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PREFACE TO
THE RUSSIAN EDITION

Mathematics, which originated in antiquity in the needs of daily life,
has developed into an immense system of widely varied disciplines. Like
the other sciences, it reflects the laws of the material world around us
and serves as a powerful instrument for our knowledge and mastery of
nature. But the high level of abstraction peculiar to mathematics means
that its newer branches are relatively inaccessible to nonspecialists. This
abstract character of mathematics gave birth even in antiquity to
idealistic notions about its independence of the material world.

In preparing the present volume, the authors have kept in mind the
goal of acquainting a sufficiently wide circle of the Soviet intelligentsia
with the various mathematical disciplines, their content and methods,
the foundations on which they are based, and the paths along which
they have developed.

As a minimum of necessary mathematical knowledge on the part of
the reader, we have assumed only secondary-school mathematics, but
the volumes differ from one another with respect to the accessibility of
the material contained in them. Readers wishing to acquaint themselves
for the first time with the elements of higher mathematics may profitably
read the first few chapters, but for a complete understanding of the
subsequent parts it will be necessary to have made some study of cor-
responding textbooks. The book as a whole will be understood in a
fundamental way only by readers who already have some acquaintance
with the applications of mathematical analysis; that is to say, with the
differential and integral calculus. For such readers, namely teachers of
mathematics and instructors in engineering and the natural sciences, it
will be particularly important to read those chapters which introduce
the newer branches of mathematics.

N
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Naturally it has not been possible, within the limits of one book, to ex-
haust all the riches of even the most fundamental results of mathematical
research; a certain freedom in the choice of material has been inevitable
here. But along general lines, the present book will give an idea of the
present state of mathematics, its origins, and its probable future develop-
ment. For this reason the book is also intended to some extent for persons
already acquainted with most of the factual material in it. It may perhaps
help to remove a certain narrowness of outlook occasionally to be
found in some of our younger mathematicians.

The separate chapters of the book are written by various authors,
whose names are given in the Contents. But as a whole the book is the
result of collaboration. Its general plan, the choice of material, the suc-
cessive versions of individual chapters, were all submitted to general
discussion, and improvements were made on the basis of a lively exchange
of opinions. Mathematicians from several cities in the Soviet Union
were given an opportunity, in the form of organized discussion, to make
many valuable remarks concerning the original version of the text. Their
opinions and suggestions were taken into account by the authors.

The authors of some of the chapters also took a direct share in pre-
paring the final version of other chapters: The introductory part of
Chapter 11 was written essentially by B. N. Delone, while D. K. Faddeev
played an active role in the preparation of Chapter IV and Chapter XX.

A share in the work was also taken by several persons other than the
authors of the individual chapters: §4 of Chapter XIV was written by
L. V. Kantorovié, §6 of Chapter VI by O. A. Ladyzenskaja, §5 of
Chapter 10 by A. G. Postnikov; work was done on the text of Chapter V
by O. A. Oleinik and on Chapter XI by Ju. V. Prohorov.

Certain sections of Chapters 1, II,VII, and XVII were written by
V. A. Zalgaller. The editing of the final text was done by V. A, Zalgaller
and V. S. Videnskii with the cooperation of T. V. Rogozkinaja and
A. P. Leonovaja.

The greater part of the illustrations were prepared by E. P. Sen’kin.

Moscow
1956 EpiTORIAL BOARD



FOREWORD BY THE
EDITOR OF THE TRANSLATION

Mathematics, in view of its abstractness, offers greater difficulty to the
expositor than any other science. Yet its rapidly increasing role in modern
life creates both a need and a desire for good exposition.

In recent years many popular books about mathematics have appeared
in the English language, and some of them have enjoyed an immense
sale. But for the most part they have contained little serious mathematical
instruction, and many of them have neglected the twentieth century, the
undisputed “golden age” of mathematics. Although they are admirable
in many other ways, they have not yet undertaken the ultimate task of
mathematical exposition, namely the large-scale organization of modern
mathematics in such a way that the reader is constantly delighted by the
obvious economizing of his own time and effort. Anyone who reads
through some of the chapters in the present book will realize how well
this task has been carried out by the Soviet authors, in the systematic
collaboration they have described in their preface.

Such a book, written for ““a wide circle of the intelligentsia,”” must also
discuss the general cultural importance of mathematics and its continuous
development from the earliest beginnings of history down to the present
day. To form an opinion of the book from this point of view the reader
need only glance through the first chapter in Part 1 and the introduction
to certain other chapters; for example, Analysis, or Analytic Geometry.

In translating the passages on the history and cultural significance of
mathematical ideas, the translators have naturally been aware of even
greater difficulties than are usually associated with the translation of
scientific texts. As organizer of the group, I express my profound grati-
tude to the other two translators, Tamas Bartha and Kurt Hirsch, for
their skillful cooperation.

vil
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The present translation, which was originally published by the Ameri-
can Mathematical Society, will now enjoy a more general distribution in
its new format. In thus making the book more widely available the
Society has been influenced by various expressions of opinion from
American mathematicians. For example, “. . . the book will contribute
materially to a better understanding by the public of what mathematicians
are up to. . .. It will be useful to many mathematicians, physicists and
chemists, as well as to laymen. . . . Whether a physicist wishes to know
what a Lie algebra is and how it is related to a Lie group, or an under-
graduate would like to begin the study of homology, or a crystallographer
is interested in Fedorov groups, or an engineer in probability, or any
scientist in computing machines, he will find here a connected, lucid
account.”

In its first edition this translation has been widely read by mathemati-
cians and students of mathematics. We now look forward to its wider
usefulness in the general English-speaking world.

August, 1964
S. H. GouLp
Editor of Translations

American Mathematical Society
Providence, Rhode Island
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PART 1



CHAPTER I

A GENERAL VIEW
OF MATHEMATICS

An adequate presentation of any science cannot consist of detailed
information alone, however extensive. It must also provide a proper
view of the essential nature of the science as a whole. The purpose of the
present chapter is to give a general picture of the essential nature of
mathematics. For this purpose there is no great need to introduce any of
the details of recent mathematical theories, since elementary mathematics
and the history of the science already provide a sufficient foundation for
general conclusions.

§1. The Characteristic Features of Mathematics

1. Abstractions, proofs, applications. With even a superficial knowl-
edge of mathematics, it is easy to recognize certain characteristic features:
its abstractness, its precision, its logical rigor, the indisputable character
of its conclusions, and finally, the exceptionally broad range of its applica-
tions.

The abstractness of mathematics is easy to see. We operate with abstract
numbers without worrying about how to relate them in each case to
concrete objects. In school we study the abstract multiplication table,
that is, a table for multiplying one abstract number by another, not a
number of boys by a number of apples, or a number of apples by the
price of an apple.

Similarly in geometry we consider, for example, straight lines and not
stretched threads, the concept of a geometric line being obtained by
abstraction from all other properties, excepting only extension in one
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direction. More generally, the concept of a geometric figure is the result
of abstraction from all the properties of actual objects except their spatial
form and dimensions.

Abstractions of this sort are characteristic for the whole of mathematics.
The concept of a whole number and of a geometric figure are only two of
the earliest and most elementary of its concepts. They have been followed
by a mass of others, too numerous to describe, extending to such abstrac-
tions as complex numbers, functions, integrals, differentials, functionals,
n-dimensional, and even infinite-dimensional spaces, and so forth. These
abstractions, piled up as it were on one another, have reached such a
degree of generalization that they apparently lose all connection with
daily life and the “ordinary mortal” understands nothing about them
beyond the mere fact that “all this is incomprehensible.”

In reality, of course, the case is not so at all. Although the concept of
n-dimensional space is no doubt extremely abstract, yet it does have a
completely real content, which is not very difficult to understand. In the
present book it will be our task to emphasize and clarify the concrete
content of such abstract concepts as those mentioned earlier, so that the
reader may convince himself that they are all connected with actual life,
both in their origin and in their applications.

But abstraction is not the exclusive property of mathematics; it is
characteristic of every science, even of all mental activity in general.
Consequently, the abstractness of mathematical concepts does not in itself
give a complete description of the peculiar character of mathematics..

The abstractions of mathematics are distinguished by three features.
In the first place, they deal above all else with quantitative relations and
spatial forms, abstracting them from all other properties of objects. Second,
they occur in a sequence of increasing degrees of abstraction, going very
much further in this direction than the abstractions of other sciences. We
will illustrate these two features in detail later, using as examples the
fundarental notions of number and figure. Finally, and this is obvious,
mathematics as such moves almost wholly in the field of abstract concepts
and their interrelations. While the natural scientist turns constantly to
experiment for proof of his assertions, the mathematician employs only
argument and computation.

It is true that mathematicians also make constant use, to assist them in
the discovery of their theorems and methods, of models and physical
analogues, and they have recourse to various completely concrete
examples. These examples serve as the actual source of the theory and as
a means of discovering its theorems, but no theorem definitely belongs
to mathematics until it has been rigorously proved by a logical argument.
If a geometer, reporting a newly discovered theorem, were to demonstrate
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it by means of models and to confine himself to such a demonstration, no
mathematician would admit that the theorem had been proved. The
demand for a proof of a theorem is well known in high school geometry,
but it pervades the whole of mathematics. We could measure the angles
at the base of a thousand isosceles triangles with extreme accuracy, but
such a procedure would never provide us with a mathematical proof of the
theorem that the angles at the base of an isosceles triangle are equal.
Mathematics demands that this result be deduced from the fundamental
concepts of geometry, which at the present time, in view of the fact that
geometry is nowadays developed on a rigorous basis, are precisely
formulated in the axioms. And so it is in every case. To prove a theorem
means for the mathematician to deduce it by a logical argument from the
fundamental properties of the concepts occuring in that theorem. In this
way, not only the concepts but also the methods of mathematics are
abstract and theoretical.

The results of mathematics are distinguished by a high degree of logical
rigor, and a mathematical argument is conducted with such scrupulousness
as to make it incontestable and completely convincing to anyone who
understands it. The scrupulousness and cogency of mathematical proofs
are already well known in a high school course. Mathematical truths
are in fact the prototype of the completely incontestable. Not for nothing
do people say “as clear as two and two are four.”” Here the relation “two
and two are four” is introduced as the very image of the irrefutable
and incontestable.

But the rigor of mathematics is not absolute; it is in a process of con-
tinual development; the principles of mathematics have not congealed
once and for all but have a life of their own and may even be the subject
of scientific quarrels.

In the final analysis the vitality of mathematics arises from the fact that
its concepts and results, for all their abstractness, originate, as we shall see,
in the actual world and find widely varied application in the other sciences,
in engineering, and in all the pratical affairs of daily life; to realize this is
the most important prerequisite for understanding mathematics.

The exceptional breadth of its applications is another characteristic
feature of mathematics.

In the first place we make constant use, almost every hour, in industry
and in private and social life, of the most varied concepts and results of
mathematics, without thinking about them at all; for example, we use
arithmetic to compute-our expenses or geometry to calculate the floor area
of an apartment. Of course, the rules here are very simple, but we should
remember that in some period of antiquity they represented the most
advanced mathematical achievements of the age.
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Second, modern technology would be impossible without mathematics.
There is probably not a single technical process which can be carried
through without more or less complicated calculations; and mathematics
plays a very important role in the development of new branches of
technology.

Finally, it is true that every science, to a greater or lesser degree, makes
essential use of mathematics. The “exact sciences,’”” mechanics, astronomy,
physics, and to a great extent chemistry, express their laws, as every
schoolboy knows, by means of formulas and make extensive use of mathe-
matical apparatus in developing their theories. The progress of these
sciences would have been completely impossible without mathematics.
For this reason the requirements of mechanics, astronomy, and physics
have always exercised a direct and decisive influence on the development
of mathematics.

In other sciences mathematics plays a smaller role, but here too it finds
important applications. Of course, in the study of such complicated
phenomena as occur in biology and sociology, the mathematical method
cannot play the same role as, let us say, in physics. In all cases, but espe-
cially where the phenomena are most complicated, we must bear in mind,
if we are not to lose our way in meaningless play with formulas, that the
application of mathematics is significant only if the concrete phenomena
have already been made the subject of a profound theory. In one way or
another, mathematics is applied in almost every science, from mechanics
to political economy.

Let us recall some particularly brilliant applications of mathematics
in the exact sciences and in technology.

The planet Neptune, one of the most distant in the Solar System, was
discovered in the year 1846 on the basis of mathematical calculations.
By analyzing certain irregularities in the motion of Uranus, the astron-
omers Adams and Leverrier came to the conclusion that these irregularities
were caused by the gravitational attraction of another planet. Leverrier
calculated on the basis of the laws of mechanics exactly where this planet
must be, and an observer to whom he communicated his results caught
sight of it in his telescope in the exact position indicated by Leverrier.
This discovery was a triumph not only for mechanics and astronomy,
and in particular for the system of Copernicus, but also for the powers
of mathematical calculation.

Another example, no less impressive, was the discovery of electro-
magnetic waves. The English physicist Maxwell, by generalizing the laws
of electromagnetic phenomena as established by experiment, was able to
express these laws in the form of equations. From these equations he
deduced, by purely mathematical methods, that electromagnetic waves
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could exist and that they must be propagated with the speed of light.
On the basis of this result, he proposed the electromagnetic theory
of light, which was later developed and deepened in every direction.
Moreover, Maxwell’s results led to the search for electromagnetic waves
of purely electrical origin, arising for example from an oscillating charge.
These waves were actually discovered by Hertz. Shortly afterwards,
A. S. Popov, by discovering means for exciting, transmitting, and receiving
electromagnetic oscillations made them available for a wide range of
applications and thereby laid the foundations for the whole technology
of radio. In the discovery of radio, now the common possession of
everyone, an important role was played by the results of a purely mathe-
matical deduction.

So from observation, as for example of the deflection of a magnetic
needle by an electric current, science proceeds to generalization, to a theory
of the phenomena, and to formulation of laws and to mathematical
expression of them. From these laws come new deductions, and finally,
the theory is embodied in practice, which in its turn provides powerful
new impulses for the development of the theory.

It is particularly remarkable that even the most abstract constructions
of mathematics, arising within that science itself, without any immediate
motivation from the natural sciences or from technology, nevertheless
have fruitful applications. For example, imaginary numbers first came to
light in algebra, and for a long time their significance in the actual world
remained uncomprehended, a circumstance indicated by their very name.
But when about 1800 a geometrical interpretation (see Chapter IV, §2)
was given to them, imaginary numbers became firmly established in
mathematics, giving rise to the extensive theory of functions of a complex
variable, i.e., of a variable of the form x + y+/—1. This theory of
“imaginary” functions of an “imaginary” variable proved itself to be far
from imaginary, but rather a very practical means of solving technological
problems. Thus, the fundamental results of N. E. Jukovski concerning
the lift on the wing of an airplane are proved by means of this theory.
The same theory is useful, for example, in the solution of problems
concerning the oozing of water under a dam, problems whose importance
is obvious during the present period of construction of huge hydroelectric
stations.

Another example, equally impressive, is provided by non-Euclidean
geometry,* which arose from the efforts, extending for 2000 years from
the time of Euclid, to prove the parallel axiom, a problem of purely

* Here we merely point out this example without further explanation, for which the
reader may turn to Chapter XVII.
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mathematical interest. N.I. Lobacevskii himself, the founder of the
new geometry, was careful to label his geometry “imaginary,” since he
could not see any meaning for it in the actual world, although he was
confident that such a meaning would eventually be found. The results of
his geometry appeared to the majority of mathematicians to be not only
“imaginary” but even unimaginable and absurd. Nevertheless, his ideas
laid the foundation for a new development of geometry, namely the
creation of theories of various non-Euclidean spaces; and these ideas
subsequently became the basis of the general theory of relativity, in which
the mathematical apparatus consists of a form of non-Euclidean geometry
of four-dimensional space. Thus the abstract constructions of mathematics,
which at the very least seemed incomprehensible, proved themselves a
powerful instrument for the development of one of the most important
theories of physics. Similarly, in the present-day theory of atomic phenom-
ena, in the so-called quantum mechanics, essential use is made of many
extremely abstract mathematical concepts and theories, as for example
the concept of infinite-dimensional space.

There is no need to give any further examples, since we have already
shown with sufficient emphasis that mathematics finds widespread applica-
tion in everyday life and in technology and science; in the exact sciences
and in the great problems of technology, applications are found even for
those theories which arise within mathematics itself. This is one of the
characteristic peculiarities of mathematics, along with its abstractness
and the rigor and conclusiveness of its results.

2. The essential nature of mathematics. In discussing these special
features of mathematics we have been far from explaining its essence;
rather we have merely pointed out its external marks. Our task now is to
explain the essential nature of these characteristic features. For this
purpose it will be necessary to answer, at the very least, the following
questions:

What do these abstract mathematical concepts reflect ? In other words,
what is the actual subject matter of mathematics ?

Why do the abstract results of mathematics appear so convincing, and
its initial concepts so obvious ? In other words, on what foundation do
the methods of mathematics rest ?

Why, in spite of all its abstractness, does mathematics find such wide
application and does not turn out to be merely idle play with abstractions ?
In other words, how is the significance of mathematics to be explained ?

Finally, what forces lead to the further development of mathematics,
allowing it to unite abstractness with breadth of application ? What is the
basis for its continuing growth ?
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In answering these questions we will form a general picture of the content
of mathematics, of its methods, and of its significance and its development;
that is, we will understand its essence.

Idealists and metaphysicists not only fall into confusion in their attempts
to answer these basic questions but they go so far as to distort mathe-
matics completely, turning it literally inside out. Thus, seeing the extreme
abstractness and cogency of mathematical results, the idealist imagines
that mathematics issues from pure thought.

In reality, mathematics offers not the slightest support for idealism or
metaphysics. We will convince ourselves of this as we attempt, in general
outline, to answer the listed questions about the essence of mathematics.
For a preliminary clarification of these questions, it is sufficient to examine
the foundations of arithmetic and elementary geometry, to which we now
turn.

§2. Arithmetic

1. The concept of a whole number. The concept of number (for the
time being, we speak only of whole positive numbers), though it is so
familiar to us today, was worked out very slowly. This can be seen from
the way in which counting has been done by various races who until
recent times have remained at a relatively primitive level of social life.
Among some of them, there were no names for numbers higher than two
or three; among others, counting went further but ended after a few
numbers, after which they simply said “many”’ or “countless.”” A stock of
clearly distinguished names for numbers was only gradually accumulated
among the various peoples.

At first these peoples had no concept of what a number is, although they
could in their own fashion make judgments about the size of one or another
collection of objects met with in their daily life. We must conclude that a
number was directly perceived by them as an inseparable property of a
collection of objects, a property which they did not, however, clearly
distinguish. We are so accustomed to counting that we can hardly imagine
this state of affairs, but it is possible to understand it.*

At the next higher level a number already appears as a property of a

*In fact, every collection of objects, whether it be a flock of sheep or a pile of
firewood, exists and is immediately perceived in all its concreteness and complexity.
The distinguishing in it of separate properties and relationships is the result of conscious
analysis, Primitive thought does not yet make this analysis, but considers the object
only as a whole. Similarly, a man who has not studied music perceives a musical
composition without distinguishing in it the details of melody, tonality, and so forth,
while at the same time a musician easily analyzes even a complicated symphony.
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collection of objects, but it is not yet distinguished from the collection as
as an ‘“‘abstract number,” as a number in general, not connected with
concrete objects. This is obvious from the names of numbers among
certain peoples, as “hand” for five and “wholeman” for twenty. Here five
is to be understood not abstractly but simply in the sense of “as many as
the fingers on a hand,” twenty is “as many as the fingers and toes on a
man” and so forth. In a completely analogous way, certain peoples had
no concept of “black,” “hard,” or “circular.” In order to say that an
object is black, they compared it with a crow for example, and to say that
there were five objects, they directly compared these objects with a hand.
In this way it also came about that various names for numbers were used
for various kinds of objects; some numbers for counting people, others
for counting boats, and so forth, up to as many as ten different kinds of
numbers. Here we do not have abstract numbers, but merely a sort of
“‘appellation,” referring only to a definite kind of objects. Among other
peoples there were in general no separate names for numbers, as for
example, no word for “three,” although they could say “three men” or
*““in three places,” and so forth.

Similarly among ourselves, we quite readily say that this or that object
is black but much more rarely speak about “blackness” in itself, which is
a more abstract concept.*

The number of objects in a given collection is a property of the col-
lection, but the number itself, as such, the “abstract number,” is a property
abstracted from the concrete collection and considered simply in itself,
like “blackness” or “hardness.” Just as blackness is the property common
to all objects of the color of coal, so the number “five” is the common
property of all collections containing as many objects as there are fingers
on a hand. In this case the equality of the two numbers is established by
simple comparison: We take an object from the collection, bend one finger
over, and count in this way up to the end of the collection. More generally,
by pairing off the objects of two collections, it is possible, without making
any use of numbers at all, to establish whether or not the collections
contain the same number of objects. For example, if guests are taking their
places at the table they can easily, without any counting, make it clear to
the hostess that she has forgotten one setting, since one guest will be
without a setting.

* In the formation of concepts about properties of objects, such as color or the
numerosity of a collection, it is possible to distinguish three steps, which we must not,
of course, try to separate too sharply from one another. At the first step the property
is defined by direct comparison of objects: like a crow, as many as on a hand. At the
second, an adjective appears: a black stone or (the numerical adjective being quite
analogous) five trees. At the third step the property is abstracted from the objects
and may appear ‘“‘as such™; for example “blackness,” or the abstract number “five.”
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In this way it is possible to give the following definition of a number:
Each separate number like “two,” “five,” and so forth, is that property
of collections of objects which is common to all collections whose
objects can be put into one-to-one correspondence with one another
and which is different for those collections for which such a cor-
respondence is impossible. In order to discover this property and
to distinguish it clearly, that is, in order to form the concept of
a definite number and to give it a name “six,” “ten,” and so forth,
it was necessary to compare many collections of objects. For
countless generations people repeated the same operation millions of
times and in that way discovered numbers and the relations among
them.

2. Relations among the whole numbers. Operations with numbers
arose in their turn as a reflection of relations among concrete objects.
This is observable even in the names of numbers. For example, among
certain American Indians the number “twenty-six” is pronounced as
“above two tens I place a six,” which is clearly a reflection of a concrete
method of counting objects. Addition of numbers corresponds to placing
together or uniting two or more collections, and it is equally easy to see
the concrete meaning of subtraction, multiplication, and division.
Multiplication in particular arose to a great extent, it seems clear, from
the habit of counting off equal collections: that is, by twos, by threes, and
so forth.

In the process of counting, men not only discovered and assimilated the
relations among the separate numbers, as for example that two and three
are five, but also they gradually established certain general laws. By prac-
tical experience, it was discovered that a sum does not depend on the order
of the summands and that the result of counting a given set of objects
does not depend on the order in which the counting takes place, a fact
which is reflected in the essential identity of the ““ordinal” and *“cardinal”
numbers: first, second, third, and one, two, three. In this way the numbers
appeared not as separate and independent, but as interrelated with one
another.

Some numbers are expressed in terms of others in their very names and
in the way they are written. Thus, “twenty” denotes “two (times) ten”;
in French, eighty is “four-twenties”” (quatre-vingt), ninety is “four-
twenties-ten”; and the Roman numerals VIII, IX denote that 8 = 5 + 3,
9=10—1.

In general, there arose not just the separate numbers but a system of
numbers with mutual relations and rules.

The subject matter of arithmetic is exactly this, the system of numbers
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with its mutual relations and rules. * The separate abstract number by itself
does not have tangible properties, and in general there is very little to be
said about it. If we ask ourselves, for example, about the properties of
the number six, we note that 6 = 5 + 1,6 = 3 - 2, that 6 is a factor of 30
and so forth. But here the number 6 is always connected with other num-
bers; in fact, the properties of a given number consist precisely of its
relations with other numbers.t Consequently, it is clear that every arith-
metical operation determines a connection or relation among numbers.
Thus the subject matter of arithmetic is relations among numbers. But
these relations are the abstract images of actual quantitative relations
among collections of objects; so we may say that arithmetic is the science
of actual quantitative relations considered abstractly, that is, purely as
relations. Arithmetic, as we see, did not arise from pure thought, as the
idealists represent, but is the reflection of definite properties of real things;
it arose from the long practical experience of many generations.

3. Symbols for the numbers. As social life became more extensive
and complicated, it posed broader problems. Not only was it necessary
to take note of the number of objects in a set and to tell others about it,
a necessity which had already led to formulation of the concept of number
and to names for the numbers, but it became essential to learn to count
increasingly larger collections, of animals in a herd, of objects for exchange,
of days before a fixed date, and so forth, and to communicate the results
of the count to others. This situation absolutely demanded improvement
in the names and also in the symbols for numbers.

The introduction of symbols for the numbers, which apparently occured
as soon as writing began, played a great role in the development of
arithmetic. Moreover, it was the first step toward mathematical signs and
formulas in general. The second step, consisting of the introduction of
signs for arithmetical operations and of a literal designation for the
unknown (x), was taken considerably later.

The concept of number, like every other abstract concept, has no
immediate image; it cannot be exhibited but can only be conceived in the

*The word “arithmetic,” meaning the *“‘art of calculation,” is derived from the
Greek adjective ‘‘arithmetic” formed from the noun *‘arithmos,” meaning “number.”
The adjective modifies a noun “‘techne” (art, technique), which is here understood.

t This is understandable from the most general considerations. An arbitrary
abstraction, removed from its concrete basis (just as a number is abstracted from a
concrete collection of objects), has no sense “in itself”; it exists only in its relations
with other concepts. These relations are already implicit in any statement about the
abstraction, in the most incomplete definition of it. Without them the abstraction
lacks content and significance, i.e., it simply does not exist. The content of the concept
of an abstract number lies in the rules, in the mutual relations of the system of numbers.
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mind. But thought is formulated in language, so that without a name there
can be no concept. The symbol is also a name, except that it is not oral
but written and presents itself to the mind in the form of a visible image.
For example, if | say “seven,” what do you picture to yourself ? Probably
not a set of seven objects of one kind or another, but rather the symbol
“7,” which forms a sort of tangible framework for the abstract number
“seven.” Moreover, a number 18273 is considerably harder to pronounce
than to write and cannot be pictured with any accuracy in the form of
a set of objects. In this way it came about, though only after some lapse of
time, that the symbols gave rise to the conception of numbers so large that
they could never have been discovered by direct observation or by
enumeration. With the appearance of government, it was necessary to
collect taxes, to assemble and outfit an army, and so forth, all of which
required operations with very large numbers.

Thus the importance of symbols for the numbers consists, in the first
place, in their providing a simple embodiment of the concept of an abstract
number.* This is the role of mathematical designations in general: They
provide an embodiment of abstract mathematical concepts. Thus
+ denotes addition, x denotes an unknown number, a an arbitrary given
number, and so forth. In the second place the symbols for numbers provide
a particularly simple means of carrying out operations on them. Everyone
knows how much easier it is *‘to calculate on paper” than “in one’s head.”
Mathematical signs and formulas have this advantage in general: They
allow us to replace a part of our arguments with calculations, with
something that is almost mechanical. Moreover, if a calculation is written
down, it already possesses a definite authenticity; everything is visible,
everything can be checked, and everything is defined by exact rules. As
examples one might mention addition by individual columns or any
algebraic transformation such as “taking over to the other side of the
equation with change of sign.” From what has been said, it is clear that
without suitable symbols for the numbers arithmetic could not have made
much progress. Even more is it true that contemporary mathematics would
be impossible without its special signs and formulas.

It is obvious that the extremely convenient method of writing numbers
that is in use today could not have been worked out all at once. From
ancient times there appeared among various peoples, from the very

* It is worth remarking that the concept of number, which was worked out with
such difficulty in a long period of time, is mastered nowadays by a child with relative
ease. Why ? The first reason is, of course, that the child hears and sees adults constantly
making use of numbers, and they even teach him to do the same. But a second reason,
and this is the one to which we wish to draw special attention, is that the child already
has at hand words and symbols for the numbers. He first learns these external symbols
for number and only later masters the meaning of them.
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beginnings of their culture, various symbols for the numbers, which were
very unlike our contemporary ones not only in their general appearance
but also in the principles on which they were chosen. For example, the
decimal system was not used everywhere, and among the ancient
Babylenians there was a system that was partly decimal and partly
sexagesimal. Table 1 gives some of the symbols for numbers among
various peoples. In particular, we see that the ancient Greeks, and
later also the Russians, made use of letters to designate numbers. QOur
contemporary ““Arabic” symbols and, more generally, our method of
forming the numbers, were brought from India to Europe by the Arabs
in the 10th century and became firmly rooted there in the course of the
next few centuries.

The first peculiarity of our system is that it is a decimal system. But this
is not a matter of great importance, since it would have been quite possible
to use, for example, a duodecimal system by introducing special symbols
for ten and eleven. The most important peculiarity of our system of
designating numbers is that it is ““positional”; that is, that one and the
same number has a different significance depending upon its position.
For example, in 372 the number 3 denotes the number of hundreds and
7 the numbers of tens. This method of writing is not only concise and
simple but makes calculations very easy. The Roman numerals were in
this respect much less convenient, the same number 372 being written in
the form CCCLXXII; it is a very laborious task to multiply together two
large numbers written in Roman numerals.

Positional writing of numbers demands that in one way or another we
take note of any category of numbers that has been omitted, since if we
do not do this, we will confuse, for example, thirty-one with three-hundred-
and-one. In the position of the omitted category we must place a zero,
thereby distinguishing 301 and 31. In a rudimentary form, zero already
appears in the late Babylonian cuneiform writings, but its systematic
introduction was an achievement of the Indians:* It allowed them to
proceed to a completely positional system of writing just as we have it
today.

But in this way zero also became a number and entered into the system
of numbers. By itself zero is nothing; in the Sanskrit language of ancient
India, it is called exactly that: “empty” (gunga); but in connection with
other numbers, zero acquires content, and well-known properties; for
example, an arbitrary number plus zero is the same number, or when an
arbitrary number is multiplied by zero it becomes zero.

* The ﬁrst—f;dian manuscript in which zero appears comes from the end of the
9th century; in it the number 270 is written exactly as we would write it today. But
it is probable that zero was introduced in India still earlier, in the 6th century.
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4. The theory of numbers as a branch of pure mathematics. Let us
return to the arithmetic of the ancients. The oldest texts that have been
preserved from Babylon and Egypt go back to the second millennium B.C.
These and later texts contain various arithmetical problems with their
solutions, among them certain ones that today belong to algebra, such as
the solution of quadratic and even cubic equations or progressions; all
this being presented, of course, in the form of concrete problems and
numerical examples. Among the Babylonians we also find certain tables of
squares, cubes, and reciprocals. It is to be supposed that they were already
beginning to form mathematical interests which were not immediately
connected with practical problems.

In any case arithmetic was well developed in ancient Babylon and Egypt.
However, it was not yet a mathematical theory of numbers but rather a
collection of solutions for various problems and of rules of calculation.
It is exactly in this way that arithmetic is taught up to the present time in
our elementary schools and is understood by everyone who is not
especially interested in mathematics. This is perfectly legitimate, but
arithmetic in this form is still not a mathematical theory. There are no
general theorems about numbers.

The transition to theoretical arithmetic proceeded gradually.

As was pointed out, the existence of symbols allows us to operate with
numbers so large that it is impossible to visualize them as collections of
objects or to arrive at them by the process of counting in succession from
the number one. Among primitive tribes special numbers were worked
out up to 3, 10, 100 and so forth, but after these came the indefinite
“many.” In contrast to this situation the use of symbols for numbers
enabled the Chinese, the Babylonians, and the Egyptians to proceed to
tens of thousands and even to millions. It was at this stage that the pos-
sibility was noticed of indefinitely extending the series of numbers,
although we do not know how soon this possibility was clearly perceived.
Even Archimedes (287-212 B.C.) in his remarkable essay “The Sand
Reckoner” took the trouble to describe a method for naming a number
greater than the number of grains of sand sufficient to fill up the “sphere
of the fixed stars.” So the possibility of naming and writing such a number
still required at his time a detailed explanation.

By the 3rd century B.C., the Greeks had clearly recognized twoimportant
ideas: first, that the sequence of numbers could be indefinitely extended
and second, that it was not only possible to operate with arbitrarily given
numbers but to discuss numbers in general, to formulate and prove general
theorems about them. This idea represents the generalization of an
immense amount of earlier experience with concrete numbers, from which
arose the rules and methods for general reasoning about numbers. A
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transition took place to a higher level of abstraction: from separate given
(though abstract) numbers to number in general, to any possible number.

From the simple process of counting objects one by one, we pass to
the unbounded process of formation of numbers by adding one to the
number already formed. The sequence of numbers is regarded as being
indefinitely continuable, and with it there enters into mathematics the
notion of infinity. Of course, we cannot in fact, by the process of adding
one, proceed arbitrarily far along the sequence of numbers: Who could
reach as far as a million-million, which is almost forty times the number of
seconds in a thousand years? But that is not the point; the process of
adding ones, the process of forming arbitrary large collections of objects
is in principle unlimited, so that the possibility exists of continuing the
sequence of numbers beyond all limits. The fact that in actual practice
counting is limited is not relevant; an abstraction is made from it. It is
with this indefinitely prolonged sequence that general theorems about
numbers have to deal.

General theorems about any property of an arbitrary number already
contain in implicit form infinitely many assertions about the properties of
separate numbers and are therefore qualitatively richer than any particular
assertions that could be verified for specific numbers. It is for this reason
this general theorems must be proved by general arguments proceeding
from the fundamental rule for the formation of the sequence of numbers.
Here we perceive a profound peculiarity of mathematics: Mathematics
takes as its subject not only given quantitative relationships but all possible
quantitative relationships and therefore infinity.

In the famous “Elements” of Euclid, written in the 3rd century B.C,,
we already find general theorems about whole numbers, in particular, the
theorem that there exist arbitrarily large prime numbers. *

Thus arithmetic is transformed into the theory of numbers. It is already
removed from particular concrete problems to the region of abstract
concepts and arguments. It has become a part of “pure” mathematics.
More precisely, this was the moment of the birth of pure mathematics
itself with the characteristic features discussed in our first section. We must,
of course, take note of the fact that pure mathematics was born simul-
taneously from arithmetic and geometry and that there were already to
be found in the general rules of arithmetic some of the rudiments of
algebra, a subject which was separated from arithmetic at a later stage.
But we will discuss this later.

It remains now to summarize our conclusions up to this point, since we

* We recall that a prime number is defined as a positive integer greater than unity
which is divisible without remainder only by the number itself and by unity.
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have now traced out, though in very hurried fashion, the process whereby
theoretical arithmetic arose from the concept of number.

5. The essential nature of arithmetic. Since the birth of theoretical
arithmetic is part of the birth of mathematics, we may reasonably expect
that our conclusions about arithmetic will throw light on our earlier
questions concerning mathematics in general. Let us recall these questions,
particularly in their application to arithmetic.

1. How did the abstract concepts of arithmetic arise and what do they
reflect in the actual world ?

This question is answered by the earlier remarks about the birth of
arithmetic. Its concepts correspond to the quantitative relations of
collections of objects. These concepts arose by way of abstraction, as a
result of the analysis and generalization of an immense amount of practical
experience. They arose gradually; first came numbers connected with
concrete objects, then abstract numbers, and finally the concept of number
in general, of any possible number. Each of these concepts was made
possible by a combination of practical experience and preceding abstract
concepts. This, by the way, is one of the fundamental laws of formation
of mathematical concepts: They are brought into being by a series of
successive abstractions and generalizations, each resting on a combination
of experience with preceding abstract concepts. The history of the concepts
of arithmetic shows how mistaken is the idealistic view that they arose
from “pure thought,” from “innate intuition,” from “contemplation of a
priori forms,” or the like.

2. Why are the conclusions of arithmetic so convincing and unalterable ?

History answers this question too for us. We see that the conclusions
of arithmetic have been worked out slowly and gradually; they reflect
experience accumulated in the course of unimaginably many generations
and have in this way fixed themselves firmly in the mind of man. They
have also fixed themselves in language: in the names for the numbers,
in their symbols, in the constant repetition of the same operations with
numbers, in their constant application to daily life. It is in this way that
they have gained clarity and certainty. The methods of logical reasoning
also have the same source. What is essential here is not only the fact that
they can be repeated at will but their soundness and perspicuity, which
they possess in common with the relations among things in the actual
world, relations which are reflected in the concepts of arithmetic and in
the rules for logical deduction.

This is the reason why the results of arithmetic are so convincing; its
conclusions flow logically from its basic concepts, and both of them, the
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methods of logic and the concepts of arithmetic, were worked out and
firmly fixed in our consciousness by three thousand years of practical
experience, on the basis of objective uniformities in the world around us.

3. Why does arithmetic have such wide application in spite of the
abstractness of its concepts ?

The answer is simple. The concepts and conclusions of arithmetic, which
generalize an enormous amount of experience, reflect in abstract form
those relationships in the actual world that are met with constantly and
everywhere. It is possible to count the objects in a room, the stars, people,
atoms, and so forth. Arithmetic considers certain of their general properties,
in abstraction from everything particular and concrete, and it is precisely
because it considers only these general properties that its conclusions are
applicable to so many cases. The possibility of wide application is guaran-
teed by the very abstractness of arithmetic, although it is important here
that this abstraction is not an empty one but is derived from long practical
experience. The same is true for all mathematics, and for any abstract
concept or theory. The possibilities for application of a theory depend
on the breadth of the original material which it generalizes.

At the same time every abstract concept, in particular the concept of
number, is limited in its significance as a result of its very abstractness.
In the first place, when applied to any concrete object it reflects only one
aspect of the object and therefore gives only an incomplete picture of it.
How often it happens, for example, that the mer numerical facts say
very little about the essence of the matter. In the second place, abstract
concepts cannot be applied everywhere without certain limiting conditions;
it is impossible to apply arithmetic to concrete problems without first
convincing ourselves that their application makes some sense in the
particular case. If we speak of addition, for example, and merely unite
the objects in thought, then naturally no progress has been made with
the objects themselves. But if we apply addition to the actual uniting of
the objects, if we in fact put the objects together, for example by throwing
them into a pile or setting them on a table, in this case there takes place
not merely abstract addition but also an actual process. This process does
not consist merely of the arithmetical addition, and in general it may
even be impossible to carry it out. For example, the object thrown into a
pile may break; wild animals, if placed together, may tear one another
apart; the materials put together may enter into a chemical reaction: a
liter of water and a liter of alcohol when poured together produced not 2,
but 1.9 liters of the mixture as a result of partial solution of the liquids;
and so forth.

If other examples are needed they are easy to produce.

To put it briefly, truth is concrete; and it is particularly important to
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remember this fact with respect to mathematics, exactly because of its
abstractness.

4. Finally, the last question we raised had to do with the forces that led
to the development of mathematics.

For arithmetic the answer to this question also is clear from its history.
We saw how people in the actual world learned to count and to work out
the concept of number, and how practical life, by posing more difficult
problems, necessitated symbols for the numbers. In a word, the forces
that led to the development of arithmetic were the practical needs of social
life. These practical needs and the abstract thought arising from them
exercise on each other a constant interaction. The abstract concepts
provide in themselves a valuable tool for practical life and are constantly
improved by their very application. Abstraction from all nonessentials
uncovers the kernel of the matter and guarantees success in those cases
where a decisive role is played by the properties and relations picked out
and preserved by the abstraction; namely, in the case of arithmetic, by
the quantitative relations.

Moreover, abstract reflection often goes farther than the immediate
demands of a practical problem. Thus the concept of such large numbers
as a million or a billion arose on the basis of practical calculations but
arose earlier than the practical need to make use of them. There are many
such examples in the history of science; it is enough to recall the imaginary
numbers mentioned earlier. This is just a particular case of a phenomenon
known to everyone, namely the interaction of experience and abstract
thought, of practice and theory.

§3. Geometry

1. The concept of a geometric figure. The history of the origin of
geometry is essentially similar to that of arithmetic. The earliest geometric
concepts and information also go back to prehistoric times and also
result from practical activity.

Early man took over geometric forms from nature. The circle and the
crescent of the moon, the smooth surface of a lake, the straightness of a
ray of light or of a well-proportioned tree existed long before man himself
and presented themselves constantly to his observation. But in nature itself
our eyes seldom meet with really straight lines, with precise triangles or
squares, and it is clear that the chief reason why men gradually worked
out a conception of these figures is that their observation of nature was an
active one, in the sense that, to meet their practical needs, they manu-
factured objects more and more regular in shape. They built dwellings,
cut stones, enclosed plots of land, stretched bowstrings in their bows,
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modeled their clay pottery, brought it to perfection and correspondingly
formed the notion that a pot is curved, but a stretched bowstring is straight.
In short, they first gave form to their material and only then recognized
form as that which is impressed on material and can therefore be con-
sidered in itself, as an abstraction from material. By recognizing the form
of bodies, man was able to improve his handiwork and thereby to work
out still more precisely the abstract notion of form. Thus practical activity
served as a basis for the abstract concepts of geometry. It was necessary
to manufacture thousands of objects with straight edges, to stretch
thousands of threads, to draw upon the ground a large number of straight
lines, before men could form a clear notion of the straight line in general,
as that quality which is common to all these particular cases. Nowadays
we learn early in life to draw a straight line, since we are surrounded by
objects with straight edges that are the result of manufacture, and it is
only for this reason that in our childhood we already form a clear notion
of the straight line. In exactly the same way the notion of geometric
magnitudes, of length, area, and volume, arose from practical activity.
People measured lengths, determined distances, estimated by eye the
area of surfaces and the volumes of bodies, all for their practical purposes.
It was in this way that the simplest general laws were discovered, the
first geometric relations: for example, that the area of a rectangle is equal
to the product of the lengths of its sides. It is useful for a farmer to be
aware of such a relation, in order that he may estimate the area he has
sowed and consequently the harvest he may expect.

So we see that geometry took its rise from practical activity and from
the problems of daily life. On this question the ancient Greek scholar,
Eudemus of Rhodes, wrote as follows: “Geometry was discovered by the
Egyptians as a result of their measurement of land. This measurement was
necessary for them because of the inundations of the Nile, which constantly
washed away their boundaries.* There is nothing remarkable in the fact
that this science, like the others, arose from the practical needs of men.
All knowledge that arises from imperfect circumstances tends to perfect
itself. It arises from sense impressions but gradually becomes an object
of our contemplation and finally enters the realm of the intellect.”

Of course, the measurement of land was not the only problem that led
the ancients toward geometry. From the fragmentary texts that have
survived, it is possible to form some idea of various problems of the ancient
Egyptians and Babylonians and of their methods for solving them.
One of the oldest Egyptian texts goes back to 1700 B.C. This is a manual

* What is meant here is the boundaries between shares of land. Let us note, parenthet-

ically, that geomerry means land-measurement (in ancient Greek “‘ge” is land, and
“metron” is measure).
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of instruction for ““secretaries” (royal officers), written by a certain Ahmes.
It contains a collection of problems on calculating the capacity of
containers and warehouses, the area of shares of land, the dimensions of
earthworks, and so forth.

The Egyptians and Babylonians were able to determine the simplest
areas and volumes, they knew with considerable exactness the ratio of
the circumference to the diameter of a circle, and perhaps they were even
able to calculate the surface area of a sphere; in a word, they already
possessed a considerable store of geometrical knowledge. But so far as
we can tell, they were still not in possession of geometry as a theoretical
science with theorems and proofs. Like the arithmetic of the time, geometry
was basically a collection of rules deduced from experience. Moreover,
geometry was in general not distinguished from arithmetic. Geometric
problems were at the same time problems for calculation in arithmetic.

In the 7th century B.C., geometry passed from Egypt to Greece, where
it was further developed by the great materialist philosophers, Thales,
Democritus, and others. A considerable contribution to geometry was
also made by the successors of Pythagoras, the founders of an idealistic
religiophilosophical school.

The development of geometry took the direction of compiling new facts
and clarifying their relations with one another. These relations were
gradually transformed into logical deductions of certain propositions of
geometry from certain others. This had two results: first, the concept of
a geometrical theorem and its proof; and second, the clarification of those
fundamental propositions from which the others may be deduced, namely,
the axioms.

In this way geometry gradually developed into a mathematical
theory.

It is well known that systematic expositions of geometry appeared in
Greece as far back as the 5th century B.C., but they have not been
preserved, for the obvious reason that they were all supplanted by the
“Elements” of Euclid (3rd century B.C.). In this work, geometry was
presented as such a well-formed system that nothing essential was added
to its foundations until the time of N.I. Lobacevskil, more than two
thousand years later. The well-known school text of Kiselev, like school
books over the whole world, represented in its older editions, nothing
but a popular reworking of Euclid. Very few other books in the world
have had such a long life as the “Elements” of Euclid, this perfect creation
of Greek genius. Of course, mathematics continued to advance, and our
understanding of the foundations of geometry has been considerably
deepened; nevertheless the “Elements” of Euclid became, and to a great
extent remain, the model of a book on pure mathematics. Bringing together
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the accomplishments of his predecessors, Euclid presented the mathematics
of his time as an independent theoretical science; that is, he presented it
essentially as it is understood today.

