J(1+z—z9)
Put x+1 = 1/, so that dx = —(1/¢2)dt and
l+rx—a22=—(2+1)24+32+2=—(x+1)2+3(xz+1)-1

The integral is
—(1/3)dt J’
(1/2). (l/t)«/(-t’+3t—l) \/{I_(t_g)z}

R (ﬁ) 132 3wt
- - N JB(x+1)

by using ¢t = 1/(x+1).

(i) J’ xz+1 (x—1)+2
(z—1)y(42*+ 1) (z—1)y/(422+1)

_ dx +2 J‘ dx
IV 1) T ) @D+
The first of these integrals is $sh~12z; the second is reduced by the sub-
stitution 2 —1 = 1/¢ to

_f di S S
J(6r 8+ 4) _J5fJ{(t+%)’— 7%}
1 5t4-4 1 dx+1
=B T T T Y sy

4,75 f J(ax?+bx +c) dx

By completing the square, the integrand is reduced to one of the
forms VR, Jk2—1), -k
The integral can then be found by a trigonometric or hyperbolic |
substitution. For example, putting 2 = ash we have

fJ(x2+a2)dx =fachu.achudu _ |

= a2fch2udu = %azf(l +ch 2u)du

= }a®%(u+ §sh 2u) = }a?(u+shuchu)
= }a2sh~! (z/a) + §x /(2 + a?).
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We could also rationalise ./(22+a?) by putting x = atan6; th
integral would become '

fa sec 0.asec20d0 = a? fseca ado,

but this is less easy to calculate.
Similarly, f \J(@*—2?) dz is rationalised by « = asiné (or less con-
veniently by z = a thu); ande(xz— a?)dx by z = achu (orz = asec).

4.76 Direct use of a trigonometric or hyperbolic substitution
The substitutions mentioned in 4.75 can often be used directly.

Others are given in Ex. 4 (), nos. 32, 33.

Example
By putting z = 2tan6,
J‘ _ 2sec?fdf 1 fcosfdl
(@i +4) f4tan20.2secl9 - Zf sin2 0
__ 1 e
~ T 4sinf ’
Exercise 4(k)
Write down or calculate (if possible by more than one method) the integrals of
1 1-4z 2x+1 3 1
z J+1) x4z’
4 1 5 1 2+ Jx
14§ zf(z+4) Yz -1"
7 1 g . . g Y
N@r+1)— Nz’ JQ+z) -1 +2) V(2 + 6z +18)°
1 1 1
0 Jewre-n M Je—t—ay 2 Jmrne-an
z+2 x 3z—5
13 J@t+1) 14 A(e? + 62+ 18)° 15 2z +42-17)"
22+ 17 1+ 22 :
o e 7 G2 TRy
z2+1 1 1
19 Jat+1)° 20 zof(a?+4) A z (202 + )
2 1 23 3z—2 1
z (3 + 22— 1) (@—1)J(@*+9) @+ 1) J(1+2z—a)
25 J(a®—a?). 26 4/(22—a?). 27 /(322 bz).
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28 /(x?— b5z +6). *29 (3 +1) /(222 — 6z +1).
X

0 Grhjete)

[Put ¢ = 1//(x*+9).]

* [First put « = 1/u.]

1
I Ty
32 Ifa < f, show that the substitution « = & cos? 8 + #sin?d will convert the
integrals of {(x—a)(f—2)}, 1/J{(x—a)(f~=)}, and J{(z—a)/(f—=)} into

integrals of rational functions of cos # and sin 6.
"33 If @ > f, show that the substitution = & ch?u— fsh?u will convert the
integrals of y{(z—a)(@—A)) 1/y{(w—)(@—pA) and J{(@—a)(@—p)} into

integrals of rational functions of ch» and shu.

4.8 Integration of some transcendental functions

This class of functions is very wide; we concentrate mainly on the
circular functions and their hyperbolic analogues, but see 4.85.

4.81 Rational functions of sin x, cos x

(1) T'he integral of any rational function of sin x and cos x can always
be reduced to the iniegral of a rational function of ¢ by the substitution

t = tan jx.

2sinfr cosr 2t
sin?}x +cos®x 142’

For ginz = 2sin §x cos }z =

cos?fx—sin®fx 1-—i?

CO! - 2 —ing — . = ,
8% = cos® j —sin’ jz cos?{x+sinixr 1+i2

tanz — sinz 2
" cosx 1—¢%
dt 2dt
— == 2 = 2 = ——
and g $sec?ixr = {(1+£2), so dx T1E

This substitution is especially useful for integrals of the form

dx
acosz+bsinx+c¢”

Examples

i) fcosec zdz.
Putting ¢ = tan x, we have
dz 148 2di dt

- —=—=1 .
sinx 2t 1412 t og ¢

Hence f cosec xdx = log |tan }x|.
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(i) [seczda.
Since secz = cosec (7 +z), we have by ex. (i) that
secxdx = log |tan (37 + 3x)|.
sin (}7 4+ 32)  cosjx+sin jo
cos (37 +4x) ~ cos}x—sin jx
_(cosizx+siniz)?  1+sinz
T cos?lz—sin®ix  cosz

As tan (37 + §2) =

and since the last expression can be written in the forms

J(l +sinx)
secx + tanz, - ’
1—sginx

the result can also be given as

l+sinz l+sinz
1 1 , 1 — |+
oglsecx+tanz|, log P or 3} og,l—smw
(i) de 2dt [
5+8cosz  J5(1+22)+3(1—t2) J4a+e2

= }tan-1}t = } tan—1(} tanx).

(iv) da _ 2dt _ dt
3+5cosz  J3(1+2)+5(1—2) Ja—-2

1/ 1 1
=fz(2“_—t+th)""

2+t
= Hlog|2+1t| —log|2—¢]} = :log 5;2
2+ tan §z
_ilog,m.

) de _ 2dt [ a
sinz—cosz+1  J2—(1—-)+(1+22) Jet+t
=f(1__1) at
t t+1

2
= —1 t = _—
log |t| —log|t+1]| = log T
tan 3z
lo fandet1 = —log |1+ cot §z|.

(vi) The integral

acosz+bsinz+c
J-A cosz+ Bsinz+C
is first split into two integrals by writing the numerator in the form
A (derivative of denominator) 4+ 4 (denominator) + ».

It then becomes
dx

Acosz+Bsinz+C

Alog|Ad cosz+ Bsinz+OC|+pux+v

and the last integral can be reduced by ¢ = tan 4.
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(2) Although always available, the substitution t = tan }x is sometimes
not the best one.

(@) If the integrand is an odd function of cosx, put w = sinz.

Let the given integral be fR(sinx, cosz)dx. Then R/cosz is an
even function of cosz, and will therefore contain only even powers
of cosz; using cos?z = 1—sin2z, it can be expressed as a rational
function of sin z only, say S(sinz), and

fRdx = fS(sin z)cosxdz = fS(u) du.
Example
(vii) ISinz z cosdzdy = fsinzx cos?x coszdr = fuz(l —u?)du

= $ud—3u®, where wu = cos,
= }sinz— lsindz.

(b) If the integrand is an odd function of sinx, put u = cosz.

Example
(viii) fsmam secbxdx = J’sm*:w
cos " x

=—J‘(l E+i)du, where w =sinz,

ut  ut u?

(1—u?)? du
uG

sinzde = —f

1 2 1

=5 3wty
= }sectx— gsecdz+seca.
(c) If the integrand is an even function of both sinx and cosx, put
u = tanx.
By writing sinz = cosx tanx the integrand becomes a rational
function of cosx and tan x which is even in both; using
cotr— L
1+tan?x

we have a rational function of tan z, say 7'(tan z), and

fRdx = fT(ta,n z)dx = fT(u)%.

Examples

dx sectx 14u?
(=) f sin?x cos?x f tanta f w

=J.(ls+l) du = u—l
u u

= tanx—cot .




154 INTEGRATION [4.82

Alternatively, the integral is
in2 2
de = | (sec?x + cosec®z) dx = tanz —cotz;
sin?x cos?z

or it can be written

4 d_x = 4 | cosec? 2xdx = — 2 cot 2x.
sin? 2z

(x dz _ sec? zdx on dividing top
) alcos?x+bisintz ~ | a®+btanx and bottom by cos?z,

_ du _ lt ” bu
T Jat+b2u2 ab an a

1 b
=—tan-1{-tanz]).
ab a

(xi) _d_x_ can be reduced to the form of ex. (x) by first using
a?+b2sgin?x

cos?x+sin?x = 1 to make the denominator homogeneous in cosx and sinz.
The integral is J- de

a?cos?x 4 (a?+b%)sin%x’

4.82 Circular functions of multiple angles
If the integrand consists of a.sum of terms like
A cos™ax sin™ ax cos™ bz sin® bz ...,

where the indices m,m’, n,n’, ... are positive integers and the multi-
pliers a, b, ... are any numbers, then by the formulae of elementary
trigonometry each such term can be expressed as the sum of a number
of terms of the types

Acos{(pa+qb+...)a}, usin{(pa+gb+...)x};

these can be integrated at once.

Alternatively, if a, b, ... are inlegers, the functions of the multiple
angles can be expanded in powers of cosz and sinz; here m,m/,
n,n’, ... may be positive or negative integers. If a, b, ... are not
integers but rational numbers, and % is the lowest common multiple
of their denominators, the substitution « = ky reduces this case to
the one just mentioned. The integral is thus reducible to the form
already considered in 4.81.

In practice the elementary trigonometrical formulae can be used
for small values of the constants m,m’, ..., a,b, ...; for larger values
the help of de Moivre’s theorem (Ch. 14) becomes necessary (e.g. see
Ex. 14 (b), nos. 6-8), or else a reduction formula is used (see 4.84, and
Ex. 4 (m), nos. 28-30).
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Examples
(i) fsin 22 coszdx = f #(sin 3z +sinz) dz

= —}cos3x—}cosz.
Alternatively, the integral is

J‘2sinx coslzdr = —2fu’du, where wu = cosaz,

= —§ud = —%cos’w.
This example is easy by either method.

(ii) fsinx cos 2z sin 3zdx = f}(sin 3z —sin x) sin 3z dz
1( .
= éf{mn2 3z — §(cos 2z — cos 4x)} dx

1
= Zf{l — cos 6z — cos 2z + cos 4} dx
= Ha— }sin 6z — sin 20+ } sin 4a).
The second method leads to complicated calculations.

(iii) f cos?z sind 2rdx = fcos’ x.8sin®z cosd zdx

= szin’z cosbzdr = -Sf(l—uz)u“du, where u = cosz,

= —$ub+u® = cos®r—$costz.
The first method is much less direct.

4.83 Hyperbolic functions: analogous results
In addition to the standard forms (vi), (vii) and (xiii) of 4.5, we have:

dz dz _ (¥sech®}xdx
shz ™ J2shixchir th iz

§)) f cosech zdx =

=f%z, where 7 = thiz,

= log |th §«|.
) _(dz dx _ ([ sech?ix
(ii) fsechxdx il v —fchz I +sht _Jl +th? ,l.xdx

=fl2—f:§, where 7 = thix,

= 2tan-! (th }x).
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Alternatively,
2dx 2e*dx 2du
— — — — %
fseehxdx_fez+e_z_fegx+l fu2+1’ where u = é%,
= 2tan—1(e”).

It can be shown (see Ex. 4(g), no. 51) that these two results differ
by a constant.

The substitution 7 = th }= (cf. Ex. 4(g), no. 15) will convert the
integral of any rational function of chz and sh z into that of a rational
function of 7; but often the substitutions # = shz,u = chz,oru = thz
are more convenient, as in 4.81 (2).

Expressions involving powers and products of chaz, shbz, ... can
be dealt with by the formulae of Ex. 4 (g), nos. 24, 8.

In general, the procedure for integrating hyperbolic functions is
simlar to that for circular functions. As the results are less useful, we
shall not give further examples.

Exercise 4()
Integrate the following.
1 1 1
. 2 —_— 3 - .
1—-cosz 1+sinx 5—3cosx
1 1 1
4 T T . T T . 6 A )
cosz +s8inx 14cosz+sinz 2cosx+sinx+3
7 sinx —cosx cotz 9 Scosx+7
sinz+cosx’ l4+cotz’ 2cosz+sinz+3°
*10 L sy ZEERZ
J{(1 +sinz) (24 sinx)} 1+cosx
1
12 sin®x cos®z. 13 sin®x cos?z. 14 -
sintx cos?zx
15 cos®x cosec?z. 16 tan3z. 17 cosec3z.
2 .
18 222 19 SRELST 20 sin 4z cos 6.
1+sin?2 sin?x —cos?x
21 sinz sin 3z sin 4. 22 cos?x sin 5. 23 cosdx sin? 2z.

*24 Find constants R, a for which acosz +bsinz = Rcos(z—a). Hence give
a method for integrating 1/(acosz +bsinz + ¢). Apply this method to nos. 4, 5
above.

*25 (i) If a+b > 0, show that

dzx 3 2 _ a— )
fa+bcosx s mtml=J(m)tm§x} if a>b,
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if a<b.

and is 1 lo b+acosz+./(b®—a?)sinz
J(b2—a?) g a+bcosz
(ii) If a +b < 0, a change of sign of the whole integral will lead to (i).
(iii) If @ +b = 0, what is the value of the integral?

dz
acostz+bcosz sing+csinfe”

*26 Calculate f

*27 Use integration by parts to calculate

xcos zsinz
(a®costx + b2sin?x)?

*28 (i) If m + n, prove that

1 . .
J.cosmx cosnxder = ——— (msinma cosnx—n cosmx sinnzx),
n

me—

fsinmwsinnzd:v: 5 (nsinmx cos nx —m cos mx sinnzx),
m2—n

fsinmwcosnmdz:-— 3 (M cosma cos nz +n sin ma sin nx).
mi—n

(ii) What are the values of these integrals when m = n?
*29 Ifm and n are integers, prove that

2n
(i) f sin ma cos nxdr = 0;
¢

2 2n
(i) f cosmx cosnxdr and f sin ma sin nedx
0 0

are zero if m £ n, and 7 if m = n.
*30 Ifm, n are integers, prove that

T

n
(i) f cosmx cosnxdr and f sin me sin nzdx
0 0

are zero unless m = n, when each is 37;
m
(ii) sin ma cos nxdx
0

is 2m/(m?* —n?) or zero according as m —n is odd or even. |
*31 If

Sf(x) = }ay+a, cosz + b, sinx +a, cos 2z + bysin 22 + ... +a,, cos nx + b, sin nx,

and k is a positive integer not exceeding n, prove that
2n 27 27
f f(z) dx = ma,, f cos kxf(x) dx = nay, f sin kx f(z) de = 7b,.
0 0 0

If & > n, show that the last two integrals are zero.
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4.84 |sin™ x cos" xdx by reduction formula

(1) This integral is an important case of 4.82. It can be treated as
described there, using de Moivre’s theorem when m, n are not small;
or by using the substitutions given in 4.81; or by a reduction formula.
As the last method can be used to simplify the integral even when
m, n are not integers, we consider it here.

First we suppose m+n + 0. Write

Uy = fsmmx cos™ zdx.

. 1 .
As sin™x cos xdx = sin®™ly  (m £ —1),
m+1
we can write % = cos® 1z, o' =sin™x cosz,
so that %' =—(n—1)cos"2xsinz, v= I sin™+lg,
and integrate by parts:

sin™tl g, (n—1) cos® 2z sin xdx

1 1
= n—1p ginm+1
U, m joost iz sinmHy +f i

. n-—1
cos® 1y sin™Hl x4

in™+2g cos"2xdx i
ml m+1 fs vox, @

provided m # — 1. The last integral is
J‘sin"‘ 2(1 —cos?z) cos"2xdx = f sin™x cos™2xdx — fsin’" x cos™ xdx

Ui, ne

'm,n—2 "

Putting thisin (i) and solving for u,, ,,, we find that, provided m + —1:

1 n—
= -1 inm+1
U, = +ncos" xsin™1lg 4 n

Similarly, taking

U, n—2¢ (ii)

% = sin™1g, v’ = cos®x sinz,

1
! = (m—1)sin™2 = — cos™tly (n =+ —1),
%' = (m—1)sin™2xcosx, v poarey| (n£-1)

we have, provided that n» + —1:

inm—1 n+1 +m_l
U, = s~ x cos x
mmn n+1 n+1

'”'m-—z, n+2 (l]l)
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and 1 . m—1
Uy, = ———8IN" 1 cog” 1z +
’ m+n m+n

Upm—2,n (iv)

If both m, n are positive, repeated applications of (ii), (iv) will
reduce the indices of cos z, sinx by 2, respectively.

If m > 0, n < 0, then (iii) numerically reduces both indices by 2.

If m < 0, n > 0, then (i) numerically reduces both indices by 2.

If m < 0, then m —2 is numerically greater than m and the integral on the
right of (iv) involves a higher power of sinz than w,, , does. In this case the
formula can be reversed by putting m + 2 instead of m in (iv), and then solving
for u,, , which now appears on the right. We obtain (if m & —1,n % —1):

m+n+2

i sin™+l x cogntlx 4- Tl U ig, ne (v)

um,\n =

Similarly, if n < 0, we obtain from (ii), if » = ~1, m % ~1:

. m+n+2
Uiy = nrl sin™+l x cos"tl x4 wEl U, ntge

(vi)

If m <0 and » < 0, then (v), (vi) numerically reduce the powers of sinz,
cos z, respectively, by 2.

When m and n are integers (positive or negative), the integral is reduced
eventually to one in which the indices of sinz and cosx are —1, 0, or 1; this
is easily calculated.

The preceding discussion includes the cases
Uy 0 = fsin’”a:dx, Ug,p = J‘cos"L zdz.
Secondly, suppose m +n = 0. If m > 0 the integral is

Vpy = fta,n"' zdx = J.taa,n"‘—2 z(sec?x—1)dx
= ftan"“z z sec?xdr —v,,_5

=%}_—1—ta,nm_1x—'vm_2 if m=’= 1.
This is the required reduction formula.
If m < 0, then » > 0; the integral is f cot"xzdx, and we obtain a
formula similarly (n <+ 1).

(2) Alternative method for getting the reduction formulae.

To obtain quickly the formula relating u,, ,, to any specified one
of the six integra.ls um,n—z’ um—z,m um,n+2’ um+2,n’ um—2,n+2’ um+2,n-—2’
we begin by deriving sin? x cos?x, where p—1 is the smaller of the
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two indices of sinx and ¢ — 1 is the smaller of the two indices of cosz.
For d
p (sin® x cos?x) = psin?~1x cos?tlx —gsin?H x cos?1x;

and after expressing the right-ha.nd side in terms of the required
powers of sinz and cosz, the formula is obtained by integrating the
result.

Example

Find the formula relating ,y, » t0 Uy, ns.
The index of sinx in both is m, so p = m+ 1. The smaller of the indices of
coszisn—2,80¢g=n-—1.
i (sin™+1g cos™~1zx)
dx
= cos® 1z.(m+ 1)sinmxcosx —sin™Hlz. (n—1)cos"2xsinx
= (m+1)sin™x cos®z — (n— 1) cos® 2z sin™x(1 — cos?x)
= (m+n)sin™x cos™x — (n— 1) cos"~2x gin™ x.
Integrating, SNz co8" 1T = (4 1) Upy g — (M= 1) Upy p_g»

which gives u,, , in terms of u,, y_j.

37
(3) The definite integral f sin™x cos™xdx (m, n positive infegers
0

or zero.)
By formula (ii),

U,

)

e d
n= J sin™ z cos" xdx
0

1 . v p-1 (¥
= I: cos® 1z ginmt+l x:l + f sin™ x cos® 2 xdx
m+n 0o mtnjy

n—1
m_l_num,'n—z

if n>1. (vii)

Similarly, formula (iv) would give

m—1 .
Uy = oy Ymt,ma if m>1. (viii)
In particular, if m = 0 we have
37 —1 (i .
J. coszdr = 2| cosn2xda (n > 1); (ix)
0 n Jo
and if » = 0,
m—1 (=

f%"sinmxdx =——| sin™2dx (m > 1). (x)
0 m Jo
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By means of these relations the indices m, n can be reduced to 0
or 1; the final integral is one of the following:

17 .
m,n both odd: wu,, = J.O sinz coszdx = [}sin?2]}" = §;
7
m odd, n even: wu, ,= f sinzdx = 1;
0
in
m even, n odd: wuy, = f coszdx = 1;
0

L4
m,n both even: u,,= | dx= }n.
0

If there is an odd index, the working is shortened by selecting this
(say n) for successive reduction: the integral becomes a multiple of

t7 1
f sin™z cosxdx = [ !
0 m+1

in
sintlg | =——
]o m -+ 1 ’
which gives the result without further formulae.
Also, it is enough to remember the single reduction formula (vii);
it includes (ix), and also (viii) and (x) because Uy, p = U, FOT,
putting x = {7 —y,

i 0 .
Uy, =f sin™z cos" xdx = L cos™y sin® y( —dy)
0 T
i :
=| sin®y cos™ydy = u,,,,.
0
Examples

in
(i) f sintzx cos” xdx.
0
Selecting the odd index 7 for reduction, we have
Ug7 = s = T5-8%s = 155 3%,

6.4.2 [ir 6.4.2
= int = —_— in® )i
11.9'710 sintz cosxdx 11'9'7[%31!1 x]3

_ 6.4.2 16
T 11.9.7.5 1155

i
(i) fo Sint e coSSode = 1y g = ity = 5B = 5.8t 00

and Ugo = JUg o= 2. Jugo=£.4.3m.
v o 531317 3n
“®710.8.6.4.2°2 512"

II GPMI
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(iii) f sindx cos?xdx = j sindz cos?zdx + f sind z cos? xdx.

0 : 0

T

The substitution = 7 —y in the last integral reduces it to

0 i
f 8in3y cos?y( —dy) = J. gin®y cos? ydy.
in 0

Therefore the given integral is

2.1 4

37
2f0 sin3z cos?zxdx = 25.3 T

By proceeding in this way for the general case, we deduce the fol-
lowing rule.

0
write down the expression

(m—1)(m—3)...(n—1)(n—3)...
(m+n)(m+n—2)...

47 .
To evaluatef sin™x cos™ xdx where m, n are positive integers or zero,

’

where all three sequences of factors decrease by 2 until either 1 or 2 is
reached ; if m, n are both even, multiply the expression by }m (zero counts
as an even number).
1
(iv) f 22?(1 — 2?)?dzx, where p, q are positive integers.
0
Putting = = sin 0, where 0 < 6 < i, the integral becomes

in b
J‘ §in2? @ cos??f.cos 0dl = f 8in®? @ cos?+10dl
0 0

_ 2p(2p—2)...2.(29+1)(2¢—1)... 1
T (2p+29+1)(2p+2¢-1)...1

4.85 Integrals involving other transcendental functions
Integrals of the types

fmm(sin—l z)"dz, f x™(cosx)"dx, fw"‘(tan—l z)"dx

can be cleared of inverse functions by a substitution. For example,
putting y = sin~lz in the first gives f y"sin™y cosydy; and since
sin™y cos y can be expressed in terms of multiple angles, this integral
becomes a sum of integrals like 4 J y"sinaydy, B f y™ cos by dy, each
of which can be found by a reduction formula (see 4.24, example).
However, direct integration by parts is often successful: see 4.23 (2).
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Ex. 4 (m) includes some integrals of other transcendental functions
which can be calculated by a reduction formula. The results of
Ex. 4 (e), nos. 28, 29 are useful in applications.

Exercise 4(m)
Calculate the integrals of the following by using a reduction formula.
1 cosbz. 2 gin®z. 3 sin®z costzx.
4 sin®zx cos®zx. 5 sectz. 6 sin‘z sec’zx.
Evaluate the following integrals.
in 7 n
7 f cosb zdzx. 8 J. sin®zdz. 9 f cost dadzx.
0 0 0

in L4 n
10 f sin‘x coszdx. 11 I (1+cosz)8dzx. 12 f sin®2(1 — cos x)* dx.
0 0 0

1 1
13 f 28 /(1 —2?) dz. 14 J. ® \/(x —2?) dz.
0 0
a
15 f z™(a — )" dx, where m and n are positive integers or zero.
0

2n i n
16 f sin® xdx. 17 f gind x cosd xdzx. 18 j sin?z cosdxdx.
0 0 0

19 Ifc, = [cos*zdz and s, = [sin"zda, prove that
ne, = sinz cos"x+(n—1)c,_, and ns, = (n—1)8,_4—cosz sin"1z.
Obtain reduction formulae for the following integrals. (Some of these examples
have already been given.)
20 [a"es*dw. (Ex. 4(e), no. 21.) 21 fehrzde.

22 [shrzdaz. 23 [z"sinazdx. (Ex.4(c), no. 12.)
24 [z"chazdz. (Ex.4(k), no.36.) 25 fa"shawde.
26 [es=sin” brdz. 27 [zm(logz)"dx. (Ex.4(d), no. 45.)

28 Ifu,, , = [cos™z sin nzdz, prove that

(M +1) Upy y = Ml 4, —COS™ 2z COS N,
i
and calculate f cos?z sin 4z dz.
0

29 Assuming m* % n?, obtain a formula relating t,, , = [sin™z sin nzde with
U3, n- Hence prove that

m in
(m’—n”)f sin™z sin nxdx = m(m— l)f sin™~2gz sin nxdz,
0 0

$r
and calculate f sint 2 sin 5z dr.
0
30 Prove that

n —

2
fcosm:secwdx: lsin(n-—1)x—fcos(n-2)wsecxdx,

11-2
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and calculate 7 gin 8z sinx ”
o  cosx )
z™dx
31 If Uy, ,, = m ’
xm—l
prove that 2(n - ].) u,,,' n= (m —_ 1) um_,, n-1"" W .
1
*32 If Uy, g = f z™(1 —x)"dz,
0
where m and n are positive integers, prove that
(i) : Um,n = Un,m [put y = 1—x];
. "
(it) U = ] Ym

[integrate by parts, and use z™t}(1 —z)*! = 2™(1 — )" —a™(1 —2)"].

m!n!
(lll) Deduce that Um,n = m!.
"
33 Prove f zsintz costrdr = f5n?. [Put y = m—2.]
0
m m
34 Prove f zf(sinx)dx = «}ﬂf f(sin ) de.
0 0

*35 Write down the derivative of 2" e%® cos bx and of x"e®®sin bx. Putting
Cp = f zre**cosbxdx, s,= fx” e%*gin bx dz,
deduce that (for n > 0),
ac,—bs,+mnc,_, = z"e**cosbx, as,+bc,+ns, ; = x"e*sinbx.

Prove also that
acy—bsy = e**cosbx, as,+bc, = e**sin bz.

[See Ex. 4(e), nos. 28, 29.] (The pair of reduction formulae will determine ¢,
and s, when n is a positive integer. Also see 14.66, ex. (iii).)

4.9 Generalised integrals

4.91 The problem

In our definition of a definite integral (4.15) we required the
integrand to be continuous, and we implied that the range of integra-
tion was finite. Expressions like the following are at present undefined:

+1da 1 dx ®© dz

-1 a2’ OJ(I—xZ)’ 0 1+x2'
For, the integrand of the first is discontinuous at the value z = 0
within the range of integration; that in the second is discontinuous
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at the upper end x = 1; and in the third the range of integration is
infinite.

We now consider how a meaning may be assigned to such integrals,
which are called improper, infinite, or generalised integrals.

4.92 Infinite range (‘integrals of the first kind®)
(@) Suppose that f(x) is continuous for all > a, and suppose that

X
ff(x)dx»l when X - oo,

Then we define fw Jf(x)dx to be I; i.e.‘
a

f ® fe)de = tim | f(@)de
a X->oJa

provided this limit exists. If the limit does not exist, the infinite
integral is not defined.
(6) Similarly, if f(x) is continuous for all < b, we define

fb f(@)dx = lim bf(x)dx
—c0 —>—004J X

X
provided this limit exists.
(¢) Finally, if f(x) is continuous for all z and if

[r0w [* tea
both exist for some fixed a, then we define f N f(x)dx by

-] a o0
f flx)dz =f f(x) dx+f f(z)dx.
. — — a
This definition gives a result independent of a; for we have

b X X
j f(o) dat f fo)da = f f(w)da,
a a
and by letting X -» oo we obtain

b o ) ’
[ e+ (" oras = [ECLE |
a b a

similarly fbf(x) dx+fa f(x)dz =jb J(z) dz.
a - —a0

Hence

[ oo [ = [ rwass [* reraes [ raro [ serae

= ¢ f(m)dx+fwf(x)dx.
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Examples

(i) If a > 0, then 1/«3 is continuous for all z > a, and
1

f '“d”‘[ w] = 555

95—‘; when X - o0.

«©
Hence f ot dzx exists and has the value (a > 0).

a

(ii) If @ > 0, then 1/z is continuous for all > a, and

X1
f —dz = [logz]¥ = log X —loga
a
-0 when X - o0.

©]
Hence f —dx does not extst.
a

b.¢
(iii) f cosadz = [sinx]¥ = sin X, When X — oo, sin X oscillates between
0

-]
+1. Hence f cos zdx does not exist.
0

. X dz (X1 1 B
) L x<x+1>’f1 (;‘m)d’”"[bg”‘bg(“l)lf (@)

z )X X
—[IOgm—-l-l ) _logX+1—log}
—logl—log} =log2 when X — oo.
®  dx
Hence fl m—) = log 2.

Had we evaluated the integral at stage (a) as log X —log(X +1)+log2,
it would have been necessary to combine the terms containing X into
log {X /(X + 1)} before letting X — oo, because neither log X nor log (X + 1) tends
to a limit separately.

X do 1 21X 1 X 1
(v) —— =] -tan"1- | =-tanl— »>-.-
o a*+at a ale a a a?2

when X - o0, if @ > 0. Hence

0
Similarly f
X

0
and hence f .—E_ = l
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Therefore if a > 0,

® dz T T w
f ——— exists and is —-+—=—a-.

_wan+x2 2a 2a
X X
(vi) f xe"dx:[—we—“]ox+f e*dx
0 0
=—XeXt[—e2)X
=—~XeX—eXt1.

Q
When X — 0, e~X - 0 and X e—X >0 (4.43 (6)). Hencef ze*dxexistsandis 1.
0 ,

4.93 Discontinuous integrand (‘integrals of the second kind’)

(@) Suppose f(z) is continuous for @ < < b, but that f(x) - oo or
f@)> —co whenz —b—. If

b—h
f@)dz—>1 when h—> 0+,
a

1]
we define f (&) dx to be 1, i.e.
a

b b—h
f f@)de = lim f fx)dz
a h—>0+ Ja

provided this limit exists. Otherwise, the generalised integral does
not exist.
(b) Similarly, if f(x) is continuous for @ < 2 < b and if

lim ’ f(x)dz

h—> 0+ Ja+h
b
exists, we define f f(z)dz to be this limit.
a
(¢) If f(z) is continuous for a < = < b, and if for some c satisfying

b
a <c<b the integrals f cf(x) dz, f Sf(x)dx both exist, we define

c

Jb f(z)dx to mean fcf(x) dz+ f bf(x) dz. Asin 4.92 (¢), it can be shown

that this definition is independent of c.
(d) If f(x) is discontinuous for a value x = ¢ within the range

b
a < z < b, we define J f(x)dx to mean
a

[1era0+ [ 1010

provided that each of these integrals exists.
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(¢) Finally, if f(x) is discontinuous for a finite number of values of z
in the range of integration, this range can be divided into adjacent
intervals for which f(z) is discontinuous at only one of the ends, as

b
in (d). Then f f(x)dx is defined to be the sum of the integrals over
each part, provided that all these exist.

Examples
(M) f::/%dx=[24x]h=2-24h+2 when h —>0+.
1]

Hence f — dz exists and has the value 2.

oNT

L2 1 12k 11 nen o0
(ll) fo mdﬂ')—[—m 0 —z—é—)w winen - 04.

2 1 .
Hence j 5 m dx does not exist.

3
(iii) J. ] (ml % dz. The integrand isnot defined when z = 2, which lies within
1 —

the range of integration. To find whether the integral exists we must consider

the integrals ? e 5 de
fl Y=-2) Jz Ya—2)
PR _d8_ ap2)¥p-r=—ght+3 >3 when h->0+
1 Y(=-2) t
and f3 L:[g(x—mi]s =3—3ht >34 when R —>0+.
24nd(@—2) B
Hence f :y(:sz—) exists and has the value § +§ = 3.

0
(iv) '[ El-gdx. We may consider separately the integrals
0 :

lde @ da
fow—" 12

1 1
Now fﬂf=|:—-—{:| =1—1—>oo as h—>0+,
na? z|p b

1da © da .
so that f — does not exist. Hence f - does not; exist.
0 2 0 &

+1 0 dr (ldz
) ‘-i—z: We consider the integrals f —, j —.
-1 Z -1 Z 0

—h
J‘ do = [log |#|]=* = log A,
-1 Z




4.94] INTEGRATION 169

and

1dy ,
fh'-; = [log |z|]}. = —logh’.

+14,
Thus neither integral exists separately, and so by (d) f d= does not exist.
However, -1®

~hdr (ldx , h
J.-l ?+ h'—m— = logh—logh’ = log’7,

and if a special relation is assumed between %, 1/, this expression may tend to a
limit when b and A’ — 0+ ; e.g. if A = kh’ (k being a positive constant), the
result is log k. In particular, by taking 4 = 2’ we obtain log 1 = 0; Cauchy called

1 1 1
this the principal value of f @, written Pf i—f . For f i—f, thereader can
-1 -1 -1

1 dg
verify that P f oy does not exist.
-1

4
(vi) An integral like J' is still meaningless because there is an

dx
—5y/(x*—9)
tniervol of values of z in the range of integration for which the integrand is not
defined.

4.94 The relation f ®Fx) dx = B(b) — Pla)

(1) Application to generalised integrals.

When we defined the definite integral by this relation in 4.15, we
assumed that (i) f(x) is continuous and (ii) ¢'(z) = f(z) for all z satis-
fying a < x < b. If these conditions are not satisfied, the relation cannot
be used without investigation.

1
Thus f ;LZ, which by 4.93, ex. (iv) does not exist, would be
-1
‘evaluated’ as [—1/z]; = 2 by an incautious application. On the
other hand, the relation gives
3 dx
1d(z~2)

which is correct by 4.93, ex. (iii); this is because ¢(x) is continuous
at z = 2.

=Be-24 =3-(- =3,

If conditions (i), (ii) hold for a < < b EXCEPT at 2 = ¢ (a < ¢ < b), and if
() is continuous for a < x < b, the relation is valid.

Proof. First supposing b is the exceptional value of z, we have by definition
(4.93 (a)),

b
f fle)de = lim {$(b—h)—B(a)} = $(b)— (a)
a h—0+

by continuity of ¢(z) at z = b. Similt;rly, the result follows if a is the exception.
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If a < ¢ < b, then by definition (4.93 (d)),

b c b
f ) de = f 1) dov+ f 1) do
a a [
= lim {Plo—R)—g(@)+ lim {B(b)—plo-+)}
B0+ W0+

= {$(c) — $(a)} +{¢(b) — $(c)}
= ¢(b) — ¢(a).

(2) Definite integrals found by a special method.

Although most of the definite integrals in this chapter have been
obtained directly from the definition in terms of the indefinite
integral ¢(x), yet we have given examples where the definite integral
has been found independently: Ex. 4 (b), nos. 31, 33, 34 and Ex. 4 (m),
nos. 33, 34 depend essentially on the relation

f:f(x) dx = f:f(a —xz)dz,

7
proved by a substitution;f sin™x cos™ xdx (m, n positive integers)
0

was found in 4.84 (3) by reduction; also see Ex. 4 (m), no. 32, Ex. 4 (n),
nos. 26, 27 and Ex. 4 (0), nos. 79, 80.

Calculation of the definite integral may clearly be possible without
knowing ¢(x) explicitly in terms of z, because by some device it
may be easy to find the difference ¢(b)— P(a) between two particular
values of ¢(x).

4.95 Integration by parts and by substitution

In suitable circumstances the formulae of 4.22 and 4.25 can be
extended to generalised integrals. At this stage it is best to treat each
example from first principles: an illustration of integration by parts
occurred in 4.92, ex. (vi), and the following will illustrate substitution.

Example
Find
b dx . . _ .
fa m by using the substitution x = a4 (b—a)?, ¢t > 0.
When « increases from a to b, ¢ increases from 0 to 1. Since the integrand is

discontinuous at both ends of the range of integration, we consider (see 4.93 (c))
the transform of each of the integrals

J‘c da fb d
aNi@—a)(b—2)}" Jc J{(@—a)(b—x)}’
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where a < ¢ < b. Now

f” dz _ftx 2b—aytds  _ (b i
atnilz=a)(b—x)} ~ Jy, G—a)ef(I-18) ~ "), J1-23)’

pm k) )

80 the integral is
2[sin-1¢] = 28in~14, —28in~1¢; - 28in~1¢,

when A —» 0+, since then ¢, — 0 also. Hence

dw .
fam= 2sin~tt,.
Similarly,
b—h dx ty dt . .
. T, Jace = e e

where t,=J(b;a;h).

When & - 0+, the expression tends to
2g8in—11—2sin"1¢, = 71— 2sin-14,,

since 3 - 1. Therefore

= m—2sin~1¢,.

f ¢ Vil@—a) (b—=)}
Consequently the given integral has the value .

Exercise 4(n)
Discuss the following improper integrals, and evaluate each that exists.
© dg © da © dx ©
1 fl o 2 L T 3 o Ptd 4 fo zrsinx
0 © 0 © g2y
—2 T
SJ e~*dx, 6 e & 7 J._wa:e dex. 8 f o g
0 1da da:
f sech zdz. 1of 28T . uf 12
e® 0&7’“’ 0o’
2 dx e
—_ log zdx.
1 f 145 fJ(l e LN t6 [ atogs
irgecly 1 1
- ] = ———
17 fo Jsmwdx' 18 Ifn> -1, provefow logxdx mrip
19 Provefw B _ T ita,bhave like si
0 Al ibigt T 2qp | 7 VKO SIES.
© dx g .
20 Provefo @ ra) @) 2ab(a+b)lfab>0’ and find

© x?dx
fo (=2 +a?) (22 + 8%
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in
21 Prove f ‘mc%-—m b if ab > 0. What is the value if a, b
()}

have opposite signs?

- if a>b>0. Ex. 4(I), no. 25.
oa+tbcosz  J(a®—b?) a>b> [Use Ex. 4(l), no ]

What happens if b = a > 0?

a
*22 Prove f dz il

o dr 1 b+4/(b2—a?)
*23 P = 1 i .
23 1'ovef0 atbooss ~ JFi—a) og{ " }1fb>a>0
© a © b
24 Ifa > 0, prove e~ cosbrdr = —F— and e~**ginbxrdr = ——.
0 a?+-b? 0 a®+b?

[See Ex. 4 (e), nos. 28, 29.]
25 If —m <a <mand a * 0, prove

@ dx o 1 dx _ @
0 22+ 2zcosa+1  Joa?+2xcosa+l sina’

If o = 0, verify that the value of each expression is 1 (which is the limit of
afsina when o — 0).

]
*26 If u, = z"e~**dx and a > 0, prove u, = (n/a)u,,. If nis a positive

0
integer, deduce that u, = n!/an+l.

1
*27 If uy = | 2" *(logz)™da where m, n are positive integers, prove that
U, n = — (M[N) Upy_y n. Deduce that u, ,=(—1)"n!/nm. [See Ex. 4(d),
no. 45.]
1 b dx 1 dz
B titi = -, - = - .
28 By puttingy provef 2%+ 2xcosa+1 fo x4 2xcosa+1

29 Calculatef by putting z = ¢ (¢ > 0).

1 (1+ )«/

[ ¢]
30 Prove f dz

1 z;;‘rsm;:“lﬁ%"- [Putz—1=1,¢>0.]

—_ - 12 3
31 Showf (1+w)3 3+ }7. [Put 2 = ¢2, then integrate by parts.]

32 Calculatef = ande 1f m is a positive integer. [Put x = sin§, 0 < 0 < }n.]
0
m
33 Calculate f . (—Iﬁﬂ% if n and 2n—m—2 are positive integers. [Put
z=tan0, 0 <0 < {mn.]
34 P fb do b tti 20 +bsin2d. (Cf
Tove —————= =7 by putting & =acos*0+081n*0. .
oVl —a) b=} puthing
4.95, ex.)

b xdx
35 Find —_—_— .,
" L«/{(x—a)(b—x)}
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Miscellaneous Exercise 4(0)

For general practice in integration, the reader may try a random selection from
nos. 1-60 following.

223 47 f‘* a2 dx 3 a?—Bx+9
(2z+1) (x242) 2 @—1)(z+2)" (z—1)%(x2+4)
1 zdx 1 xtdy © 2342
Y [ — ==, — 2
e [iazem $ [ swin®
7 dx 8 a?dx 9 dz
x3—1" b2 —2° (224 1) (x+2+ 1)
dx dx dx
1 —_ _— —
0 J‘(ﬁ—x‘ 1 fx(l+x+w’+x3) 12 fﬁ—m—4x3~x3
5Tz 2 dx
13 J.2w3—x2—2x+ldx' 14 fl x(1+x8)"
1422 1 zdx dx
*15 | —— da. 16 —_— 17 | —mmmm—.
fl+x‘ Jlo 144z fJ(x+a)-J(z-—a)

-

¥z +1) a+x . a? —x?
B @™ '9f~/( ) 20! ~/(a2+x2)

21 fa“/(“z_”z’dx a® < b, 22 fA/(w)dx
0 b2 T
27 dx (x2—1)dz
» fw(uw*)' "2 f%’(l—xs)' e Pt
- J(l—2?) . cot—lzdx
26 J.(as—z’) tdz. 27 fTsm lede. 28 fm.

15 dx dz 4 zdx
» J.s (z=3)J(x+1)" 30 jmJ(1+2w—w2)' 31 L V(6 —8—22)’

1 dx © dx 1
- - 3 ,a2t
32 J‘* P —dmt 1) 33 J.o T ED) 34 fox e* dzx.

2 L
35 f °°zz ® da. 36 f e~*sin 3zda. 37 fx’log(l+x*)dx.
0
in ir
38 f z~1log (log z) dz. 39 f JJtanzdx. 40 f sec? zdzx.
0 0
i
41 fsinx cos x cos 2z dzx. 42 f cot zdzx.
. in

in
43 (i) f sinz log (sinz)dz; *(ii) f sin z log (sin z) dz.
A 0

in
44‘[ sinz (1l —¢?sin2x)dz, 0 <c? < 1.
0

1 7 dx
s o3 - =
45 L sin~? (y) da. 46 fo 3+5cosz’
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. d:

47 f——”—
sinz—cosz
+im

49f ____.fx.__.
—3n 8+ Tcosz+sinz

J’*" sina sinzdx

51 [
o l—sin?asin?z

3w
53 f sint 2 cos® zdx.

0
log 2

55 f _dx___
o shzx+b6cha

57 f’}" sindxdx ’
o l+acosz

2a
59 f z4/(20x —2?) dx.
0

a>-—1.

61 Calculate J'logxdx, and deduce

48 j—"’””—
l—sinz+coszx

4 dx
0 =
© [ iy
7 14+ 2cos2
fo (2+cosz):

0<a<hb.

in
*54 f cost 2¢ sin pdg.
0
in
56 f sectzdx.
0
in
58 f tan’ xdx.
0

a
60 f xda—z)tda.
0

fsinBlog(l—ecosﬁ)dG = (el—cosﬁ) log (gl-cosﬁ) .

62 If atand = btan @, prove that

(a?sin?  + b2 cos? 0) (a? cos? ¢ + b2sin? @) = a?b?

and dB/(a?sin2 0 + b2 cos?f) = dd/ab.

Deduce that ifa > 0,5 > 0,

_ a2+bt

2n do
fo (a®sin30+b2cos?0): ~  a®h? 4

63 Prove

+1  ginade _
-1 1—2zcosa+z?

dm, —34m or 0

according as 2nT < a < (2n+1)m, (2n—1)7 < & < 2n7w, or a = nm, where n

denotes any integer.

64 If ¢ and b are positive, provef

7 (a—bcos8)dl
at+b2—2abcosf

1r T
=—, 0, — di
2 3, Becording

. . 1 a?—b?
asa>b,a<b,a=b. [Wnte the integrand as % (l+a2+b“‘-2ab cos0) :I

65 Ifu, = [a"+}/(2a—x)dz where n is a positive integer, prove

(n+2)u,—(2n+1)au,_, +2" 20z —22)t = 0.

2 2a
Hence prove f am’ J(2az —z?) dx = §mat, and calculate f z2 \J(2ax — 22) dz.
0 0

in
66 If I(m,n) = J‘ cos™ @ cosnfdl, prove
0

(m2—n2) I(m,n) = m(m~1) I(m—2,n),

and calculate I(4, 5).




INTEGRATION 175
in 3
67 If I(m,n) = J‘ sin™x cos nedx and J(m,n) = f sin™ z sin nzdz, prove
0 0

(m+n) I(m,n) = sin nr—mJ(m—1,n—1),
and when m > 2 express I(m,n) in terms of I(m—2,n—2).
_2cos(n-— 1)6
n-—1
17 cos 50 sin 8
0 cos @

68 Prove fsinne sec0df = —J.sin (n—2) 6 sec6d0,

and hence evaluate

1
69 Ifu, = f 2?(1 — x%)" dx where n, p, q are positive, prove that
0
(rg+p+1)u, = ngu,_,.
Evaluate u,, when 7 is a positive integer.

70 Obtain a reduction formula to express [(z*+a?)i"dz in terms of

J.(xa +a?)ir-1dy. Prove fa (z*+a?)dx = 3a%{74/2+ 3log (1 +4/2)}.
0

in 1
*1 Ifu, = f tan” xdx, prove w, +u,_g = el and express u,, as & function
of n when £ is a positive integer.
*72 Writing n!y, = [(z—a)"sinzdz, prove that if n > 1,
_ (x_a)n—l .
yu+yn—t - (n_ 1)! smz

If n is & positive integer, prove

_(e—a)"

cos .

f:(x_a)hsmxdx =(= 1)""(2n)!{cosa- 1+%:—Z4:+... +(- 1)'--1(;’;;!}.

73 Ifc= _fchax cosbzdx, 8 = _[shaw sin bz dx, calculate ¢ and s in terms of z.
74 Calculate [chax sinbrdz, J' sh az cosbzdz.

75 If fi(z) = f :f(t) dr, fy(@) = j :fl(t) Q& .. fol@) = f : Faa(t)dt, prove that
(n—1)!fo(a) = f @) -t
[Integrate repeatedly by parts. The result expresses repeated integrations as
& singlo integral.
76 Prove f :a Fa) de = 'f :{ #(2a— %) +f(2)} dz. Deduce that
() iff(2a—2) = —f(x), then j :af(x)dx =0;

(ii) iff(2a—=x) = f(x), then f‘zaf(w)dx = 2faf(w)dx;
0 0

(iiiy f:f(sinx)dx = 2jhf(sinx)dm;
0
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4 in
(iv) f Jf(cosz)dx = 0 or 2f f(cosz)dx according as f(f) is an odd or even
0 0

funetion of z.
37 i
77 Prove f f(sin 2z) sinzdz = /2 f f(cos 2z) cos xdx.
0 0
78 Iff(a+z) = f(z) for all z, and n is a positive integer, prove
na a
f f(z)dze = nf J(z) dz.
0 0

: nr
Simplify f(cos?zx)dx.
0

i
79 (i) By putting 0 = {7 —¢, provef log (1 +tan6)dd = }mwlog2.
0

1log(l+x)dm
0o 1422

7 i
80 Prove f log (1 +om x) dx = 0.
0 1+cosz

(ii) Calculate
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5

DIFFERENTIAL EQUATIONS

5.1 Construction of differential equations

5.11 Elimination of parameters from a function

If y is a function of z, an equation involving at least one of the deri-
vatives dy/dx, d%y[dx?, ..., and possibly also z, y, is called a differential
equation for y. Before considering how to solve or integrate such an
equation (i.e. to find y explicitly or implicitly as a function of z), we
give some further examples (cf. 3.53, ex. (i)) of differential equations
which arise from the process of eliminating parameters from a func-
tion. The results will be helpful when we turn to the problem of solving
a given differential equation, because they may suggest what sort of
solution to expect; see also Ex. 5 (a).

Examples
(i) Eliminate a from y? = 4ax.

To eliminate one unknown we must have two equations. The second one is
obtained by deriving the given equation wo z:

2y’ = 4a. vl

Eliminating a, we have
2xyy’ = daw = y?, y

ie. 2xy’ = y. a1

£} |

Geometrically, the given equation represents
a parabola having Oz for axis of symmetry and
Oy for tangent at the vertex (16.11). The
differential equation, which is independent of a,
thus expresses a geometrical property common
to all such parabolas. Since ¥’ = tan ¥, we have Fig. 54
NT = ycotff = y/y’ = 2z = 20N ; the property is
‘the subtangent = twice the abscissa’ (see 5.71).

(ii) Eliminate A, o from x = A cos (nt +a).

To eliminate two constants we require three equations; hence, deriving
twice wo ¢,

&4 . d*z
7 = — Ansin (nt +a), 73 = — An?cos (nE+a).

12 GPMI
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From the last equation and the given one,
dx
EtT = —nx.
(iii) Eliminate n from the result of ex. (ii).
Deriving again wo ¢,

Px . dx
e de”
d3x [dx d?x
Hence -‘E/a=—n2=a—2— z,
. d*z  dedix
Yas Tt de”

Practice in forming differential equations satisfied by given functions has
already been offered in Ex. 3(b), nos. 7-10, and Ex. 3(e), nos. 19, 20, 23-25.
A few further typical exercises on elimination follow; the reader should do all
of nos. 1-10.

Exercise 5(a)

1 Ify = alogz, eliminate a.
2 If 22+ y? = a?, prove dy/dxz = —2/y, and interpret geometrically.
3 If y = Acosnx+ Bsinnz, prove diy/dx® = —nly.
4 Eliminate A and B from y = A chpz + Bsh pz.
5 Ify = ax+a? provey = zy’ +y'%
6 Eliminate ¢ from y° = 3cx 4 ¢2.
7 If y® = 4a(x +Db), prove yy” +y’? = 0; interpret geometrically.
8 Ify = A e+ Be'®, prove d?y/da?— (k+1) dy/dx + kly = 0.
9 If y = (Az+ B)e"®, prove d*y/dx? —2ndy/dx +ny = 0.
10 If y = e—%*(4 cos px + Bsin pz), prove d2y/dx?+ 2a dy/dx + (a*+p?) y = 0.

*11 Eliminate 4, B, C from y = A e*+ Be?**+C e?2,
*12 If (x—a)2+(y—b)? = 1, prove (1+y'%)® = y"2

5.12 Definitions |

All the preceding differential equations involve functions of only
one independent variable, and are called ordinary differential equa-
tions. In Ch. 9 we shall construct differential equations in functions
of more than one variable, called partial differential equations.

When an ordinary differential equation in y contains d*y/dx™ but
no derivative of higher order, it is said to be of the nth order. Thus in
exs. (i), (ii) and (iii) the equations are of first, second and third order
respectively.

If an ordinary differential equation can be expressed as a poly-
nomial in all the derivatives which occur in it (but not necessarily as
a polynomial in z or y), the degree of the equation is the highest power
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of the highest derivative which occurs. Examples (i)(iii) are all first-
degree equations. In Ex. 5 (a), the equation in no. 5 is of first order,
second degree; in nos. 7-10, second order and first degree; in no. 12,
second order and second degree. Had the equation in no. 12 been
written (1+4y'2)¥ =y” (as it may well have been for geometrical
purposes, cf. 8.32(1)) we should have to rationalise it by squaring
both sides before deciding its degree. Finally, dy/dx = \/z/(,/y +=) is
of first order and first degree, although not a polynomial in « or y.

5.13 Some general conclusions

(1) The above examples and Ex. 5 (a) all suggest that the result of
eliminating n parameters from a function is in general a differential
equation of order n: from the given function we obtain #n further
equations by deriving » times, and from the total of » 41 equations
we can in general eliminate the n parameters.

This statement is only true ‘in general’ because sometimes the
elimination leads to an equation of lower order. Thus, elimination of
b from y* = 2axy + ba? leads to

(v-+3) w=ao) =0,
so that y —xdy/dx = 0 in either case; and this equation is of order 1
instead of the expected 2. Geometrically, the given equation repre-
sents two lines through the origin (see 15.52); each is of the form
y = mx, and for both it follows that y = x dy/dx.

(2) Conversely, we should expect that the most general solution of
an nth-order differential equation contains n arbitrary constants. We
shall not attempt a general justification of this here, but its truth
will be seen in several important cases which follow.

Given a differential equation, the solution which contains the full
number of arbitrary constants is called its general solution (a.s.) or
complete primitive. Any relation between x and y which satisfies the
equation is called a particular solution (B.S.) or particular integral.
Usually a p.s. is obtained from the .s. by assigning special values to
the arbitrary constants, but exceptionally there are solutions (singular
solutions) which cannot be so obtained. Thus from Ex. 5 (a), no. 5, the
6.8.ofy = zy’ +y?isy = ax + a?; but it is easily verified thaty = — Ja?
also satisfies this differential equation although it cannot be obtained
from the a.s. for any particular value of a. See also 5.27.

12-2
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We now give methods for solving the simpler types of ordinary
differential equation which arise in geometrical and physical
problems.

5.2 First-order equations

The standard form is dy/dz = f(x,y), and our problem is to obtain
arelation g(z,y) = 0 not involving dy/dx but containing one arbitrary
constant. If possible we try to give y explicitly in terms of z, and free
of the sign of integration. We do not discuss whether such a relation
always exists, but show how to find it in certain special cases.

5.21 One variable missing
(1) If y is missing, the equation is of the form dy/dx = f(x); the

solution is
v = [fo)da,

where the symbol f ...dx implies the presence of one arbitrary con-
stant: cf. 4.11. Thus all the integrations in Ch. 4 could be interpreted
as solutions of differential equations having this very simple form.

(2) If x is missing, the equation has the form dy/dz = f(y), which
can be written dx/dy = 1/f(y). The solution is

dy
z= |z=.
f@)
Equation (xvii) of 4.41 (5) is an example.

5.22 Equations whose variables are separable
If the equation can be written in the form

Y @) = 0,

then integration wo x gives

[ro e+ o=,

ie. ff(y) dy + fg(x) dx = 0.

Each of the integrals implies an arbitrary constant, which together
give a single such constant.
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It is sometimes convenient to obtain this result from a formalt use
of differentials by writing the given equation as

fy)dy+g(x)dz =0

and then integrating throughout. Compare exs. (i), (ii) following; the
reader may set out the work in either style, although we shall use the
former.