2. The essential nature of geometry. The history of geometry leads to
the same conclusions as that of arithmetic. We see that geometry arose
from practical life and that its transformation to a mathematical theory
required an immense period of time.

Geometry operates with “geometric bodies” and figures; it studies their
mutual relations from the point of view of magnitude and position. But a
geometric body is nothing other than an actual body considered solely
from the point of view of its spatial form,* in abstraction from all its
other properties such as density, color, or weight. A geometric figure is a
still more general concept, since in this case it is possible to abstract from
spatial extension also; thus a surface has only two dimensions, a line,
only one dimension, and a point, none at all. A point is the abstract
concept of the end of a line, of a position defined to the limit of precision
so that it no longer has any parts. It is in this way that all these concepts
are defined by Euclid.

Thus geometry has as its object the spatial forms and relations of actual
bodies, removed from their other properties and considered from the
purely abstract point of view. It is just this high level of abstraction that
distinguishes geometry from the other sciences that also investigate the
spatial forms and relations of bodies. In astronomy for example, the
mutual positions of bodies are studied, but they are the actual bodies
of the sky; in geodesy it is the form of the earth that is studied, in crystal-
lography, the form of crystals, and so forth. In all these other sciences, the
form and the position of concrete bodies are studied in their dependence
on other properties of the bodies.

This abstraction necessarily leads to the purely theoretical method of
geometry; it is no longer possible to set up experiments with breadthless
straight lines, with “pure forms.”” The only possibility is to make use of
logical argument, deriving some conclusions from others. A geometrical
theorem must be proved by reasoning, otherwise it does not belong to
geometry; it does not deal with “pure forms.”

The self-evidence of the basic concepts of geometry, the methods of
reasoning and the certainty of their conclusions, all have the same source
as in arithmetic. The properties of geometric concepts, like the concepts
themselves, have been abstracted from the world around us. It was
necessary for people to draw innumerable straight lines before they could
take it as an axiom that through every two points it is possible to draw a

* By form we mean also dimensions.




§3. GEOMETRY 23

straight line; they had to move various bodies about and apply them to
one another on countless occasions before they could generalize their
experience to the notion of superposition of geometric figures and make
use of this notion for the proof of theorems, as is done is the well-known
theorems about congruence of triangles.

Finally, we must emphasize the generality of geometry. The volume of
a sphere is equal to 4/3= R® quite independently of whether we are speaking
of a spherical vessel, of a steel sphere, of a star, or of a drop of water.
Geometry can abstract what is common to all bodies, because every actual
body does have more or less definite form, dimensions, and position with
respect to other bodies. So it is no cause for wonder that geometry finds
application almost as widely as arithmetic. Workmen measuring the .
dimensions of a building or reading a blueprint, an artillery man deter-
mining the distance to his target, a farmer measuring the area of his field,
an engineer estimating the volume of earthworks, all these people make
use of the elements of geometry. The pilot, the astronomer, the surveyor, the
engineer, the physicist, all have need of the precise conclusions of geometry.

A clear example of the abstract-geometrical solution of an important
problem in physics is provided by the investigations of the well-known
crystallographer and geometer, E. S. Fedorov. The problem he set himself
of finding all the possible forms of symmetry for crystals is one of the
most fundamental in theoretical crystallography. To solve this problem,
Fedorov made an abstraction from all the physical properties of a crystal,
considering it only as a regular system of geometric bodies “in place of a
system of concrete atoms.” Thus the problem became one of finding all
the forms of symmetry which could possibly exist in a system of geometric
bodies. This purely geometrical problem was completely solved by
Fedorov, who found all the possible forms of symmetry, 230 in number.
His solution proved to be an important contribution to geometry and
was the source of many geometric investigations.

In this example, as in the whole history of geometry, we detect the
prime moving force in the development of geometry. It is the mutual
influence of practical life and abstract thought. The problem of discovering
possible symmetries originated in physical observation of crystals but was
transformed into an abstract problem and so gave rise to a new mathe-
matical theory, the theory of regular systems, or of the so-called Fedorov
groups.* Subsequently this theory not only found brilliant confirmation
in the practical observation of crystals but also served as a general guide
in the development of crystallography, giving rise to new investigations,
both in experimental physics and in pure mathematics.

* Compare Chapter XX.
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§4. Arithmetic and Geometry

1. The origin of fractions in the interrelation of arithmetic and geometry.
Up to now we have considered arithmetic and geometry apart from each
other. Their mutual relation, and consequently the more general inter-
relation of all mathematical theories, has so far escaped our attention.
Nevertheless this relation has exceptionally great significance. The inter-
action of mathematical theories leads to advances in mathematics itself
and also uncovers a rich treasure of mutual relations in the actual world
reflected by the these theories.

Arithmetic and geometry are not only applied to each other but they
also serve thereby as sources for further general ideas, methods, and
theories. In the final analysis, arithmetic and geometry are the two roots
from which has grown the whole of mathematics. Their mutual influence
goes back to the time when both of them had just come into being. Even
the simple measurement of a line represents a union of geometry and
arithmetic. To measure the length of an object we apply to it a certain
unit of lenght and calculate how many times it is possible to do this; the
first operation (application) is geometric, the second (calculation) is
arithmetical. Everyone who counts off his steps along a road is already
uniting these two operations.

In general, the measurement of any magnitude combines calculation
with some specific operation which is characteristic of this sort of
magnitude. It is sufficient to mention measurement of a liquid in a gradu-
ated container or measurement of an interval of time by counting the
number of strokes of a pendulum.

But in the process of measurement it turns out, generally speaking, that
the chosen unit is not contained in the measured magnitude an integral
number of times, so that a simple calculation of the number of units is not
sufficient. It becomes necessary to divide up the unit of measurement in
order to express the magnitude more accurately by parts of the unit;
that is, no longer by whole numbers but by fractions. It was in this way
that fractions actually arose, as is shown by an analysis of historical and
other data. They arose from the division and comparison of continuous
magnitudes; in other words, from measurement. The first magnitudes to
be measured were geometric, namely lengths, areas of fields, and volumes
liquids or friable materials, so that in the earliest appearance of fractions
we see the mutual action of arithmetic and geometry. This interaction
" leads to the appearance of an important new concept, namely of fractions,
as an extension of the concept of number from whole numbers to fractional
numbers (or as the mathematicians say, to rational numbers, expressing
the ratio of whole numbers). Fractions did not arise, and could not arise,
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from the division of whole numbers, since only whole objects are counted
by whole numbers, Three men, three arrows, and so forth, all these
make sense, but two-thirds of a man and even two-thirds of an arrow are
senseless concepts; even three separate thirds of an arrow will not kill a
deer, for this it is necessary to have a whole arrow.

2. Incommensurable magnitudes. In the development of the concept
of number, arising from the mutual action of arithmetic and geometry,
the appearance of fractions was only the first step. The next was the
discovery of incommensurable intervals. Let us recall that intervals are
called incommensurable if no interval exists which can be applied to each
of them a whole number of times or, in other words, if their ratio cannot
be expressed by an ordinary fraction; that is, by a ratio of whole numbers.

At first people simply did not think about the question whether every
interval can be expressed by a fraction. If in dividing up or measuring an
interval they came upon very small parts, they merely discarded them;
in practice, it made no sense to speak of infinite precision of measurement.
Demeocritus even advanced the notion that geometrical figures consist of
atoms of a particular kind. This notion, which to our view seems quite
strange, proved very fruitful in the determination of areas and volumes.
An area was calculated as the sum of rows consisting of atoms, and a
volume as the sum of atomic layers. It was in this way, for example, that
Democritus found the volume of a cone. A reader who understands the
integral calculus will note that this method already forms the prototype
of the determination of areas and volumes by the methods of the integral
calculus. Moreover, in returning in thought to the times of Democritus,
one must attempt to free oneself of the customary notions of today, which
have become firmly fixed in our minds by the development of mathematics.
At the time of Democritus, geometrical figures were not yet separated
from actual ones to the same extent as is now the case. Since Democritus
considered actual bodies as consisting of atoms, he naturally also regarded
geometrical figures in the same light.

But the notion that intervals consist of atoms comes into contradiction
with the theorem of Pythagoras, since it follows from this theorem that
incommensurable intervals exist. For example, the diagonal of a square is
incommensurable with its side; in other words, the ratio of the two
cannot be expressed as the ratio of whole numbers.

We shall prove that the side and the diagonal of a square are in fact
incommensurable. If a is the side and b is the diagonal of a square, then
according to the theorem of Pythagoras % = a? + a® = 2a? and therefore

@ -2
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But there is no fraction such that its square is equal to 2. In fact, if we
suppose that there is, let p and ¢ be whole numbers for which

& -2

where we may assume that p and ¢ have no common factor, since otherwise
we could simplify the fraction. But if (p/g)* = 2, then p* = 242, and
therefore p? is divisible by 2. In this case p? is also divisible by 4, since it
is the square of an even number. So p? = 4q,; that is, 2¢* = 4q, , and
q* = 2g, . From this it follows that ¢ must also be divisible by 2. But this
contradicts the supposition that p and ¢ have no common factor. This
contradiction proves that the ratio b/a cannot be expressed by a rational
number. The diagonal and the side of a square are incommensurable.

This discovery made a great impression on the Greek scientists.
Nowadays, when we are accustomed to irrational numbers and calculate
freely with square roots, the existence of incommensurable intervals does
not disturb us. But in the 5th century B.C., the discovery of such intervals
had a completely different aspect for the Greeks. Since they did not have
the concept of an irrational number and never wrote a symbol like 4/2,
the previous result indicated that the ratio of the diagonal and the side
of the square was not represented by any number at all.

In the existence of incommensurable intervals the Greeks discovered a
profound paradox inherent in the concept of continuity, one of the expres-
sions of the dialectical contradiction comprised in continuity and motion.
Many important Greek philosophers considered this contradiction;
particularly well-known among them, because of his paradoxes, is Zeno
the Eleatic.

The Greeks founded a theory of ratios of intervals, or of magnitudes in
general, which takes into consideration the existence of incommensurable
intervals;* it is expounded in the “Elements” of Euclid, and in simplified
form is explained today in high school courses in geometry. But to
recognize that the ratio of one interval to another (if the second interval
is taken as the unit of length, this ratio is simply the length of the first
interval) may also be considered as a number, whereby the very concept
of number is generalized, to this idea the Greeks were not able to rise:
The concept of an irrational number simply did not originate among
them.t This step was taken at a later period by the mathematicians

—ms ascribed to the Greek scientist Eudoxus, who lived in the 4th century
B.C.

t As a result of the fact that the theory of the measurement of magnitudes did not
become part of arithmetic but passed over into geometry, mathematics among the
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of the East; and in general, a mathematically rigorous definition of a real
number, not depending immediately on geometry, was given only recently:
in the seventies of the last century.* The passage of such an immense
period of time after the founding of the theory of ratios shows how
difficult it is to discover abstract concepts and give them exact formulation.

3. The real number. In describing the concept of a real number,
Newton in his “General Arithmetic” wrote: “by number we mean not so
much a collection of units as an abstract ratio of a certain quantity to
another quantity taken as the unit.” This number (ratio) may be integral,
rational, or if the given magnitude is incommensurable with the unit,
irrational.

A real number in its original sense is therefore nothing but the ratio of
one magnitude to another taken as a unit; in particular cases this is a ratio
of intervals, but it may also be a ratio of areas, weights, and so forth.

Consequently, a real number is a ratio of magnitudes in general,
considered in abstraction from their concrete nature.

Just as abstract whole numbers are of mathematical interest only in
their relations with one another, so abstract real numbers have content
and become an object of mathematical attention only in relation with one
another in the system of real numbers.

In the theory of real numbers, just as in arithmetic, it is first necessary
to define operations on numbers: addition, subtraction, multiplication, di-
vision, and also the relations expressed by such words as “greater than” or
“less than.” These operations and relations reflect actual connections
among the various magnitudes; for example, addition reflects the placing
together of intervals. A beginning on operations with abstract real numbers
was made in the Middle Ages by the mathematicians of the East. Later
came the gradual discovery of the most important property of the system

Greeks was engulfed by geometry. Such questions, for example, as the solution of
quadratic equations, which today we treat in an algebraic way, they stated and solved
geometrically. The “Elements” of Euclid contain a considerable number of such
questions, which obviously represented for contemporary mathematicians a summary
of the foundations not only of geometry in our sense but of mathematics in general.
This domination by geometry continued up to the time when Descartes, on the contrary,
subjected geometry to algebra. Traces of the long domination by geometry are pre-
served, for example, in such names as **square™ and “cube” for the second and third
powers: “a cubed” is a cube with side a.

* We are speaking here not of a descriptive definition, but of a definition which
serves as the immediate basis for proofs of theorems about the properties of real
numbers. It is natural that such definitions should arise at a later period, when the
development of mathematics, and in particular of the infinitesimal analysis, required
a suitable definition of the real number represented by “the variable x.” This definition
was given in various forms in the seventies of the last century by the German mathe-
maticians Weierstrass, Dedekind, and Cantor.
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of real numbers, its continuity. The system of real numbers is the
abstract image of all the possible values of a continuously varying
magnitude.

In this way, as in the similar case of whole numbers, the arithmetic of
real numbers deals with the actual quantitative relations of continuous
magnitudes, which it studies in their general form, in complete abstraction
from all concrete properties. It is precisely because real numbers deal with
what is common to all continuous magnitudes that they have such wide
application: The values of various magnitudes, a length, a weight, the
strength of an electric current, energy and so forth, are expressed by
numbers, and the interdependence or relations among these entities are
mirrored as relations among their numerical values.

To show how the general concept of real numbers can serve as the basis
of a mathematical theory, we must give their mathematical definition in
a formal way. This may be done by various methods, but perhaps the
most natural is to proceed from the very process of measurement of
magnitudes which actually did lead in practical life to this generalization
of the concept of number. We will speak about the length of intervals,
but the reader will readily perceive that we could argue in exactly
the same way about any other magnitudes which permit indefinite
subdivision.

Let us suppose that we wish to measure the interval AB by means of the
interval CD taken as a unit (figure 1).

A P B
O——)
c 12

FiG. 1.

We apply the interval CD to AB, beginning for example with the point A,
as long as CD goes into AB. Suppose this is n, times. If there still remains
from the interval AB a remainder PB, then we divide the interval CD
into ten parts and measure the remainder with these tenths. Suppose that n,
of the tenths go into the remainder. If after this there is still a remainder,
we divide our measure into ten parts again; that is, we divide CD into
a hundred parts, and repeat the same operation, and so forth. Either the
process of measurement comes to an end, or it continues. In either
case we reach the result that in the interval 4B the whole interval CD is
contained n, times, the tenths are contained n, times, the hundredths n,
times and so forth. In a word, we derive the ratio of AB to CD with
increasing accuracy: up to tenths, to hundredths, and so forth. So the
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ratio itself is represented by a decimal fraction with n, units, n, tenths and
so forth

AB
Vol B Ny " Mhighg *°

This decimal fraction may be infinite, corresponding to the possibility
of indefinite increase in the precision of measurement.

Thus the ratio of two intervals, or of two magnitudes in general, is
always representable by a decimal fraction, finite or infinite. But in the
decimal fraction there is no longer any trace of the concrete magnitude
itself; it represents exactly the abstract ratio, the real number. Thus a
real number may be formally defined if we wish, as a finite or infinite
decimal fraction.*

Our definition will be complete if we say what we mean by the operations
of addition and so forth for decimal fractions. This is done in such a way
that the operations defined on decimal fractions correspond to the opera-
tions on the magnitudes themselves. Thus, when intervals are put together
their lengths are added; that is, the length of the interval AB + BC is
equal to the sum of the length 4B and BC. In defining the operations on
real numbers, there is a difficulty that these numbers are represented in
general by infinite decimal fractions, while the well-known rules for these
operations refer to finite decimal fractions. A rigorous definition of the
operations for infinite decimals may be made in the following way.
Suppose, for example, that we must add the two numbers a and b. We take
the corresponding decimal fractions up to a given decimal place, say the
millionth, and add them. We thus obtain the sum a 4 b with corre-
sponding-accuracy, up to two millionths, since the errors in @ and b may
be added together. So we are able to define the sum of two numbers with
an arbitrary degree of accuracy, and in that sense their sum is completely
defined, although at each stage of the calculation it is known only with a
a certain accuracy. But this corresponds to the essential nature of the case,
since each of the magnitudes a and b is also measured only with a certain
accuracy, and the exact value of each of the corresponding infinite fractions
is obtained as the result of an indefinitely extended increase in accuracy.
The relations “greater than’ and “less than” may then be defined by
means of addition: a is greater than b if there exists a magnitude ¢ such
that @ = b + ¢, where we are speaking, of course, of positive numbers.

The continuity of the sequence of real number finds expression in the
fact that if the numbers a,, a,, *** increase and b, , b, , *-* diminish but

* Fractions with the periodic digit nine are not considered here, they are identical
with the corresponding fraction without nines according to the well-known rule,
which is clear from the example: 0.139999 --- = 0.140000 --- .
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always remain greater than the a; , then between the one series of numbers
and the other there is always a number ¢. This may be visualized on a
straight line if its points are put into correspondence with the numbers
(figure 2) according to the well-known rule.

9 % £ b, by
et ——t +
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Here it is clearly seen that the presence of the number ¢ and of the point
corresponding to it signify the absence of a break in the series of numbers,
which is what is meant by their continuity.

4. The conflict of opposites: concrete and abstract. Already in the
example of the interaction of arithmetic and geometry we can see that the
development of mathematics is a process of conflict among the many
contrasting elements: the concrete and the abstract, the particular and the
general, the formal and the material, the finite and the infinite, the discrete
and the continuous, and so forth. Let us try, for example, to trace the
contrast between concrete and abstract in the formation of the concept of
a real number. As we have seen, the real number reflects an infinitely
improvable process of measurement or, in slightly different terms, an
absolutely accurate determination of a magnitude. This corresponds to
the fact that in geometry we consider ideally precise forms and dimensions
of bodies, abstracting altogether from the mobility of concrete objects
and from a certain indefiniteness in their actual forms and dimensions;
for example, the interval measured (figure 1) was a completely ideal one.

But ideally precise geometric forms and absolutely precise values for
magnitudes represent abstractions. No concrete object has absolutely
precise form nor can any concrete magnitude be measured with absolute
accuracy, since it does not even have an absolutely accurate value. The
length of a line segment, for example, has no sense if one tries to make it
precise beyond the limits of atomic dimensions. In every case when one
passes beyond well-known limits of quantitative accuracy, there appears
a qualitative change in the magnitude, and in general it loses its original
meaning. For example, the pressure of a gas cannot be made precise beyond
the limits of the impact of a single molecule; electric charge ceases to be
continuous when one tries to make it precise beyond the charge on an
electron and so forth. In view of the absence in nature of objects of ideally
precise form, the assertion that the ratio of the diagonal of a square to the
side is equal to the 4/2 not only cannot be deduced with absolute accuracy
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from immediate measurement but does not even have any absolutely
accurate meaning for an actual concrete square.

The conclusion that the diagonal and the side of a square are incom-
mensurable comes, as we have seen, from the theorem of Pythagoras.
This is a theoretical conclusion based on a development of the data of
experience; it is a result of the application of logic to the original premises
of geometry, which are taken from experience.

In this way the concept of incommensurable intervals, and all the more
of real numbers, is not a simple immediate reflection of the facts of
experience but goes beyond them. This is quite understandable. The real
number does not reflect any given concrete magnitude but rather
magnitude in general, in abstraction from all concreteness; in other words,
it reflects what is common to particular concrete magnitudes. What is
common to all of them consists in particular in this, that the value of the
magnitude can be determined more and more precisely; and if we abstract
from concrete magnitudes, then the limit of this possible increase in
precision, which depends on the concrete nature of the magnitude,
becomes indefinite and disappears.

In this way a mathematical theory of magnitudes, since it considers
magnitudes in abstraction from their individual nature, must inevitably
consider the possibility of unlimited accuracy for the value of the magni-
tude and must thereby lead to the concept of a real number. At the same
time, since it reflects only what is common to various magnitudes, mathe-
matics takes no account of the peculiarity of each individual magnitude.

Since mathematics selects only general properties for consideration, it
operates with its clearly defined abstractions quite independently of the
actual limits of their applicability, as must happen precisely because these
limits are different in different particular cases. These limits depend on
the concrete properties of the phenomena under consideration and on the
qualitative changes that take place in them. Soin making an application of
mathematics, it is necessary to verify the actual applicability of the theory
in question. To consider matter as continuous and to describe its properties
by continuous magnitudes is permissible only if we may abstract from its
atomic structure, and this is possible only under well-known conditions.

Nevertheless, the real numbers represent a trustworthy and powerful
instrument for the mathematical investigation of actual continuous
magnitudes and processes. Their theory is based on practice, on an
immense field of applications in physics, technology, and chemistry.
Consequently, practice shows that the concept of the real number correctly
reflects the general propesrties of magnitudes. But this correctness is not
without limits; it is not possible to consider the theory of real numbers as
something absolute, allowing an unlimited abstract development in
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complete separation from reality. The very concept of the real number is
continuing to develop and is in fact still far from being complete.

5. The conflict of opposites: discrete and continuous. The role of
another of the mentioned contrasts, the contrast between the discrete and
the continuous, may also be illustrated by the development of the concept
of number. We have already seen that fractions arose from the division
of continuous magnitudes.

On this theme of division there is a humorous question which is extra-
ordinarily instructive. Grandmother has bought three potatoes and must
divide them equally between two grandsons. How is she to do it ? The
answer is: make mashed potatoes.

The joke reveals the very essence of the matter. Separate objects are
indivisible in the sense that, when divided, the object almost always
ceases to be what it was before, as is clear from the example of “thirds
of a man” or *“thirds of an arrow.” On the other hand, continuous and
homogenous magnitudes or objects may easily be divided and put together
again without losing their essential character. Mashed potatoes offer an
excellent example of a homogeneous object, which in itself is not separated
into parts but may nevertheless be divided in practice into as small parts
as desired. Lengths, areas, and volumes have the same property. Although
they are continuous in their very essence and are not actually divided into
parts, nevertheless they offer the possibility of being divided without limit.

Here we encounter two contrasting kinds of objects: on the one hand,
the indivisible, separate, discrete objects; and on the other, the objects
which are completely divisible and yet are not divided into parts but are
continuous. Of course, these contrasting characteristics are always united,
since there are no absolutely indivisible and no completely continuous
objects. Yet these aspects of the objects have an actual existence, and it
often happens that one aspect is decisive in one case and the other in
another.

In abstracting forms from their content, mathematics by this very act
sharply divides these forms into two classes, the discrete and the conti-
nuous.

The mathematical model of a separate object is the unit, and the mathe-
matical model of a collection of discrete objects is a sum of units, which is,
so to speak, the image of pure discreteness, purified of all other qualities.
On the other hand, the fundamental, original mathematical model of
continuity is the geometric figure; in the simplest case, the straight line.

We have before us therefore two contrasts, discreteness and continuity,
and their abstract mathematical images: the whole number and the
geometric extension. Measurement consists of the union of these contrasts:
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The continuous is measured by separate units. But the inseparable units
are not enough; we must introduce fractional parts of the original unit.
In this way the fractional numbers arise and the concept of numbers
develops precisely as a result of the union of the mentioned contrasts.

Then, on a more abstract level, appeared the concept of incommensur-
able intervals, and, as a result, the real number as an abstract image of
unlimited increase in accuracy in the determination of a magnitude. This
concept was not formed immediately, and the long path of its development
led through many a conflict between these same two contrasting elements,
the discrete and the continuous.

In the first place, Democritus represented figures as consisting of atoms
and in this way reduced the continuous to the discrete. But the discovery
of incommensurable intervals led to the abandonment of such a representa-
tion. After this discovery continuous magnitudes were no longer thought
of as consisting of separate elements, atoms or points, and they were not
represented by numbers, since numbers other than the whele numbers
and the fractions were not known at that time.

The contrast between the continuous and the discrete appeared in
mathematics again with renewed force in the 17th century, when the
foundations of the differential and integral
calculus were being laid. Here it was the
infinitesimal that was under discussion. In
some accounts the infinitesimal was thought
of as a real, “actually” infinitesimal, “indivis-
ible” particle of the continuous magnitude,
like the atoms of Democritus, except that now
the number of these particles was considered
to be infinitely great. Calculation of areas
and volumes, or in other words integration,
was thought of as summation of an infinite Fig. 3.
number of these infinitely small particles.

An area, for example, was understood as “‘the sum of the lines from which
it is formed” (figure 3). Consequently, the continuous was again reduced
to the discrete, but now in a more complicated way, on a higher level.
But this point of view also proved unsatisfactory, and, as a counterweight
to it, there appeared, on the basis of Newton’s work, the notion of
continuous variables, of the infinitesimal as a continuous variable decreasing
without limit. This conception finally carried the day at the beginning of
the 19th century, when the rigorous theory of limits was founded. An
interval was now thought of as consisting not of points or “indivisibles,”
but as an extension, as a continuous medium, where it was only possible
to fix separate points, separate values of a continuous magnitude. Mathe-
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maticians then spoke of “‘extension.” In the union of the discrete and the
continuous, it was again the continuous that dominated.

But the development of analysis demanded further precision in the
theory of variable magnitudes and above all in the general definition of a
real number as an arbitrary possible value of a variable magnitude. In the
seventies of the last century there arose a theory of real numbers which
represents an interval as a set of points, and correspondingly the range of
variation of a variable as a set of real numbers. The continuous again
consisted of separate discrete points and the properties of continuity
were again expressed in the structure of the set of points that formed it.
This conception led to immense progress in mathematics and became
dominant. But again profound difficulties were discovered in it, and these
led to attempts to return on a new level to the notion of pure continuity.
Other attempts were made to change the concept of an interval as a set
of points. New points of view appeared for the concepts of number,
variable, and function. The development of the theory is continuing, and
we must await its further progress.

6. Further results of the interaction of arithmetic and geometry. The
interaction of geometry and arithmetic played a role elsewhere than in
the formation of the concept of a real number. The same interaction of
geometry with arithmetic, or more accurately with algebra, also showed
itself in the formation of negative and complex numbers, that is of
numbers of the form a + b 4/ —1. Negative numbers are represented by
points of the straight line to the left of the point representing zero. It was
exactly this geometric representation which gave imaginary numbers a
firm place in mathematics; up to that time they had not been understood.
New concepts of mangnitude appeared: for example, vectors, which are
represented by directed line segments; and tensors, which are still more
general magnitudes; in these again algebra is united with geometry.

The union of various mathematical theories has always played a great
and sometimes decisive role in the development of mathematics. We shall
see this further on in the rise of analytic geometry, differential and integral
calculus, the theory of functions of a complex variable, the recent so-called
functional analysis, and other theories. Even in the theory of numbers
itself, that is in the study of whole numbers, methods are applied with
great success which depsnd on continuity (namely on the infinitesimal
analysis) and on geometry. These methods have given rise to extensive
chapters in the theory of numbers, the “analytic theory of numbers,”
and the “geometry of numbers.”

From a certain well-known point of view, it is possible to regard the
foundations of mathematics as the union of concepts arising from geometry
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and arithmetic; that is to say, of the general concepts of continuity and of
algebraic operations (as generalizations of arithmetic operations). But we
will not be able to speak here of these difficult theories. The aim of the
present chapter has been to give an impression of the general interaction
of concepts, of the union and the conflict between contrasting ideas in
mathematics, as illustrated by the interaction of arithmetic and geometry
in the development of the concept of number.

§5. The Age of Elementary Mathematics

1. The four periods of mathematics. The development of mathe-
matics cannot be reduced to the simple accumulation of new theorems
but includes essential qualitative changes. These qualitative changes
take place, however, not in a process of destruction or abolition of already
existing theories but in their being deepened and generalized, so as to
form more general theories, for which the way has been prepared by
preceding developments.

From the most general point of view, we may distinguish in the history
of mathematics four fundamental, qualitatively distinct periods. Of course,
it is not possible to draw exact boundary lines between these stages, since
the essential traits of each period appeared more or less gradually, but the
distinctions among the stages and the passages from one to another are
completely clear.

The first stage (or period) is the period of the rise of mathematics as an
independent and purely theoretical science. It begins in the most ancient
times and extends to the 5th century B.C., or perhaps earlier, when the
Greeks laid the foundations of “pure” mathematics with its logical
connection between theorems and proofs (in that century there appeared, in
particular, systematic expositions of geometry like the “Elements” of
Hippocrates of Chios). This first stage was the period of the formation
of arithmetic and geometry, in the form considered earlier. At this time
mathematics consisted of a collection of separate rules deduced from
experience and immediately connected with practical life. These rules did
not yet form a logically unified system, since the theoretical character of
mathematics with its logical proof of theorems was formed very slowly,
as material for it was accumulated. Arithmetic and geometry were not
separated but were closely interwoven with each other.

The second period may be characterized as the period of elementary
mathematics, of the mathematics of constant magnitudes; its simple
fundamental results now form the content of a high school course. This
period extended for almost 2000 years and ended in the 17th century
with the rise of “higher” mathematics. It is with this period that we will
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be concerned in greater detail in the present section. The following
sections will be devoted to the third and fourth periods, namely to the
founding and development of analysis and to the period of contemporary
mathematics.

2. Mathematics in Greece. The period of elementary mathematics may
in its turn be divided into two parts, distinguished by their basic content;
the period of the development of geometry (up to the 2nd century A.D.)
and the period of the predominance of algebra (from the 2nd to the |7th
century). With respect to historical conditions it is divided into three
parts, which may be called “Greek,” “Eastern,” and “European Renais-
sance.” The Greek period coincides in time with the general flowering
of Greek culture, beginning with the 7th century B.C., reaching its culmina-
tion in the 3rd century B.C. at the time of the great geometers of antiquity,
Euclid, Archimedes, and Apollonius, and ending in the 6th century
A.D. Mathematics, and especially geometry, enjoyed a wonderful
development in Greece. We know the names and the results of numerous
Greek mathematicians, although only a few genuine works have come
down to us. It is to be remarked that Rome gave nothing to mathematics
though it reached its zenith in the Ist century A.D. at a time when the
science of Greece, which had been conquered by Rome, was still flour-
ishing.

The Greeks not only developed and systematized elementary geometry
to the extent to which it is given in the “Elements” of Euclid and is now
taught in our secondary schools, but
achieved considerably higher results.
They studied the conic sections:
ellipse, hyperbola, parabola; they
proved certain theorems relating
to the elements of what is called
projective geometry; guided by the
needs of astronomy, they worked out
spherical geometry (in the Ist century
A.D.) and also the elements of
trigonometry, and calculated the first
tables of sines (Hipparchus, 2nd
century B.C. and Claudius Ptolemy,
2nd century A.D.);* they determined
FiG. 4. the areas and volumes of a number
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ok Ptolemy is widely known as the author of a system in which the Earth is considered
as the center of the universe and the motion of the heavenly bodies is described as
proceeding around it. This system was supplanted by the Copernician system.
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of complicated figures; for example, Archimedes found the area of the
segment of a parabola by proving that it is 2/3 of the area of the
rectangle containing it (figure 4). The Greeks were also acquainted
with the theorem that of all bodies with a given surface area the sphere
has the greatest volume, but their proof has not been preserved and
was probably not complete. Such a proof is quite difficult and was first
discovered in the 19th century, by means of the integral calculus.

In arithmetic and in the elements of algebra, the Greeks also made
considerable progress. As was mentioned earlier, they laid the foundation
for the theory of numbers. Here belong, for example, their investigations
on prime numbers (the theorem of Euclid on the existence of an infinite
number of prime numbers and the “sieve” of Eratosthenes for finding
prime numbers) and the solution of equations in whole numbers
(Diophantus about 246-330 A.D.).

We have already said that the Greeks discovered irrational magnitudes
but considered them geometrically, as line segments. So the problems that
today we deal with algebraically were treated geometrically by the
Greeks. It was in this way that they solved quadratic equations and
transformed irrational expressions. For example, the equation that we
today write in the form x% + ax = b? they stated as follows: Find a
segment x such that if to the square constructed on it we add a rectangle
constructed on the same segment and on the given segment a, we obtain
a rectangle equal in area to a given square. This dominance of geometry
lasted a long time after the Greeks. They were also acquainted with
(geometric) methods for extracting square roots and cube roots and with
the properties of arithmetic and geometric progressions.

In this way the Greeks were already in possession of much of the
material of contemporary elementary algebra but not, however, of the
following essential elements: negative numbers and zero, irational numbers
abstracted entirely from geometry, and finally a well-developed system
of literal symbols. It is true that Diophantus made use of literal symbols
for the unknown quantity and its powers and also of special symbols for
addition, subtraction, and equality, but his algebraic equations were still
written with concrete numerical coefficients.

In geometry the Greeks attained what we now call “higher”” mathematics.
Archimedes made use of integral calculus for the calculation of areas
and volumes and Apollonius used analytic geometry in his investigations
on conic sections. Apollonius actually gives the equations of these curves*

* He gives the “equations™ of conic sections referred to a vertex. For example *“‘the
equation™ of the parabola y* = 2px is formulated thus: The square on the side y is
equal in area to the rectangle with sides 2p and x. Of course, in place of the symbols
p, x, y he uses the corresponding line segments,
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but expresses them in geometric language. In these equations there
does not yet appear the general notion of an arbitrary constant or of
a variable magnitude; and the necessary means of expressing such
concepts, namely the literal symbols of algebra, appear only at a later
age; they alone could convert such investigations into a source of new
theories, which would be truly a part of higher mathematics. The founders
of these new theories were guided, a thousand years later, by the legacy
of the Greek scientists; in fact, the “Geometry” of Descartes (1637),
which laid the foundation for analytic geometry, begins with a selection
of problems left by the Greeks.

Such is the general rule. The old theories, by giving rise to new and
profound problems, outgrow themselves, as it were, and demand for
further progress new forms an new ideas. But these forms and ideas may
demand new historical conditions for their birth. In ancient society the
conditions necessary for the passage to higher mathematics did not and
could not exist; they came on the scene with the development of the
natural sciences in modern times, a development which in its turn was
conditioned in the 16th and 17th centuries by the new demands of techno-
logy and of manufacturing and was connected in this way with the birth
and development of capitalism.

The Greeks practically exhausted the possibilities of elementary mathe-
matics, which is the explanation of the fact that the brilliant progress of
geometry dried up at the beginning of our era and was replaced by
trigonometry and algebra in the works of Ptolemy, Diophantus, and
others. In fact, one may consider the works of Diophantus as the beginning
of the period in which algebra played the leading role. But the society
of the ancients, already verging to its decline, was no longer able to
advance science in this new direction.

It should be noted that, a few centuries earlier, arithmetic had already
reached a high level in China. The Chinese scientists of the 2nd and Ist
centuries B.C. described the rules for arithmetical solution of a system of
three equations of the first degree. It is here for the first time in history
that negative coefficients are made use of and the rules for operating
with negative quantities are formulated. But the solutions themselves
were sought only in the form of positive numbers, just as later in the works
of Diophantus. These Chinese books also include a method for the
extraction of square roots and cube roots.

3. The Middle East. With the end of Greek science a period of
scientific stagnation began in Europe, the center of mathematical develop-
ment being shifted to India, Central Asia, and the Arabic countries.*

* To give some orientation in the dates we list here the times of some of the out-
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For a period of about a thousand years, from the 5th to the 1 5th century,
mathematics developed chiefly in connection with the demands of com-
putation, particularly in astronomy, since the mathematicians of the East
were for the most part also astronomers. 1t is true that they added nothing
of importance to Greek geometry; in this field they only preserved for
later times the results of the Greeks. But the Indian, Arabic, and Central
Asian mathematicians achieved immense successes in the fields of arith-
metic and algebra.*

As has been mentioned in §2, the Indians invented our present system
of numeration. They also introduced negative numbers, comparing the
contrast between positive and negative numbers with the contrast between
property and debt or between the two directions on a straight line. Finally,
they began to operate with irrational magnitudes exactly as with rational,
without representing them geometrically, in contrast to the Greeks. They
also had special symbols for the algebraic operations, including extraction
of roots. For the very reason that the Indian and Central Asian scholars
were no longer embarrassed by the difference between the irrational and
rational magnitudes, they were able to overcome the ‘“dominance” of
geometry, which was characteristic of Greek mathematics, and to open
up paths for the development of contemporary algebra, free of the heavy
geometric framework into which it had been forced by the Greeks.

The great poet and mathematician, Omar Khayyam (about 1048-1122),
and also the Azerbaijanian mathematician, Nasireddin Tusi (1201-1274),
clearly showed that every ratio of magnitudes, whether commensurable
or incommensurable, may be called a number; in their works we find the
same general definition of number, both rational and irrational, as was
introduced above in Newton’s formulation, in §4. The magnitude of these
achievements becomes particularly clear when we recall that complete
recognition of negative and irrational numbers was attained by European
mathematicians only very slowly, even after the beginning of the Renais-
sance of mathematics in Europe. For example, the celebrated French
mathematician Viéte (1540-1603), to whom algebra owes a great deal,
avoided negative numbers, and in England protests against them lasted
even into the 18th century. These numbers were considered absurd, since
they were less than zero, that is “less than nothing at all.” Nowadays they

standing mathematicians of the East. From India: Aryabhata, born about 476 A.D.;
Brahmagupta, about 598-660; Bhaskara, 12th century; from Kharizm: Al-Kharizmi,
9th century; Al-Biruni, 973-1048; from Azerbaijan: Nasireddin Tusi, 120112-74;
from Samarkand: Gyaseddin Jamschid, 15th century.

* One should keep in mind that it is wrong to associate the development of mathe-
matics in this period chiefly with the Arabs. The term *“Arabic” mathematics came
into use chiefly because most of the scholars of the East wrote in the Arabic language,
which had been spread abroad by the Arab conquests.
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have become familiar, if only in the form of negative temperature; everyone
reads the newspapers and understands what is mean by *‘the temperature
in Moscow is —8°.”

The word “algebra™ comes from the name of a treatise of the mathe-
matician and astronomer Mahommed ibn Musa al-Kharizmi (Mahommed,
son of Musa, native of Kharizm), who lived in the 9th century. His treatise
on algebra was called Al-jebr al-muqabala, which means “transposition
and removal.” By transposition (al-jebr) is understood the transfer of
negative terms to the other side of an equation, and by removal (al-
mugqabala), cancellation of equal terms on both sides.

The Arabic word “al-jebr*” became in Latin transcription ‘“algebra”
and the word al-muqabala was discarded, which accounts for the modern
term “algebra.”*

The origin of this term corresponds very well to the actual content of
the science itself. Algebra is basically the doctrine of arithmetical opera-
tions considered formally from a general point of view, with abstraction
from the concrete numbers. Its problems bring to the fore the formal
rules for transformation of expressions and solution of equations. Al-
Kharizmi placed on the title page of his book the actual names of two
most general formal rules, expression in this way the true spirit of algebra.

Subsequently, Omar Khayyam defined algebra as the science of solving
equations. This definition retained its significance up to the end of the
19th century, when algebra, along with the theory of equations, struck
out in new directions, essentially changing its character but not changing
its spirit of generality as the science of formal operations.

The mathematicians of Central Asia found methods for calculation,
both exact and approximate, of the roots of a number of equations; they
discovered the general formula for the “binomial of Newton,” although
they expressed it in words; they greatly advanced and systematized the
science of trigonometry, and calculated very accurate tables of sines.
These tables were computed, for astronomical purposes, by the mathe-
matician Gyaseddin (about 1427) who was working with the famous
Uzbek astronomer Ulug Begh; Gyaseddin also invented decimal fractions
150 years before they were reinvented in Europe.

To sum up, in the course of the Middle Ages in India and in Central
Asia the present decimal system of numeration (including fractions)
was almost completely built up, as were also elementary algebra and
trigonometry. During the same period the achievements of Chinese science
began to make their way into the neighboring countries; about the 6th

* It is to be noted also that the mathematical term “‘algorithm,” denoting a method
or set of rules for computation, comes from the name of the same al-Kharizmi.
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century B.C. the Chinese already had methods for the solution of the
simplest indeterminate equations, for approximate calculations in geom-
etry, and for the first steps in approximate solution of equations of the
third degree. Essentially the only parts of our present high school course
in algebra that were not known before the 16th century were logarithms
and imaginary numbers. However, there did not yet exist a system of
literal symbols: The content of algebra had outdistanced its form. Yet the
form was indispensable: The abstraction from concrete numbers and the
formulation of general rules demanded a corresponding method of
expression; it was essential to have some way of denoting arbitrary
numbers and operations on them. The algebraic symbolism is the necessary
form corresponding to the content of algebra. Just as in remote antiquity
it had been necessary, in order to operate with whole numbers, that
symbols should be invented for them, so now, to operate with arbitrary
numbers and to give general rules for their use, it was necessary to work
out corresponding symbols. This task, begun at the time of the Greeks,
was not brought to completion until the 17th century, when the present
system of symbols was finally set up in the works of Descartes and
others.

4. Renaissance Europe. At the time of the Renaissance the Europeans
became acquainted with Greek mathematics by way of the Arabic transla-
tions. The books of Euclid, Ptolemy, and Al-Kharizmi were translated
in the 12th century from Arabic into Latin, the common scientific language
of Western Europe, and at the same time, the earlier system of calculation,
as derived from the Greeks and Romans, was gradually replaced by the
present-day Indian method, which was borrowed by the Europeans
from the Arabs.

It was only in the 16th century that European science finally surpassed
the achievements of its predecessors. Thus the Italians, Tartaglia and
Ferrari, solved the general cubic equation, and later, the general equation
of the fourth degree (see Chapter IV). Let us note that although these
results are not taught in school, they belong, with respect to the methods
employed in them, to elementary algebra. To higher algebra we must
however refer the general theory of equations.

During the same period imaginary numbers began for the first time to
be used; at first this was done in a purely formal manner, without logical
foundation, which came considerably later at the beginning of the 19th
century. Our present-day algebraic symbols were also worked out; in
particular, literal symbols were used by Viéte in 1591 not only for unknown
quantities but also for given ones.

Many mathematicians took a share in this development of algebra. At
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the same time decimal fractions appeared in Europe; they were invented
by the Dutch scholar Stevin, who wrote about them in 1585.

Finally, Napier in Great Britain invented logarithms as an aid in
astronomical calculations and wrote about them in 1614; Briggs calculated
the first decimal tables of logarithms, which were published in 1624.*

At the same time there appeared in Europe the “theory of combinations”
and the general formula for the* binomial of Newton™;t the progressions
being already known, and in this way the structure of elementary algebra
was completed. Therewith came to an end, at the beginning of the 17th
century, the whole period’ of the mathematics of constant magnitudes,
of elementary mathematics as it is now taught, with a few additions, in
our schools. Arithmetic, elementary geometry, trigonometry, and elemen-
tary algebra were now essentially complete. There followed a transition
to higher mathematics, to the mathematics of variable magnitudes.

It is not to be thought, however, that the development of elementary
mathematics ceased at this time; for example, new results were discovered
and are being constantly discovered today in elementary geometry.
Furthermore, it is precisely because of the subsequent development of
higher mathematics that we now understand more clearly the essential
nature of elementary mathematics itself. But the leading role in mathe-
matics was now taken over by the concepts of variable magnitude,
function, and limit. The problems, that led from elementary mathematics
to higher mathematics are nowadays clarified and solved by the concepts
and methods of higher mathematics (occasionally they are not solvable
at all by elementary methods), and there are other problems which may
be stated in terms of elementary mathematics but which serve even
today as a source of more general results and even of entire theories.
Examples are provided by the earlier mentioned theory of regular systems
of figures or by problems of the theory of numbers which are elementary
in their formulation but far from elementary in the methods by
which they are solved. For further details the reader may consult
Chapter X.

* It is interesting to note that Napier did not define logarithms as they are defined
nowadays, when we say that in the formula x = a* the number y is the logarithm of x
to the base a. This definition of logarithms appeared later. Napier’s definition was
related to the concepts of a variable magnitude and an infinitesimal and amounted
to saying that the logarithm of x is a function y = f(x) whose rate of growth is inversely
proportional to x; that is, ' = ¢/x (see Chapter II). In this way the basis of the definition
was essentially a differential equation, defining the logarithm, although differentials
had not yet been invented.

t The formula bears the name of Newton not because he was the first to discover it
but because he generalized it from integral exponents to arbitrary fractional and
irrational exponents,
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§6. Mathematics of Variable Magnitudes

1. Variable and function. In the 16th century the investigation of
motion was the central problem of physics. The physical sciences were
led to this problem, and to the study of various other involving inter-
dependence of variable magnitudes, by the demands of practical life and
by the whole development of science itself.

As a reflection of the general properties of change, there arose in
mathematics the concepts of a variable magnitude and a function, and it
was this cardinal extension of the subject matter of mathematics that
determined the transition to a new stage, to the mathematics of variable
magnitudes.

The law of motion of a body in a given trajectory, for example along a
straight line, is defined by the manner in which the distance covered by
the body increases with time.

Thus Galileo (1564-1642) discovered the law of falling bodies by
establishing that the distance fallen increases proportionally to the square
of the time. This fact is expressed in the well-known formula

gt
§ = _2' s (l)
where g is approximately equal to 9.81 m/sec?.

In general, the law of motion expresses the distance covered in the time
t. Here the time f and the distance s are respectively the “independent”
and the “dependent” variable, and the fact that to each time ¢ there cor-
responds a definite distance s is what is meant by saying that the distance s
is a function of the time r.

The mathematical concepts of variable and function are the abstract
generalization of concrete variables (such as time, distance, velocity,
angle of rotation, and area of surface traced out) and of the interdepend-
ences among them (the distance depends on the time and so forth). Jut as
the concept of a real number is the abstract image of the actual value of
an arbitrary magnitude, so a “‘variable” is the abstract image of a varying
magnitude, which assumes various values during the process under
consideration. A mathematical variable x is ‘“something” or, more
accurately, “anything” that may take on various numerical values. This
is the meaning of a variable in general; in particular, we may understand
by it the time, the distance, or any other variable magnitude.

In exactly the same way, a function is the abstract image of the depend-
ence of one magnitude on another. The assertion that y is a function of x
means in mathematics only that to each possible value of x there corre-
sponds a definite value of y. This correspondence between the values
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of y and the values of x is called a function. For example, according to
the law of falling bodies, the distance covered corresponds to the time of
fall by formula (1). The distance is a function of the time. Let us look at
some other examples.

The energy of a falling body is expressed by its mass and its velocity
according to the formula

mv?
E= -5 - (2)

For a given body the energy is a function of the velocity v.

By a familiar law the quantity of heat generated in a conductor in unit
time by the passage of an electric current is expressed by the formula

RI?

where 7 is the magnitude of the current and R is the resistance of the
conductor. For a given resistance there corresponds to every current /
a definite amount of heat Q, generated in unit
time. That is, Q is a function of /.
The area of a right-angled triangle S with a
given acute angle o and corresponding side x
(see figure 5) is expressed by the formula

a
X S=3xtana. (4)
Fig. 5 For a given angle « the area is a function of
the side x.
All these formulas (1)-(4) may be united in the one
y = %axt (5)

This general formula represents a transition from the concrete variable
magnitudes 1, s, E, Q, v and so forth to the general variables x and y, and
from the concrete dependences (1), (2), (3), (4) to their general form (5).
Mechanics and the theory of electricity have to do with concrete formulas
(1), (2), (3), interrelating concrete magnitudes, but the mathematical
theory of functions deals with the general formula (5), without associating
this formula with any concrete magnitudes.

The next degree of abstraction from the concrete consists in our exam-
ining not a given dependence of y on x, like y = % ax?, y = sin x, y = log x
and so forth, but the general dependence of y on x expressed in the abstract
formula

y = fix).
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This formula states that the magnitude y is in general some function of x;
that is, to each value assumed by x there corresponds, in some fashion
or another, a definite value y. The subject matter of mathematics thus
consists not only of certain given functions (y = % ax?, y = sin x, and so
forth), but of arbitrary (more accurately, more or less arbitrary) functions.
These degrees of abstraction, first from concrete magnitudes and then
from concrete functions, are analogous to the degrees of abstraction
observed in the formation of the concept of a whole number: First,
abstraction from concrete collections of objects led to the concept of whole
numbers (1, 3, 12, and so forth), and then a further abstraction led to the
concept of an arbitrary whole number in general. This generalization is
the result of a profound interraction between analysis and synthesis:
analysis of separate interrelations and synthesis, in the form of new con-
cepts, of their common features.

The branch of mathematics devoted to the study of functions is called
analysis, or often, infinitesimal analysis, since one of the most important
elements in the study of functions is the concept of the infinitesimal (the
meaning of this concept and its significance are explained in Chapter II).

Since a function is the abstract image of a dependence of one magnitude
on another, we may say that analysis takes as its subject matter depend-
ences between variable magnitudes, not between one concrete magnitude
and another but between variables in general, in abstraction from their
content. An abstraction of this sort guarantees great breadth of applica-
tion, since one formula or one theorem contains an infinite number of
possible concrete cases. An example of this is given already by our simple
formulas (1)«(5). So the complete analogy of analysis with arithmetic and
algebra becomes evident. They all originate in definite practical problems
and give a general abstract expression to concrete relationships in the
actual world.

2. Analytic geometry and analysis. Thus the new period of mathe-
matics, beginning in the 17th century, may be defined as the period of the
birth and development of analysis. (This is the third of the three important
periods mentioned earlier.) It is to be understood, of course, that no
theory arises as a result of the mere formation of new concepts, that
analysis could not result from the mere existence of the concepts of variable
and function. For the founding of a theory, and all the more of a complete
branch of science like mathematical analysis, it is necessary that the new
concepts become active, so to speak, that among them there be discovered
new relationships, and that they permit the solution of new problems.

But more than that, new concepts can originate and develop, and
become more general and precise, only on the basis of the very problems
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they enable us to solve, only through those theorems of which they form
a part. The concepts of variable and function did not arise in complete
form in the mind of Galileo, Descartes, Newton, or anybody else. They
occurred to many mathematicians (for example Napier in connection with
logarithms) and gradually assumed a more or less clear, but still by no
means final, form with Newton and Leibnitz, being made still more
precise and general in the subsequent development of analysis. Their
present-day definition was laid down only in the 19th century, but even
it is not absolutely rigorous or altogether final. The development of the
concept of a function is continuing even at the present time.

Mathematical analysis was based on material furnished by the new
science of mechanics, and on problems of geometry and algebra. The first
definite step toward the mathematics of variable magnitudes was the
appearance in 1637 of the “geometry” of Descartes, where the foundations
were laid for the so-called analytic geometry. The basic ideas of Descartes
are as follows.

Suppose we are given, for example, the equation

x2 + y? = ad (6)

In algebra x and y were understood as unknowns, and since the given
equation does not allow us to determine them, it did not present any
essential interest for algebra. But Descartes did not consider x and y as
unknowns, to be found from the equation, but as variables; so that the

given equation expresses the interdependence of

2\ two variables. Such an equation may be written
in general form, by taking all its terms to the
- (x,y) left-hand side, thus:
F(lx,y) = 0.

Further, Descartes introduced into the plane
the coordinates x, y which are now called
Cartesian (figure 6). In this way, to each pair
of values x and y there corresponds a point,

FiG. 6. and conversely to each point there corresponds

a pair of coordinates x, y. Consequently, the

equation F(x, y) = 0 determines the geometric locus of those points on
the plane whose coordinates satisfy the equation. In general, this will be
a curve. For example, equation (6) determines the circumference of a
circle of radius a with center at the origin. In fact, as is obvious from
figure 7, by the theorem of Pythagoras, x2 + y* is the square of the
distance from the origin O to the point M with coordinates x and y.
So equation (6) represents the geometric locus of those points whose

b

k\}
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distance from the origin is equal to a, which is the circumference of a
circle.

Conversely, a geometric locus 4!
of points, given by a geometric
condition, may also be given by
an equation expressing the same
condition in the language of
algebra by means of coordinates.

/<
For example, the geometric con- \9 X

Y

dition defining the circumference
of a circle, namely that it is a
geometric locus of points equi-
distant from a given point, may
be expressed in algebraic language
by equation (6). Fig. 7.

Thus the general problem and the general method of analytic geometry
are as follows: We represent a given equation in two variables by a curve
on the plane, and from the algebraic properties of the equation we investi-
gate the geometric properties of the corresponding curve; and conversely,
from the geometric properties of the curve we find the equation, and then
from the algebraic properties of the equation we investigate the geometric
properties of the curve. In this way geometric problems may be reduced
to algebraic, and so finally to computation.

The content of analytic geometry will be discussed in detail in Chapter
I1I. We now wish to direct attention to the fact that, as is evident from
our short explanation, it originated in a union of geometry, algebra, and
the general idea of a variable magnitude. The main geometric content of
the early beginnings of analytic geometry was the theory of conic sections,
ellipse, hyperbola, and parabola. This theory, as we have pointed out,
was developed by the ancient Greeks; the results of Apollonius already
contained in geometric form the equations of the conic sections. The union
of this geometric content with algebraic form, developed after the time of
the Greeks, and with the general idea of a variable magnitude, arising from
the study of motion, produced analytic geometry.

Among the Greeks the conic sections were a subject of purely mathe-
matical interest, but by the time of Descartes they were of practical
importance for astronomy, mechanics, and technology. Kepler (1571-1630)
discovered that the planets move around the sun in ellipses, and Galileo
established the fact that a body thrown in the air, whether it is a stone
or a cannonball, moves along a parabola (to the first approximation, if
we may neglect air resistance). As a result, the calculation of various
magnitudes referring to the conic sections became an urgent necessity,
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and it was the method of Descartes that solved this problem. So the
way was prepared for his method by the preceding development of
mathematics, and the method itself was brought into existence by the
insistent demands of science and technology.

3. Differential and integral calculus. The next decisive step in the mathe-
matics of variable magnitudes was taken by Newton and Leibnitz during
the second half of the 17th century, in the founding of the differential
and integral calculus. This was the actual beginning of analysis, since the
subject matter of this calculus is the properties of functions themselves,
as distinct from the subject matter of analytic geometry, which is geometric
figures. In fact Newton and Leibnitz only brought to completion an im-
mense amount of preparatory work, shared by many mathematicians and
going back to the methods for determining areas and volumes worked
out by the ancient Greeks.

Here we shall not explain the fundamental concepts of differential and
integral calculus and of the theories of analysis that followed them, since
this will be done in the special chapters devoted to these theories. We wish
only to draw attention to the sources of the calculus, which were mainly
the new problems of mechanics and the old problems of geometry, the
latter consisting of drawing a tangent to a given curve and of determining
areas and volumes. These geometric problems had already been studied
by the ancients (it is sufficient to mention Archimedes), and also by
Kepler, Cavalieri, and others at the beginning of the 17th century.
But the decisive event was the discovery of the remarkable relation
between these two types of problems and the formulation of a general
method for solving them; this was, the achievement of Newton and
Leibnitz.

This relation, allowing us to connect the problems of mechanics with
these of geometry, was discovered because of the possibility, arising from
the method of coordinates, of making a graphical representation of the
dependence of one variable on another, or in other words of a function.
With the help of this graphical representation, it is easy for us to formulate
the earlier mentioned relation, between the problems of mechanics and
geometry, which was the source of the differential and integral calculus,
and consequently to describe the general content of these two types of
calculus,

The differential calculus is basically a method for finding the velocity
of motion when we know the distance covered at any given time. This
problem is solved by “differentiation.” It turns out that the problem is
completely equivalent to that of drawing a tangent to the curve repre-
senting the dependence of distance on time. The velocity at the moment ¢
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is equal to the slope of the tangent to the curve at the point corresponding
to ¢ (figure 8).

The integral calculus is basically a method of finding the distance
covered when the velocity is known, or more generally of finding the total
result of the action of a variable magnitude. This problem is obviously

AS As

o o 2 tp

FiG. 8. Fig. 9.

the converse of the problem of the differential calculus (the problem of
finding the velocity); it is solved by “integration.” It turns out that the
problem of integration is completely equivalent to that of finding the
area under the curve representing the dependence of the velocity on time.
The distance covered in the interval of time from the moment ¢, to the
moment f; is equal to the area under the curve between the straight lines
corresponding on the graph to the values ¢, and 1, (figure 9).

By abstracting from the mechanical formulation of the problems of
the calculus and by dealing with functions rather than with dependence
of distance or velocity on time, we obtain the general concept of the
problems of differential and integral calculus in abstract form.

Fundamental to the calculus, as to the whole subsequent development
of analysis, is the concept of a limit, which was formulated somewhat
later than the other fundamental concepts of variable and function. In the
early days of analysis the role later played by the limit was taken by the
somewhat nebulous concept of an infinitesimal. The methods for actual
calculation of velocity, given the distance covered (namely, differentiation),
and of distance, given the velocity (integration), were founded on a union
of algebra with the concept of limit. Analysis originated in the application
of these concepts and methods to the aforementioned problems of
mechanics and geometry (and also to certain other problems; for example,
problems of maxima and minima). The science of analysis was in turn
absolutely necessary for the development of mechanics, in the formulation
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of whose laws its concepts had already appeared in latent form. For
example, the second law of Newton, as formulated by Newton himself,
states that “‘the change in momentum is proportional to the acting force”
(more precisely: The rate of change of momentum is proportional to the
force). Consequently, if we wish to make any use of this law, we must
be able to define the rate of change of a variable, that is, to differentiate.
(If we state the law in the form that the acceleration is proportional to the
force, the problem remains the same, because acceleration is proportional
to rate of change of momentum.) Also, it is perfectly clear that in order to
state the law governing a motion when the force is variable (in other words,
the motion proceeds with a variable acceleration), we must be able to
solve the inverse problem of finding a magnitude given its rate of change;
in other words, we must be able to integrate. So one might say that Newton
was simply compelled to invent differentiation and integration in order
to develop the science of mechanics.

4. Other branches of analysis. Along with the differential and integral
calculus, other branches of analysis arose: The theory of series (see Chapter
I1, §14), the theory of differential equations (Chapters V and VI), and the
application of analysis to geometry, which later became a special branch
of geometry, called differential geometry and dealing with the general
theory of curves and surfaces (Chapter VII). All these theories were
brought to life by the problems of mechanics, physics, and technology.

The theory of differential equations, the most important branch of
analysis, has to do with equations in which the unknown is no longer a
magnitude but a function, or in other words a law governing the depend-
ence of one magnitude on another or on several others. It is easy to under-
stand how such equations arose. In mechanics we seek to determine the
whole law of motion of a body under given conditions and not just one
value of the velocity or of the distance covered. In the mechanics of fluids
it is necessary to find the distribution of velocity over the whole mass of
fluid in motion, or in other words to find the dependence of the velocity
on all three space coordinates and on time. Analogously, in the theory
of electricity and magnetism we must find the tension in the field
throughout all space; that is, the dependence of this tension on the same
three space coordinates, and similarly in other cases.

Problems of this sort arose continually in the various branches of
mechanics, including hydrodynamics and the theory of elasticity, in acous-
tics, in the theory of electricity and magnetism, and in the theory of heat.
From the very moment of its birth, analysis remained in close contact
with mechanics and with physics in general, its most important achieve-
ments being invariably connected with the solution of problems posed
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by the exact sciences. Beginning with Newton, the greatest analysts,
D. Bernoulli (1700-1782), L. Euler (1707-1783), J. Lagrange (1736-1813),
H. Poincaré (1854-1912), M. V. Ostrogradskii (1801-1861) and A. M.
Lyapunov (1857-1918), as well as many others who laid new foundations
in analysis, started as a rule from the urgent problems of contemporary
physics.

In this way new theories arose: In direct connection with mechanics,
Euler and Lagrange founded a new branch of analysis, called the calculus
of variations (see Chapter VIII), and at the end of the 19th century
Poincaré and Lyapunov, starting again from the problems of mechanics,
founded the so-called qualitative theory of differential equations (see
Chapter V, §7).

In the 19th century analysis was enriched by an important new branch,
the theory of functions of a complex variable (see Chapter [X). The rudi-
ments of it are to be found in the works of Euler and certain other mathe-
maticians, but its transformation into a well-formed theory took place in
the middle of the 19th century and was carried out to a great extent by
the French mathematician Cauchy (1789-1857). This theory rapidly
underwent an imposing development with numerous significant results
that allowed mathematicians to penetrate more deeply into many of the
laws of analysis and found important applications in problems of mathe-
matics itself, and of physics and technology.

Analysis developed rapidly; not only did it form the center and the most
important part of mathematics but it also penetrated into the older
regions: algebra, geometry, and even the theory of numbers. Algebra
began to be thought of as basically the doctrine of functions expressed
in the form of polynomials of one or several variables.* Analytic and
differential geometry began to dominate the field of geometry. As far
back as Euler, methods of analysis were introduced into the theory of
numbers and formed in this way the beginning of the so-called analytic
theory of numbers, which contains some of the most profound achieve-
ments of the science of whole numbers.

Through the influence of analysis, with its concepts of variable, function,
and limit, the whole of mathematics was penetrated by the idea of motion
and change, and therefore of dialectic. In exactly the same way, basically
through analysis, mathematics was affected by the exact sciences and

* Polynomials are functions of the form y = apx® + ayx*~! + -+ + a, . The funda-
mental problem of the algebra of the period, namely the solution of the equation
apx" + apx™ ! + -+ + a, = 0, simply means the search for values of x for which
the function y = agpx" + ax™ ' + -+ + a, is equal to zero. The very existence of a
solution, of a root of the equation, which is called the fundamental theorem of algebra,
is proved by means of analysis (see Chapter IV, §3).
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technology and in turn played a role in their development, since it was the
means of giving exact expression to their laws and of solving their
problems. Just as among the Greeks mathematics was basically geometry,
one may say that after Newton it was basically analysis. Of course, analysis
did not completely absorb the whole of mathematics; in geometry, in the
theory of numbers, and in algebra the problems and methods character-
istic of these sciences were everywhere continued. Thus in the 17th century
there arose, along with analytic geometry, another branch of geometry,
namely projective geometry, in which purely geometric methods played a
dominant role. It originated chiefly in problems of the representation of
objects on a plane (projection), and as a result it is particularly useful in
descriptive geometry.

At the same time there was developed an important new branch of
mathematics, the theory of probability, which takes as its subject matter
the uniformities observable in large masses of phenomena, such as a long
series of rifle shots or tosses of a coin. In the succeeding period it acquired
a special importance in physics and technology and its development
was conditioned by the problems which came to it from those branches of
science. The characteristic feature of this theory is that it deals with the laws
of “random events,” providing mathematical methods for investigation
of the irregularities that necessarily appear in random events. The
basic features of the theory of probability will be explained in Chapter XI.

5. Applications of analysis. Analysis in all its branches provided
physics and technology with powerful methods for the solution of problems
of many different kinds. We have already mentioned the earliest of these:
to find the rate of change of a magnitude when we know how the magnitude
itself depends on time; to find the area of curvilinear figures and the
volumes of solids; and to find the total result of some process or another
or the total action of a variable magnitude. Thus, the integral calculus
allows us to determine the work done by an expanding gas as the pressure
changes according to a well-known law; the same integral calculus allows
us to compute, for example, the tension of an electric field with an
arbitrarily given system of charges, basing our work on the law of Coulomb
which determines the tension of a field resulting from a point charge, and
so forth,

Further, analysis provided a method for finding the maximum and the
minimum values of a magnitude under given conditions. Thus, with the
help of analysis it is easy to determine the shape of a cylindrical cistern
which for a given volume will have the smallest surface and consequently
will require the smallest outlay of material. It turns out that the cistern
will have this property if its height is equal to the diameter of its base
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(figure 10). Analysis allows us to determine the shape of the curve along
which a body must roll in order to fall in the shortest time from one given
point to another (this curve is the so-called cycloid; figure 11).

[ D -

Fig. 10. Fig. 11.

For the solution of these and other problems the reader may turn to
Chapters II and VIII.

Analysis, or more precisely the theory of differential equations, allows
us not merely to find separate values for variable magnitudes but also
to determine unknown functions; that is, to find laws of dependence of
certain variables on others. Thus we have the possibility, on the basis of
the general laws of electricity, of computing how the current varies with
time in a circuit with arbitrary resistance, capacitance, and self-induction.
We can determine laws for the distribution of velocities throughout the
whole mass of a fluid under given conditions. We can deduce general
laws for the vibration of strings and membranes, and for the propagation
of vibrations in various media; here we are referring to sound waves,
electromagnetic waves, or elastic vibrations propagated through the Earth
by earthquakes or explosions. Parenthetically, we may remark that new
methods are thereby provided for searching for useful minerals and for
carrying out investigations far below the surface of the Earth. Individual
problems of this sort will be found in Chapters V and VL.

Finally, analysis not only provides us with methods for solving special
problems; it also gives us general methods for mathematical formulation
of the quantitative laws of the exact sciences. As was mentioned, earlier,
the general laws of mechanics could not be formulated mathematically
without recourse to the concepts of analysis, and without such a formula-
tion we would not be able to solve the problems of mechanics. In exactly
the same way the general laws for heat conduction, diffusion through
porous materials, propagation of vibrations, the course of chemical
reactions, the basic laws of electromagnetism, and many other laws
simply could not be given a mathematical formulation without the concepts
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of analysis. It is only as the result of such a formulation that these laws
can be applied to the most varied concrete cases, providing a basis for
exact mathematical conclusions in the special problems of heat conduction,
vibrations, chemical solution, electromagnetic fields, and other problems
of mechanics, astronomy, and all the numerous branches of physics,
chemistry, heat engineering, power, machine construction, electrical
engineering, and so forth.

6. Critical examination of the foundations of analysis. Just as in the
history of geometry among Greeks the rigorous and systematic presenta-
tion given by Euclid brought to completion a long previous development,
so in the development of analysis there arose the necessity of placing it
upon a firmer basis than had been provided by the first creators of its
powerful methods: Newton, Euler, Lagrange, and others. As the analysis
founded by them grew more extensive, it began, on the one hand, to deal
with more profound and difficult problems, and on the other, to require
from its very extent a more systematic and carefully reasoned basis. The
growth of the theory necessitated a systematization and critical analysis
of its foundations. To put a theory on a firm foundation requires examina-
tion of its entire development and should by no means be considered as a
starting point for the theory itself, since without the theory we would
simply have no idea of what it is that we need to provide with a foundation.
By the way, certain contemporary formalists forget this fact when they
consider it advisable to found and develop a theory starting from axioms
that have not been selected on the basis of any analysis of the actual
material which they are supposed to summarize. But the axioms themselves
require a justification of their content; they only sum up other material and
provide a foundation for the logical construction of a theory. *

The necessary period of criticism, systematization, and laying of founda-
tions occurred in analysis at the beginning of the last century. Though the
efforts of a number of eminent scientists this important and difficult work
was brought to a successful completion. In particular, precise definitions
were given for the basic concepts of real number, variable, function, limit,
and continuity.

However, as we have already had occasion to mention, none of these
definitions may be considered as absolutely rigorous or final. The develop-
ment of these concepts is continuing. Euclid and all the mathematicians
in the course of 2,000 years after him no doubt considered his “Elements”

* This double role of the axioms is sometimes lost from view even in works of a
methodological character, which thereby attribute to the construction of axioms a
significance which does not at all belong to it, namely that of the total construction
of a theory.
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as the practical limit of logical rigor. But to a contemporary view the
Euclidean foundations of geometry seem quite superficial. This historical
example shows that we ought not to flatter ourselves with any idea of
“absolute” or “final” rigor in contemporary mathematics. In a science
that is not yet dead and mummified, there is not and cannot be anything
perfect, But we can say with confidence that the foundations of analysis
as they exist at present correspond in a quite satisfactory way to the con-
temporary problems of science and the contemporary conception of logical
precision; and second, that the continued deepening of these concepts and
the discussions that are now taking place about them give us no cause,
and will not give us cause, simply to reject them; these discussions will
lead us to a new, more precise, and more profound understanding, the
results of which it is still difficult to estimate.

Although the establishment of the basic principles of a theory forms a
summary of its development, it does not represent the end of the theory;
on the contrary, it is conducive to further development. This is exactly
what happened in analysis. In connection with the deepening of its founda-
tions there arose a new mathematical theory, created by the German
mathematician Cantor in the seventies of the last century, namely the
general theory of infinite sets of arbitrary abstract objects, whether
numbers, points, functions or any other “elements”. On the basis of these
ideas there grew up a new chapter in analysis, the so-called theory of
functions of a real variable, whose concepts, along with those of the founda-
tions of analysis and the theory of sets, are explained in Chapter XV.
At the same time the general ideas of the theory of sets penetrated every
branch of mathematics. But this “set-theoretical point of view” is
inseparably connected with a new stage in the development of mathematics,
which we will now consider briefly.

§7. Contemporary Mathematics

1. The more advanced character of present-day mathematics. To the
four stages of the develoment of mathematics mentioned in §5 there
naturally correspond stages in our mathematical education, the material
learned at each stage of our study consisting, to a fair degree of approxima-
tion, of the basic content of the corrresponding period in the history of
mathematics.

The basic results of arithmetic and geometry, obtained in the first period
of the development of mathematics, form the subject of primary education
and are known to us all. For example, when we determine the quantity
of material necessary to cary out a certain job, let us say to cover a floor,
we are already making use of these first results of mathematics. The most
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important achievements of the second period, the period of elementary
mathematics, are taught in the high schools. The basic results of the third
period, the foundations of analysis, the theory of differential equations,
higher algebra, and so forth, form the mathematical instruction of an
engineer; they are studied in all the schools of higher education, except
those devoted purely to the humanities. In this way the basic ideas and
results of the mathematics of that period are widely known, use being
made of them to some extent by almost every engineer and scientist.

On the other hand, the ideas and results of the present-day period
mathematics are studied almost exclusively in graduate departments
of mathematics and physics. Beside mathematical specialists, they are used
by researchers in the fields of mechanics and physics, and in a number of
the newer branches of technology. Of course, this does not at all mean
that they have no practical application, but since they represent the most
recent results of science, they are naturally more complicated. Conse-
quently, as we now pass to a general description of the latest stage in the
development of mathematics we can no longer consider that everything
which we mention briefly will be altogether clear. We will try to present
in a few lines the most general character of the new branches of mathe-
matics; their content will be explained in greater detail in the corresponding
chapters of the book.

If the present section seems overly difficult it may be passed over at
first reading and taken up again after study of the special chapters.

2. Geometry. The beginning of the present-day development of
mathematics is characterized by profound changes in all its basic fields:
algebra, geometry, and analysis. This change may perhaps be followed
most clearly in the field of geometry. In the year 1826 Lobadevskil, and
almost simultanecusly with him the Hungarian mathematician Janos
Bolyai, developed the new non-Euclidean geometry. The ideas of
Lobacevskil were far from being immediately understood by all mathe-
maticians. They were too bold and unexpected. But from this moment
there began a fundamental new development of geometry; the very
conception of what is meant by geometry was changed. Its subject matter
and the range of its applications were rapidly extended. The most im-
portant step, after Lobadesvskil, in this direction was taken in 1854 by
the celebrated German mathematician, Riemann. He clearly formulated
the general idea that an unlimited number of “spaces” could be investi-
gated by geometry, and at the same time he indicated their possible
significance in the real world. In the new development of geometry two
features were characteristic.

In the first place the earlier geometry studied only the spatial forms and
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relations of the material world, and then only to the extent in which they
appear in the framework of Euclidean geometry, but now the subject
matter of geometry began to include also many other forms and relations
of the actual world, provided only they were similar to the spatial
ones and therefore allowed the use of geometric methods. The term
‘“space” thereby took on in mathematics a new meaning, broader and at
the same time more special. Simultaneously, the methods of geometry
became much richer and more varied, In their turn they provide us with
more complete means for learning about the physical world around us,
the world from which geometry in its original form was abstracted.

In the second place, even in Euclidean geometry important progress
was made: In it were studied the properties of incomparably more compli-
cated figures, even including arbitrary sets of points. Also a fundamentally
new attitude appeared toward the properties of the figures under investiga-
tion. Separate groups of properties were distinguished, which could be
investigated in abstraction from others, and this very abstraction within
geometry gave rise to many characteristic branches of the subject, which
essentially became independent “geometries.” The development of
geometry in all these directions is being continued and more and more
new “spaces” and their “geometries” are being studied: the space of
Lobacesvskil, projective space, Euclidean and other spaces of various
dimensions, in particular four-dimensional space, Riemann spaces, Finsler
spaces, topological spaces, and so forth. These theories find important
application in mathematics itself, outside of geometry, and also in physics
and mechanics; particularly noteworthy are their applications in the theory
of relativity of contemporary physics, which is a theory of space, time,
and gravitation. From what has been said it is clear that we are dealing
here with a qualitative change in geometry.

The ideas of contemporary geometry and some of the elements of the
theory of various spaces investigated in it will be explained in Chapters
XVIIand XVIIL

3. Algebra. Algebra too underwent a qualitative change. In the first
half of the 19th century new theories arose, which led to changes in its
character, and to an extension of its subject matter and its range of
application.

In its original form, as pointed out in §5, algebra dealt with mathematical
operations on numbers considered from a formal point of view, in abstrac-
tion from given concrete numbers, This abstraction found expression in
the fact that in algebra magnitudes are denoted by letters, on which
calculations are carried out according to well-known formal rules.

Contemporary algebra retains this basis but widens it in a very extensive
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way. It now considers “magnitudes” of a much more general nature
than numbers, and studies operations on these “magnitudes™ which are
to some extent analogous in their formal properties to the ordinary
operations of arithmetic: addition, subtraction, multiplication, and divison.
A very simple example is offered by vector magnitudes, which may be
added by the well-known parallelogram rule. But the generalization carried
out in contemporary algebra is such that even the very term “magnitude”
often loses its meaning and one speaks more generally of “elements” on
which it is possible to perform operations similar to the usual algebraic
ones. For example, two motions carried out one after the other are
evidently equivalent to a certain single motion, which is the sum of the
two; two algebraic transformations of a formula may be equivalent to
a certain single motion, which is the sum of the two; two algebraic
transformations of a formula may be equivalent to a single transformation,
that produces the same result, and so forth; and so it is possible to speak
of a characteristic ““addition’’ of motions or transformations. All this and
much else is studied in a general abstract form in contemporary algebra.

The new algebraic theories in this direction arose in the first half of the
19th century in the investigations of a number of mathematicians, among
whom we should particularly mention the French mathematician Galois
(1811-1832). The concepts, methods, and results of contemporary algebra
find important applications in analysis, geometry, physics, and crystal-
lography. In particular, the theory mentioned at the end of §3 concerning
the symmetry of crystals, which was developed by E. S. Fedorov, is based
on a union of geometry with one of the new algebraic theories, the so-called
theory of groups.

As we see, we are dealing here with a fundamental, qualitative generaliza-
tion of the subject matter of algebra with a change in the very concept of
what algebra is. The ideas of contemporary algebra and the basic elements
of some of its theories will be explained in Chapter XX and XVL

4, Analysis. Analysis in all its branches also made profound progress.
In the first place, as was already mentioned in the preceding section,
its foundations were made more precise; in particular, its basic concepts
were given exact and general definitions; such concepts as function, limit,
integral and finally, the basic concept of a variable magnitude (a rigorous
definition was given for the real number). A beginning of the process of
putting analysis on a more precise foundation was made by the Czech
mathematician Bolzano (1781-1848), the French mathematician Cauchy
(1789-1857), and a number of others. This greater precision was gained
at the same time as the new developments in algebra and geometry were
being made; it was brought to completion in its present well-known
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form in the eighties of the 19th century by the German mathematicians
Weierstrass, Dedekind, and Cantor. As was mentioned at the end of §6,
Cantor also laid the foundation for the theory of transfinite sets, which
plays such a large role in the development of the newer ideas in mathe-
matics.

The increase in precision in the concepts of variable and function in
connection with the theory of sets laid the foundation for a further develop-
ment of analysis. A transition was made to the study of more general
functions; and in the same direction the apparatus of analysis, namely
the integral and differential calculus, was also generalized. Thus, on the
threshold of the present century, there arose the new branch of analysis
already mentioned in §6, the so-called theory of functions of a real variable.
The development of this theory is chiefly connected with the French
mathematicians, Borel and Lebesgue and others, and with N. N. Luzin
(1883-1950) and his school. In general, the newer branches of analysis are
called modern analysis in contradistinction to the earlier so-called classical
analysis.

Other new theories arose in analysis. Thus a special branch was formed
by the theory of approximation of functions, which studies questions of
the best approximate representation of general functions by various
“simple’” functions, above all by polynomials, that is by functions of the
form

agx® + @ x" ! ot 4 ap X + 4, .

The theory of approximation of functions has great importance, if only
for the reason that it lays down general foundations for the practical
calculation of functions, for the approximate replacement of complicated
functions by simpler ones. The rudiments of this theory go back to the
very beginnings of analysis. Its modern direction was given to it by the
great Russian mathematician P. L. Ceby§ev (1821-1894). This direction
was later developed into the so-called constructive theory of functions,
chiefly in the works of Soviet mathematicians, particularly S. N. Bernitein
(born 1880), to whom belong the most important results in this field.
Chapter XII deals with approximation of functions.

We spoke earlier about the development of the theory of functions of a
complex variable. We must still mention the so-called qualitative theory
of differential equations, originating in the works of Poincaré (1854-1912)
and A. M. Lyapunov (1857-1918), about which some ideas will be given
in Chapter V, and also the theory of integral equations. These theories
have great practical importance in mechanics, physics, and technology.
Thus, the qualitative theory of differential equations provides solutions of
problems concerning stability of motion, and the action of mechanisms



60 I. A GENERAL VIEW OF MATHEMATICS

or of vibrating electric systems and the like. Stability of a process means
in the most general sense that if small changes are made in the initial data
or in the conditions of the motion, then the motion itself during the whole
of its course will change only slightly. The technical significance of
questions of this sort hardly needs to be emphasized.

5. Functional analysis. On the ground prepared by the development
of analysis and mathematical physics, along with the new ideas of geometry
and algebra, there has grown up an extensive new division of mathematics,
the so-called functional analysis, which plays an exceptionally important
role in modern mathematics. Many mathematicians shared in creating it;
let us mention, for example, the greatest German mathematician of recent
times, Hilbert (1862-1943), the Hungarian mathematician Riesz (1880-
1956) and the Polish mathematician Banach (1892-1945). The separate
Chapter XIX is devoted to functional analysis.

The essence of this new branch of mathematics consists briefly in the
following. In classical analysis the variable is a magnitude, or “number,”
but in functional analysis the function itself is regarded as the variable.
The properties of the given function are determined here not in themselves
but in relation to other functions. What is under study is not a separate
function but a whole collection of functions characterized by one property
or another; for example, the collection of all continuous functions. Such
a collection of functions forms the so-called functional space. This
procedure corresponds, for example, to the fact that we may consider the
collection of all curves on a surface or of all possible motions of a given
mechanical system, thereby defining the properties of the separate curves
or motions in their relation to other curves or motions.

The transition from the investigation of separate functions to a variable
function is similar to the transition from unknown numbers x, y to
variables x, y; that is, it is similar to the idea of Descartes mentioned in a
preceding paragraph. On the basis of this idea Descartes produced his
well-known union of algebra and geometry, of an equation and a curve,
which is one of the most important elements in the rise of analysis. Simi-
larly, the union of the concept of a variable function with the ideas of
contemporary algebra and geometry produced the new functional analysis.
Just as analysis was necessary for the development of the mechanics of
the time, so functional analysis provided new methods for the solution
of present-day problems of mathematical physics and produced the
mathematical apparatus for the new quantum mechanics of the atom.
History repeats itself as usual, but in a new way, on a higher plane. As we
have said, functional analysis unites the basic ideasand methods of analysis,
of modern algebra, and of geometry and in its turn exercises an influence on
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the development of these branches of mathematics. The problems arising
in classical analysis now find new, more general solutions, often almost at
a single step, by means of functional analysis. Here, as at a focus, are
gathered together, in a very productive way, the most general and abstract
ideas of modern mathematics.

From this short sketch, from this mere enumeration of the new directions
of analysis(the theory of functions of a real variable, theory of approxima-
tion of functions, qualitative theory of differential equations, theory of in-
tegral equations, and functional analysis) it may be seen that we are dealing
here in fact with an essentially new stage in the development of analysis.

6. Computational mathematics and mathematical logic. At all periods
the technical level of the means of computation has had an essential
influence on mathematical methods. But the equipment for carrying out
calculations which has been at our disposal up until most recent times has
been very limited. The simplest devices, such as the abacus, tables of
logarithms and the logarithmic sliderule, the calculating machine, and
finally more complicated calculators and the automatic calculating
machine, these were the basic implements for computation existing up to
the forties of the 20th century. These implements made it possible to carry
out more or less quickly the separate operations of addition, multiplication,
and so forth. But to carry through to final numerical result the practical
problems that arise nowadays requires a colossal number of such opera-
tions, following one another in a complicated program that sometimes
depends on results obtained during the course of the calculation. The
solution of such problems proved to be practically impossible or complete-
ly valueless on account of the length of the process of solution. But in the
last ten years a radical change has taken place in the whole science of
computation, Modern calculating machines, constructed on new principles,
allow us to make computations with exceptionally great speed and at the
same time to carry out complicated chains of calculations automatically,
according to extremely flexible programs arranged in advance. Some of
the questions connected with the construction and significance of modern
calculating machines will be discussed in Chapter XI1V.

The new techniques not only enable us to carry out investigations that
were formerly quite impracticable but also lead us to change our estimate
of the value of many well-known mathematical results. For example, they
have given a special stimulus to the development of approximative
methods; that is, methods which allow us, by a chain of elementary
operations, to reach a desired numerical result with sufficiently great
accuracy. The mathematical methods themselves must now be estimated
from the point of view of their suitability for corresponding machines.
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In close connection with the development of calculating techniques is
the subject of mathematical logic. It was developed primarily as a result
of intrinsic difficulties arising in mathematics itself, its subject matter
being the analysis of mathematical proof. It is itself a branch of mathe-
matics, and includes those branches of general logic that can be objectively
formulated and developed by the mathematical method.

Although on the one hand mathematical logic thus goes back to the very
sources and foundations of mathematics, it is closely connected, on the
other hand, with the most modern questions of computational technique.
Naturally, for example, a proof that leads to the setting up of a definite
preassigned process, permitting us to approach a desired result with an
arbitrary degree of accuracy, is essentially different from more abstract
proofs on the existence of the given result.

There also arises here a characteristic range of questions concerning
the degree of generality possible in problems that can be dealt with by a
method which is completely defined in advance at every step. Profound
results have been reached along these lines in mathematical logic, results
that are extremely important from a general epistemological point of view.

It would not be an exaggeration to say that with the development of the
new computational techniques and the achievements of mathematical
logic a new period has begun in modern mathematics, characterized by
the fact that its subject matter is not only the study of one object or
another but also all the ways and means by which such an object can be
defined; not only certain problems, but also all possible methods of
solving them.

To what has been said it is only necessary to add that also in the older
branches of mathematics, the theory of numbers, Euclidean geometry,
classical algebra and analysis, and the theory of probability, rapid
development has continued throughout the whole period of modern
mathematics so that these fields have been enriched by many new funda-
mental ideas and results; let us mention, for example, the results attained
in the theory of numbers and in the geometry of everyday space by the
Russian and Soviet mathematicians P. L. Ceby3ev, E. S. Fedorov, [. M.
Vinogradov, and others. The development on a wide front of the theory
of probability has been connected with the extraordinarily important
regularities observable in statistical physics and in contemporary problems
of technology.

7. Characteristic features of modern mathematics. What are the most
general characteristics of modern mathematics as a whole, distinguishing
it from the earlier development of geometry, algebra, and analysis ?

First of all is the immense extension of the subject matter of mathematics
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and of its applications. Such an extension of subject matter and range of
application represents an enormous quantitative and qualitative growth,
brought about by the appearance of powerful new theories and methods
that allow us to solve problems completely inaccessible up to now. This
extension of the subject matter of mathematics is characterized by the fact
that contemporary mathematics conscientiously sets itself the task of
studying all possible types of quantitative relationships and spatial
forms,

A second characteristic feature of modern mathematics is the formation
of general concepts on a new and higher level of abstraction. It is precisely
this feature that guarantees preservation of the unity of mathematics,
in spite of its immense growth in widely differing branches. Even in parts
of mathematics that are extremely far from one another similarities of
structure are brought to light by the general concepts and theories of the
present day. They guarantee that contemporary mathematical methods
will have great generality and breath of application; in particular, they
produce a profound interpenetration of the fundamental branches of
mathematics: geometry, algebra, and analysis.

As one of the characteristic features of modern mathematics, we must
also mention the obvious dominance of the set-theoretical point of view.
Of course, this point of view owes its significance to the fact that it
summarizes in a certain sense the rich content of all the preceding develop-
ments of mathematics. Finally, one of the most characteristic features of
modern mathematics is the profound analysis of its foundations, of the
mutual influence of its concepts, of the structure of its separate theories,
and of the methods of mathematical proof. Without such an analysis of
foundations it would not be possible to improve or develop any further
the principles and theories that have led to the present generalizations.

The characteristic feature of modern mathematics may be said to be
that its subject matter consists not only of given quantitative relations
and forms but of all possible ones. In geometry, we speak not only of
spatial relations and forms but of all possible forms similar to spatial
ones. In algebra, we speak of various abstract systems of objects with all
possible laws of operation on them. In analysis, not only magnitudes are
considered as variables but the very functions themselves. In a functional
space all the functions of a given type (all the possible interdependences
among the variables) are brought together. Summing up, it is possible to
say that while elementary mathematics deals with constant magnitudes,
and the next period with variable magnitudes, contemporary mathematics
is the mathematics of all possible (in general, variable) quantitative relations
and interdependences among magnitudes. This definition is, of course,
incomplete, but it does emphasize the characteristic feature of modern
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mathematics which distinguishes it from the mathematics of preceding
ages.*

Suggested Reading

Preliminary remark. The original Russian text of Mathematics: its content,
methods, and meaning contains a list of recommended books at the end of each
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* This section is followed in the original Russian text by two sections entitled *The
essential nature of mathematics™ and "“The laws of the development of mathematics.”
These sections are omitted in the present translation in view of the fact that they
discuss in more detail, and in the more general philosophical setting of dialectical

materialism, points of view already stated with great clarity in the preceding sections.



CHAPTER I I

ANALYSIS

§1. Introduction

The rise at the end of the Middle Ages of new conditions of manufacture
in Europe, namely the birth of capitalism, which at this time was replacing
the feudal system, was accompanied by important geographical discoveries
and explorations. In 1492, relying on the idea that the earth is spherical,
Columbus discovered the New World. The discovery by Columbus
greatly extended the boundaries of the known world and produced a
revolution in the minds of men. The end of the 15th century and the
beginning of the 16th saw the creative activity of the great artist-humanists
Leonardo da Vinci, Raphael, and Michelangelo, which gave new meaning
to art. In 1543 Copernicus published his work “On the revolution of the
heavenly bodies,” which completely changed the face of astronomy;
in 1609 appeared the “New astronomy” of Kepler, containing his first
and second laws for the motion of the planets around the sun, and in
1618 his book “Harmony of the world,” containing the third law. Galileo,
on the basis of his study of the works of Archimedes and his own bold
experiments, laid the foundations for the new mechanics, an indispensable
science for the newly arising technology. In 1609 Galileo directed his
recently constructed telescope, though still small and imperfect, toward
the night sky; the first glance in a telescope was enough to destroy the
ideal celestial spheres of Aristotle and the dogma of the perfect form of
celestial bodies. The surface of the moon was seen to be covered with
mountains and pitted with craters. Venus displayed phases like the
Moon, Jupiter was surrounded by four satellites and provided a miniature
visual model of the solar system. The Milky Way fell apart into separate
stars, and for the first time men felt the staggeringly immense distance
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of the stars. No other scientific discovery has ever made such an im-
pression on the civilized world. *

The further development of navigation, and consequently of astronomy,
and also the new development of technology and mechanics necessitated
the study of many new mathematical problems. The novelty of these
problems consisted chiefly in the fact that they required mathematical
study of the laws of motion in a broad sense of the word.

The state of rest and motionlessness is unknown in nature. The whole
of nature, from the smallest particles up to the most massive bodies,
is in a state of eternal creation and annihilation, in a perpetual flux, in
unceasing motion and change. In the final analysis, every natural science
studies some aspect of this motion. Mathematical analysis is that branch
of mathematics that provides methods for the quantitative investigation
of various processes of change, motion, and dependence of one magnitude
on another. So it naturally arose in a period when the development of
mechanics and astronomy, brought to life by questions of technology
and navigation, had already produced a considerable accumulation of
observations, measurements, and hypotheses and was leading science
straight toward quantitative investigation of the simplest forms of motion.

The name “infinitesimal analysis® says nothing about the subject
matter under discussion but emphasizes the method. We are dealing here
with the special mathematical method of infinitesimals, or in its modern
form, of limits. We now give some typical examples of arguments which
make use of the method of limits and in one of the later sections we will
define the necessary concepts.