Examples
) 292 = 1490,

Divide both sides by (1 +y?):

y: dy 1
l+y*ds

Integrating wo =z, f v dy = 1(Jlac,
1493 x

tlog |1+ =log|z| +c,
ie. 143 = Aad,

gince on freeing the equation of logarithms we get |1+y3|t = || e, and we
may cube both sides, remove moduli, and write 4 = + e,

(ii) sinzdy/dx—y2? = 1.
Rearrange, divide both sides by (1 + ?) sin x, and multiply by da:
dy dx

1+y® sinc

f-di =fcosecxda:,
1+42

tan—ly = log |tan §z| + ¢,
y = tan{log [tan x| +c}.

Exercise 5(b)
Solve the following differential equations.

W _ W _ s W _ cos?

1 = bx2. ' 2 = 3yb. 3 — = cos?y.
dy\* dy\* _ - dy\ * .
dy . dy
3= =1 fy= =1. — = .

7z T +atify=0whenax =1 8 e tanx coty

1 Cf. 4.11, where dx is not a differential.
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d d d
9 yzi%+w=1ifd—:=—lwhenx=2. 10 x-d——Z+y=l.

dy .
11 a;—ylogxlfy— 1 when z =e.

12 Show that the general solution of dy/dz+P(z)y = 0 is y = e-JPdz, (A con-
stant is implied in the integral.)

13 Solve dy/dx = (x +y)? by putting z = z+y.

14 Solve (dy/dx+x— 2y)dy/dx = 2zy by writing p = dy/dz and factorising
the quadratic in p.

15 Solve (3y%2—xz)dy/dx = y. [The equation is 3y*dy/dx = d(xy)/dx.]

16 Solve dy/dz+y/x = 1/
*17 If dv/dt = (1 —v?%/k?) g where k, g are constants, and if v = 0 when ¢ =0,
prove v = kth(g¢/k). What happens when ¢ - oo?

5.23 Homogeneous equations
If the differential equation can be written
dy
[z, y)%"‘g(xs y) =0,

where f(x,y), g(x,y) are homogeneous and of the same degree (1.52 (4)),
then the equation can be reduced to the form

dy _ y)

%-F@°
Fort ¢(z,y) = —g(z,y)/f(x,y) is homogeneous of degree 0, i.e.
@iz, ty) = P(z,y) for all ¢; taking ¢ = 1/x shows that

¢(x’ y) = ¢(1’g) = F(g) » Say.
Putting y = vz, then dy/dx = v+ xdv/dx and the equation becomes

dv
(-l—.'l-i = F(’”):

in which the variables are separable.

v+x

Example
B _ g
xy E; = ye.
Since 2y and «? — y? are both homogeneous of degree 2, we put y = vx and get
x*v('v +z @) = 22— %2,
dx

t Cf. Ex. 1(d), nos. 7 (i), 8 ().
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i.e. (if 0
Le. (ifz+0) v’+mg—z= 1-2%

v do_1
1-2v2dz 2’
80 —1log|1-2v?¥ = log || +¢,
ie. log |2%(1 — 20%)] = —4e,
2(1—20%) = A
and -2 = A

since v = y/x.

5.24 Equations reducible to homogeneous type
Examplas

) z+y—3
d:c rx—y—1" .

This equation is not homogeneous, but by the transformation

Y=2+y-3, X=3z-y~1

de

the given equation becomes =X (a)
dY _dY dX 1+y
Now X dz|de 3~y

by the formulae of transformation; hence from (a),

dY _1+Y/X X+Y
dX 3-Y/X 3X-°Y

This is homogeneous; putting ¥ = vX gives

dv 14
X—=
+ dxX 33—’
dv  12—-20+1
X —=""""\
e iX~ T 3-v
. 3—v dv 1
ie. — =,
(v—-1)2dX X

on separating the variables. Integrating wo X,
3—v
log| X| = | ——
og | X| f(v—l)’dv

2 1
e

2
= —log |v—
o oglv—1| +e,
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h 2
enee log IX(v_l)H-v——i =c

Using » = Y/X, this is

2X
10g|Y—X|+m—G, (b)
and from the formulae for X, Y,
3r—y—1 _

log [2(y—2—1)| + (c)

—z4+y—1" .

Alternatively, x+y—3 = 0 and 3z—y—1 = 0 represent two straight lines,
which intersect at (1,2). If we take new coordinate axes through (1,2), and
parallel to the old, we obtain two lines through the new origin: their equations
will contain no constant term. To make the change of axes, put (see 15.73 (2))

z=X+1, y=Y+2;

then dx = dX, dy = dY and the given equation becomes

Y X+Y
dX  3x-Y’
whose solution is (b) above. Using X = 2—1, ¥ = y -2, (b) becomes
2Az—1)
Iog|y—w—1|+§:—w—_—i-—c. (d)

Tt is easy to verify that (¢), (d) are equivalent, with ¢’ = 1—~log2+c.

(ii) dy 2z+y-3
doe ~ dx+2y+1
The method in ex. (i) fails because, geometrically, the lines 2x+y—3 = 0,
4z +2y+1 = 0 are parallel. However, the right-hand side is a function of
2 +y; therefore put 2 = 22 +¥. Then

ig{_dz

. Find the solution for whichy = 0 whenz = 0.

dx_%_z
and the equation becomes Z—Z— = 2zz;+3i’
ie ﬂ_ 5z—1
- dz~ 2z+1°
d_x=2z+l=g+ 7
dz 5z—1 b5 b&(bz—1)"
z+c¢=f2+g5loglbz—1],
ie. 252+ 26¢ = 10(2x +y) + 7log |10z + 5y — 1|,
or Tlog |10z + 5y — 1| = B — 10y + 25¢.

The condition that ¥y = 0 when x = 0 enables us to determine ¢:
7log|—1| = 25¢,
hence ¢ = 0. The required solution is
7log |10z + 5y — 1| = 5z — 10y.
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Remark. Had we written our solution less precisely as
Tlog (10z + 5y — 1) = b6x— 10y + 25¢,

substitution of the values 2 = 0, y = 0 would have given the meaningless
equation 7log (~ 1) = 25¢, since log? is not defined for ¢ < 0.

Exercise 5(¢)

Solve the following.
dy
1z e r—y.

2 (x+y)%=w_y if y = 0 when z = 3.

dy _ ., dy _y ¥
—_—= . 2 - ==4=,
sxydx ety 4 dz x+w2
dy _y Y.
2= L4 = =1.
5 e x+ta.nx1fy 47 when 2z
dy 21 2 dy 22%+axy+y?
8 dy 2z+y-1 9 di/_a:+y—1
de~ z+2y+1° de z+y+1’
10 igz(m*'y—l)*
dz~ 4(z—2)*

1 (@4 1+ =25 St 2o+ 1+ 2e+1) (y—2) = 0.

5.25 Linear equations of first order

If y and its derivatives occur to the first power only, and in separate
terms, the differential equation is said to be linear in y.

The most general first-order linear equation in y can therefore be
expressed in the form

Y Py = Q) 0

where P(x), Q(x) are functions of x only, or possibly constants.
Ex. 5(b), no. 16 is an example, which happened to be integrable
because on clearing the left side of fractions the equation becomes
d(zxy)/dx = 1/x. Similarly, no. 12 is the case when @ = 0; the solution
can be written yelPis — 1

and its correctness verified since

d d
%(ydpdw) = ede”(c—lg+Py).
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These considerations suggest a method of solving the general linear
equation:| we try to make the left side into an exact derivative by multi-
plying the equation by a suitable function B(x). We obtain

dy
RZ”+RPy = RQ,

and if the left side is now an exact derivative, it must be the derivative
of Ry, as the first term indicates. Since

d dy , dR

7. By) =B +y o,
we see by comparing the terms in y that E must satisfy

dR
RP = I’

. 1dR
Le. Rda = P,
so that log |R| = j Pdz,

and hence R = /P,
Thus we can begin to solve (i) by multiplying both sides by e/Pd=,

The equation is then d
Ty P ) = QelPe, ()

and the right-hand side is a function of x only.

The function e/ which makes the left-hand side into an exact
derivative is called an integrating factor of (i). Notice that there is no
need to include an arbitrary constant in the expression /P, provided
that a constant is introduced when integrating (ii): any particular
function will serve as an integrating factor, without any loss of
generality. Often an integrating factor can be seen by inspection;
if not, it is best to obtain it from first principles as in the examples
following.

Examples
(i) dy/dx+2y = €3,
If B is an integrating factor, the left-hand side of

dy —_ 3z
Rd—:z-:+2Ry =Re

. . . d _,dy dRE
must be identical with %(Ry) = R@-i—y%,

1 And others: see Ex. 5(I), no. 58.
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Hence dR 1dR

so that B = e2%, The equation becomes
%(y eaz) = esz’

yezz = geﬁz_'_c’

y = }e3*4ce %2,

187

Remark. Similar work will show that, if k is constant, an integrating

factor of dy
R ky = Q(x)

is always e**. In future this case can be done by inspection.

(ii) dy/dz+ 2ytanz = sin®z.
For a suitable R, the left-hand side of

Rd—y+2Rytanm = Rsin®x
dx

d d dR
must bo identical with  — (Ry) = R%y+y —-
dR
Hence 2Rtanz = s
1dR
B 2tanz, log|R| = —2log|cosz]|,
and B = sec®x. The equation becomes
d sindz
= 22) =
dz(ysec z) cos?z’
1, — sin® 2
ysecizy fcos”xdx

u2—1
= ;—du, where wu = cosgz,
u

1
= u+;+c = cosx+secx+c.

= cos®x+cosx +ccosa.
Y

5.26 Equations reducible to linear form
(1) Bernoulli’s equation

W, Py = @)y
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As a first step towards the standard linear equation, divide both
sides by y™: dy
Jdet P@Y = Q)

As a second step to standard form put z = y'~%, so that

dz d
= 1-nyl.

The equation becomes
dz
L+ 1-m) P@)z = (1-m)Q(),

which is linear in 2.

Example
(i) coszdy/dx+ysinz+2y® = 0.
This is gzi+ytanx=—2y”secx,
ldy 1
ie. ’ 7 d?;+y2tanx = —2secx.
dz 2 dy
— 2 — =,
Put z = 1/y?2, so that aa o
Then —%3—2+ztanx= —2secz,
i.e. d%—%tanx = 4secz.

The reader should verify that cos?x is an integrating factor; so
-d- (zcos?x) = 4cosz,
dx

zcos?x = 4sinz +c,

cos?x

i - 2 2=
and since z = 1/y?, Y fsmato

(2) Change to the inverse function.

Example
(i) (x+ 2y®) dy/dx = yis not linear but, regarding x as a function ofy, wehave
dx
3 — g
r+2f =y Y’
dx
i.e. — = = 2,

dyy
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which is linear in & and has integrating factor 1/y (seen by inspection, or
otherwise). Hence

4 (?f) =%

dy \y ’

f— y2+c
y ]

and x =y +cy.

5.27 Clairaut’s equation

All the standard first-order equations so far considered in 5.2 have also been
of first degree. Clairaut’s equation

y = px+f(p), (1)

where p denotes dy/dz, is not of first degree unless f(p) is linear in p. To solve (i),
derive both sides wo x:

_ dp . .dp
p—p+wd—$+f (p)d—w,

d
(s +s @)L =0,

d
and so -0 or z+f'(p)=0.
dx
The first alternative gives p = ¢, so that from (i), ¥ = ez +f(c). This, con-
taining one arbitrary constant, is the a.s.
From the second alternative and (i),

z=-—f(p), y=f(0)-nf(p)

and elimination of p gives another solution. Since these equations do not involve
an arbitrary constant, nor will the solution obtained from them.

Nos. 16-19 of Ex. 5(d) illustrate that:

(@) the second solution cannot be obtained from the @.s. by assigning a
special value to ¢; it is consequently a singular solution (s.s.) (see 5.13(2));

(b) the G.s. represents a family of lines which are tangents to the curve
represented by the s.s. (see no. 20). This fact is confirmed geometrically: for
at the point of contact of any tangent to the s.s., the curve and tangent have
the same z, y and dy/dx; hence the tangent satisfies the same differential equa-
tion (i) as the s.8., so this tangent must be included among the lines in the
a.s. of (i).T

Exercise 5(d)
Solve the following, finding an integrating factor by inspection whenever possible.
d
1 d—:—y=e“’. 2 Z—Z+ycot:v=sin2x.
3 si xdy cosz = sin 2 4dy 2zy = 2z if y = 2 wh =1
inz---y = . Y= y=2whenz=1.

d
5 xlogx%y+y = 2log .

t This fact alone does not show that every line of the @.s. touches the s.s.; but see
8.52, ex. (vi).
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dx
*6 If LE + Rx = E cospt, where L, R, E, p are constants, prove

B .
z = ce—RtL +m (Lp sin pt + R cos pt).

If p = 0 and R/L is positive, prove x - E/R when ¢t - co.

dy &y L 3
735"'3/—1‘/- 8yd—x—y +zify=0whenz =—4%.
dy 2 _ a3 dy sinz
9 xyo—l;;—-:%y = 323, 10 2xdx._—y——-y.
dy dy
= = y3gect . 2 %Y _
11 dx+ytanx y3sectx 12 =z T zy+y.
dy .
3 (2x—5y})—=y. 1 vy 2 —
13 @25y~ =y 14(+ace)dm
d¥y dy
15 ——+-2=1.
&t o
Find the a.s. and 8.8, of the following.
1
6 y=prto. *17 (y—pz)* =p*+1.

*18 y = px+p®. Also find all solutions for which y = 6 whenz = —17.
*19 y = pr+sinp.

*20 Verify that, in nos. 16-19, the ¢.s. represents a family of straight lines
which are tangents to the curve represented by the s.s.

*21 Find the differential equation of a curve such that any tangent makes
with the coordinate axes a triangle of constant area 2k?. Hence show that the
curves are rectangular hyperbolas xy = k2.

5.3 Second-order equations
These involve d2y/dz? and some or all of dy/dx, y, x

5.31 Some simple special types

(1) dy/dx and y missing. If the equation can be put in the form
d2y/da? = f(x), it is solved by integrating twice wo x; two arbitrary
constants are introduced.

(2) dy/dx and z missing. If the equation is d2y/da? = f(y), put
p = dy|dx, so that
dy _d (dy) dp dpdy dp

da? ~ dx\dx dx_@z;c_@p

Then P'—p = f(y),
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and by integrating wo y,
ip® = ff(y) dy = $(y)+o,
say. Thus
- eo)+2gt and o= [(2p)+ 20y,

Example

d%/dx® +nPy = 0 (the equation of simple harmonic motion).
Putting p = dy/dz, the equation becomes

9D oy =
pdy+ny—0,

1d d
i.e. éd_y(pz) +«}n*@(y’) =0.
1p%+ in%y? = constant = in2a?, say.
an: _ o, _
(Eii) =p* = n¥a?-y?),
dx 1
— =+

dy T ny@-g?)’

dy . .Y
nx+b= if'——*= +s8in-1=,
(a2 —y?)

y = +asin(nz+b).

Since the constants a, b are arbitrary, there is no loss of generality in taking
the ambiguous sign as +. The general solution is therefore

y = asin (nx+b).
It can also be written in the forms (cf. 5.11, ex. (ii), and Ex. 5(a), no. 3)
y =acos(nx+bd’), y= Acosnz+ Bsinnz.
The above differential equation will be met frequently when solving

others, and for convenience we will quote the solutions when needed;
the last is usually the most suitable when finding a general solution.

(3) y missing. The equation has the form+

d?’ da’

The substitution p = dy/dx immediately reduces it to a first-order
equation in p, viz. f(dp/dx, p, z) = 0.

1 This includes (1).
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(4) « missing. The equation ist

ay dy |\ _
f((%é: Z‘i" y) - 0‘
Putting p = dy/dz as in (2), it becomes f(pdp/dy, p, y) = 0, a first-
order equation in p. .

Exercise 5(e)

Solve the following.
1 2% =1. 2 ¥y =a 3 ¥y =n¥y.
4 y" =3y. 5 ay’ =3y ify=4andy’ =2whena=1.
6 y” = 6yy’s. 7 y?*=1+y"2

8 Solve 2y”+y’?= 4y, where y = 1 and dy/dxz = 0 when 2 = 0.
9 Solve d(ydy/dx)/dx = 6y with the conditions that y = 0 and dy/dz =0
when z = 0.
Given that u = 1/c and du/df = 0 when 6 = 0, solve d*u/d0?+u = P[(h*u?) (the
equation for central orbits) when h, p are constants and
10 P = pud. 11 P = pud. 12 P = plu.

5.32 Linear second-order equations
The general linear equation (see 5.25) of second order is

2@ 72 +9@) 2 4 rm)y = glo);

p(x), q(x), r(x) are called its coefficients. It can always be reduced to
the standard form

T ra Dby =f@), 0

where f(z) and the coefficients a(x), b(x) are functions of x or possibly
constants.

(1) The complementary function.
Let y = u be any particular solution of (i), however simple and
however obtained. Then

d?u du
72T a(x)% +b(z)u = f(x).
The function y = z+u will satisfy (i) if and only if
d?z  d*u

WJr%E+a(x)%+a(x)%+b(w)z+b(x)u = f(x),

1 This includes (2).
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i.e. if and only if z satisfies the equation
d?z
dx?
which is simpler than (i).
The general solution of (ii) will contain} two arbitrary constants.
When this solution is known, the general solution of (i) is given by
¥ = z+u, also involving two arbitrary constants. Thus
a.s. of (i) = a@.s. of (ii) +®.s. of (i).
The general solution of (i) is called the complementary function (c.¥.)
of equation (i). Hence

@.8. of (i) = c.F. of (i) +P.8. of (i).

O +a@) 2 4 b(e)z = (i)

Example
dy
dxz
To discover a P.s., try y = ke%, where k is some constant, to be found by

substitution in the given equation. (This trial is reasonable, since the term in
e” on the right can arise only from derivatives of functions containing e%.) Then

ke*+9ke* = be®, ., k=1%}.
Hence a p.s. is y = e®.
The c.¥. is the solution of d?y/dxz® + 9y = 0; by 5.31(2), example, this is

y = A cos 3z + Bsin 3z.

—— 49y = 5e=.

The @.8. of the given equation is therefore
y = Acos3z+ Bsin 3z + 4e>.

(2) ©.F. as a linear combination of independent particular solutions of (ii).
L Ifz = ¢(x), 2 = Y(x) are two solutions of (ii), then so also is
z = Ad(z) + B(z)
Sor arbitrary constants A, B.
Proof. We have

¢"+ad’+bp =0 and Y +ay’+by =0, (i) a,b
d? d
so that a—;;(AgS +By) +aa—$(A¢ +By)+b(Ad + By)

= A($" +a¢’ +bg) + B(Y” +ay’ +by)
=0;
therefore A¢ + By satisfies (ii).

If ¢(x)/¢(x) is not constant, i.e. if §(z), Y(x) are ‘independent’ solutions,
then the solution 2 = A¢ + By involves two arbitrary constants A, B. Con-
versely—

II. If ¢, ¥ are independent solutions of (ii), then any solution z is of the form
A¢+ By, where A, B are constants.

t From the considerations in 5.13(2); but see 5.32(2) for a proof.

13 GPMI
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Lemma. If y,, y, are any two solutions of ¥’ + Py = 0, then y, = Ay,.
For by elimination of P from

Y1+Py =0, y3+Py,=0
we have y,y;—¥;¥; = 0, i.e. d(y,/y,)/dx = 0, i.e. y,/y; = A.

Proof of I1.
By elimination of b from (ii) and (ii) b, we get

Yo~ +alye ~ap) = 0,
. 3 o~ ot~ = 0.
Similarly from (ii) @ and (i),
2 g —gw) +aly s~ 49 = 0.

Hence, by the lemma,

Yo 2y = AYd' — oY),

254209
so that %:A%+B and 2z = A¢+By.

Hence the a.s. of (ii) is a linear combination of any two independent particular
solutions. :

If ¢ and ¥ are not independent, i.e. ¢ = kyr for all x, then A¢+ By = Cy
where C = Ak + B, which involves effectively only one constant C. Thus a
knowledge of a single particular solution will not give the @.s. in this way;
but see 5.64 for a method applicable in this case.

From the preceding account it appears that, to solve equations like
(i), our first problem is to solve the simpler equation (ii). We do not
attempt this in general here, but confine ourselves mainly to the case
when a, b in (ii) are constants; see 5.6, however.

5.33 Linear second-order equations with constant coefficients

Our standard equation now is

dy dy . _

where ¢ and b are constants.

(1) Direct solution.

The equation d S )
W —ky) = Uy —ky), (iv)

ie. y' —(k+l)y +kly =0,
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will be the same as the given equation (iii) if and only if

—(k+l)=a and Ki=b, (v)
i.e. if and only if %, [ are the roots of the quadratic in m:
m2+am+b = 0.

Case (i): suppose k, | exist and k + 1.
Put z = y’' —ky, so that (iv) becomes dz/dx = Iz. This has solution

= (el
z = Cé®, so that Y —ky = C e, (vi)
This can be solved EITHER by use of the integrating factor e—*2:
3 o) = b,
ye~ka: = _6'_ e(l—-k)x +B
-k ’

y = A=+ Bek=,
where 4 = C/(I—k); or by observing that, since the relations (v) are
symmetrical in k and I, the given equation (iii) is also equivalent to
(%,(y’—ly) = k(y'-ly),
from which we deduce that (C’ being another arbitrary constant)
Yy —ly = C’ ek=, (vii)
Elimination of y’ from (vi), (vii) gives
(k—=0y = C"exr—Cék,
so that y has the form 4 ¢ + B é** as before. Cf. Ex. 5(a), no. 8.
Case (1) : suppose k = 1.
Proceeding as before, the given equation is equivalent to
Y —ky = Ao, (vi)’
Using the integrating factor e~*%, it becomes
L)
ye ' = Ax+ B,

y = (Az+ B) ek=,
Cf. Ex. 5(a), no. 9.

13-2
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Case (1it): suppose the m-quadratic has no roots.
The preceding method then breaks down because (iii) cannot be

expressed in the form (iv). However, taking our clue from Ex. 5 (a),
no. 10, we write equation (iii) as

Y +ay’ +(3a*+p)y = 0. (vii)
This is justified because the m-quadratic has no roots, and so
a%—4b < 0,i.e. b— }a?is positive and equal to p? say.
If we now putt y = ze 1%, j.e. 2 = yel®2, we have
2 = (y' +3ay)et®® and 2" = (y" +ay’ + ta%y)eloe,
Hence (viii) becomes 2"+ p% = 0.
s, 2= Acospxr+ Bsinpx
and y = ¢392 (4 cos px + Bsin pz).

Conclusions. We have now proved that, in the case of linear second-
order equations with constant coefficients, the @.s. always involves
two arbitrary constants; and that the form of the solution depends on
the nature of the roots of the quadratic m2+am +b = 0, called the
auxiliary equation.

Examples
(i) y"—6y’+8y =0.
This is equivalent to d
= —ky) = Uy —ky),

ie. y' —(k+0)y +Fkly =0,

if k4+l=6 and kI=S8.

Hence %, [ are the roots of m2—6m+8 = 0, viz. 2and 4. Taking k = 2,1 = 4, we
have dz/dx = 4z where z = y’ — 2y. Therefore z = C ¢, and

y' —2y = Cets,

d

Z (g e—2%) = (C &2
dx(ye ) = Ce?,

ye—:z o We”+B,
y = Ae**+Be%,

where 4 = 1C.
Alternatively, by the symmetry in %, [ we also have
y —4y = e,
Elimination of y’ gives 2y = Cet*— (' e?®,

1 Cf. Ex. 4(e), no. 23.
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80 y = Aet?4 Be®
as before, where 4 = }C and B = - }C",

(ii) y"—6y’+9y = 0.
Proceeding as before, the auxiliary equation is found to be

‘ mi—6m +9 = 0,
which has the repeated root m = 3. The given equation is equivalent to
dz
E;E = 32,
where z = y’— 3y. Hence z = 4 €3¢, and so
Yy —3y = A e,

d
_— —8z) —
o (:f/ e~3%) = 4,

ye 3= Azx+B,
and y = (Az+ B) e%=.
(iii) y”— 6y’ + 25y = 0.

The auxiliary equation is m2—6m+25 = 0, i.e. (m— 3)2+ 16 = 0, which has
no roots. We therefore write the given equation as

(y"— 6y’ +9y)+ 16y = 0,
and put y = ze3%, i.e. z = ye~3%, 8o that
Z=e32(y' —3y), 2" =e (Y —6y +9y?).

Hence 2’416z =0,
z = A cos4x+ Bsin 4z,
and y = €3*(4 cos 4x + Bsin 4x).

(2) Solution by trial exponentials.

Since the linear first-order equation dy/dz + Py = 0 with constant coefficient
P has solution 4 ¢¥= (Ex. 5 (b), no. 12), we may try to find a P.s. of this type for
equation (iii). The function y = e™* will satisfy (iii) if and only if

e™*(mi+am+b) =0,
i.e. mi+am+b =0,

If this quadratic has distinct roots m = k, m = I, then e** and ¢'* are indepen-
dent solutions of (iii). Hence by 5.32 (2), the ¢.s. is

y = Aek* Bels,

If the roots are equal, say m = k, then we seek a more general solution than
y = ¢** by putting y = ve**. On substituting in (iii) we find that e**v” = 0, so
that v” = 0 and v = Az + B. The a.8. is thus y = (4dz+ B) e*=.

If the quadratic has no roots, the trial method fails without the aid of complex
numbers: see 14.66, ex. (ii).

Thereadermay feel that, when itisapplicable, the trial method is quicker than
that in (1); but he may wonder why only the exponential function is selected
for & trial p.s. The direct calculations in (1) make clear why exponentials
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are involved, without a priori assumptions about the form of the solution.
Both methods can be applied to linear equations with constant coefficients
and order greater than 2: see Ex. 5(I), no. 56.

We have now discussed completely the equation (ii) for the case of
constant coefficients. With the same restriction we next consider the
p.s. of (i); Ex. 5(f), nos. 9-28, provides essential information, and
the reader should consider these examples carefully, especially
nos. 9-18.

Exercise 5(f)

Find the general solution of the following.
1 y—4y"+3y=0. 2 Y-y —12y=0. 3 y"+10y’+25y = 0.
4 y"—4y =0. 5 y¥+4y=0.. 6 y'+4y +13y = 0.
7y -y +y=0. 8 ¥y+3y =0.

By substitution find the values of the constants A, B, C for which the following
equations have the particular solutions indicated.

9 ¥'+3y'+2y=5;y=A.

10 y"—2y +3y = 6z; y = Az + B.

11 y"+ 5y —2y = 4a?; y = Aa*+ Bz +C.

12 y”"— 38y 4y = Te?®; y = A e?* (cf. 5.32, ex.).

13 y"—y '+ Ty = 8sin 3z +cos 3z; y = A cos 3z + Bsin 3z. (This is reasonable
because terms in sin 3z and cos 3z can arise by derivation only from similar
terms.)

14 y”+4y’ = 8x. If we try y = Az + B, as suggested by no. 10, we find that
there are no values of 4, B for which this can satisfy the equation. Integrating
once (without arbitrary constant, since only a .s. isrequired) gives y’ + 4y = 422
and no. 11 suggests tryingy = Ax?+ Bz + C. Values for 4, B can now be found.
Hence & suitable trial for the given equation is y = Ax?+ Bx.

15 y"+58y" = 3a2; y = Aa®+ Ba?+ Cx.

16 y”—2y’ —38y = 4¢3, The trial y = A4 ¢3* suggested by no. 12 fails, so put
y = ve’%; we find that v satisfies v” + 40" = 4, and to solve this we try v = Ax
asinno. 14. Hence y = Ax ¢3? would be a suitable trial for the original equation.
(The trial y = Ae?* for a Pp.s. is futile since the o.r. of the equation is
y = A e~*+ Be?*, which already involves €32.)

17 y"—6y +9y = 2€%%; y =wve®* gives v” =2, whence v =2a% and so
y = Ax?e3 would be a suitable trial. (Here the ¢.F. is y = (Ax+ B) €2, so the
trials y = 4 e3* and y = Az e3* would both be futile.)

18 y”+9y = 3cos 3z — 2sin 3z. The c.F. is y = A cos 3z 4 Bsin 3z, so we may
try y = x(A cos 3z + Bsin 3z).

*19 y”—by +6y = xe®; y = ve® gives an equation for v like no. 10, hence
y = (Az+ B) e* would be a suitable trial.

*20 y”— 5y’ + 6y = ze3%;y = ved? gives type of no. 14; hence y = (Ax?+ Bz) €82,
1 y’—6y + 9y = xed?; y = veds, ie. v = ye 3, gives v = ;80 y = Aaden.
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*22 y"— by’ +6y = x%e; y = (Ax®+ Br+0)e®.

*23 y"— by + 6y = 2%e?%; y = (Aad+ Bx? 4 Cx) e?®.

*24 y"—6y’ +9y = a2 ed7; y = Axted,

*25 y"+ 3y’ +2y = 10e®sin 2x; y = ve® gives type like no. 13.

*26 "+ 3y’ +2y = 10e~*sin 2z. *27 y”— 6y +9y = e%*sin.

¥28 y”—4y’ + 13y = 6e2®sin 3x; y = ve?? gives type of no. 18.

5.34 Particular solution in the case of constant coefficients
(1) The results of Ex. 5(f), nos. 9-28 suggest useful trial methods
for finding a ®.s. of o +ay' +by = f(z)

when f(x) is a polynomial, an exponential function, a sine or cosine,
or certain products of these. Our conclusions are summarised as
follows:
(i) If f(x) 13 @ polynomial of degree n, a P.s. is also a polynomial of
degreen unlessb = 0,in which case a P.s.is a polynomial of degreen + 1.
(ii) If f(x) = ke, a p.s. is usually A4 e?%; but if ¢P* belongs to the
C.F.,a P.8. is Az e?® unless x ¢P% also belongs to the ¢.F.,in which event
a P.8. is Ax?e?=,
(iii) Iff(x) = Acospx+ usinpz, a P.s. is usually 4 cos pz + Bsin pz;
but if these terms occur in the c.¥., a P.8. is 2(4 cos pz + Bsin pz).

(iv) If f(x) = kx"e?*, a P.s. is usually ¢?* x (polynomial of degree n); but if
e?* belongs to the C.F., a P.8. is e?? X (polynomial of degree n + 1), unless x e?®
also belongs to the c.¥., in which case a P.s. is Az"+2e?2,

(v) If f(x) = e?*(Acos gz + psingz), a P.S. is usually e?* (A cos gxr 4 Bsingr);
but if these terms appear in the 0.¥., a P.S. is x e?*(A cos gx + Bsin gr).

(2) Nos. 14-28 also suggest that in solving a differential equation
it is desirable to find the c.F. first, so that when we seek a P.S. we shall
be aware of what trials to avoid.

Sometimes we are asked for the special solution in which y, ¥’ have
prescribed values for given x. This information (called 4nitial or
boundary conditions) enables us to determine A4, B from the @.s. (not,
of course, from the c.F. alone). Boundary conditions are important
in applications; e.g. see Ex. 5 (h), nos. 1 (ii), 2 (ii).

Hence the order of procedure is:

(a) Find the c.F.

(b) Inspect it, and then try a suitable P.s. as indicated in (i)—(v)
above,
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(¢) @.8.=C.F.+Ps.
(d) If required, find the solution which satisfies given boundary
conditions.

(3) When f(x) consists of a sum of terms f,(x), fo(x) of the above
types (i)—(v), we can use the following theorem.

If Y =u,18a P8, of Yy +ay +by = fi(x),
and Y = uytsa P.8. of y" +ay’ + by = fy(x),
then a ®.s. of y"+ay' +by = fi(2) +1o@) is Yy = u; +u,.

Proof. If u = u; +u,, then
u” +au’ +bu = (u] +uz) + a(ug +ug) + b(u, +u,)
= (u] +aug +bu,) + (ug + aug + buy)
= fi(@) +fa().

Therefore y = u satisfies the original equation, i.e. u, +u, is a P.s.

If f(x) = 2¢—2?, we should not apply this theorem with f,(x) = 2z
and f,(x) = — 22 because it is easier to make the trial y = 42>+ Bx+C
(or whatever is appropriate) for the whole ».s. directly. The theorem
is used when f,(), fy(x) are functions of different ‘types’, as in the
following example.

Example

Solve y” — 6y’ + 8y = e2*+sin 2z, and find the solution for which y =0 and
y =0 when z = 0.

First consider the c.¥., which is the general solution of

Y —6y’ +8y=0;
it is (see 5.33, ex. (i)) y = A ef®+ Be?2,

Next, seek a p.s. of y”— 6y’ + 8y = €2*. Since e2* occurs in the c.r. but ze?*
does not, we try y = A« e??; this is found to give 4 = —}, so a p.s. for this
equation is — x e?2.

Finally,seek a p.s. of y” — 6y’ + 8y = sin 2z; wemay try y = A cos 2z + Bsin 2z,
for which ¥’ = —24 sin2x+2Bcos 2z and y” = — 4y, so that 4, B must be
chosen to satisfy — 4y — 6y’ + 8y = sin 2z,
ie. 4(A cos 2z + Bsin 2z) — 6( — 24 sin 2z + 2B cos 2x) = sin 2z.

This requires 44 —12B = 0 and 4B+124 = 1, whence 4 = &;, B = 2. APs.
of the last equation is thus ;%;(3 cos 2z + sin 2x).
Hence a p.s. of the given equation is

— 3 e® + A(3 cos 2z + sin 2z),
and the 6.8.38 4 ue i (B— 3a) 62+ 25(3 cos 2 + sin 2z).
From this

y’ = 44 3%+ (2B —z— ) e2* + J5( — 3 sin 2 + cos 2x);
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hence for the special solution required we have, when = = 0:
0=A+B+3, 0=44+(2B-})+,
from which 4 = &, B = —4. This solution is therefore
y = S5e4%— (3 + dx) €22 + 15(8 cos 2x + sin 2z).

Exercise 5(g)
Find the 6.s. of the following.
1 y"—3y +2y=6. 2 ¥ —2y+3y=6z~1.
3 -y -2=—}a

4 2y" -5y’ + 3y = 4¢€?*. Also find the solution for which y = 0 and 3’ = 0
when z = 0.

S ¥y -y —12y = 2¢, 6 y'—2y + 2y = sin 3.
7 y"— 14y’ + 50y = 2cos 2.

8 y"+ 16y = cos 4x. Also give the most general solution which vanishes when
x = }m.

9 y”+8y + 16y = Bete, 10 y”+ 6y’ = 4a.

11 y”+4y = sinz sin 3. 12 y”"—3y’+18y = sh 2x.

13 y"—6y’ +8y = e**—cos 2. *14 4"+ 3y’ +2y = e *sinz.
*15 3y"— 5y’ + 2y = x%e”. *16 y"+6y’ +9y = (1+x)e3=.
*17 ¥"+y' +y = e*(x +cosx). *18 y"—4y’ + 4y = 8a?e?sin 2.

5.4 The operator D; calculation of a P.s.

In 5.34 we gave some trial methods for finding & P.s. of a linear
second-order equation with constant coefficients. We now show how
it can be found more systematically (and often more easily) by formal
calculation. The discussion, given here for second-order equations
only, extends naturally to higher orders.

5.41 Algebraic properties of D

The notations Dy, D% for first and second derivatives of y were
mentioned in 2.11, 3.51 respectively. We now write the standard
linear equation

%+aj—g+by = f(x)
as D% +aDy+by = f@),
or (D*+aD+b)y = flz),
or briefly FD)y = f(x),

where F(D) = D*+aD+b.
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When the coefficients a, b are constants the operator F(D) can be
treated for certain purposes as if it were an algebraical polynomial
in a variable D, because D obeys the same laws of addition and
multiplication as do algebraical symbols. For, by the rules of deriva-

tion, Du+v) = Du+Dv (distributive law)
D™(Dru) = Dminy, = Dv(Dmyy) (index law)

where m, n are positive infegers; and if k is constant,
D(ku) = kDu (commutative law).

Example
If 2%+ ax+b has factors (z—k)(x—1), then k+! = —a and kIl = b. By the
proceding 8%, (p—ky(D—y = (D—E) (Dy—-Iyt
= D(Dy—ly)— k(Dy —1ly)
=D% —(k+1) Dy +kly
=D% +aDy+by
= F(D)y.
Hence the operator F(D) can be ‘factorised’ as (D —k) (D —1), (or, if we wish,
a8 (D —1) (D ~k) by a similar argument), just as if it were a quadratic in D.

For the same reason, polynomials tn D with constant coefficients are
added, subtracted and multiplied just like algebraic polynomials.

If Dry = ¢(x), we write y = D—"$(x), so that D" denotes =
ntegrations wo x, thus introducing » arbitrary constants. Observe
that D"(D—")y = y, but that D—*(D"y) = y + a polynomial of degree n
in & with n arbitrary constants for coefficients; the above index law
fails for negative indices.

5.42 Shift theorem
If u = u(x), then F(D){e**u} = e F(D + p)u, where p is constant.
Proof. By the product rule,

Dferzy} = eP* Du + p eP*u = e (Du+ pu) = e?* (D + p)u.
Repeating this, with « replaced by (D + p) u, we get
Derru} = ev* (D +p){(D +p) 4} = ¢#* (D +p) u.

1 An operator is understood to act on the function placed immediately after it.
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Hence F(D){er*u} = (D*+aD +b) {eP*u}

= e?*{(D+p)*+a(D+p)+b}u

= eP2 F(D +p)u.

5.43 Calculation of p.s. by symbolic methods

If f(x) = fi(z)+fo(x) + ... + [, (x), then by 5.34(3) we can seek a
P.8. of each of the equations

dy %
@-‘-a%'l'by -_—f,.(x) (’r= 1,2,...,7&),

and add the results. We therefore suppose f(x) to be one of the

following simple types.
Case (1): f(x) 18 a polynomial in x of degree m, say P. The equation
to be considered is then F(D)y = P.

Method. Write g, = Iﬁp,
= D Hcy+c; D+cyD?+...) P

by algebraic long division (in practice by resolution of 1/F(D) into
partial fractions, followed by use of a relation like

1 1 1. 1.

which is verified by summing the geometrical progression). Here
0 < o < 2, which covers the cases when

D2t+aD+b (p=0),
F(D) = {D(D+a) b=0,u=1),
D2 (@a=b=0,u=2).
Hence Yy = D#(cy+c; D+... +¢,D™) P,

gsince P is a polynomial of degree m.
Justification. We have to show that y, constructed above is a P.s.
of F(D)y = P. Write

F(D) = D*G(D), where 0<p <2,
and G(D) = by+byD+...+b,_, D>+,
and consider the polynomial in z,

2—p

G(W) = b0+b1m+ soe +b2_ﬂ$2‘/‘.
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By long division, or otherwise,
| L B(x)
G(x) G(x)’

where R(x) is a polynomial of degree greater than m. Clearing of
fractions,

=cCpt+CiZ+... +Cp @M+ 5

1 =Q(x)(co+c12+ ... + ¢, 2™) + R(2).

This results holds for all values of : it is an identity between two
polynomials. On replacing x by D and recalling the principle if 5.41
that polynomials in D are manipulated like algebraic polynomials,
we obtain the following equivalence of operators (cf. 5.62): ‘

1 =GD)(cg+¢c;D+...+¢c,, D™) +R(D)
Operating on P with both gives
P =G(D)(cy+c;D+...+¢, D™ P+ R(D)P

= GD)(cp+¢,D+...+¢c,, D™)P since RD)P =0

= G(D) DH{D-Hco+cy D+ ... +c,, D™} P

= F(D){D*cy+c;D+... +¢c, D)} P

= F(D)y,.
Hence y, does satisfy the given equation.

Examples '
(i) Find a p.s. of y" + 4y = 22,
Rewriting the equation as (D2 +4)y = a3, a P.s. is given symbolically by
1 1 1

Y=Dpid” Ta1rm”
= }1—}D24 2D — ...) 28
= }(2®—§x).
(ii) (D2+3D—4)y = 2.
‘Here F(D) = —(1— D) (4+ D), so by partial fractions

1 1
L S S R T P
P8 = piysp—4” 5(1 D+4+D)

=—H(1+D+D+D3+...)+ (1 = 3D+ 2D2 - D% +...)} a?
= —}{B+15D + 85D + $58D3 + ..} a®

= —{}2®+ %322+ 3362+ 5456}

= —12° — fg2? — $jr - HE.
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| Case (13): f(x) = eP= P, where P is o polynomial.
Method. From F(D)y = eP* P we have, proceeding symbolically:
1
= —— {eP
Y1 F( D) {e =P }
1
—ePT_____
F DD
by an extension, at present unjustified, of the shift theorem to
rational functions of D. The calculation is now formally reduced to
Case (i).
Justification. Suppose that work as in Case (i) gives
_ 1
F(D +p)
Then we have to show that y, = eP*u satisfies F(D)y = e P.
By the shift theorem,

F(D){er*u} = e?* F(D+p)u = e?* P;
80 y, does satisfy the equation.

Short method when F(p) + 0.

If F(p) + 0, we have
1 1

— = —

Fa+p) F(p)
since the two sides must agree when = = 0. Hence if f(x) = ke?? (i.e. if
P = k), the p.s. is

P =y, sothat P = F(D+p)u.

+...

I Sy ( +¢, D+ .. )Ic:———kem.
F(D+p) F(p) Fp)
Examples
(ii) (D?*—3D 4 2)y = 8¢t~
A Ps.is
1L gew
D*-3D+2 ,
1 . .,
=et (D+4)2—3(D+4)+28 by ‘extension’ of 5.42,
1
= piysDre’
1 1
= et E mg
= }et*{l1-§(D*+5D)+...} 8
= }et=.8

= $et2,
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Alternatively, since F(4) = 16 — 12+ 2 = 6, the ‘short method’ at once gives
Kl

F(4)

P.8. = = §eis,

(iv) (D2—3D+2)y = 8e?2,
Here F(D) = (D—1)(D-2), and F(2) =0, so the ‘short method’ is not

applicable. We have

1
— 22
P.S. = Fop D 3e

1
- (D—l)(D—2)—3

eSQ

1
= eﬁwm 3 Dby ‘extension’ of the shift theorem (5.42),

1
— p2%__ — eee
=e D{l D+..}3

= e?* D13 = 3xre??,
omitting the arbitrary constant of integration since only a P.s. is being sought.
(v) y"— 6y’ + 9y = 2023 €2,
F(D)=D?*-6D+9 = (D-3)2,

80 P.S. 2028 ¢3*

_ 1

T (D-3)
1

= e’”ﬁg 202® Dby ‘extension’of 5.42,

= 2%¢*® on integrating twice and omitting constants.

Case (111). If f(z) involves cos gz and sin gz linearly, we use
e = cosf+isinfh, e 9 = cosf—isind

(equivalent to Euler’s exponential forms, 14.65) to express such
trigonometric terms as complex exponentials, thus reducing the work
formally to Cases (i), (ii). In practice it is easier to select the real or
imaginary part at the end of the work, as in the examples below.

Examples
(vi) y”+4y = cos 2z.
Consider instead the equation (D2?+4)y = %3, of which the given equation

is the real part.
e2iw

P8, = Dird

dz_l___ 1
(D+2i)2+4

iz_l_ 1
D(D + 4)

= e?

= ¢?
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1 D
=e¥Mc _D-1]l——+...}1
e¥e _. D (1 -+ )

1
= 4_1:3:¢¢D—-11 = ée“@x

= — }iz(cos 2z + ¢ 8in 2z).
The P.s. of the given equation is the real part of this result, viz. }xsin 2z.
Alternatively, using complex factors of the operator,
1
‘T D*yd

ediz

1

= 1 etiz
D—-2i\D+2;

1 1
= — g2t ¢ ’
D% ( .€ ') by the ‘short method’,

1/1
= g2z D (4—@) by the ‘extension’ of the shift theorem (5.42),
= ‘%e“" as before.

(vii) (D*~6D+13)y = e?*cos 2.
= _l_eaacosh,
D2—-6D+13

= e”(D+3)2—61D+3)+130082x (u = cos 2z in the shift theorem)

P.S.

= ¢%% cos 2z

D244
= ¢3*{xsin 2z asin ex. (vi).

(viii)* (D*—3D+4)y = zsinz.
Considering (D?—3D +4)y = xe'?,

1
[ — 'YL £
Fes. D"—:?.D+4:M

1
- giT
C Dri-3Dri+4”
1
= efT
D r(%-3)D+3(1—5)"
1 D’+(2i—3)D}~1

e b 3(1—4)

et { D*4(2—3)D
31—y~ 3(1—9) +}

=ée

et 23
=30-9 {”‘"3(1—@')
= }et(1+4) (@ +Hi+5)
= e {(14i)z+ (3 +2)).
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The required p.s. is the imaginary part of this, viz.
#H(x+1)cosz+ (x4 %) sina}.

The reader should now find by the symbolic method the P.S. of some
of the differential equations in Exs. 5(f), (9); e.g. Ex. 5(f), nos. 16-28
and Ex. 5(g), nos. 13-18 are best done this way. Ex. 5 (k) includes
some general examples from Mechanics and Electricity.

Exercise 5(h)

2,
Forced harmonic motion : %t—f +n2 = acospt.

1 (i) If p % n, show that z = A4 cosné+ Bsinnt+ {a/(n?—p?)} cospt. (The
©.F. represents the free oscillations, and the p.s. represents the forced oscillations.
When p == n, the amplitude of the forced oscillations becomes large—a pheno-
menon known as resonance.)

(ii) Find z if z = 0 and dz/d¢ = 0 when ¢ = 0.

2 (i) If p = n, prove x = 4 cosnt+ Bsinnt + (a/2n) tsinnt. (The amplitude
of the forced oscillations therefore increases without limit when ¢ -> c0.)

(ii) Find z if = 0 and dx/dt = 0 when ¢ = 0, and verify that the result is
the limit when p — n of that in no. 1 (ii).

dx dx
et 2t = 0.
dt3+2kdt+nx 0

3 If n? < k2, prove & = A exp{—kt+./(k®—n?) } + Bexp{—kt —/(k*—n?)t}
(which represents a non-oscillatory motion). (Here exp u denotes e*.)

4 If n® = k2 prove x = e~*(4t+ B) (also non-oscillatory).

5 If n? > k2, prove x = e~*t {A cos (t J(nt— kz)) + Bsin (t N(n2— kz))} (repre-
genting damped oscillations). If k is small compared with n, prove that

Damped harmonic motion :

x = e~* x (the solution which would be obtained if k£ = 0).

(Hence smal damping changes the period only slightly, but diminishes the
amplitude of successive vibrations in geometrical progression.)

Damped forced harmonic motion :

d%z dz
%+2k5 +n2% = acospt.
6 (i) Prove that the p.s. can be written bcos (pt+ a), where
b = a{(n?—p*)2+4k?p?—t and tana = 2kp/(p*—n?).

(This represents the forced oscillations; if n? > k2, the free oscillations are given
by no. 5.)

(ii) If @, k, n are constants and p varies, prove that b is greatest when
P = 4/(n?—2k?). If also % is small compared with n, show a = — i, b = a/(2kn)
(resonance again).
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7 If the free vibrations (no. 5) are in resonance with the applied force, and
both are damped, then 4/(n?— k%) = p and the equation becomes

d2x

dz
57 — 2k +(k*+p?) x = ae*cos pt.

Show that the p.s. represents an oscillation of amplitude (a/2p) te~*t, and that
this has a maximum value a/(2pke) when ¢ = 1/k and tends to 0 when ¢ - co.
(Thus if the damping is small, the forced vibrations becore large but remain
bounded.)

Electric circuit with aelf-mductance, capacitance, resistance, and applied electro-
motive force : &
Ldt +Rd +0 = E cospt.
(Observe the analogy with no. 6.)
8 Find the c.r. when CR? < 4L.
9 Find the p.s. in the form z = b cos (pt+ ).

10 When ¢ - o0, no. 8 shows that the free oscillations die away. Ignoring
these, prove that for given E, L, p, R, the greatest values of x occur when

J(ZO) = 1/p.

11 If F(x) is a polynomial in z, prove F(D?)cosax = F(—a?) cosaz.

12 Assuming that this result can be used when F(z) is a rational function,
. find a p.8. of (D?*+ D+ 1)y = cos 2z as follows:

1 cos 2x = ! 08 2. ! 08 22 = D+3cos2m
DD 1T 1% T p3° Di—9

D+

Verify this solution directly.

*13 Generalise this method to {¢(D?)+ Dy(D?}y = A cosax + gsinax, where
&(x), Y (x) are polynomials in z.

9cos 22 = —#5(3 cos 2x — 28in 2z).

5.5 Simultaneous linear first-order equations with constant
coefficients

We restrict ourselves to the case of two functions z, y of ¢ related by
two linear equations of first order with constant coefficients.

Examples
(@) Sotve %’”M—y: 25tet, 2y—3t—“’+%_ 25¢t.
Using D for d/dt here, these equations can be written
(D+la—y = 25tet, (i)
—Dx+4(D+2)y = 256, (ii)
As in algebraic simultaneous equations, we eliminate one unknown. We

14 GPMI
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choose y for elimination because it is more simply involved in the equations
than «. First operate on (i) byt D+ 2:

(D+2)(D+1)x—(D+2)y = 25(D+2)¢¢,
ie. (D*+3D+2)2—(D+2)y = 25(3t+1)et. (i)

Now add (if) and ({if): 7,0\ o7 4 9)5 = 25(3¢+2) e,

which is a linear equation for z. The c.¥. is e~*(4 cost+ Bsint), and a P.8. is
found to be (15¢— 2) et Hence
x = e~t(A cost+ Bsint) +et(15:—2).
From (i), y = (D+1)xz—25te;
and since
(D+1)z = e~ t{(—Asint+ Beost) — (4 cost+ Bsint) + (A cost + Bsini)}
+et{(15t—2) + 15+ (15¢ — 2)}
= ¢~ {(Bcost— A4sin?) +e*(30t+ 11),
y = e *(Bcost— Asint) +ef(5¢+11).

We could find y independently of x by operating on (i) with D, on (ii) with
D+1, and adding. This would lead to a linear second-order equation for ¥,
whose solution would introduce two further constants of integration, say A’, B’.
The relations between A, B, A’, B’ would then have to be found by substituting

the solutions for «, ¥ in both of the equations (i), (ii). This method, clearly
involving more work, should be avoided.

. dz dy dx dy »

(i) Solve 254-&7-:3, dt+dt = brx+y+e

The equations are (2D-1)z+Dy =0, (i)
(D=5)z+(D—1)y = e (ii)

To eliminate y, operate on (i) with D — 1, and on (ii) with D:
(2D*~3D+1)z+D(D—1)y = 0,
(D?—5D)yz+D(D—1)y = —e~.
Subtract: (D*+2D+1)x =e™.
The c.F. is z = (4 + Bt) e, and the P.s. is 322 e~*; hence
z = e~'(4 + Bt + 3%).
Before finding y, eliminate dy/dt from the given equations by subtracting:
dx

Y e dp—y—e,
& y—e

y= —Zt—x—m—e—‘.
Now substitute for x:
y=—e[{B—A+(1—B)t— 3t} +{44 + 4Bt +2¢?} + 1]
=—et{(34+B+1)+(3B+1)t+22.

1 In full this means deriving (i) wo +, and adding twice (i) to the result. Thus
symbolic methods are convenient but not essential in examples like this.
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Had we substituted direetly for « in either of the given equations, we should
have obtained a differential equation for y, and hence a redundant constant of

integration. The method used avoids this, and involves no more than derivations
wo .

Exercise 5()
Solve the following pairs of simultaneous differential equations.

dx dx dx

— = 8i — —y = et — 42 =0,
1 dt+y sint, 2 dt+x y = é, 3 dt+ z+y =0

dy dy _ dy —

E-}-x—cost. §+y—x_0. £+m+2y—0.

dx
ifz=0andy = 0 whent=0.

d,
d—‘;/-2x+3y = ¢!

de _dy e
5 5&~+3$—11x—7y—e,
d:
3d—::+2——7x—5y=8“.
de dy
6 3$+E+2a:_3cost,

dr _dy if ¢ =0and y =0 when £ = 0.
I Vo ATIE YR -
7 + T +3y = Tcost—4sint
7 Writing v = z+y and v = 2—y, show by adding and subtracting the
equations in no. 2 that du/dt = e* and dv/dt+ 2v = ¢?, and solve each of these.
Hence find z and y.

8 Solve no. 3 by the method of no. 7.

9 Solve 5d—x+dy+2x_4cost 3idf+y=4tcost.
dt dt
du dv
* _ = - -_—=
10 Solve m 7 ¢E—evH, m 7 euH,

where m, e, E, H are constants (the equa,tlons of motion of a particle of mass m
and charge e in perpendicular electric and magnetic fields of strengths E, H).
Ifalsou=#,v=y,andr =y =u=v =0 when¢ =0, prove

E E .
z= m(l—coswt) and y = aﬁ(wt—smwt),

where w = eH/m. (Hence the particle moves along a cycloid: 1.61, ex.)

5.6 Some linear second-order equations with variable coefficients
5.61 Euler’s ‘homogeneous’® equation
This is of the form dzy
w5+ ax o + by = f(x),

14-2
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where a, b are constants. It can be reduced to an equation with con-
stant coefficients by the substitution x = ¢’; for then

dy _dy [dx . 3y
de  dt[dt dt’

@y 4 (B (4 _dy\\jde (& _dy
and 7 dx(dx) {dt(e dt)} @t = ¢ {e Eﬁ—e dt]

- oafPy ),

dez  dt)’

and the equation becomes

2
(e dy)+a@+by=f<et>,

diz  dt dt
. d?y ;
i.e. o +(a— 1) §7 +by feh,

which gives y as a function of ¢.

Examples

() m*%+xdy

Put z = e*; then as above the equation becomes

2
VLR W

y =x+logz.

di?  dt dt
. a?y .ty
1.6. 4&F—3%—y=et+t.

The c.F. is A ¢t + Be~1t, and the p.s. is found to be }tef—¢+ 8. Hence
y=Aet+Be -ty ltet—t+3

= Ax+Bxt+ éxlogw—logx+ 3.
(ii) The equation 2y
(pr+9)* 73 +a(px+q) Y 1 by = f()

can be reduced to the standard homogeneous form by putting 2z = pz + g, for
then dy _dyde _ dy . dy_ Y

dodzds Taz ¢ @@ pdz2

5.62 Remarks on the use of equivalent operators

If y is any derivable function of x, and x = ¢/, then by 3.2(4) yis a
derivable function of ¢ and we showed above that

dy dy

bt AP

dx di’
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The operations d/dz on y (as a function of z) and e~'d/di on y (as a
function of ¢) therefore have the same effect. We say that these
operators are equivalent, and write

Since the operator acts on the function which follows it, we must
avoid writing the second operator as (d/d¢) e~¥; this expression already
denotes the function which is the derivative of e—.