Example 1. As was established experimentally by Galileo, the distance
s covered in the time ¢ by a body falling freely in a vacuum is expressed
by the formula

2
s=£- )

(g is a constant equal to 9.81 m/sec?).t What is the velocity of the falling
body at each point in its path?

Let the body be passing through the point 4 at the time r and consider
what happens in the short interval of time of length 4¢; that is, in the time
from 1 to 1 + A1, The distance covered will be increased by a certain

* This section is based on the beautiful essay of Academician S. 1. Vavilov “Galileo™
(Great Soviet Encyclopedia, Volume 10, 1952).

t Nowadays formula (1) is deduced from the general laws of mechanics, but historic-
ally it was just this formula which, after being established experimentally by Galileo,
served as a part of the accumulation of experience that was subsequently generalized
by those laws.
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increment 4s. The original distance is s, = gr?/2; the increased distance
is
_gt+dn g g 2
= =5 +2(21A1+Ar).
From this we find the increment

Ay =g oyy = g(zrdr 1 4r).

This represents the distance covered in the time from ¢ to ¢ + 41. To
find the average velocity over the section of the path ds, we divide 4ds
by 4r:

Letting 4r approach zerowe obtain an average velocity which approaches
as close as we like to the true velocity at the point 4. On the other hand,
we see that the second summand on the right-hand side of the equation
becomes vanishingly small with decreasing 4¢, so that the average vey
approaches the value gt, a fact
which it is convenient to write

as follows:
= li =i ds
v_']mov”_'ag})d "
= lim (g7 + 5§ 41) = g
i T:
Consequently, gt is the true a

velocity at the time r.

Example 2, A reservoir
with a square base of side a Fig. 1.
and vertical walls of height A
is full to the top with water (figure 1). With what force is the water acting
on one of the walls of the reservoir ?

We divide the surface of the wall into n horizontal strips of height A/n.
The pressure exerted at each point of the vessel is equal, by a well-known
law, to the weight of the column of water lying above it. So at the lower
edge of each of the strips the pressure, expressed in suitable units, will be
equal respectively to

’ [} L 3 The

n n

h2h3h  (n=Dh ,
n

n
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We obtain an approximate expression for the desired force P, if we
assume that the pressure is constant over each strip. Thus the approximate
value of P is equal to

ah h ah 2h ~ ah(n—1)h  ah

PR gy g g iy
__ ah? _ak* nn+1) ak? 1
=0 +24+ -+ =20 2022 S (14).

To find the true value of the force, we divide the side into narrower and
narrower strips, increasing n without limit, With increasing n the magnitude
I/n in the above formula will become smaller and smaller and in the limit
we obtain the exact formula

The idea of the method of limits is simple and amounts to the following,
In order to determine the exact value of a certain magnitude, we first
determine not the magnitude itself but some approximation to it. How-
ever, we make not one approximation but a whole series of them, each
more accurate than the last. Then from examination of this chain of
approximations, that is from examination of the process of approximation
itself, we uniquely determine the exact value of the magnitude. By this
method, which is in essence a profoundly dialectical one, we obtain a
fixed constant as the result of a process or motion.

The mathematical method of limits was worked as the result of the
persistent labor of many generations on problems that could not be
solved by the simple metheds of arithmetic, algebra, and elementary
geometry.

What were the problems whose solution led to the fundamental concepts
of analysis, and what were the methods of solution that were set up for
these problems ? Let us examine some of them.

The mathematicians of the 17th century gradually discovered that a
large number of problems arising from various kinds of motion with
consequent dependence of certain variables on others, and also from
geometric problems which had not yielded to former methods, could
be reduced to two types. Simple examples of problems of the first type
are: find the velocity at any time of a given nonuniform motion (or more
generally, find the rate of change of a given magnitude), and draw a
tangent to a given curve. These problems (our first example is one of
them) led to a branch of analysis that received the name ‘‘differential
calculus.” The simplest examples of the second type of problem are:
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find the area of a curvilinear figure (the problem of quadrature), or the
distance traversed in a nonuniform motion, or more generally the total
effect of the action of a continuously changing magnitude (compare the
second of our two examples). This group of problems led to another
branch of analysis, the “integral calculus.” Thus two fundamental
problems were singled out: the problem of tangents and the problem of
quadratures.

In this chapter we will describe in detail the underlying ideas of the
solution of these two problems. Particularly important here is the theorem
of Newton and Leibnitz to the effect that the problem of quadratures is
the inverse, in a well-known sense, of the problem of tangents. For solving
the problem of tangents, and problems that can be reduced to it, there was
worked out a suitable algorithm, a completely general method leading
directly to the solution, namely the method of derivatives or of differentia-
tion.

The history of the creation and development of analysis and of the role
played in its growth by the analytic geometry of Descartes has already
been described in Chapter I. We see that in the second half of the 17th
century and the first half of the 18th a complete change took place in the
whole of mathematics. To the divisions that already existed, arithmetic,
elementary geometry, and the rudiments of algebra and trigonometry,
were added such general methods as analytic geometry, differential and
integral calculus, and the theory of the simplest differential equations.
It was now possible to solve problems whose solutions up to now had
been quite inaccessible.

It turned out that if the law for the formation of a given curve is not
too complicated, then it is always possible to construct a tangent to it at
an arbitrary peint; it is only necessary to calculate, with the help of the
rules of differential calculus, the so-called derivative, which in most cases
requires a very short time. Up till then it had been possible to draw
tangents only to the circle and to one or two other curves, and no one had
suspected the existence of a general solution of the problem.

If we know the distance traversed by a moving point up to any desired
instant of time, then by the same method we can at once find the velocity
of the point at a given moment, and also its acceleration. Conversely,
from the acceleration it is possible to find the velocity and the distance,
by making use of the inverse of differentiation, namely integration. As a
result, it was not very difficult, for example, to prove from the Newtonian
laws of motion and the law of universal gravitation that the planets must
move around the sun in ellipses according to the laws of Kepler.

Of the greatest importance in practical life is the problem of the greatest
and least values of a magnitude, the so-called problem of maxima and



70 II. ANALYSIS

minima. Let us take an example: From a log of wood with circular cross
section of given radius we wish to cut a beam of rectangular cross section
such that it will offer the greatest resistance to bending. What should be
the ratio of the sides? A short argument on the stiffness of beams of
rectangular cross section (applying simple concepts from the integral
calculus), followed by the solving of a maximum problem (which involves
calculating a derivative) provides the answer that the greatest stiffness
is produced for a rectangular cross section whose height is in the ratio
to its base of 4/2: 1. The problems of maxima and minima are solved as
simply as those of drawing tangents.

At various points of a curved line, if it is not a straight line or a circle,
the curvature is in general different. How can we calculate the radius
of a circle with the same curvature as the given line at the given point,
the so-called radius of curvature of the curve at the point? It turns out
that this is equally simple; it is only necessary to apply the operation of
differentiation twice. The radius of curvature plays a great role in many
questions of mechanics.

Before the invention of the new methods of calculation, it had been
possible to find the area only of polygons, of the circle, of a sector or a
segment of the circle, and of two or three other figures. In addition,
Archimedes had already invented a way to calculate the area of a segment
of a parabola. The extremely ingenious method which he used in this
problem was based on special properties of the parabola and consequently
gave rise to the idea that every new problem in the calculation of area
would very likely require its own methods of investigation, even more
ingenious and difficult than those of Archimedes. So mathematicians
were greatly pleased when it turned out that the theorem of Newton and
Leibnitz, to the effect that the inversion of the problem of tangents would
solve the problem of quadrature, at one provided a method of calculating
the areas bounded by curves of widely different kinds. It became clear
that a general method exists, which is suitable for an infinite number of the
most different figures. The same remark is true for the calculation of
volumes, surfaces, the lengths of curves, the mass of inhomogeneous
bodies, and so forth.

The new method accomplished even more in mechanics. It seemed
that there was no problem in mechanics that the new calculations would
not clarify and solve.

Not long before, Pascal had explained the increase in the size of the
Torricelli vacuum with increasing altitude as a consequence of the decrease
in atmospheric pressure. But exactly what is the law governing this
decrease ? The question is answered immediately by the investigation
of a simple differential equation.
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It is well known to sailors that they should take two or three turns of
the mooring cable around the capstan if one man is to be able to keep
a large vessel at its mooring. Why is this? It turned out that from a
mathematical point of view the problem is almost completely identical
with the preceding one and can be solved at once.

Thus, after the creation of analysis, there followed a period of tempestu-
ous development of its applications to the most varied branches of tech-
nology and natural science. Since it is founded on abstraction from the
special features of particular problems, mathematical analysis reflects
the actual deep-lying properties of the material world; and this is the
reason why it provides the means for investigation of such a wide range
of practical questions. The mechanical motion of solid bodies, the motion
of liquids and gases of their particular particles, their laws of flow in the
mass, the conduction of heat and electricity, the course of chemical
reactions, all these phenomena are studied in the corresponding sciences
by means of mathematical analysis.

At the same time as its applications were being extended, the subject
of analysis itself was being immeasurably enriched by the creation and
development of various new branches, such as the theory of series, applica-
tions of geometry to analysis, and the theory of differential equations.

Among mathematicians of the 18th century, there was a widespread
opinion that any problem of the natural sciences, provided only that one
could find a correct mathematical description of it, could be solved by
means of analytic geometry and the differential and integral calculus.

Mathematicians proceeded gradually to more complicated problems
of natural science and technology, which demanded further development
of their methods. For the solution of such problems it became necessary
to create further branches of mathematics: the calculus of variations,
the theory of functions of a complex variable, field theory, integral
equations, and functional analysis. But all these new methods of cal-
culation were essentially immediate extensions and generalizations of
the remarkable methods discovered in the 17th century. The greatest
mathematicians of the 18th century, David Bernoulli (1700-1782),
Leonard Euler (1707-1783) and Lagrange (1736-1813), who blazed new
paths in science, constantly took as their starting point the fundamental
problems of the exact sciences. This energetic development of analysis
was continued into the 19th century by such famous mathematicians as
Gauss (1777-1855), Cauchy (1789-1857), M. V. Ostrogradskii (1801-1861),
P. L. CebySev (1821-1894), Riemann (1826-1866), Abel (1802-1829),
Weierstrass (1815-1897), all of whom made truly remarkable contribu-
tions to the development of mathematical analysis.

The Russian mathematical genius, N. I. Loba&evskil, had an influence
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on the development of certain questions of mathematical analysis, and we
should also mention the leading mathematicians who were active at the
turn of the 20th century: A. A. Markov (1856-1922), A. M. Lyapunov
(1857-1918), H. Poincaré (1854-1912), F. Klein (1849-1925), D. Hilbert
(1862-1943).

The second half of the 19th century witnessed a profound critical
examination and clarification of the foundations of analysis. The various
powerful methods that had accumulated were now put on a uniform
systematic basis, corresponding to the advanced level of mathematical
rigor. All these methods are the means by which, along with arithmetic,
algebra, geometry and trigonometry, we give a mathematical interpreta-
tion to the world around us, describe the course of actual events, and
solve the important practical problems connected with them.

Analytic geometry, differential and integral calculus, and the theory
of differential equations are studied at all technical institutes, so that these
branches of mathematics are known to millions of citizens; the elements
of these sciences are also taught at many technical schools; there is also
some question of their being introduced into the secondary schools.

In most recent times the general use of rapid calculating machines has
introduced a new era in mathematics. These machines, in conjunction
with the branches of mathematics just mentioned, open up strange new
possibilities for mankind.

At the present time, analysis and the branches arising from it represent
a widely diversified mathematical science, consisting of several broad
independent disciplines closely connected with one another; each of these
disciplines is being developed and perfected.

More than ever before, a significant role is being played in analysis by
the requirements of daily life, by problems connected with the imposing
development of technology. Of great importance are the aerodynamical
problems of hypersonic velocities, which are being solved with constant
success. The most difficult problems of mathematical physics have now
reached the stage where they can be solved in practical numerical form.
In contemporary physics such theories as quantum mechanics (which
studies the problems peculiar to the microcosm of the atom) not only
require the most advanced branches of contemporary mathematical
analysis for solving their problems but could not even describe their
fundamental concepts without the use of analysis.

The purpose of the present chapter is to give a popular presentation,
suitable for a reader acquainted only with elementary mathematics,
of the growth and the simplest applications of such basic concepts of
analysis as function, limit, derivative, and integral. Since the various
special branches of analysis will be dealt with in other chapters of the
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book, the present chapter has a more elementary character and a reader
who has already studied a usual first course in analysis may omit it
without harm to his understanding of the rest of the book.

§2. Function

The concept of a function. The various objects or phenomena that
we observe in nature are organically connected with one another; they
are interdependent. The simplest relations of this sort have long been
known to mankind and information about them has been accumulated
and formulated as physical laws. These laws indicate that the various
magnitudes characterizing a given phenomenon are so closely related
to one another that some of them are completely determined by the values
of others. For example, the length of the sides of a rectangle completely
determine its area, the volume of a given amount of gas at a given tem-
perature is determined by the pressure, and the elongation of a given
metallic rod is determined by its temperature. It was uniformities of this
sort that served as the origin of the concept of function.

Consider an algebraic formula which, corresponding to each value
of the literal magnitudes occurring in it, allows us to find the value of the
magnitude expressed by the formula; the basic idea here is that of a
function. Let us consider some examples of functions expressed by such
formulas.

1. Let us suppose that at the beginning of a certain period of time a
material point was at rest and that subsequently it began to fall as the
result of gravity. Then the distance s traced out by the point up to time
t is expressed by the formula

2
s =35 ("
where g is the acceleration of gravity.
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2. From a square of side a we construct an open rectangular box of
height x (figure 2). The volume V of the box is calculated from the formula

V = x(a — 2x)*. )

Formula (2) allows us,
for every height x under
the obvious restriction
0 < x < a/2, to find the
volume of the box.

3. Let a pillar (figure 3)
be erected at the center
of a circular skating rink
with a light at height A.
The illumination T at the
edge of the circle may be
FiG. 3. expressed by the formula

_ Asina

where r is the radius of the circle, tan o = A/r, and A is a certain magnitude
characterizing the power of the light. If we know the height & we can
calculate 7 from formula (3).

4, The roots of the quadratic equation
x4+ px—1=0 @)

are given by the formula

2
- La1+2 )

The characteristic feature of a formula in general, and of the examples
just given in particular, is that the formula enables us, for any given value
of one of the variables (the time 1, the height x of the box, the height A
of the pilar, the coefficient p of the quadratic equation), which is called
the independent variable, to calculate the value of the other variable
(the distance s, the volume V, the illumination T, the root x of the equa-
tion), which is called a dependent variable or a function of the first
variable.

Each of the formulas introduced provides an example of a function:
the distance s traced by the point is a function to the time r; the volume
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V of the box is a function of height x; the illumination T of the edge of the
rink is a function of the height 4 of the pillar; the two roots of the quadratic
equation (4) are functions of the coefficient p.

It should be remarked that in some cases the independent variable may
assume any desired numerical value, as in example 4 where the coefficient
p of the quadratic equation (4) may be an arbitrary number. In other cases
the independent variable may take an arbitrary value from some set
(or collection) of numbers determined in advance; as in example 2, where
the volume of the box is a function of its height x, which can take any
value from the set of numbers x satisfying the inequality 0 < x < a/2.
Similarly, in example 3 the illumination T at the edge of the rink is a
function of the height 4 of the pillar, which theoretically can take any
value satisfying the inequality A > 0, but in practice # must satisfy the
inequalities 0 < h << H, where the magnitude H is determined by the
technical facilities at the disposal of the administration of the rink.

Let us introduce other examples of this kind. The formula

y=v1i—xt

determines a real function (expressing a relationship between the real
numbers x and y) only for those values of x which satisfy the inequalities
— 1< x< + 1, and the formula y = log (1 — x?) only for those x
which satisfy the inequalities —1 <x < 1.

So it is necessary to take account of the fact that actual functions may
not be defined for all numerical values of the independent variable but
only for those values which belong to a certain set, which most often
fills out an interval on the x-axis, with or without the end points.

We are now in the position to give the definition of a function accepted
in present-day mathematics.

The (dependent) magnitude y is a function of the (independent) magnitude
x if there exists a rule whereby to each value of x belonging to a certain
set of numbers there corresponds a definite value of y.

The set of values x appearing in this definition is called the domain
of the function.

Every new concept gives rise to a new symbolism. The transition from
arithmetic to algebra was made possible by the construction of formulas
which were valid for arbitrary numbers, and the search for general
solutions gave rise to the [iteral symbolism of algebra.

The problem of analysis is the study of functions, that is of the depend-
ence of one variable on another. Consequently, just as in algebra a transi-
tion took place from concrete numbers to arbitrary numbers, denoted
by letters, so in analysis there was the corresponding transition from
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concrete formulas to arbitrary formulas. The phrase “y is a function of x”’
is conventionally written as

y = f(x).

Just as in algebra different letters are used for different numbers, so in
analysis different notations are used for different types of dependence,
that is for different functions: thus we write y = F(x), y = ¢(x), -+ .

Graphs of functions. One of the most fruitful and brilliant ideas of the
second half of the 17th century was the idea of the connection between
the concept of a function and the geometric representation of a line.
This connection can be realized, for example, by means of a rectangular
Cartesian system of coordinates, with which the reader is certainly familiar
in a general way from his secondary school mathematics.

Let us set up on the plane a rectangular Cartesian system of coordinates,
This means that on the plane we choose two mutually perpendicular lines
(the axis of abscissas and the axis of ordinates), on each of which we fix
a positive direction. Then to each point M of the plane we may assign
two numbers (x, y), which are its coordinates, expressing in the given
system of measurement the distance, taken with the proper sign,* of the
point M from the axis of ordinates and the axis of abscissas respectively.

With such a system of coordinates we may represent functions graphic-
ally in the form of certain lines. Suppose we are given a function

y = f(x). (6)

This means, as we know, that for every value of x belonging to the domain
of definition of the given function, it is possible to determine by some
means, for example by calculation, a corresponding value y. Let us give
to x all possible numerical values, for each x determine y according to our
rule (6), and construct on the plane the point with coordinates x and y.
In this way, for every point M’ on the x-axis (figure 4) there will correspond
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"% The number x is the abscissa and y is the ordinate of the point M.
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a point M with coordinates x and y = f(x). The set of all points M forms
a certain line, which we call the graph of the function y = f{x).

Thus, the graph of the function f(x) is the geometric locus of the points
whose coordinates satisfy equation (6).

In school we became acquainted with the graphs of the simplest func-
tions. Thus the reader probably knows that the function y = kx + b,
where k and b are constants, is the graph (figure 5) of a straight line
forming the angle « with the positive direction of the x-axis, where
tan « = k, and intersecting the y-axis at the point (0, &). This function is
called a linear function.

Linear functions occur very frequently in the applications. Let us recall
that many physical laws are represented, with considerable accuracy,
by linear functions. For example, the length / of a body may be considered
with good approximation as a linear function of its temperature

1= Iy + alyt,

where « is the coefficient of linear expansion, and /, is the length of the
body for t = 0. If x is the time and y is the distance covered by a moving
point, then the linear function y = kx + b obviously expresses the fact
that the point is moving with uniform velocity k; and the number b
denotes the distance, at time x, = 0, of the moving point from the fixed
zero-point from which we measure our distances. Linear functions are
extremely useful because of their simplicity and because it is possible to
consider nonuniform changes as being approximately linear, even if only
for small intervals.

But in many cases it is necessary to make use of nonlinear functional
dependence. Let us recall for example the law of Boyle-Mariotte

A
P
where the magnitudes p and v are inversely proportional. The graph of
such a relation represents a hyperbola (figure 6).

The physical law of Boyle-Mariotte corresponds actually to the case
that p and v are positive; it represents a branch of the hyperbola lying
in the first quadrant.

The general class of oscillatory processes includes periodic motions,
which are usually described by the familiar trigonometric functions.
For example, if we extend a hanging spring from its position of equilibrium,
then, so Iong as we stay within the elastic limits of the spring, the point
A will perform vertical oscillations which are quite accurately expressed
by the law

x = acos(pt + a),
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where x is the displacement of the point A from its position of equilibrium,
t is the time, and the numbers a, p and « are certain constants determined
by the material, the dimensions, and the initial extension of the spring.

It should be kept in mind that a function may be defined in various
domains by various formulas, determined by the circumstances of the
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case. For example, the relation Q = f{r) between the temperature ¢ of a
gram of water (or ice) and the quantity of heat Q in it, as ¢ varies between
—10° and + 10°, is a completely determined function which it is difficult
to express in a single formula,* but it is easy to represent this function
by two formulas. Since the specific heat of ice is equal to 0.5 and that of
water is equal to 1, this function, if we agree that 0 = 0 at —10°, is
represented by the formula

Q = 0.5t + 5,

as ¢ varies in the interval —10° < ¢ < 0° and by another formula
Q =1+ 85,

as ¢ varies in the interval 0° <<t < 10°. For ¢t = 0 this function is inde-
finite or multiple-valued; for convenience, we may agree that at r = 0
it takes some well-defined value, for example f{0) = 45. The graph of the
function @ = f{(r) is given in figure 7.

* This does not mean that such an expression is impossible. In Chapter X11 we will
show how to obtain a single formula.
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We have introduced many examples of functions given by formulas.
The possibility of representing a function by means of formulas is extremely
important from the mathematical point of view, since such formulas
provide very favorable conditions for investigating the properties of the
functions by mathematical methods.

But one must not think that a formula is the only method of defining a
function. There are many other methods; for example, the graph of the
function, which gives a visual geometric picture of it. The following
example gives a good illustration of another method.

To record variation of the temperature of the air during the course
of 24 hours, meteorological stations make use of an instrument called
the thermograph. A thermograph consists of a drum rotated about its
axis by a clockwork mechanism, and of a curved brass framework that
is extremely sensitive to changes of temperature. As a result, a pen fastened
to the framework by a system of levers rises with rising temperature;
and conversely, a fall in the temperature lowers the pen. On the drum is
wound a ribbon of graph paper, on which the pen draws a continuous
line, forming the graph of the function 7" = f{r), which expresses the
interdependence of the time and the temperature of the air. From this
graph we may determine, without calculation, the value of the temperature
at any moment of time ¢.

This example shows that a graph in itself determines a function in-
dependently of whether the function is given by a formula or not.

Incidentally, we shall return to this question (see Chapter XII)
and shall prove the following important assertion: Every continuous
graph can be represented by a formula, or, as it is still customary to say,
by an analytic expression. This statement is also true for many discontinu-
ous graphs*

We remark that the truth of this statement, which is of great theoretical
importance, was completely realized in mathematics only in the middle
of the past century. Up to that time mathematicians understood by the
term “function” only an analytic expression (formula). But they were
under the mistaken impression that many discontinuous graphs did not
correspond to any analytic expression, since they assumed that if a function
was given by a formula, then its graph must possess certain particularly
desirable properties in comparison with the other graphs.

But in the 19th century, it was discovered that every continuous graph
may be represented by a more or less complicated formula. Thus the
exceptional role of the analytic expression as a means of definition of

* Of course, the above statement will be completely clear to the reader only after
we have given a precise definition of exactly what is meant in mathematics by the term
“formula” and “analytic expression.”
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functions was weakened and there came into existence the new, more
flexible definition given above for the concept of a function. By this
definition a variable y is called a function of a variable x if there exists
a rule whereby to every value of x in the domain of definition of the
function there corresponds a completely determined value y, independent
of the way in which this rule is given: by a formula, a graph, a table or
in any other way.

We may remark here that in the mathematical literature the above
definition of a function is often associated with the name of Dirichlet,
but it is worth emphasizing that this definition was given simultaneously
and independently by N. I. Lobacevskil. Finally we suggest as an exercise
that the reader sketch the graphs of the functions x®, 4/x, sin x, sin 2x,
sin (x + #/4), Inx, In(1 + x), |x — 3|, (x + | x )/2.

We should also note that the graph of a function which for all values
of x satisfies the relation

S(—x) = fix)
is symmetric with respect to the y-axis and in the case
f(=x) = —f(x)

the graph is symmetric with respect to the origin of coordinates. Consider
also how to obtain the graph of a function f{a + x), when q is a constant,
from the graph of f{x). Finally, consider how, using the graphs of the
functions f{x) and ¢(x), it is possible to find the values of the composite
function y = f[é(x)].

§3. Limits

In §1 it was stated that modern mathematical analysis uses a special
method, which was worked out in the course of many centuries and serves
now as its basic instrument. We are speaking here of the method of
infinitesimals, or, as is essentially the same, of limits. We shall try to give
some idea of these concepts. For this purpose we consider the following
example.

We wish to calculate the area bounded by the parabola with equation
y = x2, by the x-axis and by the straight line x = 1 (figure 8). Elementary
mathematics will not furnish us with a means for solving this problem.
But here is how we may proceed.

We divide the interval [0, 1] along the x-axis into n equal parts at the
points

0’ ,g"“!
n

x| -
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and on each of these parts construct the rectangle whose left side extends
up to the parabola. As a result we obtain the system of rectangles shaded
in figure 8, the sum S, of whose areas is given by
1 121 2321 n— 131
S & el S B g & =wFar] S

nt-n n

_12-1-23-}-“‘-1-(»!—1)2 (n—1Dn2n —1)
h nd 6r®

Let us express S, in the following form:

t

1 1 1 1
Sa=3tler—g) =3+ )

The quantity «,, which
depends on n, is admittedly Y¢
rather unwieldy in appear-
ance, but it possesses a
certain remarkable property:
If n is increased beyond
all bounds, then «,
approaches 0. This property
may also be expressed as
follows: If we are given an
arbitrary positive number
¢, then it is possible to
choose an integer N suffi-
ciently large that for all n
greater than N number o,
will be less than the given
€ in absolute value.t

* If in the obvious equalities (k + 1)*— k* = 3k* + 3k + 1, for the different values
k=1,2+,n— 1, we add the left and right sides separately, we obtain the equation

n — n
T+

P —1 =3+ -1

where 0, = 12 + 2? + -+ + (n — 1) Solving this equation for o,, we get
_n - Da(2n — 1)
ey
t For example, if ¢ = 0.001, we may take N = 500. In fact, since
_1_ < L
6n*  2n
for positive intigral n, therefore
1 1 1 1 1

——————— < — < 0.001
6t 2n 2:! 6n*  2n

lag | =
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The magnitude «, is an example of an infinitesimal in the sense in which
that word is used in modern mathematics.

In figure 8 we see that if we increase the number n beyond all bounds,
the sum S, of the areas of the shaded rectangles will approach the desired
area of the curvilinear figure. On the other hand, equation (7), in view
of the fact that o, approaches zero as n increases beyond all bounds,
shows that the sum §, at the same time approaches 1/3. From this it
follows that the desired area S of the figure is equal to 1/3, and we have
solved our problem.

So the method under discussion amounts to this, that in order to find
a certain magnitude S we introduce another magnitude S, , a variable
magnitude which approaches zero through particular values S,, S,,
S; , +, which depend according to some law on the natural numbers
n = 1,2, - Then, from the fact that the variable S, may be represented
as the sum of a constant *}and an infinitesimal «, , we conclude that S,
approaches 1 and so S = 4. In the language of the modern theory of
limits we may say that for increasing n the vanable magnitude S,
approaches a limit, which is equal to 4.

Now let us give a precise definition of the concepts introduced here.

If a variable magnitude o,(n = 1, 2, ---) has the property that for every
arbitrarily small positive number e it is possible to choose an integer N
so large that for all n > N we have | «, | < ¢, then we say that «, is an
infinitesimal and we write

l'-ﬂﬂ o, = 0o0ra,—0.
On the other hand, if a variable x, may be represented as a sum
Xp=4a+ o, ,
where a is constant and «, is an infinitesimal, then we say that the variable
X, , for n increasing beyond all bounds, approaches the number a and we
write

lim x, = a or x, —a.

The number a is called the /imit of x, . In particular the limit of an in-
finitesimal is obviously zero.

fTor arbitrary n > 500. In the same way it would be possible to assign arbitrarily small
values ¢, or example:

g = 0.0001, e = 0.00001, =,
and for each of them to choose, as above, appropriate values N = N, , N,
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Let us consider the following examples of variable magnitudes

1 1 (=1 n—1

xﬂ=n3yn=_F»zn= U, = =1-

1
n n n
vy = (=D (n = 1,2, ).

It is clear that x,,,y,, and z, are infinitesimals, the first of them approach-
ing zero through decreasing values, the second through increasing negative
values, while the third takes on values which oscillate around zero.
Further, u, — 1, while v,, does not have a limit at all, since with increasing
n it does not approach any constant number but continually oscillates,
taking on the values 1 and —1.

Another important concept in analysis is that of an infinitely large
magnitude, which is defined as a variable x, (n = 1, 2, --*), with the
property that after choice of an arbitrarily large positive number M it is
possible to find a number N such that foralln > N

| xp | > M.
The fact that the magnitude x,, is infinitely large is written thus
lim x,, = oo or x, — 0.

Such a magnitude x,, is said to approach infinity. If it is positive (negative)
from some value on, this fact is expressed thus: x, — + oco(x, — —o0).
For example, forn = 1, 2, -

limn? = + oo,lim (—n®) = —o0;
lim l@gl = —o0, lim tan (1 + l) = —o0,
n % 2 'n

It is easy to see that if a magnitude «, is infinitely large, then 8, = 1/a,
is infinitely small, and conversely.

Two variable magnitudes x,, and y, may beadded, subtracted, multiplied,
and divided the one by the other so as to produce new magnitudes that
are in general also variable: namely their sum x, + y,, their difference
Xn — Y, their product x,y,, and their quotient x,/y, . Correspondingly
their particular values will be

Xy Yy Xe = Vo, X5+ Y3,
X1 V1 XoVa, XgVs, "

X1 X3 X .,
P = I E]
Ny ys
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It is also possible to prove, as is fairly evident, that if the variables x,, and
¥ approach finite limits, then their sum, difference, product, and quotient
also approach limits which are correspondingly equal to the sum, difference,
product, and quotient of these limits. This fact may be expressed thus:

lim (x, -+ y,) = lim x,, + lim y,,; lim (x,,) = lim x,, lim p,,;

. X lim x,
lim=2 = —2.
Vn llmyn

However, in the case of the quotient it is necessary to assume that the
limit of the denominator (lim y,) is not equal to zero. If lim y, = 0
and lim x, 7= 0, then the ratio of x, to y, will not have a finite limit but
will approach infinity.

Especially interesting, and at the same time important, is the case when
the numerator and the denominator simultaneously approach zero. Here
it is impossible to state in advance whether the ratio x,/y, will approach
a limit, and if it does, what that limit will be, since the answer to this
question depends entirely on the character of the approach of x, and y,
to zero. For example, if

b Lo W s
xn_n3yn—n3’zn— (5—1,2, )’

n
then
X, n > Vn ’
On the other hand, the magnitude
Xn ()
T L

evidently does not approach any limit.

Thus the case when the numerator and the denominator of the fraction
both approach zero cannot be dealt with in advance by general theorems,
and for each particular fraction of this kind it is necessary to make a
special investigation.

We shall see later that the fundamental problem of the differential
calculus, which may be considered as the problem of determining the
velocity of a nonuniform motion at a given moment, reduces to determining
the limit of the ratio of two infinitesimal magnitudes, namely the increase
of the distance covered and the increase in the time.

So far we have considered variables x, which take on a sequence of
numerical values x, , X, , X5, -, X, , *-- , while the index » runs through



§3. LIMITS 85

the sequence of natural numbers n = 1, 2, 3, --- . But it is also possible
to consider the case that n varies continuously, like the time for example,
and here also to determine the limit of the variable x, . The properties
of such limits are completely analogous to those formulated earlier for
discrete (that is, discontinuous) variables. We also note that there is no
special significance in the fact that n increases beyond all bounds. It is
equally possible to consider the case that, while varying continuously,
n approaches a given value n, .

As an example let us investigate the variation in the magnitude of
(sin x)/x as x approaches zero. Table 1 shows the values of this magnitude
for certain values of x:

Table 1
x sin x
x
0.50 0.9589 ...
0.10 0.9983 ...

0.05 0.9996 ...

(it is assumed that the values of x are given in radian measure).

It is obvious that as x approacheszero the magnitude (sin x)/xapproaches
1, but of course we must still give a rigorous proof of this fact. The proof
may be obtained, for example, from the following inequality, which is
valid for all nonzero angles in the first quadrant:

sin x << x < tan x.

If we divide both sides of this inequality by sin x, we obtain

x 1

sinx cosx’

from which follows

sin x
cos x << = i

But as x decreases to zero cos x approaches 1, so that the magnitude
(sin x)/x, being contained in the interval between cos x and I, also
approaches 1, that is

sin x

lim—— = |.
z=0 X
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We shall have occasion below to make use of this fact.

Our equation has been proved for the case that x approaches zero
through positive values. But by changing the proof in an obvious way,
it is possible to obtain the same result when x approaches zero through
negative values.

Let us now discuss for a moment the following question. A variable
magnitude may or may not have a limit and the question arises whether
it is possible to give a criterion for determining the existence of a limit
for a variable. We will confine ourselves to an important and sufficiently
general case, for which such a criterion can be given. Let us suppose that
the variable magnitude x, increases or at least does not decrease; that is,
it satisfies the inequalities

X K Xy € X3 00,

and let us also suppose we have determined that none of its values exceeds
a certain fixed number M; that is, x, < M (n = 1, 2, ---). If we mark
the values of x, and the number M on the x-axis, we see that the variable
point x, moves along the axis to the right but constantly remains to the
left of the point M. It is rather obvious that the variable point x, must
inevitably approach a certain limit point a, situated to the left of M or at
most coinciding with M.
So, in the case under consideration, the limit

limx, =a

of our variable exists.

The above argument has an intuitive character but we may consider
it as a proof. In a course in modern analysis a complete proof of this
fact is given on the basis of the theory of real numbers.

As an example let us consider the variable

un = {1 + %)" 6 =i1,2:3,9

The first few values are u, = 2, uy = 2.25, u; ~ 2.37, uy ~ 2.44, -+,
which are seen to increase. From the binomial theorem of Newton it is
possible to prove that this increase holds for arbitrary n. Moreover, it is
also easy to prove that for all n the inequality u, <3 is valid. Conse-
quently, our variable must have a limit which is not greater than 3. We
shall see that this limit plays a very important role in mathematical
physics and in a certain sense is the most natural base for logarithms of
numbers.
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It is customary to denote this limit by the letter e. It is equal to
e=lim (1 + g) — 2.718281828459045 -~ .

A more detailed analysis shows that the number e is not rational.*

It is also possible to show that the limit under consideration exists
and is equal to e not only when n — + co but also when n— — oo. In
both cases n may also take on noninteger values.

Let us mention an important application to physics of the concept
of a limit. It consists of the remarkable fact that only by using the concept
of a limit (passage to the limit) is it possible for us to give a complete
definition of many of the concrete magnitudes encountered in physics.

Let us also consider for the moment the following geometric example.
In elementary geometry the figures considered first are those bounded by
straight line segments. But later there arises the more difficult task of
finding the length of the circumference of a circle with given radius.

If we analyze the difficulties connected with the solution of this problem,
we find that they reduce to the following.

We must give an answer to the question, what is meant by the length
of the circumference; that is, we must give a precise definition of this
length. It is essential that the definition should be expressible in terms
of the lengths of straight-line segments and also that it should provide
us with the possibility of effectively calculating the length of the circum-
ference.

It is understood, of course, that the result of this calculation should
be in agreement with practical experience. For example, if we consider
a circumference consisting of an actual thread, then, if we cut the thread
and stretch it out, we must obtain a segment whose length, within the
limits of accuracy of measurement, coincides with our computed length.

As is known from elementary geometry, the solution of this problem
reduces to the following definition. The length of a circumference is
defined to be the limit approached by the perimeter of a regulart polygon
inscribed in it as the number of sides of the polygon increases beyond
all bounds. Thus the solution of the problem is based essentially on the
concept of a limit.

The length of an arbitrary smooth curve is defined in the same way.

* In this connection we should remark that addition, subtraction, multiplication, and
division (excluding division by zero) of rational numbers, that is numbers of the form
plg where p and g are integers, leads to rational numbers. But this is not necessarily
the case for the operation of taking a limit. The limit of a sequence of rational numbers
may be irrational number.

t It is not important that the polygon should be regular. The only essential feature
is that the greatest side of the variable inscribed polygon should approach zero.
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In the paragraphs just following, we will meet with a number of examples
of geometric and physical magnitudes that can be defined only with the
concept of a limit.

The concepts of limit and infinitesimal were given a definitive formula-
tion at the beginning of the last century. The definitions introduced
here are connected with the name of Cauchy, before whose time mathe-
maticians operated with concepts that were less clear. The present-day
concepts of a limit, of an infinitesimal as a variable magnitude, and of a
real number, resulted from the development of mathematical analysis
and were at the same time the means of stating and clarifying its many
achievements.

§4. Continuous Functions

Continuous functions form the basic class of functions for the operations
of mathematical analysis. The general idea of a continuous function may
be obtained from the fact that its graph is continuous; that is, its curve
may be drawn without lifting the pencil from the paper.

A continuous function gives the mathematical expression of a situation
often encountered in practical life, namely that to a small increase in an
independent variable there corresponds a small increase in the dependent
variable, or function. Excellent examples of a continuocus function are
given by the various rules governing the motion of bodies s = f{1),
expressing the dependence of the distance s on the time ¢. Since the time
and the distance are continuous, a law of motion of the body s = f{(1)
sets up between them a definite continuous relation, characterized by
the fact that to a small increase in the time corresponds a small increase
in the distance.

Mankind arrived at the abstraction of continuity by observing the
surrounding so-called dense media, namely solids, liquids, and gases;
for example, metals, water, and air. In actual fact, as is well known now,
every physical medium represents the accumulation of a large number of
separate particles in motion. But these particles and the distances between
them are so small in comparison with the dimensions of the media in
which the phenomena of microscopic physics take place that many of these
phenomena may be studied with sufficient accuracy if we consider the
medium as being approximately without interstices, that is as continuously
distributed over the occupied space. It is on such an assumption that
many of the physical sciences are based, for example, hydrodynamics,
aerodynamics, and the theory of elasticity. The mathematical concept
of continuity naturally plays a large role in these sciences, and in many
others as well.
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Let us consider an arbitrary function y = f(x) and some specific value
of the independent variable x,. If our function reflects a continuous
process, then to values x which differ only slightly from x, will correspond
values of the function f(x) differing only slightly from the value f{x,)
at the point x,. Thus if the increment x — x, of the independent variable
is small, then the corresponding increment f(x) — f{x,) of the function
will also be small. In other words if the increment of the independent
variable x — x, approaches zero, then the increment f{x) — f(x,) of the
function must also approach zero, a fact which may be expressed in the
following way:

Jim [f(x) — f(xo)] = 0. )

This relation constitutes the mathematical definition of continuity of the
function at the point x,; namely, the function f(x) is said to be continuous
at the point x, , if equality (8) holds.

Finally, we give the following definition. A function is said to be
continuous in a given interval, if it is continuous at every point x, of this
interval; that is, if at every such point equality (8) is fulfilled.

Thus, in order to introduce a mathematical definition of the property
of a function reflected in the fact that its graph is continuous (in the
everyday sense of this word), it was necessary first to define local continuity
(continuity at the point x,) and then on this basis to define continuity
of the function in the whole interval.

This definition, first introduced at the beginning of the last century by
Cauchy, is now generally adopted in contemporary mathematical analysis.
The test of many concrete examples has shown that it corresponds very
well to the practical notion we have of a continuous function, for instance,
as represented by its continuous graph.

As examples of continuous functions, the reader may consider the
elementary functions well known to him from school mathematics x",
sin x, cos x, a%, log x, arc sin x, arc cos x. All these functions are continucus
in the intervals for which they are defined.

If continuous functions are added, subtracted, multiplied, or divided
(except for division by zero), the result is also a continuous function.
But in the case of division the continuity is usually destroyed for those
values x, for which the function in the denominator vanishes. The result
of the division in that case is a function which is discontinuous at the point
X -

The function y = 1/x may serve as an example of a function which
is discontinuous at the point x = 0. Other discontinuous functions are
represented by the graphs in figure 9.
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We recommend that the reader examine these graphs carefully. He will
notice that the breaks in the functions are different kinds: In some cases
a limit f{x) exists as x approaches the point x, where the function suffers
a discontinuity, but this limit is different from f(x,). In other cases, as in
figure 9c, the limit simply does not exist. It may also happen that as x
approaches x, from one side f(x) — f(xo) — 0, but as x — x, from the
other side, f(x) - f(x,) does not approach zero. In this case, of course,
the function has a discontinuity, but we may say that at such a point it is
“continuous from one side.” All these cases are represented in the graphs
of figure 9.

As an exercise we recommend to the reader to consider the question,
what value must be given to the functions

sinx 1 —-cosx x*—1 tanx

L] k] k]
X x? x—1 x

at those points where they are not defined (that is, at the points where the
denominator is equal to zero), in order that they may be continuous at
these points. Also, is it possible to find such numbers for the functions

1 x—2

?
x—1"(x*—4)

tan x,

These discontinuous functions in mathematics represent the numerous
Jjumplike processes to be met with in nature. In the case of a sudden blow,
for example, the value of the velocity of a body changes in such a jump-
like fashion. Many qualitative transitions take place with such jumps.
In §2 we introduced the function Q = f{¢), expressing the way in which
the quantity of heat in a given quantity of water (or ice) depends on the
temperature. In the neighborhood of the melting point of ice the quantity
of heat Q = f{r) changes in a jumplike fashion with changing r.

Functions with isolated discontinuities are encountered quite often
in analysis, along with the continuous functions. But as an example of a
more complicated function, where the number of discontinuities is in-
finite, let us consider the socalled Riemann function, which is equal to
zero at all irrational points and equal to 1/g at rational points of the form
x = p/q (where p/g is a fraction in its lowest terms). This function is
discontinuous at all rational points and continuous at irrational points.
By altering it slightly we may easily obtain an example of a function which
is discontinuous at all points.* Let us remark by the way that even for
such complicated functions modern analysis has discovered many in-

* It is sufficient to set the function equal to unity at the irrational points.
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teresting laws, which are investigated in one of the independent branches
of analysis, the theory of functions of a real variable. This theory has
developed with extraordinary rapidity during the past 50 years.

§5. Derivative

The next fundamental concept of analysis is the concept of derivative,
Let us consider two problems from which it arose historically.

Velocity. At the beginning of the present chapter we defined the velocity
of a freely falling body. To do so we made use of a passage to the limit
from the average velocity over short distances to the velocity at the given
point and the given time. The same procedure may be used to define the
instantaneous velocity for an arbitrary nonuniform motion. In fact, let
the function

s = f(1) (&)

express the dependence of the distance s covered by the material point
in the time . To find the velocity at the moment ¢ = ¢,, let us consider
the interval of time from ¢, to t, + A (h 3% 0). During this time the point
will cover the distance

ds = fto + h) — f(to) -
The average velocity vay over this part of the path will depend on 4

i ﬁ,} = 2Uftto + ) — S}

and will represent the actual velocity at the point f, with greater and
greater accuracy as h becomes smaller. It follows that the true velocity
at the time 7, is equal to the limit

- limf(‘o + h) — f(1o)

R0 h

of the ratio of the increase in the distance to the increase in the time,
as the latter approaches zero without ever being actually equal to zero.
In order to calculate the velocity for different forms of motion, we must
discover how to find this limit for various functions f(t).

Tangent. We are led to investigate a precisely analogous limit by
another problem, this time a geometric one, namely the problem of
drawing a tangent to an arbitrary plane curve.
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Let the curve C be the graph of a function y = f{x), and let A be the
point on the curve C with abscissa x, (figure 10). Which straight line shall
we call the tangent to C at the point 4? In elementary geometry this
question does not arise. The only curve studied there, namely the circum-
ference of a circle, allows us to define the tangent as a straight line which
has only one point in common with the curve. But for other curves such
a definition will clearly not correspond to our intuitive picture of “‘tangen-
cy.” Thus, of the two straight lines L and M in figure 11, the first is ob-
viously not tangent to the curve drawn there (a sinusoidal curve), although
it has only one point in common with it; while the second straight line
has many points in common with the curve, and yet it is tangent to the
curve at each of these points.

To define the tangent, let us consider on the curve C (figure 10) another
point A’, distinct from A, with abscissa x, + 4. Let us draw the secant
AA’ and denote the angle which it forms with the x-axis by 8. We now
allow the point 4’ to approach A along the curve C. If the secant 44’
correspondingly approaches a limiting position, then the straight line T
which has this limiting position is called the rangent at the point A4.
Evidently the angle « formed by the straight line 7 with the x-axis, must
be equal to the limiting value of the variable angle B.

The value of tan 8 is easily determined from the triangle 4BA’ (figure

10):
BA’ — S(xo + h) — flxo)
AB h '

For the limiting position we must have

tan B =

tana = lim tan 8 = ]‘,mf(xo + h) —f(x.,}’

A=A h-0 h

s4 ’/
ay v
vl
¥
3 ¢ /\
o, X
iy FAUANS:
(2] Xo Xth x

Fig. 10. Fig. 11.
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that is, the trigonometric tangent of the angle of inclination of the tangent
line is equal to the limit of the ratio of the increase in the function f(x)
at the point x, to the corresponding increase in the independent variable,
as the latter approaches zero without ever being actually equal to zero.
Let us give still another example leading to the calculation of an analog-
ous limit. Let us suppose that a variable electric current is flowing through
a conductor. Let us assume that we know the function Q = f{r) expressing
the quantity of electricity that has passed through a fixed cross section
of the conductor up to time r. In the period from ¢, to £, + A, there will
flow through this cross section a quantity of electricity 4Q equal to
f(te + B) — f(t,). The average value of the current will therefore be

equal to
fos 40 _ flto + 1) — flty)
av T *
h h
The limit of this ratio as & — 0 will give us the value of the current at

the time £,
I = lim&‘_'l_'_}f)____f_(fﬂ_).
h-0 h

All the three problems discussed, in spite of the fact that they refer to
different branches of science, namely mechanics, geometry, and the
theory of electricity, have led to one and the same mathematical operation
to be performed on a given function, namely to find the limit of the ratio
of the increase of the function to the corresponding increase # of the
independent variable as # — 0. The number of such widely different
problems could be increased at will, and their solution would lead to the
same operation. To it we are led, for example, by the question of the rate
of a chemical reaction, or of the density of a nonhomogeneous mass and
so forth. In view of the exceptional role played by this operation on
functions, it has received a special name, differentiation, and the result
of the operation is called the derivative of the function.

Thus, the derivative of the function y = f(x), or more precisely, the
value of the derivative at the given point x is the limit* approached by the
ratio of the increase f(x + h) — f(x) of the function to the increase A
of the independent variable, as the latter approaches zero. We often write
h = 4dx, and f(x + 4x) — f(x) = Ay, in which case the definition of the
derivative is written in the concise form:

* It is understood that we are speaking here of the case where the limit in question
actually exists, If this limit does not exist, then we say that at the point x the function
does not have a derivative.
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The value of the derivative obviously depends on the point x at which
it is found. Thus the derivative of a function y = f(x) is itself a function
of x. It is customary to denote the derivative thus

g fEED Iy B

az-0 Ax

S'x) =

Certain other notations are also customary for the derivative:

df(x)
dx 5 I'd ,Ol'y oryx

We should also remark that the notation j looks like a fraction, al-

though it is read as a single symbol for the derivative. In the following
sections the numerator and the denominator of this “fraction’ will take
on independent meaning, in such a way that their ratio will coincide with
the derivative so that this manner of writing is completely justified.
The results of these examples may now be formulated as follows.
The velocity of a point for which the distance s is a given function of
the time s == f{r) is equal to the derivative of this function

v=ys = f'(1).

More concisely, the velocity is the derivative of the distance with respect
to time.

The trigonometric tangent of the angle of inclination of the tangent
line to the curve y = f{x) at the point with abscissa x is equal to the
derivative of the function f(x) at this point:

tano = y' = f'(x).

The strength of the current 7 at the time ¢, if Q@ = f(¢) is the quantity
of electricity which up to time r has passed through a cross section of the
conductor, is equal to the derivative

I=0 =sr0.

Let us make the following remark. The velocity of a nonuniform motion
at a given time is a purely physical concept, arising from practical ex-
perience. Mankind arrived at it as the result of numerous observations
on different concrete motions. The study of nonuniform motion of a
body on different parts of its path, the comparison of different motions
of this sort taking place simultaneously, and in particular the study of the
phenomena of collisions of bodies, all represented an accumulation of
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practical experience that led to the setting up of the physical concept
of the velocity of a nonuniform motion at a given time. But the exact
definition of velocity necessarily depended upon the method of defining
its numerical value, and to define this value was possible only with the
concept of the derivative.

In mechanics the velocity of a body moving according to the rule
s = f{(1) at the time ¢ is defined as the derivative of the function f{¢) for this
value of r.

The discussion at the beginning of the present section has shown,
on the one hand, the advantages of introducing the operation of finding
the derivative, and on the other has given a reasonable justification for
the above formulated definition of the velocity at any given moment.

Thus, when we raised the question of finding the velocity of a point
in nonuniform motion we had, properly speaking, only an empirical
notion of its value but no exact definition. But now, as a result of our
analysis, we have reached an exact definition of the value of the velocity
at a given moment, namely the derivative of the distance with respect
to the time. This result is extremely important from a practical point of
view, since our empirical knowledge of the velocity has been greatly
enriched by the fact that we can now make an exact numerical calculation.

What has just been said refers equally well, of course, to the strength
of a current and to many other concepts expressing the rate of some
process, physical, chemical, and so forth.

This situation may serve as an example for numerous others of a
similar nature, where practical experience has led to the formation of a
concept relating to the external world (velocity, work, density, area,
and so forth) and then mathematics has enabled us to define this concept
precisely, whereupon we can make use of the concept in practical cal-
culations.

We have already noted at the beginning of the chapter that the concept
of a derivative arose chiefly as the result of many centuries of effort
directed towards the solving of two problems: drawing a tangent to a
curve and finding the velocity of a nonuniform motion. These problems,
and also the calculation of areas discussed later, interested mathematicians
in ancient times. But until the 16th century the statement and the method
of solution for each problem of this sort bore an extremely special charac-
ter. The accumulation of all this extensive material was reduced to a
theoretically complete system in the 17th century in the work of Newton
and Leibnitz. An important contribution to the foundations of present-
day analysis was also made by Euler.

But it must be said that Newton and Leibnitz and their contemporaries
provided very little logical basis for their great mathematical discoveries;
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in their methods of reasoning and in the concepts with which they operated
there was much that is unclear from our point of view. Even at that time
the mathematicians themselves were quite conscious of this, as is shown
by the embittered discussions to be found in their correspondence with
one another. However, these mathematicians of the 17th and 18th centuries
carried on their purely mathematical activities in very close association
with the research of other investigators, in the various branches of natural
science (physics, mechanics, chemistry, technology). The statement of a
mathematical problem usually arose from practical needs or from a wish
to understand some phenomenon of nature, and as soon as the problem
was solved, the solution was submitted in one way or another to a practical
test. Consequently, in spite of a certain lack of logical basis, mathematics
was able to advance in extremely useful directions.

Examples for the calculation of derivatives. The definition of the
derivative as the limit

f(x + k) — f(%)
h

e

76 = iy

allows us to calculate the
derivative of any given con-
crete function.

Of course, it must be
admitted that cases are
possible where the function
at one point or another or
even at many points simply
does not have a derivative;
in other words, the ratio

f(x o k) —ﬂJC) FiG. 12,
h

L~ T ———

as h— 0 does not approach a finite limit. This case obviously occurs
at every point of discontinuity of the function f{(x), since here the ratio

fix + h) —fx)

7 (10)

has a numerator which does not approach zero while the denominator
decreases without bound. The derivative may also fail to exist at a point
where the function is continuous. A simple example is given by any
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point where the graph of the function forms an angle (figure 12). At such
a point the curve of the graph has no definite tangent, and consequently
the function has no derivative. Often at such points the expression (10)
approaches different values, depending on whether 4 approaches zero
from the right or from the left, so that if # approaches zero in an arbitrary
manner, the ratio (10) simply has no limit. An example of a more com-
plicated function without a derivative is given by

x sin)l?forx # 0,
0 forx = 0.

The graph of this function is drawn in figure 13. At the point x = 0
it has no derivative because, as is evident from the graph, the secant 04
does not approach any definite position even when 4 — 0 from one side.
In fact, the secant OA oscillates endlessly back and forth between the
straight line OM and the straight line OL. The corresponding ratio (10)
in this case has no limit, even if h preserves the same sign as it approaches
Zero.

yl

1

Fic. 13.
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Let us remark finally that it is possible to define, in a purely analytic
way by means of a formula, a continuous function which does not have
a derivative at any point. An example of such a function was first given
by the outstanding German mathematician of the last century, Weierstrass.

Consequently the class of differentiable functions is considerably
narrower than that of continuous functions.

Let us pass now to the actual calculation of the derivatives of the
simplest functions.

l. y = ¢, where c is a constant. A constant may be considered as a
special case of a function that remains equal to the same number for
arbitrary x. Its graph is a straight line parallel to the x-axis at a distance
equal to ¢. This straight line forms with the x-axis an angle « = 0, and
obviously the derivative of a constant is identically equal to zero:
¥ = (¢ = 0. From the point of view of mechanics, this equation
means that the velocity of a fixed point is equal to zero.

2. y=xt

et D=fo) | GAM=p gy,

As h— 0 we obtain* in the limit 2x; consequently
y = (x¥ = 2x.
3. y = x™ (n a positive integer).

S +h) —fx) _ (x+h"—x"
h N h

(n — 1)

x" _’_ nx"-14 + n 2! xu—!hﬁ _’_ _’_ hm — xn

h

= nx"! 4+ n(nz_‘ l)_ X" e Y

Every addend on the right side, beginning with the second, approaches
zero as h— 0; consequently

Y=y = men

This formula remains true for arbitrary n positive or negative, fractional

T we always assume here that & £ 0.
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or even irrational, although the proof must then be different. We will
make use of this fact without proving it. Thus for example

-1 A D | .
(‘\/x) =(x*) _ixi_wx:!(x>0)’
YA :_1_ - 1
(Vay = by =32t = o=, (2 0);
(&) =y =—1xt= — L (x#0)
() = mx™, (x > 0).
4. y = sin x.
sin(x + h) —sinx _ 2sin h/2cos(x + h/2)  sinhj2 h
% = ; = ) cos(x+2).

As explained earlier, the first fraction approaches unity as #— 0, and
cos (x + h/2) obviously approaches cos x. Thus the derivative of the sine
is equal to the cosine

¥ = (sin x)’ = cos x.
We suggest to the reader that by the same sort of argument he prove that
(cos x)) = —sin x.

5. Earlier (Chapter II, §3) we have already noted the existence of the
limit

lim (1 +%) L o

We also remarked that for the calculation of this limit no essential role
is played by the fact that n took on only positive integral values. It is
important only that the infinitesimal 1/n, which is being added to unity,
and the exponent n, which is increasing beyond all bounds, should be
reciprocal to each other.

Making use of this assertion, we can easily find the derivative of the
logarithm y = log, x

logs (x + h) —logax 1 x+h AL
7 —hlog, ) .

= log. (1 + 5
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The continuity of the logarithm allows us to replace the quantity under
the log sign by its limit, which is equal to e; thus

h

lim (1 + ;)m =

(in this case the role of n — oo is played by the increasing quantity x/h).
As a result, we obtain the rule for differentiating a logarithm

!
(log, x)y = = log, e.
This rule becomes particularly simple if as the base of our logarithms we

choose the number e. Logarithms taken to this base are called natural
logarithms and are denoted by In x. We may write

(]0g¢ .1‘)’ =

-

or again

b
(In x) S

§6. Rules for Differentiation

From the examples given earlier it may appear that the calculation of
the derivative of every new function demands the invention of new methods.
This is not the case. The development of analysis was made possible to no
small extent by the discovery of a simple unified method for finding the
‘derivative of an arbitrary “elementary” function (that is, a function which
may be expressed by a formula consisting of a finite combination of the
fundamental algebraic operations, the trigonometric functions, the
operation of raising to a power, and the taking of logarithms). At the
basis of this method are the so-called rules of differentiation. They consist
of a number of theorems that allow us to reduce more complicated
problems to simpler ones.

We will explain here the rules of differentiation and will try to be very
brief in deducing them. If the reader wishes to form merely a general
idea of analysis, he may omit the present section, remembering only
that there exists a means of actually finding the derivative of any element-
ary function. In this case it will be necessary, of course, for him to take
on faith some of the calculations in our later examples.

Derivative of a sum. Assume that y is given as a function of x by the
expression

¥ = $(x) + (x),
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where u = ¢(x) and v = y(x) are known functions of x. We assume
moreover that we can find the derivatives of the functions ¥ and v. How
then are we to find the derivative of the function y ? The answer is simple

yV=u+v)=u+v. (1)

In fact, let us give x an increment 4x; then u, v, and y will each receive
an increment du, dv, and 4y, connected by the equation

dy = du + dv.
Thus*

&y _du dv

A 4dx  4dx’

and after the passage to the limit for 4x — 0 we at once get formula
(11), if, of course, the functions # and v have derivatives,
Analogously we may derive the formula for differentiating the difference
of two functions
u—vy=u —v. (12)

Derivative of a product. The rule for the differentiation of a product
is somewhat more complicated. The derivative of the product of two
functions, each of which has a derivative, exists, and is equal to the sum
of the product of the first function by the derivative of the second and
the product of the second by the derivative of the first; that is

(uv) = w' + vu'. (13)

In fact, let us give x an increment dx. Then the functions u, v and
y = uv will receive the increments du, dv, 4y, satisfying the relation

dy = (u+ du)v + 4v) — uwv = u dv + v du + du Ao,

from which

dy Ao Adu v
Z;_udx-'_vdx-l-dudx'

After passage to the limit for 4x — 0 the first two summands on the

right side produce the right side of formula (13) while the third summand
vanishes.t Consequently, in the limit we obtain the rule (13).

* Here 4dx is never equal to zero.

t The final summand here approaches zero for 4x — 0, since dv/dx approaches
a finite number, equal to the derivative ¢*, which was assumed rom the beginning to
exist, and du — 0, since the function u, assumed to have a derivative, is continuous.
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In the particular case v = ¢ = const, we have
(cu)’ = cu’ + uc’ = o', (14)

since the derivative of a constant is equal to zero.

Derivative of a quotient. Let y = u/v, where u and v have a derivative
for a given x, with v s 0 for that value of x. Obviously
u+du u_vdu—udv
v+dv v (p+doye’
from which

v=———u
A Fo ’
4y _ dx Ax  vu - uv (dx —0).

Here we have again made use of the fact that for a function v which
has a derivative we necessarily have 4v — 0, when 4x — 0. Thus

’

uy'  od —w'

(o) = (13)
Let us give some examples of the application of these rules

@2x3 —5Y =2(x% — (5) =2 -3x® — 0 = 6x%

(x?sin x)’ = x%sin x)’ + (x®)" sin x = x%cos x + 2xsin x;

, csinx \' cos x(sin x)’ — sin x(cos x)’
gy —{{ ) gomleinad —pinaloon)
cos X cosZ x
€OS X - €os x — sin x(—sin x) 1 5
= s = 57— = secx.
cosix cos®x

We recommend to the reader to prove for himself the formula

(cot x)) = —csc? x.

Derivative of the inverse function. Let us consider a function y = f(x),
which is continuous and increasing (decreasing) on the interval [a, b].
By increasing (decreasing) we mean that to a greater value of x in the
interval [a, b) corresponds a greater (smaller) value of y (figure 14).

Let ¢ = f(a) and d = f(b). In figure 14 it is evident that for each value
of y from the interval [¢, d] (or [d, ¢], respectively) there corresponds
exactly one value of x from the interval [a, ] such that y = f(x). Thus
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on the interval [c, d] (or [d, c]) we have a completely determined function
x = ¢(y), which is called the inverse function of y = f(x). In figure 14 it
is clear that the function ¢(y) is continuous, a fact which is proved in
modern analysis by strictly analytical methods. Now let dx and 4y

i
y
o
d
: ylpeenss Sy
1 1
: '.
g i i ‘
b e ARt S
cp---—- : ' R
' H ' H !
i i ‘ , |
A . .
o a X b x o o x b T

Fic. 14,

correspond respectively to the increments in x and y. It is evident that

dy

1 :
Zx- = Z'—xT“A—y',IfAy #0.

In the limit this gives us a simple relation between derivatives of the direct

and inverse functions
1

Vo = = (16)

=

Let us make use of this relation to find the derivative of the function
y = a*. The inverse function is x = log,y, which we are already able
to differentiate, and so we may write

1 1

(a”)_,- = (logn y); = I;‘y (logﬂ e) —

ylog.a= a*Ina. (17)

In particular (e¥)’ = &*.

As another example let us take y == arc sin x. The inverse function
is x = sin y. Thus
1 1 1 1

(acc:sin = (siny), - cos y - V1 — (sin y)* Tl
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Table of derivatives. Let us tabulate the derivatives of the simplest
elementary functions (Table 2).

Table 2
y Y y y y y
|
c 0 Inx = tan x sec? x
L | 1 | i —]
x* axe- i'e — e arc sin x ——
08 x 08a n ,\/] — xt
; |
e* e* sin x COS X arccosx |~ ‘/1—?
i |
a* a*lna Cos X — sin x arc tan x T

These formulas have been calculated and explained earlier, with the
exception of the last two which the reader may, if he wishes, easily derive
for himself by using the rule for differentiation of an inverse function.

Calculation of the derivative of a function of a function. It remains
to consider the last and most difficult rule for differentiation. The reader
in possession of this rule and of a set of tables may with perfect right
consider that he is able to differentiate any elementary function.

In order to apply the rule we are about to give, it is necessary to be
completely clear about how the function we wish to differentiate is
constructed; that is, which operations must we perform on the inde-
pendent variable x, and in which order, to produce the value of the
dependent variable p.

For example, to calculate the function

y = sin x2,

it is necessary first of all to raise x to the second power and then to take
the sine of the magnitude so obtained, a procedure which may be described
in the following way: y = sin u, where u = x2.

On the other hand, in order to calculate the function

y = sin® x,

it is necessary first of all to find the sine of x, and then to raise the value
so found to the second power, a procedure which may be written thus:
y = u® where u = sin x.
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Here are some examples:

L.y=03x+4P%y = v’ u=3x + 4,
2.y=V1I—x,y=wu=1—x%
J.y=¢e*y=e“ u=kx

In more complicated cases we have a chain of simple relations, which
may have several links, For example,

4. y=cos®x®,y =1’ u = cosv;v = x%

If y is a function of the variable u

y = f(u), (18)
and u in its turn is a function of the variable x
u = ¢(x), (19)

then p, being a function of u, is also a certain function of x, which may
denote as follows

y = Fx) = fl$(x)]. (20)

By considering more complicated cases we may form, for example,
the function

y = P(x) = fHP(x)]},
which is equivalent to the equations
y =f(u)’ u= ‘lf'(v): v= ‘!’{x)»

and we could form still longer chains.

We now show how to calculate the derivative of the function F(x)
defined by equation (20) if we know the derivative of f{u) with respect
to u and the derivative of ¢(x) with respect to x.

Let us give to x the increment 4dx; then by (19) u will receive a certain
increment 4y and by (18) y will receive an increment dy. Thus we may

write
4y _ 4y 4du

Ax du dx’

Now let dx approach zero. Then du/dx — u, . Furthermore, from
the continuity of u, the increase du — 0, and therefore dy/4u — y, (the
existence of the derivatives y, and u, was assumed).
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Thus we have proved the important formula for the derivative of a
function of a function*
Yz = Yulls . @1

Let us calculate, from formula (21) and the fundamental table of
derivatives given, the derivatives of the functions we have been con-
sidering:

Ly=0Cx+4°= 1y, = (@®)Bx +4), = 3”3 = 9(3x + 4)°.
2.y=VIi—-xt=uy =@ (1 —x, = lzu-é(—zx)
X
VI1—xt

Jy=e==c¢e"y, = (e"), u, = e -k = ke**.

If y = flu), u = ¢(v), v = (x), then

I_ ’ _— ’ * ’, — ’ ’ !
Ve = Yu Uy = YUy " Vx) = Yy " Uy, " Uy

It is clear how to generalize this formula for the case of an arbitrary
(finite) number of functions in the chain. For example,

4.y = cos® x%; y, = (%), (cosv), - (x?), = 3u*(—sinr) - 2x
= —6x cos® x? sin x2,

In our explanation of how to calculate the derivative of a function of a
function, we have introduced intermediate variables u, v, --- . But in fact,
after a little practice one may dispense with them, simply keeping in mind
the functions they denote.

The elementary functions. To close the present section let us remark
that the functions whose derivatives were listed in tabular form (Table 2)
may be used to define the so-called elementary functions. These elementary
functions are defined as those functions that may be obtained from the
preceding simple functions by the four arithmetical operations and the
operation of taking a function of a function, each of these operations being
performed a finite number of times.

For example, the polynomial x* — 2x%2 + 3x — 5 is an elementary
function since it is obtained by arithmetic operations from a number of
functions to the form x*. The function In /1 — x2 is also elementary,

* In deducing this formula we have tacitly assumed that, as 4x approaches zero,
du is never equal to zero. But the formula remains true even when this assumption
does not hold.
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since it is obtained from the polynomial ¥ = | — x? by the operation
v = u'?, and subsequently the operation In v.

The rules for differentiation discussed earlier are sufficient to obtain the
derivative of any elementary function, as soon as we know the derivatives
of the simplest elementary functions.

§7. Maximum and Minimum; Investigation of the Graphs of Functions

One of the simplest and most important applications of the derivative
is in the theory of maxima and minima. Let us suppose that on a certain
interval @ < x << b we are given a function y = f(x) which is not only
continuous but also has a derivative at every point. Our ability to cal-
culate the derivative enables us to form a clear picture of the graph of the
function. On an interval on which the derivative is always positive the
tangent to the graph will be directed upward. On such an interval the

YA

=Y

X3 Xg b

FiG. 15.

function will increase; that is, to a greater value of x will correspond a
greater value of f{x). On the other hand, on an interval where the derivative
is always negative, the function will decrease; the graph will run down-
ward.

Maximum and minimum. In figure 15 we have drawn the graph of a
function y = f(x) defined on the interval (@, b). Of a special interest are
the points of this graph whose abcissas are xg, x;, X3.

At the point x, the function f(x) is said to have a local maximum; by
this we mean that at this point f{x) is greater than at neighboring points;
more precisely f{x,) > f(x) for every x in a certain interval around the
point Xx,.
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A local minimum is defined analogously.

For our function a local maximum occurs at the points x, and x;,
and a local minimum at the point x, .

At every maximum or minimum point, if it is inside the interval [a, 5],
i.e., if it does not coincide with one of the end points a or b, the derivative
must be equal to zero.

This last statement, a very important one, follows immediately from the
definition of the derivative as the limit of the ratio 4y/dx. In fact, if we
move a short distance from the maximum point, then 4y < 0. Thus for
positive dx the ratio 4y/dx is nonpositive, and for negative dx the ratio
dy/Ax is nonnegative. The limit of this ratio, which exists by hypothesis,
can therefore be neither positive nor negative and there remains only the
possibility that it is zero. By inspection of the diagram it is seen that this
means that at maximum or minimum points (it is customary to leave
out the word “local,” although it is understood) the tangent to the graph
is horizontal. In figure 15 we should remark that at the points x, and x,
also the tangent is horizontal, just as it is at the points x, , X, , X, , although
at these points the function has neither maximum nor minimum. In
general, there may be more points at which the derivative of the function
is equal to zero (stationary points) than there are maximum or minimum
points.

Determination of the greatest and least values of a function. In
numerous technical questions it is necessary to find the point x at
which a given function f{x) attains its greatest or its least value on a given
interval.

In case we are interested in the greatest value, we must find x, on the
interval [a, ] for which among all x on [a, b] the inequality f(x,) = f(x)
is fulfilled.

But now the fundamental question arises, whether in general there
exists such a point. By the methods of modern analysis it is possible to
prove the following existence theorem: If the function f(x) is continuous
on a finite interval, then there exists at least one point on the interval
for which the function attains its maximum (minimum) value on the
interval [a, b].

From what has been said already, it follows that these maximum or
minimum points must be sought among the “stationary” points. This
fact is the basis or the following well-known method for finding maxima
and minima.

First we find the derivative of f(x) and then solve the equation obtained
by setting it equal to zero

f'(x) = 0.
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If x,, x,, -+, x, are the roots of this equation, we then compare the
numbers f(x,), f(x.), ---, f(x,) with one another. Of course, it is necessary
to take into account that the maximum or minimum of the function may
be found not within the interval but at the end (as is the case with the
minimum in figure 15) or at a point where the function has no derivative
(as in figure 12). Thus to the points x, , x,, ***, x,, we must add the ends
a and b of the interval and also those points, if they exist, at which there
is no derivative. It only remains to compare the values of the function
at all these points and to choose among them the greatest or the least.

With respect to the stated existence theorem, it is important to add
that this theorem ceases, in general, to hold in the case that the function
f(x) is continuous only on the interval (a, b); that is, on the set of points
x satisfying the inequalitiesa < x < b. Weleave it to the reader to consider
the fact that the function 1/x has neither a maximum nor a minimum
on the interval (0, 1).

Let us look at some examples.

From a square piece of tin of side a it is required to make a rectangular
open box of maximum volume. If from the corners of the original square
we take away squares of side x (see §2, example 2) we get a box with the
volume

V = x(a — 2x)%

Our problem then becomes to find the value of x for which the function
WV(x) attains its greatest value on the interval 0 < x < a/2. In accordance
with the rule, we find the derivative and set it equal to zero

V'(x) = (a — 2x)* — 4x(a — 2x) = 0.
-Solving this equation, we find the two roots

a a
X, = § P xe —_ 6 .
To these we adjoin the left end of the interval (the right end is identical
with x,) and compare the values of the function at these points

a 2 a
o) = 0; ¥ (3) = 554 ¥ (35) = 0.
Thus the box will have the greatest volume, equal to 2/27 a®, for the
height x = a/6.

As a second example, let us examine the problem of the lamp at the
skating rink (see §2, example 3). At what height # should we place the
lamp in order that the edge of the rink may receive the greatest illumina-
tion?
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For formula (3) §2, our problem reduces to determining the value of A
for T = A sin afh® + r® takes on its greatest value. Instead of A4 it is
more convenient here to find the angle « (figure 3, Chapter I). We have

h = rtan «,
so that )
T—i&— isin acos? a
rt 1 +tan’a 2 '

Then it is required to find the maximum of the function 7(«) among
those values of « which satisfy the inequality 0 < « < w/2. To do this,
we find the derivative and set it equal to zero

T'(a) = }A? (cos® « — 2 sin® a cos o) = 0.

This equation splits into two

cosa = 0,cos2a — 2sin?a = 0.

The first equation has the root « = /2, which coincides with the end
of the interval (0, #/2). The second equation may be put in the form

tan® o = %

But since 0 < o« << 7/2, we have the result « ¥ 35°15". So this is the value
for which the function 7(«) attains its maximum (at the ends of the interval,
T = 0). The desired height 4 is thus equal to

h=rtana = éwO.?r.
For best illumination of the edge of the rink the lamp should be placed
at a height equal to about 0.7 times the radius.

But now let us suppose that the facilities at our disposal do not allow
us to raise the lamp to a height greater than a certain H. Then the angle
« may vary not from 0 to #/2 but only within the narrower limits
0 < « < arc tan (H/r). For example, let r = 12 meters and H = 9 meters.
In this case, it is in fact possible to raise the lamp to the height # = r/+/2,
which amounts to somewhat more than 8 meters, so that this is what we
ought to do. But if H is less than 8 meters (for example, if we have at
our disposal only a pole of length 6 meters), then it turns out that the
derivative of the function T{«) in the interval [0, arc tan (H/r)] is nowhere
equal to zero. In this case the maximum is attained at the end of the
interval, and the lamp should be raised to the greatest possible height
H = 6 meters.
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Up to now we have considered a function on a finite interval. If the
interval is infinite in length, then even a continuous function may fail
to attain its greatest or least value but may, for example, continue to
grow or to decrease as x approaches infinity.

Thus the functions y = kx + b (see figure 5, Chapter I), y = arc
tan x (figure 16a), y = In x (figure 16b) nowhere attain either a

yi
v 1
T
Z - ol /7 *
432 1 234 *
7
z ' y=in x
y=arc tan x
FIG. l6a. FiG. 16b.

maximum or a minimum. The function y = e~=* (figure 16¢) attains
its maximum at the point x = 1, but nowhere attains a minimum. As for
the function y = x/(1 + x?) (figure 16d), it reaches its minimum at the
point x = — | and its maximum at the point x = 1.

y’O""
FiG. léc.
yi
f
-f o 1 x
- X
Y= i+a?

FiGg. 16d.
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In the case of an interval of infinite length the investigation may be
reduced to the ordinary rules. It is only necessary to consider in place
of d(a) and f(b) the limits

A= xl_i.r_ruloj(x), B = lim f(x).

Derivatives of higher orders. We have just seen how, for closer study
of the graph of a function, we must examine the changes in its derivative
f'(x). This derivative is a function of x, so that we may in turn find its
derivative.

The derivative of the derivative is called the second derivative and is
denoted by

D =y or [/ =f"(x).
Analogously, we may calculate the third derivative
D) =y or [f")]) = f"(x)

and more generally the nth derivative or, as it is also called, the derivative
of nth order

yln] =fln](x)'

Of course, it must be kept in mind that, for a certain value of x (or even
for all values of x) this sequence may break off at the derivative of some
order, say the kth; it may happen that f*)(x) exists but not f*+V(x).
Derivatives of arbitrary order will appear later in §9 in connection with
the Taylor formula. For the moment we confine ourselves to the second
derivative.

Significance of the second derivative; convexity and concavity. The
second derivative has a simple significance in mechanics. Let s = f{(r)
be a law of motion along a straight line; then 5" is the velocity and s
is the ““velocity of the change in the velocity’ or more simply the *“‘accelera-
tion” of the point at time r. For example, for a falling body under the
force of gravity

2
s=£2£—-+vof+301
s’ =gt +v,,

s =g,

that is, the acceleration of falling bodies is constant.
The second derivative also has a simple geometric meaning. Just as the
sign of the first derivative determines whether the function is increasing
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or decreasing, so the sign of the second derivative determines the side
toward which the graph of the function will be curved.

Suppose, for example, that on a given interval the second derivative
is everywhere positive. Then the first derivative increases and therefore

¥ ra
@, a, N & a
o x O X
Fig. 17.

f'(x) = tan « increases and the angle « of inclination of the tangent line
itself increases (figure 17). Thus as we move along the curve it keeps
turning constantly to the same side, namely upward, and is thus, as they
say, “convex downward.”

On the other hand, in a part of a curve where the second derivative is
constantly negative (figure 18) the graph of the function is “convex
upward.”*

y y

/4 a, %2\ 2/

o x O X
FiG. 18.

* Strictly defined, the “convexity upward” is that property of the curve that consists
of its lying above (more precisely **not below™) the chord joining any two of its points;
analogously, for “‘convexity downward” (which is also simply called *‘concavity™),
the curve does not lie above its chords.
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Criteria for maxima and minima; study of the graphs of curves. If
throughout the whole interval over which x varies the curve is convex
upward and if at a certain point x, of this interval the derivative is equal
to zero, then at this point the function necessarily attains its maximum;
and its minimum in the case of convexity downward. This simple con-
sideration often allows us, after finding a point at which the derivative
is equal to zero, to decide thereupon whether at this point the function
has a local maximum or minimum. *

Example 1. Let us study the appearance of the graph of the function

x*  5x

We take its first derivative and set it equal to zero,
fx)=x>*—5x+6=0.

The roots of the equation obtained in this way are x; = 2, x, = 3. The
corresponding values of the function are

f2) = 2%, f3) = 2%.

We then mark these two points on the diagram. Along with these we
may also mark the point with coordinates x = 0 and y = f(0) = —2
where the graph intersects the p-axis. The second derivative is f*'(x)
= 2x — 5. This reduces to zero for x = §, so that

f'(x)>0forx >3%,

f'(x) <Oforx <$.
The point

is a point of inflection of the graph. To the left of this point the curve is
convex upward, and to the right it is convex downward.

It is now evident that the point x = 2 is a maximum point and
the point x = 3 is a minimum point for the function.

*In more. cot:nplicated cases, where the second derivative itself changes sign, the
problem of determining the character of the stationary point is solved by means of the
Taylor formula (§9).
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On the basis of these
results we conclude that the
graph of the function y = f(x)
has the appearance sketched
in figure 19. To the right
of the point (0, —2) the
curve rises with increasing
— x, is convex upwards, and
attains its maximum at the
point (2, 22), after which it
begins to fall. At the point
! (23, 2%), where f"(x) = 0,
the convexity changes to
concavity. Then at the point
(3, 23) the function attains
its minimum and from there
on rises to infinity. The
final statement comes from
'7 the fact that the first term

L

N

1
a8t
>

Nl

of the function, the one

containing the highest (third)

power of x, approaches in-
FiG. 19. finity faster than the second

and third terms. For the same
reason the graph of the function approaches — oo as x assumes numerically
larger negative values.

Example 2. We shall prove the inequality e* > 1 4+ x for arbitrary
x. For this purpose we consider the function f(x) = e* — x — 1. Its
first derivative is f'(x) = e* — 1, which reduces to zero only for x = 0.
The second derivative f"(x) = ¢* > 0 for all x. Consequently the graph
of the function f{x) is convex downward. The number f(0) = 0 is a
minimum for the function and e — x — 1 > 0 for all x.

The study of graphs has many different purposes. They often show
very clearly, for example, the number of real roots of a given equation.
Thus, in order to demonstrate that the equation

xer = 2

has a single real root, we may study the graphs of the functions y = &*
and y = 2/x (as sketched in figure 20). It is easy to see that these graphs
intersect at only one point, so that the equation e* = 2/x has exactly one
root.
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The methods of analysis are extensively applied to questions of approxi-
mate calculation of the roots of an equation. On this subject, see
Chapter 1V, §5.

§8. Increment and Differential of a Function

The differential of a function. Let us consider a function y = f(x)
that has a derivative. The
increment of this function v}

dy = fix + dx) — fix),

corresponding to the in-
crement Ax, has the
property that the ratio %
dyjdx, as Ax — 0, ap-
proaches a finite limit,
equal to the derivative

4y
I — f(x).

This fact may be written
as an equality
dy

S s Fig. 20.
ax S (xX) + o,

where the value of « depends on 4x in such a way that as 4x — 0, « also
approaches zero. Thus the increment of a function may be represented
in the form

dy = f'(x) dx + odx,

where o — 0, if 4x — 0.

The first summand on the right side of this equality depends on dx
in a very simple way, namely it is proportional to dx. It is called the
differential of the function, at the point x, corresponding to the given
increment 4dx, and is denoted by

dy = f'(x) dx.

The second summand has the characteristic property that, as 4x — 0,
it approaches zero more rapidly than 4x, as a result of the presence of the
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factor o. It is therefore said to be an infinitesimal of higher order than
dx and, in case f'(x) 7 0, it is also of higher order than the first summand.
By this we mean that for

74 sufficiently small 4x the
/ second summand is small
2 in itself and its ratio to
dx is also arbitrarily small.

The decomposition of 4y
into two summands, of
which the first (the principal
part) depends linearly on
Adx and the second is
negligible for small Ax, may

FiG. 21. be illustrated by figure 21.

The segment BC = 4y,

where BC = BD + DC, BD =tan B+ 4x = f'(x) dx = dy, and DC
is an infinitesimal of higher order than 4x.

In practical problems the differential is often used as an approximate
value for the increment in the function. For example, suppose we have
the problem of determining the volume of the walls of a closed cubical
box whose interior dimensions are 10 x 10 x 10 cm and the thickness
of whose walls is 0.05 cm. If great accuracy is not required, we may argue
as follows, The volume of all the walls of the box represents the increment
dy of the function y = x*for x = 10 and 4x = 0.1. So we find approxi-
mately

dy ~ dy = (x3 dx = 3x24x = 3- 102-0.1 = 30 cm®,

For symmetry in the notation it is customary to denote the increment
of the independent variable by dx and to call it also a differential. With
this notation the differential of the function may be written thus:

dy = f'(x) dx.

Then the derivative is the ratio f'(x) = dy/dx of the differential of the
function to the differential of the independent variable.

The differential of a function originated historically in the concept
of an “indivisible.”” This concept, which from a modern point of view
was never very clearly defined, was in its time, in the 18th century, a
fundamental one in mathematical analysis. The ideas concerning it have
undergone essential changes in the course of several centuries. The
indivisible, and later the differential of a function, were represented as
actual infinitesimals, as something in the nature of an extremely small
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constant magnitude, which however was not zero. The definition given
in this section is the one accepted in present-day analysis. According to this
definition the differential is a finite magnitude for each increment dx
and is at the same time proportional to dx. The other fundamental
property of the differential, the character of its difference from 4y, may
be recognized only in motion, so to speak: if we consider an increment
Ax which is approaching zero (which is infinitesimal), then the difference
between dy and Ay will be arbitrarily small even in comparison with
dx.

This substitution of the differential in place of small increments of the
function forms the basis of most of the applications of infinitesimal
analysis to the study of nature. The reader will see this in a particularly
clear way in the case of differential equations, dealt in this book in Chapters
V and VL

Thus, in order to determine the function that represents a given physical
process, we try first of all to set up an equation that connects this function
in some definite way with its derivatives of various orders. The method
of obtaining such an equation, which is called a differential equation,
often amounts to replacing increments of the desired functions by their
corresponding differentials.

As an example let us solve the ZA
following problem. In a rectangu-
lar system of coordinates Oxyz,
we consider the surface obtained
by rotation of the parabola whose
equation (in the Oypz plane) is
z =y This surface is called a
paraboloid of revolution (figure
22). Let vdenote the volume of the
body bounded by the paraboloid
and the plane parallel to the Oxy
plane at a distance z from it.
It is evident that » is a function
of z(z > 0). X

To determine the function v, we Fig. 22.
attempt to find its differential dbv.

The increment 4o of the function v at the point z is equal to the volume
bounded by the paraboloid and by two planes parallel to the Oxy plane
at distances z and z + 4z from it.

It is easy to see that the magnitude of dv is greater than the volume
of the circular cylinder of radius 1/z and height 4z but less than that of the
circular cylinder with radius v/z + 4z and height 4z.
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Thus
mzdz < dv < m(z + 42) 4z

and so
dv=7m(z+ 0424z = 7z Az + =0 A2,

where 8 is some number depending on 4z and satisfying the inequality
0<b<l.

So we have succeeded in representing the increment dv in the form
of a sum, the first summand of which is proportional to 4z, while the
second is an infinitesimal of higher order than 4z (as 4z — 0). It follows
that the first summand is the differential of the function v

dv = 7wz 4z,
or
dv = 7wz dz,

since 4z = dz for the independent variable z.
The equation so obtained relates the differentials dv and dz (of the
variables v and z) to each other and thus is called a differential equation.
If we take into account that

9’3—:'
ez 0

where v’ is the derivative of v with respect to the variable z, our differential
equation may also be written in the form

v = 7z,

To solve this very simple differential equation we must find a function
of z whose derivative is equal to =z. Problems of this sort are treated in a
general way in §§10 and 11, but for the moment we urge the reader to
verify that a solution of our equation is given by v = m2z%2 + C, where
for C we may choose an arbitrary number.* In our case the volume of
the body is obviously zero for z = 0 (see figure 22), so that C = 0. Thus
our function is given by v = 7z%2.

The mean value theorem and examples of its application. The differ-
ential expresses the approximate value of the increment of the function
in terms of the increment of the independent variable and of the derivative
at the initial point. So for the increment from x = a to x = b, we have

f6) —fla) ~f'(a)b — a).

* This formula gives all the solutions.
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It is possible to obtain an exact equation of this sort if we replace the
derivative f*(a) at the initial point by the derivative at some intermediate
point, suitably chosen in the interval (a, b). More precisely: If y = f(x)
Is a function which is differentiable on the interval a < x < b, then there
exists a point €, strictly within this interval, such that the following exact
equality holds

fb) — fla) = f'(E)b — a). (22)

The geometric interpretation of this “‘mean-value theorem’ (also called
Lagrange’s formula or the finite-difference formula) is extraordinarily
simple. Let 4, B be the points on the graph of the function f(x) which
correspond to x = a and x = b, and let us join 4 and B by the chord
AB (figure 23). Now let us move the straight line A B, keeping it constantly

vh
c 8
A a
a
o a & b X

Fig. 23.

parallel to itself, up or down. At the moment when this straight line cuts
the graph for the last time, it will be tangent to the graph at a certain
point C. At this point (let the corresponding abscissa be x = £), the
tangent line will form the same angle of inclination « as the chord 4B.
But for the chord we have

f(b) —fla)

b—a

tan o =

On the other hand at the point C

tan « = (&)
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This equation
ﬂb) f (a) )

is exactly the mean-value theorem.*

Formula (22) has the peculiar feature that the point ¢ appearing in it
is unknown to us; we know only that it lies “somewhere in the interval
(a, b).” But in spite of this indeterminacy, the formula has great theoretical
significance and is part of the proof of many theorems in analysis. The
immediate practical importance of this formula is also very great, since
it enables us to estimate the increase in a function when we know the
limits between which its derivative can vary. For example,

|sinb —sina| = |cosé|(b—a)< b —

Here a, b and £ are angles, expressed in radian measure; £ is some value
between a and b; £ itself is unknown, but we know that |cos £ | < 1.

From formula (22) it is clear that a function whose derivative is every-
where equal to zero must be a constant; at no part of the interval can it
receive an increment different from zero. Analogously, the reader will
easily prove that a function whose derivative is everywhere positive must
everywhere increase, and if its derivative is negative, the function must
decrease. We give here without proof one of the many generalizations
of the mean-value theorem.

For arbitrary functions ¢(x) and y(x) differentiable in the interval [a, b],
provided only that y'(x) # 0 in (a, b), the following equationt holds

#b) —dla) _ $'(§) 23
Wo) — W) D’ @)
where £ is some point in the interval (a, b).}

From this theorem we can derive a general method for calculating the
limits of an expression like

m 2
am W)’ 24)

* Of course these arguments only give a geometric interpretation of the theorem
and by no means form a rigorous proof.
+ Formula (23) can be derived by a simple application of the mean-value theorem
to the function S
}y— Hla
(x) = $lx) — —————(x).
f Y(b) — Yla)
! By the symbols [a, b] and (a, b) we denote the sets of values of x satisfying the
inequalities @ < x < b and a < x < b respectively.
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if ¢(0) = (0) = 0. From formula (23) we have

$x) _ ¢ — 40 _ 4§
W) ) W0 @

where £ is between 0 and x, and therefore £ — 0 together with x. This
allows us to calculate the limit

$'(x)

20 (x) ’

instead of the limit (24), which is in many cases very much easier.*

Example. Let us find the lim % By making use of the rule
X =
three times, we have successively
li X —sin x li 1 —cosx lmsinx_l cosx 1
0 x3 z-0 3x? 240 6x  z0 6 6

§9. Taylor’s Formula
The function
p(x) = @y + ayx + apx® + - + a.x",

where the coefficients a, are constants, is called a polynomial of degree
n. In particular, y = ax + b is a polynomial of the first degree and
y = ax® + bx + ¢ is a polynomial of the second degree. Polynomials
may be considered as the simplest of all functions. In order to calculate
their value for a given x, we require only the operations of addition,
subtraction, and multiplication ; not even division is needed. Polynomials
are continuous for all x and have derivatives of arbitrary order. Also,
the derivative of a polynomial is again a polynomial, of degree lower by
one, and the derivatives of order n 4+ 1 and higher of a polynomial of
degree n are equal to zero.
If to the polynomials we adjoin functions of the form

i dp + ayx + 4 a,x"
bo + blx —+ - -{-bmx“"

* The same rule is valid for finding the limit of a fractional expression in which
the numerator and the denominator both approach infinity. This method, which is
very convenient for finding such limits (or, as we say, for the removal of indeterminacies),
will be used, for example, in §3 of Chapter XIL
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for the calculation of which we also need division, and also the functions
+v/x and ¥/x and, finally, arithmetical combinations of these functions,
we obtain essentially all the functions whose values can be calculated
by methods learned in the secondary school.

While we were still in school, we formed some notion of a number of
other functions, like

V/x, log x, sin x, arc tan x, - .

But though we became acquainted with the most important properties
of these functions, we found no answer in elementary mathematics to the
question: How can we calculate them? What sort of operations, for
example, is it necessary to perform on x in order to obtain log x or sin x ?
The answer to this question is given by methods that have been worked
out in analysis. Let us examine one of these methods.