By applying these operators to dy/dx we have

B _ o) cafly_ 9

de? ~ ~ dt|” dt e dtf’

as before. The use of other equivalent operators will be illustrated
in 5.63.

5.63 Solution of other equations by a given substitution
Examples

2,
() Solve (1422 2Y

dy
i T 2a(L a2 0(L4at)y = 2*—1
by putting x = tan6.

We have dy dy dr _dy 0020 = 1 dy
de 6] 46~ a6/ ® 1+2d0°
dy dy
1 2) = = =,
8o A+a) o = a0 (@)

Deriving both sides of this wo z,
2,
Alternatively, applying the equivalent operators
4
ag’
obtained from (a), to both sides of (a), we get

(l+x3)%=

d?y
do?’

. d¥y dy d%
2122 J 2 29
i.e. (1422 dx2+2x(1 +x )d:v a0 (c)

Hence from either (b) or (c) the given equation becomes

(1+x2)d—%{(1 +x2)g—i} =

a*y
2y 7 __ 2 = 22— 1:
(I1+2%)—=~9(1+a?)y =22—1;
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and since z = tanf, we have

dy . tan?6-1
a2 YT Teectf

The C.F. i8 y = A ¢% + Be~%, and the .s. is found to be & cos 26.
y = Ae¥+ Be %+ cos 20

= sin?0 —cos?f = —cos 20.

= 4 e3tan"'z 4 Be-8tan"'z 4 1_—x2 ,
13(1 +2?)
since cos 20 = 2cos?8 1——2— 1= 2 1
= “aco T sec?f T 14a?
2,
(ii) Solve cos x%+sinx%+4ycossw = 2cos®z

by putting z = sin—1u.
9 — Q ¢ — y — Zj 2).
P —_— - coS® 7 J(l_u )’

so, by using equivalent operators,

d?y d dy
o = V(1w = {4(1 —u?) d—u}
oy dy
= (=) e

The equation becomes

[5.63

J(1—u?) {<1—u3>%-“%}+"{%~/ﬂ—u‘>=+4(1—u=)*y = 2(1-ud),
ie. g:%+4y = 2(1—u?).

We find as usual that the a.s. is
y = A cos 2u+ Bsin 2u + }(3 — 2u?)
= A cos(2sinz) + Bsin (2sinz) + }(3 — 2sin?x).

(iii) Transform the equation
2%y” + (322 + 4x) Yy’ + (202 + 62+ 2)y = e

by the substitution x*y = z. Hence solve the equation.
Deriving the relation 2%y = z twice wo z,

a¥y +2xy =2 and ¥ 44wy’ +2y =2,
Hence the equation becomes
2"+ 32"+ 2z = e,
and the a.s. of thisis 2 = 4 ¢~*+ Be~?*+ }e” Hence
1
Y= E(Ae—“+Be 22 | L e®)

is the @.s. of the given equation.
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(iv) Express the equation

(2 oo (2

as a differential equation for x as a function of y, and hence solve it.
From 3.53, ex. (iv), dy @ [ (de)?
dz® d dy

Hence the given equation becomes

)6 - )

ie ki 3dx+2x-—
o dp T Y

which is & linear second-order equation with constent coefficients whose
solution is found to be o= Aev+Be4hy+i.

5.64 General case: one integral belonging to the c.F. known
Consider the general linear second-order equation

T @) +ba)y = @),

and suppose that a solution y = u(x) of
@y
da?

is known. Then the given equation can be reduced to & linear one of
first order in v’ by putting y = vu; for by hypothesis

+a(x)d +b(x)y =0

u"+a(x)u +b(x)u =0
and Yy =vu' +0'u, Y =ou"+20u +v",
so the given equation becomes

(vu” +20"u’ +v"u) + a(z) (v’ +v'u) + b(z) vu = f(x),

ie. o(u” +a(x) u' +b(x) u) +v' (20’ + a(z) u) +v"u = f(z).
Hence w” +(2u' +a(2)u) v’ = f(x),
ie. ug—;g + (2u’ +a(x) u) w = f(x),

where w = v'; this can be solved by using an integrating factor, or
otherwise.
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.

Example
2%y — (2 4+ 22) Yy’ + (v + 2)y = x®e®.
We easily verify that y = « satisfies
@ty —(2?+22)y +(x+2)y = 0.
Putting y = vz, so that y’ = v+v'z and y” = 20"+ 9"z, we have
220" +v"x) — (2 + 22) (V+0'x) + (2 + 2) v = aBe?,

which reduces to 3" — 2B’ = 28 6%,

i.e. v —v = e

Integrating, v —v =e%+c, i.e. %(’v e %) =1+ce?,
efv=g—ce*+4, v=(x+A)e*—c,

and hence y = e*(Ax+«?) + Bz,

where B = —c.

Exercise 5(j)
Solve the following homogeneous equations.
d%y dy Ay dy

2" J _ — 2 4y = 2.
1« 72t 3xd +4y = z%logx. 2z dx2+ in dy==x
L dy ) dy
3 9x d—2+3x— y =logx lfy_Oand(—i;_Owhenm_l.
P, By
2”7 _ 9 = 28 .
4 x dat xdx 4y = a3+ 2logx

5 (1+2x)2 6(1+2x)—+16y—810g(1+2x)

*6 Solve the simultaneous equations |

& d dy d
——x+tx 4y =0, tz——?!+t y

drt a T =" |

Solve the following by using the substitution given.

d¥y dy .
—x) gty =g = .
71 ar;)da‘;2 x—+y=z; x=sinb

2
8 (1+z2)d—y2+x% = 3(sh-12)%; » = sh0.

9 (l+ar;2)2 +2x(1+x2)——+4y_0 z = tan 36.

d? d
10 zzzi—'z+ 2x(2w+3)dZ+3(m=+4x+ 2)y = 0; y = za-2.
11 Show that the constant n can be chosen so that the substitution y = x"z
reduces the equation x2y”+4x(x+1)y +2(4r+1)y =cosz to the form
2" +az’ +bz = cosx, where a, b are constants. Hence solve the given equation.
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Solve the following, in which an tntegral belonging to the C.F. 18 given.
12 2% — 22y’ + 2y = 0; y = z.
13 (w4+1)y"— 22y +(x—1)y = 0; y = e”.
14 2y"—2(x+ 1)y’ + (2 +2)y = (x— 2) e2%; y = €7.
15 %" 42y’ — 9y = a3; try y = ka?, or treat as ‘homogeneous’ type.
16 x%"+ a2y '+ (x—2)y = a%e®; y = L.

17 Provethatay”+ by’ +cy = Oissatisfied by y = e*ifand onlyifa+b+4¢=0,
andby y =z if and only if b+cx = 0.

*18 Riccati’s equation dy/dx = P(x)+Q(x)y+ RB(x)y®. Prove that the sub-
stitution y = —«’/Ru reduces this to the linear second-order equation

Ru”—(QR+R')u' + PR*u = 0.
*19 Solve 2%y’ +3—3xy+2%2 =0

5.7 Some geometrical applications
We now illustrate how differential equations arise geometrically.

5.71 Definitions
Given a plane curve, let P be a point at which there is a definite
tangent (2.15); PN is the ordinate of P. If the tangent and normal at
Pcut Qx at T, Q, then NT is the sub- v}
tangent alnd NG is the subnormal to the
cm;‘vé at P. Also PT, PG are called the
lengths of the tangent and normal at P.
Since tany =gy, it is clear from
fig.\55 (where x, y, y' are positive) that
| NT=yly, NG=yy,
- PT =yJ(1+y)y, 0
| PG =yJ1+y?).
In the general case these results are obtained from the equations of
the tangent and normal at P by finding the intercepts on Oxz; the lengths
are signed magnitudes. Thus, the tangent at (2,,,) has equation

Y=y = y1(@—my),
and cuts Ox where y = 0 and —y, = y;j(x—x,), i.e. z;—z = y,/y}; and
TN =x, —x.

Fig. 55

Example

For the parabola y2 = 4ax (16.11) we have 2yy’ = 4a, so that the subnormal
NQG is 2a.

It is often stated that ‘the subnormal of any parabola is constant’; but this
is true only if N, G are understood to be points on the axis of symmetry.
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5.72 Orthogonal families of curves

For a fixed value of « (supposed independent of z and y), the
equation F(x,y,a) = 0 represents a plane curve (1.61). For different
values of @ we thus obtain a family or system of curves; « ‘labels’ the
individual members of the family. For example, 22+ 42 = a2 repre-
sents a family of concentric circles of various radii; y? = 4az repre-
sents a family of parabolas situated as in 5.11, ex. (i). The curves of
the family may not all be of the same geometrical ‘type’: thus
2%+ ay? = 1 represents ellipses for « > 0, hyperbolas for « < 0, and
& pair of lines for & = 0, as will be shown later.

The angle of intersection of two curves is the angle between the
tangents at the common point.

Two intersecting families of curves are orthogonal, or orthogonal
trajectories of one another, if each member of one cuts each member
of the other at right-angles.

Let F(z,y,a) = 0 be the equation of the given family. We first
get its differential equation by eliminating « (5.1); suppose the result
is f(x,y,¥’) = 0. When P(z,y) is given, this equation determines the
gradient y' at P of the member(s) of the family through P, say
¥ = @(x,y). The gradient of the orthogonal curve through P will
therefore be — 1/¢(z, y); hence on this curve,

1 1 1
':-_—.—__, i.e. ——==0\Z,Y), 8O z, Y, ——) = 0.
T = pe). o f(oy )

This is the differential equation of the orthogonal family; its solution,
involving one arbitrary constant, is the equation of the orthogonal
family.

Examples

(i) Find the orthogonal trajectories of the family of concentric circles
x? + yﬂ = al.
The differential equation of the family is z+yy” = 0. The gradient of the
circle through P(z,y) is therefore ¥y’ = — z/y. Hence the gradient of the ortho-
gonal curve through P is y/x, so that on this curve we have

y . .o 4dfy
‘=2, ie. '—y =0, ie. —[=}=0.
Y ol ie. zy'—y=20, ie dx(ac)
The orthogonal family is y/z = ¢, a system of straight lines through O.
The result is evident geometrically: the diameters of a circle cut the curve
orthogonally.
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(ii) Prove that the system
. w% yk
a? +A+bﬂ+)t
where A 18 the parameter, is identical with the orthogonal system. (For a geo-

metrical interpretation see Ex. 18 (d), nos. 18, 19.)

To form the differential equation of the family we must eliminate A. First
clearing of fractions,

A2+ A(a” +b2—z2— y”) + (aﬁbﬂ — b2t — a8yz) =0

=1,

Derive wo z: Az +yy')+ b2z +ayy’) = 0,
2, 2,
. A= Yetauy
T4 yy
(a2 —b%) 2 (b2 —a?) yy
d 24A = , bE+A=
an @'+ z+yy + z+yy’

The required differential equation is therefore

e+yy)  yetyy)
at—b2 (5% —a?) y' ’
ie. (z+yy) (a; - 2%) =a%-0b2

_Since this equation is unaltered by replacing y* by —1/y’, the orthogonal
family is the same as the given family.

Exercise 5(k)

Find the differential equation of curves having the following properties, and hence
Jfind these curves by solving (notation of 5.71).

1 Subnormal is constant k. 2 Subtangent is constant k.
3 Projection of the ordinate on the normal is constant %.
4 OP=PT. 506=0P. 6 OT=0OP. 7 ON=NG.
8 OT=kPN. 9 PG=EL. 10 PQ@ = kPN,
Find the orthogonal trajectories of the following families, a being the parameter.
11 2y = a?. - 12 y? = 4daz. 13 ay® =ad.
14 zt4yt = at. 15 y3—38z%y =a. 16 y = axe®.

17 (i) Prove that the system of parabolas y2 = 4a(x + a) is identical with the

orthogonal system.
*(ii) Show that the curves corresponding to @ = a,, a, will intersect only

if a,, ay have opposite signs. [Consider y? = 4a(x +a) as a quadratic in a.] ‘

18 Prove that in general there are two curves which satisfy the differential ‘
equation d

Y y 2x@+ 1=0
de, dz

and pass through a given point. Prove that these curves coincide if and only
if the given point lies on the parabola y = x2,
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19 Find the inclinations to Oz of the two curves through (3, 5) which satisfy
the equation in no. 18.

20 Find the locus of & point such that the two curves through it in no. 18
cut at right-angles.

Miscellaneous Exercise 5(0)
Eliminate the parameters from the following functions.
1 y =cch(z/c). 2 y=Acostz+B.
3 y = Acos~lx+ Bsin—'z, and explain why the result is the same as for no. 2.
4 y = Axsin(z-1+ B).
Obtain the differential equation of
5 all straight lines.

6 all circles which touch both coordinate axes.

7 all tangents to the rectangular hyperbola zy = 1. [The general point
is (¢, 1/¢).]

For general practice the reader may solve a random selection from the following
differential equations (nos. 8-52).

dy 1+y? dy _
8 ol prpe L 9 T on Y =Y
dy dy
2.2 -1, —_ —_— = .
10 (z+y) T 1 11 (= y)dm Tty
’ ’ 2dy 2
12 (1-4y)y = (4+y) . 13 (z—y) d—x=(w—y~1)-
14 (wﬁ—-yz)@—2 15 (3m+5y+1)@=7x—3y+2
e~ Y dx )
dy .Y dy
16 2z =y—weosto, . 17 de T =Y
dy ¥ _ 2 2 dy —
18 %+;—x. 19 (x-]—l)dx zy = 1.
dy dy 1
- = 22%8, 3 - =,
20 dx+2xy 23y 21 (xy +y)dx z
22 xj—z+y‘= y?logz. 23 Z—‘Zsinz—ycosx = e®sin®z.
*24 y = px+ips. *25 y = px+e?.
26 y"+y2=0. 27 (2*+1)y"+xy’ = 0.
28 yy"+y?=1. 29 zyy’+xy?+yy = 0.
30 y'—y'+2y=0. 31 y¥"—2¢y'+y=0.
32 y"-3y"=0.

*33 "4 3y”+3y’+y = 0 [put » = ye® and calculate «"].
34 y"—3y’ —4y = 10cos 2z. 35 y"—by + 6y = 4x?e”.
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36 y"—4y’+3y = ad. 37 y"— 10y’ + 29y = e5¢sin 2.
38 x%y”—20y = Tad. 39 a?y" —xy’ + 2y = xlogz.
40 2%y”—2xy’ +2y = x3cos (logz). 41 y"+(2/x)y’ = 0.
*42 %"+ 3xy”+y’ = log=.
43 y”"+y'tanz—ycostzx = 0 [put w = sinzx].
44 (14222 y"+2x(1+2%)2y + (1 +2%) y = = [put = = tan0].

45 %x+2w=2y, A 46 %—3%+2¢c+6y=0,
Y by = s, 2 3% szrey=o.
47 Z—:+5x—2y=40e‘,
gi—l—x+6y = 276,
48 t%x+y=0, t%+w=logt. *49 Z—f:y, Zt—y=z, %=x.
*50 %2;+3%—4x+6y=0, %+i~f—2x+4y=0-

[For nos. 49, 50 see no. 56.]

51 xy"—(2x+ 1)y’ +(x+ 1)y = 0; particular solution y = e=.

52 a(l+x)y” = 2y’ + 2y; particular solution y = 1/(1+x).

53 Transform 4a?y” + 4xy’ + (422 — 1) y = 0 by the substitution y = zz-%, and
hence solve the equation.

54 Show that the constant n can be chosen so that the substitution y = z"z
transforms the equation xz2y”+2x(x+2)y +2(x+1)2y = e~*cosx into one
with constant coefficients. Hence solve the given equation.

55 Prove that a differential equation of the form p2+ pd(x,y) —1 = 0, where
P = dy/dx, represents a system of plane curves such that in general two pass
through every point and intersect at right-angles. Find the system of curves
when ¢(z,y) = —2y/a.

*56 Show that y"" +ay” + by’ +cy = 0 is the same equation as

d
=" — e+ D)y’ + 1y} = mly” — (k-+1)y’ + Kly)

ifand only if k+1+m = —a, Im+mk+kl = b and kim = —c, i.e. k, I, m are the
roots of #34-at*+bt+c = 0. Putting z = y”"—(k+1)y’ +kly, show that the
solution of the given equation is reduced to solving one of second order in y.

*57 If [ f(z) de = log {1 +f(2)}, find f(x).

*58 Verify that cos nz and sin nz are both integrating factors of y” + n%y = f(x)
and obtain two first integrals. By eliminating y’, obtain the @.s. and express
it in the form

T
y= Acosn:c+Bsinn:c-}-}I‘J~ f(@) sinn(z—t) dt.
0
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*59 Solve y” +y = secx by the method of no. 58, and show that it will succeed
also when f(x) = cosecz, tanz, or cot z.

*60 (i) If u, v, w are functions of z, and constants a, b, ¢ not all zero can be
found such that au + bv +cw = O for all z, prove that the determinant

v v w
W=lu o
u’ ”’ wl’

(the Wronskian of u, v, w) is zero for all x.

(ii) Conversely, if W = 0, prove that u, v, w are connected by a linear
relation. [Consider the linear second-order equation in y obtained by replacing
u,w',u” by y,vy’,y” in W: it has solutions y = u, v, w; use 5.32(2), II.
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6

SOME THEOREMS OF THE
DIFFERENTIAL CALCULUS

6.1 Two properties of continuous functions

This chapter contains a sequence of theorems, some of which are
‘obvious geometrically’; they are of considerable importance. All
of them depend for their proof on the following two properties of
continuous functions, which we will state and then explain.

(1) If f(x) is continuous in @ < < b, then it is bounded in this range.

(2) If f(x) is continuous in a < x < b, then it possesses a greatest and
a least value when x varies in this range.

Property (1) means that, for all values of x satisfying a < z < b,
there exists a positive number K such that | f(x)| < K. In other words
(cf. 2.4(8)), f(x) cannot tend to +oo or to —oo or oscillate infinitely
when z varies in @ < z < b: it is ‘bounded’ by the number K in that
its numerical value ca.nnot exceed K; we can write — K < f(z) <
and call K an upper bound for f(x), and — K a lower bound. Clearly a.ny
fixed positive number greater than K would also serve as a bound
forf(x)ina < x <.

It may happen that some numbers less than K would serve as
bounds for f(x). It can be proved that, of all numbers which serve
as upper bounds for f(x), there is a smallest such number, say M;
i.e. f(z) < M for all x for which @ < = < b, but if H is any number just
less than M, there is at least one value z, of x in the interval such
that f(x;) > H. Similarly, of all lower bounds for f(x) there is a largest,
say m, which has the property that f(x) > m for a < x < b, while if
h is any number just greater than m, there is at least one va,lue =1,
in the interval for which f(x,) < . These numbers M, m are called
the upper, lower bounds of f(z) in a < x < b. Functions other than
continuous ones may possess upper and lower bounds in a given
interval; on the other hand they may not. Property (1) implies tha,t
for a continuous function these numbers always exist.

Property (2) asserts that, for continuous functions, these bounds
are actually values taken by the function for suitable values of z in
theinterval: M is the greatest and m the least valueof f(x) fora < x < b.
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The property is usually expressed by saying that ‘a continuous
function attains its bounds in any closed interval’. This may or may
not be true for a discontinuous function: even if it possesses upper and
lower bounds M, m, there may be no x in the range for which f(x) = M
or for which f(z) = m.

yi

M

o~ p——f——-——

ay

Fig. 56

The properties (1), (2) and others can be deduced from the definition
of ‘continuity’ given in 2.61 with the help of some fundamental
theorems on bounds of a function. We shall assume them, because to
give rigorous proofs would deflect us too far from the course in view.

In the following theorems we use the closed interval @ < x < b for
continuity of f(x) (see 2.61, Remark), and the open intervala < z < b
for derivability. This is reasonable because (3.11, Remark), if f(x)
is defined only in a < z < b, then f’(x) will not be defined at = a or
at x = b; hence existence in the open interval is as much as we can
demand of f'(x).

6.2 Rolle’s theorem

6.21 If (i) f(x) is continuous for a < x < b, (ii) f'(x) exists fora < z < b,
(iii) f(a) = f(), then there is at least one number & for which a < £ < b
and f'(E) = 0.

Geometrically the result is obvious (figs. 57, 58): a continuous curve
with a definite tangent at every point between A and B, where it meets
the line y = k, must have a tangent parallel to y = &k at some inter-
mediate point or points. The reader who is willing to accept the
theorem on these grounds may omit the following proof.

First suppose f(a) = f(b) = 0 in hypothesis (iii). Since f(x) is continuous, then
by 6.1, Property (1), the function has upper and lower bounds M, mina < z < b.

As f(a) = 0 = f(b), therefore M > 0 and m < 0; we consider the following three
cases.
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(a) M > 0. By Property (2) of 6.1, there is a number £ such thata < £ < b
and f(£) = M. Since f(a) =f(b) = 0 and M > 0, £ must be different from a
and b, so that a < £ < b. We now prove that f/(§) =

Let h be any positive number such that £+#4 lies in a < 2 < b. Then since
Sf(E+h) < M, it follows that f(§ +A) < f(£), and so

fE+—1E) _
h =

Letting h -~ 0+, we have f'(§) < 0 by using hypothesus (ii) of the theorem
together with a variant of the lemma in 3.63.
Similarly, if » > 0 and £—A liesina < z < b, thenf(g-—h) < f(£), so that

FE—R)—f(§) >0
—h =

Letting b - 0+ givesf’(£) > 0. Comparing the two conclusions shows f/(£) = 0

v ¥}
|
! ]
IV S\
] |B
| o
k| 4 B ! P
]
\ & | .
-~ (0] b
o w E PR “\/ & »
Fig. 57 Fig. 58

(6) M = 0, but m < 0. There is a number £ for which f(£) = m, and as before,
a < § < b; f(E+h) =m = f(£), from which f/(£) = 0 by an argument similar
to the above.

(¢) If M =0=1m, then f(x) =0 everywhere in a <z <b, so f'(&)=
everywhere in ¢ < z < b; any number in a < x < b would do for £.

Secondly, suppose fla) = f(b) = k in (iii). Apply the result just proved to
the function ¢(x) = f(x) —k, which clearly satisfies hypotheses (i) and (ii) and
also ¢(a) = ¢(b) = 0. Then Rolle’s theorem follows.

Remark. The number £ depends on the function f(x) and on the
interval; thus for a given f(z), £ is in general a function of @ and b.
See Ex. 6 (a), no. 3.

Definition. If f(x) is continuous for a < < b and derivable for
a <z < b, we say that f(x) satisfies the Rolle conditions in a < x < b.

6.22 If the Rolle conditions are not satisfied, there may not be a
number £ with the required property. Figs. 59, 60 illustrate cases in
which hypotheses (i), (ii) respectively are not satisfied; but fig. 61,
in which neither is satisfied, shows that the result of the theorem may
still be true—the conditions are sufficient but not necessary.

15 GPMI
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6.23 Application to algebraic equations

If f(x) is a polynomial, then f(x) and f’(x) certainly satisfy the
Rolle conditions in any interval. Taking a, b of 6.21 to be roots of
J(x) = 0, we have (cf. Ex. 3 (e), no. 14):

(1) Between two roots of f(x) = O lies at least one root of f'(x) = 0.

Further (cf. Ex. 3 (¢), no. 15)

(2) Not more than one root of f(x) = 0 can lie between consecutive
roots a, f of f'(x) = 0.

If there were two, then by (1) there would be a root of f'(x) = 0
between them, so that «, # would not be consecutive roots of f'(x) = 0.
(There will be exactly one root of f(x) = 0 between « and g if and only
if f(«), f(#) have opposite signs, by 2.65.)

The result (2) is helpful in locating the roots of an equation f(z) = 0
when those of f'(x) = 0 are easily found; see 13.62 (3) for some worked
examples. Finally

(3) If f'(x) = O has s roots, then f(x) = 0 cannot have more than s+ 1

roots.
For the roots of f'(x) = 0 must separate those of f(x) = 0, by (1).

6.3 Lagrange’s mean value theorem

In 3.81 we conjectured on geometrical grounds the following mean
value theorem.
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If f(x) satisfies the Rolle conditions in a < x < b, then there is at least
one number £ for which a < § < b and

f®)—fla) = (b—a) f'(§).

6.31 Linear approximation to f(x)

We may prove this theorem by applying Rolle’s theorem to the
error obtained by making a linear approximation to f(x)in ¢ < < b.
When a is given, any linear function g(x) can be put in the form
9(%) = po+py(z—a).

We choose the coefficients p,, p, so that it takes the same values as f(z)

at the ends of the interval: g(a) = f(a) and g(b) = f(b), so that
Po=f(a) and py+p,(b—a) = f(B).

Hence g(x) = f(a) +f_(l%}fa(_a) (x—a).

(Geometrically, g(x) = 0 is the equation of the chord 4B in fig. 41
of 3.81; we now consider the error caused by replacing the arc 4B by
the chord AB.)

Atany point zina < z < b, the error involved in the approximation
f(@) = glz) is $(@) = f(z)—gla). Now #(@) = 0 and 49 = 0, and 4z
satisfies the Rolle conditions in @ < z < b because f(x) and g(z) do.
Hence there is a number £ for which a < £ < b and ¢'(£) = 0, i.e.

0= pig-10=1@,

from which the mean value theorem follows. Incidentally we have
justified the geometrical conjecture in 3.81; Rolle’s theorem is the
case when 4B is parallel to Ox.

6.32 Wemay set out the preceding proof as follows. Consider the function
$(=) = fl@)—f(a) + A(z-a).
Clearly ¢(a) = 0; we choose A so that also ¢(b) =
0 =f(b)-fla)+ A(d~a). ()

The hypotheses of Rolle’s theorem are now satisfied by ¢(x), so that
thereis a number £ for whicha < £ < band ¢'(£) = 0,i.e.0 = f'(£) + A.

Hence from (i), f0) = f(@)+ (b—a) F'(£). (i)

15-2
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6.33 Alternative versions of the theorem

(1) If 0 < 8 < 1, then a+6(b—a) lies between a and b, so that for
a suitable 6 we can write £ = a+6(b—a). Putting b = a+#h, the
result (ii) takes the form

fla+h) = f(a)+hf'(a+6R) (0<8<1). (i)

Remark. Since £ depends on a and b (6.21, Remark), hence 6 in (iii)
will be some function of a and A.

(2) Since b—k = a, we also have from (ii) that
J®) =fo—h)+hf'(b—(1-0)h).
Putting & = —h;, 1 -0 = 0, (so that 0 < 6; < 1) and rearranging,
fO+hy) =f®)+h f(b+6:hy),

which is the mean value theorem for the interval b+ A, < 2 < b where
hy < 0. Hence the result (iii) remains valid when b < 0;in the statement
of the theorem the only modification required is the replacement of
a<z<athbyath<z<a.

Example
Take f(z) = logz, a > 0, a+h > 0. Then (iii) becomes

h
log(a+h) = loga+a+—0h,

i log (14+2) = 2
ie. og 2 = aven

1 a

TR\ A
log (l +a)

Put « = h/a; then since a+h > 0 and & % 0, also v > —1 and » % 0, and

from which we find 6=

_ 1 1

Tlog(1+u) w

. 1 1 1
Sm090<0<1, ;<10g7_;—u-)<1+;,
ie. %‘<log(l +u) < u,

the logarithmic inequality (4.43 (1)).
This example illustrates how the mean value theorem can be regarded as a
disguised inequality owing to the condition 0 < 6 < 1.
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Applications of the theorem to increasing functions and to in-
equalities were given in 3.83. A few further examples appear in
Ex. 6(a).

Exercise 6(a)
Find § when Rolle’s theorem is applied to
1 z(1—-2)*in 0 < z < 1, n being a positive integer.
2 e*sinzin 0 < z < 27, 3 (x—a)(b—z)®ina<z<b
4 Iff(x) satisfies the Rolle conditions in @ < z < b and f(a) = 0 = f(b), prove

that for any given number A the equation f’(z) + Af(x) = 0 has at least one root
between @ and b. [Consider e**f(x). Cf. Ex. 3 (e), no. 16.]

Find § when the mean value theorem is applied to
Scosxin0<z<in. 6 2"in0 <z < 1, n being an integer > 1.

Find 0 when the mean value theorem is applied for the interval a < z < a+hto
7 a2 8 23, and verify that 6 - } when k - 0.
9 e 10 Deduce an inequality from the result of no. 9.
11 Explain why the mean value theorem fails when f(z)=a"1 and
a<0<a+h.
12 Mean value theorem for integrals. If f(x) is continuous in @ < z < b, apply
xr

the mean value theorem to ¢(z) = f f(2)dt to show that there is a number £
a

for which @ < £ < b and fb f@)dz = (b—a)f(£). [Use 4.15(7).]

13 If f(x) and g(x) satisfy the Rolle conditions in @ < = < b, prove that the
functions Af(x)+ Bg(x) (A, B constant), f(x)g(z), f(x)/g9(x) do also, provided
that in the last case g(x) is never zero for a < z < b.

14 Iff’(x) satisfies the Rolle conditions in ¢ < = < b, prove that f(x) does also.
[See 3.52.]

*15 If f(a) = f(c) = f(b), where a < ¢ < b, and if f'(x) satisfies the Rolle con-
ditionsina < z < b, prove there is a number § for whicha < £ < band f”(§) = 0.
[Use Rolle’s theorem three times.]

*16 If {f(b)—f(c)}/(b—c) ={f(c)—f(a)}/(c—a), where a <c<b, and f'(z)
satisfies the Rolle conditions in a < 2 < b, prove there is a number £ for which
a < £ < band f”(§) = 0. Interpret geometrically.

*17 Ifx > 1, prove z+2+logz > 4/(x%+ 10z — 2). [Use 3.83, Corollary 2.]
log(1+y) <log(l+x). Proveg log (1+%) o.
logy log 2 dt| logt

*19 If f(0) = 0 and f’(x) is an increasing function for > 0, prove that when
z > 0, (i) f(x) = 2f (0x), 0 < 0 < 1; (ii) f(x) < zf'(x); (iii) d{f(x)/x}/dx > 0, and
deduce that f(x)/z is increasing for z > 0.

*18 If 0 < z < y, prove
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6.4 The second mean value theorem

6.41 An algebraic lemma

In 6.31 we proved the first mean value theorem by considering a
linear approximation to f(x). By using other polynomials, we obtain
mean value theorems of higher orders.

Any polynomial of degree n in x can be written as a polynomial of
degree n in (x—a).

If the given polynomial is

g(x) = ag+a x+a22+ ... +a,x",

putt x = a+y and expand each term. The term of highest degree in
y will arise only from a,(¢+y)", and hence is a,y®. We obtain an
expression of the form

Po+P1Y+DaY?+ oo +PuY"
which is a polynomial in z—a = y of degree =.

6.42 Quadratic approximation to f(x)
For given a, every quadratic can be written
9(@) = po+py(x—a) +po(x—a)?.

We choose the coefficients p,, p;, p; 50 that g(a) = f(a), g(d) = f(b),
and g'(a) = f'(a). (Geometrically, the quadratic curve passes through
the extremities 4, B of the given arc

and has the same gradient at 4.) Then i
Do =f(a),

Po+11(b—a) +py(b—0a)? = f(b), (i) 4
and since

9'(®) = p1+2py(x—a), py=["(a)
The ‘error’function ¢(x) = f(x) —g(x) —5
clearly satisfies
$(a) = 0 = $(b).
Hence by Rolle’s theorem there is a number £, for which a < §; < b

and ¢'(;) = 0.
Since also ¢'(a) = 0, we may apply Rolle’s theorem to ¢’(x) for
a € z < §; to show that there is a number £ for which a < £ < £; and

R o e e
O fem

Y

Fig. 6 2

1 Another proof is indicated in the Remark of 10.53.
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¢"(8) = 0. Now ¢"(x) = f"(x) — 2p,, and hence p, = 4f"(£); therefore
by (i), , " ..
VO 1) = fla) + - 0) (@) + bR £(O) (i)
For the preceding applications of 6.21 to be valid, the Rolle con-
ditions must be satisfied by ¢(z)ina < « < band by ¢’(x)ina < = < §;.
Since we know only that &, liessomewherein @ < z < b, we shall require
@'(x), and consequently f’(z), to satisfy the conditions in a < x < b.
As in 6.33(1), we may write b =a+h and £=a+60h (0 <6 < 1)

since £ certainly lies between a and b. Hence—
If f'(x) satisfies the Rolle conditions in a < x < a+h, then

fla+h) =f(@)+hf'(a) + $4°f"(a+ OR), (iif)
where 0 < 0 < 1, and tn general 6 depends on a and h.

Rewiarks

(o) The result (iii) remains true when 4 < 0 if we write the interval
as a+h < x < a. For, the same proof now shows that £, £ satisfy
a+h < § <a, § <& < a respectively, and therefore a+h < £ < a.
We can still write § = a + 6k where 0 < 6 < 1, since b < 0.

(f) From fig. 36 in 3.11 we see that

fla+h)—f(a)—hf'(a) = NQ—MP—~PRtanTPR
= RQ—-RT =TQ.
Hence TQ = }h?f"(a+ 6h). Compare the comments on the approxima-

tions (i)—(iii) of 3.91.
We give some applications of (iii) in 6.7.

6.5 Theorems of Taylor and Maclaurin

6.51 Approximation to f(x) by a polynomial of degree n

The first and second mean value theorems are particular cases of
the following mean value theorem of order =, called Taylor’s theorem.
I f f®V(x) satisfies the Rolle conditions for a < x < a+h, then

fla+t) - ~ 1@+ @+ @+t

where 0 < @ < 1 and 0 depends in general on a, b and n.
Proof. Choose the coefficients in the polynomial

fo(a) + (@ 6h),

9(x) = P+ p1(X—a) +py(x—a)P +... + pa(x—a)"
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so that
g@) =f), ¢g@=[(a), .., g"a)=[""Na),

gla+h) =fla+h). (@)

If Y(x) = (xr—a)™ where m is a positive integer, then it is easily

verified that

o=y 5 i
It follows that g"a) = r!p,,
and hence p, =f(a), p,=f'(a), 2!p,=f"(a),
vy (=) p,_; = f@-D(a), (ii)
and Po+pih+poh?+ ... +p B = fla+h). (1)
Write ¢(x) = f(x) —g(x); then by (i)
dla+h)=¢a) =¢'(a) = ... = g®*V(a) = 0.

Also ¢(x) and its first n — 1 derivatives satisfy the Rolle conditions in
a < x < a+ hsince by the hypothesis and 3.52 this is true for f®-1(z),

Jo ), ..., (%), f().
Since ¢(a+h) = 0 = ¢(a), there is a number £, for which

a<§ <a+h and ¢'(§)=0.

Since also ¢’'(a) = 0, there is a number £, such that a < £, < £, and
$"(£,) = 0. Proceeding similarly, there is a number £, , for which
¢, _;) = 0. Lastly, since also ¢®V(a) = 0, there is a number £
for which a < § < £,_, and ¢®(£) = 0. We know that
a<f<f, 1<..<b <& <a+th,

80 we may put £ = a+6h, where 0 < 0 < 1.

Now  gia) = f(z) — (@) = f(z) ~nl
hence (&) = nlp,.

From this with equations (ii), the result follows by using (iii).
With a modification as in Remark () of 6.42, the result holds for
h <0,

6.52 Maclaurin’s form of the theorem

If we replace a by 0 and & by « in Taylor’s theorem, we get the
following.
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If fn-1)(t) satisfies the Rolle conditions in 0 < t < z, then

f@) =f(0)+af’ (0)+2,f”(0)+ o _ -2 0+ f<n> 6z),

)l
where 0 < 0 < 1 and in general 6 depends on x and n.

Conversely, starting from Maclaurin’s form, we could apply it to
the function g(x) =f(a+x) in 0 <t<h and arrive at Taylor’s
theorem:

g(®) = 9(0) + g’ (0)+2'9 ©0)+...+ 9‘”‘1)(0)+ g‘"’(ex)

( 1)‘

= @) +af (@) + 5 @) + ot (:_—1)

since g(x) = d%ci' fla+2) = fNa+x).

xﬂ
JO@)+ 2 f(a+ 6z),

Thus the two forms are equivalent.

6.53 Closeness of the polynomial approximation

When the conditions of Taylor’s (or Maclaurin’s) theorem are
satisfied, we can apply the theorem to approximate to the given
function by a polynomial of degree n — 1. The closeness of the approxi-
mation is measured by the size of the ‘remainder term’

R="toat0m i
=2 poarom), or 2 ooa).

Considering the Maclaurin form, we see that R depends on n and x;
we may be able to make R small (a) by increasing » when « is given
(i.e. taking more terms); (b) by decreasing # when = is given (i.e. nar-
rowing the range).

Keeping n fixed, suppose f®™(fx) is bounded for all z sufficiently
small, say for |z| < 7. Then |R/z"| < K,where K is independent of x;
we say that R is of order » when « is small, and write B = O(2").
Standing alone, O(z") means ‘any function which is of order z»’.
We can now write either

f@) =f(0)+af'(0)+...+

e 1),fm—v(o>+0(aa"),

or

f@) =f0)+af'(0)+...+

( —1)!

f®D(0) correct to order n—1.
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Example
If f(x) = e®, then f®(x) = e* and f®(0) = 1 for each r. Maclaurin’s theorem
gives I
¢ = —efr (0<O<1).
e l+x+2,+ +(n l)'+ [ 0<8<1)
H n—1 .
ence e% = l-i-alr:+2 +.. +(n O i)

Since e* possesses derivatives of all orders, n can be as large as we please;
and the conditions of the theorem are satisfied for all .

(@) When 2z is given, we know by 2.74 that z"/n! - 0 when n -> co, which
shows that the more terms we take, the better does the polynomial (i) approxi-
mate to e¥; and this happens to be true here for any z. (In general it will be true
of f(x) only for z within some definite range.) In particular, by taking z = 1 we get

=1414— ! + = - +ooi !
S TR (n—1)".
Successive terms in this expression are easy to calculate, because the (#+ 1)th
term is 1/r! = (1/r){1/(r—1)1} = (1/r) x rth term. With n = 11 we find that
e = 2-718282, correct to 6 places of decimals. A much rougher result was
obtained in 4.32 (5).

(b) When n is given, the approximation (i) is correct to order "1, and im-
proves the smaller || becomes; for e9% < ¢7 when |z| < .

In order to use Taylor’s or Maclaurin’s theorem directly in this
way, it is essential to be able to find f™(a) or f™(0) explicitly in terms
of n. Consequently, in 6.6 we obtain formulae for the nth derivative
of some elementary functions.f For most functions f(z) the formula
for f®™(z) cannot be found explicitly; but we may still employ the
theorem to infer approximations of a given order, expecting these to
hold ‘for all x sufficiently small’ (see Ex. 6 (b), nos. 26-30).

We return to Maclaurin’s theorem in Ch. 12 when we discuss
infinite series; there we shall sometimes require a different expression
for the remainder term.

6.54 Other expressions for the remainder term

(1) Alternative proof of Taylor’s theorem.

For a proof involving only one application of Rolle’s theorem like
that in 6.32, we could begin by considering the function

Y@) =F@)-A@b-zf (p>0),

_b—z)"

where F(x) =f(b)—f(x)—(b—2z)f (x)—...— 1)1

- 10)~f@) -3 “’ O fogz).

t In Ch. 3 this would have seemed an academic exercise ; we now see its significance.

@y fovia)
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Clearly yr(b) = 0; we choose A so that y(a) = 0:
0= Fa)—A(b—a)?.

By the hypothesis of Taylor’s theorem and 3.52, () satisfies the
Rolle conditions in @ < 2 < b. Hence there is a number £ for which
a < §<bandy'(§) = 0. Now

(b x)

¥'@) = £ @)+ 3 T o) - 5 Co i) 4 pd - appt

% o fo -5 O ”’ OZ2) fevae) + pap—ap-t

"

(b x)n—l

= pA(b -zt — /@)
- - b —2)"? f*)
BRE ‘{1”‘4“*@?171—}'

From ¢'(£) = 0 and the fact that b — £ + 0 we now have
4= =B

(n—1)!p
b—a) b7 f"E)
and so F(a) = w-1)p
Writing b = a+% and £ = a+ 6k (where in general  will depend on
a, k, n, p), we find (1 —6)n-»
Fla) = =or gy f™a+6h)
so that from our definition of F(x) we have
h*- h(1 -6y
(n—1) il Sl Y )

J@+B) = @)+ (0) .y )+ T o 0B

The last term is known as Schlomilch’s remainder. In particular, by
taking p = n we recover that given in 6.51 (Lagrange’s remainder);
and by taking » = 1 we have Caw:hy’s remainder

h(1—6)n—
(n—1)!
Whlch will be used in Ch. 12.

a0,

(2) Remasnder as a definite tniegral.
From (1) we have F(b) = 0 and

(b z)"—

F'() = ———r —1)! f(n( ).
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If we suppose f™(x) is continuous for @ < z < b, then

b
F(a) = F(b)— fa F'(z)dx

1 b —a)y .
=G ey e

Putting b = o +h and x = a +th, we find

F(a) = (Tfﬁf)' f: (1 —¢)n-1f®)(q + th) dt.

'This form of the remainder term does not involve an undetermined
function @; but we have assumed more about f®(x) than in 6.51.

6.6 Calculation of some nth derivatives

6.61 Elementary functions
(i) ™. Here flx) = ma™, f"(x) = m(m—1)z™2, ..,
JF®)(z) =m(m—1)...(m—n+1)zm"

(a) In particular, if m is a positive integer,

m! m—n
(m—-n)!x (n < m),
f(ﬂ)(x) = m! (n - m)’
0 (n > m).

(b) Whenm = —1, f(z) = 1/xz and f™(z) = (— 1)"n!fzn+l,
(¢) If f(x) = (ax+ b)™, then similarly

f®(z) = a®m(m—1) ... (m—n+ 1) (azx + b)ym—1.
(ii) logz. Since f’(z) = z~1, we have by (i) ()
dr1 (1 n—1)!
sy = 25 (5) = (o B2
(iii) e®*. Clearly Jf(z) = ane=.
(iv) sin (ax+b).
f/(x) = acos(ax+b) = asin (azx + b+ 4n).
Thus each successive derivation will add 4 to the ‘angle’; hence
J™x) = a*sin (ax + b+ in).
(v) cos(ax+b). Similarly
Sf™(z) = a"cos (ax + b+ inm).
(vi) e%*sinbzx.
J/(z) = e%*(asinbx + bcos bx).
This can be written in the form e%* B sin (bx + 0), i.e.
¢ (R cos 0 sin bz + Rsin 6 cos bx)




6.62] DIFFERENTIAL CALCULUS: THEOREMS 237

if we choose B and fso that B cos § = aand Rsin 8 = b. These give R = ,/(a?+b2),
and 6 is determined from
cosf:s8inf:1=a:b:R.
The next derivation gives

@) = Rdiw {eo*sin (bx + )} = R?essin (bz + 26),

with the same R, 0 as before since the equations for determining these are
independent of z. Hence we see that

J™(z) = R"e**sin (bx +nb).

Similarly, ;7‘ {e?*cos bz} = R"e%*cos (bx +nb),
where R, 6 have the same values as before.

*(vii) tan~'z. (This example requires complex numbers and de Moivre’s
theorem.)

Since 1 dr-1 1
/ = J— (n) =—]—]).
F(x) 1725 we have f(")(x) o (1 +x’)
1 1 1 1
Now 1+a:2_§§(w—i_w+i)’
hence by (i) (b)
dar-1 1 1
i = (—=1)"1 - - 1
G ilga (DT Dig {(z—z)" (w+i)”}
Write z+1i = p(cos ¢ +isin @),

so that = pcos @, 1 = psing and p = /(1 +2%), ¢ = cot-1x. By de Moivre’s
theorem,
= p~*(cos $ +1isin @)~* = p~"(cosnd —isinng)

(z+7)"
and (;—_11’7 = p~"(cos ¢ —isin §)—* = p~"(cosng +isin ng).
dn-1 1 s (n l)
den g = (—1)*1-———sginng,
i.e. FO(@) = (= 1)1 (n—1)! (1 4 2%)~}"gin (n cot—1z).

6.62 Theorem of Leibniz on the nth derivative of a product
If f(x) = uv, where  and v are functions of x whose successive

derivatives are known, then f®(x) can be found by the following

theorem. Write
dru dr r
— (uv).

ur=%d vf:d?r’ (uv)’=dx’

Then
(uwv), = Up v +"C LUy, +"Cotty o0y + ... +"Cothy _ 0, + ... + U,

This result has already been verified when n = 2, 3 in Ex. 3 (b), no. 17.
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Proof by Mathematical Induction. (The general principle is explained
in 12.28.)

Suppose the result is true for some particular value of n, say
n = m. Then

(W), = Uy v+ "0y %y 101+ oo +™Cp Uy WU+ oo +UY,,
d
and (u’v)m+1 = %(uv)m

= (U V3 + Vb 1) + 0 (U3 Vg + Uy, 1) + ...
+™Cy 1 (U g1 Vp + U2 ¥p)
+ "G (Up Vpgs + Up1 Op) o+ (W gy + Uy V),
= Up 1 ¥+ (L +"C) Uy 01+ oo + (PCoy +™C) Uy _p 1 ¥
+oFuvy,
= Up 1 0+ "0 Uy 0 + o Uy, Ve U,
since "Cra+ "G = "G, (r > 1)

Hence, if the theorem holdsforn = m,then it also holdsforn = m + 1.
It does hold when » = 1 (it is then the product rule of 3.2), therefore
whenn = 2, therefore when n = 3, ..., and so for all positive integers n.

Alternative proof. Successive derivation of uv (as in Ex. 3 (b), no. 17)
shows that the expression for the nth derivative will be of the form

(uv), = UV + €Uy, 101+ Cothy_oVs+ ... +Coty U+ ... +C UV,

where the coefficients ¢,, ¢,, ..., ¢, are numbers independent of u, v.
We can therefore determine these coefficients from the convenient
special case when u = 2%, » = €%* and hence uv = ¢@+92; for then

u, = a'e™®, v, =0b"eb%, (uv), = (a+b)"edtd=

and the above formula becomes

n n
(a+Db)me@td)z = 3 (c,a " €22, b7 €P%) = e@HDIZ Y (¢ .amD").
r=0 r=0

(@+byr = io(c,an-fbf).

Herice ¢, is the coefficient of a®b" in the expansion of (@ +b)*, viz.
n(C,, and the result follows.

Leibniz’s theorem is easily remembered by analogy with the
binomial expansion of (u +v)".
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Examples
(i) Find the nth derivative of x?sin x.
Taking = sinx and v = a2 we have

u, = sin(x+4rm), v, =2z, v,=2, v,=0forr>2.
Hence

:Z{;(x’sinx) = a2sin (z + $nw) + 2nasin (x+ H{n— 1) 7)
+n(n—1)sin (z+ }(n—2)m).

(ii) Find a relation between any three consecutive derivatives of sin (psin—1zx).

We first find a relation between y = sin(psin—lz), y,, and y,. By direct
derivation, ’

Y= :/lei—wa) cos (psinlx),
ie. Y14/(1 —2?) = pcos(psinlz).
Deriving again,
J1=29 2y = P gin (psin-ta)
. V=" T "= ’

S (=2t yy—ay, +p%y = 0. (@)

Now derive this equation » times, T using Leibniz’s theorem:

(1 -2 Ynia+n(—22) Yp iy +dn(n—1) (~2)y,

~TYn+1 —NYa
+p%. =0,
ie. (122 Ynra—(2n+1)2Ypyy + (P2 —n)y, = 0. (%)

This is the required relation, and it holds for n = 0.

6.63 Maclaurin coefficients from a recurrence relation

In Maclaurin’s theorem it is only the values of the successive
derivatives of f(x) at « = 0 which are required. A relation between
any three consecutive coefficients can be obtained as in ex. (i) above.

Example
Obtain the first 4 terms of the Maclaurin expansion of sin (psin=1z).
In equation (b) of ex. (ii), put = 0, and denote y, when z = 0 by a,; then
Unig+(P*—nl)a, = 0.

Hence if a,, is known, a,, ., can be found.
Now a, = sin(psin-10) = 0, so that ay = 0, a, = 0, ...; i.e. all coefficients
with even suffix are zero.

t Had the given function been sin (n sin—!z), we should say ‘derive k times’,
to avoid using n in two senses.
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Also a, = pcos(psin~10) = p;
therefore ag = (12—-p%a, = (12—p?)p,
as = (32—p?a; = (3°—p*)(1*—p*) p,
a; = (5°—p?) as = (6*—p?*) (32— p*) (1*—p%) p,
and so on. The required expansion is

N . 223 Qg "
sin (psin~lz) = gy+ g,z +— 22+ —a%+... +-7Ff""(0.t)

21 3!
5

x®
= po+ (=P p 5+ (3 =P (-2 P
x7 z"
(52— (3= p?) (1 =) P+ M 00).

This method only shows what the Maclaurin expansion would be
if the conditions of the theorem were satisfied: it does not discuss the
existence and continuity of the successive derivatives, nor does it
help us to calculate the remainder term. The method is formal, and
approximations so established may only be expected to hold ‘for z
sufficiently small’.

Exercise 6(b)
Calculate the nth derivative of the following functions.
1 cos?z [first express in terms of 2x].

- z
2 sin®z. 3 cha. pe et
5 ates. 6 x%/e®. 7 xtlogz, n > 4.
8 a%sin2x, n > 3. 9 sina sin 2x sin 3.
10 If f(z) = e®sinz, prove f™(0) = 2¥ngin (Jnw).
11 Iff(x) = logz/x, prove f™z) = (—1)*n!{logr—1—-3%—...— 1/n}x—"-1,

12 If y = f(z) = (sin—1z)/,/(1 — «?), prove that
(1—af)y,—ay =1 and fo+(0) = n2f-1(0).
13 If y = sin(logz), prove z%*y,+zy; +y¥ = 0 and deduce that
TYgiat+(2n+1)aYpsy + (PP +1)y, = 0.
14 Ify = e%27'%, prove (1+2%) Ypsp +{(2n4+ 2) 2~ B yp +0(n+ 1)y, = 0.
15 If y = tan—'z, prove (1 +x?) y, + 2zy, = 0 and deduce that
(14+22)ypret+2(n+ 1) 2y, +n(n+1)y, =0.

Hence calculate the first four non-zero terms of the Maclaurin expansion of tan—1z,
assuming that an expansion of tan—x is possible.

16 If y = (sin~'x)?, prove (1—a%)yn.,—(2n+1)ay,—ny, =0 (n>1).
Hence find the values of all the derivatives of ¥ when 2 = 0, and write down a
few terms of the Maclaurin expansion (assuming this exists).
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17 Explain why Maclaurin’s theorem cannot be applied to logz or to
sin (log z).
Verify the following expansions.

m2x2 mnr—lxn-1 npn

— mo
18 em™* = 14+mzx+ 2 +...+ =D + o emoz,

n—1

19 log(1+x)=x_¢x2+§xs—...+(—1)n:_1+‘(—1)n+1%(1+0x)—n.

x3 5

0 x et N x2k+1 0
2 smx—x—§+ ves ].) (210_1—)-; ( 1) M)—'COS( .’E).
x? ot x? 2k
=l . P A
21 cosz =1 2!+4' et (—1) o +(—1)* (2k)|cos(0a:)

2 (14apm = 14met ™0 p, =D (m—nt3)
21 (n=1)
=) = n+1)x"(1+0x)"'—”.
n!
h? hd
*23 sin(x+h) =sinx+hcosx—2-'sinx——ﬁcosx+...
, bt ) h2n o
P DY 0 SR —1)r i .
+(-1) (2n_1)!cosa:+( )(2n)!sm(ac+ )
Give the corresponding formula up to A2#+1,
2 3
*24 cos(r+h) = cosx— hs1nm—’2z—cosx+gi'smx—
2ﬂ—-1 hﬁn
+(— 1) ————sginz +(~—1)"—— cos (z + Oh).

(2n—1)1 (2n)!
Give the corresponding formula up to A27+1,
25 Writing a® = e*1°2¢ (g > 0),.obtain an expansion for a®.
Verify the following approximations * for x sufficiently small’.
26 tanz = z+ 1%+ %25, [See Ex. 3(b), no. 10.]

27 sin~lx = @+ 3ad + b, 28 eCos® == g (1 — fa? 4 xt).
29 secw = 1+ $a?+5at, 30 s_i_nx—w= 14 32 + 5ot

*31 Prove the second mean value theorem by one application of Rolle’s
theorem to the function ¥(x) = f(b)—f(z)—(b—2)f (x)— A(b—=)% choosing
A so that Y¥(a) = '

6.7 Further applications of the mean value theorems
6.71 Turning points; concavity, inflexions

(1) The second mean value theorem can be written
Jla+h)—f(a) = hf'(a)+ 303" (a+60k) (0 <O <1).

16 GPMI
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For 2 = a to give a turning value of f(x), f(a + k) ~ f(a) must have the same sign
for all & sufficiently small, positive or negative (3.62). This can be so only if
f’(a) = 0, otherwise the right-hand side would change sign with h. Hence

fla+h)—f(a) = 3h*f"(a + 6h).

If f”(a + Oh) is positive for all h sufficiently small, then f(a+ k) —f(a) > 0 for
all such 4, and hence z = a gives a minimum. If f”(a+ 0h) is negative, we
similarly find that x = a gives a maximum.

If f”(x) is continuous at x = a, then f"(a+6h) - f”(a) as h - 0, and hence
f"(a+06h) has the same sign as f”(a) for all & sufficiently small (assuming
f"(a) + 0). Hence if f”(a) > 0, z = a gives a minimum; if f”(a) < 0, it gives a
maximum. These results agree with 3.65, but here we have assumed more
about f"(x).

(2) Definition. A curve is concave upwards at P if, in the neigh-
bourhood of P, it lies*above the tangent at P (fig. 63).

If f"(x) 18 continuous at x = a, the curve y = f(x) is concave upwards
or downwards at x = a according as f"(a) Z 0.

yl}

R p———

Y

Fig. 63

Near P we have by 6.42, Remark (f) that
ordinate to curve —ordinate to tangent = 1A%f"(a + 6h), 1)

and this expression has the same sign as f”(a) for all » sufficiently
small since f”(x) is continuous at # = a. The result follows.
CoROLLARY 1. At a point of inflexion the concavity changes sense.
For by 3.71, f"(x) changes sign as z increases through a point of
inflexion.
COROLLARY 2. At a point of inflexion the curve crosses its tangent.
For f”(a + 6h) has opposite signs when % 5 0, so that the difference (i)
changes sign as z increases through o (fig. 64).