Taylor’s formula. On an interval containing the point q, let there be
given a function f{x) with derivatives of every order. The polynomial
of first degree

p(x) = fla) + f(a)(x —a)

has the same value as f(x) at the point x = a and also, as is easily verified,
has the same derivative as f{(x) as this point. Its graph is a straight line,
which is tangent to the graph of f{x) to the point a. It is possible to choose
a polynomial of the second degree, namely

P = fi@) + 7@ — @) + O x — ap

which at the point of x = a has with f(x) a common value and a common
first and second derivative. Its graph at the point a will follow that
of f(x) even more closely. It is natural to expect that if we construct a
polynomial which at x = a has the same first n derivatives as f(x) at the
same point, then this polynomial will be a still better approximation to
f(x) at points x near a. Thus we obtain the following approximate equality,
which is Taylor’s formula

1)~ f@ + £ @x — o)+ 06 — a2 4 + L@ gy s

The right side of this formula is a polynomial of degree n in (x — a).
For each x the value of this polynomial can be calculated if we know the
values of f{(a), f'(a), -**, f"(a).
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For functions which have an (n + 1)th derivative, the right side of this
formula, as is easy to show, differs from the left side by a small quantity
which approaches zero more rapidly than (x — a)*. Moreover, it is the
only possible polynomial of degree » that differs from f(x), for x close
to a, by a quantity that approaches zero, as x — a, more rapidly than
(x — a)™. If flx) itself is an algebraic polynomial of degree n, then the
approximate equality (25) becomes an exact one.

Finally, and this is particularly important, we can give a simple ex-
pression for the difference between the right side of formula (25) and the
actual value of f(x). To make the approximate equality (25) exact, we
must add to the right side a further term, called the “remainder term”

f (a) SN

(x —a" + (_’_1),

fix) = fla) +f'(@@afx —a) + +——

(X a)n+1

26
This final supplementary term* (26)

n+1b(§') (x )n+l

Rn +1(x) ( + 1-)‘

has the peculiarity that the derivative appearing in it is to be calculated
in each case not at the point a but at a suitably chosen point £, which
is unknown but lies somewhere in the interval between a and x.

The proof of equality (26) is rather cumbersome but quite simple in
essence. We shall give here a somewhat artificial version of the proof,
which has the merit of being concise.

In order to find out by how much the left side in the approximate
formula (25) differs from the right, let us consider the ratio of the difference
between the two sides in equality (25) to the quantity —(x — a)*+!

f0) = [f@ + @0 — @) + - /D (x — ayr]

_(x — a)!H-'l

@7

We also introduce the function

Hw) = flw) +f(Wx —w) + - +fl:!( u)(x —un

of a variable u, taking x to be fixed (constant). Then the numerator in
(27) will represent the increase of this function as we pass from u = a
to u = x, and the denominator will be the increase over the same interval
of the function

) = (x — u)™*.

* This is only one of the possible forms for the remainder term R,.(x).
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We now make use of the generalized mean-value theorem quoted earlier

) — Ha) _ $()
Px) — @) (6
Differentiating the functions ¢(u) and y(u) with respect to u (it must be
recalled that the value of x has been fixed) we find that

$E _ _[oE
vE - T mr

The equality of this last expression with the original quantity (27) gives
Taylor’s formula in the form (26).

In the form (26) Taylor’s formula not only provides a means of approx-
imate calculation of f{x) but also allows us to estimate the error. Let us
consider the simple example

y = sin x.

The values of the function sin x and of its derivatives of arbitrary order
are known for x = 0. Let us make use of these values to write Taylor’s
formula for sin x, choosing a = 0 and limiting ourselves to the case
n = 4. We find successively

f(x) = sin x, fi(x) =cosx, f“(x) = —sinx,
f(x) = —cosx, fWYV(x)=sinx, [fY(x)=cosx;
f(0)=0 fo=1, S0 =0,
S0y = -1 SM0) =0, SY(€) = cos &.
Therefore

5
sinx=x—£+ Rs, where R; = X cos £

6 120
Although the exact value R; is unknown, still we can easily estimate it
from the fact that | cos £ | < 1. For all values of x between 0 and #/4
we have

x5 1 7\ 1
| Rsl = | 35005 €| < 135 (7) <05
Consequently, on the interval [0, /4] the function sin x may be considered,

with accuracy up to g3, as equal to the polynomial of third degree

. 1
sinx = x — = x5

6
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If we were to take more terms in Taylor’s expansion for sin x, we would
obtain a polynomial of higher degree which would approximate sin x
still more closely.

The tables for trigonometric and other functions are calculated by
similar methods.

The laws of nature, as a rule, can be expressed with good approximation
by functions that may be differentiated as often as we like and that in
their turn may be approximated by polynomials, the degree of the polynom-
ial being determined by the accuracy desired.

Taylor’s series. If in formula (25) we take a larger and larger number
of terms, then the difference between the right side and f(x), expressed
by the remainder term R,,,(x), may tend to zero. Of course this will not
always occur: neither for all functions nor for all values of x. But there
exists a broad class of functions (the so-called analytic functions) for
which the remainder term R, .,(x) does in fact approach zero as n — oo,
at least for all values of x within a certain interval around the point a.
For these functions the Taylor formula allows us to calculate f{x) with
any desired degree of accuracy. Let us examine such functions more
closely.

If Ry.(x)— 0 as n— oo, then from (26) it follows that

ftx) = lim [ﬂa) +fa)x —a) + - -f-ﬁ'%@(x - a)"]

In this case we say that f{x) has been expanded in a convergent infinite
series

fix) = fla) + f(@)(x — a) + L;'l(x —aP + -,
in increasing powers of (x — a). This series is called a Taylor series, and

f(x) is said to be the sum of the series. Let us consider some examples
(with a = 0):

L(l+x =1 +nx+”(”2j ”x*+"("_13),("_2)x=+———

(valid for | x| < 1 and for arbitrary real »).

, X8 ¥ 4?
2 sinx = x —— +

5 b=t + - (valid for all x).
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r.oh .
3. cosx=1— 31 +ﬁ & + e (valid for all x).
3
4. e =1 +x+;—f+-;—‘+°-- (valid for all x).
5
5.arctanx=x-—%s+%-"- (valid for | x| < 1).

The first of these examples is the famous binomial theorem of Newton,
which was obtained by Newton for all n but completely proved in his
time only for integral n. This example served as a model for the establish-
ment of the general Taylor formula. The last two formulas allow us,
for x = 1, to calculate with arbitrarily good approximation the numbers
eand 7.

The Taylor formula, which opens up the way for most of the calculations
in applied analysis, is extremely important from the practical point of
VIEW.

Many of the laws of nature, physical and chemical processes, the motion
of bodies, and the like, are expressed with great accuracy by functions
which may be expanded in a Taylor series. The theory of such functions
can be formulated in a clearer and more complete way if we consider them
as functions of a complex variable (see Chapter IX).

The idea of approximating a function by polynomials or of representing
it as the sum of an infinite number of simpler functions underwent far-
reaching developments in analysis, where it now forms an independent
branch, the theory of approximation of functions (see Chapter XII).

§10. Integral

From Chapter I and from §1 of the present chapter the reader already
knows that the concept of the integral, and more generally of the integral
calculus, had its historical origin in the need for solving concrete problems,
a characteristic example of which is the calculation of the area of a cur-
vilinear figure. The present section is devoted to these questions. In it
we will also discuss the aforementioned connection between the problems
of the differential and the integral calculus, which was not fully cleared
up until the 18th century.

Area. Let us suppose that a curve above the x-axis forms the graph
of the function y = f(x). We attempt to find the area S of the segment
bounded by the line y = f(x), by the x-axis and by the straight lines drawn
through the points x = a and x = b parallel to the y-axis.
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To solve this problem we proceed as follows. We divide the
interval [a, b] into n parts,
not necessarily equal. We de- ¥/
note the length of the first
part by dx, , of the second by
dx, , and so forth up to the
final part 4x,, . In each segment
we choose points &, &, -,
£, and set up the sum

S, = f(&) dx, + f(€) dx,
+ - +ﬂ£u)Axn' (28)

The magnitude S, is obviously
equal to the sum of the areas of

the rectangles shaded in figure

24,

The finer we make the subdivision of the segment [a, ], the closer S,
will be to the area S. If we carry out a sequence of such constructions,
dividing the interval [a, b] into successively smaller and smaller parts,
then the sums §, will approach §.

The possibility of dividing [a, 5] into unequal parts makes it necessary
for us to define what we mean by “successively smaller” subdivisions.
We assume not only that n increases beyond all bounds but also that the
length of the greatest dx; in the nth subdivision approaches zero. Thus

S= lm (&) 4% + [t dxs + - + S50 dx.)

n

= lim Zﬂff)zlx.-. 29)

max 4z;-0 4
1

—

The calculation of the desired area has in this way been reduced to
finding the limit (29).

We note that when we first set up
the problem, we had only an
empirical idea of what we mean by
the area of our curvilinear figure,
but we had no precise definition.
But now we have obtained an
exact definition of the concept
of area: It is the limit (29).
We now have not only an in-
tuitive notion of area but also a
FiG. 25. mathematical definition, on the

i
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basis of which we can calculate the area numerically (compare the
remarks at the end of §3, concerning velocity and the length of a
circumference).

We have assumed that f(x) > 0. If f(x) changes sign, then in
figure 25, the limit (29) will give us the algebraic sum of the areas
of the segments lying between the curve y = f{x) and the x-axis, where
the segments above the x-axis are taken with a plus sign and those below
with a minus sign.

Definite integral. The need to calculate the limit (29) arises in many
other problems. For example, suppose that a point is moving along a
straight line with variable velocity v = f{r). How are we to determine
the distance s covered by the point in the time fromt = atof = b?

Let us assume that the function f{r) is continuous; that is, in small
intervals of time the velocity changes only slightly. We divide the interval
[a, b] into n parts, of length 4t, , 4t, , +=+, 4t,, . To calculate an approxim-
ate value for the distance covered in each interval 4r;, we will suppose
that the velocity in this period of time is constant, equal throughout to
its actual value at some intermediate point £ . The whole distance
covered will then be expressed approximately by the sum

5= 3 () A,

i=1

and the exact value of the distance s covered in the time from a to b, will
be the limit of such sums for finer and finer subdivisions; that is, it will
be the limit (29)

s= lim if(gi)drg.

max dt; -0
i=1

1t would be easy to give many examples of practical problems leading
to the calculation of such a limit. We will discuss some of them later,
but for the moment the examples already given will sufficiently indicate
the importance of this idea. The limit (29) is called the definite integral
of the function f(x) taken over the interval [a, 5], and it is denoted by

j ° f(x) dx.

The expression f(x) dx is called the integrand, a and b are the limits of
integration; a is the lower limit, b is the upper limit.



§10. INTEGRAL 131

The connection between differential and integral calculus. As an
example of the direct calculation of a definite integral, we may take
example 2, §1. We may now say that the problem considered there reduces
to calculation of the definite integral

.[h ax dx.

0

Another example was considered in §3, where we solved the problem
of finding the area bounded by the parabola y = x% Here the problem
reduces to calculation of the integral

I: x% dx.

We were able to calculate both these integrals directly, because we have
simple formulas for the sum of the first » natural numbers and for the
sum of their squares. But for an arbitrary function f{x), we are far from
being able to add up the sum (28) (that is, to express the result in a simple
formula) if the points £ and the increments dx, are given to suit some
particular problem. Moreover, even when such a summation is possible,
there is no general method for carrying it out; various methods, each
of a quite special character, must be used in the various cases.

So we are confronted by the problem of finding a general method for
the calculation of definite integrals. Historically this question interested
mathematicians for a long period of time, since there were many practical
aspects involved in a general method for finding the area of curvilinear
figures, the volume of bodies bounded by a curved surface, and so forth.

We have already noted that Archimedes was able to calculate the area
of a segment and of certain other figures. The number of special problems
that could be solved, involving areas, volumes, centers of gravity of solids,
and so forth, gradually increased, but progress in finding a general method
was at first extremely slow. The general method could not be discovered
until sufficient theoretical and computational material had been accumulat-
ed through the demands of practical life. The work of gathering and
generalizing this material proceeded very gradually until the end of the
Middle Ages; and its subsequent energetic development was a direct
consequence of the rapid growth in the productive powers of Europe
resulting from the breakup of the former (feudal) methods of manufactur-
ing and the creation of new ones (capitalistic).

The accumulation of facts connected with definite integrals proceeded
alongside of the corresponding investigations of problems related to the
derivative of a function. The reader already knows from §l that this
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immense preparatory labor was crowned with success in the 17th century
by the work of Newton and Leibnitz. 1t is in this sense that Newton and
Leibnitz are the creators of the differential and integral calculus.

One of the fundamental contributions of Newton and Leibnitz consists
of the fact that they finally cleared up the profound connection between
differential and integral calculus, which provides us, in particular, with
a general method of calculating definite integrals for an extremely wide
class of functions.

To explain this connection, we turn to an example from mechanics.

We suppose that a material point is moving along a straight line with
velocity v = f{r), where 1 is the time. We already know that the distance
o covered by our point in the time between ¢ = ¢, and 1 = ¢, is given
by the definite integral

ty
o= | flnadt.
t

Now let us assume that the law of motion of the point is known to us;
that is, we know the function s = F(r) expressing the dependence on the
time ¢ of the distance s calculated from some initial point A on the straight
line. The distance o covered in the interval of time [t,, £,] is obviously
equal to the difference

o = Ht,) — F(t).

In this way we are led by physical considerations to the equality
t%
[ fuyar = Fuy) — Fa),
1

which expresses the connection between the law of motion of our point
and its velocity.

From a mathematical point of view the function F(r), as we already
know from §5, may be defined as a function whose derivative for all
values of ¢ in the given interval is equal to f{r), that is

F'(t) = fl0).

Such a function is called a primitive for f(1).

We must keep in mind that if the function f{r) has at least one primitive,
then along with this one it will have an infinite number of others; for if
F(t) is a primitive for f{r), then F(r) + C, where C is an arbitrary constant,
is also a primitive. Moreover, in this way we exhaust the whole set of
primitives for f{1), since if Fy(r) and F,(r) are primitives for the same
function f{r), then their difference ¢(¢t) = Fy(¢) — Fy(r) has a derivative
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¢'(r) that is equal to zero at every point in a given interval so that ¢(7)
is a constant.*

From a physical point of view the various values of the constant C
determine laws of motion which differ from one another only in the fact
that they correspond to all possible choices for the initial point of the
motion.

We are thus led to the result that for an extremely wide class of functions
f(x), including all cases where the function f{x) may be considered as the
velocity of a point at the time x, we have the following equalityt

[ 70 dx = Fo) — Fua, (30)

where F(x) is an arbitrary primitive for f{x).

This equality is the famous formula of Newton and Leibnitz, which
reduces the problem of calculating the definite integral of a function to
finding a primitive for the function and in this way forms a link between
the differential and the integral calculus.

Many particular problems that were studied by the greatest mathematic-
ians are automatically solved by this formula, stating that the definite
integral of the function f{x) on the interval [a, 5] is equal to the difference
between the values of any primitive at the left and right ends of the
interval.} It is customary to write the difference (30) thus:

F(x)

= F(b) — F(a).

Example 1. The equality
xs L
(5) ==
shows that the function x®/3 is a primitive for the function x2. Thus, by the
formula of Newton and Leibnitz,
xs a

f:x’dx= T

_e a
3 3

B
3

]

* By the mean value theorem
$(t) — d(ta) = $' (N — 1) = O,
when v lies between r and t,. Thus &(r) = ¢(t,) = const for all 1.

+ It is possible to prove mathematically, without recourse to examples from mechan-
ics, that if the function f(x) is continuous (and even if it is discontinuous but Lebesgue-
summable; see Chapter XV) on the interval [a, b], then there exists a primitive F(x)
satisfying equality (30).

! This formula has been generalized in various ways (see for example §13, the formula
of Ostrogradskii).
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Example 2. Let ¢ and ¢’ be two electric charges, on a straight line
at distance r from each other. The attraction F between them is directed
along this straight line and is equal to

a
s
(a = kcc', where k is a constant). The work W done by this force, when
the charge ¢ remains fixed but ¢’ moves along the interval [R, , R,], may
be calculated by dividing the interval [R,, R,] into parts 4r; . On each
of these parts we may consider the force to be approximately constant,
so that the work done on each part is equal to a/r} 4r; . Making the parts
smaller and smaller, we see that the work W is equal to the integral

The value of this integral can be calculated at once, if we recall that

a a,’
=%
so that

Ry 1 1
MLV R

In particular, the work done by a force F as the charge ¢’, initially at a
distance R, from ¢, moves out to infinity, is equal to

1
W= Jim a7 — 1) = ¢

From the arguments given above for the formula of Newton and
Leibnitz, it is clear that this formula gives mathematical expression to an
actual tie existing in the objective world. It is a beautiful and important
example of how mathematics gives expression to objective laws. We
should remark that in his mathematical investigations, Newton always
took a physical point of view. His work on the foundations of differential
and integral calculus cannot be separated from his work on the founda-
tions of mechanics.

The concepts of mathematical analysis, such as the derivative or the
integral, as they presented themselves to Newton and his contemporaries,
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had not yet completely “broken away” from their physical and geometric
origins, such as velocity and area. In fact, they were half mathematical
in character and half physical. The conditions existing at that time were
not yet suitable for producing a purely mathematical definition of
these concepts. Consequently, the investigator could handle them cor-
rectly in complicated situations only if he remained in close contact
with the practical aspects of his problem even during the intermediate
(mathematical) stages of his argument.

From this point of view the creative work of Newton was different in
character from that of Leibnitz.* Newton was guided at all stages by a
physical way of looking at the problem. But the investigations of Leibnitz
do not have such an immediate connection with physics, a fact that in the
absence of clear-cut mathematical definitions sometimes led him to mis-
taken conclusions. On the other hand, the most characteristic feature
of the creative activity of Leibnitz was his striving for generality, his
efforts to find the most general methods for the problems of mathematical
analysis.

The greatest merit of Leibnitz was his creation of a mathematical
symbolism expressing the essence of the matter. The notations for such
fundamental concepts of mathematical analysis as the differential dx,
the second differential 4%x, the integral jy dx, and the derivative d/dx
were proposed by Leibnitz. The fact that these notations are still used
shows how well they were chosen.

One advantage of a well-chosen symbolism is that it makes our proofs
and calculations shorter and easier; also, it sometimes protects us against
mistaken conclusions. Leibnitz, who was well aware of this, paid especial
attention in all his work to the choice of notation.

The evolution of the concepts of mathematical analysis (derivative,
integral, and so forth) continued, of course, after Newton and Leibnitz
and is still continuing in our day; but there is one stage in this evolution
that should be mentioned especially. It took place at the beginning of the
last century and is related particularly to the work of Cauchy.

Cauchy gave a clear-cut formal definition of the concept of a limit and
used it as the basis for his definitions of continuity, derivative, differential,
and integral. These definitions have been introduced at the corres-
ponding places in the present chapter. They are widely used in present-day
analysis.

The great importance of these achievements lies in the fact that it is
now possible to operate in a purely formal way not only in arithmetic,

* The discoveries of Newton and Leibnitz were made independently.
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algebra, and elementary geometry, but also in this new and very extensive
branch of mathematics, in mathematical analysis, and to obtain correct
results in so doing.

Regarding practical application of the results of mathematical analysis,
it is now possible to say: If the original data are verified in the actual
world, then the results of our mathematical arguments will also be verified
there. If we are properly assured of the accuracy of the original data,
then there is no need to make a practical check of the correctness of the
mathematical results; it is sufficient to check only the correctness of the
formal arguments.

This statement naturally requires the following limitation. In mathe-
matical arguments the original data, which we take from the actual world,
are true only up to a certain accuracy. This means that at every step
of our mathematical argument the results obtained will contain certain
errors, which may accumulate as the number of steps in the argument
increases. * '

Returning now to the definite integral, let us consider a question of
fundamental importance. For what functions f(x), defined on the interval
[a, b), is it possible to guarantee the existence of the definite integral
Jaf(x) dx, namely a number to which the sum =} f(£,) 4x, tends as limit
as max dx; — 07 It must be kept in view that this number is to be the
same for all subdivisions of the interval [a, 5] and all choices of the points
€.

Functions for which the definite integral, namely the limit (29), exists
are said to be integrable on the interval [a, b]. Investigations carried out
in the last century show that all continuous functions are integrable.

But there are also discontinuous functions which are integrable. Among
them, for example, are those functions which are bounded and either
increasing or decreasing on the interval [a, ).

The function that is equal to zero at the rational points in [a, 5] and
equal to unity at the irrational points, may serve as an example of a non-
integrable function, since for an arbitrary subdivision the integral sum
s, will be equal to zero or unity, depending on whether we choose the
points £, as rational numbers or irrational.

Let us note that in many cases the formula of Newton and Leibnitz
provides an answer to the practical question of calculating a definite
integral. But here arises the problem of finding a primitive for a given

* For example, it follows formally froma = b and b = ¢ that a = ¢. But in practice
this relation appears as follows: From the facts that a = b is known with accuracy
up to € and b = ¢ is known with the same accuracy, it follows that a = ¢ is known
with accuracy up to 2e,
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function; that is, of finding a function that has the given function for its
derivative. We now proceed to discuss this problem. Let us note by the
way that the problem of finding a primitive has great importance in other
branches of mathematics also, particularly in the solution of differential
equations.

§11. Indefinite Integrals; the Technique of Integration

An arbitrary primitive of a given function f(x) is usually called an
indefinite integral of f(x) and is written in the form

jf(x) dx.

In this way, if F(x) is a completely determined primitive of f{(x), then the
indefinite integral of f(x) is given by

j fix) dx = F(x) + C, @31

where C is an arbitrary constant,

Let us also note that if the function f(x) is given on the interval [a, b]
and, if F(x) is a primitive for f{x) and x is a point in the interval [a, b],
then by the formula of Newton and Leibnitz we may write

F(x) = F(a) + r flt) dt.

Here the integral on the right side differs from the primitive F(x) only
by the constant F(a). In such a case this integral, if we consider it as a
function of its upper limit x (for variable x), is a completely determined
primitive of f{x). Consequently, an indefinite integral of f(x) may also
be written as follows:

[reoax = [ e +c.

where C is an arbitrary constant.
Let us set up a fundamental table of indefinite integrals, which
can be obtained directly from the corresponding table of derivatives

(see §6):
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Ifdx——17~+aa¢ 1),

f—_ Inlx|+ C,*
ja’dx=-h;ia+c,
Iﬁ&=ﬁ+a
Isinxdx= —cos x + C,
Icosxdx= sinx + C,
Isec‘xdx = tanx + C,

= arcsinx + C

J‘ dx
V1 —x®
m
= —arccosx-f—C,(Cl—C:? 5

dx
Il—-l-—)? = arctan x + C.

)
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(32)

The general properties of indefinite integrals may also be deduced from
the corresponding properties of derivatives. For example, from the rule
for the differentiation of a sum we obtain the formula

JU) £ ¢ ax = [ fxyax + [$x)dx + C,

and from the corresponding rule expressing the fact that a constant factor
k may be taken outside the sign of differentiation we get

jkf(x)dx = k[ﬂx) dx + C.

For example,

*For x>0, (In[x|) =(nx) = l/x;

1/—x(—1) = 1/x.

360 4 2x — o= + 2 1) ax
X X
I s

for x <0, (In[x]) =[In(—x)] =
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There are a number of methods for calculating indefinite integrals. Let
us consider one of them, namely the method of substitution or change of
variable, which is based on the following equality

[foax = [ )¢ @ a+c, (33)

where x = ¢(r) is a differentiable function. The relation (33) is to be
understood in the sense that if in the function

F(x) = [ f(x) dx,

on the left side of equality (33), we set x = #(r), we thereby obtain a
function F[¢(r)] whose derivative with respect to ¢ is equal to the expression
under the sign of integration on the right side of equality (33). This fact
follows immediately from the theorem on the derivative of a function
of a function.

Let us give some examples of this method of substitution

ekz

kz s ¢ _
Ie dx = kd{ kfed: 4 +C_k+c
(substitution of kx = ¢, from which k dx = dt).
\/‘::‘fxz = J.dI b Ol —\/W{-C
(substitution of = v/@ — 7, from which dr = — ; arxx2 ).

j\/az—xzdx = IVaz — a?sinuacos udu = a’jcos’uda

i eI SO

a? .
= T(u+smucosu) +C

a* . X X
ey i S aﬂ .}
2(arv;sma+alzv x)+C
(substitution of x = a sin u).
As can be seen from these examples, the method of substitution or
change of variables greatly extends the class of elementary functions
that we are able to integrate; that is, for which we can find primitives
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that are themselves elementary functions. But it must be noted that from
the point of view of actually calculating the result, we are in a much worse
position, generally speaking, with respect to integration than for differen-
tiation.

From §6 we know that the derivative of an arbitrary elementary function
is itself an elementary function, which we may effectively calculate by
making use of the rules of differentiation. But the converse statement
is in general untrue, since there exist elementary functions whose indefinite
integrals are not elementary functions. Examples are e=#, 1/(In x), (sin x)/x
and so forth. To obtain integrals of these functions we must make use of
approximative methods and also introduce new functions which can not
be reduced to elementary ones. We can not spend more time here on this
question but must simply note that even in elementary mathematics it is
possible to find many examples in which a direct operation can be carried
out on a certain class of numbers, while the inverse operation can not
be carried out on the same class; thus, a square of an arbitrary rational
number is again a rational number, but the square root of a rational
number is by no means always rational. Analogously, differentiation of
elementary functions produces a function that is again elementary, but
integration may lead us outside the class of elementary functions.

Some of the integrals that cannot be expressed in terms of elementary
functions have great importance in mathematics and its applications.
An example is

z 2
j et d,
[1]

which plays a very important role in the theory of probability (see Chapter
XI). Other examples are the integrals

P dd J‘ VI T snT 6 do (k2

fo T M, VTR ke <),
which are called elliptic integrals of the first and second kind respectively.
We are led to the calculation of these integrals by a large number of
problems in physics (see Chapter V, §1, example 3). Detailed tables of
these integrals for various values of the arguments x and ¢ have been
calculated by approximate methods but with great accuracy.

1t must be emphasized that the proof of the very fact that a given element-
ary function cannot be integrated in terms of elementary functions is in
each case quite difficult. Such questions occupied the attention of out-
standing mathematicians in the last century and have played an important
role in the development of analysis. Fundamental results were obtained
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here by Cebysev, who gave a complete answer to the question of expressing
in terms of elementary functions the integrals of the form

I x™(a + bx*)* dx,

where m, s, and p are rational numbers. Up to his time three relations,
obtained by Newton, were known for the exponents m, s, and p, which
implied the integrability of this integral in terms of elementary functions.
Cebysev proved that in all other cases the integral cannot be expressed
in terms of elementary functions.

We introduce here another method of integration, namely integration
by parts. It is based on the formula we already know

(wv) = w' + u'y,

for the derivative of the product of the functions u and v. This formula
may also be written
w' = (w) — u'v.

Let us now integrate the left and right sides, keeping in mind that
I(uv)’dx =ur + C.
We now finally obtain the equality
juv’ dx = uw — fu’v dx,

which is also called the formula of integration by parts. We have not written
the constant C since we may consider that it is included in one of the
indefinite integrals occurring in this equation.

Let us introduce some applications of this formula. Suppose we have
to calculate [ xe*dx. Here we will take u = x and v’ = ¢%, and thus
u' = 1, v = % and consequently

fxe=dx=xe=—fl-e=dx=xe=—e=+c.

In the integral [In xdx it is convenient to take ¥ = Inx, ¢’ = 1, so
that ¥’ = 1/x, v = x and

flnxdx=xlnx—Idx=xlnx-—x+C.
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In the following characteristic example it is necessary to integrate
twice by parts and then to find the desired integral from the equations
so obtained:

Je‘sinxdx= e‘sinx—fe’cosxdx

= e*sinx — e*Cos X — fe’sinxdx,
from which

Ie’sinxd = %(sinx— cos x) + C.

We end this section here; from it the reader will have obtained only a
superficial idea of the theory of integration. We have not given any atten-
tion to many different methods in this theory. In particular we have not
touched here on the very interesting question of the integration of rational
fractions, a theory in which an important contribution was made by the
well-known mathematician and mechanician, Ostrogradskil.

§12. Functions of Several Variables

Up to now we have spoken only of functions of one variable, but in
practice it is often necessary to deal also with functions depending on
two, three, or in general many variables. For example, the area of a
rectangle is a function

S = xy
of its base x and its height y. The volume of a rectangular parallelepiped

is a function
v = xyz

of its three dimensions. The distance between two points 4 and B is a
function

r= v — X2+ 0n— 0P+ (@ — 2P
of the six coordinates of these points. The well-known formula
pv = RT

expresses the dependence of the volume v of a definite amount of gas
on the pressure p and absolute temperature 7.
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Functions of several variables, like functions of one variable, are in
many cases defined only on a certain region of values of the variables
themselves. For example, the function

u=In(l —x*— p*— 2% (34)
is defined only for values of x, y and z that satisfy the condition
X2+ 4+ 2<] (35)

(For other x, y, z its values are not real numbers.) The set of points of
space whose coordinates satisfy the inequality (35) obviously fills up a
sphere of unit radius with its center at the origin of coordinates. The
points on the boundary are not included in this sphere; the surface of the
sphere has been so to speak “‘peeled off.” Such a sphere is said to be open.
The function (34) is defined only for such sets of three numbers (x, y, z)
as are coordinates of points in the open sphere G. It is customary to state
this fact concisely by saying that the function (34) is defined on the
sphere G.

Let us give another example. The temperature of a nonuniformly
heated body V is a function of the coordinates x, y, z of the points of the
body. This function is not defined for all sets of three numbers x, y, z
but only for such sets as are coordinates of points of the body V.

Finally, as a third example, let us consider the function

u = ¢(x) + &(») + ¢(2),

where ¢ is a function of one variable defined on the interval [0, 1]. Obvious-
ly the function u is defined only for sets of three numbers (x, y, z) which
are coordinates of points in the cube:

0sx<1L,0<y<1,0<z<1l

We now give a formal definition of a function of three variables. Suppose
that we are given a set E of triples of numbers (x, y, z) (points of space).
If to each of these triples of numbers (points) of E there corresponds a
definite number « in accordance with some law, then u is said to be a
function of x, y, z (of the point), defined on the set of triples of numbers
(on the points) E, a fact which is written thus:

u= Hx,y,z).

In place of F we may also write other letters: f, ¢, .
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In practice the set E will usually be a set of points, filling out some
geometrical body or surface: sphere, cube, annulus, and so forth, and then
we simply say that the function is defined on this body or surface. Functions
of two, four, and so forth, variables are defined analogously.

Implicit definition of a function. Let us note that functions of two
variables may serve, under certain circumstances, as a useful means for the
definition of functions of one variable. Given a function F(x, y) of two
variables let us set up the equation

Hx, y) = 0. (36)

In general, this equation will define a certain set of points (x, y) of the
surface on which our function is equal to zero. Such sets of points usually
represent curves that may be considered as the graphs of one or several
one-valued functions y = ¢(x) or x = y(y) of one variable. In such a
case these one-valued functions are said to be defined implicitly by the
equation (36). For example, the equation

X4+t —rt=0

gives an implicit definition of two functions of one variable

y=+Vr—x and y= — V¥ —x

But it is necessary to keep in mind that an equation of the form (36)
may fail to define any function at all For example, the equation

X+p+1=0

obviously does not define any real function, since no pair of real numbers
satisfies it.

Geometric representation. Functions of two variables may always
be visualized as surfaces by means of a system of space coordinates. Thus
the function

z=f(x, ) (37

is represented in a three-dimensional rectangular coordinate system by a
surface, which is the geometric locus of points M whose coordinates
x, y, z satisfy equation (37) (figure 26).

There is another, extremely useful method, of representing the function
(37), which has found wide application in practice. Let us choose a
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sequence of numbers z, , z, , ***, and then draw on one and the same plane
Oxy the curves

Z = f(x$ y)$ 2y = J‘(x$ J’),

which are the so-called level lines
of the function f{x, y). From a set
of level lines, if they correspond
to values of z that are sufficiently
close to one another, it is possible
to form a very good opinion of the
variation of the function f{(x, y),
just as from the level lines of a
topographical map one may judge
the variation in altitude of the
locality.

Figure 27 shows a map of the
level lines of the function z = x2 + »?,
the diagram at the right indicating 7%
how the function is built up from FiG. 26,
its level lines. In Chapter 111, figure
50, a similar map is drawn for the level lines of the function z = xy.

Partial derivatives and differential. Let us make some remarks about
the differentiation of the functions of several variables. As an example
we take the arbitrary function

z=flx, y)

A

x|

-
1/

FiG. 27.
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of two variables. If we fix the value of y, that is if we consider it as not
varying, then our function of two variables becomes a function of the
one variable x. The derivative of this function with respect to x, if it
exists, is called the partial derivative with respect to x and is denoted

thus: 5 of
z ’
a_xs or 5}’ or fa:(x| .V)-

The last of these three notations indicates clearly that the partial deriva-
tive with respect to x is in general a function of x and y. The partial deriva-
tive with respect to y is defined similarly.

Geometrically the function f{x, y) represents a surface in a rectangular
three-dimensional system of
coordinates. The corresponding
function of x for fixed y re-
presents a plane curve (figure
L 28) obtained from the inter-

2:f(x,y)  section of the surface with a

plane parallel to the plane Oxz
g and at a distance y from it.
, VA Y The partial derivative 3z/ox is

obviously equal to the trigono-
metric tangent of the angle
e between the tangent to the
x curve at the point (x, y) and
the positive direction of the
Fig. 28 Xx-axis.

More generally, if we con-
sider a function z = f(x, , x;, ***, x,) of the n variables x, , x,, ***, x,,
the partial derivative 2z/2x; is defined as the derivative of this function

with respect to x,, calculated for fixed values of the other variables:

Xy 3 Xgs ooy Xiog s Xigng s voey X o

We may say that the partial derivative of a function with respect to the
variable x; is the rate of change of this function in the direction of the
change in x; . It would also be possible to define a derivative in an arbitrary
assigned direction, not necessafily coinciding with any of the coordinate
axis, but we will not take the time to do this.

Examples.

fah]
N

Lisge=—

1
<l
SR

x
vy’ ox
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20“=—,
Vx4t 4+ 2
ou 1 . 2x _ x
x X+ PE42 e gyt OB 42 PR

1t is sometimes necessary to form the partial derivatives of these partia
derivatives; that is, the so-called partial derivatives of second order. For
functions of two variables there are four of them

Pu  Pu &u  Pu
9x?’ 9xd8y’ dvox’ 9’

However, if these derivatives are continuous, then it is not hard to prove
that the second and third of these four (the so-called mixed derivatives)
coincide:
Pu  Fu
axdy ~ oyox’

For example, in the case of first function considered,

oz &Pz 1 &% 1 &z 2x

Oy TR  E

the two mixed derivatives are seen to coincide.

For functions of several variables, just as was done for functions of
one variable, we may introduce the concept of a differential.

For definiteness let us consider a function

z = f(x,y)

of two variables. If it has continuous partial derivatives, we can prove
that its increment

AZ =ﬂx + Ax’y + AJ") _ﬂx’y)’

corresponding to the increments 4x and 4y of its arguments, may be
put in the form

2= Y ax + fAy+avA_x=+Ay=,
where 8f/ox and 9f/dy are the partial derivatives of the function at the

point (x, y) and the magnitude « depends on 4x and 4y in such a way
that « —+ 0 as dx— 0 and 4y — 0.
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The sum of the first two components
of of
=24 ~ 4
dz e 3% + 3 y

is linearly dependent* on dx and 4y and is called the differential of the
Sunction. The third summand, because of the presence of the factor «,
tending to zero with 4x and 4y, is an infinitesimal of higher order than
the magnitude

p = VA + 4y,

describing the change in x and y.
Let us give an application of the concept of differential. The period
of oscillation of a pendulum is calculated from the formula

T=2ﬂ\/£ ;
g

where / is its length and g is the acceleration of gravity. Let us suppose
that / and g are known with errors respectively equal to 4/ and 4dg. Then
the error in the calculation of T will be equal to the increment 4T corre-
sponding to the increments of the arguments 4/ and dg. Replacing AT
approximately by dT, we will have
ATﬁsdT=ﬂ(A—f_ —‘/"—_4?).
Vig Ve
The signs of 4/ and 4dg are unknown, but we may obviously estimate
AT by the inequality
| 47]
Vig
from which after division by T we get

|AT| _ (1411 | dg]
e e el a

+ Z|Ag.v|),

14T | <= =

Thus we may consider in practice that the relative error for T is equal
to the sum of the relative errors for / and g.

* In general a function 4Ax + By + C, where A, B, C are constants, is called a
linear function of x and y. If C = 0, it is called a homogeneous linear function. Here
we omit the word “homogeneous.”
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For symmetry of notation, the increments of the independent variables
Adx and 4y are usually denoted by the symbols dx and dy and are also
called differentials. With this notation the differential of the function
u = f{x, y, z) may be written thus:

o P o U, B
du = 3xdx+ aydy + azdz.

Partial derivatives play a large role whenever we have to do with func-
tions of several variables, as happens in many of the applications of
analysis to technology and physics. We shall be dealing in Chapter VI
with the problem of reconstructing a function from the properties of its
partial derivatives.

In the following paragraphs, we give some simple examples of applica-
tions of partial derivatives in analysis.

Differentiation of implicit functions. Suppose we wish to find the
derivative of y, where y is a function of x defined implicitly by the relation

Fix,y) =0 (38)

between these variables. If x and y satisfy the relation (38) and we give
x the increment 4x, then y will receive an increment dy such that x + dx
and y + Ay again satisfy (38). Consequently*

F‘(x+Ax,y+Ay)—F(x,y)=g—idx+g—fdy+a\/4xﬁ+dy*=0.

Thus, provided @F/@y + 0, it follows that

oF
, Ay . ax
R T e
oy

In this way we have obtained a method for finding the derivative of an
implicit function y without first solving the equation (38) for y.

Maximum and minimum problems. If a function, let us say of two
variables z = f{x, y), attains its maximum at the point (x,, y,), that is if
Sxo 5 ¥o) = flx, y) for all points (x, y) close to (x,, y,), then this point
must also be the point of maximum altitude for any line formed by the

* We assume that F(x, y) has continuous derivatives with respect to x and y.
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intersection of the surface z = f(x, y) with a plane parallel to Oxz or
Oyz. So at such a point we must have

f4x,¥) =0,f)(x,y) = 0. (39)

The same equations must also hold for a point of local minimum. Con-
sequently, the greatest or least values of the function are to be sought
first of all at points where the conditions (39) are satisfied, but we must
also not forget about points on the boundary of the domain of definition
of the function and points where the function fails to have a derivative,
if such points exist.

To establish whether a point (x, y) satisfying (39) is actually a maximum
or minimum point, use is frequently made of various indirect arguments.
For example, if for any reason it is clear that the function is differentiable
and attains its minimum inside the region and that there is only one point
where the conditions (39) are fulfilled, then obviously the minimum must
be attained at this point.

For example, let it be required to make a rectangular tin box (without
lid) with assigned volume ¥, using the smallest possible amount of material.
If the sides of the base of this box are denoted by x and y, then its height
h will be equal to ¥/xy, and consequently the surface S will be given by the
function

S=w+oQx+2) =+ 2V (L)) “0)
xy Xy
of x and y. Since x and y by the terms of the problem must be positive,
the question has been reduced to finding the minimum of the function
S(x, y) for all possible points (x, y) in the first quadrant of the plane
(x, »), which we will denote by the letter G.

If the minimum is attained at some point of the region G, then the partial

derivatives must be equal to zero

os_ 2w _

a=y xg_o’
s _ ,_ 2 _
oy »? ’

that is yx® = 2V, xy? = 2V, from which we find as the dimensions of the
box:

o
s s VB and a=\/§. @)

We have solved the problem but have not altogether proved that our
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solution is correct. A rigorous mathematician will say to us: “You have
supposed from the very beginning that under the given conditions the
box with minimum surface actually exists and, proceeding from this
assumption, you have found its dimensions. So you have really obtained
only the following result: If there exists a point (x, y) in G for which the
function § attains its minimum, then the coordinates of this point must
necessarily be determined by the equation (41). But now you must show
that the minimum of § does exist for some point in G and then J will
admit the correctness of your result.” This remark is a very reasonable
one, since, for example, our
function S, as we shall soon see,
does not possess any maximum
in the region G. But let us show
how it is possible to convince
ourselves that in the given case
the function actually does attain
its minimum at a certain point
(x, y) of the region G.

The fundamental theorem on
which we shall base our argument
is one that is proved in analysis
with complete rigor; it amounts
to the following. If the function
f of one or several variables is
everywhere continuous in a certain FiG. 29.
finite region H which is bounded
and includes its boundary, then there always exists in H at least one point
at which the function attains its minimum (maximum). With this theorem
we can easily complete our analysis of the problem.

Let us consider an arbitrary point (x, , y,) of the region G; at this point
let S(xy, ¥) = N. Let us also choose a number R satisfying the two
inequalities R > N, 2VR > N and construct a square §2; with side R?
as in figure 29, where 4B = CD = 1/R.

We now give a lower bound for the values of our function S(x, y) at
points of the region G lying outside the square Q4. If the point of the
region G has abscissa x << 1/R, then

S(x, ) = xy + 2V(£+£) > 2V:lc > 2VR > N.

Analogously, if the point of the region G has its ordinate y < 1/R, then
also § > N. Also, if the point of the region G has its abscissa x > I/R
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and if it lies above the straight line AF or has its ordinate y > 1/R and
lies to the right of the straight line CE, then

S(x,y)>xy>%R*=R>N.

Thus, for all points (x, y) of the region G lying outside the square 2, ,
the inequality S(x, y) > N holds, and since S(x,, y,) = N, the point
(X, , Vo) must belong to the square and consequently the minimum of our
function on G is equal to its minimum on the square.

But the function S(x, y) is continuous in this square and on its boundary,
so that by the theorem stated earlier there exists in the square a point
(x, y) where our function assumes its minimum for points in the square
and consequently for the entire region G. Thus the existence of a minimum
has been proved.

This argument may serve as an example of the way that it is possible
to discuss the existence of a maximum or a minimum for a function
defined on an unbounded domain.

The Taylor formula. Like functions of one variable, functions of
several variables may be represented by a Taylor formula. For example,
an expansion of the function

u=fix,y)

in the neighborhood of the point (x,, y,) has the following form, if we
confine ourselves to the first and second powers of x — x, and y — y,:

S(x, y) = f(xo, ¥0) + [fa(x0, Vo)X — Xo) + fi(Xo, YoXy — »0)]
| N o
+ 2 [fze(Xo » Vo)X — Xo)* + 2fz4(Xo » Yo)(X — XXV — Vo)

+ fos(X0» Vo)V — ¥o)*] + Rs.

If the function f(x, y) has continuous partial derivatives of the second
order, the remainder term here will approach zero faster than

rP=(x —x) + (y — o,

that is, faster than the square of the distance between the points (x, y)
and (x, , ¥,), as r — 0. The Taylor formula provides a widely used method
of defining and approximately calculating the values of various functions.

Let us note that with the help of this formula we can also answer the
question asked earlier, whether a given function actually has a maximum
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or minimum at a point where df/ox = 8f/oy = 0. In fact, if these condi-
tions are satisfied at the point (xo, y,), then for points (x, y) close to
(Xo » Vo), the value of the function will, by the Taylor formula, differ from
f(xy, ¥o) by the amount

ﬂx’ y) _f(xo 3 }’o)

= Tlp' [A(x — xo)* + 2B(x — xo)(¥ — yo) + C(¥ — yo)*] + R3, (42)

where 4, B, and C denote respectively the second partial derivatives

vz » Joy » fyy 8t the point (X, yo).
If it turns out that the function

D(x, y) = A(x — x0)* + 2B(x — Xy — Yo) + C(y — yo)?

is positive for arbitrary values of (x — x,) and (y — y,) not both equal
to zero, then the right side of equation (42) will also be positive for small
values of (x — x,) and (y — y,), since for sufficiently small (x — x,)
and (y — y,) the quantity R, is known to be less in absolute value than
$ D(x, y). Thus it will follow that at the point (x,, y,) the function f
attains its minimum. On the other hand, if the function @(x, y) is negative
for arbitrary (x — x,) and (y — y,) the right side of (42) will be negative
for (x — x,) and (¥ — y,), so that at the point (x,, y,) the function will
have a maximum. In more complicated cases it is necessary to consider
the succeeding terms in the Taylor formula.

Problems concerning the maximum or the minimum of functions of
three or more variables may be treated in a completely analogous fashion.
As an exercise the reader may prove that if given masses

My, Mg, "% My
are arranged in space at given points
Py(x1 5, 315 21)s Po(Xa, V25 29), s PalXn s Ya s 22),
the moment (of inertia) M of this system of masses about the point

P(x, y, z), defined as the sum of the products of the masses and the
squares of their distances from the point P,

M(x, y, z) = Z ml(x — x)* +(y =y + (2 — 2%,

im1
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will be a minimum if the point P is at the so-called center of gravity of
the system, with the coordinates

E?.l mX; Zioamy; Xl miz;
X=—p—,y= yZ = .
Xiam: T M Tia M

Maxima and minima with subsidiary conditions. For functions of
several variables we may set up various problems concerning maximum
and minimum. Let us illustrate with a simple example. Suppose that
among all rectangles inscribed in a circle of radius R, we wish to find the
one with greatest area. The area of a rectangle is equal to the product
xy of its sides, where x and y are positive numbers connected in this case
by the relation x? + y® = (2R)? as is clear from figure 30. Thus we are
required to find the maximum of the function

f(x, ) = xy for all x and y satisfying the relation

i xt+ y? = 4R
S Problems of this sort, where it is necessary to
YA find the maximum (or minimum) of a function
A f(x, y) for those values only of x and y that
’,«" satisfy a certain relation that ¢(x, y) = 0 are very

common in practice.