(3) The preceding results ean be generalised by using Taylor’s theorem.
1. Iff'(a) = 0, and f*(zx) is continuous at x = a and is the first of the derivatives
of f(x) which 18 non-zero at x = a, then:
(i) if n 48 odd, there is no turning point at x = a;
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(ii) 4f n is even, there is a maximum at x = a if f™(a) < 0, and a minimum if
J™(a) > 0.
For from the hypothesis,

h®
fla+h)—fla) = = f"(a+0h),

and the results follow immediately from the definitions in 3.62.

IL. If f*(a) = 0, and f*"™(z) 18 continuous at x = a and s the first of the deri-
vatives of f(x) of order greater than 2 which is non-zeroat x = a, thenx = a is a
point of inflexion of f(x) if and only if n is odd.

Applying Taylor’s theorem to f’(z), we have by hypothesis:

Sfla+h)—f'(a) = f‘”’(a +6h).

—nt

Hence f’(x) has a turning point at # = a if and only if n — 1 is even, i.e. n is odd.
The result follows from the definition in 3.71.

6.72 Closeness of contact of two curves

Geometrically, 6.53 shows that in the neighbourhood of = = a, the
closeness of the curve y = f(x) to the polynomial approximating curve
(w a)

f =1 a) (1)

is measured by (z—a)*f®™(£)/n!; in pa,rtlcular, Hxz—a)? f"(§) mea-
sures the closeness of the curve to its tangent (cf. equation (i) above).

If two curves y = f(z), y = g(x) have a point P in common where
x = a, we now consider how their closeness near P can be defined. If
they merely iniersect at P, then f(a) = g(a). If also f'(a) = ¢’(a), they
have the same tangent and are said to touck at P. If further
f’(a) = g"(a), they have the same quadratic approximating curve.
In general—

Definition. If m is the largest integer for which the two polynomial
approximating curves of degree m are the same near P, then the given
curves are said to have mth-order contact at P.

The necessary and sufficient conditionst for this are that

fl@)=g(@), f'@)=g'@), .., f™a)= 9‘""(“),}
but fmD(a) % gm+lg).
Remarks

(@) Iff(x), g(x) were polynomials, then by Ex. 3 (e), no. 13 (or 10.43)
the conditions (iii) show in turn that the equation fm(x) = gtm)(x)
has a simple root x = a, f™—1(x) = g-D(x) has a doubleroot z = a, ...,

y=f@)+@-a)f'(@+..+"—5=r

(1)

1 Subject, of course, to the validity of Taylor’s theorem for n = m + 2.

16-2
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and finally f(z) = g(x) has an (m + 1)-fold root = a. On account of
this it is customary to say that the curves y = f(x), y = g(x) possess
‘m+1 cotncident points’ in common at P.

(8) The above definition fails if the tangent at P is parallel to Oy,
since then f’(a), ¢'(a) would not exist and the conditions of Taylor’s
theorem would be violated; but the curves could be taken in the form
z = F(y), x = G(y), and approximating polynomials in y considered
similarly.

THEOREM. If two curves have mih-order contact at P, they cross there
1f m is even, and do not cross if m is odd.

vi

Fig. 65

For, near P, the difference of corresponding ordinates is

QR = f(a+h)—g(a+h)

= Z —{f"’(a) —g(a)}+ {f‘"‘+1)(a+0h) gm+D(a+ Oh)}

hmt
(m+1

(m +1)!
gy if (@ + Oh) — g +(a+ OR)}

by Taylor’s theorem with » = m + 1, and the conditions (iii). Assuming
that fon+l(z), gm+D(x) are continuous at x = a, the content of the
braces has the same sign as f™+9(a) —g®™+D(a) for all & sufficiently
small, positive or negative. Hence f(a+h)—g(a+h) has the same
sign for all small & if m is odd, so that the curves do not cross at P.
If m is even, the expression takes opposite signs for »# < 0 and 4 > 0,
i.e. the curves cross.

6.73 Approximate solution of equations by Newton’s method

(1) Outline of the method. Let f(z) be such that f”(x) (and hence by
3.52 also f’(z), f(x)) is continuous in @ < z < b, and suppose f(a), f(b)
have opposite signs. Then (2.65) there is a root of f(x) = O0ina < x < b.
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Let x = ¢ be an approximation to this root, and suppose the actual
value of the root is ¢ + A (h may be negative). If c is a fair approxima-
tion, £ will be small. Since f(c+#%) = 0, the second mean value
theorem gives

0 = fc)+hf'(c) + 3h2f"(c+6h) (0 <6 < 1).

Assuming that f”(c+ 6h) is not large, and that f’(c) + 0, we may
neglect the term in A2 and get

0 = fle)+Af(c),

so that & = —f(c)/f'(c). Thus, in general, a closer approximation to
the root is ¢; = ¢ —f(c)/f’(c)-

This process can now be repeated, starting with the approximation
x = ¢;, and leads (in general) to a closer approximation

fle) .

Cy = cl_m’

and so on. It is an example of an iterative process or iteration; i.e. a
process by which the accuracy of an approximation is improved by
repeating the calculation on successive previous approximations.

(2) Geometrical interpretation. The equation of the tangent to the
curve y = f(x) at the point x = ¢ is

y—fle) =f(c) (x—c).

It meets Ox where y = 0 and x = ¢—f(c)/f'(c), i.e. at = ¢,;. Hence
the approximation is geometrically equivalent to replacing the arc
of the curve for which @ < « < b by the tangent line at z = c.

For the process to be successful, the situation must be as indicated
in fig. 66, where the numbers ¢,, ¢, ... approach c+A. In fig. 67, the
approximation gets worse: the trial ¢ is too rough.

(3) Estimation of the error at any stage. Let c,, c,, ¢; be successive
approximations. Then

._f(c_l) c fles)

BTATTRE) 2T T )
fley+h)

and 63—02=—f'(c1+h)’
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where b = — f(c,)/f’(c,) and is supposed small. Then
Cy—Cy = _Jfled) +Af"(cy) + A% " (c, + O)
ey +h)
__1W(e, +6h)
flei+h)

L P
' J'(ey)

i c+h
1 Cy z

Fig. 66

S ———

Y4

o f———-

Fig. 67

by the assumed continuity of f* and f”; hence, substituting for 4,

9 pn
e -

The expression (i) will be small if

(@) f(c,) is small, i.e. if the first approximation is good;

(®) f"(cy) is small, i.e. if the direction of the curve is changing
slowly—the curve is approximately straight; and

(¢) f'(c,)is large, i.e. the curve is steeply inclined to Ox.

The method is most effective when these conditions are satisfied
near the required root. Figures 66, 67 confirm this.
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When a specified degree of accuracy is required, and (i) is small
enough not to affect the result, then c, is the approximation sought,
and c; need not be calculated at all.}

Example
Solve x +sinx = 1-5 correct to four places of decimals (x in radians).
Trying z = 1 as a first approximation, we find
sinl = 0-8415 and cosl = 0-5402,
f(1) _1+0-8416—1-5 _ 0-3415
F 1+ 0-5402 1-5402
A second approximation is therefore 1—0-2217 = 0-7783. Similarly,

J(0-7783)  0-7783+40-7022—~1'5 |
b = = — 0-0114,
F7(0-7783) 1-7120
and a third approximation is 0-7783 +0-0114 = 0-7897,
This result is in fact correct to four places of decimals; for by taking
¢, = 0-7783 in the expression (i) above, it can be shown to be of order
+2-7 x 105, and hence ¢, = 0-7897 is the required value.

80

= 0-2217,

(4) Refinement of Newton’s method.; By using a quadratic approxi-
mation for  we can improve the linear one 0 = f(c) + Af’(c). For
0 = f(c) +Af"(c) + 443" (c),

and since A% = — hf(c)/f'(c), we have

0 f0)+1 {0 -HELO),

The next approximation is therefore

1oy 3 Of ”(G)}
¢, =c—f(c €)— 1.
o= o1 [{r0-OL
It can be shown} that the error diminishes very rapidly. Taking ¢ = 1
in the above example, we should find ¢, = 0-7909, which is very near
the correct value. Taking ¢ = 0-7909 in Newton’s process, we should
reach the result.

Exercise 6(c)
Teest the stationary point & = 0 for each of the following functions.
2
*1 cosz—1. *2 ginz—z. *3 cosx—l+%.

t Without an error estimate we should have to calculate ¢; and then observe that,
to the required degree of accuracy, it does not differ from ¢g. Our estimate involves
only the previous approximation.

 E. H. Bateman, Mathematical Gazette, xxxv11 (1953), p. 96.
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8 2 4 3 5
*4 sinx-— w+?7 *5 cosx— 1+§—! % *6 sinx— m+§' :'

7 Prove that at a point of inflexion, & curve and its tangent have contact
of at least the second order.

8 Show that a root of ¢+ 52— 15 = 0 is approximately 1-6206.
9 Show that the smallest positive root of 2sinz = 1/ is about 0-741.

10 Find correct to three places of decimals the smallest positive root of
sinx = }x.

Further examples on approximate solution will be found in Ex. 13 (f).

6.8 Cauchy’s mean value theorem

6.81 For a curve given parametrically by x = g(t), y = f(t), the
gradient of the chord joining the points given by t=a, =10 is

{f(®)—f(a)}/{g(b) —g(a)}, and the gradient of a tangent is f'(f)/g’(t).
The geometrical principle is 3.81 suggests that there is a value ¢ = £

for which {f(b)—f(a)}/{g(b)—g(a)} = f'(£)/g'(§). We now prove this
under suitable conditions.

6.82 If (i) f(x) and g(x) satisfy the Rolle conditions in a < x < b,
(i) f'(x), g’ (x) are not zero for the same value of x in a < x < b,

and (i) g(b) + g(a),
then there is at least one number § for which a < £ < b and

f®)—fa) _ f'(€)
gd)—g(@) g'(€)’

Proof. Consider the function
$(x) = {f(@) —fla)} + A{g(x) —g(a)}.
Clearly ¢(a) = 0; let us choose A4 so that ¢(b) = 0:

0 = {f(6) —f(a)} + 4{g() - g(a)},
and hence by hypothesis (iii),
4 _f®-f@
9(0)—g(@)’
By hypothesis (i), ¢(xz) now satisfies the conditions of Rolle’s

theorem, so that there is at least one number £ for which a < £ < b
and ¢'(€) = 0. Since ¢'(z) = f'(x) + 4g'(x), we have

1) f(@)
7@ = L= v ®:
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We cannot have g'(§) = 0, otherwise the last equation would imply
f'(€) = 0 and hypothesis (ii) would be contradicted. Hence we can
divide both sides by g'(£), and obtain the result.

CoroLLARY. If g'(x) never vanishes in a < x < b, then hypothesis
(ii) is satisfied; and so is (iii), for if ¢g(b) = g(a) then Rolle’s theorem
shows that g'(x) would be zero between a and b.

Remarks

() The mean value theorem (6.3) is the case when g(x) = «.

(B) The result is more general than that obtained by applying the
mean value theorem to f(x), g(x) separately and then dividing. For
we should have

fO)—fl@)=(b-a)f'(€&) (@< <D)
and g®)—g(a) = (b—a)g'(§) (a<§ <),
FO)—f@) _ ['E)
gb)—ga)  ¢'(&)’
There is no reason why £, and £, should be equal, and in general
they will be different (see Ex. 6 (d), no. 1).

from which

6.9 ‘Indeterminate forms’: ’Hospital’s rules

6.91 Suppose f(a) = 0, g(a) = 0; then the function ¢(z) = f(x)/g(x) is

not defined when x = a because it takes the meaningless or ‘indeter-

minate’ form 0/0. Yet lim ¢(x) may exist: e.g. when f(z) = sinz,
z—>q

g(x) = z, a = 0. The following two rules give means of calculating this
limit when certain conditions are satisfied.

6.92 First rule
If (i) f(a) = 0, g(a) = O, (ii) f'(a) and g’ (a) exist and g'(a) + O, then
im /@) _ /'@
2g@) 7@
Proof. If x % a, then by hypothesis (i)

f@) _ f@)—fla)

g(x)  g(x)—g(a)
_f@)~f(@) | 9)~g(a)

r—a r—a

- f'(@)/g’(e¢) when z->a
by hypothesis (ii) and the definition of ‘derivative’ in 3.11, (ii).
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CoroLLARY. If f'(a) & 0 and g'(a) = 0, the conclusion is that
| f(x)/g(x)| - co0 when z - a.

Example
. l—cosz sin®
lim =—=0.
z»0 T 1

6.93 Second rule
If (i) f(e) =0, g(a) =0, (i) f(x), g(x) are continuous at x = a,

(i) lim g,,—((—::)) exists, then
i @) _ i £@)

2>ad(®)  z>ad (@)

Proof. Hypothesis (iii) implies that f'(z)/¢g’(z) exists throughout
some sufficiently small interval @ < < a+ H, i.e. that f'(x) and g'(x)
exist and g'(z) # 0 in this range (otherwise f'(z)/g’(x) would be mean-
ingless for an infinity of values of  just greater than a). If 0 < » < H,
the conditions of Cauchy’s mean value theorem are satisfied for
a < z < a+h: condition (i) since f'(x), g'(x) existina < x < a+h, and
f(x), g(x) are therefore continuous in ¢ < x < a+h, using our hypo-
thesis (ii) for # = a; conditions (ii), (iii) by 6.82, Corollary, since
g (x)+ 0fora <z <a+h.

Hence by Cauchy’s theorem and hypothesis (i)

fla+h) _f'()

@tk g0 (@< &<a+h).
When % > 0+, also £ - a+ and f'(£§)/g9'(£) tends to its limit, say I.
Hence f(a+h)/gla+h)—>1 when h— 0+, ie. f(z)/g(x)>1 when
x—=>a+.

Similarly, hypothesis (iii) implies that there is an interval

a—k < x < o for which Cauchy’s formula holds, and hence that
f(x)/g(x) — ! when x - a—. Consequently,

f@)/glx) >1 when z->a,

and the result follows.
CororLLARY. If f'(z)/¢'(x) > co when x — a, the same argument
shows that also f(x)/g(x) - co.

Remarks

(e) The conditions of the rule are sufficient but not necessary, i.e.
lim {f(x)/g(x)} may exist when lim {f’(x)/g’(x)} does not. For example,
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if f(x) = 2%sin(1/z), g(x) =z, then f(z)/g(x) = zsin(1/x) >0 when
x - 0; but f'(x) = 2zsin (1/x) —cos (1/z) (z #+ 0) and ¢’(z) = 1, so

f@)
g'(x)
and this does not approach a limit when x — 0 because cos (1/x)
oscillates,
(8) Thesecond rule can be used repeatedly, provided the conditions
are satisfied; and it can be used in combination with the first.

.1 1
= 2x8in——cos —,
z x’

Examples
i) liml—cosa:_hms_miz_v_% since hms_n_x_le
z-»0 &f x>0 22 >0 T
(We cannot use the first rule to show limsinz/r = 1 because this result
-0

was assumed when proving that the derivative of sin z is cos  (3.32): we should
be ‘arguing in a circle’. We could use the first rule to prove limtanz/r = 1

z—>0
because this last limit has not been employed fundamentally in finding
d(tanz)/dz.

—xsi -1
(i) T :cco'sx+7r=h,mcosx zsing _ —1 1
z>g ST x> cosx 1
This could also be done by the first rule.
e . 2logsecx—2a? 2tana— 2z
(iid Iim ——————— = lim ———
) z—>0 xt z->0 4a®
21
=Lm 22" by the second rule again,
z—+0 622
1 /ta
= = (_n_a_:) by trigonometry,
z—>06 z
= since lim tenz =1
z>0 ¥

The expression should be simplified at each stage of the work whenever
possible: the trigonometrical reduction eases the calculation here, as the
reader may verify by proceeding directly by rule to

200 2.
limsecw l_hm2tanxsec = ...
z-o 62 z—>0 6x

(iv) lim(1~z)tan }#z (the form 0 x o)

. z—+1
=lim ——%_ (the form 0/0)
" z>1 00t dmw

-1 2
z-»1 —3mcosect iz~ 7’
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To find limits when x — c0 we may put y = 1/x and consider the
corresponding limit when y — 0+.

«* st
(v) lim (wta.n!) = lim (tan y) , Wwhere y=1/z.
x> z, y>0+\ Y -

1y t
Put u= (t—?;—l-?—/) and consider logwu = log (a_y,n_g!) / y2.

1imlogu=lim{ y (yseczy—tany)/zy}
y—=>0 y—-0 tany y2

= lim ysecly—tany
y—0 Z2y*tany

gec?y + 2y secd y siny —sec?y

=l

,V_I,I:, 4y tany 4 2y®sec?y

. tany .

=lim ———— after reduction,

y—>08in2y+y

gec?y

=im ——%— =%,

,,13) 2co82y+1 §

Hence % -> ¢¥ when y — 0, i.e. when = —» co.

Exercise 6(d)

1 Find £, £, £, in 6.82, Remark (f), when f(z) = 2%, g(x) = «* and the in-
tervalisl <z < 2.

Calculate the limits, taken when x — 0 unless otherwise stated, of the following.

2 w, 3 2ztanxz—msecx (x - 7).
@x
4 log$1+x). 5 10”—e“. 6 _e“_“ﬂ.
sinz z log (1 +bx)
7 AT L. g tREE pl
ex —e® z—sinx x— sinz
. ‘
10 M 11 (cosz)¥=, 12 Ita,ans‘n“ (z - 4m).
x(e*—1)
13 (cosz+2sinz)cot=, 14 cotx—1/x. *15 1/x2~—cosec?z.

Miscellaneous Exercise 6(e)
Verify the following approximations ‘for x sufficiently small’.
z

1 zcotz = 1 —§a?— Zeat, 2 =

= 1— o+ F2.

3 log (?) = — ot — gt
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4 Prove that the nth derivative of cos 7z is 7" cos (72 +- 3nar). Show that the
2mth derivative of #?cos7z has the value (— 1)™+172m~2(7% 4 2m — 4m?) when
z=1.

5 Ifmy=1and m, = m(m—1)(m—2)...(m—r+1)/r! (r £ 0), prove that
My Mg+ MWyp_y Ny + My_g Ny + ... + My = (M +-n),

for all values of m, n and any positive integer r by deriving the identity
Z™.x" = z™+" r times by Leibniz’s theorem.

Calculate the limit when x — 0 of each of the following.

6 eslnz_ 1 o x2shz 3 2z — 222 —log (1 + 2x)
I (L+a%)t—(1—a3)* a?tan-lg )
1 2
9 1{cosetm:zc-———}. 10 (cosx)cot's,
x mx

11 Apply the second mean value theorem to e? to prove that e > 1 +z (x ¥ 0).
12 Apply Maclaurin’s theorem to prove that, when n is odd,

2 n
> 142ttt (2% 0);
2! n!

and that if n is even this result holds for z > 0, while for # < 0 the inequality
is reversed.

fla) g(a) h(a)
In nos. 13 and 14 d(x)=| fb) g(b) h(d)
flx) g(x) h(x)

*13 If f(x), g(x), h(x) satisfy the Rolle conditions for @ < z < b, apply Rolle’s
theorem to ¢(x) to prove that there is a number £ for which a < £ < b and

fl@) gla) h(a)
f®) g(d) h(d) |=0.
F&) g€ wE)
Deduce (i) the first mean value theorem; (ii) Cauchy’s mean value theorem.

*14 Iff’(x), g'(x), h'(x) satisfy the Rolle conditions fora < z < b,anda < ¢ < b,
prove by considering the function
(x—a)(x—0b)

F(z) = ¢(x)— (6—a)(c—b)
that there is a number £ for which a < £ < b and
$(c) = Hc—a) (c—b) §*(£).

*15 By taking g(x) = z and A(x) = 1 in no. 14, prove

f(c) _f(a) =..f<b) —f(a)_ %(b—c)f’(g)'

c—a b—a

$(c)

The value of f(z) is known when z = a and when z = b, and the value at an
intermediate point & = ¢ is calculated approximately by the ‘rule of pro-
portional parts’ (see 13.71). Prove that the error in the value thus found does
not exceed }(b—c)(c—a)M numerically, where M is the upper bound of
|f"(z)] fora <z < b.
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*¥16 (i) If f’(x) satisfies the Rolle conditions in a—h < 2 € a+h, prove by
considering the function ¢(z) = f(x) — Az — Bx? that there is a number £ for
whicha—h < § <a+h and

fla+h)—2f(@) +f@a—h) _
h?

FA((32

[Choose A4, B so that ¢(a—h) = ¢(a) = ¢(a+h), and apply Rolle’s theorem for
a—h<zx<aandfora<axz<a+thl]

(ii) If also f”(x) is continuous at x = a, deduce that
i @+ 1) = 2f(@) +f(a—)
h->0 h?

*17 Apply Cauchy’s mean value theorem to the function F(z) defined in
6.54(1) and G{(z) =(b—=x)?, 0 <p <n, to obtain Taylor’s theorem with
Schlémilch’s remainder.

= f"(a).
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7

INTEGRATION AS A
SUMMATION PROCESS

7.1 Theory of the definite integral

7.11 ¢Area under a curve’

In 4.14 we gave an account of the process for calculating the area
under a continuous curve y = f(x). It is now desirable to re-cast the
argument.

Suppose that the area under y = f(x) between x = a and z = b is
divided into n strips by ordinates through the points

T =2y, Ty oeey Tpgs
where 0<Xy <Xy < ... <Tp_y<Db.

(The points need not be at equal distances apart.) It will be con-
venient to write z, for a, z, for .

Referring to fig. 68, suppose M corresponds to x = z, and N to
Z = %,,,. Then the area of the strip PMNQ lies in value between the
areas of the rectangles PMNR and SMNQ, viz.

f (xr) (xr+1 - xr) and f (xr+l) (xr+1 - 11?,.).
Hence the total area under the curve lies between the sums of the
areas of all such ‘inner’ and ‘outer’ rectangles, viz.

n—1 n—
3 @) =) and E ) @az). O

Geometrical intuition leads us to expect that, as we make the divi-

- sion of the given area gradually finer by increasing the number of

ordinates and consequently decreasing the width of each strip, the
sum of the corresponding outer rectangles will approximate to the
required area ‘from above’, and the sum of the inner rectangles will
approximate to it ‘from below’. That is, as 7 — co and the width of
each strip tends to zero, the sums (i) will tend to a common limit
which is the required area.

For a steadily falling graph like fig. 69, the rectangles PMNR,
SMNQ have respective areas f(z,.,)(%,,,—2,) and f(z,) (z, 11— )
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but the required area still lies between the two sums (i), and the argu-
ment is essentially unchanged.

For a curve like fig. 44 of 4.14 (a mixture of parts like figs. 68, 69)
some of the strips will be like that shown enlarged in fig. 70. The area
of this strip still lies between the areas of the inner and outer rectangles
R'MNR, SMNS’, although their heights are no longer f(x,), f(x,.,)
but the least and greatest values of f(x) in the range z, < z < #,,,.
If f(x) is continuous, we know (6.1, Property (2)) that these are attained
at points x = £,, 9, in the range, and the areas of the rectangles are

f (5,) (xr+1 - r) and f (ﬂr) (:L‘,.+1 _xr)'
v

y

Fig. 68

The total area then lies between the two sums

n— n—1
SHE) o=y S 10) =), (i)

where z, < £, < %4, %, <9, < @, for each r=0,1,...,2—1; and
we expect it to be their common limit when n — co and each difference
Zpyg— 2, —> 0.

We pause at this stage to re-emphasise (cf. 4.16 (1)) that the dis-
cussion given so far assumes that we know what is meant by ‘the
area of a strip’ and ‘the total area under the curve’. Although in
elementary work we have definitions of the term ‘area’ as applied to
figures bounded by straight lines, we have not yet stated precisely
what is to be understood by ‘the area’ of a figure bounded by one or
more curves. The preceding considerations are therefore only sugges-
tive, and are based on ‘what seems reasonable’.

Although we would not so readily associate an ‘area’ with a curve
having one or more discontinuities like that shown in fig. 71, the same
argument as before can be begun. The heights of the inner and outer
rectangles are now m,, M,, where these numbers are the lower and
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upper bounds (see 6.1) of f(z) in #, < < #,,,. (In this figure, M, is
actually a value of f(z), but m, is not because the function is not
defined at the discontinuity.) The inner and outer rectangles now
have areas
mr(xr+1 - :L‘,.), M(xr+1 - x,),
and we may consider the sums

n— n—1
8 =8 m =), 8 =S Wt —2) i)

which may be called lower and upper sums for the function f(x) over
the range a < z < b.

S _____ ‘_g ’ S __m Sl

P/ / ph Q
P\ e ;
! |

R’ _+_ R /‘\
} R R
|
1
1
1
!

My, §E N M N

Fig. 70 Fig. 71

7.12 The lower and upper sums

There is nothing vague about the sums (iii): we have obtained them
by (@) taking a subdivision of the range @ < < b by n—1 points
Z; < %y < ... < Zp_y; (b) taking the lower and upper bounds m,, M,
of f(x) in , < x < @,,,, for each of these subintervals; (c) adding up
the products like m,(x,,, —«,) corresponding to each subinterval, to
obtain the sum s, and similarly for S. We may therefore consider these
sums quite independently of any notions of ‘area’ (although we may
visualise them geometrically as sums of areas of rectangles associated
with the curve y = f(x) and the points x = a, z,, =, ..., 2,_;, b).

We remark first that, given f(z), there is still plenty of choice in
the way in which we can construct s, S: the number n— 1 of points
chosen can be as large as we please and (subject only to the restriction
@ < T < Ty < ...<®&_; < b)the points themselves can be arbitrarily
placedina < x < b. Thuss, S depend on n, the number of subintervals;
and even when 7 is assigned, both depend on the numbers z,, x,, ...,
%,_;. We express this by saying that s, S are functions of the subdivision
{1, 25 sz} of @ < 2 <D

17 GPMI
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When we vary the subdivision, s and § will in general vary. We
may ask (in view of the intuitive considerations in 7.11) what happens
to s and § when »—> co and each subinterval tends to zero. This
question was considered by Riemann (1826-66), and we shall state
the answer without proof (because this would involve fundamental
theorems on bounds of a function, and would take us too far afield).
It can be proved that, provided f(x) is bounded for a < = < b, there are
numbers j, J such that, when n — 00 and each interval of the sub-
division tends to zero, then s -jand § - J; and j < J.

Definition. If j = J, then f(z) is said to be infegrable in a < x < b
(tn the sense of Riemann).

In this case the sums like s and the sums like 8 have a common
limit, viz. § = J. It is then natural (in view of the discussion in 7.11)
to define the area under the curve y = f(x) between z = a, x = b to be
this common limit. Thus, if the lower and upper sums possess a common
limit, there is defined thereby an ‘area’ under the curve y = f(z);
if the limits are different, then the term ‘area’ remains undefined.

It can be proved that we certainly have j = J whenever (i) f(x) is
boundedinea < < band continuousina < x < b; or (ii) f(z) is bounded
and either steadily increasing or else steadily decreasing in @ < = < b.
That is, every bounded continuous function and every bounded monotonic
Sfunction is integrable; and the corresponding curve has associated
with it an area in the sense just defined.

7.13 Definite integral defined arithmetically

In 4.14 we inferred (again intuitively) that the ‘area function’ 4(x)
satisfies the differential equation d4/dx =y when y = f(x) is con-
tinuous in @ < x < b, and we concluded that the expression for the
total area AHKB (fig. 44) was

[ [rwa=], (iv)

b
which we took as the definition of f f(x) dz. We therefore expect some
a

close connection between the common limit of the upper and lower
sums of a continuousfunction, and the definite integral of that funection.

We remind the reader (cf. 4.16 (2)) that our definition (iv) of a
definite integral has a logical defect: it depends on the concept of an
indefinite integral or primitive function ¢(x) = f fx)dz of f(z), ie. a
function @(x) whose derivative is f(x). Unless we can actually find
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@(x) explicitly, we cannot be certain that such a function even exists;
hence any attempt at obtaining general properties of definite integrals
(as in 4.15) would be hampered by ignorance of circumstances under
which the integrals themselves have a meaning.

To give an independent account of the definite integral it is best

b
to actually define the symbolf f(z)dz to be the common limit (when
this exists) of the upper and lower sums of f(x) over a < z < b. If

a = b, we define Jm f(x)dx to be zero, and if @ > b we define
a

f: Fl@)de = — L * fla) de.

(This agrees with 4.15, properties (1), (2).)

With these definitions, the other general properties of definite
integrals given in 4.15(3)—(11) can all be established. We now prove
those required for carrying out the programme outlined in 4.16 (3).

7.14 Properties; existence of an indefinite integral

We shall suppose that f(x) is integrable in ¢ < x < b and has bounds
m, M.

b
(1) f J(x) dx Ties between m(b—a) and M(b—a). (Cf. 4.15(10).)
First suppose b > a. Since M, < M and m, > m for each r, hence
-1 n—1 :
§ = nE My, —~7,) and 8= 3 Mz, ,~=,) both lie between
r=0 r=0
ME(#, . —2,) = M(b—a) and mZ(z,.,—z,) = mb—a). Hence the
common limit of s, S also lies between these numbers:
b
m(b—a) < J f(@)dx < M(b—a).
a
If b < a, apply the result just proved to Ja f(x)dx, multiply the
b

inequalities by —1, and use the definition of fb f(x)dx when b < a.
We get " ‘
Mb-a) < J;f(x)dx < m(b—a).
If a = b, the result is trivial.

CoroLLARY. If | f(x)| < K fora < x < b, then
For K is the greater of |m|, | M|.

f:f(x) dx

< K®-a).

15-2
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(4 b b
(2) Ifa<c<b, f flx) dx+f fx)de = f f(x)dz. (Cf. 4.15(3).)

This property (at first sight rather obvious) is proved by taking ¢
as a point of the subdivision of @ < # < b. We omit the details.

(3) Definite integral as a function of its wpper limit. According to its
b

definition as a limit of sums, the definite integralj f(x)dx of a given
a

function f(z) depends on a and b, but not on the variable x: cf. Remark
(B) of 4.15. We now allow the upper limit b to vary, and consider the
function z
F) = [ 10,
where a is still regarded as fixed. ‘
I. F(x) is continuous ina < x < b. (Cf. 4.15(6).)
Let a@ < ¢ < b and suppose 2 > 0. By (2)

[Mro@= [1oa [T s

. ct+h
80 Fc+h)—F(c) = J; f(t)dt. (v)

The bounds of f(t) in ¢ < ¢ < ¢+h cannot exceed the bounds m, M
of f(t) in the whole interval @ < ¢ < b. Since & > 0, (1) gives

mh < F(c+h)—F(c) < Mh.

When % — 0+, this shows that F(c+ k) - F(c).

Similarly, if @ < ¢ < band & < 0, we can prove that F(c+ k) - F(c)
when k- 0—. Hence F(x) is continuous in a < x < b, even at the
end-points.

II. Ifa < ¢ < band f(x) is continuous at x = c, then F(x) is derivable
at x = ¢, and F'(c) = f(c). (Cf. 4.15(7).)

Given € > 0, there is a number # such that, when c—7 <¢ < c+7,

PO-fel <eie go)_c < f) <o) +e
and hence the bounds of f(¢) for this range lie between f(c) +e. If
0 < |k| < 7, then by (1)

fc+h ft)dt lies between h{f(c)—e} and A{f(c)+e},

so that by (v)

F—(ﬁ}%——F(—c ) lies between f(c) €,
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ie. F(c+h}1—F(c) _f(c)l <e
Hence lim Fle+h)=~F() = f(c).
>0 b

II1. If $(x) possesses a derivative f(x) which is bounded ina < x < b
and is continuousina < x < b, thenfxf(t) dt = ¢p(x)—p(a)fora <x < b.
a

By II, F'(z) = f(x) for @ < z < b; and by hypothesis, ¢'(x) = f(x)
fora < x < b. Hence F'(zx) = ¢'(x) fora < x < b.

By 1, F(x) is continuous for ¢ < = < b; and since by hypothesis
¢'(x) exists fora < < b, ¢(x) must be continuous fora < x < b(3.12).

Hence by 3.82, Corollary, F(x)—¢(x) is constant for a < z < b.
Since F(a) = 0 by definition (7.13), we find on putting x = a that this
constant is — ¢(a). Hence F(x) = ¢(x) — @(a). (We now see that F(x)
is the ‘area function’ A(z) of 4.14.)

(4) Remarks on Theorems 11, I11.
Theorem II shows that, when f(x) is continuous in @ < x < b, then
in this range it is the derivative of anotherfunction, viz. F(x) = fz f@)dt
a
(which certainly exists if f(x) is continuous); i.e.,
dy _
dz
Theorem ITIshows that any function which satisfies d{¢(z)}/dx = f(x)

in a <z < b differs from F(z) in @ < z < b by a constant at most,
and that

f(x) is satisfied by y = F(z).

[(@132 = 60~ $@ = 91t = | freras].

which is what we took as a definition in 4.15.

Thus, by starting from the precise idea of lower and upper sums, our
theory of definite integrals does not depend on whether we can find
another function f f(x)dx having the given f(x) for derivative, but
(subject to the continuity of f(x)) actually defines such a function F(x).
This situation has been illustrated in 4.31 where, in order to in-
vestigate fx—ldx (i.e. a function satisfying dy/dxz = 1/x) we first

T
examined the functionf t—1idt.
1
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We conclude with two statements which may surprise the reader.

(i) The definite integral (as a limit of sums) may exist even when there is no
function having f(x) for derivative in a < x < b. (Of course f(z) could not be
continuous in such a case, by II above, but yet it may be integrable, i.e.j = J.)

(i1) If g(x) has a derivative g’(x) at each point of a < 2 < b, then g'(x) is not
necessarily integrable in @ <« < b.
Examples to illustrate these statements can be constructed, but not easily.

7.2 Definite integral as the limit of a single summation
7.21 Let the interval @ < # < b be divided by the points
Tg=0 <X <3< ...< T, 1 <b=1,

and let £, be any number such that z, < &, < z,,, foreachr = 0,1, ...,
n— 1. Then, if m,, M, are the bounds of f(x) in z, < z < x,,,, we have
m, < f(§,) < M,, so that

n-1 n—1 n—1
r§0 mr(mr+1 - xr) < ,Z:of (gr) (xr+1 - xr) < rEOM(xH-l - xr)’

n—1
ie. LS rgof(gr) (@p1— r,) < S.

b
If f() is integrable, then s and S tend to the common limitf f(x)dx
a
when n — oo and all the differences z,; —«, - 0. Hence

Ef (gr) (xr+1 - wr)

tends to this same limit; i.e.
n—1 b
lin'S, A€ @0 =) = [ f&)do.
r= aQ

This result will be of practical importance to the reader. The point
to grasp is that the limit of a summation of the above type (which
arises in calculation of areas, volumes, arc-lengths, centres of gravity,
etc. discussed later in this chapter) is a definite integral.

7.22 Some definite integrals calculated as limiting sums

b
@) f adzx, b > a.
a
Divide the range @ < z < b into n intervals each of length 7 (the calculation
is simplified by choosing equal intervals); then
z,=a+h, zy=a+2h, ..., T, ,=at+(n-1)k,
and nh =b—a.
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Again for simplicity, choose £, = z, in each interval. Then the sum to be
considered is

-1
nzox,.h =hla+(a+h)+(a+2h)+... +{a+(n—1)A}]
re=
=hna+h{l+2+...+(n—1)}
= h[na+4n(n—1)k] by summing the A.Pp.,

) 1

1
=(b—a)[a+§(b—a)(l—;)]
> (b—a)[a+3(b—a)] when n ->co.

szdx = limnf]lx,.h = }(b—a)(b+a) = Hb2—a?).
a r=0

> v
(ii) f z3dx. By proceeding similarly, we consider
a

n—1

Zoxf,h = h{a®*+(a+h)2+... +{a+(n—1) A}?]
’ = B{na® + {1+ 2+ ...+ (n— 1)} 2ah+ {13+ 23+ ... + (n— 13} 3]
= Anat+n(n—1)ah+}n—1)n2n—1)A3] (sce 12.24(2))

- nh[a2+anh(l —;1;) + $nth? (l —%) (2"71,,)]
= (b—a)| a®+a(b—a) (1—%) +%(b‘“)2(1_%) (2—%)]

- (b—a)[a®+a(b—a)+4b—a)’] when n - .

b -
f 2?de = umnzlzgh = Hb—a) (b +ab+a?) = }(b*—a?).

a

(iii) f €**dg. This is the limit of
h[eka +eMaim 4 ek{a-’-(n—l)h)]

= hets[1teMh 4 .., fen-1EA]

nkh __
= he"“im_ by summing the a.rp.,
et gts
= h—é—ﬁ——_l_ since b =a+nh,
1 1
Z(e*b — gka < (ekb ~ gka
k(e e ) 1~ k(e €ka)
when % - 0, since lim —— = 1 (Ex. 4 (f), no. 19). Hence

>0 €

b 1
f ek dy = — (ekb — gka),
a k
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b
(iv)J‘sinxdx.
a

We divide the range into equal intervals of length h, but here it is most
convenient to take &, at the middle of the interval z, < z < x,,, i.e.

Er=a+(r+i)h

Then
n—1
Zosin (@, +3R) .k = h[sin(a+3h) +sin (a4 3h) + ... +sin{a+ (n— 1) A}
r=
-
= ik [cosa—cos (@ +nh)]
by 12.27(1), and hence the sum considered is

1h
sin 4

(cosa—cosb) > cosa—cosb when h—>0.

b
f sinazdx = cosa—cosb.
a

b
(v) J‘ zndz, m+—1,0<a<b.
a

Instead of dividing the interval @ < # < b by points whose z-coordinates
are in A.P., a8 in exs. (i)-(iv), we now divide it by points

x, =ar, ©,=ar?, .. X, ,=ar*?
in ¢.p., where b = ar® (Wallis’s method). Taking £, =z, (s =0, 1,...,n—1),
n—1
Z (@41 — T,) = a™ar —a) +a™r™(ar? —ar)
8§=0

+amr?™(ar® — ar?) + ... + o™ -Dmgrn — grn-1)

= am+l(¢ -1+ ol p2mil 4 4 ,r(n—l)(m+1)]
1-— r(m+1) n

=amir—b

b m+1

= amHi(r—1) {1 - (—) }/(l—r”'"‘l)
a

_ {bm+1_am+1}/l_rm+1

When n — oo, then 7 - 1 by 2.76, (i), and (1—7"+1)/(1—7r) >m+1 (e.g. by
P’Hospital’s first rule, 6.92). Hence

by summing the a.P.,

1—r °

fb amdr = 1 (bt —qmt1),
a m+1

These examples show that even the simplest integrals require quite a lengthy
calculation. The practical importance of 7.14 (3), Theorem ITIt is that it relates
integration (a summation process) and the process inverse to derivation: if
we know a function ¢(x) such that ¢’(x) = f(x) under suitable conditions, then
the value of the limiting sum can be written down as ¢(b) — ¢(a), and the tedious
calculation from first principles avoided.

1 The so-called ‘fundamental theorem of the integral calculus’.
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7.23 Formula for change of variable in a definite integral

b
In 4.22 we obtained a formula for evaluation of f [(z) dz by the substitution

a
x = g(¢). We now prove it as a further illustration of the use of limiting sums.
Let a = g(a), b = g(f). We assume f(z) is continuous in a < z < b, that g(¢)
is continuous in @ < ¢ < f, and that ¢’(¢) is continuous in & < ¢ < f. We also
assume that g(f) is an increasing function in a <t < f. Divide a <t<f
into subintervals by ¢,, ¢,, ..., £,_;, where

A< <t <..<tl,,<B,
and let the corresponding values of z be x;, Z,, ..., £,_;. Since g(¢) increases,
O<T <Ty<...<Tp_y<b.
By the mean value theorem
Tpy1 =2y = (b1 — 1) 9'(Ty), @

where t, < 1, <t,,,. Let & = g(7,); then z, < £, < z,,,, and
n—1 n—1
Eof (&) (@41 —2,) = Eof 9T} 9(70) (Bpa—1)-
r= r=

b
The definite integralf f(z) dz is the limit of the left-hand sum when n — o

a
and all the differences z,,, —a, - 0. Since g(¢) increases, g’(f) > 0ina <t < f,
and hence g'(,) > 0. Therefore, if either of =, ., —z,, ¢,,,—¢, tends to zero, so
does the other, by (i). From the hypothesis, f{g(¢)} g’(t) is continuous; hence

p n—1
f Hg(t)}g'(¢) dt = lim Zof{g(fr)} g1 (trsa—2)
« r=

when n - oo and all of ¢, ., —¢, - 0. Thus

b B
[ [ raemawa.
a &
If g(2) decreases from b to a as ¢ increases from « to S, then to the subdivision
A<ty <t <.<tlpy<pB
corresponds b>zy>2y> ... >2,.,> a5
and since ¢, < 7, < {,,,, we now have x, > £, > z,,,.
b n—1
[ 1w e = 10'S 116) @y
a r=0
= —limZf{g(7,)} 9'(T;) (tr11—1,)

Y]
= - f Fan g de
P @

= f “He@)g'(0)dt Dy definition,
8

The proof emphasises the need for g(t) to be steadily increasing or steadily
decreasing in o < ¢ < f, otherwise the points z, corresponding to ¢, would not
be in order, nor would the statements w,,, —2, - 0, t,,;—% - 0 imply one
another since g’(7,) might be zero. Compare the Remark at the end of 4.22.
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Exercise 7(a)*

Assuming the functions are continuous, prove the following properties (nos. 1-5)
Jrom ‘Limiting sums’.

b b
1 f kf(x)dx =k f f(z) dz, k being constant.
a a
b .
2 If f(x) = 0 for a <z <b, then f fx)dx = 0. [Em(z,,,—2,) cannot
a

be negative.] . . ,
3 Iff(x) = g(z)+ h(z), thenj f(x)dx = f g(z) dac+f h(z)dz. [Use 7.21.]
a a a

b (/3
4 Iff(x) =2 g(x)fora <z <b, provef fx)dx = f 9(z)dz. [Use nos. 2, 3.]
a a

5 Ifbf(m)dz( < fb |f(z)| dz. [For if o = Zf(£,) (2., —2,) and
a a .
o= Zlf(gr)l (xr+1—mr)’

then |o| < T because all terms of & are positive but all those of o may not be.]

b
6 Prove thatdixf f@)dt = —f(x) fora <z < b.
x

. a+h
7 Prove lim %{f(a+z)+f(a+2h)+...+f(a+h)}]=}l—; * f(z)dz.

n—>0 n a

(This generalises the idea of the ‘average of n numbers’ to that of the ‘mean
value over an interval’ of a function of a continuous variable z.)

~ nzl ] n 1/n 1 dx
i —_—= . b = .
8 Prove 3:_1:0”,.50 n? 472 im [ n2 412 z 1+ (r/n)? - fo 1422 ]

7.3 Approximate calculation of definite integrals

7.31 When the indefinite integral of f(x) is not known, we may resort to approxi-
b

mative methods to calculate | f(x)dwx, where a, b are given numbers. Since a
a

definite integral measures and is represented by a plane area, we may con-
veniently give the following discussion in geometrical language.

The crudest method of estimating areasis by ¢ counting squares’; thisrequires
the curve to be drawn on squared paper. The method is useful when the curve
itself is given but its equation is not known. When the equation of the curve is
known, the following methods are less tedious.

7.32 Trapezium rule

Divide the given area into = strips by n+1 equally spaced ordinates
Y1s Yas -+ +» Yn4a &b distance k apart. Let PM, @N be two consecutive ordinates
(fig. 72). The method replaces the arc PQ of the curve by the chord PQ and uses
the area of the trapezium PMNQ, viz. $h(PM +QN), as an approximation to
the area of the strip. The required area is thus approximately the sum of all
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the trapezia formed by joining the tops of consecutive ordinates by straight
lines, viz.

Wy +92) + 3(Ys + ys) + 3h(ys +Y0) + ... + Y+ Yura)

= h{EY1+ Yni) + e+ Ys+ ... +Ya)}
Hence the rule is:

Divide the given area into strips by any number of equidistant ordinates. Take
theaverageof the first and lastordinates, and add this to the sum of the other ordinates.
Multiply the result by the distance between consecutive ordinates.

When the curve is concave down (6.71(2)) the rule clearly underestimates
the area because the chords lie below their arcs. For a curve concave up, the
rule overestimates.

Q ,
v 4 R__
P Q
P
% Ye Ys
h h
0 M N @ M 0 N x
Fig. 72 Fig. 73

7.33 Simpson’s rulet

Instead of approximating to the curve by straight lines, we now use parabolic
arcs.} First, suppose PM, QO, RN are three equidistant ordinates to points
P, @, B on the given curve. We may choose coordinate axes so that Oy is along
0Q. Let PM = y,, Q0 = y,, RN =y, (fig. 73).

We can choose the constants a, b, ¢ so that the curve y = ax?+ bx + ¢ passes
through the points P(—h,y,), @0, y,), R(h,y,); for these requirements lead to
the following three equations for a, b, ¢:

Y1 = ah®—bh +c,
Ys=¢ (i)
Ys = ah®+bh+c.
We approximate to the actual arca PMNR under the given curve by finding
the corresponding area under the parabola y = ax?+ bx + ¢, viz.
fhh(am“+bx+c) dz = [}ax®+ 3ba® +cx)t

= $ah? + 2ch. (ii)
From equations (i)
Y1+ Ys = 2ah®+ 2¢ = 2ah®+ 2y,,

so 2ah? = y; +ys — 2y,

t+ Thomas Simpson (1710-61).
1 This title is justified by Ex. 16(e), no. 4.
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Hence by (ii) the area under the parabola is

Yy, +ys — 2ya) + 2Ry, = (Y1 + 4y + ¥s)- (iii)

This area is of course independent of any choice of position for Oy: we took the
y-axis along OQ merely for convenience in calculation.

If we divide the given area into any even number of strips, say 2n, by ordinates
Y1s Y5 -+o» Yany1 equally spaced at distance h apart, we can apply (iii) to con-
secutive pairs of strips and hence approximate to the required area. We obtain

(Y1 +4ya+9s) + 3y + 4ya+ ys) + oo+ PlYan—1 + Wan T Yonia)
= Y1+ Yonsa) F2Ys + Y5+ oo +Yona) F MY+ Y+ o+ Y2}

Hence Simpson’s rule:

Divide the given area into an EVEN number of strips by equidistant ordinates.
To the sum of the first and last add twice the sum of the remaining odd ordinates
and four times the sum of all the even ordinates. Multiply the result by % of the
distance between consecutive ordinates.

Example
2
C'alculatef d?x using (1) the trapezium rule; (ii) Simpson’s rule.
1

The curve concerned is y = 1/z. We will take 10 strips, at intervals of 0-1
apart. Using tables of reciprocals, we calculate y,, ¥, ..., 91, 88 follows.

First and
x last ordinates Even ordinates 0dd ordinates
1 =1
11 Yy = 0-9091
1-2 yg = 0-8333
1-3 y, = 0:7692
14 s = 0-7143
15 Y = 0-6667
1-6 Yy, = 0-6250
1.7 ys = 0-5882
1-8 Yy = 0-5556
19 Y10 = 0-5263
2 Yu =035 .

T 15 3-4595 2:7282

The work has been set out so as to be used more conveniently with Simpson’s
rule.

(i) By the trapezium rule,
area = () x 15+ (3-4595 + 2-7282)} = 0-694.
(ii) By Stmpson’s rule,
area = 35{1-5+4 x 3-4595+ 2 x 2-7282} = 0-693.
The value correct to 6 places of decimals is 0-693147.
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Exercise 7(b)*

1 dx
1 From the formula 4w =f
01+£L‘3

mals (i) by the trapezium rule; (ii) by Simpson’s rule, using (a) 3 ordinates;

(b) 5 ordinates.

_ 2 Verify by direct calculation that Simpson’s rule is exact when f(z) is a
cubic polynomial.

3 (i) Prove that

, calculate 47 to four places of deci-

1 x10-3

0 l
2

(ii) Calculate f Trah by Simpson’s rule with 11 ordinates.
0

(iii) Calculate

&L
2 1424
©  dx
(iv) Hence find the approximate value of | ——.
o l+at

7.4 Further areas
The reader will have used the resultf f(x)dz for finding the area

under a curve in early work in calculus. We now consider some
extensions.

7.41 Sign of an area

If f(x) < 0 when a < < b, then the upper and lower sums of f(x)
(7.12) will be negative; and if they have a common limit, this will be
non-positive. Hence the formula

A = f:f(x)dx

may give a negative value for 4. We therefore interpret an area below
Oz as negative.

If f(x) is positive in some parts of the interval and negative in others,
the interval must be split up and the corresponding areas found
separately.

7.42 Area between two curves
Suppose that f(x) > g(x) throughout a < < b. The areas under
y = f(x), y = g(x) are respectively f flx)de, j g(x)dx. Hence the area

between them is

[[#@-gena. )

This formula gives the correct area whether or not the z-axis cuts
the curves.
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7.43 Area of certain closed curves

Given a closed curve which is met by a line parallel to Oy in at most
two points, then the equation of the curve provides the functions f(x),
g(x) in 7.42, and (i) gives the area.

vl P,
Example
Find the area enclosed by | :
822 — 10wy + 10y2 + 8z — 20y + 10 = 0. | P, |
The two values of y corresponding to a l : -
given « are found by solving the equation O a z b x

as a quadratic in y Fig. 74
10y®— 10y(x + 2) + (32% + 82+ 10) = 0.
If y,, y, are the roots, where y, > y,, then
h+ys=2+2, y,¥, = To(322+ 82+ 10),
hence (Y1—92)? = (Y1 +¥a) 2 — 4y, = (4 —x).

The two values of y become equal when $x(4 —x) = 0, i.e. when z = 0 or 4.
These are the extreme values of z for the curve. The area is

4 1 4
f(yl—yg)dx=—5f Jiz(4—z)}dz

0 . V6Jo

= %f sin%6 cos?0dl = £m.,/56

by putting x = 4sin26.

7.44 Generalised areas

X
Since dx I:——:I _1—%—>1 when X — oo,
1

©
we may say that the infinite integra,lf d?ﬁ ,whose valueis 1, represents
1

the ‘area’ under that part of the curve y = 1/2? for which z > 1
(cf. Ex. 4(d), no. 20). This region is unbounded, and its ‘area’ has
been defined as the limit of the area of the bounded region enclosed
between x = 1, x = X when X — c0.

Similarly, if the integral f N f(x) dz exists, we may define its value
a

to be the measure of the generalised area under the curve y = f(x)
for which z > a. Other types of generalised integral can also be
associated with areas.
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7.45 Area of a sector (polar coordinates)

Given a plane curve r = f(¢), where f(0) is continuous forx < 6 < 6,
we find a formula for the area of the sector bounded by the arc AB
and the radii OA4, OB given by 0 = «, .
We first assume that r steadily increases
with 6, and that each radius within the
angle AOB cuts the arc just once.

Divide the sector into » elementary
sectors by radii of inclinations -

a=0y<b0,<by<..<0,,<0,=5.

0
Let OPQ be a typical sector, bounded by Fig. 75
radii 6 = 6,,0,,,. Construct two circular
arcs with centre O and radii r = f(6,), r+0r = f(0,,), forming the
circular sectors OPM, ON@Q whose areas are

32(0,11-6,), 3(r+0r)2(0,,1—0,)-

The area of OPQ lies between these. Hence that of the sector 04B
lies between

tgt) Hf (0, (6426, :g:: Hf (0,112 (0r11—06,).

When 7 — oo and the differences 6,,, — 6, - 0, these two sums tend
Y]
to the common limit f Hf(6)}>d6. Hence

Y
area of sector OAB = % J r2de. (ii)

If r steadily decreases as € increases from « to 3, the same argument
applies. In the general case we divide the arc into intervals in each
of which r steadily increases or steadily decreases, and apply (ii) to
each part separately.

If the radius cuts the curve in more than one point (for example in
the case of spirals) then as 6 increases from 0 to 27, the shortest radius
sweeps out a certain area; and as € increases from 27 to 477, the area
swept out includes the first one; and so on.
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Examples

(i) Cardioid r = a(1+ cos ).
The curve is symmetrical about the initial line, so the area is

T
2f %frzdﬁzfﬂaz(l+cos0)2d0
0 0

m
= azf (14 2cos 0+ cos? @) df = a?[0 + 2sin 0 + §(0 + 4 sin 26)17
0
= $mal.
(ii) Equiangular spiral r = ae*f,
By the formula, the area enclosed by the radii 7y, 7, is
1 (% a0 2 [ or0 g9 = @ rpaeong
- 2 — 2 _—— 3
2flrd %afme d 4k[e 15
a? a?
= ——(e2k0a — g2k01) = __ (92 . p2),
% (e €*k01) 1k (73 Tl)

If 6,— 6, > 27, this result will include some parts of the area more than once.

7.46 Area of a sector (parametric formula)

Formula (ii) can be transformed as follows. Since
r2=22+y? and tand= g,
do d y
2%V ey 1Y
rE T @G (tan x)

xy —y&

1
= (2®+9?) x 1+ gz 22

= xy—yx

If the given curve has parametric equations x = @(f), y = y¥(¢),
and the points A, B correspond to ¢ = {,,1,, then

1[4 1t _df
_ 1 270 _ = 2
area of sector OAB = 5 L r2do 3 J;l r dt

14/ dy dx
—éﬁl (x%—y%)dt. (iii)
The change of variable is valid if d6/dt, i.e. xy —y2, retains the same

sign for ¢; < t < t,. If it does not, the range must be divided up and
(iii) applied to the separate parts.
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Examples

(1) Ellipse # = acost, y = bsint.
The curve is traced as ¢ increases from 0 to 27, Since
dy

dx .
xa;—y-d—t = ab(cos?t +sin%t) = ab,

1 27
area = — f abdt = mab.
2to

(i) Sketch the curve z = t+12, y = 12+, and calculate the area of the loop.

Since z = #1+1), y = t%(1 +1¢), we see that (a) as ¢ increases from — oo to — 1,
x decreases from + 0 to 0 and y increases from — oo to 0; (b) as ¢ increases from
—1 %0 0, # varies from 0 to 0 through negative values and y varies from 0 to 0
through positive values; (c) as ¢ increases from 0 to + oo, both z and ¥ increase
from 0 to + 0.

The gradient of the curve is /& = (2¢+ 3¢2)/(1 + 2¢); when £ = 0 this is zero,
while when ¢ = — 1 it is — 1. The curve is therefore roughly as shown in fig. 76;
the loop is traced when ¢ increases from —1 to 0.

Since ¢ = y/z in this example, we have by deriving this relation wo ¢ that
1 = (xy — y#)/2?; hence zg — y& = 22, and formula (iii) becomes

10 1
—f m’dt:—fﬂ (283414 dt = 55
2) 2J 1

after simplification.