Of course, it would be possible to solve the
Fig. 30. equation ¢(x, y) = 0 for y, to substitute the solu-
tion into the function f(x, y) and in this way to
seek the ordinary maximum for a funciion of one variable x. But this

method is usually complicated and sometimes impossible.
For the solution of such problems in analysis, a much more convenient
procedure called the method of Lagrange multipliers, has been worked
out. The idea behind it is extremely simple. Let us consider the function

Ax,y) = f(x,y) + A(x, p),

where A is an arbitrary positive number. Obviously, for x, y satisfying
the condition ¢(x, y) = 0, the values of F(x, y) coincide with those of f(x, y).

For function F(x, y) let us seek a maximum without conditions of any
kind on x and y. At the maximum point the conditions 8F/ox = oFjay = 0*
must hold; in other words

o % _ .
a—+1\a—0, (43)
+A‘"¢' (44)

* We are speaking here, of course, of a maximum attained in the domain of definition
of the function F(x, ). The functions f(x, ¥) and $(x, ) are assumed to be differentiable.
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The values of x and y at the maximum point for F(x, y), being a solution
of the system (43) and (44), depend on the coefficient A in these equations.
Let us now suppose that we have succeeded in choosing the number A
in such a way that the coordinates of the maximum point satisfy the
condition

$(x, y) = 0. (45)

Then this point will be an exact local maximum for the original problem,
In fact, we may consider the problem geometrically as follows. The
function f(x, y) is defined on a
certain region G (figure 31). The
condition ¢(x,y) =0 will ordi- ¥ r
narily be satisfied by the points of
some curve I. We are required to
find the greatest value of x and y
on points of the line I'. If F(x, y)
attains its maximum on the curve G
T, then F(x, y) does not increase
for small shifts in an arbitrary
direction from this point, and in
particular for shifts along the
curve I". But for shifts along I, FiG. 31.
the values of Kx, y), coincide
with those of f (n,y) which means that for small shifts along the curve the
function f(x, y) does not increase, or in other words it has the local
maximum at the point.
These arguments indicate a simple method of solving the problem. We
solve equations (43), (44), (45) for the unknowns x, y, and A, obtaining
one or more solutions

x|

[7]

(xl s V1 "‘l)’ (xz s Va2 Aﬁ)s e (46)

To the points (x,, y,), (X2, ¥s), =** so determined we adjoin those
points of the boundary of G where the curve I" leaves the region G. Then
from all these points we choose that one at which f(x, y) takes on its
greatest (or smallest) value.

Of course, the arguments here are far from proving the correctness of
the methed. In fact, we have not yet even proved that the points of local
maximum for f(x, y) on the curve I" can be obtained as maximum points
for the function F(x, y) for some value of A. However, it is possible to
prove, as is done in the textbooks in analysis, that every point (x,, ¥o)
where f(x, y) has a local maximum on the curve will be obtained by the
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method indicated, provided only that at this point the partial derivatives
b=(Xo, yo) and ¢, (x, , yo) are not both equal to zero.*

Let us use the method of Lagrange to solve the problem at the beginning
of the present section. In this case f(x, y) = xy; ¢(x, y) = x® + y* — 4R
We set up the equations (43), (44), (45)

y +2Ax =0,
x +2Ay =0,
x2 + y* = 4R?,

for which, taking into account that x and y are positive, we find the unique
solution

Cy=Rvipi=Y)

For these values of x and y, which are equal to one another so that the
inscribed rectangle is a square, the area is in fact a maximum,

The method of Lagrange may be extended to deal with functions of
three or more variables. There may be any number of subsidiary conditions
(smaller than the number of variables) of the type of condition (45), and
we will introduce the corresponding number of auxiliary multipliers.

Let us give some examples of problems involving maxima or minima
with subsidiary conditions.

Example 1. For what height 4 and radius r will an open cylindrical
tank of given volume ¥ require the least amount of sheet metal for its
manufacture; that is, the area of its sides and circular base will be a
minimum ?

The problem obviously reduces to finding the minimum of the function
of the variables r and A

fr,h) = 2nrh + =r?
under the condition #r%h = ¥, which may be written in the form

(r,h) = nrth — V =0,

* In the course in higher mathematics of V. I. Smirnov, the reader will find a simple
example where this particular feature of the situation would lead to the loss of a solution
if we apply the method of Lagrange mechanically and do not consider, in addition to
the points mentioned above, a point where not only (45) holds but also:

¢w(xll ) yO) = 0, *;(xO ,yo) — 0»
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Example 2. A moving point is required to pass from A4 to B (figure 32).
On the path AM it moves with the
velocity of v, , and on MB with the
velocity v, . Where should the point
M be placed on the line DD’ so that a
the entire path from 4 to B may be a
covered as quickly as possible? D M o'

Let us take as unknowns the angles
« and B marked in figure 32. The » ¢ b
lengths a and b of the perpendiculars 4
from the points 4 and B to the
straight line DD’ and the distance ¢ Fig. 32.
between them are known. The time
required for covering the entire path is represented as can easily be seen,
by the formula

a b
v,cosa vyco8 B

f(aa )8) =

It is required to find the minimum of this expression, taking into account
the fact that « and B are connected by the relation

atan« 4+ btan 8 = c.

The reader may solve these examples by the Lagrange method. In the
second example he will find that the best position for M is given by the
condition

sina _ oy

sin B U,

This is the well-known law for the refraction of light. Consequently, a ray
of light will be refracted in its passage from one medium to another in
such a way that the time for its passage from a point in one medium
to a point in the other is a minimum. Conclusions of this sort are interesting
not only for computational purposes but also from a general philosophical
point of view; they have inspired researchers in the exact sciences to
penetrate further and further into the profound and general laws of
nature.

Finally let us note that the multipliers A, introduced in the solution of
problems by the method of Lagrange, are not merely auxiliary numbers.
In each case they are closely connected with the essential nature of the
particular problem and have a concrete interpretation.
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§13. Generalizations of the Concept of Integral

In §10 we defined the definite integral of the function f{x) on the interval
[a, ] as the limit of the sum

S fE) Ax,

i=1

when the length of the greatest segment 4dx, in the subdivision of [a, ]
approaches zero. In spite of the fact that the class of functions f(x) for
which this limit actually exists (the class of integrable functions) is a
very wide one, and in particular includes all continuous and even many
discontinuous functions, this class of functions has a serious shortcoming.
If we add, subtract, or multiply, or under certain conditions divide the
values of two integrable functions f(x) and ¢(x), we obtain functions
which, as may easily be proved, are again integrable, For f{x)/¢(x) this
will be true in all cases in which 1/@(x) remains bounded on [a, 5]. But
if a function is obtained as a result of a limiting process from a sequence
of approximating integrable functions f(x), fu(x), f5(x), *** such that for
all values of x in the interval [a, b]

f(x) = lim fu(x),

then the limit function f(x) is not necessarily integrable.

In many cases this and other circumstances give rise to considerable
complication, since the process of passing to a limit is widely used.

A way out of the difficulty was discovered by making further generaliza-
tions of the concept of an integral. The most important of these is the
integral of Lebesgue, with which the reader will become acquainted in
Chapter XV on the theory of functions of a real variable. But here we
will confine ourselves to generalizations of the integral in other directions,
which are also of the greatest importance in practice.

Multiple integrals. We have already studied the process of integration
for functions of one variable defined on a one-dimensional region, namely
an interval. But the analogous process may be extended to functions of
two, three, or more variables, defined on corresponding regions.

For example, let us consider a surface

z = f(x, )
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defined in a rectangular system of coordinates, and on the plane Oxy let
there be given a region G bounded

by a closed curve I'. It is required to 2
find the volume bounded by the
surface, by the plane Oxy and by the

cylindrical surface passing through %
the curve I" with generators parallel

to the Oz axis (figure 33). To solve

this problem we divide the plane 0
region G into subregions by a net-

work of straight lines parallel to the

axes Ox and Oy and denote by x

Gl ’ Gz s "y GN

those subregions which consist of

complete rectangles. If the net is sufficiently fine, then practically the
whole of the region G will be covered by the enumerated rectangles. In
each of them we choose at will a point

(gl ' 1?1), (62 s 1?2)0 ity (gn ’ ﬂn)

and, assuming for simplicity that G; denotes not only the rectangle but
also its area, we set up the sum

Sn = f(€1,m) Gy + f(€2,7m2) Ga + = + f(n, ) Gn = ;;f(ff s i) G‘; .
- 47)
It is clear that, if the surface is continuous and the net is sufficiently
fine, this sum may be brought as near as we like to the desired volume V.
We will obtain the desired volume exactly if we take the limit of the sum
(47) for finer and finer subdivisions (that is, for subdivisions such that
the greatest of the diagonals of our rectangles approaches zero)

D Z;lf(fs 1) Gi = V. (48)

0

i

Fig. 33.

From the point of view of analysis it is therefore necessary, in order to
determine the volume ¥, to carry out a certain mathematical operation
on the function f(x, y) and its domain of definition G, an operation
indicated by the left side of equality (48). This operation is called the
integration of the function f over the region G, and its result is the integral
of f over G. It is customary to denote this result in the following way:

[Jranaxay = lim 3 fi:, 7). (49)
=1

max @(G) -0
G
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Similarly, we may define the integral of a function of three variables
over a three-dimensional region G, representing a certain body in space.
Again we divide the region G into parts, this time by planes parallel to
the coordinate planes. Among these parts we choose the ones which
represent complete parallelepipeds and enumerate them

Gy, G;, -, Gy,
In each of these we choose an arbitrary point

(El sy M gl)’ (§2 s M2 gz), "y (fn y M s gn)

and set up the sum
§= Zf(gf s Mis gi) Gi L (50)
i=1

where G; denotes the volume of the parallelepiped G, . Finally we define
the integral of f(x, y, z) over the region G as the limit

n

lim 3 f(éi, 1,00 G = [[[ fix,y,ydxdyaz, (D)
G

max d(G;)-0 ;77

to which the sum (50) tends when the greatest diagonal d(G;) approaches
Zero,

Let us consider an example. We imagine the region G is filled with a
nonhomogeneous mass whose density at each point in G is given by a
known function p(x, y, z). The density p(x, y, z) of the mass at the point
(x, y, z) is defined as the limit approached by the ratio of the mass of an
arbitrary small region containing the point (x, y, z) to the volume of
this region as its diameter approaches zero.* To determine the mass of
the body G it is natural to proceed as follows. We divide the region G
into parts by planes parallel to the coordinate planes and enumerate
the complete parallelepipeds formed in this way

Gl ] G2 "y Gn -
Assuming that the dividing planes are sufficiently close to one another,
we will make only a small error if we neglect the irregular regions of the

body and define the mass of each of the regular regions G; (the complete
parallelepipeds) as the product

P(‘ff s Mis {)G;,

% The diameter of a region is defined as the least upper bound of the distance between
two points of the region,
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where (¢, , n;, {;) is an arbitrary point G;. As a result the approximate
value of the mass M will be expressed by the sum

5= ;_;lp(ef,nf, )G,

and its exact value will clearly be the limit of this sum as the greatest
diagonal G, approaches zero; that is

max d(G,}-0

M= WV, 2)dxdydz = li S » i ) Gy
J.J;IP(XJ’Z) X ay az m Z;P(fr Ni, §3)

The integrals (49) and (51) are called double and triple integrals
respectively.

Let us examine a problem which leads to a double integral. We imagine
that water is flowing over a plane surface. Also, on this surface the
underground water is seeping
through (or soaking back into

the ground) with an intensity A | |
f(x,») which is different at 5 —
different points, We consider a B P g —_

region G bounded by a closed % S—
contour (figure 34) and assume =~
that at every point of G we
know the intensity f(x, y), na-

mely the amount of under- 17} X7 ilx X
ground water seeping through
per minute per cm® of surface; FiG. 34.

we will have f(x, y) > 0 where

the water is seeping through and f(x, y) < 0 where it is soaking into the

ground. How much water will accumulate on the surface G per minute ?
If we divide G into small parts, consider the rate of seepage as approxi-

mately constant in each part and then pass to the limit for finer and

finer subdivisions, we will obtain an expression for the whole amount

of accumulated water in the form of an integral

Iff(x, y) dx dy.

G

Double (two-fold) integrals were first introduced by Euler. Multiple
integrals form an instrument which is used everyday in calculations and
investigations of the most varied kind.
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It would also be possible to show, though we will not do it here, that
calculation of multiple integrals may be reduced, as a rule, to iterated
calculation of ordinary one-dimensional integrals.

Contour and surface integrals. Finally, we must mention that still
other generalizations of the integral are possible. For example, the problem
of defining the work done by a variable force applied to a material point,
as the latter moves along a given curve, naturally leads to a so-called
curvilinear integral, and the problem of finding the general charge on a
surface on which electricity is continuously distributed with a given surface
density leads to another new concept, an integral over a curved surface.

For example, sup-
pose that a liquid
/ is flowing through

space (figure 35) and
that the velocity of
/ As; a particle of the
\ liquid at the point
\ (x, y) is given by a
) function P(x, y), not
S—_ o depending on z. If
s —— we wish to deter-
> mine the amount of
liquid flowing per
FiG. 35. minute through the
contour I',* we may
reason in the following way. Let us divide I" up into segments 4s,.
The amount of water flowing through one segment s, is approximately
equal to the column of liquid shaded in figure 35; this column may be
considered as the amount of liquid forcing its way per minute through
that segment of the contour. But the area of the shaded parallelogram
is equal to

Ya

Pyx,y) - ds; - cos o,

where «, is the angle between the direction £ of the x-axis and the out-
ward normal of the surface bounded by the contour I'; this normal is
the perpendicular 7 to the tangent, which we may consider as defining
the direction of the segment 4s,. By summing up the areas of such
parallelograms and passing to the limit for finer and finer subdivisions

"% More precisely, through a cylindrical surface with the contour for its base and
with height equal to unity.
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of the contour I', we determine the amount of water flowing per minute
through the contour I'; it is denoted thus:

| P, ) cos (7, %) ds
r

and is called a curvilinear integral. If the flow is not everywhere parallel,
then its velocity at each point (x, y) will have a component P(x, y) along
the x-axis and a component Q(x, y) along the y-axis. In this case we can
show by an analogous argument that the quantity of water flowing through
the contour will be equal to

L [P(x, y) cos (7, %) + Q(x, y) cos (7, y)]ds.*

When we speak of an integral over a curved surface G for a function
Sf(M) of its points M(x, y, z), we mean the limit of sums of the form

i=1

limY A(M,) 4o, = [[ 7,9, 2 do
G

for finer and finer subdivisions of the region G into segments whose areas
are equal to do;.

General methods exist for transforming multiple, curvilinear, and
surface integrals into other forms and for calculating their values, either
exactly or approximately.

Formula of Ostrogradskii. Several important and very general formulas
relating an integral over a volume to an integral over its surface (and
also an integral over a surface, curved or plane, to an integral around its
boundary) were discovered in the middle of the past century by
Ostrogradskil.

We shall not try to give here a proof of the general formula of
Ostrogradskil, which has very wide application, but will merely illustrate
it by an example of its simplest particular case.

Let us imagine, as we did before, that over a plane surface there is a
horizontal flow of water that is also soaking into the ground or seeping
out again from it. We mark off a region G, bounded by a curve I', and

* Since for small displacements along the curve the differential of the coordinate y
is equal to cos(s, %) ds and the differential dx is equal to —cos(#, 7) ds, this latter
integral is often written in the form

f [P(x, ) dy — Q(x, y) dx].
r
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assume that for each point of the region we know the components P(x, y)
and Q(x, y) of the velocity of the water in the direction of the x-axis
and of the y-axis respectively,

Let us calculate the rate at which the water is seeping from the ground
at a point with coordinates (x, y). For this purpose we consider a small
rectangle with sides 4x and 4y situated at the point (x, y).

As a result of the velocity P(x, y) through the left vertical edge of this
rectangle, there will flow approximately P(x, y)4y units of water per
minute into the rectangle, and through the right side in the same time
will flow out approximately P(x + 4dx, y)4y units. In general, the net
amount of water leaving a square unit of surface as a result of the flow
through its left and right vertical sides will be approximately

[P(x + dx, y) — P(x, )] Ay
Adx dy

If we let Ax approach zero, we obtain in the limit

oP

ox
Correspondingly, the net rate of flow of water per unit area in the direction
of the y-axis will be given by

29

By’
This means that the intensity of the seepage of ground water at the point
with coordinates (x, y) will be equal to

9
o, 20
ax ay
But in general, as we saw earlier, the quantity of water coming out

from the ground will be given by the double integral of the function
expressing the intensity of the seepage of ground water at each point,

namely
j j ) dx dy. (52)

But, since the water is incompressible, this entire quantity must flow out
during the same time through the boundaries of the contour I The
quantity of water flowing out through the contour I" is expressed, as we
saw earlier, by the curvilinear integral over I

[ 1PGx, ) cos (7, %) + O(x, y) cos (7, )] ds. (53)
r
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The equality of the magnitudes (52) and (53) expresses the formula of
Ostrogradskii in its simplest two-dimensional case

L [ (G + o) dxdy = [ [PCx,3) cos G, #) + Q(x, ) cosli, )] ds.

We have merely explained the meaning of this formula by a physical
example, but it can be proved mathematically.

In this way the mathematical theorem of Ostrogradskil reflects a
widespread phenomenon in the external world, which in our example we
interpreted in a readily visualized way as preservation of the volume of
an incompressible fluid.

Ostrogradskil established a considerably more general formula expressing
the connection between an integral over a multidimensional volume and
an integral over its surface. In particular, for a three-dimensional body G,
bounded by the surface I', his formula is

.”,[ ox + ay + 3 )dxdydz

- j [P cos (4, £) + Q cos (7, 7) + R cos (7, #)] do,
r

where do is the element of surface.
It is interesting to note that the fundamental formula of the integral
calculus

[ 7 dx = F) — Fia) (54)

may be considered as a one-dimensional case of the formula of
Ostrogradskil. The equation (54) connects the integral over an interval
with the “integral’”’ over its “null-dimensional” boundary, consisting of
the two end points.

Formula (54) may be illustrated by the following analogy. Let us
imagine that in a straight pipe with constant cross section s = 1 water
is flowing with velocity F(x), which is different for different cross sections
(figure 36). Through the porous walls of the pipe, water is seeping into it

Nt/
= = R
o /N b

x x+QAx

Fig. 36,
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(or out of it) at a rate which is also different for different cross sections.

If we consider a segment of the pipe from x to x + 4x, the quantity
of water seeping into it in unit time must be compensated by the difference
F(x + 4x) — F(x) between the quantity flowing out of this segment
and the quantity flowing into it along the pipe. So the quantity seeping
into the segment is equal to the difference F(x + 4x) — F(x), and
consequently the rate of seepage per unit length of pipe (the ratio of the
seepage over an infinitesimal segment to the length of the segment) will

be equal to A %) — F)
T x + 4dx) — F(x) _ .,
T

More generally, the quantity of water seeping into the pipe over the
whole section [a, b] must be equal to the amount lost by flow through
the ends of the pipe. But the amount seeping through the walls is equal
to j': Jf(x) dx and the amount lost by flow through the ends is F(b) — Fa).
The equality of these two magnitudes produces formula (54).

§14. Series

Concept of a series. A series in mathematics is an expression of the
form

U + Uy + Uy + .

The numbers u;, are called the terms of the series. There is an infinite
number of them, and they are arranged in a definite order, so that to
each natural number k = 0, 1, 2, --- there corresponds a definite value u;, .

The reader must keep in mind that we have not said whether it is
possible to calculate a value for such expressions or, in case it is possible,
how to do it. The presence of a plus sign between the terms u; in our
expression seems to indicate that in some way all the terms should be
added. But there are infinitely many of them and addition of numbers is
defined only for a finite number of terms.

Let us denote by S, the sum of the first n terms of the series; we will
call it the nth partial sum. As a result we obtain a sequence of numbers

and we may speak of a variable quantity S, , wheren = 1,2, .-,
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The series is said to be convergent if, as n — co, the variable §,
approaches a definite finite limit

lim §, = S.

This limit is called the sum of the series, and in this case we write
S=uy+uy +uy+ .

But if, as n — oo, the limit §, does not exist, then the series is said to be
divergent and in this case there is no sense in speaking of its sum.* But
if all the u, have the same sign, then it is customary to say that the sum
of the series is equal to infinity with the corresponding sign.

As an example, let us consider the series

1 24 a4 7

whose terms form a geometric progression with common ratio x.
The sum of the first n terms is equal to

1 —x

T (x# 1 (55)

Sn(x) =5

if | x| << 1 this sum has a limit
1
_x *

lim S,(x) = l

and so for | x| < | we may write

l = 2
Tag— | A3

If | x| > 1, then obviously

lim S,(x) = oo,

and the series diverges. The same situation holds also for x = 1, as may
be seen immediately without use of formula (55), which for x = | has
no meaning. Finally, if x = —1 the partial sums take the values +1
and 0 alternately, so that this series also is divergent.

* Let us note that it is also possible to give generalized definitions of the sum of
a series, by virtue of which it is possible to assign to certain divergent series a more or
less natural concept of ‘“‘generalized sum.” Such series are said to be summable.
Operations with generalized sums of divergent series are sometimes useful.
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To each series there corresponds a definite sequence of values of its
partial sums S,, S,, S;, - such that the convergence of the series
depends on the fact that the sums approach a limit. Conversely, to an
arbitrary sequence of numbers S, , S, , S;, - corresponds a series

Sl + (Sz _ Sl) + (Ss = Sz) Jene

the partial sums of which will be the numbers of the sequence. Thus the
theory of variables ranging over a sequence may be reduced to the theory
of the corresponding series, and conversely. Yet each of these theories
has independent significance. In some cases it is more convenient to study
the variable directly and in others to consider the equivalent series.

Let us note that series have long served as an important method of
representing various entities (above all, functions) and of calculating
their value. Of course, the views of mathematicians concerning series
have changed with the passage of time, corresponding to the changes in
their ideas about infinitesimals. The above clear-cut definition of con-
vergence and divergence of a series was formulated at the beginning
of the last century at the same time as the closely associated concept of
a limit,

If the series converges, then its general term approaches zero with
increasing n, since

lim u, = lim (§,4, —S,) =S—-5=0.

From examples given in the following paragraphs, it will be clear that
the converse statement is in general false. But the criterion is still a
useful one, since it provides a necessary condition for the convergence
of a series. For example, the divergence of a geometric progression with
common ratio x > | follows immediately from the fact its general term
does not approach zero.

If the series consists of positive terms, then its partial sum S, increases
with increasing n and only two cases can exist: Either the variable S,
becomes and remains greater than any preassigned number A for suffi-
ciently large n, in which case lim,,_, S, = oo, so that the series diverges;
or else there exists a number A4 such that for all n the value of §, does
not exceed A; but then the variable S, necessarily approaches a definite
finite limit not greater than A4 and the series is convergent.

Convergence of a series. The question whether a given series con-
verges or diverges may often be settled by comparing it with another
series. Here it is customary to make use of the following criterion.
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If we are given two series

u0+u1+“2+ ...‘
bot 0+ Uyt v

with positive terms such that for all values of », beginning with a certain
one, we have the inequality
U, < Uy,

then the convergence of the second series implies the convergence of
the first, and the divergence of the first implies the divergence of the
second.

For example, let us consider the so-called harmonic series

L, 1 1 1 1
l+§+§+z+§+-ﬁ'+?+‘8’+ .

Its terms are correspondingly not less than the terms of the series

1 +5 +'+'+'+'+ +3 +]'6+ +]'6

- ———_—
8 times

in which the sum of the underlined terms in each case is equal to 3.
It is clear that the sum S, of the second series approaches infinity
with increasing n, and consequently that the harmonic series diverges.

The series

l ] l we
Lt gmtgtgt (56)

where « is a positive number less than unity, also obviously diverges,

since for arbitrary n

L,‘>-]-(0<a<l).
n n

On the other hand, it is possible to prove that series (56) for « > 1 is
convergent. We will prove this here only for the case « > 2; for this
purpose we consider the series

/ | 11 1 1

O R R I
with positive terms. It converges to unity as its sum, since its partial
sums S, are equal to

1
Sﬂ_ 1 —?ﬁ‘—bl(ﬂ—"w).
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On the other hand, the general term of this series satisfies the inequality

N .

n—1 n (—Dn

=

from which it follows that the series

1 1 |
I+ttt

converges. All the more then will the series (56) converge with o« > 2,

Let us give here without proof another useful criterion for convergence
and divergence of series with positive terms, the so-called criterion of
d’Alembert.

Let us suppose that, as n approaches infinity, the ratio (u, + 1)/u,
has a limit g. Then for ¢ < | the sequence will certainly converge, while
for ¢ > 1 it will diverge. But for ¢ = | the question of its convergence
remains open.

The sum of a finite number of summands does not change if we permute
the summands. But in general this is no longer true for infinite series.
There exist convergent series for which it is possible to permute the terms
in such a way as to change their sum and even to turn them into divergent
series. Series with unstable sums of this sort fail to possess one of the
fundamental properties of ordinary sums, permutability of the summands.
So it is important to distinguish those series which preserve this property.
It turns out that they are the so-called absolutely convergent series.
The series

Ho+“1+u3+u3+ £

is said to be absolutely convergent if the series

[t | + |ty | + lu | + g |+ -

of absolute values of its terms is also convergent. It is possible to prove
that an absolutely convergent series is always convergent; in other words,
that its partial sums S, approach a finite limit. It is obvious that every
convergent series with terms of one sign is absolutely convergent.
The series
sin x sin 2x sin 3x
]2 22 + 32

+ e

is an example of an absolutely convergent series, since the terms of the
series

|si1l12x|_,_|sm2x | +| sm3x

=



§14. SERIES 171

are not greater than the corresponding terms of the convergent series

I+t

An example of a series which is convergent, but not absolutely con-
vergent, is the following

I 1 1
|—§+§—Z+

as the reader may prove for himself.

Series of functions; uniformly convergent series. In analysis we often
have to do with series whose terms are functions of x. In the preceding
paragraphs we have already had examples of this sort, for instance, the
series | + x + x® 4+ x® + -+-. For some values of x this series converges,
but for others it diverges. Particularly important in applications are
series of functions convergent for all values of x belonging to a certain
interval, which may in particular be the whole of the real axis or the
positive half of it and so forth. Then the necessity arises for differentiating
such series term by term, integrating them, deciding whether their sum
is continuous, and so forth. For the familiar case of the sum of a finite
number of terms, there are simple general rules. We know that the deri-
vative of a sum of differentiable functions is equal to the sum of their
derivatives, the integral of a sum of continuous functions is the sum of
their integrals, and a sum of continuous functions is itself a continuous
function: All this holds for the sum of a finite number of terms.

But for infinite series these simple rules are in general no longer true.
We could give many examples of convergent series of functions for which
the rules of termwise integration and differentiation are false. In the
same way a series of continuous functions may turn out to have a dis-
continuous sum. On the other hand many infinite series behave like
finite sums with respect to these rules.

Profound investigations of this question have shown that these rules
may still be applied if the infinite series in question are not only convergent
at each separate point of the interval of definition (the domain over
which x varies) but if they are wniformly convergent over the whole
interval. In this way there was crystallized in mathematical analysis, in
the middle of the 19th century, the important concept of the uniform
convergence of a series.

Let us consider the series

S(x) = up(x) + uy(x) + wax) + -+,
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whose terms are functions defined on the interval [a, b]. We suppose
that for each separate value of x in the interval this series converges to
a certain sum S(x). The sum of the first n terms of the series

Sﬂ(x) = “o(x) + “l(x) g o un—l(x)

is also a certain function of x, defined on [a, b).

We now introduce a magnitude 7, , which is equal to the least upper
bound of the values* | S(x) — S.(x) |, as x varies on the interval [a, b).
This magnitude is written as followst

M= SUP, | Su(x) = S(x)I.

In case the quantity S(x) — S,(x) attains its maximum value, which will
certainly occur for example, when S(x) and S,(x) are continuous, then
7, is simply the maximum of | S(x) — S.(x)| on [a, b].

From the assumed convergence of our series, we have for every individual
value of x in the interval [a, b]

lim | S(x) — Su(x)| = 0.

But the magnitude »,, may approach zero or it may not. If 7, approaches
zero as n — oo, then the series is said to be uniformly convergent, and
in the opposite case nonuniformly convergent. In the same sense it is
possible to speak of the uniform or nonuniform convergence of a sequence
of functions S,(x) without necessarily interpreting them as partial sums
of a series.

Example 1. The series of functions
1 _ 1 . 1 .
x+1 x+Dx+2 G+2x+I

which we take to be defined only for nonnegative values of x, namely
on the half line [0, c0), may be written in the form

¥

3

1 1 1 1 1
x+l+(x+2_x+l)+(x+3 x+2)+
from which we see that its partial sums are equal to

1

Su(x) = e

and
lim §,(x) = 0.

o See Chapte; XV.
tsup is an abbreviation for the Latin word supremum (highest).
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Thus the series is convergent for all nonnegative x and has the sum
S(x) = 0. Furthermore,

|
M = ogggwlsn(x) —8x) | = S TR ;> 0(n— o),
so that the series is uniformly convergent to zero on the half axis [0, o0).
Figure 37 shows the graphs of some of the partial sums S,(x).

Example 2. The series
X+ x(x — 1)+ Xx = 1) + -
may be written in the form

x4+ (2 —x)+ (2 —x%) + -,
from which
Sa(x) = x7,
and therefore
10,if0 < x < 1;
ILifx = 1.

Thus the sum of the series is discontinuous on the interval [0, 1] with a
discontinuity at the point x = 1. The quantity | S,(x) — S(x)| is less
than unity for every x in [0, 1] but for x close to x = 1 it is arbitrarily
close to unity. So,

lim S,() =

T = SUP | Su(x) — S(x) | =1

for all n = 1, 2, -+ . Thus the series is nonuniformly convergent on the
interval [0, 1]. Figure 38 shows
some of the graphs of the
function S,(x). The graph of /
the sum of the series consists
of the segment 0 < x < | of
the x-axis omitting the right
end point and of the point (1, 1).

y

x
B e

FiG. 37. Fig. 38.
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This example shows that the sum of a nonuniformly convergent series
of continuous functions may in fact be a discontinuous function.

On the other hand, if we consider the series on the interval 0 < x < g
with ¢ < 1, then

e = sup |S(x) —S(x)| = max x" = q¢g*—0,
Osz=q 0<zg

a0

so that on this interval the series converges uniformly and its sum is
continuous. The fact that the sum of a uniformly convergent series of
continuous functions is itself a continuous function is a general rule, as
was pointed out earlier, which can be rigorously proved.

Example 3. The sum of the first n terms of the series S,(x) has the
graph represented by the heavy broken line in figure 39. Obviously, for
all n we have S,(0) = 0, but if 0 < x < 1, then for all n = 1/x, we will
have S,(x) = 0, and consequently for arbitrary x in the interval [0, 1],

S(x) = lim §,(x) = 0.

On the other hand,

N = sup |Sy(x) — S(x)| = sup|Su(x)| = n’.
0=zl

So the quantity »,, does not approach zero but even approaches infinity.
We now note that the series corresponding to this sequence S,(x) cannot
be integrated term by term on the interval [0, 1], since

1 1 l
j S(x) dx = o,f S(x)dx = 5n - =
L] 0

s

|-
LS 1]

so that the series
1 1 1
[ siax + [ 18:00 — S dx + [ 15,00 — S0 dx + -
0 0 0

reduces to the divergent series -

3 3
ey + -

3=t
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Let us state without proof the fundamental properties of uniformly
convergent series:

1. The sum of a series of y
continuous functions which is
uniformly convergent on the A
interval [a, b] is a continuous
function on this interval.

2. If the series of continuous

functions

S(x) = o) 1) + )+ 5= - —
(57) 12n n

converges uniformly on the Fig. 39.

interval [a, b], then it may be
integrated term by term on this interval; that is, for all x,, x, in [a, ]
we have the equality

r, S(r)ydr = r’ ug(t) dt + r’ u(tydt + +

3. If on the interval [a, b] the series (57) converges and the functions
u,(x) have continuous derivatives, then the equality

S'(x) = ug(x) + uy(x) + us(x) + -+, (58)

obtained by termwise differentiation of (57) will be valid on the interval
[a, b] if the series on the right in (58) converges uniformly.

Power series. In §9, a function f(x) defined on an interval [a, b] was
called analytic, if on this interval it has derivatives of arbitrary order
and if in a sufficiently small neighborhood of any point x, of the interval
[a, b] it may be expanded in a convergent Taylor series

100 = 1) + T8 (x — g 1 LI ey 59)
If we introduce the notation
o S™(xo)
n n! ¥

this series may be written in the following form

f(x) — ao + ﬂl(x — xo) + az(x —_— x0)2 + e (60)



176 II. ANALYSIS

A series of this sort, where the numbers a, , a,, -+ are constants independent
of x, is called a power series.
As an example let us consider the power series

l+x+ x4+ 40, (61)

whose terms form a geometric progression.
We know that for all values of x in the interval —1 < x < 1 this
series converges and its sum is equal to

1
P =

S(x) =

For other values of x the series diverges.
It is also easy to see that the difference between the sum of the series
and the sum of its first n terms is given by the formula
x?l
S(x) — Su(x) = —

Ty (62)

and if —g < x < ¢, where g is a positive number less than unity, then

Tl = max | S() = S, = 1.
From this it is clear that v, approaches zero with increasing n so that
the series is uniformly convergent on the interval —g < x < ¢, for all
positive values of ¢ < 1.
It is easy to verify that the function

S0 = 7=

has a derivative of nth order, which is equal to

n!
(n) = ——
S (x) (l _ x)ﬂ+l #
from which
S™(0) = n!

and the sum of the first n terms of the Taylor series for the function S(x)
exactly coincides for x, = 0 with the sum of the first n terms of the
series (59). Moreover, we know that the remainder term of the formula,
given by the equality (62), approaches zero with increasing n, for all x
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on the interval —1 < x < 1. Thus we have shown that the series (61)
is the Taylor series of its sum S(x).

Let us note one further fact. From the interval of convergence
—1 <x < of our series, let us choose an arbitrary point x,. It is
easy to see that for all x sufficiently close to x, , namely for all x satisfying
the inequality

| x — x| <1,
1 —x,

we have the equality

1 1 1
A= 1 —x =l—xo(]_x—xo)

l_xo

1 = e
"Rl TSR

+

1 X>—iXy +(x—xc,)2
I —xo (1 —x0* (1 —xp)°

(63)

The reader may prove without difficulty that
Slﬂb( xO) _ 1

n! (I — xg"

Consequently, series (63) is the Taylor series of its sum S(x) and converges
to it in a sufficiently small neighborhood of any point x, belonging to
the interval of convergence of (61). Since the point x, is arbitrary, this
means that the function S(x) is analytic on the interval.

All these facts that we have observed for the particular power series (61)
hold for arbitrary power series.* Namely, for every power series of the
form (60) where the constants a, are chosen by any given law, there
exists a certain nonnegative number R (which may also be infinite), called
the radius of convergence of the series (60), with the following properties:

1. For all values of x from the interval x, — R < x < x, + R, which
is called its interval of convergence, the series converges and its sum
S(x) is an analytic function of x in its interval. Here the convergence is
uniform for every interval [a, b] lying completely within the interval of
convergence. The series itself is the Taylor series of its sum.

2. At the end points of the interval of convergence, the series may
converge or diverge, depending on its individual character. But it will
certainly diverge outside the closed interval x, — R < x < x, + R.

* For more detailed information on this point see Chapter IX.
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We suggest to the reader that he consider the power series

x  x* Xt

1+ x4+ 2Ix® + 313 4 -+,

x? X
I -k 5 t3t
and convince himself that their radii of convergence are respectively
infinite, zero, and unity.

By the definition given earlier every analytic function may be expanded,
in a sufficiently small neighborhood of an arbitrary point where it is
defined, into a power series which converges to the function. Conversely,
from what has been said it follows that the sum of every power series
whose radius of convergence is not zero is an analytic function in its
interval of convergence.

So we see that power series are organically connected with analytic
functions. We could even say that on their interval of convergence power
series are the natural means of representing analytic functions, and
consequently they are also the natural means of approximating analytic
functions by algebraic polynomials.*

For example, from the fact that the function 1/(1 — x) may be expanded
in the power series

1

=14+x+x2+x34 -,
I —x

which is convergent on the interval —1 < x < 1, it follows that the
power series is uniformly convergent on an arbitrary interval —a < x < a
with @ < 1, and this implies the possibility of approximating the function
on the whole interval [—a, a] by the partial sums of the series with any
preassigned degree of accuracy.

Let us suppose that we are required to approximate the function
1/(1 — x) by polynomials on the interval [- 3, 4] with an accuracy of 0.01.
We note that for all x in this interval we have the inequality

_.,.___._l_x_..._xn =Ixn+l+xn+2+...|

1 —x
<| |n+1 I |n+‘2 e 1 1 ..._l
SIXM 4 1xI + St am + =5

* Approximations going beyond the limits of the interval of convergence of a power
series require other methods. (See Chapter XII.)
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and since 2% = 64, and 27 = 128, the desired polynomial, approximating
the function on the whole interval [- 4, 4] with an accuracy of 0.01,
will have the form
;m 14+ x4+ x>+ 4+ X%
l —x
Let us note one further extremely valuable property of power series:
They may be differentiated termwise everywhere in the interval of con-
vergence. This property finds extremely wide application in the solution
of various problems in mathematics.
For example, let it be required to find the solution of the differential
equation y* = y under the auxiliary condition p(0) = 1. We will seek the
solution in the form of a power series,

Y =Gy + ayx + axt + .

Because of the auxiliary condition, we must set @, = 1. Assuming that
this series converges, we may differentiate it termwise; as a result we
obtain

¥ = a; + 2a,x + 3a;x® + .

If we substitute these two series into the differential equation and equate
coefficients for each of the powers of x, we obtain

1
ak:k_! (k= 1s29)

and the desired solution has the form

x  xz x
}’—1+T+§+TI'+ .

It is well known that this series converges for all values of x and that its
sum is equal to y = &%

In this case we have obtained a series whose sum is a well-known
elementary function. But this does not always happen; it may turn out
that a convergent power series so obtained has a sum that is not an
elementary function. An example is the series

x? x4
-],

=l - e T

obtained as a solution of Bessel’s differential equation, which is of great
importance in applications. In this way power series may serve to define
functions.
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ANALYTIC GEOMETRY

§1. Introduction

In the first half of the 17th century a completely new branch of mathe-
matics arose, the so-called analytic geometry, establishing a connection
between curves in a plane and algebraic equations in two unknowns.

A quite rare event thereby happened in mathematics: In one or two
decades there appeared a great, entirely new branch of mathematics
based on a very simple concept, which until then had not received proper
attention. The appearance of analytic geometry in the first half of the
17th century was not accidental. The transition in Europe to the new
capitalistic methods of manufacture required the advance of a whole
series of sciences. A short time before, contemporary mechanics was
being created by Galileo and other scientists, experimental data were
being accumulated in all regions of natural science, the means of observa-
tion were being perfected, and instead of absolete scholastic theories new
ones were being created. In astronomy, among the foremost scientists
the teachings of Copernicus had finally triumphed. The rapid development
of long-range navigation insistently called for knowledge of astronomy
and the elements of mechanics.

The art of warfare also required mechanics. Ellipses and parabolas,
whose geometric properties as conic sections were already well known
in detail to the ancient Greeks almost 2000 years earlier, ceased to be
only part of geometry, as they were to the Greeks. After Kepler had
discovered that the planets revolve around the sun in ellipses, and Galileo
that a stone thrown into the air traces out a parabola, it was necessary
to calculate these ellipses and to find the parabolas along which bullets
fly from a gun; it was necessary to discover the law by which the at-

183
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mospheric pressure, discovered by Pascal, decreases with the height; it
was necessary actually to calculate the volumes of various bodies, and
so forth.

All these questions almost simultaneously called to life three entirely
new mathematical sciences: analytic geometry, differential calculus, and
integral calculus, including the solution of the simplest differential
equations.

These three new fields qualitatively changed the face of the whole of
mathematics. They made it possible to solve problems never even dreamed
of before.

In the first half of the 17th century, i.e., at the beginning of the 1600’s,
a group of the most outstanding mathematicians was already close to
the idea of analytic geometry, but there were two of them, in particular,
who understood clearly the possibility of creating a new branch of
mathematics. These were Pierre Fermat, a counsellor of the parliament
of the French city of Toulouse and a world-famous mathematician, and
the famous French philosopher René Descartes. Descartes is credited
with being the chief creator of analytic geometry. He was the one who,
as a philosopher, raised the question of its complete generality. Descartes
published the great philosophical treatise “Discourse on the method of
rightly conducting the reason and seeking the truth in the sciences, with
applications: dioptrics, meteorology and geometry.”

The last part of this work, entitled “Geometry” and published in 1637,
contains a sufficiently complete, although somewhat confusing, presenta-
tion of the mathematical theory that since then has been called analytic
geometry.

§2. Descartes’ Two Fundamental Concepts

Descartes wished to create a method that could equally well be applied
to the solution of all problems of geometry, that is, which would provide
a general method for their solution. Descartes’ theory is based on two
concepts: the concept of coordinates and the concept of representing by
the coordinate method any algebraic equation with two unknowns in the
form of a curve in the plane.

The concept of coordinates. By the coordinates of a point in the plane
Descartes means the abscissa and ordinate of this point, i.e., the numerical
values x and y of its distances (with corresponding signs) to two mutually
perpendicular straight lines (coordinate axes) chosen in this plane (see
Chapter II). The point of intersection of the coordinate axes, i.e., the
point having coordinates (0, 0) is called the origin.
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With the introduction of coordinates Descartes constructed, so to
speak, an “arithmetization” of the plane. Instead of determining any
point geometrically, it is sufficient to give a pair of numbers x, y and
conversely (figure 1).

The notion of comparison of equations with two unknowns with curves
in the plane. Descartes’ second concept is the following. Up to the time
of Descartes, where an algebraic equation in two unknowns F(x, y) = 0
was given, it was said that the problem was indeterminate, since from
the equation it was impossible to determine these unknowns; any value
could be assigned to one of them, for example to x, and substituted in
the equation; the result was an equation with only one unknown y, for
which, in general, the equation could be solved. Then this arbitrarily
chosen x together with the so-obtained y would satisfy the given equation.
Consequently, such an “indeterminate” equation was not considered
interesting.

Descartes looked at the matter differently. He proposed that in an
equation with two unknowns x be regarded as the abscissa of a point
and the corresponding y as its ordinate. Then if we vary the unknown x,
to every value of x the corresponding y is computed from the equation,
so that we obtain, in general, a set of points which form a curve (figure 2).*

y.i\
5 (2,6)
(-4,5) 5 ri 1\"0(
. 6,4) o
3..
24 Yz
(-2, 1 Y
’ ! Y T’ Vs Y ’|'5
- - SN L
6-5-4-32-10| | 23 4 |56 % Xa_| 1
e T 210 /1 234567
2t
-3 F(-.?,y.;)ro
o | (5,-3) Fl-1,y.4):0
o F(0,yg) =0
(-3,-5) Fll, 5 )=0
-61 Fi2,ypl =0
FG. 1. FiG. 2.

e Sometimes, the equation is not satisfied by any point (x, ») with real coordinates,
sometimes by one or a few such points. In this case we say that the curve is imaginary or
reduces to points (see §7).
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Thus, to each algebraic equation with two variables, F(x,y) = 0,
corresponds a completely determined curve of the plane, namely a curve
representing the totality of all those points of the plane whose coordinates
satisfy the equation F(x, y) = 0.

This observation of Descartes opened up an entire new science.

The basic problems solved by analytic geometry and the definition of
analytic geometry. Analytic geometry provides the possibility: (1) of
solving construction problems by computation (see for example, the
division of a segment in a given ratio, see §3); (2) of finding the
equation of curves defined by a geometric property (for example, of
an ellipse defined by the condition that the sum of distances to two
given points is constant, see §7); (3) of proving new geometric theorems
algebraically (see, for example, the derivation of Newton’s theory of
diameters, §6); (4) conversely, of representing an algebraic equation
geometrically, to clarify its algebraic properties (see, for example, the
solution of third- andfourth-degree equations from the intersection of a
parabola with a circle, §5).