Y
v

Q
8

Fig. 76 Fig. 77

7.5 Volume of a solid of known cross-section

Consider a surface whose sections parallel to a fixed plane are closed
curves. Let Oz be chosen perpendicular to this plane, and suppose
that the area of the section at distance x from the plane is a continuous
function ¢(x). We obtain a formula for the volume of the solid enclosed
between the planes x = a, x = b (fig. 77).

18 GPMI
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Divide the required volume into slices by planes through
A=y <Xy <Xy < ..<Zy,<z,=0b.
The slice determined by z,, «,,, lies between inner and outer cylinders
with volumest m,(z,,,—x,) and M(x,,, —x,), where m,, M, are the
least and greatest values of ¢(x) for z, < x < z,,,. Hence the total
volume lies between

n—1

n—1
) mr(xr+1 - .’L‘,.) and ¥ M'(xr+1 - :L',.),
r=0 r=0
and when 7 - o0 and the differences %, ,; —, — 0, these sums tend to

b
the common limit f ¢(x)dz. Thus
a

V= J:qi(w) dz. @)

In particular, if the solid is formed by revolving the plane curve
y = f(z) about Ox though angle 27, then ¢(x) = my® because the
sections are now circles. The volume of a solid of revolution is thus

b
V= f myda. (i)
a
Example*
Find the volume of the ellipsoid
x2 yz z2
atpta=l

The section by the plane 2 = constant is the ellipse (see Ch. 17)

y? 22 22 _
Ez—+— *;2, x = constant, (iii)

whose semi-axes have lengths

05 <J0-5)

The area ¢(x) of this ellipse is 7wbe(1 —2?%/a?) (by 7.46, ex. (i)). The volume
between the planes z = 0, z = X is therefore

V= ﬂbcf (1——) dz = ﬂbc(X—g)

The largest possible values of  are given from (m) by 2? = a?. Hence when
X = a, we obtain half the volume of the ellipsoid, viz. §wabc. The total volume
is $mabe.

Remark. When b = ¢, the surface is the ellipsoid of revolution obtained by
rotating the ellipse x%/a?+y2/b? = 1 about its major axis Oz, and is called a
prolate spheroid. When a = ¢, it is obtained by rotation about the minor axis
Oy, and is an oblate spheroid. If a = b = ¢ we obtain a sphere.

+ The volume of any right cylinder is defined to be ‘area of cross-section x height’.
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Exercise 7(c)

Find the area

1 enclosed by a?y? = z%(a?—x?).

2 under one arch of the cycloid z = a(f —sin8), y = a(1l —cos ).

3 between the curves y = 22, y? = 28,

4 If ab > 2, prove that the area enclosed by ax?4-2hxy+by?=1 is
7/s/(ab — h2).
Sketch the following curves (allowing r to take negative values) and find the area

enclosed. (Cf. Ex. 1(e), nos. 12-15.)

5 r=a(2+4cosb). 6 72 = a?sin20.

7 r=asin26. 8 r =acos30.

9 Find the area of the loop of rcos § = cos 26.

Find the areas of the following sectors.

10 r =asec?3, 6 = 0 to 3m. 11 r2g8in 20 = a?, 6 = 37 to 3m.

12 r=¢%, 6 = 0 to }m, and included by the arc for which (i) 0 < 0 < §7;
(ii) 2m < 0 < $m.

13 Sketch the curvesr = acosfand» = a(1 — cos 8), and find the area common
to them.

14 Sketch the curve » = 1+ 2cos 6, and prove that the area of the inner loop
ism—§.3.
Find the area enclosed by

15 the hyperbola z = acht, y = bsht and the radii to the points where
t=0,t=wu.

16 z = asin®t, y = beint cost. 17 2t 4yt = ol

18 Show that the loop of the curve z = t/(1+23), y = £2/(1 +1¢2) is traced as
t varies from 0 to co. Find the area of the loop.

19 Sketch the curve x = #(#2— 1), y = t*— 1, and find the area of its loop.

Find the volume obtained by rotating the following curves through one revolution
about Ozx.

20 3ay® =z(a—x)?, =0 to a. 21 x = acos®t, y = asin®t, t = 0 to 7.
22 z = a(f—sinf), y = a(l —cosb), 8 = 0 to 2.

23 ljr=1+4c0s6,0=0t0oa (0 <o <)

24 The area between the parabolas % = ax, x? = ay.

25 The inner loop of the curve in no. 14.

26 If the area under the curve y = f(x) from x = a to z = b is rotated about

(/]
Oy through one revolution, prove that the volume generated is 27 f xydzx.
a

27 If the area between y? = 4ax and ay® = 23 is rotated about the linez = —aq,
prove that the volume generated is $5% /2 ma?®.
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7.6 Length of a curve

7.61 Definition, and sign conventions

(1) In attempting to make precise the intuitive idea of ‘length of
a curve’ we meet a problem similar to that discussed for area in 7.1.
We begin with straight-line approximations to the curve.

Let AB be the given arc, and choose n—1 points P, F,,..., P, ;
on it. Then the perimeter of the ‘open polygon’ AP, F,... P, ,Bis

n—1
Sp = 201)71)7+11
r=

where we have written P, for 4 and P, for B (fig. 78).
If s, tends to a limit s when n — o0 and each chord P, F,,, tends to
zero, we call s the length of the arc AB.

(2) Sign of the arc-length. Now let s denote the length of the arc AP,
measured from the fixed point 4 to the variable point P. The direction
along the curve in which s increases can be chosen arbitrarily in one
of two ways.

If the equation of the curve is of the form y = f(x), we measure s to
increase with x; if = g (y), with y; if © = ¢(¢) and y = ¥ (f), with ¢;
if r = f(0), with 6; and if 6 = g(r), with r. The direction of increasing
s may clearly be different for alternative representations of the
same curve.

yA
> /
P"_! ¢ P r+1
‘Pf
Yre1
P,y Yr
P, 0 >
] P, Zy L1l ®
Fig. 78 Fig. 79

7.62 Cartesian formulae for arc-length

With the notation of 7.61 (1) let P. have coordinates (z,,y,), and
let ¢, be the length of the chord F,F,,, (fig. 79). Thent

= {(xr+1 - xr)2 + (yr+1 - yr)z}%'

+ The symbol u} always denotes the positive square root of u.
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If the curve has equation y = f(x), then y, = f(x,) and y,.; = f(2,44)-
First suppose that x steadily increases as P(x,y) varies along the arc
from A4 to B. Then by the mean value theorem

Yr1—Yr = f ’(gr) (xr+1 - II?,.),

where z, < £, < z,,,. Hence

¢ = (1 —2,) [1+{f &)1}
and $p = j§—: [1 + {f '(gr)}Z]% (xf-!-l - xr)'

If this sum tends to a limit when n — co and all differences z,, —,
tend to zero, then (7.21) this limit is

[n+ireymas

The limit will certainly exist if f'(x) is continuous. Thus

= [l

If « does not steadily increase as P varies from 4 to B, then we
first divide 4 B into consecutive arcs, some of which have the above
property and the remainder of which have = decreasing steadily along
them. By the sign convention (7.61(2)) s will be positive along arcs
of the first sort and negative along the others. Formula (i) applies
to each separate are.

Similarly, and with like reservations, the arc-length of the curve
z = g(y) from y = ¢ to y = d is given by

= [l g)

For the curve defined parametrically by x = ¢(t), y = y(t), first
suppose ¢(t) steadily increases from a to b as ¢ increases from ¢, to ¢,
(so that dz/dt is not negative). By changing the variable in (i) (in
which s is measured to increase with x, and hence with ¢),

AR
GG W
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If ¢(t) steadily decreases from b to a as ¢ increases from ¢, to ¢;, then

e [ (2

with the minus because now dz/dt is non-positive. This formula applies
when s is measured to increase with z, i.e. to decrease as ¢ increases.
Hence (iii) still holds if we measure s to increase with ¢.

Example
Cycloid z = a(f +8in0), y = a(l —cosb).

dz dy
B a(l +cos0), E@ = asinf,

dr\?  (dy\* — g2 24 oin?
(dﬂ) +(d0) = a?{(1+ cos 0)? +sin? G}
. = 2a?(1 + cos 0) = 4a?cos? 36.
Hence in fig. 23 of 1.61, the arc OP has length

)
=f 2a cos 30d0 = 4asin 30.
0

7.63 Polar formulae for arc-length
From x = rcosf and y = rsin 6 we find that

dx dr . ,db dy . dr
%=cos0{zt-—rsm03? and %—sm0%+rcosﬁgt—,

da\?  (dy\® _ (dr\?  ,(d6\*

and hence (%) + (d_t) = (Ef) +r (E) .

If s is measured to increase with ¢, and if the arc is traced as ¢
increases from £, to ¢,, then by (iii)
b (dr\2 do ' )
=[G (@) )
- When the curve has polar equation r = f(6), the length of the arc
from 0 = 6, to 6 = 6, is (by putting ¢ = 6)

= [ ()

where s is measured to increase with 6.
Similarly, if the curve is 6 = g(r), the arc-length from r =r, to

r=r,is 16\ 2k
= 2 1
I

¢ being measured to increase with r.
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For a given arc AB, the cartesian and polar formulae always give
the same numerical value for s, but the signs may be different. For
example, this will be so for (i) and (v) when x and € do not increase
together.

7.64 Derivative of s

Consider the arc of the curve y = f(z) measured from A (where
% = a) to the variable point P(x,y). Formula (i) gives

5= f “L+{f @i,
a
and by deriving this wo z,

ds dy\2)} oy
&-nrrerr-1+(Y7T. ()
Similarly, from formulae (ii)-(vi) we find

o). - (T o

ds_{drz 2 [30)\2\ ds_{2 dr\%\ @_{1 2 (40\2\F
&= (a +’(m)}’ d—o—”d—a)}’ -t e }

(iv)’, (v)', (vi)".

Exercise 7(d)
1 Find the length of the arc of the curve y = cch(z/c) measured from
(0,¢) to (z,y).
2 Sketch the astroid x = acos®t, y = asin?t, and find its total length,
3 Sketch the curve y = logsecx for — 7 < < §m. Prove

8 = logtan (}7 + }x)

if 8 is measured from the origin. i

4 For the curve = = af?, y = af® prove ds/dx = ,/(1+9x/4a). Find the
length of the arc from z = 0 to x = ¢.

5 If s is the arc-length measured from the point u = 0 of the tractriz
z = a(u—thu), y = asechu, prove ds/du = athu and ds/dy = —ajy. Find Y
in terms of s. Prove that the length of the tangent PT (5.71) at any point P is .
(The curve is therefore the path of a particle P attached to a string whose other
end T moves along a fixed line Ox; hence the name.)

6 Tind the length of the arc of the curve x = cos 8 sin? 6, y = sin §(1 + cos20)
from 8 = 0 to 4. [We find (ds/df)? = (2 cos® 6 —sin?0)?, so that

8= J‘%”A/(2 cos?f —sin26)2dl = f¢(2cos"’0—sin30) d0+fh(sm*0—200330)d0,
0 0 @

where o = tan—1,/2.]
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7 If s is measured from the origin to the point (x, y) of the curve
3y = (1 —x)?,
prove 3s? = 4«2 + 3y2. Find the length of the loop of this curve.

8 Find the total length of the cardioid r = a(1 +cos 8).
9 Prove that the length of the ‘equiangular spiral’ r = ae*? from (7, 6;) to
(re, 05) is |ry =7y k72 /(1 + K2).
10 Find the length of » = af measured from the pole to (ry, ;).
11 Sketch the curve r = 2a cos® 40, and prove that its total length is 37a.
12 If the polar coordinates are given parametrically by '

r = 2asect, 0 = tant—t (—3im <t < im),

prove s = a tan?¢ if s is measured from ¢ = 0.

*13 A curve has equation z = f(f), where « is a cartesian coordinate, (r, 0) are
polar coordinates, and & = rcos 8, y = rsinf. Prove that the arc-length from
0=0,t00=0,(0<0, <0,<3mis

6,
f , [{f"(6) +(6) tan 32 + {(6)}*1} sec 6.d0.

Check this formula by finding the length of the closed curve z = acos 6.

Find the curves for which
*14 g = \J(r2+ 2ar). *15 s = OT. [Use formula (ii).]

7.7 Area of a surface of revolution

7.71 Area of a conical surface

The phrase ‘area of a curved surface’ needs to be defined, because
so far we have discussed ‘area’ only for plane figures. We first con-
sider a conical surface.

Given a right circular cone with base-radius r
and slant height I, take any point P on the cir-
cumference of the base and join it to the vertex V.
By cutting along this line PV (called a generator),
the surface can be developed (i.e. ‘flattened out’)
into a sector of a circle. We define the area of
the cone’s surface to be the area of this sector,
viz. mrl. Fig. 80

Now consider the frustum of the above cone
bounded by the circular sections of radii r;, r,; and with the notation
of fig. 80, let VP, =1,, VP, =1,  Then the area of the frustum is
mr l, — mryly; and since ry 17y = [y 11, this expression can be written

wry(ly— L)+ arg(ly — ) = m(ry+13) (I —1).
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7.72 General definition

Suppose the surface of revolution is generated by rotating the
continuous arc 4B about Oz, and that the arc lies entirely above Oz.
Divide up the arc by points P, P, ..., P,_;, and consider the ‘open
polygon’ P F,...P, ,. Let 8, denote the sum of the areas of the
conical surfaces generated by rotating this polygon about Ox. If
8, tends to a limit when » — oo and all the arcs B,.E,,, tend to zero,

we define the area of the surface of revolution to be this limit.

y “ Pl'+l B
Pf
Yra1
4 Yr
0 oz, zy bz
/ Fig. 81

Measuring arc-lengths from 4, let P, correspond to s = s, and have
coordinates (z,, ,); let ¢, be the length of the chord P, B, ;. This chord
will generate a conical frustum of area 7 (y, +¥,,,)c,. Hence

n—1

Sn = rgoﬁ(yr + yr+1) Cp-

Since ¢, = arc P, F,,; = 8,,, —$,, we write this expression as

n—1 n—1
Sn =7 20 (yr + yr+1) (8r+1 - 8,.) -m 5_.:0 (yr + yr+1) {(Sr+l - Sr) - cr}'

Because c, is the chord of the arc s, ; —s,, all terms in the last sum
are positive.t If M denotes the greatest value of y between A and B,
this sum is certainly less than

-1 -1
2 M nz {($p2—8,)—¢,} = 2aM {arc AB —nz c,} .
r=0 r=0

The definition of ‘length of arc AB’ shows that the last expression
tends to zero when n —> oo and all arcs F,F,,, (and thereforet all
chords P, P, ,) tend to zero.

t The intuitive property (which we assume here) that arc AP > chord AP can
be proved by considering the difference

() = f [P (o)t + )~ @)
and showing that ¢’(z) > 0 for z > a.
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Since #(y,+¥,,,) lies between y, and y,,,, then by the assumed
continuity of y this expression is a value of y taken at some point of
the arc between F, and F,,, (2.65, Corollary). Therefore when n — co
and all arcs F,F,,, tend to zero, the first sum tends to the limit

o
f 2myds by 7.21 (where s = o at B), which is consequently also the
0
limit of §,,. Thus
area of the surface of revolution = 2w f Vyds.
0
By a change of variable we can adapt this formula for use with

cartesian, parametric, or polar coordinates. For example, a cartesian
form is (by 7.64, equation (i)’)

b dy\2)}
o [l )| o
Example

Find the area of the surface obtained by rotating the cardioid r = a(l + cos 8)
through angle m about the initial line.
By 7.64(v),
ds\? dr\?
) =241 ) =q2 24 (—-asi 2 — 942 .
(d@) r +(d0) a*(1+cos 0)2+(—asin)? = 2a%(1 +cos b);

also y = 78in 0 = asin @ (1 +cosf). Sinee rotation of the whole curve through
angle 7 is equivalent to rotation of the upper half through angle 2,

7 dg
surface area = 27 f y——do
o~ do

= 27rj:asin0(l +cos0) a2 (1+cosf)tdo
= 2J2ﬂa’f:sm0(l+cosﬁ)*d0.
By putting « = 14 cos 6 this becomes
2J2ﬂa2f:u*du = 32pa2,

7.8 Centroids. The theorems of Pappus

7.81 Centre of mass, centroid

The centre of mass of particles of masses m;,m,, ...,m, at (ry,y,),
(%95 Ys)s -++5 (Xn, Yp) In & plane is defined in Statics to be the point

(Z, %), where Sma, __ Imy, 0
m,’ Y= =m,

If the system is in space, we have a similar formula for the z-coordinate.

T =
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By regarding & continuous body as the limit of the sum of elemen-
tary masses dm, we are led to definet its centre of mass by

fxdm fydm fzdm
> g = zZ= >
fdm fdm fdm

If the body is uniform, the elementary masses dm are proportional
to the corresponding elements of arc-length, area, or volume (according
to whether the body concerned is a wire, lamina, or solid). In this case,
(z,9,%) is the same as the centroid of the figure, a point defined in-
dependently of statical considerations. Thus the z-coordinate of the
centroid of an arc, an area, or a volume is respectively

T =

(i1)

fxds deA xzdV

fds’ fdA’ de'

When the figure has axes of symmetry, the centroid must clearly lie
on these.

(i)

7.82 Summary of well-known results

The proofs of the following results for the mass-centres of uniform
bodies come directly from the definitions as an easy exercise in geo-
metry or integration.

UNIFORM BODY CENTROID

Rod Mid-point

Rectangle Intersection of diagonals

Triangle Intersection of medians

Circle Centre

Solid right circular cylinder or Mid-point of axis

cylindrical surface

Conical surface (right circular) 4 way up axis from the base

Solid cone (right circular) } way up axis from the base

Hemispherical surface (or ‘shell’) Mid-point of radius of symmetry

Solid hemisphere 4 way up radius of symmetry from the
base

t This definition involves reference to a system of coordinate axes. It isimportant
to show that, relative to the body, we obtain the same point whatever axes are chosen;
i.e. that the definition is actually independent of the choice of coordinate system.
This will be done for a lamina in Ex. 15(e), no. 7.
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7.83 Theorems of Pappus

These two results relate the theory of centroids to that of arec-
lengths and areas, surface areas and volumes. '

THEOREM L. If an arc of a curve rotates about an axis in its plane, and
the axis does not cut the arc, then the area of the surface generated is
equal to the length of the arc multiplied by the length of the path of its
centroid.

Proof. Given an arc 4B of length o, choose the axis of rotation for
Oz and measure arc-length from A4 (fig. 82). If @ is the centroid of
the arc, then by the definition its y-coordinate is

fyds
SR

By 7.72 the area of the surface is 27rf0yds, which is equal to 2770;
0
and 27y is the length of the (circular) path of G'in the rotation about Oz.

v
‘ QI
Yy 1 Q ﬂ
i | o B
408
A | B’
) I |
| o
| ’
, F P | ! -
0 (] a x b x
Fig. 82 Fig. 83

TrEOREM II. If a closed curved s rotated about an axis in its own
plane, and this axis does not cut the curve, then the volume of the solid
generated is equal to the area of the curve multiplied by the length of the
path of its centroid.

Proof. Choose the axis of rotation to be Ox. First suppose that the
closed curve is cut by a line parallel to Oy in at most two points. Let
x = a, z = b correspond to the extreme ordinates (fig. 83).

Divide the area into strips parallel to Oy, and let the ordinate
through z cut the curve at P and ¢, where P is (x,y,) and @ is (z, y5).
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The centroid of the strip PQQ'P’ has y-coordinate }(y, +¥,) and area
(y2— ;) 0z, approximately.t Hence for the whole area,

b
f 31 +9) (Yo —yy) dx
7= a

b
f (y2—y1) dz

a

1 b 2 2 d
=34 L (¥3—yD dw,
by 7.43.
The volume generated is the difference of those generated by the

b
areas under AQQ'B, APP'F’, wzf m(y3 —y3%) dz, and this is equal to

2myA, which proves the theorem.

If the closed curve can be divided into a number of parts each of
which is closed and has the above property, the proof applies to each
part. The axis of rotation must not cut the area, but it may be part
of the boundary, as in example (ii) following.

Examples

(i) Acircleof radius aisrotated about aline in its plane at distance b( > a) from
the centre. Find the surface area and volume of the anchor ring (or torus) so formed.

Area of anchor ring is 27a. 27b = 4n%ab.
Volume of anchor ring is ma®. 2mb = 2m%a2b.

(il) Find the centroid of (a) a semicircular arc; (b) a semicircular area, of
radius a.

The centroid in each case will lie on the radius of symmetry. Choose axes
as shown (fig. 84).

(a) By Theorem I, the area of the surface generated is 277.ma. As this
surface is a sphere of radius a, its area is 4ma?. Hence 27F.ma = 4ma?, and
Y = 2alm. :

(b) By Theorem II, the volume of the solid generated is 27F.37a2 This
solid is a sphere of radius a, whose volume is $7a3. Hence

4a
2ny.4ma? = $ma®, and 7= 3

(iil) A sector of a plane curve with polar equation r = f(0) is rotated about the
anitial line. Show that the volume generated is 3m J'r3 sin 0d0. taken between suitable
limits. Calculate this volume for the cardioid r = a(l +cos8).

Treating an elementary sector (fig. 85) as approximately a triangle, its centroid
is § the way down the median from O, i.e. approximately 3rsin  from Oz. For
& complete revolution, the length of the path of this centroid is 27.%rsin6.

T We are approximating ‘by rectangles’. The limiting result which follows is
exact, by 7.21. Examples on centroids are done in this spirit (cf. ex. (iii) following).
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The area of the element rotated is 37286 approximately. Hence the element of
volume generated is approximately

27 . §rein 0. 31280 = $ardsin 006.

The total volume is the limit of the sum of these elements, viz. J‘&m’s 8in 6d0,
with suitable limits for 0.

sy
sy

0
Fig. 84 TFig. 85

For the cardioid, the volume generated (by the upper half) is

4 2
%ﬂaaf (1+cosf)®sinfdl = %ﬂasf wdu = &nad
0 0
on putting 4 = 14 cosd.

Exercise 7(e)
Find the surface area generated by rotating the following curves through one
revolution about Ox.
1 2?+y?=a? = —a to +a. 2 3ay? =z(a—=x), ¢ =0 to a.
3 x=acos®t, y =asin®t, ¢ = 0 to 4m.
4 z=a(@~—sinb), y = a(l —cosl), = 0 to 27.
51lr=1+4cos6,0=0toa (0 <a<m).

Verify the results stated in 7.82 for a
6 solid cone. 7 conical surface.
8 solid hemisphere. 9 hemispherical surface.

10 Find the coordinates of the centroid of the quadrant of the ellipse
x?/a? +y?/b? = 1 for which both z and y are non-negative. .

11 Find the position of the centroid of (i) a circular are, (ii) a circular sector,
each of angle 2o and radius a. )

12 Calculate the volume obtained by rotating the ellipse z =acosd,
y = bsin ¢ through one revolution about the line # = 2a. [Use Pappus.]

13 Find the polar coordinates of the centroid of the area of the complete
cardioid r = a(1 + cos 8), and deduce the volume formed by rotating it about
the tangent z = 2a.

14 Find the centroid of one arch of the cycloid x = a(f —sin ), y = a(1 —cos 8),
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and deduce the area of the surface formed by rotation of the curve about the
tangent y = 2a.

15 Find the volume generated by revolving a loop of r = asin 20 about the
initial line. [See 7.83, ex. (iii).]

16 Find the volume generated by rotating the area between the two loops of
r = 1+ 2cos @ about Oz through angle 7.

17 (i) The area bounded by an arc of a curve and two straight lines through
the origin is rotated through angle 27 about Oz. Prove that the volume
generated is

14 J. Yley —ya) dt,
taken between suitable limits.

(ii) If the area bounded by the ellipse z = acost, y = bsint and the radii
to ¢z = 0, ¢ = a is rotated about Oz, prove that the volume generated is

$nabdsin? da.

7.9 Moments of inertia

7.91 Dynamical introduction

Consider a rigid body of mass M rotating with angular velocity w
about a fixed axis. A particle P of mass ém at perpendicular distance r
from the axis would have velocity wr and kinetic energy 4ém(wr)2.

By regarding the continuous body as the
limit of a sum of such particles, we see that

its kinetic energy is o
lim X4w?%2ém = f $w’ridm = ot f’rgdm,
since w is the same for all particles of the body. /‘w

The expression
I= ~J‘rzdm Fig. 86

is called the moment of inertia (M.1.) of the body about the axis of
rotation. It is usually given in the standard form M%? where k is
called the radius of gyration about the axis.

7.92 Examples
We suppose in each case that the body is of mass M and uniform
density p.

(i) Rod of length 2a; axis along its perpendicular bisector.
An element PQ, where (fig. 87) OP = z and PQ = 8z, has mass pdr. Hence

the m.1. of rod is a
f prrdz = §pa® = $Ma?,
—-a

since M = 2ap.
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(ii) Rectangular lamina; axis bisecting sides of length 2a.
Let AB = 2a. Divide the rectangle into strips of mass ém parallel to AB.
Since by ex. (i) M.1. of each strip = {éma?,

M.L of rectangle = X}a?0m = 4a?Xom = {Ma?.

A4 | B
g
P - >
! 1 ? o x
{ UL
OI x 8z
| D c
Fig. 87 Fig. 88

(iii) Circular disc of radius a; perpendicular axis through the centre.
Divide the dise into concentric rings. and consider the ring bounded by
circles of radii #, z + dz. Approximately, the mass is 2mxdxp and the M.I. is
27 6. 2,
(21w0zp) @ .. of diso = lim E2mpas 6z
a
= f 2mpadde = fmpat = $Ma?,
0

since M = ma?p.

yA
|
|
I Yy

o] = -‘w»
|
!

Fig. 89 Fig. 90

(iv) Solid sphere of radius a; axis along a diameter Oz.
Divide the sphere into circular discs perpendicular to Oz. The disc of radius y
at distance z from O and of thickness 8z has mass wmy2dzp. Hence by ex. (iii),

its M.1. about Oz is Hmy2dzp) y? = Ymp(a? — a2y o,

; 2242 = g?.
since #7+y"=a ».  M.I of sphere = lim Zimp(a? — x2)2 6z

= ¢ mp(a® —x®)2dx
-

8 —2
= ygnpa® = gMa?,

since M = $map.
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(v) Spherical shell of radius a; axis along a diameter.
Take rectangular axes Ox, Oy, Oz at the centre (fig. 91). By the symmetry,

fx”dm = fy*dm = |2%dm.

M.I. about Oz = fOdem = f(xz""yz) dm
2
= EJ‘(x*+y2+z*)dm

= gfagdm = 2Ma?,

since a2+ y2+422 = ON2+22 = OP? = a2,
The result can also be found by direct integration: see Ex. 7 (f), no. 10.

Fig. 91 Fig. 92

(vi) Ellipse x2/a®+y?/b? = 1; about major axis Ox.
Divide the area into strips-parallel to Oy. By ex. (i) the m.1. of a typical strip
(ig- 92) is §(2y 0z p)y?.
a a
M.1. of ellipse = f 2pyide = 2| %pyPdx
—-a 0

by the symmetry about Oy.
On the ellipse, 2 = acos ¢ and y = bsin ¢ (see 17.31); hence

MI =2| $pbdsin®@(—asing)dg
in

3.1m

= 3 4 = $pab®
_spabfosmqidgé ab42z

= lwpab® = } Mb2,
since by 7.46, ex. (i), M = mabp.

Similarly, u.1. about the minor axis is }Ma2.

When the M.1. of a body about a certain axis is known, that about
other axes can often be written down without further integration by
use of the following theorems.

I9 GPMI
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7.93 Theorem of parallel axes

The M.1. of a body about any axis is equal to the M.1. about a parallel
axis through the mass-centre, plus Mh?, where h is the distance between
the two axes. '

Proof. Choose the ‘mass-centre G of the body for origin of co-
ordinates, the z-axis along the line through G parallel to the given axis,
the x-axis along the perpendicular G4 from @ to this axis, and Gy
perpendicular to Gz, Gz (cf. 21.11).

| ¥
2
/
S \I‘\\
Bl >
\\\\‘\\
P
]
!
[ 1 -
N =z Y
| SN [ i
4 ~ -/
\\\\ | // T
_..__.__\_\:.__\:.\!/
y N
T
Fig. 93

Let the particle P of the body have coordinates (z, y, z) and mass dm.
Then, with the notation of the figure, the M.1. of the body about Gz is

I; = fPQ%Zm = f(x2+y2) dm.
Since GA = h, the m.1. about the given axis is
I= fl"R2 dm = f{(x —h):+y*dm
- f (@ +y2) + B — 2hay dm
= j(xz +y?)dm+ hzfdm —2h fx dm

= Ig+h2M

as fxdm = 0; this is because the mass-centre G is the origin (0, 0, 0),
g0 that in particular Z = 0 from (ii) of 7.81.
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Example

Rod of length 2a about a perpendicular axis through one end.

Here = a and I¢ = }Ma? by 7.92, ex. (i). So

M.I. about an end = }Ma? + Ma? = $Ma?,

which is easily verified by direct integration.

The result also holds for the M.1. of a rectangular lamina about a side of
length 2b, by 7-92, ex. (ii).

The above theorem applies to any body, but the following is true
only for a lamina.

7.94 Theorem of perpendicular axes for a lamina

If the M.1. of a lamina about two perpendicular axes Ox, Oy in its
plane are I, I, then the M.1. about the axis Oz perpendicular to its plane
s L,+1,

Proof. With the notation of fig. 94,

I,= frzdm = J(x2+y2) dm

= fxz dm+ fyz dm
=1L, +1I.

Examples

(i) Rectangular lamina of sides 2a, 2b; perpendicular axis through its centre.
By 7.92, ex. (ii) the M.1. about axes through the centre and parallel to the
sides are $Ma?, 1 Mb2.

M.I about perpendicular axis = +M(a?+b2).

(ii) Cuboid of sides 2a, 2b, 2¢; axis through the centre and parallel to sides 2¢.
By dividing into rectangular laminae perpendicular to the edges 2¢ and
summing, we find by ex. (i) that M.1. = }M (a2 +b?).
(iii) Circular disc of radius a; axis along a diameter.

By symmetry the m.1. about any two diameters are the same, say I. Since
the M.1. about a perpendicular axis through the centre is $Ma? (7.92, ex. (iii)),

hence I+1=}Ma?, ie. I=}Ma
(This is the particular case when b = a in 7.92, ex. (vi), and could be obtained
similarly by direct integration.)

*(iv) Ellipsoid z*/a®+y3 /b3 + 2%/c? = 1; about axis Ozx.

Divide the solid into laminae by planes parallel to yOz. As in the example in
7.5, the section at distance x is an ellipse of area mbc(1 —2/a?). Hence the mass

19-2
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of a lamina of thickness dz is approximately mbc(1 —22/a?) 8zp, and by using
ex. (vi) of 7.92 its M.1. about Oz is

1 x? x? x?
ot - 2{1 2 Y ) Pl
o2}l o5 -2
w%" 2
= }mpbc(b? + c?) (1 —&3) ox.
.~ ML of ellipsoid about Oz is (from the symmetry about plane yOz)
x?

a 2
2f 1mpbe(b® +¢?) (1 _az) de = 4mpbe(b? +c?) x 50 = TM(b% +c?),
0

since M = $mabep by 1.5, example.

7.95 Routh’s rule

This summarises many of the preceding results, and is a useful aid
to memory.
If Gz, Qy, Gz are perpendicular axes of symmetryt which cut the body
at X, Y, Z, then QY2+ GZ2
M.I. about G = Mmass X ————_,
3ordorb

where the denominator is
3 for a rod, rectangular lamina, or cuboid ;
4 for a circular or elliptic disc;
5 for a solid sphere or ellipsoid.

For a lamina, the intercept perpendicular to its plane is zero; and
for a rod, both intercepts perpendicular to it are zero.
The reader should verify the correctness of this rule in all cases.

Exercise 7(f)

Assume in this exercise that each body has mass M, and is uniform unless otherwise
stated. The results of 792, exs. (i), (iii) may be quoted.

Find by direct integration the M.1. of the following bodies about the axes stated.

1 Circular wire of radius a; perpendicular axis through the centre.

2 Rod of length 2a; axis meeting it at distance ¢ from the centre and inclined
to the rod at angle 0.

3 Lamina bounded by concentric circles of radii a, b; perpendicular axis
through centre.

4 Solid right circular cylinder of radius a; axis of symmetry.

5 Isosceles triangle of height ; axis through the vertex and parallel to the
base.

t If a body has an axis of symmetry, this must pass through the centroid G.
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6 Solid right circular cone of base-radius r; axis of symmetry.

7 Segment of parabola y* = 4ax cut off by line x = b; (i) about Oz; (ii) about
z=>.

8 Solid formed by revolving the segment in no. 7 about Oz; about Oz.
9 Surface of a right circular cone of base-radius ; axis of symmetry.
10 Spherical shell of radius a; about a diameter.

Use the theorems of 7.93, 7.94 to write down the M.1. of the Jollowing.

11 Circular wire of radius a; about (i) a diameter; (ii) an axis perpendicular
to its plane and through a point on the circumference.

12 Rectangular lamina of sides 2a, 2b; perpendicular axis through a corner.

13 Square of side 2a; about any line through the centre and in its plane.

14 Solid right circular cylinder of radius @; axis along a generator.

15 Solid anchor ring formed by rotating a circle of radius a about a line in
its plane at distance b from the centre (b > a); about axis of rotation.

16 Isosceles triangle of height ; axis through the centroid parallel to the base.
[Use no. 5.]

17 If I,is the M.1. of a body about an axis through 4, show that the formula
Ip = I4+ Mh? will give correctly the M.1. about a parallel axis through B, at
distance k from the first, only if either (i) 4 is G, or (ii) GAB is a right-angle.

Calculate the M.1. of the following (nos. 18, 19),

18 Solid right circular cylinder of radius @ and height k; about (i) a diameter
of an end; (ii) an axis through the centre perpendicular to the axis of symmetry;
(iii) & tangent to an end.

19 Solid hemisphere of radius a; about (i) a diameter of the base; (ii) a tangent
parallel to the base.

*20 The density of a rod AB of length 2a varies as the square of the distance
from 4. Calculate the M.1. about a perpendicular axis through A.

*21 The density at any point of a circular lamina of radius a varies ag its
distance from the centre. Find the Mm.1. about (i) a perpendicular axis through
the centre; (ii) a diameter; (iii) a tangent.

*22 Find the m.I. of the area enclosed by 72 = a2 cos 20 about a perpendicular
axis through the pole. [Divide into sectors, regarding each as arod whose density
is proportional to the distance from the pole.]

Miscellaneous Exercise 7(g)

1 Prove that the parabola 2 = z divides the circle 22 +42 = 2 into two parts
whose areas are in the ratio (37 +2) : (97— 2).

2 Sketch the curve y? = a%z/(2¢~x), and prove that the area enclosed by
the curve and the line = a is (71— 2) a®. Also prove that the volume obtained
by rotating this area about Oz through two right angles is mad(log 4 — 1).

3 BSketch the curve = acos®ssin?, y = acostsin®¢, and find the area of
a loop.
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4 Ifr = f(0), r = g(0) are closed eurves surrounding the pole, and the second
. lies entirely within the first, prove that the area of the annular region enclosed
between them is

27
3| wow-oya.
0

P is a variable point of the ellipse I/r = 1 —ecos 8, and @ is on OP produced
such that PQ = ¢. Show that the area between the ellipse and the locus of @
is 7r¢(2b + ¢), where b is the minor semi-axis of the ellipse.

5 Sketch the curve » = ath 6. Find the length s of the arc and the area 4
of the sector measured from @ = 0 to 6 = «, and prove 24 = a(s—7).

6 The length of the tangent to a curve is constant and equal to ¢; prove
@ = c(logtan 4 +cos ), y = osing
ifz = 0 and y = ¢ when § = 3. Also find s in terms of ¢, measuring it from the
point where ¢ = .
7 If the curve 3ay? = x(a — )2 is represented parametrically bsi
z = 3at?, y = a(t—3t3),

show how the curve is traced as ¢ increases from — oo to +co. Prove that the
arc-length from the origin to the point of the loop at which the tangent makes
angle A with Oy is $a(3 tan $A + tan3 }A).

8 A, B are the points on y = cch (z/c) corresponding to # = @, x = b (a < b).
The area under the arc 4 B isrotated through 360° about Oz. If V is the volume
of the solid generated, and S is its surface area, prove V = 4¢S, and find V.

9 The circle 22+42 = a? cuts Oz, Oy at P, Q. Find the centroid of the
quadrant OPQ. If the semicircle with OP for diameter is cut away, find the
centroid of the remaining area.

10 Find the centroid of the area enclosed by one loop of 7% = a2 cos 20.
*11 Prove that the centroid of the half of the ellipsoid

ms yz z2
atpta=!
for which « > 0 is the point ($a, 0,0).

12 A semicircle A BC of radius a rotates about a line in its plane parallel to
and at distance b from the bounding diameter AC, so that the area is on the side
of AC remote from the line. Find the surface area and volume generated.

13 Find the area of the sector bounded by 8 = 0, @ = 37, and the curve
7 = asin®f. Also find the volume obtained by rotating this sector about the
line 6 = §.

14 A circle of radius a is divided into two segments by a line distant Aa from
the centre, and the major segment is rotated through angle 27 about this line.
Find the volume generated. [Use Ex. 7 (e), no. 17 (i).]

15 Sketch the curve y? = z%/(a—z) (¢ > 0). Find the area between the curve
and its asymptote, and the volume obtained by rotating the area about this
asymptote. Hence obtain the coordinates of the centroid of the area.

16 A surface is generated by rotating y = ax?+ 2bxz + ¢ about Ox. Show that
the volume bounded by this and the planes = = + h is (4, + 44, + 4;), where
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A, Ay, A, are the areas of the cross-sections by the planes # = —h, z = 0,
2 = +h respectively. Prove also that the x-coordinate of the centroid of this
volume is h(d;—A,)/(A,+44,+ A,).

17 For the area enclosed by Oz and the curve y = asinx between (0, 0) and
(7, 0), find the centroid and the M.I. about Oz.

Find the M.1. about the axis stated of the following (assumed uniform).
18 Equilateral triangle of side 2a; perpendicular axis through the centroid.

19 Solid right circular cone of height k, base-radius r; axis through the vertex
and parallel to the base.

20 Rectangular lamina of sides 2a, 2b; about a diagonal. [Use Ex. 7 (f), no. 2.]

21 The density of a solid sphere of radius a varies as the square of the distance
from the centre. Find the M.1. about a diameter. [Method of 7.92, ex. (v).]
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8

FURTHER GEOMETRICAL APPLICATIONS
OF THE CALCULUS

8.1 Relations involving arc-length
8.11 Sign conventions

In this chapter we give some applications of the calculus to the
geometry of plane curves, a subject known as plane differential
geometry. As the emphasis is now geometrical, we shall assume (without
further comment) the continuity and derivability up to any required
order of all functions which occur in the general discussion.

We begin by extending the work already done about arc-length in
7.68. It is desirable to introduce more sign conventions (we defined the
sign of s in 7.61 (2)).

Q
v
P ~
y
/)
4/
A .
O| ¢ positive ¥ negative\'l’{\”
Q
Fig. 95

(@) The positive tangent. A line drawn from P along the tangent at
P in the direction of increasing s is the positive tangent at P.

Since the direction in which s increases may be different for two
representations of the same curve (7.61(2)), the positive tangents at
P may be opposite for such representations.

(b) The angle ¥r. The angle made by the positive tangent with the
positive direction of Ox, measured in the sense from positive Oz to
positive Oy, is denoted by . It is determined to within an integral
multiple of 27, and is usually chosen so that it varies continuously
along the curve. -

Reversal of the sense of the positive tangent is equivalent to
replacing ¢ by 7 +1y. For either sense, we still have the gradient
dy/dz equal to tan yr, since tan (7 +y) = tany.
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8.12 Differential relations (cartesian coordinates)
From formula (i)’ of 7.64 we have

ds dy\2\} .

ds\? dy\?

so that (d_m) =1+ (d_x) s
and hence ds? = dx®+dy2. (ii)

on converting to differentials. This result also embodies formulae
(ii’, (iii)’ of 7.64.
Since dy/dx = tan ¥, (i) also shows that

By 7.61(2), s is measured to increase with z. It follows that
(a) ds/dx > 0; and (b) the positive tangent is in the direction of x
increasing, so that i is a positive or negative ACUTE angle, and sec ¢ > 0.
Hence the positive sign must be chosen: ds/dx = sec . We now have

dx:dy:ds =cosy:sin:1, ' (i)

If the direction of the positive tangent is reversed (e.g. owing to
" use of a different representation z = g(y) of the curve), then cosy,
sin ¢ and ds all change sign, but equations (iii) are unaltered. They are
therefore valid for all representations of the curve.

Infig.360f 3.11, PR = dx and RT = dy,soby (ii) T
ds
ds® = PR2+ RT? = PT?, dy

i.e. PT = ds. Although éx = dx,in general 0y + dy p R
and ds # ds; ds is the arc PQ. ' d=

TaEOREM. When P>, (chord PQ)/(arc PQ)— 1. Fig. 96

For chord PQ _ {(8z)2+ (3y)2}t

arcPQ ds

(-
{2 -

when ds - 0, i.e. when P — @ along the curve.
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Remarks
(«) The result can be expressed as follows:

when s 18 small, (8x)*+ (8y)? = (ds)2.

Compare the exact relation (ii), from which this approximation arises.
(f) When the curve is a circle of radius a, let arc PQ subtend angle
26 at the centre. Then arc PQ = 2a6, chord PQ = 2asin, and the

theorem gives

Compare 2.12, where this result was obtained from assumptions
about ‘area’.

8.13 Intrinsic equation

A relation between s (measured from a fixed point A of the curve
to a variable point P) and ¢ (the angle between the positive tangent
at P and a fixed line) is called the ¢ntrinsic equation of the curve.
Arbitrary constants can be added to s and i, since the fixed point and
line are arbitrary.

Exampleé
(i) Find the intrinsic equation of the cycloid x = a(f +sin ), y = a(l —cosb).
dy sin @

t&n¢ = d—x =T+c—'osa = tan1}0.

Hence ¢ = 40 +nm; and n = 0 since ¥ = 0 when 6 = 0 (see 1.61, fig. 23).
By the example in 7.62, we have
8 = dasiny.

Sometimes the intrinsic equation arises
naturally, as in ex. (ii).

(ii) The catenary. The curve assumed p
by a uniform thin flexible chain hanging
freely from fixed ends is called a catenary. R

Let A be the point at which the tangent 4 9 \

is horizontal, and P be any point (s, {) <=

where g is measured from 4 and i from the T,

horizontal. Let T, T, denote the tensions

at P, A, and suppose w is the weight per ws
unit length of the chain (w is constant Fig. 97

because the chain is ‘uniform’).
The part AP of the chain is in equilibrium under the three forces 7', T'y,
and weight ws. Resolving vertically and horizontally,

Tsinyr = ws, Tecosy =T,



8.13] GEOMETRICAL APPLICATIONS 299
By division, tanyr = ws/Ty;

ie. 8 = ctany,

where ¢ = T /w.

(iii) Gven the intrinsic equation, to find parametric equations.
We illustrate with the catenary s = ctan .
Since dy/ds = sin ¥ by 8.12, equations (iii),

== — =giny.csec®y.

y= fcsecz/f tan yrdyr = csec i + constant.

Suppose axes chosen so that ¥y = ¢ when = 0; then y = csec /..
Also, since dz/ds = cos i,

—— = — — = cos{.csec?y = csec y.

x = fcsecwdq[r = clog(secy + tan yr)

if axes are chosen so that = 0 when ¥ = 0.
Alternatively, we may obtain x as follows, working with ¢ instead of :

dx_ _ 1 _ c
3 =V = [Trtaniy) = Jor e’

cds 8
. = = -1_
L= f Tt csh . + constant

= csh~!(tan {) + constant
= clog (tan ¢ +sec ) + constant

on using the logarithmic expression for sh~1u in 4.45(1). If # = 0 when y = 0,
the constant is found to be zero.

Remarks
(o) y* = c?sec?yr = c?+c?tan? iy = c24 52,

dy s 1 .
(B) g =tany =-=-J(y*- "), by (a).
Integrating by separation of the variables, we find
ch-1¥ = f-I--A.
c ¢
If axes are chosen (as before) so that y = ¢ when « = 0, then 4 = 0 and
y =cch f,

[

which is the cartesian equation of the catenary. It could also be obtained by
elimination of i from the parametric equations above.
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Exercise 8(a)
1 Find the intrinsic equation of the curve
z = a(2cos0+cos20), y = a(2sinf+sin 20).

2 Obtain parametric equations of the cycloid s = 4asin ¥, taking the origin
aty=0,8=0.
3 Show that the cartesian equation of 8 = log tan 4 can be written
z = logsiny.

4 Find the cartesian equation of y = logchs by first proving sin ¢y = ths
and tany = shs.

5 Prove that the curve ¢ = ¢y’ is a circle of radius ¢.
6 Find parametric equations for the curve s = ay/%.

8.14 Differential relations (polar coordinates)

From z = rcos 8, y = rsin @ we have
dx = cosOdr—rsin6d0, dy = gin Odr + r cos d6,
and hence from formula (ii) of 8.12 we deduce
ds? = dr2+r2d62, (iv)

Equivalently, this follows from (v)’ of 7.64, and embodies (iv)’ and
(vi)’ there also.

We now introduce an angle ¢ whose role in polar coordinates is
similar to that of ¢ in cartesians.

Definition. ¢ is the angle from the radius vector to the positive
tangent at P.

Fig. 98 is the simple ‘standard’ case; fig. 100 illustrates a case when
r is negative.

We may choose ¢ to be in therange 0 < ¢ < 27. In all cases we have

0+ =
to within an integral multiple of 277. Hence
cos ¢ = cos (Y —0)

= cos ¥ cosf +siny sin 6§
dex dyy
iRt A 12
dsridsr by 8.12, (iti)
_wdz+ydy

rds
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Since 72 = 22+ y?2, therefore rdr = zdx +ydy, and so

dr

cos¢=d—8.

Similarly, sin¢ = sin (Y —6) = siny cosd—cos ¥ sinf

‘ Fig. 100

‘ and from y/z = tan6 we have (xdy—ydz)/x® = sec20dl = (r2[x%) do,

80
sing = rg—f.

(Since s is measured to increase with @, this last result shows that

sin ¢ and r have the same sign: 0 < ¢ < 7 whenr > 0,and 7 < ¢ < 27

when r < 0; cf. fig. 100.)

By division we find ldr
cot § = 730"
The results can be summarised as

cosg:sing:1 =dr:rdf:ds, (v)



302 GEOMETRICAL APPLICATIONS [8.14

and may be remembered by thinking of the triangle P'Q’ R’ suggested
by the approximately triangular part PQR of the main figure, in
which PR is an arc of a circle of centre O and radius 7.

Q ’
dr <
ds
RO
P ds
rdf

P’
Fig. 101

Examples

(i) Findthe curve for which ¢ is constant and equal to o (an equiangular spiral).
Let k = cota; then & = (1/r) (dr/df), and by separation of the variables,

0= Ilclogr+c.

If r = a when 0 = 0, then ¢ = — (1/k)loga, and 0 = (1/k)log (r/a), i.e.
r=aetd = gefeota,

(ii) Find the family of curves which cuts the family r = af (spirals of Archi-
medes) at constant angle a.
First form the differential equation of the family by eliminating a. We get
rd@/dr = 0, and hence tan ¢ = 0.
If ¢’ is the corresponding angle for the required family, then ¢’ = ¢ + a, and

8o (if & + ) sy - tangEtena _ O+k
n¢ = {Tteng tana ~ 1—%0"
where k = + tan a. Hence the differential equation of the required family is
,0_ 0+k
dr  1—k0’
and by separation of the variables we find
r = c(0+k)¥+1e*0,
where ¢ is an arbitrary constant.
If & = 4, then on the orthogonal curve we have
cot ¢’ = —tang = —0,
ie ! d_r =
e rdf

from which 12 =ce ",

-6,

(ili) Orthogonal trajectories in polar coordinates.

Suppose the differential equation of the given family is f(r, §,dr/d8) = 0.
This determines dr/df for the member(s) of the family through the point (r, 8),
say dr/d0 = g(r,6). Then cot ¢ = (1/r)g(r.0).
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For the orthogonal curve(s) through (r, §), ¢’ = ¢ + 7, so that

r
cotdd) = —tan¢d = —
i ¢ g(r, 0)
Hence on the orthogonal curve(s) we have
lar __ 7
r df g(r, 0)
i.e. —1‘2/% = g(r, 0),
and therefore flr, 0, —r2 ar) _
»VYs de -

This is the differential equation of the orthogonal family.
(iv) Reflector property of the ellipse.
If 8, 8" are the foci and P is any point on the ellipse, it is known (17.22) that
SP+S’P = 2a,
where 2ais themajor axis. Writing SP =7,
&’P = 7’ (i.e. using two systems of polar
coordinates with poles S, S’ respectively),

the relation is
r+1v = 2a.

Deriving wo s,
dr dr’

tm ="
S cosgptcosg’ =0, Fig. 102
ie. cos¢p = —cos¢p’ = cos(m—¢’) andso ¢ =mw—¢".

Hence the angles between the focal radii and the tangent at P are equal ; i.e. the
tangent and normal at P are the angle-bisectors of SPS’. Cf. Ex. 17 (b), no. 14.

Exercise 8(b)

1 Find ¢ for the curve r* = a”cosnf.

2 Prove that the tangent to the cardioid » = a(1—cos8) makes angle 36
with Oz.

3 Prove that the curves

r=acosl, r = a(l—cosb) B

intersect at the point (3a,iw). and find their P
angle of intersection. ’

4 Find the curves for which ¢ = nf. 0%e /]
If the line through O perpendicular to OP meets v z
the tangent and normal at U, H, then OU,0OH, PU, U
PH are called the polar subtangent, subnormal, )
tangent, normal respectively. If ' denotes dr/df, Fig. 103
prove

5 OH =" 6 OU = r3r, 7 PH = \/(r*+7r?).

8 PU =r,(r2+r?)/r.
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Find the curves for which
9 OH =a. 10 OU =a. 11 OH =0U. 12 PH =a.

Find the orthogonal trajectories of the following families, a being the parameter.
13 r = a(1l+cosb). 14 72 = a?cos 20. 15 78 = a®cos 30.

16 r = a(1+2cosb). 17 2?2+ y? = a(xr—y) [first convert to polars].
18 z*+y? = ax. 19 z(22+y?) +a(x?—y?) =0.

*20 Locif(r,8) = 0, f(r",0’) = 0 for which rr’ = k? and 6 = 6’ are called inverse
curves. Prove that these curves cut the radius vector at supplementary angles.
[Derive " = k2 logarithmically wo 6.]

8.2 (p, r) equation
8.21 Definition

We now introduce another type of equation for a plane curve which
will be found useful in subsequent work on curvature, and which has
dynamical applications in problems on central orbits.

We define p to be the length of the per-
pendicular from O to the tangent at P. Then

p = rsing.

Since rsin¢ = r2df/ds and s is measured to
increase with 6, it follows that when polar co-
ordinates are used, p is never negative.

The relation between the p and r correspond- Fig. 104
ing to a general point P of the curve is called
the (p,r) equation or pedal equation of the curve.

8.22 (p, r) equation from polar equation

Write » = 1/r; then
du 1dr 1

a6~ "rdp= Ty
Since p = rsin @,
1 cosec¢ 1+cot?’¢ 1 1 (dr\? .
P B -r—z{“ﬁ(d—e } ®
1 du\?
L . "
or i +(d0) . (i)

The (p,r) equation is therefore obtained by eliminating 6 from (i)
and the polar equation of the curve.
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Examples

(i) Equiangular spiral. Since ¢ = o by definition (see 8.14, ex. (i)), the (p,7)
equation is p = rsina.

(ii) Lemniscate r® = a®cos 20.

Derive wo §: 2rd_r = — 2a?%sin 26.
do
dr\®* _a*sin?20 ad(1—cos®20) at—rt
) ~ 2 T o

Hence by equation (i),

A
?& [
e,
Ll
o
%
3| 1
=
ES
S —
~——
I
T8

so that 78 = a*p? andt +73 = a?p.

(iii) Cardioid r = a(1+cosf).
Since r = 2a cos? 30, by deriving logarithmically wo € we have

1adr

- — = — 4.

r df tan §

cot ¢ = —tan 30 = cot (30 +3m),
and ¢ = 30+ im.

As p = rsin @ = rcos 30, therefore p? = r2cos? 30 = 78/2a, and} 2ap? = 73,
(iv) Rectangular hyperbola x*—y? = a2.
First transform to polars: 72 cos 20 = a2, i.e. a?u? = cos 2. Derive wo 0:

aﬁud—u = —sin 26.

do
Hence by equation (ii),
s sin 26\ 2 sin2 26
w | atu?
e 1ottt 1
wi vt atur’

P?=a%?=a/r? andt +pr=at

8.23 Polar equation from (p, r) equation
From p = rsing and cot ¢ = (1/r)dr/df, elimination of ¢ gives a
relation of the form dr/df = f(r) which, on integrating, leads to the
required polar equation.
Alternatively, equation (i) of 8.22, where p is a known function of
r from the given (p,r) equation, is the relation dr/d@ = f(r).
T + since r may be negative, but p is always positive.
I +since r = 0 from the equation of the curve.

20 GPM1
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Example
Find the polar equation of 2ap = r2.
Since p: r?
in2 —-— e = —
sin’¢ 72 4a?’

4a? da
cosec?¢ = - and cot?¢g = 5 1.

ldr
Th =-—
erefore from cot ¢ -390
1dr 1
2 4 2__ 2
r do i74(4a %)
dr r
=4 | —— = +sin-1|—
f+c _f«/( Py +sin (2a)’
and r = + 2asin(f +c).

The constant ¢ arises because the choice of initial line is arbitrary—the
(p,7) equation makes no reference to 6.

When the polar equation is known, the cartesian equation can be
found from it.

Exercise 8(c)
Find the (p,r) equation of
1 760 =a. 2 r*sinnd = a" 3 lu=1+ecosb.
4 xy = 2a? (O being the pole). 5 22/a?+y2/b? = 1 (O being the pole).

6 Prove that the tangent at the point ¢ to the curve « = acos’t, y = asin®?
is zsint+ycost = asint cost. Hence find the (p,r) equation wo O as pole.

Find the polar equation of

7 p?=ar. 8 2ap? =1d 9 7*=ap.
*10 Usep = rsin ¢ and sin gdr = rcos ¢db to prove that dp = rcos ¢ (d6 +dg).
Deduce that dp/dyr = rcos ¢.

Definition. The relation between p and ¥ for a curve is called its (p, )
equation or tangential polar equation.

*11 Prove p?+ (dp/dy)? = 72, and deduce that p + d?p/dy? = rdr/dp.
*12 If p = f(¥), prove
z = cosyYf (Y) +sinyf(yy) and y = sinyf'(Y)—cosyf(¥).

[Use no. 9 and z = rcos@ = rcos (Y —¢@) = ....] (The results are parametric
equations of a curve whose (p, §) equation is given. Elimination of ¥ gives the
cartesian equation.)
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8.3 Curvature

8.31 Definitions

The concept of curvature arises from the need to measure the rate
of bending of a curve, i.e. the rate at which the tangent turns as the
point of contact varies along the curve.

(@) The mean curvature of the arc PQ is (with the notation of

fig. 105) (Yo —¥p)/(3g —3p)-

vl _
Q
P
A 8 k \
: wp\l WQ \ -
o z
Fig. 105

With the notation of fig. 106, the curvature at P is

. 0y ay
lim %> = -~
ss>00s ds

Writing « for the curvature, we have

Remarks

(«) « does not depend on the point 4 from which s is measured, nor
on the line Ox from which ¢ is measured; but its sign depends on the
sense in which s is measured.

(8) We shall have « = 0 at points where Y is stationary. These
usually correspond to points of inflexion of the curve (3.71).

(y) Since Y = constant for a straight line, we have the natural
result x = 0 (that the line does not bend anywhere).

20-2
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(6) For acircle of radius R, the curvature is constant and equal to 1/R.
Let arc PQ, of length ds, subtend angle 6y at the centre. Then ¢
is also the angle between the tangents at P and @, and ds = R dy~

v _1 and « = lim oy _1

ds R 83-905_13.

This is also a natural result: since the
circle is symmetrical, it bends everywhere Q

at the same rate. /

Because the curvature of a circle is con-
stant, we may compare other curves with P
the circle in respect of their rate of Fig. 107
bending.

(¢) The radius of curvature p at the point P of a curve is the radius
of the circle which has the same curvature as the curve has at P.

By Remark () above it follows that

radius of curvature at P = reciprocal of the curvature at P,
ie p= 1 s .
o Kk dy
Remarks

(¢) p may be positive or negative: it has the same sign as «.

() When k = 0 at P, there is no radius of curvature at P since no
circle can have zero curvature. But as a circle of large radius has a
small curvature, we may conveniently think of points where x = 0
as giving an ‘infinite radius of curvature’.

8.32 Formulae for x or p

The definition « = dir/ds can be applied directly only when the
intrinsic equation of the curve is known. We now seek other more
convenient formulae.

(1) Curve y = f(x).

From dy ) dy
a;=ta,nz/r, Y = tan (aﬁ)’
_dy _dypdz_d 1 d_y)}
and K—%—E;%—%{tan (dx X cos Y
d?y
da? 1

T
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the positive sign being chosen since cosyr = dz/ds > 0 because s is
measured to increase with x. Thus

d2y

da?

T
1+ (@)
Remarks

(a) « has the same sign as d2y/da?; it is positive if the curve is con-
cave upwards (6.71 (2)) at P, negative if concave down.

(B) At a point of inflexion x vanishes and changes sign; for d%y/dx?
has this property (see 3.71).

(¥) At a point where i = 0, i.e. dy/dz = 0, we have x = d2y/da®.
When discussing the curvature of a curve at a particular point P we
may always choose axes with P as origin, P along the tangent at P,
and Py along the normal. With this choice, the curvature at P is J7(0).

(2) Curve x = g(y).
We find similarly that d’x
dy?

B 1 dx 23’
(@)
where the minus sign is correct if s is chosen to increase with y.

(3) Curve x = x(t), y = y(t).

_dy _y . TN
tanzﬁ_%—g, S ¥r=tan ot
_W _dfyds _df .9 ds
K= ds‘%/d_z'it{tan 5} a7
L i .
- {—y--z ——-—} I
()
X
_ dij—dy
@yt

(4) Curve r = f(0).
Since Yy=0+¢ and tang =r d_r,
K__d_zﬁ_dﬁ d¢_d0(l+@)

S Tdstds ds do

~ L1 fma (2]
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Now . 1 (%)a_rg%
S

dr\*  der
-5
= —T—; .
(dﬁ) +7r
-]
df do ’
dr\2 d*
1 (d—e') a6

dr) 4
de

Also

See also Ex. 8(d), no. 14, and Ex. 8(g), no. 20.

Owing to the complexity of this formula and the simplicity of the
one now to be obtained for (p,r) equations, it is best to start by
transforming the given polar equation into (p,r) coordinates (8.22).
We may finally have to eliminate p from the expression for .

(5) (p,r)equation.

_d_w do d¢
=ds " ds T ds’
also sin¢=rga—é, cos¢=§£.
1<=lsin¢+‘2—¢cos¢
=14 raing)
1dp
Trar’

Examples
(i) Find p at the vertex of the cycloid s = 4asinyr.
p= % = 4acos .
At the vertex, ¥ = 0, and hence p = 4a.
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(ii) Find p at the point (3, 4) of the curve xy = 12.

2 1 o
V=2 V=T WV =

At(3,4), y' =-—% and y" =% so p=(1+48)5 =21325
(iii) Find p at the point ¢ of the ellipse x = acos P, y = bsin P.

= —agsing, cdl—‘; =bcos ¢,

dg
g-;—w: = —acosg, g;% = —bsing.

%%—%%:ab d (%':%)s (%)z=a’sin’¢+bzcos’¢,y

1
and p = — {a*sin®§ + b2 cos? ot
This result can be written p = OD?/p, where p is the length of the perpen-
dicular from the centre O to the tangent at P, and OD is a semi-diameter con-
jugate to OP: see 17.64, ex. (i).

(iv) Find p for the cardioid r = a(1 + cos ).
Firet we find the (p,r) equation as in 8.22, ex. (iii), viz.

2ap? = 78,
From this 4ap = 31"‘gz .
'y = dp-
_,dr dap 4a [r® 2
p—rdp—r%?;—y 2@—(“/(2«1?')

=§./(2a.2acos*}0) since r = 2acos?}f,
=4acosif (~-m<@<m).

*(v) Find the radii of curvature of 23 +y* = z(z —y) at (a) (1,0); () (0, 0).

(a) We can find dy/dwx, and then d%y/dx?, by deriving the given equation
wo z 88 in 3.41: 322+ 3yt = 2w —y—ay’,
S (Byt+a)y = 20—y —3a2. ()
At (1,0), thisshows y’ = —1.

Deriving (a) wo : .
(By*+a)y”" +6yy?+y = 2—y'—6x,
and hence whenx = 1,y = 0 and y’ = —1, then y” = — 2.

i
Therefore at (1, 0), p=U +21} =2

(b) Equation («) does not determine y’ when « = 0 and y = 0 because both
sides vanish. We may avoid this difficulty by making successive approximations
to the equation of the curve near the origin as follows.
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If z and y are small, then the terms 23, y® are small compared with z(x—y),
so that the given equation is approximately z(x—y) = 0. Hence near O the
curve has two branches approximating tox = 0, z—y = 0.

The given equation can be written z = (2® + y®)/(x —y), so that on the branch
for which z = 0 we have z = (¥®)/(—vy) = —y?, which gives a closer approxi-
mation to this branch. To get a still better one, consider

ms + 3 wa 2
z+y:= y +y?= tay
z—y r—y
(again from the given equation); since x == —y?, this gives

— gy
z+y® = =y
Y Y )
Thus # = —y®+y? is a third approximation to this branch.
Algo, the equation can be written z—y = (#®*+%?%)/z, so on the branch for
which y = z we have z —y = (22%)/x = 222. Hence

y = x—22? is an approximation to this branch. vl s /

On the first branch we have at O that «)/ //

Z

dx d?x {1+0%# \

_—= 0, —_— =4, = — ——

dy dy? % s p -2 ¥ —

0 x

At O on the second branch, dy/dx =1 and ///

d*y/dz? = — 4; hence /
2nE /
RCL L P ’ ,
—4 Fig. 108

Exercise 8(d)

Find the radius of curvature of the catenary s = ctan ¥ at the vertex.
Tind the radius of curvature of the tractrix e=%¢ = cos  in terms of ¥r.
If p? = ¢®—s?, find the intrinsic equation of the curve.
Find the curvature of the catenary y = cch (x/c).
Find the radius of curvature of the cycloid x = a(0 +sin8),y = a(l —cos ).
Find p for z = at?, y = at®.

7 A curve which touches Oz at O has p = csec . Find parametric equations
and prove that the cartesian equation is y = clogsec (z/c).

*§ Prove that
K= —% % = +% d and deduce «2 = (3%9:)2+ (%)2.

dx dx ddy dydix
ds  ds ds dsds®
10 If p% = ar, find p in terms of .
11 Find p in terms of r for the equiangular spiral r = a efeote,
12 Find p in terms of r for the lemniscate 72 = a®cos 26.

13 If s is measured from the point 6 = 0 of the cardioid r = a(1 +cos 0), prove
that 9p%+s? = 16a2 for 0 < 0 < 7.

A v A W=

*9 Prove that
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*14 Denoting du/df by u’, derive each of the equations x = rcosd, y = rsiné
twice wo 8 to prove

(a) §’cosyy = —rsinf+17'cos0,
(b) &'siny =rcosf+r'sind,
(¢) s"cosyp—ks?sinyyr = —reosf— 2 sin 6 +1"cos b,

(d) 8" sinyy+ks2cosf = —rsin 0+ 2r' cos 6 ++” gin 6.
By subtracting the product of (@) and (c) from the product of (b) and (d),
prove k8’3 = r2—prr” 4 21’2,
and deduce the formula for x given in 8.32 (4).

Find the radius of curvature of
*15 228+ = y?—a? at (—4,1). *16 zy(x?+y?) = 2®—y® at (0.0).

Find the radii of curvature at the origin for the branches of
*17 20%+9y% = y2—at. *18 x(y—2x) =yt

*19 If p = f(¢), prove p = p+d?p/di®. [Use Ex. 8(c), no. 11.]
20 What are the curves which satisfy

dy\f|} _ d%
o] -2

21 Find the radius of curvature of » = acosd.

*22 Find the cartesian equation of the curves for which % times the radius of
curvature is equal to the cube of the normal (see 5.71).

8.4 Circle and centre of curvature

8.41 Osculating circle

Suppose a curve y = f(x) and a point P on it are given, and also a
family of curves y = g(z, a;, @5, ...) depending on a number of para-
meters. If the parameters are chosen so that the corresponding
member of the family has the highest possible order of contact (see
6.72) with y = f(z) at P, then the two curves are said to osculate there.

(1) Osculating line. If y = g(x) = ax +b, then the two constants a, b
can be chosen to satisfy the two conditions for first-order contact with
y = f(x) at x = x,, viz.

f(xo) = azy+b, ['(z,) = a.
These give b = f(x,) — %o f'(%,), s0 that the osculating line is
Y —[flawo) = (o) (x— ),
i.e. the tangent to y = f(x) at x = x,.

This line will not in general have contact of order higher than the
first; but if f”(x,) = 0, then the order is at least two.
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(2) Osculating circle. The three constants «, £, R in the equation
(z—a)+@y—f) = B?

can in general be chosen to satisfy the three conditions for second-
order contact with y = f(z) at x = =, viz.

f@o) =40 f'(@) = Yo S"(w0) =90
where y', y” are given by
(@—a)+y-py =0,
1+y%+(y—p)y" = 0.
Hence (dropping the suffix 0 in x, for convenience) we require
(@—a)+{f(x)- B} = R?,
(@—a)+f"(@){f@)- 5} =0,
1+{f" (@) +f" (@) {f(x) - B} = 0.
If f"(z) + O these give in turn, starting from the last:

) — =—1+‘f,2
f() f” ’
r—o =j_‘,(17—*’_’j_"_2),

s (1P

R f'rz ’

which are sufficient to determine o, £, R* uniquely.
We observe that R is numerically equal to the radius of curvature
p at P(x,y). The circle just determined is therefore called the circle
of curvature at P, and its centre C(a, f) is the centre of curvature at P.
Thus the centre of curvature at P(z, y) is
WHfD) oo 14 :
o= f” ’ ﬂ _f + f// . (l)
Since the circle touches the curve at P, therefore C lies on the
normal ot P. (This is also easily verified from equations (i).) Intui-
tively we should expect the circle of closest contact to ‘bulge’ the
same way as the curve does at P, as in fig. 109 rather than 110; i.e.
that C lies on the ‘inward normal’ at P. This is so since in deter-
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mining the circle we chose y” = f” at P, so that the senses of the
concavities at P are the same (6.71 (2)).
Asp = (1 +f2)}[f", hence by (i)
_Pf _P
A+ (1+f2)t
Since f’ = tan yr and ¢ is acute (positive or negative), by 8.12, we have
a=x—psinyg, f=y+pcosy.

S

‘Fig. 109 Fig. 110

a=2z— B=y+

If f"(x) = 0 (which is so in particular at a point of inflexion), the
equations for a, §, R cannot be satisfied: there is no osculating circle.
However, the tangent then has at least second-order contact by (1),
and we may conveniently say that ‘the “circle” of curvature at P
is the tangent’. There is no centre of curvature.

v v
P
4 — Py 8
\ \ 4
v\ - v -

) / x [4] / x

Fig. 111 Fig. 112

In general the circle of curvature will cross the curve at P; for m = 2
in the theorem of 6.72. The relation of the curve to a circle of cur-
vature is illustrated in figs. 111, 112,

Formulae (ii) are still valid in fig. 112, since p is negative there.
Fig. 111, the simplest case, can be taken as the standard, and used to
write down the expressions for «, # quickly (see fig. 113).}

t An easier method is given in 8.53.
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8.42 Newton’s formula for p

(1) We should expect from intuitive considerations that the circle
having closest contact with a given curve y = f(x) at a point P could
be obtained by considering a circle touching the curve at P and
passing through a neighbouring point ¢, and then taking the limit by
letting @ tend to P along the curve. Assuming this for the moment,
let PR be the diameter through P of the circle PQ, and draw QN
perpendicular to PR; then PN . NR = N2. In the limit, the diameter
PR tends to the diameter 2 |p| of the osculating circle at P; so

|[p| = $lim PR = }lim (NR+ PN)
Q—>P

- 3lim (Q—Nz+PN) = 3lim &

PN

PN

gsince PN — 0.

As we are discussing the given curve at the particular point P, we
may first choose P to be the origin, taking Py along the inward normal
at P and Pz along the tangent. Our result then becomes

This is Newton’s formula, and gives the value of |p| at the origin.
Analytically, the result can be obtained from Maclaurin’s theorem:

y = f@) = f(0)+f"(0) + 3% (0) + §%f" ().

Choosing axes as before, we have f(0) = 0, f'(0) = 0, and « = f"(0)
(see 8.32, Remark (y)). Hence

y = xa® + 32" (Ox),
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and K= li__I)I; {% - %xf’”(ﬁx)}

if xf”(0x) — 0 when x — 0; this certainly happens if f”(z) is bounded
for all z sufficiently small.

Examples

(i) Find |p| at the origin for the pambola 2 = day.
We have i ® . 4 day _
. lpl x—>02—y - y—0 2y
(ii) Find |p| at the pole for r = asin 20.
Since x = rcosf = asin 260 cos§, therefore on the branches touching the
initial line Oz at O (see Ex. 1 (e), no. 13) we have § - 0 when x - 0. Hence

r2cos?f . asin2fcos?6

lol = ﬁozy = G eng =A™ om0

= lim (acos?f) = a.
6->0

The symmetry of the curve shows that |p| has this value for the branches
touching Oy at O.

o o : : v4 by
(iii) Find |p| at the pomt (a, 0) of the ellipse ll

y* /’_
+n=1

sy

_L/

o A
Change the origin to A(a, 0) by writing x—a ¥
instead of z (see 15.73(2)). The equation be-
comes
(x —a)? .
o Tty =1 Fig. 115

referred to axes Az, Ay’. The tangent at the new origin is not Ax but A4y’;

hence we must interchange z and y before applying Newton’s formula. We obtain
1 b2 b2 b2

o] = y =lim — b2—9—(a: —a)?} = lim Z_22 =2,

a-—>0290 T 022 z—-0\a 2a? a

(2) To justify the assumption made at the beginning of this section, let Z
be the centre of the circle PQR. Assuming the continuity and derivability of
f(z), the distance r from Z to points of the arc P@ is also continuous and deriv-
able, and is such that ZP = ZQ. Hence by Rolle’s theorem there must be a
point P; of the arc between P and @Q such that ZP, is a stationary value of 7.

Taking Z as pole, we now show that when the radius vector of a curve is
stationary, it is normal to the curve. For dr/df = 0 gives cot ¢ = 0, i.e. ¢ = 3.
Hence ZP, is normal to the arc at P,. and so Z is the meet of normals at P
and P,.
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We show finally that the intersection Z of normals at neighbouring points
P, P, tends to the centre of curvature C at P when P, — P along the curve. Choose
axes as before; C is then the point (0, p), i.e. (0, 1/f”(0)). The equation of the

normalat By&SEN I gy ty—f(@0+ -5 = 0.
This cuts z = 0, the normal at P, where y = f(£) + £/f’(£), and this is therefore
the ordinate of Z. When P, - P, £ - 0 and f(£) — f(0) = 0, while
£ _ 80 1
FE fEO-£10) 10y
the ordinate of C. Hence Z —» C.

Our original assumption is now justified since, when @ - P along the curve,
the point P, (which lies between @ and P) also tends to P.

Exercise 8(e)

1 Find the centre of curvature at (3, 4) for the curve xy = 12.
2 Find the centre of curvature at the point (acos ¢, bsin¢@) of the ellipse

wa yﬁ
atE= b
3 Prove that the centre of curvature (a, §) is given parametrically by
g @24t
==Y > =y+e———.
Vai—ay P=Ytig=

4 Show that the coordinates (a, f) of the centre of curvature at (z,y) can
be written
a= w—%‘%, g= y+%.

Use this result to prove that the centre of curvature at the point 6 of the cycloid
x = a(0—sinb), y = a(l—cosb) is &« =a(f+sinf), f = —a(l—cosf). [First
show that ¥ = $r—46.]

5 Find |p| at the origin for 2+ 3y® = 2y.

6 Find |p| at the origin for 2?/a?+ (y—b)?/b* = 1. Interpret the result in
terms of the ellipse z%/a?4-y%/b? = 1.

7 Find [p| at the pole for r = asin 36.

*8 Find |p| at the origin for y = 22? — 3wy 4 4y

8.5 Envelope of a family of curves

In this section the technique of partial derivation is required as
far as 9.42.

8.51 Definition and determination of the envelope

(1) Consider the curve _
flx,y,)=0 C,

depending on a parameter «. As « varies, we obtain a family of curves
(cf. 5.72).
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If, for each «, the curve C, touches a definite curve &, then & is

called the envelope of the family.

Let C, touch & at P,. The coordinates of P, are certain functions
(at present not determined) of a, say
z =z(a), y=y) ¢
Then & has parametric equations Cq
z=zxlt), y=y@);

it touches C, at the point where ¢ = c.
Assuming that the family possesses an envelope,
we now find equations to determine it,

Fig. 116

(2) The coordinates (z,y) of any point on & satisfy
f@,9,0) =0 and %f(x, y,2) = 0.

Proof. For each a, the point (z(«), y(«)) lies on C,; hence
f(@(@), y(),a) = 0 )

for all &e. Deriving this wo «, we have (by 9.41, equation (iv), extended
to a function of three variables)

of o

Lo+l 7

y(@)+5, (1)

Since & touches C, at t = o (and this implies that C, possesses a
definite tangent at ¢ = ., i.e. that not both of 9f/0z, of /oy vanish there:
cf. 9.42), therefore

. ¥y _ [ Jof
i.e. by 9.42, 2@ = | ) 3y 7=
Thus at (x(a), y(oc)) we have
Ta@+Ly@=o. (i)

By subtracting (iii) from (ii), we see that at (x(a),y(cx)), of e = 0.
Consequently z(x) and y(«) satisfy the equations

f(x’ Y, a) =0, %f(x, Y, (Z) = 0. (iV)
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The cartesian equation of the envelope is found by eliminating «
from equations (iv). Frequently, however, the parametric equations
obtained by solving (iv) for z and y in terms of o are more convenient.

Remark. The solution of (iv) may include loci other than the
required envelope, viz. loci of singular points of the family. A singular
point (x,y) on C, is one at which both of/ox = 0 and of/dy = 0. At such
a point, equations (i) and (iii) are satisfied, and hence also 9f/dax = 0
by (ii), so that equations (iv) still hold. To ensure that we have found
the genuine envelope we must verify that our solution of (iv) actually
touches C, at t = .

8.52 Examples
(i) If the family of lines z — oy +a? = 0 has an envelope, it is given by
rz—ay+o:=0, —y+2a=0,
from which y = 2« and = a2,
The parabola z = a2, y = 2« is actually the envelope because its gradient at
the point a is dy Jde 1

do o’
which is also the gradient of the line ¢ — oy + a2 = 0 (fig. 117). Also see ex. (v).

vi v
(o2, 20t)
0 v O
0 \ %z
Fig. 117 Fig. 118

(ii) The family (y—c)*—a® = 0 has no envelope. For the equations to

determine it are (y—a) =2, —2y—a)=0,

and the only points satisfying these lie on z = 0, i.e. the y-axis, which does not
touch any member of the family (the reader should verify this by finding the
gradient of the given curve at (0,a)).

The y-axis is a locus of singular points of the family, for such points are given

b,
Y 0=Z—J:l;=—-:30z:2 and O=%=2(y—a),
and are thus the cusps (0,a). See fig. 118.
(iii) If the family 3(y — )2 = 2(x—«)? has an envelope, it is given by
3y—a)?=2z—a), 6y—a)=6a—a),
from which z=a+% y=a+s or z=a, y=a



8.52] GEOMETRICAL APPLICATIONS 321

The first solution corresponds to the line 2 —y = £, which touches the curve
ab (o + §, @ +4%); this should be verified by the reader.

The second solution corresponds to the line y = x; this does not touch the
curve at (a,c), and in fact is the locus of the singular points (cusps) of the
family (fig. 1}9).

y
i o
\0
&
(a, a)
(]
AOA\QQ
0 &
/ \ z
Fig. 119

(iv) Find the envelope of a family of coaxal ellipses for which the sum of the
semi-axes is constant.

Choosing the common axes as Oz, Oy, the family is
zt g
atp=l
where a+f=c.

Regarding £ as a function of a given by & + 8 = ¢, the envelope is determined
by the above equations together with

2 2 d
at® fida da
From the last two, #%/a® = y?/%. Hence by using properties of equal ratios,
we have a B a+p ¢

P BT B W Sl L
from which we find , £ in terms of z and y. Substituting into the equation of
the ellipse,

AR S ISRy S

from which a4yt =t

Since an ellipse has no singular points, we may conclude that this locus is in
fact the envelope of the family.

Alternatively we may begin by eliminating f, and then proceed in the usual
way. The method given preserves the symmetry in «, 5.

(v) Family which is quadratic in the parameter.

If @*f(, y) +ag(z, y) + h(z, y) = 0
has an envelope, it is given by this equation and
2af(z,y) +g(z, y) = 0.

21 GPMI1
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Eliminating 2, (_%)af+(—%)g+h=0,
i.e. g* = 4fh.

In general this will be the envelope (but see Ex. 8(f), no. 13). The equation
18 the condition for the quadratic of +og+h = 0 to have equal roots.

*(vi) Clairaut’s equation y = px+f(p) and its singular solution.
In 5.27 we showed that the general solution of this differential equation is
y = cx +f(c), and that another solution is obtained by eliminating p from
z=—f(p), y=F(p)-rf(p)

This singular solution is the envelope of the family of lines represented by the
general solution.
For the envelope is obtained by elimination of ¢ from
y=cx+f(c) and O=z+f'(c)
i.e. from z=—f(c), y=f(c)—cf'(c).

The curve thus determined is a genuine envelope since its gradient ist

dy _dy [dw _ f'(c)—f'(c)—cf"(e) _

— == =c,

dx dc/ de —f"(e)
which is the gradient of the line y = ¢z +f(¢).
(vii) Limiting intersections of neighbouring curves of a family.
Consider the neighbouring curves C,, C, 4q:
flz,y,a) =0, flx,y,0+da)=0.
If these intersect, their common point(s) satisfy
f@,y,2) =0 and f(z,y,a+0x)—f(x,y,a) =0,
ie. fle,y,0) =0 and f,(x,y,8) =0

for some number £ between « and a + dc.

When éx — 0, then by our general hypothesis of continuity in this chapter,
the curve C, ., approaches the curve C,, and the coordinates of the limit of
their intersection(s) satisfy

17}
flzsy,a) =0 and af(x,y,a) =0.

Hence if neighbouring curves intersect, the limit of these intersections lies on the
envelope or on a locus of singular points of the family.

Remark. The envelope of a family used to be defined as the locus of the
limiting intersections of neighbouring members. This definition is not consistent
with the concept of the envelope as a curve which touches all members of the
family, because an envelope (in our sense) may exist even when neighbouring
curves do not intersect. For example, no two curves of the family y = (v —a)®

+ We are assuming throughout (cf. 5.27) that f() is not a linear function.
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intersect, but y = 0is the envelope(which also happens to be a locus of inflexions)
as is easily verified. The old definition would not admit that a curve is the
envelope of its own circles of curvature: see 8.54, Corollary 2.

8.53 The evolute of a curve

Definition. The locus of the centre of curvature C' as the corre-
sponding point P varies along the given curve is called the evolute of
this curve.

If the curve is y = f(x), then equations (i) of 8.41 give a parametric
representation of the evolute, the parameter being z. The following
theorem, which relates ‘curvature’ and ‘envelopes’, also provides a
neat way of finding the coordinates of C and the value of ||, instead
of using the formulae in 8.32(3) and Ex. 8 (¢), no. 3.

The evolute of a curve is the envelope of the normals to the curve.

Proof. If P(z,y) is any point on the curve and C(x, §) the corre-
sponding centre of curvature, then (8.41, equations (ii))

a=x—psiny, f=y+pcosy.
da = dx—pcosyrdyr —sin yrdp

ds dx .
= dx—Wd-;dw—smV/dp
= —sin Y dp,
and similarly df = cosyrdp.
gé = —cot i = gradient of the normal at P to the curve.

But df/da is the gradient of the evolute at C. Hence the normal at P
to the curve is parallel to the tangent at C to the evolute. Since C lies
on the normal at P, this normal touches the evolute at C, the corresponding
centre of curvature.

Since CP? = p?, the ‘distance formula’ of coordinate geometry
gives the value of |p| when the coordinates of C have been found.

Examples
(i) Find the centre of curvature at the point ¢ of the parabola x = at?, y = 2at.
The normal at (a2, 2at) is‘(see 16.31)
y+(rx—2a)t—at® = 0.
Its envelope is given by this equation and
(z — 2a) — 3at? = 0.
Hence z=2a+3a® and y=—2as,

21-2
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These expressions are the coordinates of the centre of curvature at (a2, 2at),
and are also the parametric equations of the evolute. The cartesian equation,
found by eliminating i, is 4(x — 2a)? = 27ay?.

Als
% 0P = (2a+ 208%) + ( — 2a8* — 2a8)?
= 4(12(1 +t2)3
on factorising, so that |p| = 2a(1+#2)L.

g

(ii) Find the centre of curvature at the point ¢
of the ellipse x = acos @, y = bsin ¢.
The normal at (acos @, bsin @) is (see 17.51)

sy

o

y—bsing = gta,ngb(m—acosgb),

i.e.
b2—q3 Fig. 120

b

2
y—-%xtan¢ = bsin¢-—%sin¢ =

Its envelope is given by this and

a
——xsec?d =
posectd

from which T = cos?® .

We find that a?—b? |

either by direct substitution in the equation of the normal, or by re-writing this
‘equation with the z-term independent of ¢ as

b2—q2

b

ycot¢—§x= cos¢

and then deriving partially wo ¢ to get its envelope afresh.
The required centre of curvature is thus

2__ 52 2__h2
(“ ab cos?$ —= bb sin3¢).

The evolute has cartesian equation (az)? + (by)¥ = (a2 —b2)k.

8.54 Arc of the evolute

Provided that p steadily increases or steadily decreases along the given curve,
the arc-length of the evolute is equal to the difference between the radit of curvature
corresponding to its extremities.

Proof. Let A be the fixed point from which s is measured on the curve 4P;
let C,, C be the centres of curvature at 4, P, and let o be the arc C,C of the
evolute, measured from C,, in the sense for which 8 increases.

If O is («, B), then from the proof in 8.53,

da = —sinydp, df = cosydp.
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Therefore by 8.12, equation (ii) applied to the evolute,
do? = do? +df?
= sin?yrdp? + cos? i dp?
= dp?.

If p steadily increases with s, i.e. with o, then do = +dp and o =p+ec.
When s = 0,0 = 0and p = py, 80 ¢ = —p, and o = p—p,.
If p steadily decreases as 8 increases, then do = —dp and o = p,—p.

—~— —

——————

Fig. 121

A’

CoroLLARY 1. The circle is the only plane curve with constant p.

If p = constant, then do= 0 and so ¢ = constant. Hence the centre of
curvature is the same for every point of the curve, and every such point lies
at (constant) distance p from this fixed point; i.e. the curve is a circle,

CoroLLARY 2. The circles of curvature at neighbouring points of a curve do not
intersect.

The difference between the radii of curvature at neighbouring points is equal
to the arc of the evolute between the corresponding centres of curvature, and
this are is greater than the distance between these centres. Hence one circle
completely encloses the other (illustrate this with a sketch), and so they do
not intersect.

“Yet these circles have an envelope, viz. the curve itself.

CorOLLARY 3. Involutes of a given curve.

Given the evolute C,C, we can generate the original curve mechanically as
follows. Let a string be wound along the evolute from a fixed point C, to C,,
and leave the evolute tangentially at Oy, continuing as far as 4. Unwind the
string, keeping it taut; then the end A will trace the original curve.

For, when the end has any position P, the length of the unrolled part of the
string is PC = ACy+are 0,C = p,+0 = p, so that P lies on the original curve,
which is called an snvolute of C,CC,.

Given C,CC,, there are infinitely many involutes: any point 4’ on CyA
traces a curve AP’ to which P’C is normal. Since tangents at such corre-
sponding points P, P’ are parallel, the involutes are all parallel curves.
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Exercise 8(f)

Find the envelope of the following families of curves ( parameter ).
a
1 y=5+a’. 2 y=ar+ias.
gz* . .
3 y=atana— %sec’a ; interpret dynamically.

2 2
4 zseca+ycoseca = a. 5 %+l =1, where a+f =c.

B

6 Straight lines making intercepts on the axes whose sum is constant and
equal to a.

7 Circles with their centres on 22+ 4% = a? and passing through (0, ¢).
*8 Through a fixed point on the circumference of a given circle chords are

drawn. Show that the envelope of the circles on these chords as diameters is
& cardioid.

9 Show that the envelope of y = a(x—a)? is ¥y = 0, and that this is the
member of the family for which & = 0.
10 Prove that the envelope of the circles

224 y? — 2cxa cos a — 2eyosin o = c2(1 — 2ax)

is the circle of the family for which & = 0.

11 Verify that the curves of the family y* = (x —a)® do not intersect. What
is their envelope?

12 Show that the curves 2t + ¢y = at do not intersect. What is their envelope?

*13 Verify that the process for finding envelopes applied to the family
a?f + 20 +g = 0, where f, g are functions of  and y, leads to g(f—g) = 0; and
that ¢ = 0, f—g = 0 are the members of the family corresponding to a = 0,
o = — 1 respectively. Assuming that g = 0, f—g = 0 do not touch, verify that
no other members of the family touch either g = 0 or f —g = 0, so that the family
has no envelope.

Find the centre of curvature at the point t, and the evolute of
14 z = at?, y = at®. 15 z=ct, y = cft.
16 =z = t+acht, y = bsht. 17 = = a(t—tht), y = asecht.

*18 z = acos®?, y = asin®t.

Miscellaneous Exercise 8(g)

1 Prove that cot ¢ = (1/r)dr/df. If P is any given point on the cardioid
7 = a(1 —cos ), find two other points Q, R on the curve such that the tangents
at P, @, R are all parallel, and show that the sum of the ordinates of P, @, B
is zero.

2 Find the values of & at those points of the curve r = asin 26 at which the
tangent is parallel to the initial line. Sketch the curve.

3 Prove that the curves r2cos(20—a) = a?sin 2z, 72 = 2a?sin (20 +a) cut
orthogonally.



GEOMETRICAL APPLICATIONS 327

4 The tangent and normal at P to the curve r = f(f) meet the line through
O perpendicular to OP at A, B, Prove OB:0A = (dr/d0)?:72.

A curve is such that (i) OB/OA = 62; (ii) r - c0 when 8 - c0; and (iii) r = a
when 6 = 0. Find its equation, and show that triangle 4 PB has area

Jaret” (0+6-1),

5 If cot ¢ varies as the ordinate of the point of contact of the tangent, prove
that the curve concerned is a conic having a focus at the pole and eccentricity
equal to the value of cot ¢ when 8 = 3.

6 If s = f(i), show how to find =, y in terms of ¥. A curve is given by
68 = 4a(5+tan® 3y J/(tan 3¥);

if axes are chosen so that z, ¥, s, Y vanish simultaneously, find z and y in terms
of ¥, and verify that 522 4 9y® = 5s?.
7 Show that the tangent at the point & of the curve

= a(4cosf—cos48), y = a(4sinf—sin 46)
is ' zsin £0 —ycos §0 = Basin 6.

With O as pole, prove that the (p,) equation is 72 = 9a? +1§p?, and deduce
the radius of curvature at the point 6. Find the arc-length from 8 = 0 to 2.

8 A circle of radius a rolls without slipping on the outside of a fixed circle of -
radius 2a and centre O; P is a point fixed on the circumference of the rolling .

circle, and 4 is the point of the fixed circle with which P initially coincided.
With O for origin and OA for z-axis, show that P has coordinates

x = 3acosf—-acos3f, y = Sasinf—asin30,

where 0 is the angle turned through by the line of centres. Find the (p,r)
equation, and prove p = 3asin §. Sketch the curve and find its area.
9 Ifr = a(l—cosf), prove p = 2asin®1y.

10 If p = acos 3y, obtain x and y in terms of ¥, and prove that the (p,7)
equation is 72+ 8p? = 9q2.

11 At the point P(ct, ¢/t) of xy = ¢2, prove k = 2¢2/r%, where r = OP.

12 Find the radius of curvature of r = aflsec 40 at the pole by Newton’s
formula.

13 Ifz = clog(secf +tand) and y = csecd, prove p = csec?d.

14 Ifr = acosnf, find p in terms of 7. Show that p = a/(1+n?) when r = a.

15 Prove that p = cosec{rdy/dyr. For the curve y = asec™y, prove pis
n times the length of the normal.

16 Find the (p,r) equation of the curve r" = a®sinnf, and prove that
pr*~t = a"f(n+1). Prove also that the length intercepted on the radius vector
by the circle of curvature is 2r/(n + 1).

17 Find the equation of the circle of curvature of axy = z8— 203 at (—a,3a).

18 Prove that the centre of curvature C(a, f) at P(x,y) is given by

_ dy _ dx
a= w—m, p= y+w.

If P is the point (z,y) on the curve x = acos®(}t), y = asin?(}¢), and Q
divides CP internally in the ratio 2: 1, find the locus of Q.
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19 Find the equationof the normal at the point 0 of the cycloid x = a(f +sin §),
¥ = a(1+cosf), and hence the centre of curvature. Show that its locus is
another cycloid having the same dimensions as the given one.

20 Prove that 1/p? = u?®+u'2, where v = 1/r and w’ = du/df. Hence prove

_ (uz + w” 2)*
T wdutu)’
21 Show that a curve whose radius of curvature is equal to the length of the
normal is a cirele or a catenary. [p = + PG with notation of 5.71.]
22 Find the two systems of curves for which the radius of curvature is half
the normal.
23 Whait are the curves for which p = TG?
24 Sketch the curve (z—y) (2z+y) = 2%«?+y) near the origin, and find the
radii of curvature of the branches at O.
25 Find the envelope of circles whose centres lie on xy = ¢ and which pass
through O.
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9

FUNCTIONS OF SEVERAL VARIABLES

9.1 Introduction

9.11 Functions, limits, continuity

In 1.13 we discussed the concept of ‘function’ for a single in-
dependent variable, and mentioned that it extends to more than one.
We now begin the differential calculus of functions of several variables.

Suppose z, y are two variables whose values (perhaps within certain
ranges) can be assigned arbitrarily, so that x, y are not related in
any way. If one or more values of u are determined when values are
given to x and y, we say that u is a function of the pair of variables (z, y),
and write v = f(x,y). We call z, y the independent variables and u the
dependent variable.

The notation u = f(x, y) is still used even when x and y are related,
although we are not then dealing with a genuine function of two
independent variables.

In this chapter we give our attention to functions of two variables.
This caseis typical, and the results can be extended at once to functions
of three or more.

As in Ch. 2, we can define the limit of a function of (2, y) when these variables
tend to given values, and the meaning of continuity in (x,y) at a given point.
Thus, if a positive number € (however small) is given, and a positive number
7 can be found such that, whenever

O<|z—a|<n and O0<|y-b| <7,
we have flz )1} <e,

then we say that f(z,y) tends to the limit I when x tends to a and y tends to b,
and we write

lim f(z,y)=1L
(z,9) >(a,b)
IT also f(a, b) exists and is equal to I, then f(x,y) is continuous in (x,y) at “the

point’ (a,b).

We do not develop these matters here because we shall be concerned only
with certain special limits (of incrementary ratios) associated with the process
of derivation. However, the reader is warned that the situation is more com-
plicated than would be expected at first sight: continuity in the pair of variables
(%, y) requires more of a function than its continuity (as defined in 2.61) in =
alone and in y alone.
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9.12 Economy in functional notation

It will be convenient to economise in symbols. Instead of writing
Yy =f(x), u = ¢(x,y), ..., we now write y = y(z), u = u(z,y), .... That
is, we use the same letter for the dependent variable and the functional
symbol. No confusion can arise unless we require to make a substitution
or change of variables, and then we can revert to the former functional
notation whenever necessary.

Thus, if v = w(z,y) and z = z(&,9), y = y(§, ), then by substitution
for x, y we can construct from these three functions a new function
u = f(&,7), where f(£,1) = u(%(§,),y(£,9)). It would be wrong to call
this new function (£, ) because this symbol already has a meaning,
viz. the value of u(z, y) when we replace z by £ and y by 3. For ex-
ample, if u=2x2+y%, xz=£-79% and y=2§&,

then we find u = (§2+92%)2.

9.2 Partial derivatives

9.21 Definitions

We cannot usefully speak of the derivative of a function u(z,y)
because x and y may vary separately or together in any way. How-
ever, we can define the derivative of u wo z, or of « wo y, as follows.

Suppose y is kept constant and z is allowed to vary alone. Then a
change dz in x causes a change du in u given by

ou = u(x+ 0z, y) —u(z,y),

Ou _ w(z+dz,y)—u(x,y)

oz ox

If du/éx tends to a limit when 8z — 0, this limit is called the partial
derivative of u wo x, and is written ou/ox.
Similarly, if # is kept constant and y varies alone, and if

so that

sy—>0 8?/

exists, then this limit is the partial derivative of » wo y, written du/oy.

The reader should notice that, according to these definitions, no
new process is involved: partial derivatives are calculated in the same
way as ‘ordinary’ derivatives, by first treating all but one of the
independent variables as if they were constants and then finding the
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derivative of the function with respect to the remaining independent
variable. In particular, all the rules of derivation (product, quotient,
function of a function) in Ch. 3 continue to apply.

Examples
i) If u = 2%+ 3xdy? + Sxyt — 8,
then (by treating y as if it were constant)
ou
P 3a® + 6y + 5y,
and (treating x as if it were constant)

ou
— = 6z% + 20xy® — 3y2.
2y *y

(ii) If » = tan—1(y/z), put z = y/ so that » = tan—1z. The rule for ‘function
of a function’ is

6u_duaz
ox  dz ox’
' ou 1 v y
h — Z)=—-—.
so that Pl 1+z“( m”) Y
ou 1 1 @
Similarly, — = ~) = .
aad oy 142t (x) x?+y?

In the statement of the rule for ‘function of a function’, we do not write
0Ou/dz because u is a function of the single variable z; but we write 8z/dx because
z is a function of both x and y.

9.22 Other notations for the partial derivatives

Instead of ou/dx, the functional notations u,(z, y), u,(z,y), or just
u, are often used. The former symbols are appropriate for indicating
particular values of the partial derivative; thus u,(a,b) denotes the
value of u,(x,y) when z = aand y = b.

Similarly, w,(x, y), u,(x,y) and u, mean the same as du/dy.

9.23 Geometrical meaning of du/ox, du/dy

Just as a relation y = f(x) between two variables z, y is represented by & plane
curve (1.6), so a relation z = u(z, ) between three variables z, y, z is represented
geometrically by a locus in space called a surface (fig. 122).

Let P(a,b) be a point on the surface z = u(z, ). The plane through P and
parallel to the coordinate plane 20z cuts the surface in a curve whose gradient
tanyr, at P is the value of du/dx when z = a and y = b, viz. u.(a, b). Similarly
du/dy at P measures the gradient of the curve of section of the surface by the
plane = = a.
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2

\J‘

a (a, b)
//
(¥

z \

Fig. 122

9.24 Partial derivatives of second and higher orders

(1) The functions ou/oz, ou/oy of (x,y) may themselves possess
partial derivatives wo x and wo ¥, viz.

2, (), 2, 2
ox\ox)’ oy\ox)’ ox\oy/’ oy\oy/’
%u 0% *u  %u
ox%’ Oyox’® oxdy’ oy’

or Upgy  Uygs  Ugys Uy

Similarly the partial derivatives of these give eight third-order
partial derivatives of %, and so on.

written

Examples
(i) In 9.21, ex. (i) we have

u u
—_— = 2 —— =12 2043,
i = O e, = 128y +20y

u o*u

72 3, “— = 62+ 60zy?— 6y.

2oy 12zy 4 20y o z? + 602y’ Y.

Remark. We notice that the expressions for the mixed derivatives 82u/dy oz,
0%u/0x &y are the same in this example. It is true that, for most functions which
we meet, the mixed derivatives are equal; for some exceptions see Ex. 9(a),
nos. 29, 30. The question is considered in (2) below. For all ‘well-behaved’
functions there are only three distinct second derivatives; and similarly only
Jfour distinct third derivatives, and so on.
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(i) If u = 2"f(y/x), prove that

2 02 0*u
(a) :v — _nu, (b) x“a—u+2wy—1ﬁ-+y2——-=n(n—l)u,

Vo O oxdy ” oy*

assuming the mized derivatives are equal.
(a) By the product rule,

)

and on putting z = y/x and using ‘function of a function’,

)25 ro(-2) -2

Hence Z: m,-»—{f() mn—zyf'(g),
iy Geer(ieemrf)
R

= nu.

Alternatively, to calculate du/dx we may first take logarithms:

logu = nlogx+logf(§);

and then derive wo «: l ou_n 1of

wor 1z +f ox”
We find gf/éx as before.

(b) Instead of finding the second derivatives and verifying result (b), it is
easier to proceed as follows. Derive result (a) wo z, and also wo y:

JPu ou Py ou
ot oz Vowoy  ow’
u %u 6u 6u

x +y 2
oy ox 33! oy 3?/

o*u ou ou 82u 6214 ou
H iyt (-1 =(n—1)—.
ence x6x3+yaxay (n—1) %’ 8 3y ay2 (n—1) 2
Multiply the first of these equations by z, the second by y, and add:
Rl 2u 2 O%u ou ou
Pon T Y gy Y g = ) (’”‘“’ ay)

=(n—1)nu
by result (a).
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(2) Equality of the mixed derivatives. Consider the second derivatives of
u(z,y) at (a,b). By definition,

wy(2,b) = lim w(x, b+ k) —u(z, b)

and k-0 k '
w,(a,b) = lim u,(a +h? b) —u,(a,b)
A0 h
 lim 1 {1. u(a+h,b+k)—ula+h,b) — Lim u(a,b+k)-u(a,b)}
10 A k0 k k>0 k
= lim lim ——{u(a+h b+%)—u(a+h,b)—u(a,b+ k) +u(a, b)}
h>0 k0 hk
= lim lim ¢(h, k),
h—>0 k>0
where (b k) = w(a+h,b+k)—u(a+ }ZI:) —u(a,b+k)+u(a,b) )
Similarly Uyg(a, b) = lim Lim ¢(h, k).
k-0 h—0

Thus, in calculating the two mixed derivatives, we are considering the limit
of ¢(h, k) in two ways: (i) when k& — 0, and then & — 0 in the result; (ii) when
h - 0 first, then k — 0. It is easy to show that these two limits may be different;
for example, if ¢(h, k) turned out to be (k + k)/(h—k), then

h+k h h+k k
limlim —— =1lim - =1, limlim -—— =lim =-1.
0k h—k psoh k—»Oh—»Oh —k ko —k

In general, the result of a double limiting process depends on the order in
which the two stages of the process are carried out. For the case of the mixed
derivatives, we can show that the results will certainly be the same whenever
Uyy and u,, are continuous at (a, b). This condition is satisfied by all ‘ordinary’
functions.

‘Write _ u(x,b+k)—u(z,b)
fay = ZE2T T,
Then &(h, k) = fla+h)—f(a)

=hf'(a+6h) (0<6<1),

by the mean value theorem (6.33 (1)) applied to f(z) in ¢ < = < a+h; here 8
depends on b, k as well as a, A, since the former appear as parameters in f(z).

Since )
’ _ um(x’ b+ k) - um(:c, b)
fa) = ik ,
we have Plh, k) = U@+ 6h,b+k) —u{a+6h,b)

k
= uﬂz(a+0h:b+0’k) 0<f <),

by the mean value theorem applied to the function u,(a+06h,y) of y in
b<y<b+rk.
Similarly, writing w(a+h,y)—ula,y)
9(y) = e
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we have P(h. k) = glb+k)—g(b) = kg’(b+6,%) (0<6;<1)

_ ty(a+h,b+0,k)—u,a.b+6,k)
- R

= Uy (a+0{h,b+0 k) (0<6;<]1)
Hence Uy @+ Oh, b+ O'k) = uyy(a+Orh b+ 6, k).

If uy,, u,, are both continuous at (a,b), these expressions tend to wu,,(a,b),
U,y(a, b) respectively when & and & tend to zero; therefore u,(a, b) = u,(a,b).

9.25 Partial differential equations

(1) Their construction. A relation between partial derivatives of a
function, perhaps also including the independent variables and the
function itself, is called a partial differential equation (cf. 5.12). The
results of 9.24, ex. (ii) are examples; the first, which does not involve
the function f explicitly, can be regarded as the result of eliminating
the arbitraryt function f from the equation w = 2%f(y/x). Nos. 10, 13,
14, 17 in Ex. 9 (a) can be interpreted similarly.

Partial differential equations also arise from elimination of para-
meters from a given function (cf. 5.11).

Examples

(i) Eliminate a and p from y = a e?'sin px.
Partial derivatives are appropriate here because y is a function of fwo
variables ¢, . We have

% _ . o2y .
% ap e?'sin px, Tk ap?e?isin pz,
Y _ opert Y _ _ aprevtsi
55 = AP €¥'c08 P2, 558 = —optevisinpz.
Py &y
Hence I, %9 o,
ne P + 7 0

(ii) Eliminate a, b, ¢ from u = a(x+y) +b(x—y) +abz +c.

ou ou ou
a—z—a+b, a—y—a—b, 5:(&6.
Since (a+b)2—(a—0b)* = 4ab,

&) -G) -

t The function f(z) is supposed to possess & derivative.
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(2) Solutions having a given form.

Examples
2u lou 1 32u
I
(i) If o Tror Trar s
Jind the most general solution w if (a) u 8 a function of r only; (b) u = r*f(0)
where n i3 constant.

(a) If u = u(r), the equation becomes
d*u diu 1 1du
art " rar

Writing v = du/dr, we find (1/v) dv/dr = —1/r, logv = —logr+C, and v = B/r.
From du/dr = Bjr, w = A + Blogr, where A, B are arbitrary constants.
(b) If u = r"f(0), the equation can be written

= 0.

{n=nyrrsa nrsh o)+ % oy = 0

ie. n2r-2f(G) +r*-2f"(0) = 0
Excluding the trivial case » = 0 (Wl;ich corresponds to the solution » = 0),
S7(0) +n?(6) =
80 f(60) = A cosnf+ Bsinnd
and u = r"(4 cosnf + Bsinnb).

*(iv) Find a general solution of the form u = RO for the differential equation in
ex. (iii), where R is a function of r only and © is a functzon of 0 only.t
‘When u = R®, the equation becomes

TR 14R\ o EDO
dr? r dr r2dgr ~
. AR 14R) 120
1.6 R\drr "rar)”  @ae*

The left-hand side is independent of ; the same must therefore be true of the
right-hand side. Since the latter is also independent of 7, it must be constant.
Hence each side is constant, say equal to n2.

From the right, 426
aa— + n?® =0
and (if n % 0) ® = A cosnf+ Bsinnd.
From the left
¢ d”R dR
dr“ ——tr ——-—n*R =0,
an equation of Euler’s type (5.61). The substitution » = e‘reduces it to
d?R
% —n2R = 0,
go (if n %= 0) R =Ce"+De ™= Cr"+Drn,

1 A solution of this form is said to be separable.
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A general solution having the form specified is therefore
u = (4 cosnf + Bsinnf) (Cr*+Dr—") (n % 0).
When n = 0 the corresponding solution is easily found to be
u = (A0 + B)(Clogr+ D).

Exercise 9(a)

Calculate ou|ox, duldy for the following functions u(z,y).
1 322—2xy + 5y2. 2 zly. 3 i 4 sin—!(y/z). 5 log(x?+y3).

Calculate tyy, Uy gy Ways Uy, and verify that u,, = u,, for the following.
6 234 3xy + 48, 7 xsiny+ysinz. 8 ev. 9 chzchy.

In the following, use the rule for ‘ function of a function’ ; when necessary, assume
that the mized derivatives are equal.
10 If u = f(y/x), prove zu,+yu, = 0.
11 If u = log (22 +y?), prove wu,, +u,, = 0.
12 If v = tan—1 {(x +y)/2}, prove zu,+yu,+zu, = O.
13 If u = f(x + ct) + g(x —ct), prove &%u/di? = c? 92u/ox?.
14 Ifw = (1/r){f(ct+7r)+g(ct—r)}, prove
Pu o ( 20U

a_t’.—;éa 7'—37). [Putv:ru.]

15 If u = f(z), where z is a function of « and y, prove

2u oz\2 0%z
2 =@ (a) +f@) o
and find 8%u/dx 8y similarly.
16 If u = z?tan—1(y/z) —y? tan—1(z/y), calculate x du/ox +y du/dy. [Use 9.24,
ex. (ii)(a).]
17 If u = f(z* +y®), prove
() y a2 o,
ox oy
. *u ?u ou  du
(ii) yaé}_’i—2xy6x8y x”-é;é = x%+y@.
[Method of 9.24, ex. (i) (5).]
18 If u = (y/x)f(z+y) and f'(z +y) denotes f*(¢) when ¢ = z+y, prove that

y ’, ”,
LUy +Yuy = ;}(x'*'y)f (z+y), x’um+2xyu,,,+y’u,,, = g(a:+y)’f (z+y),

and calculate U gan+ 3T Ungy + BTYMigyy + Y2ty
19 If u = (2% —y?)f(¢) where ¢ = ay, prove
() 24 2% gy (i) o = (o8 —y?) (3 (o) + 20 (0.
a3 oyt oy

20 Eliminate ¢ and b from z = ax + by + ab,
21 Eliminate a and p from y = ae—*"cos pa.

22 GPM1I
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22 Eliminate a and p from u = a e~?*sin (2p2ct — px).
(x+0b)2 oz\?* &z
23 If 2= L prove yz (a) = %
24 If u, v are functions of 2 and y, eliminate the function f from u = f(v).
25 Find Y, a function of y only, if ¥ cos pz satisfies du/dy = c? 0%u/ox?.
26 Find Y, a function of y only, if Y sinpx satisfies 92u/ox? + o%u/dy® =

Find a solution which vanishes when y = — 1, and equals sinz when y = + 1.
cosr O%u u  20u
27 If —— (¢ i ——=¢ - = .
7 ¢( ) satisfies P ( pos + 37') , find ¢(¢)

*28 Ifr = J(w“ +y?) and u = f(r), prove that
o d or Yy
r

w r 0%

6214 u

”

and hence that + o =f "(r)+— F(r).
2, 52
Find u in terms of r if %+a—;—:=0.

*29 Iff(x,y) = 2y(x? —y?)/(2? +y?) when tx, y are not both zero, and f(0,0) = 0,
(i) prove that when z, ¥ are not both zero,
6f %2 — 2 day? o _ . at—y?  da?y? |
oz a2yt (2?4 yP)? ’ 8y - 24yt (ad+yh)? ’
tien 0 0 =F(0,0)
R0 h

i.e. f,(0,0); and similarly find f,(0, 0);
(iii) hence calculate

(ii) calculate

1 mw = fz,(0,0) and lim
h—>0 h k-0

{(iv) What follows from the results of (iii)?
*30 Iff(x,y) = «*tan—1(y/z) —y®tan—! (z/y) when = % 0, y % 0, and
Sz, 0) =f(0,y) =f(0,0) =0,
prove that £,,(0,0) = —1, f,,(0,0) = +1

0, k) —f.(0,0
LOBZILD - 40,01

9.3 The total variation of u(x, y). Small changes

9.31 Total variation

Partial derivatives are defined by changing x or y alone. When x
and y vary together, a change dz in z and a change dy in y cause a
change du in u, given by

ou = u(x + 6z, y + 0y) —u(x, y).
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For example, taking u = z?y® and writing h = &z, k = dy, we have
ou = (x+h) (y + k)® — z%y®
= (@? + 2zh + h3) (1 + Bky? + 3k2y + kB) — 2%y
= 32k + 3atyk? + 22k + 2xy°h + 6xy?hk + 6xyhk® + 2hk?
+ y3h2 + 3yh3k + 3yh2k? + h2kS
= 22y 0z + 3222 8y + 0z{6xy?k + 6xyk? + 2xk3 + y3h + Syhk
+ 3yhk® + hEk®} + Oy{3atyk + x2k2}.
Hence, in this example, du is of the form
Adz+ By +e¢,0x+¢,0y,

where A and B are functions of  and y, but not of 8z or dy; and ¢,, €, are functions
of z. y, oz, 8y which tend to zero when éx and dy both tend to zero.

9.32 Definition of ‘differentiable function of (x, y)°

The function u = u(z, y) is said to be a differentiable function of (x, y)
if arbitrary changes dz, 8y in z, y cause a change du in % which can be
expressed in the form

ou = Adx+ By +e€,0x+¢€,0y, (i)

where A, B are independent of dz and dy but are in general functions
of z and y, and ¢, €, are functions of dz, dy (and possibly also z, y)
which tend to zero when both dz and dy tend to zero in any manner.

Notice that the changes dz, 8y are arbitrary, so that one of them can
be taken equal to zero,

The work in 9.31 shows that z%? is a differentiable function of (z, y) for all
values of  and y. On the other hand, the function defined by
_oy(z+y)
% + yz
when «, y are not both zero, and (0, 0) = 0, is not differentiable at (0, 0). For,
writing h = dz and k = 8y,

u = u(h, k) —u(0,0) =

u(z,y)

hk(h + k)
hE+i2’
and if u(z, y) were differentiable at (0, 0) we should have
hk(h + k)

X
Take k = 0, and let h - 0 after dividing by h: then we find 0 = 4. Takingh = 0

and letting & - 0 similarly gives 0 = B. Finally, letting » = %, the relation
becomes

= Ah+Bk+e h+6k.

h=(A+B)h+(e;+6€)h;

and on dividing by & (# 0) and then letting & -> 0, we get 1 = A4 + B. The three
relations for 4, B are clearly inconsistent.

22-2
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Identification of A, B in (i).
In equation (i) put dy = 0; then

du = Adr+e, 0,

where ¢, is a function of z, y, 0= which tends to zero when dx — 0.
We have

'(% =4 -+ €1,
and by letting 8z — 0, the right-hand side tends to 4. The left-hand
side tends to Ou/ox by definition of this symbol (9.21). Hence
A = 9ufox. Similarly, B = 9u/dy, and so (i) becomes

ou ou .
8u=§58x+a—y6y+el8x+628y. (i)

This work also shows that if a function is differentiable, then it possesses
partial derivatives; but the converse may be false, as in the example above:
u(z, y) is not differentiable at (0, 0), but

h, 0) —u(0,0 .0
u4(0,0) = hm?(——)—h—qi———) =lim W= 0,
h—0 h—0

and similarly u,(0,0) exists and has the value 0. See also Ex. 9 (b), nos. 8, 9.
Thus (cf. the end of 3.93) ‘ derivability * and ‘differentiability > are not equivalent
concepts.

.

9.33 Small changes
Equation (ii) leads to the approximation

ou = %8x+%

5" 3y dy (i)

when &z, 8y are small. Comparing this with the corresponding result
(iii) in 3.91 for functions of a single variable, we see that

%g&c is the approximate change in u for a change dz in ,

keeping y constant;
q-uf&y is the approximate change in u for a change dy in g,

% .
keeping x constant.

(The constancy of y, x respectively is indicated by the partial deri-
vative notation.) Also (cf. 3.91) these approximations are correct to
first order in dz, 8y respectively. We thus obtain
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The principle of superposition of small changes.

The change in a function when both variables alter (i.e. the total
variation) vs approximately equal to the sum of the changes arising when
each varies separately, this approximation being correct to the first order
tn these changes.

Example
Estimate the possible error in S calculated from S = }bcsin A when there are
errors 8b, dc, 4 in b, ¢, A. (Cf. 3.91, ex. (iv).)
) oS . o8 . s
Since %= 3csin 4, = 3bsin 4, 34" $bcecos 4,

0S = 4csin A 6b+ 3bsin A 8¢ + $bccos A 0A.
Division by S gives the relative error
S b ¢
from which the percentage error can be found. The last approximation could be
obtained directly by applying the principle to

+cot 4404,

u =log§ = log 4 +1logb+logc+logsin A
d(log8) ., 8

7S o8 = 5

As a numerical illustration, suppose S is calculated when b = 5, ¢ = 2 and
A = 30°, where b and ¢ may each be in error by 005 and A by 10’. Then
§ =} x5x2sin 30 = 2:5, 8b = d¢c = 0-05, 04 = m/(180 x 6) (working in radians),
and the numerically largest possible error in § is given by

o8 (@ 0-05 m/s)

and using the fact that du =

25~ \5 T2 T10s0)
from which 88 == 0-1. The relative error is 0-04.

Exercise 9(b)

1 If pv = BT where R is constant, find the approximate change in v caused
by small changes dp, 67 in p, T'.
2 If y = uvjw, prove 8y ou S ow

== —4——"-

Yy u v w

3 If T = 2m./(l/g), find the approximate error in T due to small errors
ol,0ginl, g.

4 If f(z,y) = ze*, and the values of z and y are slightly changed from
1 and 0 to 1+ 0= and dy respectively so that df, the change in f, is very nearly
30w, show that dy is approximately 2 0.

5 Ifz = sind sin ¢/sin i and z is calculated for the values 6 = 30°, ¢ = 45°,
¥ = 60°, find approximately the change in z if each of 6, ¥ is increased by the
same small angle «° and ¢ is decreased by 3a°.
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6 In triangle 4 B0, angle A is known accurately, but the measurements of
sides b, ¢ may be in error by b, dc respectively. Find approximately the error
obtained by calculating the side a from b, ¢, 4. What shape should the triangle
have in order to make as small as possible the effect of the error 6b1?

7 The points 4 and B, at distance a apart on a horizontal plane, are in line
with the base C of a vertical tower and on the same side of C.The elevations of
the top of the tower from 4, B are observed to be a°, 8° (& < 8). Show that
BC = asina cos £ cosec (f—

If the observations of the angles are uncertain by 4 minutes, show that the
maximum possible percentage error in the calculated value of BC is approxi-
mately .
msin (e + f)

27sinx cos f tan (f—a)’

*8 If u(x,y) = (2®*—y®)/(22+y?) when z, y are not both zero, and %(0,0) = 0,
prove u is not differentiable at (0, 0), but that ou/dx, ou/dy exist at (0,0) and
have the values + 1, — 1 respectively.

*9 - If u(z,y) = 4f|zy|, show 4,(0,0) = 0 = u,(0,0), but that » is not differ-
entiable at (0, 0).

9.4 Extensions of ‘function of a function’

9.41 Function of two functions of ¢
If u = u(z, y), where z = z(f) and y = y(¢), then

u = u((t), y(t))
is a new function % = f(¢) of one independent variable ¢, and its deriva-
tive du/dt = f'(t) may be obtained directly. However, this substitu-
tion for # and y is not always convenient, and we proceed indirectly
as follows.

Assuming that all the functions concerned are differentiable, a
change &t in ¢ causes a change 8z in x and a change dy in y, which in
turn cause a change du in u, wheret by 9.32, equation (ii),

_Ou ou
ou =3 — 0T+ oy

Since z(t), y(¢) are differentiable, they are certainly continuous
functions of ¢ (3.12 and 3.93); hence when &t — 0, also dx — 0 and
dy — 0. Therefore ¢, - 0 and €, - 0 when é¢ - 0. Now

6u oudxr oudy Ox Oy
“wa Toyn oyt

0y + €, 6z + €, 8y.

t ¢ and ¢, are not defined when 8z, 8y are both zero. To cover the case when
o0z = 0 = 8y for some values of 8t + 0 (e.g. = y = $(¢) near ¢ = 0, with ¢(¢) as on
p. 64), we may ‘complete the definition’ by taking ¢; = 0, 6 = 0 when dz = 0 = dy.
Cf. p. 63, footnote.



9.42] FUNCTIONS OF SEVERAL VARIABLES 343
and when & -> 0, the right-hand side tends to

tuds oudy
oxdt oydt’
Hence du/dt tends to this limit, i.e.

du_ouds oudy )
dt  oxdt oydt’

The formula (iv) may be false if u(x, y) is not differentiable; this is shown by
the example already considered in 9.32, where %,(0,0) = 0 = u,(0, 0). Putting
z=1, y=1t, we have f(t) = u(t,?) =¢ if ¢ & 0, and f(0) = (0, 0) = 0; hence
f(t) = 1 for all ¢, even when ¢ = 0. But when ¢ = 0,

oudxr oudy
———+——=0.140.1=0.
6xdt+3ydt 0.1+ 0.

The formula fails because this function u(z, ¥) is not differentiable at (0, 0).

9.42 Total derivative; application to implicit functions
Whent = xin 9.41, we have u = u(z, y) wherey = y(); (iv) becomes

du_ou oudy "
dr 8x+8ydx’ ’

which is sometimes called the formula for the fotal derivative of u wo z.

It is at this stage that a special notation du/ox for partial derivatives
‘becomes essential: du/dxz means the derivative of the function u(x, y)
in which we have substituted y = y(x) before derivation; ou/ox means
the derivative of u(x, y) wo x, carried out as if y were constant, where the
substitution y = y(x) is made after derivation. Thus du/dx symbolises
a ‘formal’ derivation wo 2. Similar details of interpretation apply to
(iv); the reader should thoroughly understand their significance
before proceeding further, and should do Ex. 9 (¢), no. 1.

In particular, suppose y is defined implicitly as a functiont y(x) of
« by éhe equation w(z,y) = 0. Then u(z, y(x)) = 0 for all z, and so
du/dxz = 0; (v) becomes

ou oudy

0—%+@E§’
dy ou [ou .
= |3y (vi)

1 Assumed differentiable.
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Example

Find dy/dx and d?y/dx? if * +y® = 3xy.
We will find dy/dx (a) by the elementary method of 3.41; (b) by formula (vi).
(a) Derive both sides wo z, treating y as a function of z (defined implicitly):

dy dy
2 2 —
3x2+ 3y = 3(y+m ),

dy
2 Y = y—2
(y x)dm——y x2,

dy y-—at
dx~ y*—=z

and

(b) Taking u = a3+ y®— 3zy, ou/oxr = 32— 3y and ou/dy = 3y®— 3x. There-

fore by (v), dy Piey  y—z?

dx yi—x yi-a

Methods (a), (b) are really the same process, as the above working shows;
but we now have a general notation available to formulate the process (a).

To find d?y/dx? we may either proceed asin 3.53, ex. (iii), or apply formula (v)
to the function « = dy/dx:

220240 2

da? ox\y*—z) oy\yt—z/) dx
=2yt —x)+(y—a?) | (yP—=)—2y(y—a?) y—a*
- (¥ —a) T
_ (e +y—2ay?) (y2 —2) + (2Py —y* — =) (Y —2P)
- (y*—=)® )

The numerator reduces to Suy(3ay — a8 —y — 1),

which by the given equation is equal to — 2zy. Hence
aly _ 2y

da? (z—y?)’

[The work on envelopes in 8.5 could be read at this stage.]

9.43 Function of two functions of (§, ) .

If u = u(z,y) and = = z(£,7), y = y(£,7), then direct substitution
shows that « is a function f(£, %) of § and 7, where

fEn) = u(=En),yE 7).

To find ou/0& and du/oy (or, more precisely, f,(£,7) and £,(§, 7)), we
observe that provided all threefunctions are differentiable, formula (iv)
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still applies, except that the notation in it is now modified into partial
derivatives: du oudw dudy

B "ol oy oL

ou oudxr ouody

@ oy ydy

(vii)

For, the proof of either of results (vii) is the same as that of (iv): to
get (say) ou[of we are keeping 7 constant, and are thus dealing with
a function of effectively only one variable £.

Examples
(1) If u is a function of x and y, and x = e*¢siny, y = e*cos, prove

ou ou ou ou ou ou
e, % ou U _ 1o sinnZ? —.
@ g5 =2p o, B 5= e (Smﬂag+2cosrfa”)
By (vii), ou  du ou
— = — (2e%sinn) +— (2¢%cos
= o M+t 7)
ou ou
2:1:3“: 2y5y—

which proves (a). Similarly

ou
w7 = Zi;(e2£cos'r})+z—§(—e’€sinu)
_ o
Yo oy

To solve these for du/dx, multiply the first by «, the second by 2y, and add:

au+?fy—- = 2(w“+y")~

%
ou ou
2£gin g — 2¢ —-=24§__,
i.e € smna§+2e cosqa?] e P
ou
so that z—: = ie"ﬁ(sin'r]zig+2cos17%) .

Remarks

(@) After observing what has to be proved in (b), the reader may be tempted
to begin directly with the formula

ou ~ 0udf + ou dn
ox  Of ox  onox’
Further progress could then be made only by expressing £ and 7 as functions of
« and y. We should obtain
£ =tlog(z*+y%), 7 = tan~'(z/y),
and the work could be completed by direct calculations. We emphasise that in
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general 0§ /ox =+ 1/(0x/0E), ete., so that the preceding steps cannot be short-cut;
here, for example, ok «}az

. 1 1 s
while wloE = m = }e—2cosec?).
When deciding on the formula with which to start, we must take account of
the given functional relationships.

(8) When we have four variables z, y, £, 4 connected by two relations, the
symbol 92/9¢ standing alone is ambiguous. It implies that = has been expressed
as a function of £ and another variable, which could be either 7 or y. In the
present case the relations are z = e2sin 7, y = e* cos 7, and when z is a function
of (£,7) the first gives dx/0f = 2¢*£sin; the second is not used. If instead we
express « as a function of (£,y) by eliminating 7, we find that x = ./(e* —y?),
from which P Py 9048

5 - T = — = 2¢%cosec).

To distinguish the two meanings we write (ox/0£),, (9x/9§), respectively,
with & similar notation for other partial derivatives.

(ll) Ifu =f(m“y;?/—z’z—m): prove

Put E=ax—y, 1 =y—2, {=2—2x, so that u = f(§,7,{). By formula (vii)
extended to a function of three functions £, 9, ¢ of (z,y, 2),
au _udE oudn ou s
T o omox 9L ox

TR

ou ou

=z—a—€.
Similarly ou ou ou Ou ou ou
W= E e m R

The result follows by adding.

Exercise 9(c)
1 Find du/dt if u = 22+y? and = = 3t2, y = 2¢* (a) by direct substitution;
(b) by using formula (iv) in 9.41.
Find dy/dz for the functions defined implicitly by the following equations.
2 (x+y)® = 3zy. 3 25+ 45 = Sax?y? (a being constant).
4 xcosy = ycosa. 5 flaxy) = 0.
*6 If the curves f(z,y) = 0, g(z,y) = 0 intersect, show that they do so at
angle tan={(f29, —f,9.)/(fe9=+Fv9s)}-
*7 If at +y* = 4xy, prove dy  2ay(aty’+3)
d* ~ (@—y?)?
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*8 If f(x,y) = 0, prove that
@Y _ S ee— Yl iSer I 1y
dxi f3
Show that the curvature of f(x,y) = 0 at (z,y) is
fffwz_2fasfyfzv+f:f‘1’m.
2+t
9 If uis a function of (x,y) and 2 = $(£2+7?), y = &, find u/of, du/éy.
10 If v = u(x,y) and & = rcos §, y = rsin §, prove
ou ou ou

’l‘g = xa—$+y@,

K=

and express du/of similarly.

11 If u = u(z,y) and £ = e2¥, 9 = a® +4?, express du/ox, du/dy in terms of
ou/ok, ouloy, z and .

12 fu = u(z,y)andx = £+9, ¥y = §ﬂ, prove

W E-ng = gag aﬂ; @) G- =53¢
13 Ifu= u(w, y) and x = £2—192, y = 2£y, prove
ou ou
@) 2(§’+'02)—' =S~ 778*7'“;
i 3 ag, 2Cr A S
92u 1 %u %
and hence that (111) 3y2 m §3+'r]”) (@-‘-51)-)
14 If u, v are functions of (x,y) which satisfy
ou @ ou _@
w oy oy ox
and if ¢ = rcos 0, y = rsind, prove that
ou low 1lou o 2u lou 1 0%
wra0 vl o M mtrathaw
15 If u = x%f(y/x,2/z), prove that
8_u y@_u+ 6_u= nu.
oy

16 Ifx =rcosf, y = rsinf, prove

@)= ) = @), @)

Interpret these four partial derivatives geometrica,lly, and indicate why

AN A

17 Inno. 16 find (ax/ar),, (9y/26),.
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9.44 Further examples

(1) Euler’s theorem on homogeneous functions

We defined ‘homogeneous function of degree n in (z,¥)’ in 1.52(4); the
definition extends obviously to three or more independent variables.

If u(z, y) 43 homogeneous of degree n, then

+ bu nu
Tty 2 =
Sfor all z, y for which the function u is differeniiable.

The result has already been verified by direct calculation in 9.24, ex. (ii) (a),
since every such function can be expressed in the form z*f(y/z): see Ex. 1(d),
no. 7. We now give a proof based on formuls, (vii).t

Put £ = tz, 7 = ty in the definition

u(tz, ty) = t"u(x, y)
of ‘homogeneous function’; then

w(é,7) = t"u(w, y).
Derive both sides wo ¢:

ouof ouoy _
oE ot P op ot = ni" "z, y).
) ou ou
i.e. T —+y— = nt" u(zx, y). a)
i & Vo (,y) (
Sine 4 £ = 2 u(z, y) etc
5} a—gu( ,?]) = P > Y ;;:é'lr *

equation (a) becomes

R
oy gy

Putting ¢ = 1, this becomes

8u+ ou = nu(z, y)
wa yay— s Y)s

since { =z and § = y when ¢ = 1.

Example

Obtain the result of 9.24, ex. (ii) (b) similarly.
Derive equation (a) above wo¢, applying formula (vii) to each of the functions
oufok, oulon:
Pudf  ou o u 0 tudy
x(5£5 ot " ogok 3t) + (agaq a T ma
2
i.e. » x? % + 2y 52—2;% +vy 2”—1: = n(n—1) " %u(x, y).

Now put ¢ = 1, and the result (‘Euler’s theorem of second order’) follo;vs.

) = n(n—1) " 2u(z,y),

1 See also Ex. 9(c), no. 15, and Ex. 9(f), no. 23.
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(2) Laplace’s equation 63u+32u =0
ox? ' oyt -

Interpreting (x, y) as cartesian coordinates, we investigate what becomes of
this partial differential equation when we change to polar coordinates by the
substitutions x = rcost), y = rsind. The new independent variables are r
and 6, and we have to express partial derivatives of 4 wo «, y in terms of those
wo 7, 0. We have by (vii):

du 3143x+6u3y aucost9+ausin0
or oxor oyor ox oy

ou 3uax+8u6y
80 ~ oz 20 yob ox

Solving for du/ox and du/dy, we find that

ou
rsinf +—rcosf.
oy

ou ou sm06u ou ., ,ou cos@du
70 = ¢ 061' 2 @=sm06—r-+ - 9]
The first of equations (b) shows that the operators 3/ox and
cos 2_ _sin_& 2
or r o0

have the same effect on u, where on the left » is a function of (x, y) and on the right
it has been expressed in terms of r and 6. Using these equivalent operators
(cf. 5.62) to find 0%u/dx?, we have

u ? sinf 2 ou smBz’)u
— = |cosf——— — ) [cos 0 ——

ox? or r 00, or r 80
_cosﬁ(cos03u+ﬁ—03—u—§m—0ﬁ)
r2 of r orod
580 (g2 om0 2S00 2)
r or a0or r o0 r o062

%u 2ginfcosf o%u sin208% sin?0du 2sinfcosf ou

s et s W s wT A @
Similarly, or see Remark (a) below,
Pu 208_u 2sm00050_3_’_u_+cos”0ng+cos’03_u_2sinﬁcos03u.
6_1/’ r orof 2 060 r or 72 o0

6’14 ?u u 10w 1ou

Adding, P 3y’ = + 2508

(c)

Remarks

() Since the expression for du/dy is obtainable from that for du/dx by putting
0 —3m for 6. therefore 2%u/dy® can be found from &%u/dx® by the same sub-
stitution.

(8) The result can be written

10 rau + 1 0%
ror\ or] r2o0%’
(v) The expression on the left-hand side of (c) is often written V2u, where
V is called del or nabla; V? is the Laplace operator.
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(3) The wave equation Py 1oy
ox? o’
To find the general solution of this, we change the independent variables

from z, ¢ to u, v by the substitutions u = x—ct, v = 2+ ¢t which are suggested
by Ex. 9(a), no. 13. We have

oy _Oyou dydv _ 6_q+6y_
o uow wow ou
and by using equivalent operators,

7y _ (2, 0\ (o ) oy oy o
(o) (22)- S

ot ou ad ' T oudw ot
Similarly,
dy_ oy oy Py Py Oy Oy
= %% ™ s 2eum T
Hence the given equation becomes
oy
4 =
ou v 0
Since this can be written o foy\ _
au\ow) ~

we see that dy/ov is independent of « (3.82), and is therefore a function of »
only, say dy/ov = F(v). Integrating wo v,

y= fF(v) dv+g(w),

where g(u) is an ‘arbitrary’ function of u, Writing f(v) = IF(v) dv, the required
general solution is Yy = f(v) +g(w) = f(z+0ct) +glz—ct),
where f, g are ‘arbitrary’ functions.

Example
Find the solution for which y = e*—1 and dy[ét = e® when t = 0.
Since oy

= = of (w+ot)—og (z—ch)
we see that when ¢ = 0,

y=f@)+g@) and = of(@)cq(a).
Hence we require

1
f(x) +g(x) =e*—1 and f’(w) —g’(x) = ; e®,

1
i.e. f@)+gx) =e*—1 and f(z)—g(x) = . e*+a
for arbitrary a. Therefore, on solving for f(z), g(x), we find

1 1
flx) = % (1 +§) e+ 3a—1), glx)= 3 (l—-g) ef—ia+1l),
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and the required solution is

1 1 1 1
= ) extot L _ —_ et 1,
Y 2(1+c)e +2(1 c)e

Exercise 9(d)*
1 Write down the expression for
2 Yoy o
when « is
. - y o NEty—2) . (® 5)
(i) tan —_——J(x3+y’+z3)’ (i) ~——w2+y,+zg, (iii) f 2y
2 For any differentiable functions ¢(z), {(?), show that u = z¢(y/x) + Y (y/x)
satisfies
32
0 gy P 2P

o Hogoy Y o

3 If f(x,y) is homogeneous of degree n in (x,y), prove that f.(z,¥), f,(z,¥)
are homogeneous of degree n— 1. [Derive f(iz, ty) = t"f(z, y) partially wo 2.]

4 If x =rcosf, y = rsinf and u = r*cos §, find the possible values of the
constant » if 0%u/dx® + 02u/oy? = 0. [Use 9.44(2).]

5 Find the value of the constant A if u = 23 4+ Azxy? satisfies

*u  Ou
i o
With this value of A, show that if z = %« where r2 = 22+ 43, then
-

[Express z in polar coordinates.]

6 Ifzis a function of x and y, and the variables are changed to u, v by

u=oax'+fy? v=axt-py
(where «, § are constants), prove that
oz 0z oz oz
| (i) x—+y3—y—2( ot 81))
(ii) xgz——-—ya—z = 2(v~ai+uéi);
o "oy " o
3, 2, 25 2, 2,

(iii) x’zzz 2:cy;”—azy gy—%_4( Z—fi+2uvaf;v+ Z:)+2( g +'vg)
[For (iii) use equivalent operators obtained from (ii).]

7 Ifz =e*+e™ y = e+ e, prove

% % o o oz % oz 0%

—_— - — —_— 2
ad Coum ot e VT am any TY o
8 Ifz = u+vand y = uv, prove
0% 0% oz
out 2ouoe T o @)@‘2@
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9 Obtain the solution of 9%/0xdy = sinz siny for which 8z/0y = —2siny
when # = 0. and z = 0 when y is an odd multiple of 4.
10 Find the general solution of 02%/dx%— 0%/0y? = sin(z+y) cos(x—y).
[Use 9.44(3).]

9.5 Differentials
9.51 Definition

Suppose that u(z, y) is a differentiable function of the independent variables
z, y. Then the approximation (iii) in 9.33 and the procedure in 3.92 (1) suggest
that we define du, the differential of u, by the exact relation
ou
%
Thus du is that part of the total variation du which is linear in dz and in dy
(the ‘principal part’ of du). It is defined whenever both du/dxr, ou/oy exist.

This definition of the differential of the dependent variable « also defines

the differentials dz, dy of the independent variables z, y. For dx s du when u
is the function z, in which case du/dz = 1 and du/dy = 0, and (viii) gives

dz = 182+ 08y = ox.

du = Z—Z&x+ dy. (wiii)

Hence dx = dz: the differential of x is identical with the arbitrary increment da.
Similarly (viii) shows that dy = dy. Consequently (viii) can be written

ou ou .
du = %dx+@dy. (1x)

Remarks

(o) Although dx = éx and dy = 0y, in general du % du since by (ii) of 9.32
and (viii) we have
ou = du+¢€,0x+€,0y,

and in general ¢,, €, are not both zero.

(8) We shall see (9.53, Remark) that formula (ix) is more general than (viii).

{7) The partial derivatives du/dx, du/dy appear in (ix) as the coefficients of
the differentials dz, dy. For this reason these partial derivatives were (and
sometimes still are) called partial differential coefficients.

(8) To differentiate a function u is to write down the expression (ix) for du.
Contrast this with the process of deriving u wo  (or wo y), in which we merely
write down the expression for du/dx (or du/dy).

9.52 Principle of equating differential coefficients
If Adzx+Bdy = Cdx+ Ddy,

where 4, B, C, D are functions of the INDEPENDENT variables z, y (or are possibly
constants), then A = C and B = D.

Proof. Since dz, dy are arbitrary, being identical with the increments dx, dy
respectively, we may take dy = 0, dx + 0 in the given relation and obtain
Adzr = Cdx,whence A = C. Similarly, taking dz = 0 and dy + 0 shows B = D.

It is essential here for x and y to be the independent variables, otherwise
dz, dy would not be arbitrary.
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9.53 Invariance of the expression for the differential

(1) If we interpret the derivatives du/dt, dz/dt, dy/dt in formula (iv) of 9.41
as quotients of differentials, we may multiply both sides of (iv) by d¢ and obtain
(ix). Now (ix) was proved on the assumption that in w(z,y),  and y are the
independent variables; whereas under the circumstances in which (iv) holds
both 2 and y are functions of a variable ¢. It thus appears that (ix) holds more
generally when z, y are thernselves functions of an independent variable £,

(2) Next, suppose as in 9.43 that = u(x, y) has been expressed as a function
% = f(£,m) of the independent variables £, 7 by means of the substitutions
z = z(£,9), y = y(£, 7). By the definition of ‘differential’ applied to the function
u=f(&7),
du
= dg +— dﬂ
oudx oudy oudxr oudy
(Bx % 8y6§) dg ( —+— )d?] by (vii),

ox dny oy oy
d d LTI i
= o ( o £+ ) ( oE £+ —= 1}) on rearranging,

ou
= a—x'd-’l?"l-a—ydy

since by the definition of ‘differential’ apphed to the functions = = «(£, ),

y=y&n),

d§+ dn and dy— dg+

T %3

Thus du is still given in terms of dx and dy by the formula (ix), JUST AS IF (2, y)
WERE THE INDEPENDENT VARIABLES.

Remark. In contrast to this result, formula (viii) is false when z, y are not
the independent variables. For, since we are assuming z(£, %) and y(&,7) to be
differentiable functions of (£, 7) as in 9.43,

oz a€6§+a1l81]+618§+e,37
= dx+¢,05+¢€,0
by definition of dz; and similarly
Oy = dy+e;08+¢,0.
The right-hand side of (viii) is therefore

ou ) .
o Gz 6,85 +6,8n) + (dy + €30 +&,87),
ox %

which in general is not equal to

z—:dx+%dy, ie. du,

the left-hand side. Thus (ix) is more general than (viii) because it holds whether
or not the variables are independent.

23 GPMI
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(3) The above invariance property holds for the differential du of any
differentiable function « of n variables z, ¥, 2, ... which are themselves differen-
tiable functions of m independent variables £, 1, &, .... The proof would proceed
similarly from the corresponding extensions of formulae (vii) and of the defini-
tion of ‘differential’. The technical convenience of differentials depends on
this property; see 9.6.

9.6 Further implicit functions

9.61 Differentiation of equations

Let f(r,s,£) be a differentiable function of the independent variables r, s, .
Suppose that functions u = u(z,y), v = ¥(,¥), w = w(x,y) of independent
variables z, y are such that

Sflu,v,w) =0

for all # and y for which the functions are defined. We then say that u, v, w
satisfy a differentiable equation f(u,v, w) = 0. For example, if

flr,8,t) =r*+s24+t2—1,
then u =sinx cosy, ©=sinxsiny, w = cosx

satisfy f(u,v,w) = 0.
On substituting for u, v, w in f, we obtain a function of the independent
variables (z, y) which is zero for all z, y concerned. Hence

o _ o _
5:;— and ay— y
and so df=g;dm+z—';dy=0dx+0dy=0.

By the invariance property we always have

9
df = %du+g—);dv+67‘fudw.

of o o . _

Therefore, given a differentiable equation tnvolving differentiable functions,
we may differentiate both sides as IF the functions in it were independent variables.

Hence

9.62 Derivatives of functions defined implicitly

In this section we assume that all functions involved are differentiable. We
consider general functions rather than specific examples because we thereby
exhibit more clearly the process used, unencumbered by details of calculation.
The following cases are typical.

(@) In 9.42 we regarded the equation f(x,y) = 0 as determiningyasan implicit
function of z, say y = y(z); then f(x, y(x)) = 0 for all « for which the functions
are defined. The same equation f(z, y) = 0 could also determine z as an implicit
function of y.

(b) Similarly,f(x,y, ) = 0 may define u as a function of (z, y), say u = u(z,y);
and then f(z,y,u(z,y)) = 0 for all x, y concerned. The given equation might
also define y as a function of (z, #), or « as a function of (y, u).
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(¢} The pair f(x, %,v) = 0, g(z,u,v) = 0 may be thought of as simultaneous
equations capable of being solved for « and v in terms of z,t i.e. as defining
implicit functions u = u(x), v = v(z) for which

Sz, wz),v(z)) =0 and g(z,u(z),v(z)) =0
for all 2 concerned.

(@) Likewise the pair of equations f(z, y, %, v) = 0, g(z, y, %, v) = 0could define
% = uw(z,y), v = v(z,y).t

Assuming throughout that these implicit functions actually exist and are
differentiable,} we employ 9.61 and 9.52 to obtain expressions for their deri-
vatives. The results need not be memorised because they can be found in any
particular case by the same methods. The first step is always to differentiate the
given equation(s).

{a) From f(z,y) = 0 we have

8%: +Z gy =0,

ay
dy o o
so that %= " ay
as in (vi) of 9.42.
(b) From f(z,y,u) = 0, Qdm_ﬁf afdu_
oz 33/
Solving for du, du = —‘&’dw-—f—”dy.
Jo o S
ou ou
But du:adx+5-ydy,

and since (7, y) are the independent variables, 9.52 gives (on equating coefficients
of dz and of dy)

8u fa ou f'
=-= and — =-~"-",
ox fu ay fu
(¢) We have
afdx+afd + fdv—O and —dw+agdu+25dv-0

u
Solving for du, dv in terms of dx gives expressions for du/dz, dv/dz.
(d) Differentiating,
Y gor % ay L s
oy )
with a similar equa,tion for g. We can solve these for du, dv in terms of dx and
in the f
dy in the form du = Pdz+Qdy, dv=Rdz+Sdy.

Since (2, y) are the independent variables, we deduce
u ou v 2

—3—:2::1)’ -8?1=Q, a—-x=R,_ a—y:S.

da:+ dy+ dv =0,

t Other choices are possible, of course.
1 General conditions sufficient for this can be formulated.
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Remarks

() The equations in differentials are always linear, and therefore easily
solvable, whereas the given equations will not in general be linear in the
corresponding variables.

(B) ‘We have already remarked that the choice of independent variable(s)
can be made in more than one way. For example, in (d) we can select two
independent variables from among z, y, 4, v in ‘C; = 6 ways, and for each
choice there are 4 equations giving the partial derivatives of the remaining
variables wo these, making a total of 24 such equations. The fwo equations
obtained by differentiating f = 0 and g = 0 are symmetrical in the differentials,
and convey all this information. Also see 9.43, Remark (§).

(v) The reader who nevertheless wishes to avoid differentials can obtain the
results described above by using the obvious extensions of formulae (v) or (vii)
to functions of more than two variables, in the manner that (vi) was obtained
in 9.42. Thus in (b), by deriving f(z,y, w(z,¥)) = 0 wo x (using the extension
of (vii) to a function of three functions of (z,y)) we have

of of ou Ja

ou
T _0, sothat —==-l2
% ouoe 8o - f.

Examples

(i) If u=sinzshy and log(z+y)+2y—3logz = 4, calculate du[dx when
x and z are the independent variables.
Differentiating both equations,

du = cosz shydxz +sinx chydy
1 3
and ——(de+dy)+2dy—-dz =0
z+y 2
From the latter we find
1

1
[—, —d — dx,
dy(z+y+) ety

and on using this to eliminate dy from the former,

3 1 1
du = cosxshydw+smxchy( dz_m+y)/(m+2) .

Since (, 2) are the independent variables, du/0z will be the coefficient of dz

in the expression for du, viz.
sinz chy

cosxshy— m
(ii) If f(z,y,2) = 0, prove
o _ & /az ox =1 oz )
oy oz ox
First method. By differentiating the given equation,

afd:z;+a§dy+ fdz_O (A)
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The expressions 82/8x, 0z/0y in the required results indicate that z is an implicit
function of the independent variables «, y. To find them, solve (A) for dz:

Jo o, fu
de = ——Zdx——dy.
TR
%2 _ _fe % _ Ly
Hence —=--= and —=--=".
O Je oy Js
Similarly, the appearance of dz/dy, éx/éz indicates that we regard the same
equation f(z,y,z) = 0 as defining z as a function of (y,2). Solving (A) for dz,

dx:——'&dy—édz,
fc @
.y or _ f, oz f
from which — = gnd = =%,
oy fe oz Ja

The two results now follow.
The preceding is hardly more than a verification of results already stated.
A more subtle use of differentials leads directly to the results themselves.
Second method. Regarding z as an implicit function of (x, y),

0z oz
Next, regarding « as an implicit funetion of (y, 2),
ox oz
=—dy+—dz.
£y Y+ % dz

Eliminate da from these by substituting the second in the first:

dz=(8zaa: 62) oz Ox

— = dy+— —dz.
6a;3y+ +6xazdz

% Y
Equating coefficients of dy, dz gives the respective results. Observe that the
function f does not enter the calculations. For Ex. 9 (e), no. 16 the first method
would be even more prolix.

Exercise 9(e)*

Assume that all the functions concerned are differentiable.
1 f(%,y,2) = constant and xyz = constant; prove that

By _ _ylafu—2f,)
dz 2(yfy—2f2) ’
2 Iff(z,y,2) = constant and 2%+ y®+2% = constant, find dy/dx.
3 u=f(z,y) and ¢(2,y) = 0; prove that du/dz = (foPy—Dafs)Ps-
4 Ify = f(x,z) and z = g(z, y), find dy/dz.
5 A curve in the (z,y)-plane is given by the equations f(z,¥,a) = 0 and
Ja(®, y,a) = 0. Prove that its gradient is —f,/f,.
6 Elimination of ¢ from the equations y = f(x,t), z = g(x,t) leads to the
relation z = ¢(x,y). Prove that ¢, = (f, g,—f, g)/f: and ¢, = g,/f.
7 If o = ¢*siny and y = e* cos 7, prove that (dz/of), = 2¢*cosecy. [Nota-
tion of 9.43, Remark (f). Cf. the direct method shown there.]
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8 If u = zy and az+by+cz = 1, where a, b, ¢ are constants, find ou/ox
under all possible meanings.
9 If u = 2?+y?+22 and z = xyt, find du/dz under all possible meanings.
10 If u = 23 +y®+2° and 22+ y? + 22 = constant, find (ou/ox),.
11 If u = a%?% where 2%+ y%+2% = 3wyz, calculate (du/dx), and (du/ox),
at (1, 1, 1).
12 Iff(z,y,2) = 0, explain in detail the meaning of the symbols dy/ox, ox/dy.
Prove that ooy oz 3y o
(@) 3_y3—x 1; (i )3yaz__$
13 Given that p, v, 8 are connected by a single equation, prove that

(). ). )=

14 The variables p, v, 8, ¢ are related by pv = RO, ¢ = C,logp+0,logv,
where C,, C,, R are constants and C;,— C, = R. Prove that

op 00 . opdv opdw
pow owop =~ o0op ool
[The context makes clear that in the left-hand side 6, ¢ are functions of (p,v),
while in the right-hand side p, v are functions of (0, ¢).]
15 The equation dE = 0d¢ —pdv arises in Thermodynamics. If ¥ is assumed
to be a differentiable function of (¢, v), show that

0= (%')” and p=—(%})¢,

and deduce that the four variables p, v, 8§, ¢ are related by two equations.

Prove that i (gg)d. =-— (Z—Z)”; (i) (%), = (%?)0.

[For (ii) put ¥ = 6¢ — E, show dyy = ¢df + pdv, and hence get
oy oy op Y _op
== ={—=); th = = =—.
¢ (aa),,' P (av),,’ then 25 = %60~ v
16 If z, y, u, v are connected by two relations, show that
or\ (ou or\ [ov oy\ (ou 3y) (80)
—) | = — —) = =) |= =) (=) =0.
(.6, GG, = G).E)ELE)

[Write down du, dv and dx, dy. Substitute the first set in the second, and then
equate coefficients of dx and of dy.]

Miscellaneous Exercise 9(f)
1 If u = ylog(y +7)—r where r2 = a? 4+ y%, prove
u  u 1
o ytr
2 Ifz = rcosf, y = rsinf, prove
20 _cos20

owdy r’
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3 Ifz = f(x,y) +9(t) where ¢ = xy, prove

is independent, of g. Calculate V when f(z,y) = xye*v.
4 If u = 2®—y?, find a function v(z, y) for which
o _ % g BN
ox oy oy o=
for all z and .
5 Ifz = f(2%+y?), prove

. Oz oz % o
@) Yo = o (ii) (w’-y’) 3y wy(a;,—a—;;)-
6 If u = f(x?+y?+22), prove
22};4"3_23 iu = 4(a®+y2 +22)f"(a? + y® +22) + 6f (0 + y2 + 22).
ox®  oy?

7 If u = 2*f(y/x), prove

o Yoy

If v = u e+ with u as before, prove

av+ au—(a:zc+b +n)v
o Yoy~ yrn)v.

8 Ifz =f(x+y)g(x—y), prove

0% %\ _ (%) @)*
o~ o) “\az) “\5y) -
9 If z = af(r +y)+yg(x +y), prove
0% %z 0%
ot 23x6y+3_’ 0.

10 Find the constant # if » = " e~"%¢ gatisfies

1o(, 00\ _ou
ra\ o) a

11 If w = f(z) where 2% = {?—a2, prove 20u/ot = {f’(z) and show that if u

satisfies P _ 2%
w T
. d’f 1 df
then f(z) satisfies dz’ 2 =—+f=0.

12 If w=f(z) and 2% =a?/4t, calculate ou/dt, d*u/oxd. If u satisfies
Ou/ot = o*u[ox?, prove f(z) = A [e~ dz+ B, where A, B are arbitrary constants.

13 Find the gradient of the curve z*tan—!(y/x)—y?tan—!(z/y) = ¢ at the
general point (rcos 8, rsin§).

14 Show that the value of d%/dx? at the point (a, a) of the curve
2+’ =ary+a® is —7T/a.
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5 @) Find the equations of the tangent and normal at (;,y,) on the curve

f(w, y) =
(ii) Ca.lcula,te the lengths of the subta.ngent and subnormal.

16 Prove that the curves a2+ y2? = 2%, y = z tany cut orthogonally.
17 Ifu = u(z,y) and z = a+ ht, y = b+ kt, where a, b, h, k are constants, prove

d*u 0% o
2 2 k 2
= g R

18 If x = rcosf, y = rsinf, express (du/ox)?+ (éu/oy)? in terms of r, 6 and
partial derivatives of u wo r, 6.

19 If u = u(z,y) and « = fcosa—ysina, y = {sina+7ncosa (where a is

constant), prove o (ou\® (ou\®  [ou\®  (ow\®
o (&) +G) = G &)

3% u  u u
oy e
20 If u, v are expressed as functions of (z,y) by the forroulae
u+Av =fx+Ay), u—Av=f(z—Ay),
where A is a non-zero constant, prove
ou u o*u
> ZZ ZZ MZ—: and 2o =NTL

21 Ifz = (1/u)cos b, y = (1/u)sin b, caleulate (dx/0u)y and (du/ox),, and show
that their product is cos? 6.
If V(z,y) is transformed into a function of (u, f) by these relations, prove

448
%’

o () () (3

22 Ifx = e~rsinf, y = e~"cos 0, change the variables from (x,y) to (r,0) in

‘ 8%& — %y 2u +a 282u
Vo ey

(i) ——

i) %g = -—u”cosﬁ%—u sinf—

23 Writing G(z,y) = 2"H(x,y), and changing the variables from (z,y) to
(u,v) where u = y/x, v = zy, transform the equations

G oG oF oF

r—+y—=nG, T_——— =0,

ox y@
where F = F(z,y). Hence prove G = z"¢(y/x) and F = y(xy), where ¢(t) and
| ¥(t) are arbitrary differentiable functions of z.

24 Tf u, v are functions of (z,y) which are connected by a relation ¢(u,v) = 0
for all z, y, prove
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*25 (i) Ifw,v, w are functions of (z, ¥, z) which satisfy the relation ¢(«,v,w) =0
for all , y, 2z, prove that the determinant

ou ou ou
w B o
v o ow
W %
ow ow ow
% 5y %

is zero for all z, y, z.
(ii) If w = ax?®+ 2hxy + by + 292z + 2fyz + c2? has linear factors

v=Ilwt+my+nz, w=UVz+mytnz,
prove a h g
’ h b fl=o.
g f ¢
[The functional relation is » —vw = 0.]
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ANSWERS TO VOLUME I

Exercise 1(a), p. 10
1 (1) —-3<a2<¥; () 2<2<2},x>38.
13 w=sa=y=%2=4% 14 (i) 25/(374/3); (ii) (4/3%) 3.

Exercise 1(d), p. 14

1z<iz>3. 2 ~l<z<#$. 3 Alla.

4 =z -—4. 5 e<-1,z>1. 6 1<zx<2,2>3.
71<x<3,z<1. 8§ —-l<z<l,z>3.
9z<—-Ll<z<22>4. 10 4<2<3+43,3-J8<2x<?2
11 4§, -1 14 No.

15 A=2 -3 p=-2,9=1,4=3,B=2C=2D=-1.

Exercise 1(c), p. 19

16 Graph like fig. 9, p. 17. 17 Graph like fig. 10, p. 18.
18 Graph like fig. 39, p. 79. 19 y > —%; mininum at (-3, —%).

Exercise 1(d), p. 29
1 (i) O, 2m; (ii) B, m; (iii) E; (iv) O; (v) neither; (vi) E;
(vil) B, 2mr; (viii) E; (ix) E; (x) O; (xi) neither; (xii) O.
5 (i) y*—2wy+at—z=0; (i) y*—2xyl+at—a=0;
(iii) 2y*— 2oy +2—4dy = 0; (iv) 3zy’+6ay—y*+2y—1=0.
6 (1) 5; (i) 1; (iv) =% (v) —2; (vi) 0.

8 Homogeneous of degree (i) m +mn, (ii) m ~n; (iii) not homogeneous unless
m = n, and then of degree m.

11 (i), (iii) sin (1 /x) oscillates between i+ 1 increasingly often as x approaches 0.

Exercise 1(e), p. 34

1 (i) Raise Oz c units; (ii) alter y-scale in ratio c:1; (iii) move Oy back
¢ units.

2 Not (—a,0). 3 z=at/(1+13), y = atd/(1+23).
5 ricos20 =ad, _ 6 728in 20 = 2¢3.
7 r2= 1a?sin 40. 8 (x*+y?)3 = 4a'x’y’.

17 (i) Produce r by an amount ¢; (ii) produce r in the ratio ¢:1; (iii) rotate
initial line clockwise through angle c.

18 Cardioid.
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Miscellaneous Exercise 1(f), p. 35
5 d=%a+b+c). ‘

6 By Cauchy, (Zabc)? < (Za®b?) (Zc?); and Xa?b? < (Za?)(2b?) unless all a’s
or all b’s are zero.

7 a>0,b2—4ac<0;0ra=b=0,¢>0; A=—4, x =8, p=16. Expres-
sion = (z2— 4z + 12) (z— 2)2.

8 All values. 9 OQOutside —1, 3. 10 Between 2, 5.
12 ~l<z<l,z<—-2,2>2. 13 —i<z<-l,z<-2.

16 (bb’—2ac’ —2a’c)? = (b2—4ac) (b'2—4a’c’), which can be reduced to
(ca’ —c’a)? = (ab’—a’b) (b’ —b’c).

19 X =az+hy+g, Y =y—(gh—af)/(ab—h%); A=0,ab=h? a+0.
21 z = a(2cos0+cos20), y = a(2sin 6 —sin 20).

Exercise 2(a), p. 50

1 2a. 2 (i) —1; (i) 0; (iii) 0; (iv) —3. 3 bat.
4 1. 5 3. 6 . 7 3.
8 1. 9 1. 10 0. 11 1.
12 (i) 0; (ii) osc. inf. + co. 13 (i) 0; (ii) 1.

14 (i) osc. fin. +1; (ii) 1. 15 (i) 0; (ii) ose. inf. + co.
16 2(p2—gq?)/r3. 17 sinz. 18 —sinz.

Exercise 2(b), p. 58

1 - oo. 2 »>1. 3 osc. fin. 0, 2. 4 osc. inf. 0, co.
5 > o0. 6 osc.inf, foo. 7 ->co. 8 osc. fin. +1.
9 0. 10 - 0. 11 - 0. 12 osc. fin. +1.
13 4. 14 1. 15 = 16 262,

17 1. 18 aifa>b,bifb>a,0ifa =0. 19 o.

20 Ifa> 1, » oo; ifa < —1, osc. inf. + co.
22 g(n) has limit > I.

Miscellaneous Exercise 2(c), p. 58
2 1. ‘ 3 limu, =—4a. 5 3+42n 8 u, > O0foralla.

n—-»rw
9 If |a| < 1, u, > 0; if |a] > 1, |u,| - 0.
10 If |a| < 1, u, — 0; if |a| > 1, |u,| — co.
11 (i) v > —m; (ii) w - 0, — o0, or + o, depending along which part of the
curve O is approached.
12 y = 1—lim [lim {cos (m!7x)}*"].

m—>wm N>X®
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Exercise 3(a), p. 68
1 (i) —1/a?; (ii) 1/(24z); (iii) Z4z; (iv) sec?z.
2 (i) 302%z3~3)% (i) z/y(a+2?); (idi) 8wx/(1—a?).
3 (i) msin"lxcosx; (i) mcosmez; (iii) mnsin®lmx cosme;
(iv) nsin® 1z secttig,
5 (i) 1/(2y+5); (i) +(4e+17)% 8 f'(x) ¢ (1) F'(u).
17 5/J(1—252%). 18 2/(1+23). 19 sin—lz,
20 (i) 1/(a®—a?); (i) — 1/y(a®—a?).
21 (i) —1J(a*—=?); (ii) 1/y(a®—a?).

22 af(a?+x2). 27 bix/aly. 28 —(by/ax)t.
29 (ay—a?)/(y*—ax). 30 zy*(2y+ 3zy’). 31 -1/
32 —(bja)cob . 33 42— /(1 —269).

34 z—ty+at?=0; t = coty; te+y = 2at+asd.

35 xsec?f+ycosec?d = a.

Exercise 3(b), p. 73

1 2(x®—32%— 122+ 4)/(x% 1+ 4)3. 2 6x(x?+2x+4)/(x+ 1) (x—2)2.
3 3x(1—a2)-1 4 ginz(9sinZz—17).

5 {(1—a?®)sinz—xcosa}/xs. »

6 —m(1l—=%)—t{zsin (msein—1x)+m(l —2x2)cos (msin—1x)}.

7 —ny. 10 y;=1,9;=0,y, =2.
11 (i) m(m—1)...(m—n+a™*ifm > n, 0if m < n;

(i) m(m—~1)...(m—n+1)zm"; (iii) (- 1)*ntz—""L
12 sin(z+ 3nm). 13 cos(z+ inm).

14 m(m—1)...(m—n+1)a™ax+b)™ ", unless m is a positive integer less
than n, when the result is 0.

15 a®sin(ax+b+ 4nw). 17 vu® + U™ + 6v"u” + 40"’ + vy,
18 2afy, —da*fy®. 19 (ay—a*)/(y*—az). —2a'zy/(y*—aa)’.

20 (2ay*—a%)/y(y® — 2aa?), 2azty(25a* — 8zy)/(y® — 2aa?).

21 1/t, —1/(2az3). 22 —(b/a)cotp, —(b/a?)cosec? .
23 (b/a)tan 6, (bsec®)/(a%0). 24 )&, (5 —By)/as.

25 ncosnd secd, n(sin § cos nd—n cos 6 sin nd) sec®f. 26 (a®—fr)/re.

Exercise 3(c), p. 84
1 =1, min,; ¢ = —2, max.; ¢ = —}, inflex. 2 z = 0, inflex.
3 z=—1, min.; z = — 2, inflex. 4 ¢ = —}%, max.; = 1§, min.

5 x = a+2n7, max.; £ = a+(2n— 1) 7, min., where 7 is an integer and « is
given by cosa:sina:1 = a:b:,/(a®+b?).
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6 z =nm min.; z = (n+43)7, max.; ¢ = 3(2n+ 1), inflex.
7 x = im+2nm, 7+ 2nm, max.; & = 2n7 — 47, min.
8 = —5, max.; inflexionsatx = —2, -2+ 4,2,
9 z =1, }(6+4/3), min.; z = }(6—,/3), max.; z = 2, inflex.
10 The value — 1 of f(x) is not & minimum value.

11 To a given value of z for which |z| < 1 there correspond infinitely many
values of 6.

13 (i) 2 cu.ft.; (ii) 8/ cu.ft. 14 34B.

15 1:/2. 17 Equality.
19 sinx > 2(7 —2)/m when 7 <z < 7.

21 r—-1<rx—-1)ifr>0,2+1,0<r<1.

Exercise 3(d), p. 87
. RT ... B RT
1 1:0035. - 2 dmr2dr. 5 (i) 5 8p; (i) -éaT—;Tap.

7 (i) h; (i) 3ah+h2; (iii) h/a*(@+h); when a = 0.

Miscellaneous Exercise 3(e), p. 90

1 —sin(sinw)cos . 2 1—22—3z(1—2®)tsin—1z.

3 nsectz/(l+ntandx). 4 —(b*—a?¥/(b+acosx).

5 —2//(1—z%). 6 1/(z+1) .

7 —1/J(1—2?); because sin—1,/(1 —?) and cos~1z differ by a constant.

9 L~1)*n!{3(x—2)""1+(z+2)-""1}.
10 (=)*n!{8(x—2)*1t—(z—1)"1} if n>1; 1+(x—1)"2—8(x—2)"1 if
n=1
11 27-1lcos(2z+ 4nm)—%. 5% cos (bx + inw).

12, 13 See 10.43. 21 dy/dit+y = 0. 25 a=-%,b=+.
26 [2(x+y)cos{(z+y)}]/[1—2(x+y)cos{(z+y)%}].
27 x = —1, min.; £ = —§, max. 28 None. 29 None.

30 x = 2n7, min.; x = (2n+ 1) 7, max., provided ad ¥ bc; otherwise, none.
31 z = albl/(at +bh)}, max.; x = negative of this, min.
32 (27+3,/78)}, max.; (27— 3,/78), min.

35 z=1in, 2w, 3n. (i) Incr. for 0 <z < im 47 <x < im; (ii) decr. for
im < x < &m, 37 < x < 7. Greatest value at x = 4.

39 2abd. 40 b.

Exercise 4(a), p. 99
1 3{(z+ D+ (@-11. 2 jx+isin2s 3 }—sin2x.
4 tanz-—z. 5 (sin 32+ 9sinz). 6 x—tan"lz.
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7 32*—3log(l+2%). 8 3(1+x)t+2(1+x)t 9 —1/m
(az+b)"+1 1,
10 %(2cos2x—cos4zx). 11 A1) 12 asm(ax+b).
13 —(1/a)cos(ax+b). 14 (1/a)tan—1(z/a). 15 sin—1(z/a).
16 }tan—lz~3}tan—!ix. 17 —1/(z=+3).
18 tan—!(z+3). 19 sin-(z—1).
Exercise 4(b), p. 104
3 1
1 Yz—5)8+%x—~5). 2 P 3 x+3)—6(c+3)h
1
4 ——-};(l—x’)". 5 —m. 6 i‘»\/(l'l"x‘).
7 isintaz. 8 itantz. 9 isin"(%v).
2% z @
10 %tan 1(?). 11 o= 12 W(fl”—+9)
z 222+ 1 7
16 sec—lz. 17 id(m’—l). 18 i(tan—iz)3,
19 cos1(1—x). 20 isin®z—3}sinba. 21 sin~lz—,/(1—22).
22 sec—lx—£4(x=—1). 23 }(J11—y2). 24 }3y3—1).
25 . 26 1. 27 Jstan—1.
28 32, 29 2. 31 i

Exercise 4(c), p. 109
2 (z/a)sinax—(1/a?) cos azx.
4 %(22?+ 2xsin 22 + cos 2x).

1 sinz—xcosz.
3 (2~2®)cosx+2xsinz.
5 Hz+1)(z—5)"—s(x—b5)5.

x 1
BT Lot iy Ty

7 wcoslz—,J(1—22).

6 (1—z)m+e,

8 —%—%i(l+m’)tan‘1w.
9 F4{sin 4o — dx cos 42 + 4 8in 22 — 8z cos 2x}.

11 jx2sec—lz—3./(z?—1).
" n(n—1)

10 icos®z—cosaz.

12 g—;z"*sinax—; cos ax — pr 8p-3 = 843
(624 — 6022 + 120) sin z — (2® — 2023 + 120x) cos 2.
13 g, 14 8w +16. 15 %.
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16 4 . 17 im—%.

(n+1)(n+2)(n+3) :

18 $x—3%4/(1—2?)sin—1z. 19 2,/(1—=2?)sin~lz+a(sin~1x)2— 2.

20 1(22%~1)sin~lz+1z4/(1—22). 21 (1—2®)y+322+Ax+B.
Exercise 4(d), p. 114

1 1/z. 2 2/x. 3 —1jx. 4 cot .

5 2cota. 6 —seczcosecx. 7 2/(1—a?). 8 1/(zlogx).
9 (logz—1)/(logz)?. 10 (2/x)logz. 12 (1/x)logjee.
13 cosec 2. 14 secwz. 15 2secz. 16 0.

17 1le. 21 3logz. 22 log(l+=z).

23 —log(l—=). 24 }log(1+a2). 25 ilog(1+a4).

26 log(3x®— Tz +5). 27 —3log(3x?—122+17).

28 logsinz. 29 —1logcos 3. 30 —1log(3+5cos?x).
31 log(cosz+sinz). 32 logloga. 33 2logtan }z; log tan 3.

gmtl . |

34 m+1(]ogx—m);x(logm—l). 35 }(logx)®.

36 ztan—lz—}log(l+a?). 37 ix3(logx)?—Exdlogx + st

38 ztanz+logcosz— a2 39 1log2.

40 ilogi. 41 log2. 42 1-log2.

43 1. 44 1. 45 £:(2e3+1).

46 z,log|acosxz+bsinz|; %7 +35logs.

47 A =3, p=—2; 3z—2log(sinx+2cosx).

Exercise 4(e), p. 119

2 3ete, 3 e*(z+1). 4 2ze,

5 €%%(3sin 22+ 2 cos 2x). 6 —eco%ging, 7 1.

8 1. 9 log2.e®l082 = 2%log 2. 10 2%log?2.

11 2°(1+logz). 12 }ee. 13 —e2, 14 2¢te,

15 log(e®+1). 16 esin®, 17 a2,

18 }e*(cosz+sinz). 19 1% e®(sin 2z — 2 cos 2x).

20 2em—f5. 21 %e?o (22t — 4a® 4 622 — 6z + 3).
22 m=3or—2. 24 a"es®,

25 (z+n)e® 26 a®(loga)".

27 e (asinbx + bcosbz) = /(a?+ b?%) e**sin (bx + 0), where

cosf:8inf:1 = a:b:,/(a®+b?); (a+b%)kres?sin (bz+nb).

28 p = af(a®+b2), ¢ = —bf(a®+b?); €= (asinbx—bcosbx)/(a®+b%).
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29 e‘"’(bsinbz+acosbx)/(a’+b’). 30 z =0, max.; z = +1//2, inflex.
31 =0, min.; = 2, max.; z = 2+./2, inflex. 32 nhe "
36 (i) 3e*+A+Bt+Ce2; (i) 322+ A4+ Blogz+C(logx)?.

Exercise 4(f), p. 124

4 2
1 (l--x’)‘*. (x+1)* (22 +3) 4 4 _ 9 )
(83— 5)3 z+1 2¢+3 3z+35
1 3 4
—9) + 2
3 (—2)}(3z+2)(22+5) {2(w_2)+5(3x+2)+2x+5}.
4 gbe’®sin 22(5/x + 3+ 2 cot 2r). 5 e+,
6 e*sinz(logz)®{1+cotx+ 2/(xlogx)}.
7 ze*tanz(1/z+ 1+ 2 cosec 2x).
1 log2
1 Y= —-— . - .
8 (1+x) {x(l+x) xglog(1+x)} | 9 logz)t
1 1
x —_ —— -2
10 (logx) {loglogx+logx}. 18 s 21 e
22 1. 23 &, 26 log2. 27 logd.
28 logp. 29 log(p/q).

Exercise 4(g), p. 128

8 (i) ich(zx+y)—4ch(x—y); (i) $sh(z+y)+4sh(x—y);
(iii) $ch(x+y)+4ch(z~y).

16 logi2 or —log3. 22 —thasechz. 23 —cothx cosechz.
24 —cosech?z. 25 cothz. 26 (1/z)ch(logz).
27 cosechz. 28 —sech 2. 29 %secha.

30 2shzcosz. 31 zeb={shzlogx+(1/x)cha}.

32 (chz)*(logchz +athz). 35 jch2r.

36 4th3x. 37 2logch }a. 38 e*tha.

39 Ifa+b, %{aibd“+"”+aibe‘“-b’“};ifa:b,-21-{51&3”’—*%}.

40 ish2z—§x. 41 3x+ish2z. 42 z—thaz,

43 %tch4x—%ch2zx. 44 ich*z—chuz.

45 3(3sh6x+ishdx+4sh2z+2). 46 1(1—1/22).

47 xzshz—chz. 48 zthx—logchw. 49 (2®—1)chz—2zshx.
52 logth (}x). 55 1; 1. '

Exercise 4(h), p. 132 )

2 3 1
(25 +4a?)” A(a?—x)

24 GPMI

2
, x> 1. 4m,|x|<4}.
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16

17
20
23
26

28

31
33
35

36

37
38

11
13
15
16
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isecz, |z| < 4m. 6 2/(1—a®),z+0, +1. 7 |secz|.
sec . 9 secxz if tanz > 0, —secz if tanz < 0.
sh—tux. 11 chz.
¢’ = c—loga; log{z+./(z*—a?)}+c’; %logZi:‘+c’.
sh—13z. 18 ch—'4x (z > 6). 19 }sh-!(ix).
sin—13z. 21 jch-1%xz (z > 3). 22 sh—1(z+1).
ch-1(z+41) (z > 0). 25 }z./(2®—a?) —4a%ch~!(z/a).
32 ./(82% — 4) + 3 ch1 (3w). 27 J40+2log(3+4/10).
3z J(®—1)+$ch1z. 29 log://120_:-13—§\/10+¢/2.
(), (ii) ch-1(%2)—ch-1(%%). 32 xzch-lzx—./(22—1).
zth-1z+}log (1 —=a?). 34 1(20%+41)sh-lz—iz/(z2+1).
128 th-1z+ 322+ 3log (1 —a?).
Cp = %"shax—%x”"chax+n(na: l)c,,_,;

z" n n(in—1)

8, = —char——z"1shazx+ 2
a a? @

2th-1 (cot §z), = logcot (3x—4m).
O<|z]<l; 2% 0; |z| > L

Exercise 4(i), p. 141

z—1 1
Zlog(z—2)+%log(x+2)—%logz. 2 2logx+2_x_—-_l'
z—3 26 15 z? 1 z
. 4 log——+—tan1—,
Blog 5+ s am—2p Bt 2™ 2

2% <%
2 tan 3 £ tan 2

32t +x+%log(x—1)—%log (22 +2+1).
Iog(x—1)—{10g(l+x2)—«}tan‘1x+xz+l.

z—1 . z—1 2
«}logw—H. 9 a:+logx+1. 10 log(m—-l)—-x—_—i.

4 5

L U S, S I 1)—2logz.
log (x—2) 72 -2y 12 3log(x+1) og
log (x—1)—3log(4x—1). 14 log(axt—2—6).
22—z +4logx—3log(z+1).

7log(x+ 1) +log(z +2) — 8log (22 + 3).

7
2logx—2log(x—3)—;—§. 18 log(x——l)—log(x+2)+m.
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20

21

23

26
27
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4
1 _._1 1) — —,
ogw+ og(z+1) P

—2log(z+1)— +2log (z —2).

1 1

z+1 2(z+1)
1

3logxz—4log(x?+1)+2tan—1z. 22 x+4log(x—2)—x—_—2-—§ta.n"lf.

1
x2+4-3°
J3tan—1(zxy3)—2tan-1(z42). 25 Llog(x*—3)—4ilog(2x+3).
log(x—2) —«}log(w’+ 4x—1).

—3log (1 —2x)+3log (22 +3) +

log (234 2) + 2tan-1—+ 3log (22— 2).

A2
Exercise 4(j), p. 145

3z+2 3x—2
: 2 %l°g3w+6

tan—1(z +1). 4 %log?i}

4 z+1—411
NTRCErswaive

v

2log (x®+ 22— 10) —

6 3log (92— 18z +25)+ 3 tan—13(x—1).

7 log(l+z)+2tan-z. 8 3lo ””——J’i”+—2+3mn—1(x+1)
9 log(x®—z+1)—}log(x*+x+1)+3,/3tan"1(z+})+ 3 3 tan—1 (x—3}).

1 b5z x 1 &, 328+ 202

—_— - -1 3 P
10 556|125 5}' 1 128{ el S+ =+4)2}

z—3 m+1

_— -1

2 Srsers tiven
l1—z /2422 z4/2

1./2 TN -1 .

13 3 {log1+x42+x’+2tan l—mz}
14242+ 22 x.4/2
2{log —— YT -1 .
14 3 :logl_ J2+x“+2t&n l—xz}
l+z+2 2 x4/3
—_—— -1
15 &log1 oo J3mn —"
Exercise 4(k), p. 150
1 logz—2,/x. 2 Hz+1~2(xz+1). 3 2log(l+4).
‘ 4)—2

4 3ot —32% 4 3log(1+at). s jlogY@TH=2

i g( ) 3 gJ(m+4)+2
6 Sat+ 8ot + 3ot 4 20 4 62¥ 4 62 + 6log (2 + 1) + 3log (x —1).
7 2{J(2z+1)+Jz—tan-1/(2z+ 1) —tan~1 /z}.

24-2
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8 21+ +3(l+a)t+1+a+l+a)f+H1+a)h

9

12

14

15

16

18
20

23

25

27

28
29

30

32
33

10
12
14
16

1 z—3

-1 = ch-1 in-1 .
sh= {(x 4+ 3). 10 chh {3J2(x+1)}. 11 sin 72
sin-12”5+1. 13 J(z2+1)+2sh1a.
\/(x’+6x+l3)—3sh-1x+3
2222 + 4w —T) — 4./2 ch-1 {3 y/2(z + 1)}
6sm—12”;1-24(6-x-xz).- 17 (a®—1)+ch1z.

3o /(x24+1)—}sh1a. 19 i(22+1)# —/(z2+1) +sh-1x.

—3sh22, 21 —2J(2+3). 22 cos1Z1

x x 2z
1 z+9 Z4/2
—1__ -1 R -1
3sh 37710 sh— 323" 24 J2sm 41
%wd(az—xg)+§a“sm‘12. 26 ixd(w’——a“)—-}a‘ch-lz-.
258 6w—5 .

5 sh~ 5 + (62— 5) /(322 — bz).
1(2z— 5) 4/(2® — bz + 6) —4 ch™1 (2z — 5).

3(222 — 62+ 1)} +12(2x — 3) /(222 — 6x+l)——7—£ /73.

1 J@2+9)— 45 1 2 [{x*+9
3758 J@P 5 9) T y5' 3 =gt {m/( 5 )}
2(8—a)? [sin?6 cos?6d0, [2d0, 2(f— ) [sin®6do.

2(a— f)? [sh*u ch®udu, [2du, 2(a—f) [sh?udu.
Exercise 4(1), p. 156
-2

— -1

cot §x. 2 T+tanis’ 3 itan—!(2tan }z).
1 1. tande—1+42
—J—210gtan(§ﬂ+§w) or ﬁIOg_—‘—tangx—l——,/f
log (1 + tan §x). 6 tan!(tanix+1).

—Jog (sin z + cos x). 8 ix+34log(sinzx+cosx).
2x +log (2cos z +sin x + 3) + tan—! (tan fx + 1).

— /28h-1{(1/4/8) tan (17— =)} 11 ztanix.
isin’z—$sin’z. 13 —%cos®z+$fcosPxz—~3cos?x.
tanz — 2 cotx — 4 cot®a. 15 —cosecx—sina.
}tan?x 4 logcosz. 17 itan? jx—3cot? iz + }logtan §x.



ANSWERS a1y
18 /2tan~1(,/2tanz)—a. 19 1logcos?2z.
20 35(5cos 2z —cos 10x). 21 $5(3cos 8z —4cos 6x—12cos 2%).
22 —335(15c0s 7z + 42 cos b5z + 35 cos 3x). '
23 5(5sin 2 —%sin 3z — Esin 5z — % sin Tx).
24 R = \/(a®+b?), ¢ is given by cosa:sina:1 =a:b:R. Put u = z—a.
25 (iii) (1/b)cot 3.

26 If b* < dac, _12ctan:c+b -1

x/(‘iac—bﬂ)t"’m J(@ac—b?) if b2 = dac, ctanz 4 3b°
2¢ tan x + b — /(b2 — 4ac)
Y63 —dac) B 2ctanz+b+ (b —4dac)”

1 x 1

if b2 > 4ac,

f . -1{Z ;
27 Ha b o 35 afoosiat oinin  2ab(@—b7) o0 (a“m”)
. 1.
ifa=b, —87‘(5m2x—2wcos2m).

. | 1 . 1
28 (ii) §m+msm2mw, §w~msm2mz, —mcos2mw.

Exercise 4(m), p. 163
1 %cosbz sinz + 3% cosx sinz + 1% cos z sinz + 5.
2 —1isintx cosx—i%sintx coszr—Fcosa.
3 Lcos®z sin®x 4 3% cosx sintx + g cos® 2 — s cos x.
4 T5cos®x sin®x + 5 cos? x sin®x + 3 cos  sinSx
—1igsindx cosx —zigsinx cosw + 325w,

5 isinzseciz+ thsinz sectz+ 5 tan .

6 isin®z sectz — gy sina sectz +yysin z secx + 35 log tan (4x +4m).

7 & 8 & 9 2. 10 3%
11 3. 12 84 13 zEgm. 14 3Zgm.
15 imamn, 16 357 17 4. 18 0.

20 u, = (1/a) {zx"e**—nu,_,}.

21 u, = (1/n)ch* 1z shz+(1—1/n)u, ,.

22 u, = (1/n)sh* 1z chz—(1—1/n)u,_,.

23 s, = (1/a?) {x"Ynsinax —axcos ax) —n(n—1) 8,_,}.

24 ¢, = (1/a? {z*Yaxshax—nchax)+n(n—1)c,_g}.

25 s, = (1/a?) {x"*(azchax —nshax) +n(n—1)s, 4}

26 u, = {e**sin"1bx(asin bz — nb cos bx) + n(n — 1) b2u,_.}/(a? + n2b?).

27 Ifm % —1, Uy 5 = {&™(log x)" — Nty n—y}/(m+1);
ifn+—1,u,,=(logx)"/(n+1); u.y _, =loglogz.



(12) ANSWERS

28 .
sin™1g(nsinx cosnx —meosz sinnz) +mm—1)tp g, g
29 Upg= pooC Y } 315
30 —im. 34 Put y=w—a.
Exercise 4(n), p. 171
[* means ‘the integral does not exist’]
1L 2 k. 3 &m. 4 =,
5 1. 6 %log3. 7 —-1. 8 inm.
9 im. 10 . 11 & 12 .
13 =%, 14 im. 15 . 16 %e2.
m T
17 2. 20 Nath) 21 ~%ab"
22 Ifb > a > 0, integral is 0; if b = a, *. 29 im.
32 m odd, (m—l)(m—3)...2; m even, (m—1)(m—3)...1m

m(m—2)...1 mm—2)...2 2"
(m—1)(m—38)...(2n—m—3)(2n—m—5)...

@n—2)@n—4)...2 , m odd; same with factor 4m

33
if m is even.
35 m(a+b).

Miscellaneous Exercise 4(0), p. 173

y

1 a:+-§-log(2x+l)—-log(m’+2)+\/2tan'142 2 1+3log2—4logh.
3 §10g(w”+4)—log(x—1)—w—_i+§tan'1§w. 4 ir—3.
(-1 1 2w +1
3_ - T tant
5 3—3m. 6 im—41. 7 %Ing2+x+l J3mn 73
z—1 2 x 2+z+1 1 22+ 1
1. log—————+—;tan™! .
8 dlog T ottt T T g
10 imn—l +~1—1 otz
2a3 a—=z
11 logxz—3log(l+x)—%log(l+2?%) —4tan~lz,
12 3log(z+2)—%log (1 —=z)—%log(x+3).
13 2log(z+1)—log(2z—1)—log(x—1).
1 X4/ z /2
— — -1 — .
14 1log32 [put =z = 4/tan0]. 15 J2tan (l—w)[p ut w = l—x’:l
16 &—log2. 17 5{(w+a)*+(x—a)‘}.
44 8
18 %ta.n'lm+2w to x[putm-tan@] 19 asin~!(z/a)—4/(a®—=?).

8(1 4 x2)2
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24

25
26

27

28
30
33
36
38
41
43
45
48
51
52
54

ANSWERS (13)
%a*(m—2) [put2? = a?cos 20]. 21 3m{1—,/(b%—a?)/|b]}.
2221
3a®

J(az+2®) +alog{Jz+4(a+z)} [put = = 3]. 23 (1 4a3).

1, 2t—1
Llog(t?~t+1)—3%log(t+1)+—tan—1

V3 V3

, where 3 = la—l.
x

sh~1(z+ 1/z) [put ¢ = 2+ 1/x].

(1/a*) {w(a? — )~ + Ja*(a? —2%)H}.

—é —% loga— a ;xta)*sin"l x.

30% — 6 tan 6 —log cos 8, where 2 = cot 0. 29 1logé.
—ch={(1—2)/(z4/2)}. 31 3m. 32 log(1+4/2).
(1/4/2)1log (1 +4/2). 34 3. 35 ie~%(2sin 2z — cos 2x).
(1 +e-78) = 0-405. 37 L(at—1)log (1 +2?) — izt +3a2.
logz(loglogz—1). 39 2—}m. 40 1//2+ }log (tan ).
12— Jl58in 4. 42 log2.

(i) (1—logsinz)cosz+logtan dx; (i) log2—1. 44 1—%c2.
i(m-1). 46 ilog3. 47 (1/4/2)logtan (3= — }m).

—log (1—tan ). 49 ilogé. 50 7/\/(ab).

If o + 4, 4seca log |tan (o —im)|; if & = 4w, integral does not exist.
1. 53 £&.

25(3/21log (1+2) — 2} [put cos 2¢ = tan?z].

55 (1/4/6) {tan~? /6 —tan-1} y6} = (1//6) tan~! (4 y6).
56 4. 57 aa:llog(l+a)+2—aifa:t:0; tifa=0.
a 2a?
58 P#—134log2. 59 imad. 60 -57ad [put 2 = asin?f).
61 z(logx—1) = xlog(x/e). Put x = 1—ecosf.
65 Zmas. 66 3i%
67 We have (m+n)J(m,n) = mJ(m—1,n—1)—cos inx, hence
(m+n)(m+n—2)I(m,n) = (n—2)sin nr—m(m—1) I(m—2,n—2).
68 22, 69 nlg"/{(ng+p+1)(n—1g+p+1)...(¢+p+1)(p+1)}
70 u, = n: 1 (:a:’+a”)*"+nn_‘:’l Upye
71 n even, u, = n_l_ l_ni3+ni5— oo (= 1)En-1;
n odd, u, = L + 1 — (=101 L (_T)Knin L]0 2,
n—-1 n—3 n-—5 i
73 ¢ = {ashax cos bz + b chax sin ba}/(a? + b2),

& = {ach az sin bx — bsh ax cos bx}/(a? + b?).
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77
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ANSWERS

{ash ax sin bx — b ch ax cos ba}/(a? + b?);
{a ch ax cos bz +sh ax sin bx}/(a? + b?).

Put y = im — in the first integral. 78 n " f(cos®x)dx.
(ii) ¥mlog2. °
Exercise 5(a), p. 178
zlogzdy/dx = y.
Tangent to a circle is perpendicular to the radius.
Yy =p. 6 y=3xy’ +y'y
Differential equation of all parabolas with Ox for axis of symmetry.
y"—6y"+ 11y’ — 6y = 0.

Exercise 5(b), p. 181

y = §x%+c. 2 y4c—62%) = 1. 3 tany =z+c.

y =ttt 5 yt=2x+4c. 6 y=sh(x+c).

y = Ja?—1/(22?). 8 cosy = ccosw. 9 y2=1+2z—2at
Yy =2xz+ec. 11 logy = a(logz—1). 13 z+y = tan(x+c).
(x*+2y+c)(y+ce?®) =0. 15 P¥P*==zy+c.

zy = logz+ec. 17 v > k.

Exercise 5(c), p. 185

22y = x?+¢. 2 2?-2zy—y*=09. 3 y? = atlog(ca?).
(x—y)? = cxy®. 5 2sin(y/x) = .

y = wsh (logz +0) = }(e, a8~ 1/cy). 7 @@=yl @ -y = c.
(x—y—23(z+y) =c. 9 log(z+y)=x—y+ec.

4(x—2) = (x—y— 3)log{c(xz—2)}.
2z+1)°+3@+1)*(y—2)+(y—2)* =c.

Exercise 5(d), p. 189

y = e*(x+c). 2 y = %sin®x+ccosecx.

y = 2sin log (sinz) +csina. 4 y=1+e%,

ylogx = (logz)?+c.. 7 y¥l+ce*®) =1, 8 yl=—ax—14%.

y? = caw®—~ 2a3. 10 zy? = c—cosx. 11 y*(c—2tanz) = cos?zx.
y = Axe Vs, 13 y%(c—5y) = =. 14 z=cev—}e .

y=xz+at+be " 16 y=cx+1/e, y2 = 4a.

y=cxt(c2+1), 22 +y%= 1.

y=cx+cd 428 +27y? =0; c=—1,—2,3.

y = cx+sinc; s.S. given parametrically by x = —cosc, y = sinc—ccosc.

(y—px)? = — 4pk®.
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Exercise 5(e), p. 192

1 _.l+ +b 2 P=c+ gm+b2
y =g tawtb. Y= s .
3 y=ae+be " = q,ch(nr+b). 4 y=a+be?,
5 y=4at4+1. 6 a—z=y>+by. 7 y=btch(z+a)
1 & s
8 y=14=a2 9 y:w”. 10 u = (g—ﬁ)0050+ﬁ-
1 AV 1
2 . — _ZM. — B2y =
11 pr<h,u_ccos{0J(1 h“)}’ ifp=h%u c"
. 1 7/
1fp>h*,u=gch{0A/(ﬁ—l)}.
1
12 u‘:;coa’0+£§c"sﬁlzﬁ.
Exercise 5(f), p. 198
1 y=Ae*+Be’~, 2 y=Aet*+Be32, 3 y=(4dx+B)e™*=,
4 y=Ae**+Be 2, 5 y = Acos2x+ Bsin 2.
6 y = (A cos3z+ Bsin 3z) 2%,
7 y = et*{4 cos ($x/3) + Bsin (3 /3)}. 8 y=A+Be 3=
9 A=2} 10 A=2,B=4%
11 =-2,B=-10,0=-217. 12 A=-1.
13 A=3%,B=-13 14 A=1B=-}
15 A=%B=—-%,0C=+8. 16 A=1.
17 A=1 18 A=} B=1 19 A=%B=3%.
20 A=%B=-1. 21 A=} 2 A=-},B=3C=1
23 A=-},B=-1,0=-2. 24 A =4

Exercise 5(g), p. 201
y=Ae*+ Be**+3.
y = e*{A cos(x4/2) + Bsin (z2)} + 2z +1.
y = Ae?*+Be-*+3(222— 22+ 3).
y=Ae+ Belv 4 4637, y = 4(e20 4 o7 — 2¢2),
y = (4 +%x)et*+ Be32,
y = e* (A4 cosx+ Bsinx) + $5(6 cos 3x — 7 sin 3z).
y = €7*(4 cosw+ Bsin x) + 321(7 cos x — 2sin z).
y = Acosdzx+(B+1ir)sindx; y = (4 +3ix)sin 4x.
y = e~ 4% (322 + Ax+ B). 10 y=A+Be % +3(322—2).
y = gz cos 4o+ A cos 2z + (B + §x) sin 2.

O 0 N N i b W N =

—
—



(16) ANSWERS
12 y = e?*{4 cos (2 J/7x) + Bsin (§ 7x)} + 35 €2* — dze22.
13 y = Ae*+(B+}x)et*— L(cos 22— 3sin 2x).
14 y=e*(A—4sinz—}cosz)+Be22,
15 y = e®(A + 18z — 322 4 12%) + Bel=.
16 y = e=3= (18 + 3a? + Az + B).
17 y = e~#*{4 cos (4 /3z) + Bsin(} y3z)} + €= {3(x — 1) + %(2 cos z + 3sin z)}.
18 y = e?*{Ax+ B+ (3 — 22?) sin 22 — 4z cos 2z},

Exercise 5(h), p. 208
1 (ii) # = a(cos pt—cosnt)/(n?—p?). 4 2 (ii) z = (at/2n)sinnt.
8 z = ¢B#2L (4 cosnt+ Bsinnt), where n? = 1/LC — R?[4L2.
9 b= EC{(CLp?—1)2+C2R*p? %, tanax = CRp/(CLp®—1).

13 g = d(—a?) (A cos ax + usin ax) + ay( — a?) (Asinaw—/tcosax)‘
{P(—a®)}? +a*{y(—a®)}
Exercise 5(), p. 211
1 z=Aet+Bet,y =sint—Aet+ Be.
2 vx=A+Be?+4el, y=A—Betige
3 a=Ae¥+Bet,y=Ae¥—Be™.
4 z=3+1et—2et—Joe b y=2+1et—2e it F5e0
5 x=Aed+(B—t)e—3ef, y = 2¢t— 24 ¥ — (B+2—1) 2.
6 == e —e3P)+tgint, y = 2co8t—%(6e 2+ 6735),
7 u=ct+a,v==3%et+be 2
9 z=(A—}2)cost+ (B+)sint, y = (34 — §— §t?)sint 4 (42 — 3B) cost.

—
(=]

u = Acoswt+ Bsinwt, v = E[H — Beos wt+ A sin wt.

Exercise 5(j), p. 216
y = 2*{4 + Blogz+ }(log z)%}. 2 y = Ja( A4 +4logzx)+ Bk,
y = a¥(logx — 6) +logz + 6. 4 y= Axt+ Bjr—}23—}logz—3.
y = (14 22)2{4log (1 + 2x)+ B} + }log (1+2x)+ 4.
x = At*+ B/t* 4 C cos (2logt) + Dsin (2logt),
y = A2+ Bft2— Ccos(2log?) — Dsin (2log?).
y=AJ(1—2®)+Bx—}./(1 —2®)sin"12.
y = }(sh—lz)t+ Ash~lz+B.

A U W o=

0

] — g2 1
9 y=4-—_2 4B 2 10 y = —(4e=+Be).

1422 1+a2%
1
11l n==-2,a=4,b=0; y= ;{A+Be—“+—};(4sinw—cosm)}.



ANSWERS an
12 y=z(4de¥*+B). 13 y=e*{4/(x+1)+B}.
14 y = e?*+(Ax*+ B)e®. 15 y = $2®logz+ Ax—3 4 Ba®.
16 y=e*(dc—1+1/x)+ e *(x+2+2/x)+ B/x.
19 ay(z?+c) = 3x2+c.

Exercise 5(k), p. 219

1 42 =ka+e. 2 y=Aes, 3 y = kch{(z—c)/k}
4 xy=c 5 z—4J(22+y?) =c. 6 z+.4/(z*+y?) =c.
7 a—yt=c. 8 z =y(c—klogy). 9 (rx—a)+y? =k

10 ky = ch(kz+c¢). 11 22—y =b. 12 22%84y%2=b.

13 22%+3y2 =b. 14 yt = ot 15 2°—3zy® =b.

16 x+1 = besttr’, 17 (i) Differential equation is y/y’ —yy’ = 2z.

18 Given z and y, equation is a quadratic for dy/dx, giving the two directions
through (z,y). Condition for equal roots.

19 {m, tan—13, 20 y=-—1.

Miscellaneous Exercise 5(1), p. 220

1 a*(1+y") = y¥sh1y)2 2 (1-ah)y" =ay'.
3 Since 4 cos~'z+ Bsin—lz = Acoslz+ B(3m—cos~1z) = A’cos~lz+ B’.
4 2%y"+y=0. 5 y=0.
6 (2y' —y)® = * 2xy(l+y™). 7 (2y'—y)*+4y = 0.
8 y=(z+¢c)/(1—cx). 9 y=cxe®
10 y = c+tan—1(z+y). 11 log{z4(x?+y?)} = 2tan—1(y/x)+c.

12 tan—(y/x)+ 2log(z?+y2) = c.
13 2(x—y)*—2(3z+y)+log(22—2y—1) =c.

14 22492 = cy. 15 T2?—b5y®—6zy +42—2y = c.
16 tan (y/x) = log(c/x). 17 log(l+y) = 322 +c.

18 zy = }at+e. 19 y =z +c4/(1+22).

20 1/y® =} +a?+4ce?, 21 ljz=2—y?+ceiv,

22 1/y = 1+cx+loga. 23 y = (e*+c¢)sina.

24 a8.y=cx+icd 8.8 42+ 9y2 = 0.
25 a.s8.y=cx+e’, 8.8. y = zlog(—=xfe).

26 y =log(x+a)+b. 27 y=ashlz+b,
28 y2=2x'+ax+b. 29 y® =alogx+b.
30 y=Ae**+ Be2, 31 y=(Ax+B)e®
32 y=Ax+B+Ce? 33 y=(Ax®+Bx+C)e ">

34 y= Ae**+Be*—}(4cos2x+ 3sin 2zx).
35 y=Ae** 4 Bedote* (202 +6x+17).
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ANSWERS
y=Aet+Be* +}ad+ fat + 300+ 55
y = €5 (A4 cos 2z + Bsin 2x) — }x €5% cos 2. 38 y = Axb+ Bx—t—jad.
y = zf{logxz + A cos (log z) + Bsin (log x)}.
y = Ax+ Bx® +#523{cos (logx) + 3sin (logx)}. 41 y = 4+ B/z.
y = 2c(logz)t+ A(logz)2+ Blogz + C. 43 y = A esin? 4 Besing,
= (A + Bx) (1 +2?) -t — }a(1 +22)-L.
z=2Ae¢'+Be %, y=3A4e¢'—Be*.
2 = 34 cos 2t +3Bsin 2, y = Asin2t—Bcos2t.
x=2Aec"—Be 4 Tet+e?,y=A e‘“+Be‘"+ et+Fe?t,
xz=1logt—At+Bt™l, y=Ae'+Bt-1—
xz = Aef+Betcos(}4/8t+a), y = Ae‘+Bc-*‘cos (34/3t+ 0+ §7),
= Ae'+ Be¥eos(§4/3t+a+4m).
z =24 e %4+ #{(B~2C)sint— (2B +C)cost} + De?,
y=Ae 2+ Beost+Csint.
y = e®(ax®+b). 52 y(14+=z) = ax®+b.
2’42 =0; y = x A cosz+ Bsinz).
n=—22"+2'+2 =e*cosx; y =z 2e?{Acosx+(B+4x)sinz}.
For given (2, y), equation is a quadratic in p whose roots have product —1,
{y+ (@ +y?) —ca} {y + /(@ +y?) —c} = 0
y —(k+l)y +kly = Aem. 57 f(z) = e*/(a—e?).

T
y'cosm:+nysinnx=f J(t) cosntdt+nB,
0

z
y'sinnx—nycosnx:f f@)sinnidt—nAd.
0

y = Acosz+ Bsinz+zsinw + cosz log (cos z).

Exercise 6(a), p. 229

1 1/(n+1). 2 m, . 3 }2a+b).

5 sin=1(2/m). 6 (1/n)tn-D, 7 %

8 hY{y(a*+ah+3h?)—a}. 9 h-1log{(e*—1)/h}.
1. -1

10 0 < ’—blog 7 <1

11 f(z)is discontinuousina <z <a+h,atx = 0.

16

The points z = @, b, ¢ of the curve y = f(x) are collinear; the curve generally

has an inflexion somewhere between a, b.

1
3

Exercise 6(b), p. 240
2n-lcos (2x 4 3nm). 2 §sin(z+ dnm) —(3%/4)sin (3 + §nwr).
e+ 3 —-1)"e = 4 H—-1rn!{{x—1)""242(x+2)"" 1}
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e®{xt+ dnad + 6n(n—1) 22 +4dn(n—1) (n—2) x+n(n—1) (n— 2) (n—3)}.
(=1)me={a® —3na?+3n(n— 1)z ~n(n—1) (n—2)}
4 + 6 4 + 1 }
n—1 n—2 n-3 n—4
27-4[22{3n(n — 1) — 422} cos (2x + 4nm)

+n{1222 — (n— 1) (n— 2)} sin (22 + $nm)].
2~2(sin (2 + dnm) + 2" sin (42 + ) — 37sin (62+ jnrr)).
x— 3t 4 fab — L7+ ...,

23 3 2

2
Ggp = 22" Y(n— 1)1} a3,y = 0; m2+4'x4+ 6!

1
1) 1ptpd—nl_
(—-1) nlx ‘

x84 ....

sinz+hcosz—...+(—1)"

2n h2ntl
(—2—+i)—' Cco8 (a: + ah)

(2n)!
. hﬁ “ h2n+1 . 0
cosx—hsinz—...+(—1)" @n )'cosx+( 1) msm(x+ h).

n—1

sinz+(—1)?

a”—l+wloga+—(loga)’+ e

wﬂ
n—-1 1 nqfz,
" 1),(loga) +,(loga)"d

Exercise 6(c), p. 247
max. 2 inflex. 3 min, 4 inflex.
max. 6 inflex.

First approximation z = §r = 1-8849; second == 1-8955 = 1-895.

Exercise 6(d), p. 252

g='19_"§1= %,§,=§. 2 12%‘. 3 -2

1. 5 log 10—1]. 6 2a/b. 7 722e.

2. 9 1. 10 1. 11 1.

1. 13 e 14 o. 15 —3.
Miscellaneous Exercise 6(e), p. 252

3 7 3 8 —& 9 .

e+, 13 (i) g(z) ==, h(z) = 1; (ii) k(zx) = 1.

Exercise 7(b), p. 269
(i) (@) 0-7750, (b) O- 7828 (ii) (@) 0-7833, (b) 0-7854.

(i) Difference = f (ii) 1-07; (iii) 0-04; (iv) 1-11.

f ®dz

10 l+azt " Jyozt’
Exercise 7(c), p. 275

a2, 2 3nal. 3 . 5 $ma.

a. 7 jmar. 8 JApmal. 9 2—}m.



(20) ANSWERS
10 4a2. 11 ia?log3. 12 (i)z—i(eﬂa—l); (ii) é(es”“—e‘"“).
13 (Hm—4/3)a2 15 }abu. 16 imab.
17 3ma?. 18 %. 19 1ig. 20 #mad.
21 Afgmad. 22 bm%al. 23 mid(sect o —1).
24 Emad. 25 47
Exercise 7(d), p. 279
1 csh(z/c). 2 6a. 4 Eaf(149c/4a)t -1},
5 aes, 6 tan-1,2—1im+./2. 7 448.
8 8a. 10 (1/2¢){r,/(a®+7%) +a?sh~1(ry/a)}. 13 2ma.
14 (0+c) = 1+ 2a/r. 15 a%y®—2logy = da(x+b).
‘ Exercise 7(e), p. 286
1 4ma?. 2 imal. 3 gmat. 4 Stmat.
da 4b
2 3 —_ ——
5 &ml¥(sec® 3o —1). 10 3 3
11 (i) as;na’ (ii) %asxza from the centre along the radius of symmetry.
12 4m%?%. 13 (3a,0), in%d. 14 (ma,%a), 8tmal.
15 £&ma®. 16 227,
Exercise 7(f), p. 292
1 Ma2. 2 M(3a?+c?)sin26. 3 iM(a®+b2).
4 }Mar. 5 $Mp2. 6 EHMr,
7 (i) £Mab; (i) SMb2. 8 4Mab. 9 3Mr2,
10 2Mas. 11 (i) $Ma?; (ii) 2Ma2. 12 $M(a®+b2).
13 1Mar. 14 2Mar. 15 M(b*+3a%). 16 2Mh2
18 (i) M(3a?+34%); (ii) M(3a2+h%); (iii) M(Za® +3h3).
19 (i) $Ma2; (ii) 18Ma2. 20 3zMa?.
21 (i) 8Ma?; (ii) #pMa?; (iii) 13Ma?. 22 inMa?.
Miscellaneous Exercise 7(g), p. 293
3 &mal. 5 a(a—thia), a?(3o—th ia). 6 clogsiny.

8 3mc*{b—a+ icsh (2b/c) — csh (2a/c)}.

10

da 4a\ (20 8a_a
3’ 3n)’ \n’3n 2/

(37ma4/2,0). 12 27ma(2a+7d), yma*(4a+ 3mb). 13 &7ma?, Emad.



ANSWERS @
14 7a®A(7 + 28in—1 A) + 27ad(2 + A2) /(1 — A2).
15 #na?, 1n%%; ($a.0). 17 (4m,%ma), $Ma®.
18 iMa2. 19 FHM(r*+4h%). 20 2Ma®b®/(a®+b2).
21 $¢Ma?.
Exercise 8(a), p. 300
1 8 =8asini(y—3im), if s = 0 when 0 = 0.
2 & = a(0+sinb), y = a(1 —cosd), where 6 = 2¢. 4 y =logsecz.
5 (x—a)?+(y—0b)2 = c?, where a, b are arbitrary.
6 x = 2a(cosy+Ysiny), y = 2a(siny —yrecosy).
Exercise 8(b), p. 303
1 nﬁ+§1r. 3 im 4 rm=arsinnf. 9 r=ab+c.
10 7(@+c)=a. 11 r=ce*f. 12 r = asin(0+c).
13 » = k(1 —cosb). 14 72 =k2sin20. 15 #3 = k3sin 36.
16 r = ksin 36.,/sin6. 17 a2+ 942 = k(z+y).
18 22442 = ky. 19 y(32%+y2) = k(x2+y2)3.
Exercise 8(c), p. 306
1 1/p*—1/r2 = 1/a. 2 prrl=gqn, 3 2l/r=1—e2+13p.
4 pr=4a’ 5 a®p?=al4+bi—rt 6 724+3pt =l
7 r =asec?(}f+c). 8 r=a{l+sin(f+c¢c)}. 9 r=acos(f+c).
Exercise 8(d), p. 312
1e 2 atany. 3 s=asiny. 4 (1/c)sech?(z/c).
5 dacosif. 6 daua+92)t. 7 z=cy, y=clogsecy.
10 2r./(r/a). 11 rcoseca. 12 a?/3r. 15 &4/6.
16 —2,2. 17 342, —2J2. 18 —}, 5. /6.
20 Circles of radius c. 21 ia.
22 ay®= (ax+b)2+k.
Exercise 8(e), p. 318
1 (48, 57). 2 (aﬁ; o cos? @, _aa — bssin’ ¢) . 5 1.
6 %g; p at (0, —b). 7 %a. 8 1
Exercise 8(f), p. 326
1 4oy +1=0. 2 43492 =0,
3 y = {v%/g — $g2?/v?; bounding parabola for projectiles with initial speed ».




(22)

4

7
11
12

ANSWERS
w4yt = at, 5 zty=+te. 6 zt4+yt =al
(22 +y?—c?)? = 4a?{2? + (y — )%} 8 r =a(l+cosb).
y = 0 (which is also a cusp locus).

z = 0, y = 0 (which are also cusp loci).

14 z = —3at?(9t2 + 2), y = $af(3t2 4 1).
15 = 3e(3t4+ 1)/%, y = Je(t* +3)/t; (z+y)t—(x—y)} = 24%.
16 z = {(a®+b2%)/a} ch3t, y = —{(a?+b%)/b} shd¢; (axm)¥ — (by)} = (a2 +02)}.
17 z = at, y = acht; y = ach(z/a).
18 = acost(l+2sin%f), y = asint(1+2cos?t); (z+y)¥+(x—y)t = 24t
Miscellaneous Exercise 8(g), p. 326
1 0, 0+2m, 0+4m. 2 0, tan—t,/2, 7 +tan=1,/2. 4 r=aeld"
6 dafdy = f'()) cos, dyldyr = f'(¥) sin s
@ = $a(5—tan® §¥) y(tan }¥), y = fa(tan }y)t.
-7 %fasindf; 32a. 8 4r? = 3p?+ 16a?; 12mal.
10 z = a(sin 2t +2sint), y = a(cos 2t — 2 cos?). 12 ia.
14 {(1—-n2)r? +n2a3}§/{(1 —n2?)r2+ 2n2a%}. 16 anp = rrti,
17 2%+ y2?+ 2ax —1fay + 10a® = 0. 18 22+4y? =a?
19 z(l14cosf)—ysinG—ad(l+cosh) = 0; = a(f—sinb), y = —a(l+cosb).
21 (x+a)?+y?="b?% y=ach(b+zja).
22 Cycloids z = b+ a(6—sin8), y = $a{l —cosb);
parabolas (z—b)% = 4a(y a).
23 a?y® =1+bess. 24 —3,/2, —18./5. 25 (x2+y?)? = 16c%ry.
Exercise 9(a), p. 337
1 6x—2y, —2x+10y. 2 lfy, —x/y. 3 2zy8, 3x2y2.
4 —ylx(@2—y?), 1/J(z2—y?). 5 2x/(x?+y?), 2y/(x®+y%).
6 6x+ 6y, 6x, 6y. 7 —ysinz, cosy+cosz, —x8iny.
8 'y”e’"’ (l+xy)e“’” xze“'. 9 chzchy, shashy, chzchy.
15 f”(z)— —+f( )5;5; 16 2u.
18 g—c(w+y)3f"'(x+y). 20 z=xa—+yZ: Z;Z; 21 @_%y
Pu_lou oudv _ dudv .
2 T cu X o wo 25 Aesw.
26 Ae*+Be?; u= I _l.e‘}(el‘“—-es'*") sin .
27 Acosct+ Bsinct. 28 A+ Blogr.
29 (ii) 0, 0; (iii) +1, —1; (iv) the mixed derivatives are not equal when

z=0and y = 0.
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ANSWERS (23)

Exercise 9(b), p. 341

T . T 4 1
— == ——8l-=4g]). 5 —0-006a.

(p P* ) 3 «/(yl)( gg) *
{(b—ccos A) b+ (c—bcos A)8c}/s/(b2+c2— 2bccos A); C = }m.

Exercise 9(c), p. 346

y—(@+y)? *(2ay® —2°)
3663 + 2418, A LA LA kSt il
" (@+yy—a y(y—2ac?)
COSY — Y COST ou  ou
sinz+zsiny ' 5yl 9 5am+ ey 3:v+g6y'
xa—u— ou 11 b _ e’”a—u+2xau bu _ :z:e’"’au+2ya
o Vo YT %
—y/r?, —rsind. 17 r[J(r*—y?), zsec?H.
Exercise 9(d), p. 351
(i) 0; (i) —Bu; (i) O. 2 Use Euler’s theorem of second order.
1. 5 -3. 9 z = (l+cosz)cosy.
2 =fl@+y)+g(x—y)—}sin(z—y)cos(z+y).
Exercise 9(e), p. 357
f "xfz fac+fzgx (3’14) (a'“’) ar
4 =222, 8 |\=) =v.\=) =y—.
zfv yfz 1-£.9, ox/y y ox/, Y b
ou\ . fou\ o\ _ 2
I R
3x(x —2z). 11 2, 1.
Miscellaneous Exercise 9(f), p. 358
xy(x+y) e 7. 4 2xy+-c. 10 —4%.
— Lt (2), L1 "(2). 13 (20 —tan O)/{(m— 26) tan 6 — 1}.
(i) (—z1) folxr, 1) + (Y =) fulZn9:) = 0;

(& — ) fol @1, Y1) = (Y —y) fal21, 91);
(i) —yfulfzs —Yfulfs

ou\2 1 [ou\? 1 .

_ _ | — ——— —y2

(E ) +r2 (30) . 21 uzcosﬁ, u?cosf.
%u  ou oH oF
e 23— =0_ =0

Derive ¢ = 0 partially wo z and wo y, then eliminate ¢, : ¢,.
(i) Use 11.43, Theorem 1.

25 . GPMI
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% means ‘Also see this entry in the Index of Vol. II°,

Absolute value, 5
Angle
between curves, 218
vectorial, 32
A.P. = arithmetical progression
Approximation to f(x)
linear, 227
polynomial, 231
quadratic, 230
Arc-length, 276, 278, 296
Area, 95, 98, 255
between curves, 269
generalised, 270
of closed curve, 270
of conical surface, 280
of sector, 271, 272
of surface of revolution, 281
sign of, 269
Arithmetic mean, 8, 9
Astroid, 279
Asymptote, 17, %
Auxiliary equation, 196

Bateman, E. H., 247
Bernoulli’s
differential equation, 187
inequality, 7
Bound, lower, upper, 223
Boundary conditions, 199
Branch, principal, 24

Cardioid, 33
Catenary, 298
Cauchy’s
inequality, 14
mean value theorem, 248
remainder, 235
Central orbits, 192
Centre of
curvature, 314, 323
mass, 282
Centroid, 283, %
C.F., 193
Circle of curvature, 314, 325
Circular functions, 125
Clairaut’s equation, 189, 322

Coefficients of a differential equation,

192

Coincident points, 244
Complementary function (c.¥.), 193
Complete primitive, 179
Completing the

definition, 48

square, 11
Compound interest law, 118
Concavity, 242
Constants, 3

arbitrary, 94
Contact of mth order, 243
Continuity, 45, 47, 48

at a point, 46, 329

in an interval, 47
Convergence to a limit, 40
Coordinates

cartesian, (z, ¥), 31

polar, (r, 8), 32
Curvature, 307, %

centre of, 314, 323

circle of, 314, 325

mean, 307

radius of, 308, 323
Curve

continuous, 45

plane, 30

unicursal, 30
Cycloid, 30
Cycloidal pendulum, 31

D, 38, 201
Degree of
differential equation, 178
homogeneous function, 27
polynomial, 20
Del, V, 349
Derivative, 38, 60
mixed, 334
nth, 236
notations for, 38, 70, 237, 331
partial, 330, 332
second, 70, 332
total, 343
Derivation, 61
logarithmic, 120
rules of, 62
Derived function, 61
Descartes, 31

25-2



xxii INDEX

Differential, 88, 352
invariance of, 88, 353
second, 89

Differential coefficient(s), 88
partial, 352
principle of equating, 352

Differential equation(s), 71, 177
Bernoulli’s, 187
Clairaut’s, 189, 322
degree of, 178
Euler’s, 211
homogeneous, 182
linear, 185, 192, 194
order of, 178
ordinary, 178
partial, 178, 335
Riceati’s, 217
simultaneous, 209

Differential geometry, 296

Differential relations, 297, 300

Differentiation
and derivation, 89, 352
of equations, 354

Discontinuity, removable, 48

Discriminant, of quadratie, 11

e, 57, 112, % .
Electrie circuit, 209
Elimination, %
of functions, 335
of parameters, 177, 179, 335
Elipse, reflector property, 303
Ellipsoid, 274, 291
Envelope, 319
of normals, 323
Epicycloid, 37
Equating coefficients, 137, %
Equation(s)
algebraic, 226
differentiable, 354
intrinsic, 298
parametric, 30
(p, ), 304
(p, ¥), 306
Equations, approximate solution, 244,
247, %
Equiangular spiral, 302
Equivalent operators, 204, 212, 349
Error
in Newton’s method, 245
percentage, 341
relative, 341
Euler’s
constant y, 123, %
‘homogeneous’ differential equation,
211
theorem on homogeneous functions,
348

Evolute, 323
arc-length of, 324
exp, 208, *

. Exponential

function, 116
limit, 122
Extremum, 75

Family of curves, 218, 318
Function, 4, 329
and formula, 4 :
and graphical representation, 27
defined parametrically, 68
of a function, 63, 331
of two functions, 342, 344
Function (properties)
bounded, 44
continuous, 46, 223, 329
derivable at a point, 60
derivable in an interval, 61
differentiable, 89, 339
even, 22 '
homogeneous, 27, 29
increasing at a point, 74
increasing in an interval, 83
integrable, 258
many-valued, 24
monotonic, 55, 83
odd, 22
periodic, 23
single-valued, 24
unbounded, 44
Function(s) (special)
circular, 66
elementary, 236
exponential, 116
growth, 118
hyperbolic, 125
inverse circular, 24, 66
inverse hyperbolic, 130
logarithmic, 113
x™, 65
Function (types)
algebraic, 21
explicit, 21
implicit, 21, 67, 343, 354
inverse, 22, 64. 72
polynomial, 20, 90
rational, 20, 90
transcendental, 22
Functional notation, 4, 330
Fundamental theorem of the integral
calculus, 264

General solution (¢.s.), 179
Geometric mean, 8, 9
G.P. = geometrical progression



INDEX

Graphs
inadequacy of, 27
polar, 33
sketching of, 15, 19, 21
G.8., 179

Half-line, 33
Hardy, G. H., 83
Harmonic mean, 8
Harmonic motion
damped, forced, 208
simple, 191
Hermite, 142
I’Hospital’s rules, 249
Hypocycloid, 37

Indeterminate forms, 249
Inequalities, 6
quadratie, 11
and the mean value theorem, 228
Inequality
Bernoulli’s, 7
Cauchy’s, 14
logarithmic, 121
of means (4 > @ > H), 8
triangle, 5, 8
thz < z < shz < chz (z > 0), 130
2z < sinz < x < tanwz, 38, 84
Infinity, tends to, 43, 45, 51
Inflexion
point of, 80, 242
stationary, 80
Initial
conditions, 199
line, 31
Integer, 2
Integrable (in sense of Riemann), 258
Integral
definite, 96, 258, 262
generalised, 165
indefinite, 93, 258
infinite, 165
improper, 165
principal value of, 169
Integrals, standard, 134
Integrand, 93
Integrating factor, 186
Integration, 93, %
approximate, 266
by change of variable (see ‘by sub-
stitution’)
by decomposition, 94
by parts, 105, 108
by special method, 170
by substitution, 100, 102, 170, 265
limits of, 96
of algebraic functions, 145
of rational functions, 136

xxiii
of transcendental functions, 151
range of, 96
variable of, 97

Interval, closed, open, 3

Inverse curves, 304

Involute, 325

Iteration, 245 ‘

Lagrange’s

mean value theorem, 226

remainder, 235
Laplace transform, xvii
Laplace’s

equation, 349

operator V2, 349
Leibniz, theorem on nth derivative of a

product, 237

Lemniscate, 34
Length of

curve, 276

normal, 217, 303

tangent, 217, 303
Limagon, 33
Limit, 38, 41, 329

attained, unattained, 39
Limit of

a®, 52

a*n, 53

atin!, 54, %

Ya, n"a", 55

('"’) a®, 54
n

(1+1/n)*, 57
(1+z/n)?, 122
z~? log x, z? log z, 122
shz/z, 130
sinz/z, 39, 298
thz/z, 130
a™e=7, 122
Limiting
intersections of a family, 322
suros, 262
Limits
of integration, 96
properties of, 41
Logarithm, hyperbolic,
natural, 113
Logarithmic
derivation, 120
inequality, 121

Napierian or

Maclaurin’s theorem, 232

Maximum, 74

Mean
arithmetic, 8, 9
geometric, 8, 9
harmonic, 8



xxiv INDEX

Mean value theorem
Cauchy’s, 248
first, 82, 226
second, 230
for integrals, 229
Means, theorem of the, 9
M.I., 287 ‘
Minimum, 75
Modulus of z, |z|, 5
Moment of inertia (2.1.), 287
Monotonic
funetion, 55, 83
decreasing, 56
increasing, 55

nth derivatives, 236
Nabla, V, 349
Napier, 113
Negative definite, 14
Neighbourhood, 41
Newton’s

formula for p, 316

law of cooling, 118
Newton’s method of solving equations,

244

refinement of, 247
Number, 1

algebraic, 22

complex, 197, %

geometrical representation of, 1

irrational, 1, 3, 22

natural, 1

rational, 1, 2

real, 2

signed, 1

transcendental, 22
Numerical value, 5 -

0, 233
Operator D, 201
Orbits, central, 192
Order of & differential equation, 178
Order symbol O, 233
Ordinary differential equation, 178
Orthogonal trajectories, 218, 302
Osborn’s rule, 128, %
Oscillate finitely, infinitely, 44
Oscillations, damped, forced, free,
208

Osculate, 313
Osculating

circle, 314

line, 313

Pappus, theorems of, 284
Parallel axes, theorem of, 290
Parameter, 30

Parametric equations, 30, 68

Partial derivatives, 330
of second order, 332
Partial fractions, 136,
Particular
integral, 179
golution (p.s.), 179
Pedal equation, 304
Period, 23
Periodicity, 22
Perpendicular axes, theorem of, 291
Point of inflexion, 80
Polar
coordinates (r, 6), 32
equation, 32
subtangent, etc., 303
Pole, 31
Polynomial, 20, 90
homogeneous, 26
Positive definite, 13
Positive tangent, 296
(p, r) equation, 304
(p, ¥) equation, 306
Primitive funection, 93, 258
Principal
branch, value, of a function, 24
value of & definite integral, 169
Proper parametric representation, 30
Proportional parts, rule of, 253, %
P.8., 179

Quadratic
function, sign of, 11
inequalities, 11

Radius
of curvature, 308
of gyration, 287
vector, 32
Range of integration, 96
Ray, 33
Recurrence formula, 59, 239
Reduction formula, 107, 144, 158
Remainders in Taylor’'s theorem,
236
Resonance, 208
Riccati’s equation, 217
Riemann, 258
Rolle conditions, 225
Rolle’s theorem, 224
for polynomials, 90, %

" Routh’s rule, 292

Schlémilch’s remainder, 235
Separable

solutions, 336

variables, 180
Sequence, 51

terms of a, 51
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Shift theorem, 202
Sign conventions, 276, 296
Simple harmonic motion, 191
Simpson’s rule, 267
Singular

point, 320

solution (s.s.), 179, 189
Small changes, 85, 340

superposition of, 341
Spheroid, oblate, prolate, 274
Spiral

equiangular, 302

of Archimedes, 302
8.8., 189
Stationary

point, 77

inflexion, 80
Steadily decreasing, increasing function,

55

Subtangent, 217, 303
Subnormal, 217, 303
Sums

lower, upper, 257

limiting, 262
Surds, 2
Surface, 331, %

of revolution, 281
System of curves, 218
Symbolic D, 201

Tangent to a curve, 40
Tangential polar equation, 306
Taylor’s theorem, 231, 234
Terms of a sequence, 51
Torus, 285
_ Total
degree of a polynomial, 26
derivative, 343
variation, 338, 341
Touch, for curves, 243
Tractrix, 279

Transcendental
functions, 22
numbers, 22

Trapezium rule, 266

Trial exponentials, 197, %

Triangle inequality, 5, 8

Trochoid, 34

point, 75, 241
value, 756

Unicursal curve, 30

Variable(s), 3
dependent, independent, 3, 329
of integration, 97
Variation, total, 338, 341
Vectorial angle, 32
Volume of solid
of known cross-section, 273
of revolution, 274

Wallis’s method, 264
Wave equation, 350
wo, xix, 61
‘Wronskian, 222

z— 0+, 0—, 39 (also see ‘infinity’)
&> a+, a—, 40 (also see ‘infinity’)
||, &

y’» y*, ete., 38, 70
¥, 9, ete., T1
Y1 Ya otcC., 237

v, 124, %
k, 307

m, 2, %

p, 308

¢, 300

Y, 296

V, V32, 349
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