Thus, analytic geometry is that part of mathematics which, applying
the coordinate method, investigates geometric objects by algebraic means.

§3. Elementary Problems

The coordinates of a point that divide a segment in a givenratio. Given
the coordinates (x,, y,) and (x,, y,) of two points M, and M,, let us
find the coordinates (x, y) of the point M dividing the segment M, M, in
the ratio m to n (figure 3). From the similarity of the shaded triangles
we obtain:

X —X n -
1 =3 from which

s\ Moligye) 277
(n) ol O
il m+n °
Y Zh _ M eom which
187 Ya— ) n
4 _ MW+ my,
4 m+n
/ e Distance between two points.
el Let us find the distance between

the points M, and M,, whose
coordinates are (x,,y,) and
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(xy , o) respectively. From the shaded right triangle (figure 4), we obtain
by the theorem of Pythagoras

d= V(x;— xP + (y: — n>

The area of a triangle. Let us find the area S of the triangle
MMM, (figure 5) if the coordinates of its vertices are respectively
(x5 1) (X2, ¥5), (X3, y3). Considering the area of the triangle as the sum
of the areas of trapezoids with bases y, , y; and y; , y, minus the area of the
trapezoid with bases y, , y, and writing the product — (¥, + y)(xs — xp)
in the form (y, + yo)(x; — X;), we obtain

S =3[0 + y) — X)) + (y2 + ya)(xs — x3) + (1s + ¥l xs — x,)).

Ms(x3,y3)
r|
ﬁv{,(x;,y;)
(xy,¥¢/
My(x4: 54/, -
Yo
I
Ay
| ———t——| o
0 X3 ’i
2
FiG. 4. FiG. 5.

In these problems it only remains to verify that the derived formulas
remain valid without any change in those cases when one or more coor-
dinates or their differences are negative. Such verification easily follows.

Determination of the points of intersection of two curves. Relying on
the second fundamental idea that the equation F(x, y) = O represents a
curve, it is particularly simple to find the points of intersection of two
curves. In order to find the coordinates of the points of intersection of
two curves, it is obviously necessary to solve simultaneously the equations
that represent them. The pait of numbers x, y obtained from the ordinary
solution of these two equations will determine the point whose coordinates
satisfy both of the equations, i.e., the point that lies on the first as well
as on the second curve, and this is the point of their intersection.
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The solution of geometric problems by the tools of analytic geometry,
as we see, is very convenient for practical purposes, especially because
every solution is at once obtained in the convenient form of numbers.
Such a geometry, such a science, was exactly what was lacking at that time.

§4. Discnssion of Curves Represented by First- and Second-Degree
Equations

First degree equation. Making use of his second idea, Descartes first
of all examined what curves correspond to an equation of the first-degree,

Ax + By + C =0, )

i.e., to an equation where 4, B, C are numerical coefficients with 4 and B
not both zero. It turned out that in the plane a straight line always
corresponds to such an equation.

We shall prove that equation (1) always represents a straight line, and
conversely, that to every line in the plane there corresponds a completely
determined equation of the form (1). In fact, let us suppose, for example,
that B £ 0 then equation (1) can be solved for y

y=kx+1
<
7"
We examine first the equation y = kx. It obviously represents a

straight line passing through the origin and making an angle ¢ with the
x-axis whose tangent tan ¢ is k (figure 6). Indeed, the equation can be

where k = —%;l= —

YA

tx,y!

FIG. 6. Fig. 7
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written as y/x = k, so that the coordinates of every point (x, y) on the
straight line satisfy the equation, and the coordinates of no point (x, 7)
not lying on the straight line satisfy the equation, since for such a point
y/x will be either greater than or smaller than k. In addition, if tan¢ > 0,
then for this line either both x and y are positive or both negative, and
if tan ¢ << O their signs are opposite.

Thus, the equation y = kx represents a straight line passing through
the origin O, and consequently the equation y = kx + [/ also represents
a line, namely the one which is obtained from the previous line by the
parallel translation such that the ordinate of each of its points is increased
by / (figure 7).

The earlier derived formulas of the coordinates of a point dividing a
segment in a given ratio, the distance between two given points, and the
area of a triangle as well as the information about the equation of a
straight line already enable us to solve a large number of problems.

The equation of a straight line passing through one or two given points.
Let M, be the point with coordinates x, , y, and let k be a given number.
The equation y = kx + [ represents a straight line making with the
Ox-axis an angle whose tangent is equal to k and intersecting the Oy-axis
at a distance / from O. Let us choose / such that this line goes through
the point (x, , y,). For this, the coordinates of the point M, must satisfy
the equation, i.e., we must have y, = kx, + [, from which / = y, — kx,.

ydl
(xy, y¢/
d .
VR o
Fig. 8. Fic. 9.

Substituting this value for /, we obtain the equation of the line that
passes through the given point (x,, y;) and makes with the Ox-axis
an angle whose tangent is equal to k (figure 8). This equation is
y=kx + y,— kx, or

y— 3 = k(x — x,).
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Example. Let the angle between the line and the Ox-axis be equal
to 45°, and let the point M have coordinates (3, 7); then the equation of
the corresponding line (since tan 45° = ) will be: y— 7 =1+ (x — 3)
orx—y+4=0

If we require that the line passing through the point (x,,y,) also
go through the point (x,, y,), it follows that the condition y, — y, =
k(x, — x;) must be imposed on k. Finding k from this and substituting
it in the previous equation, we obtain the equation of the line passing
through two given points (figure 9):

i G Sy . O
Xo — X Yo — N

Descartes’ result concerning second-degree equations. Descartes also
investigated the question as to what kinds of curves in the plane are
represented by the second-degree equation with two variables whose
general form is

Ax* + Bxy + Cy* + Dx + Ey + F= 0,

and showed that such an equation, generally speaking, represents an
ellipse, a hyperbola, or a parabola; i.e., curves very well known to the
mathematicians of antiquity.

These are Descartes’ most important achievements. However, his book
was far from being restricted to these topics; he also investigated the
equations of a number of interesting geometric loci, examined certain
theorems on transformation of algebraic equations, mentioned without
proof his famous law of signs for the number of positive roots of an
equation whose roots are all real (see Chapter 1V, §4) and, finally,
presented a remarkable method for determining the real roots of third-
and forth-degree equations from the intersection of the parabola y = x2
with circles.

§5. Descartes’ Method of Solving Third- and Fourth-Degree
Algebraic Equations

Transformation of third- and fourth-degree equations to an equation of
the fourth-degree not involving the x®-term. We will show that the
solution of an arbitrary third- or fourth-degree equation can be reduced
to the solution of an equation of the form

X+ pxtt+gx+r=0 2
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Let the given third-degree equation be z* + az® + bz + ¢ = 0. Sub-
stituting z = x — a/3, we obtain

(x—af3)® + alx—a/3)* + b(x—a/3) + ¢ = 0.

The x2-terms in the expansion of the parentheses will cancel out, so that
we get an equation of the form x*® + px + g = 0. Multiplying this
equation by x, we bring it to the form (2) with r = 0, which also admits
aroot x, = 0.

An equation of the fourth-degree z¢ + az® + bz% + ¢z + d = 0 can
be reduced to the form (2) by the substitution z = x — a/4. Hence, the
solution of all third- and fourth-degree equations can be reduced to the
solution of an equation of the form (2).

The solution of third- and fourth-degree equations by the intersection
of a circle with the parabola y = x2. Let us first derive the equation of
acircle with center (a, b) and radius R. If (x, y) is any of its points, then the
square of its distance to the point (a, b) is equal to (x — a)* + (y — b)?
(see §3). Thus, the equation of the circle in question is

(x—a)* + (y— b= R~
Now we try to find the points of intersection of this circle with the

parabola y = x2. In order to do this, by virtue of what was said in §3,
it is necessary to solve simultaneously the equation of this circle

XX+t —2ax—2by +a*+ b2 —RE=0

and the equation of the parabola
y = x

Substituting y from the second equation into the first, we obtain a
fourth-degree equation in x:

24 x—2ax —2bx* +a  + 02— R =0
or
x4+ (1 —2)x* —2ax +a* + b — R = 0.
If we choose a, b and R? such that
l1—2b=p,—2a=¢q,a*+ b —R =1,

then exactly equation (2) is obtained. For this purpose we have to take

1—p (1 *‘—‘p)2 . 3)

2
2 _ 9
7 =3+

— 9, _
a= 2,b




192 III. ANALYTIC GEOMETRY

In the last formula (3), generally speaking, R? may turn out to be negative.
However, in the case when equation (2) has even one real root x,, the
following equality holds

x4+ (1 —2b)x2 — 2ax, + @& + b* — R = 0. 0

Denoting x2 by y, , equation (4) can be rewritten as
X2+ )2 —2ax, —2by, + @+ - R* =0

or as
( — a)* + (0 — b)* = R>.

Hence, in the case when equation (2) has a real root, the number
R = [(1 — p)* + ¢%)/4 — r is positive, the equation

(x—a) + (y — by = R?

is the equation of a circle, and all real roots of equation (2) are the
abscissas of points of intersection of the parabola y = x® with this circle.
(In case r = 0, R? = a® + b? this circle passes through the origin.)
Thus, if the coefficients p, ¢, r of equation (2) are given, and it is
necessary to find a, b and R? by formulas (3), then if R* < 0, equation (2)
is known to have no real roots. But, if R? > 0 then the abscissas of the
points of intersection of the circle with center (g, b) and radius R with
the parabola y = x? (drawn once and for all) give all the real roots of
equation (2); and also in case
R? < 0, the resulting circle cannot
o\ intersect the parabola and equa-
tion (2) does not have real roots.

Example. Let the given fourth-
degree equation be:

“2L x‘—4x2+x+%=
ition

? Then we have

i

i 1 5 1
E a——i,b—j—Zi,
I

1

Figure 10 shows the corresponding
circle and the roots x, , X3, X, , X4
FiG. 10. of the given equation.
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The Ist, 2nd, 3rd and 4th sections above contain, in an abbreviated and
somewhat more modern form, the essential content of Descartes’ book.

From Descartes’ time up to the present, analytic geometry has under-
gone an immense development that has been very fruitful for many
different parts of mathematics. We will attempt in the following sections
of this chapter to trace the most important stages of this development.

First of all, it is necessary to say that the inventors of the infinitesimal
analysis were already in possession of Descartes’ method. Whether it was
a question of tangents or normals (perpendiculars to the tangents at the
point of tangency) to curves, or of maxima or minima of functions
considered geometrically, or of the radius of curvature of a curve at a
given point, etc., the equation of the curve was considered first, by the
method of Descartes, and then the equations of the normal, the tangent,
and so forth, were found. Thus infinitesimal analysis, namely the dif-
ferential and integral calculus, would have been inconceivable without
the preliminary development of analytic geometry.

§6. Newton’s General Theory of Diameters

The first mathematician to take a further great step forward in analytic
geometry itself was Newton. In 1704 he examined the theory of third-
order curves, i.e., curves which are represented by third-degree algebraic
equations in two unknowns. At the same time he found, among other
things, an elegant general theorem about “diameters,” which correspond
to secants in a given direction. He proved the following.

Let an nth-order
curve be given, ie., a
curve which is repre-
sented by an nth-de-
gree algebraic equation /
in two unknowns; then }1. —r

1

an arbitrary straight =

line intersecting it has ~L -
in general n common f

points with it. Let M o /
be the point of the se-
cant that is the “‘center
of gravity” of these FG. 11,

points of its intersec-

tion with the given nth-order curve, i.e., the center of gravity of a set
of n equal point masses situated at these points. It turns out that if we
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take all possible sets of mutually parallel secants and for each of them
consider these centers of mass M, then for any given set of parallel
secants all the points M lie on a straight line. Newton called this line
the “‘diameter” of the nth-order curve corresponding to the given direction
of the secants. Since the proof of this theorem is quite easy with the
help of analytic geometry, we will give it here.

Let an nth-order curve be given and some set of mutually parallel
secants of the curve. Choose the coordinate axes so that these secants
are parallel to the Ox-axis (figure 11). Then their equations will have
the form y = [/, where the constant / will be different for different secants.
Let F(x, y) = 0 be the equation that represents the nth-order curve with
respect to these coordinate axes. It is easy to show that under a trans-
formation from one rectangular coordinate system to another, although
the equation of the curve changes, its order does not change (this will be
shown in §8). Therefore F(x, y) will also be an nth-degree polynomial.
To determine the abscissas of the points of intersection of the curve with
the secant y = /, it is necessary to solve the simultaneous equations
F(x,y) = 0 and y = /; as a result, in general, an nth-degree equation
in x is obtained

F(x,l) =0, (5

from which we find the abscissas x, , x5, -+, x, . The abscissa x, of the
center of gravity of the n points of intersection is equal, by the very
definition of center of gravity, to

=xl+x2+"'+xn
n

Xe

But, as is known from the theory of algebraic equations, the sum
X, + X, + - + x, of the roots of an equation is equal to the coefficient
of the (n — 1)th power of the unknown x, taken with the opposite sign,
divided by the coefficient of the nth power of x. But because the sum
of the exponents of x and y in every term of F(x, y) is equal to or less
than n, the term in x» does not contain y at all but has the form Ax™®,
where A4 is a constant; and if the terms in x"~' contain y, they do so to
no higher than the first power; ie., they have the form x*'(By + C).
Consequently, the coefficient of x* is 4 and that of x*'is B/ + C, and
we have for any given /

Bl+C

nA

X = —

But the secant is parallel to the Ox-axis so that for all of its points y = /,
and hence the ordinate y of the center of gravity of the points of its
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intersection with the given nth-order curve is also equal to /; thus finally
we obtain ndx, + By, + C = 0, i.e., the coordinates x,,y, of the
centers of gravity for all these secants satisfy a first-degree equation,
and consequently lie on a straight line.

Fig. 12. Fig. 13.

The case when F{(x, y) does not contain x" can be investigated anal-
ogously.

In case the curve is of the 2nd order (n == 2) the center of gravity of
two points is simply the midpoint between them, so that the locus of
midpoints of parallel chords of a second-order curve is a straight line
(figure 12), a result that for the ellipse, as well as for the hyperbola and
the parabola, was already well known to the ancients. But this was
proved by them, even though only for these partial cases, with quite
difficult geometric arguments, and here a new general theorem, unknown
to the ancients, is proved in an entirely simple way.

Such examples reveal the power of analytic geometry.

§7. Ellipse, Hyperbola, and Parabola

In this and the following sections, we consider second-order curves.
Before investigating the general second-degree equation, it is useful to
examine some of its simplest forms.

The equation of a circle with center at the origin. First of all, we
consider the equation
x2 4+ p2 = ad

It evidently represents a circle with center at the origin and radius q,
as follows from the theorem of Pythagoras applied to the shaded right
triangle (figure 13), since whatever point (x, y) of this circle is taken,
its x and y coordinates satisfy this equation, and conversely, if the
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coordinates x, y of a point satisfy the equation, then the point belongs
to the circle; i.e., the circle is the set of all those points of the plane that
satisfy the equation.

The equation of an ellipse and its focal property. Let two points F,
and F, be given, the distance between which is equal to 2¢. We will find
the equation of the locus of all points M of the plane; the sum of whose
distances to the points F, and F, is equal to a constant 2a (where, of
course, a is greater than ¢). Such a curve is called an ellipse and the
points F, and F, are its foci.

Let us choose a rectangular coordinate system such that the points F,
and F, lie on the Ox-axis and the origin is halfway between them. Then
the coordinates of the points F, and F, will be (¢, 0) and (— ¢, 0). Let us
take an arbitrary point M with coordinates (x, y), belonging to the locus
in question, and let us write that the sum of its distances to the points
F, and F, is equal to 2a,

Vx =+ =0 + V(x + ¢ +(y —0) = 2a. (6

This equation is satisfied by the coordinates (x, y) of any point of the
locus under consideration. Obviously the converse is also true, namely
that any point whose coordinates satisfy equation (6) belongs to this
locus. Equation (6) is therefore the equation of the locus. 1t remains to
simplify it.

Raising both sides to the second power, we obtain

X —=2ex + A+ P+ 2V —2cx + &+ pA)(x® + 2¢x + 2 + p?)
+ x* 4 2ex 4 ¢ + 2 = 4a,
or after simplification

X243+ —2a = — V(x4 p2 + P — 42X

Squaring again both sides, we obtain
(x4 Y+ P —4a®(® 4y + ) + dat = (3 + ) + F)P—Alx®
or after simplification
(@ — A)x? + a¥y? = (a®* — ¥)a’.
Let us set a® — ¢2 = b (as may be done since a > c); then we obtain
b2x® + a?y® = a*b?, and dividing by a?bh? we have

|
+F_L Y

&%
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The coordinates (x, y) of any point M of the locus thus satisfy equa-
tion (7).

It can be shown on the other hand that if the coordinates of a point
satisfy equation (7) then they also satisfy equation (6). Consequently,
equation (7) is the equation of this locus, i.e., the equation of the ellipse
(figure 14).

Fig. 14, FiG. 15.

This argument is a classical example of finding the equation of a curve
given by some of its geometrical properties.

The well-known method of tracing an ellipse by means of a thread
(figure 15) is based on the property of the ellipse that the sum of the
distances of any of its points to two given points is a constant.

Remark. In order to determine an ellipse, we could have taken,
instead of the focal property considered here, any other geometric
property characteristic of it, for example, that the ellipse is the result of
a “uniform contraction” of a circle toward one of its diameters or
any other property.

Substituting y = 0 in equation (7) of the ellipse, we obtain x = 4-a,
ie., a is the length of the segment OA (see figure 14), which is called
the major semiaxis of the ellipse. Analogously, substituting x = 0, we
obtain y = +b, i.e., b is the length of the segment OB, which is called
the minor semiaxis of the ellipse.

The number € = c/a is called the eccentricity of the ellipse, so that,
since ¢ = y/a® — b* < a, the eccentricity of an ellipse is less than 1.
In the case if a circle, ¢ = 0 and consequently € = 0; both foci are at
one point, the center of the circle (since OF, = OF, = 0), but the previous
method of drawing the curve with a thread is still valid.
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Laws of planetary motion. In studying Tycho Brahe’s long-continued
observations on the motion of the planet Mars, Kepler discovered that
the planets revolve around the Sun in ellipses such that the Sun occupies
one focus of the ellipse (the other focus
remains unoccupied and plays no part in
the motion of a planet around the Sun)
(figure 16). Kepler also observed that the
focal radius p in equal times sweeps out
sectors of equal areas,* and Newton
showed that the necessity of such a motion
follows mathematically from the law of
inertia (proportionality of acceleration to
force) and the law of universal gravitation.

FiG. 16.

The ellipse of inertia. As an example
of the application of the ellipse in a technical problem, we consider the
so-called ellipse of inertia of a plate.

Let the plate be of uniform thickness and homogeneous material, for
example a zinc plate of arbitrary shape. We rotate it around an axis in
its plane. A body in rectilinear motion has, as is well known, an inertia
with respect to this rectilinear motion that is proportional to its mass
(independently of the shape of the body and the distribution of the mass).
Similarly, a body rotating around an axis, for instance a flywheel, has
inertia with respect to this rotation. But in the case of rotation, the
inertia is not only proportional to the mass of the rotating body but

FiGg. 17a. FiGg. 17b.

* The eccentricities of planetary orbits are not very large, so that the orbits of
planets are almost circles.
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also depends on the distribution of the mass of the body with respect
to the axis of rotation, since the inertia with respect to rotation is greater
if the mass is farther from the axis. For example, it is very easy to bring
a stick at once into fast rotation around its longitudinal axis (figure 17a).
But if we try to bring it at once to fast rotation around an axis perpen-
dicular to its length, even if the axis passes through its midpoint, we will
find that unless this stick is very light, we must exert considerable effort
(figure 17b).

It is possible to show that the inertia of a body with respect to
rotation about an axis, the so-called moment of inertia of the body
relative to the axis, is equal to X rim, (where by X rim; we mean the
sum rim, + rimy, + -+ + rim, and think of the body as decomposed
into very small elements, with m; as the mass of the ith element and r;
the distance of the ith element from the axis of rotation, the summation
being taken over all elements of the body).

Let us return to our plate. Let O (figure 18) be a point of this plate.
We consider the moments of inertia J, of the plate relative to an axis

>~

< e X tan y;

I ¢
H ﬁm]])_ T
ﬁ . X é Yi

FiG. 18. Fig. 19.

of rotation u passing through O and lying in the plane of the plate. For
this purpose we take the point O as the origin of a Cartesian coordinate
system and choose arbitrary axes Ox and Oy in the plane of the plate;
then we will characterize the axis of rotation # by the angle ¢ which it
makes with the Ox-axis. It is easy to see (figure 19) that

ri = |(x;tan¢ — y;)cos e | = |x,sind — y; cosg |.
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Hence
X rim; = X (x} sin®¢ — 2x,y, sin cos ¢ + p% cos? ) m,
= sin?¢ X xim, — 2 sin cos ¢ T x;y;m; + cos¢ X yim, .

The quantities sin®>¢, 2 sin¢ cos ¢, and cos®¢ are taken outside the sum-
mation sign, since they are constant for a given axis . We now write

Exzsmg = A, _ Ex,«y;m; = B, Eyzim,- = C.

The quantities 4, B, and C do not depend on the choice of the axis u,
but only on the shape of the plate, the distribution of its mass, and the
fixed choice of the coordinate axes Ox and OQy. Consequently,

J, = Asin®¢ + 2Bsing cos¢ + Ccos?e.

We consider all possible axes u in the plane of the plate passing through
the point O and lay off on each of these axes from the point O a length
equal to p, the inverse of the square root of the moment of inertia J, of
the plate relative to that axis, i.e., p = 1/4/J, . Then we obtain

# = Asin®¢ + 2Bsindcos¢d + Ccos? ¢.
But
X = pcosg, y = psing,
so that the equation of this locus has the following form:
Cx® + 2Bxy + Ay* = 1.

A second-order curve is obtained that is evidently finite and closed;
i.e., it is an ellipse (figure 20), since all other second-order curves, as we
will later show, are either infinite or reduce to one point.

The following remarkable result is
obtained: Whatever may be the form
and size of a plate and the distribution
of its mass, the magnitude of its moment
of inertia (more precisely, of the
quantity p inversely proportional to the
square root of the moment of inertia)
with respect to the various axes lying
in the plane of the plate and passing
through the given point O, is charac-
terized by a certain ellipse. This ellipse
is called the ellipse of inertia of the
FiG. 20. plate relative to the point O. If the
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point O is the center of gravity of the plate, then the ellipse is called
its central ellipse of inertia.

The ellipse of inertia plays a great role in mechanics; in particular, it
has an important application in the strength of materials. In the theory
of strength of materials, it is proved that the resistance to bending of a
beam with given cross section is proportional to the moment of inertia
of its cross section relative to the axis through the center of gravity of
the cross section and perpendicular to the direction of the bending force.
Let us clarify this by an example. We assume that a bridge across a
stream consists of a board that sags under the weight of a pedestrian
passing over it. If the same board (no thicker than before) is placed
“on its edge,” it scarcely bends at all, i.e., a board placed on its edge is,
so to speak, stronger. This follows from the fact that the moment of
inertia of the cross section of the board (it has the shape of an elongated
rectangle that we may think of as evenly covered with mass) is greater
relative to the axis perpendicular to its long side than relative to the axis
parallel to its long side. If we set the board not exactly flat nor on edge
but obliquely, or even if we do not take a board at all but a rod of
arbitrary cross section, for example a rail, the resistance to bending will
still be proportional to the moment of inertia of its cross section relative
to the corresponding axis. The resistance of a beam to bending is therefore
characterized by the ellipse of inertia of its cross section.

For an ordinary rectangular beam this ellipse will have the form shown
in figure 21. The rigidity of such a beam under a load in the direction
of the Oz-axis is proportional to bA®,

Steel beams often have a [ -shaped cross section; for such beams the
cross section and the ellipse of inertia are represented in figure 22. The

FiG. 21.
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greatest resistance to bending is in the z direction. When they are used,
for example as roof rafters under a load of snow and their own weights,
they work directly against bending in a direction close to this most
advantageous direction.

The hyperbola and its focal property. Now we consider the equation
x )

a b7

representing a curve which is called a hyperbola. If we denote by ¢ a number
such that ¢ = a® + b2, then it is possible to show that a hyperbola is
the locus of all points the difference of whose distances to the points F,
and F, on the Ox-axis with abscissas ¢ and —c is a constant: p, — p, = 2a
(figure 23). The points F, and F, are called the foci.

FiG, 23, FI1G. 24.

The parabola and its directrix. Finally, we consider the equation
y: = 2px

and call the corresponding curve a parabola. The point F lying on the
Ox-axis with abscissa p/2 is called the focus of the parabola, and the
straight line y = —pj/2, parallel to the Oy-axis, is its directrix. Let M be
any point of the parabola (figure 24), p the length of its focal radius MF,
and d the length of the perpendicular dropped from it to the directrix.
Let us compute p and d for the point M. From the shaded triangle we
obtain p? = (x — p/2)*> + y*. As long as the point M lies on the parabola,
we have y2 = 2px, hence

e e (e,
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But directly from the figure it is clear that d = x + p/2. Therefore
pP=d? ie, p=d The inverse
argument shows that if for a given
point we have p = d, then the point
lies on the parabola. Thus a parabola
is the locus of points equidistant
from a given point F (called the
focus) and a given straight line 4
(called the directrix).

The property of the tangent to a

parabola. Let us examine an im-
portant property of the tangent to a FiG. 25
parabola and its application in optics. ’
Since for a parabola y? = 2px we have 2y dy = 2p dx, it follows that the
derivative, or the slope of the tangent, is equal to dy/dx = tan¢ = pfy
(figure 25).

On the other hand, it follows directly from the figure that

Y
x —pl2°

tany =

But

T—pr Y —p 2px—p x—p]2’

ie., y = 2¢, and since y = ¢ + i, therefore y = ¢. Consequently, by
virtue of the: law (angle of incidence is equal to angle of reflection) a
beam of light, starting from the focus F and reflected by an element of
the parabola (whose direction coincides with the direction of the tangent)
is reflected parallel to the Ox-axis, i.e., parallel to the axis of symmetry
of the parabola.

On this property of the parabola is based the construction of reflecting
telescopes, as invented by Newton. If we manufacture a concave mirror
whose surface is a so-called paraboloid of revolution, ie., a surface
obtained by the rotation of a parabola around its axis of symmetry, then
all the light rays originating from any point of a heavenly body lying
strictly in the direction of the *“axis” of the mirror are collected by the
mirror (figure 26) at one point, namely its focus. The rays originating
from some other point of the heavenly body, being not exactly parallel
to the axis of the mirror, are collected almost at one point in the neigh-
borhood of the focus. Thus, in the so-called focal plane through the
focus of the mirror and perpendicular to its axis, the inverse image of

tan 24 — 2ply 2py 2py y
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the star is obtained; the farther away this image is from the focus, the
more diffuse it will be, since it is only the rays exactly parallel to the
axis of the mirror that are collected by the mirror at one point. The
image so obtained can be viewed in a special microscope, the so-called

FiG. 26.

eye piece of the telescope, either directly or, in order not to cut off the
light from the star with one’s own head, after reflection in a small plane
mirror, attached to the telescope near the focus (somewhat nearer than
the focus to the concave mirror) at an angle of 45°.

The searchlight (figure 27) is based on the same property of the parabola.
In it, conversely, a strong source of light is placed at the focus of a
paraboloidal mirror, so that its rays are reflected from the mirror in a
beam parallel to its axis. Automobile headlights are similarly constructed
(figure 28).

e
-
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In the case of an ellipse, as it is easy to show, the rays issuing from
one of its foci F; and reflected by the ellipse are collected at the other
focus F, (figure 29), and in the hyperbola the rays originating from one
of its foci F, are reflected by it as if they originated from the other focus
F, (figure 30).

Fig. 30.

The directrices of the ellipse and the hyperbola. Like the parabola,
the ellipse and the hyperbola have directrices, in this case two apiece.
If we consider a focus and the directrix “on the same side with it,” then
for all points M of the ellipse we have p/d = ¢, where the constant e is
the eccentricity, which for an ellipse is always smaller than 1; and for
all points of the corresponding branch of the hyperbola, we also have
pld = €, where e is again the eccentricity, which for a hyperbola is always
greater than |.

Thus the ellipse, the parabola and one branch of the hyperbola are
the loci of all those points in the plane for which the ratio of their distance
p from the focus to their distance dfrom the directrix is constant (figures 31
and 32). For the ellipse this constant is smaller than unity, for the parabola
it is equal to unity, and for the hyperbola it is greater than unity. In

FiG. 31. FiG. 32.
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this sense the parabola is the “limiting” or “transition” case from the

ellipse to the hyperbola.

Fig. 33.

Conic sections. The ancient
Greeks had already investigated
in detail the curves obtained by
intersecting a straight circular
cone by a plane. If the intersecting
plane makes with the axis of the
cone an angle ¢ of 90° ie., is
perpendicular to it, then the sec-
tion obtained is a circle. It is easy
to show that if the angle ¢ is
smaller than 90°, but greater than
the angle o which the generators
of the cone make with its axis,
then an ellipse is obtained. If ¢ is
equal to o, a parabola results and
if ¢ is smaller than «, then we

obtain a hyperbola as the section (figure 33).

The parabola as the graph of quadratic proportion and the hyperbola
as the graph of inverse proportion. We recall that the graph of quadratic

proportion

y = kx*?
is a parabola (figure 34) and that the graph of

inverse proportion

k

y=- or xy=k

X

is a hyperbola (figure 35), as we will easily
prove later. A hyperbola was defined earlier as
the curve represented by the equation

@ B

ya

K2

Fig. 34,
1.

In the special case a = b the so-called recrangular hyperbola plays the
same role among hyperbolas as the circle plays among ellipses. In this
case, if we rotate the coordinate axes by 45° (figure 36) the equation in
the new coordinates (x’, y') will have the form

Xy = k.
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We have now considered three important second-order curves: the
ellipse, the hyperbola, and the parabola, and for their definitions we have
taken the so-called canonical equations

xﬁ xt 2
§+£=l,a——%=l and )* = 2px,

by which they are represented.

YJ vl
yf
[7] 0, "
xr
Fig. 35. Fig. 36.

We now pass to the study of the general second-degree equation in two
unknowns, namely to the question what kinds of curves are represented
by this equation.

§8. The Reduction of the General Second-Degree Equation to
Canonical Form

The first consistent presentation of analytic geometry by Euler. A
significant step in the development of analytic geometry was the appearence
in 1748 of the book “Introduction to analysis™ in the second volume
of which, among other things related to the theory of functions and
other branches of analysis, for the first time a presentation was given
of analytic geometry in the plane with a detailed investigation of second-
order curves, very close to the one given in contemporary textbooks of
analytic geometry, and also with an investigation of higher order curves.
This was the first exposition of analytic geometry in the contemporary
sense of the word.
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The notion of reducing an equation to canonical form. A second-degree
equation* ;

Ax® 4+ 2Bxy + Cy* + 2Dx + 2Ey + F =0

contains six terms, not three or only two as in the above canonical
equations of the ellipse, hyperbola, and parabola. This is not because
such an equation represents a more complicated curve but because the
system of coordinates is possibly not suited to it. It turns out that if we
select a suitable Cartesian coordinate system, then a second-degree
equation with two variables always can be reduced to one of the following
canonical forms:

X .
1.?+§~1=0. D Ellipse

x2 e — ; ;

2. =+ % +1=0 b Imaginary ellipse

Point (a pair of imaginary lines
intersecting in a real point)

xR .
4.§—§—]—0. > < Hyperbola

2
5 % — % =0, >< A pair of intersecting lines

x: 2
3.?+§=0.

6. 2 —2px = 0. Parabola

7. x2 —a*=0. | | A pair of parallel lines

8. x2 4+ a® = 0. P A pair of imaginary parallel lines
9. x=0. | A pair of coincident straight lines

where a, b, p, are not equal to zero.

Equations 1, 4, and 6 of the enumerated canonical forms are already
well known to us; these are the canonical equations of the ellipse, hyper-
bola, and parabola. Two of them are not satisfied by any points, namely
equations 2 and 8. Indeed, the square of a real number is always positive
or zero, so that on the left-hand side of equation 2 the sum of the terms
x%/a® 4+ y*/b® is never negative, and since the term <1 also appears, the

h -*The‘::_o‘:ﬁ-iciénts of xy, x, y will be denoted not by B, D, E but by 2B, 2D, 2E for
simplicity of subsequent formulas.
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left-hand side cannot be equal to zero; analogously in equation 8, the
number x2 is not negative, and a® is positive. From these considerations,
it follows that only (x = 0, y = 0) satisfies equation 3, i.e., one point,
the origin. Equation 5 can be written as (x/fa — y/b)(x/a + y/b) = 0,
from which we see that it is satisfied by those points and only those
points for which one of the first-degree expressions x/a — y/b or x/a + y[b
is equal to zero; so the curve it represents is this pair of intersecting lines.
Equation 7 analogously gives (x — a)(x + a) = 0; i.e., the corresponding
curve is a pair of parallel lines x = a and x = —a. Finally, curve 9 is
a special limiting case of curve 7, when a = 0; i.e., it is a pair of coincident
lines.

Formulas of coordinate transformations. In order to obtain the in-
dicated important result about the possible types of second-order curves,
it is necessary first to deduce the formulas by which the rectangular
coordinates of points vary under a change of the coordinate system.

Let x, y be the coordinates of a point M relative to the axes Oxy.

Let us translate these axes parallel to themselves to the position O'x’y
and let the coordinates of the new origin O’ relative to the old axes

¥ ¥ ’}
Yi X OM
X ¢
J(L N
g 1 x
17
;
(7] H X
FiG. 37. FiG. 38.

be ¢ and 7. It is evident (figure 37) that the new coordinates x’, y* of
the point M are connected with its old coordinates x, y by the formulas

x=x"+¢
y=y+n,

which are the formulas of the so-called parallel translation of axes. If
we rotate the original axes Oxy about the origin counterclockwise by an
angle ¢ then, as is easy to see (figure 38), if we project the polygonal
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line OA'M composed of the new coordinate segments x’, y" on the
Ox-axis and the Oy-axis, respectively, we obtain

x = x'cos¢— y sing,
y = x'sing + y' cos¢,

which are the formulas for transformation of coordinates under rotation
of a rectangular coordinate system.

If we are given an equation F(x,y) = 0 of a curve relative to the
axes Oxy and we wish to write the transformed equation of the same
curve, i.e., relative to the new axes O'x’y’, then we must replace x and y
in the equation F(x, y) = 0 by their expressions in terms of x’ and j/,
given by the formulas of the transformation. For example, under parallel
translation of the axes, we obtain the transformed equation

Fx'+ &y + 7 =0,
and under rotation of the axes the equation
F(x' cos¢ — y' sing, x’ sing + y' cos¢) = 0.

We note that under a transformation to new axes the degree of an
equation does not change. Indeed, the degree cannot increase, since the
transformation formulas are of the first-degree. But the degree cannot
decrease either, since then the inverse coordinate transformation would
increase it (and it is also of the first degree).

The rednction of a general second-degree equation to one of the 9 cano-
nical forms. We now show that given any second-degree equation in
two unknowns we can always first rotate the axes and then translate
them parallel to themselves in such a way that the transformed equation
for the final axes will have one of the forms 1, 2, -+, 9.

Indeed, let the given second-degree equation have the form

Ax* + 2Bxy + Cy* + 2Dx + 2Ey + F= 0. (8)

Let us rotate the axes through some angle ¢, which we select in the
following way. Replacing x and y in equation (8) by their expressions
in terms of the new coordinates (according to the formulas for rotation),
we find, after collecting similar terms, that the coefficient 2B’ in the
transformed equation

A'x? + 2B'xy' + C'y2 4+ 2D'x + 2E'Y + F'=0
is equal to

2B = —2A4singcos¢ + 2B(cos®¢ — sin*¢) + 2C sing cos ¢
= 2B cos 2¢ — (A — C) sin 2¢.
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Setting it equal to zero, we obtain 2B cos 2¢ = (4 — C)sin 2¢, from

which
A—-C
cot 2¢ = 35

Since the cotangent varies from —oo to + oo, we can always find an
angle ¢ for which this equality is satisfied. By rotating the axes through
this angle, we find that for the rotated axes Ox’y’ the equation of our
curve, represented for the initial axes by equation (8), has the form

A'XE 4+ Cy? 4+ 2D'x" + 2E'y + F= 0, ()]

i.e., that it does not contain the term with the product of the coordinates
(F remains unchanged, since the formulas of rotation do not contain
constant terms).

Now we translate the already rotated axes Ox‘y’ parallel to themselves
to the position O"x"y", and let the coordinates of the new origin 0"
relative to the axes Ox’y’ be ¢, 5. The equation of our curve for these
final axes will be

AX+ &P+ CO" + 9P + 20" + §) + 2EQ0" + 7) + F=0.
(109

We now show that we can always select £ and %’ (i.e., we can translate
the axes Ox'y’ parallel to themselves) in such a way that the final equation
for the axes O"x"y" has one of the canonical forms 1, 2, -+, 9.

Removing all parentheses in equation (10) and collecting similar
terms, we obtain

A'x™ + Cy™ + AA'E + D)x" + ACy' + E'W + F' =0,
(10
where we have denoted by F’ the sum of all constant terms; its value

does not interest us at the moment.
We consider three possible cases.

I. A’ and C’ both not equal to zero. In this case, taking ¢’ = — D’/A’,
n' = — E'[/C’, we annihilate the terms with the first powers of x” and y”
and obtain an equation of the form

A'x" 4+ Cy? + F =0 0))

I A"3£0,C" =0, but E'£ 0. Letting £ = — D'/A',n' =0, ie.,

y” = y’, we obtain the equation
A!xuz + 2E4yt + F.r — 0’
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or

’ L L r F'
A'x"? L 2E (y +7§)=0.
Then making a parallel translation along the Oy’-axis by an amount
1 =—F'j2E',we find that y’ =y’ — F'[2E’, i.e.,y' + F[2E' = y" s0
that we obtain the equation

A'X" 4 2E'y" = 0. (1)

If we have A" =0, C' %0, D’ # 0, we can simply interchange the
roles of x and y and obtain the same result.

HI. A0, C’' =0, E' = 0. Taking again §’ = — D'/A", 5" = 0, we
obtain the equation
A'x"* + F = 0. 111y

If we have A" = 0, C' 3£ 0, D’ = 0, we can again interchange the roles
of x and y.

We have now considered all the possibilities, in view of the fact that
A’ and C’ cannot simultaneously be zero, since then the degree of the
equation would be reduced, and we have seen that under our coordinate
transformations this degree does not change.

Thus, with the appropriate choice of rectangular coordinates every
second-degree equation can be brought to one of the three so-called
“reduced” equations (1), (II), (1I1).

Let the equation have the form (1) (in this case 4’ and C’ are not
equal to zero). If F’ 3£ 0, then writing equation (1) as

"2 "3
X ¥y ]

+

—Fix T =Fe "1 =%

we arrive, depending on the signs of 4°, C’, F’, at one of the equations
1, 2, or 4. If the denominator of x"? is negative and that of y"2 is positive,
then we must also interchange the axes O"x" and 0"y".
If F* = 0, then equation (I) can be written in the form
L 2
X L,
/4 l/C
and we arrive at equations 3 or 5.
If the equation has the form (l1) (in this case A’ and E’ are not both
zero), then we can write it as

2E'
x"2 —y" =0,
+ ViRd
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and denoting — E’/A’ by p and interchanging the names of the axes
O0"x" and 0"y" we obtain equation 6.

Finally, if we have an equation of form (I1I) (where 4’ 3£ 0), it can be
rewritten as x"2 + F'/4’ = 0 and one of the equations 7, 8, or 9 is
obtained,

This important theorem on the possibility of reducing every 2nd-
degree equation to one of the 9 canonical forms was already examined
in detail by Euler. The arguments in Euler’s book differ only in form
from the ones just given.

§9. The Representation of Forces, Velocities, and Accelerations by
Triples of Numbers; Theory of Vectors

Following Euler an important step was taken by Lagrange. In his
“Analytic mechanics,” published in 1788, Lagrange arithmetized forces,
velocities and accelerations in the same way as Descartes arithmetized
points. This idea that Lagrange developed in his book subsequently
took the form of the so-called theory of vectors and proved to be an
important help in physics, mechanics, and technology.

Rectangular coordinates in space. We remark, first of all, that
neither Descartes nor Newton developed analytic geometry in space.
This was done later on, in the first half of the 18th century, by Laguerre
and Clairaut. In order to specify a point M in space they selected three
mutually perpendicular axes Ox, Oy, and Oz and considered (figure 39)
the numerical values of the distances of the point M from the planes
Oyz, Oxz, and Oxy, taken with the corresponding signs, the so-called
abscissa x, ordinate y, and altitude z of the point M.

z A

A
[—
1

Fig. 39.
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Arithmetization of forces, velocities, and accelerations, introduced by
Lagrange. We consider (figure 40) a force /' which can be represented
in conventional units by a segment with an arrow, having a specific
length and direction. Lagrange points out that this force / can be de-
composed into three components f, , f,, and f, in the direction of the
corresponding axes Ox, Oy, and Oz; these components, as directed
segments on the axes, can be given simply by numbers, positive or negative
depending on whether the component is directed in the positive or the
opposite direction of the axis. Thus, we can consider, for example, the
force (2, 3, 4) or the force (1, —2, 5), etc. In the composition of forces
according to the parallelogram law, as can easily be shown (it will be
shown later), their corresponding components have to be added. For
example, the sum of the given forces is the force

2+1L3—24+5=@3.19.

The same can be done for velocities and accelerations. In every problem
of mechanics, all the equations connecting forces, velocities, and accelera-
tions can also be written as equations connecting their components, i.e.,
connecting simply numbers; then the mechanical equation will necessarily
be written in the form of three equations; first for the x’s, the second
for the y's, and the third for the z’s.

But it was only after a hundred years from the time of Lagrange that
mathematicians and physicists, particularly under the influence of the
developing theory of electricity, began on a wide scale to consider the
general theory of such segments, having a definite length and direction.
Such segments were called vectors.

The theory of vectors has a great significance in mechanics, physics,
and technology, and its algebraic side, the so-called algebra of vectors
(in contrast to vector analysis) appears at once as an essential constituent
part of analytic geometry.

Algebra of vectors. Any directed segment (whether it represents a
force, a velocity, an acceleration, or some other entity) i.e., a segment
having a given length and a definite direction, is called a vector. Two
vectors are said to be equal, if they have the same length and the same
direction; i.e., in the very concept of “vector” only its length and its
direction are taken into account. Vectors can be added. Let the vectors
a, b, ..., d be given. We lay out the vector a from some point, then from
its end point we draw the vector b, etc. We obtain a so-called vector
polygon ab - d (figure 41). The vector m whose initial point coincides
with the initial point of the first vector a of this polygon, and whose
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end point coincides with the end point of the last vector d, is called the
sum of these vectors

m=a+b+ - +d (11)

It is easy to show that the vector m does not depend on the order in
which the summands a, b, -, d are taken.

d
c
b ""/
m
e
a Ja -2a
FiG. 41. Fig. 42.

The vector equal in length to the vector a but opposite in direction
is called its inverse vector and is denoted by —a.

Subtraction of the vector a is defined as addition of its inverse vector.

In vector calculus ordinary real numbers are customarily called scalars.
Let a vector a (figure 42) and a scalar A be given, then by the product
of the vector a with the scalar (number) A, i.e., Aa, is meant the vector
whose length is equal to the product of the length |a| of the vector a

Fig. 43. Fig. 44.
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and the absolute value | A | of the number A, and whose direction is the
same as that of a if A > 0 and the opposite if A < 0.

Let us consider a system of rectangular Cartesian coordinates Oxyz
and the vectors e, e,, e; having length equal to unity and directions
coinciding with the positive directions of the axes Ox, Oy, Oz, respectively.
It is obvious that any given point M (figure 43) of space can be reached
from the origin O by traversing a certain number of “times” (an integral,
fractional or irrational, positive or negative “number of times”) the
vector e,, then so many “times” the vector e;, and finally so many
“times” the vector e;. It is clear that the numbers x, y, z showing how
many “times” it is necessary to traverse the vectors e, , e, , e;, are simply
the Cartesian coordinates of the point M.

Let a vector a be given; if we cause a point to move from the initial
point of a to its end point and decompose this motion into motions
parallel to the axes Ox, Oy, and Oz, and if it is hereby necessary to shift
the point through a distance xe, parallel to the Ox-axis, through ye,
parallel to the Oy-axis and through ze, parallel to the Oz-axis, then

a = xe, + ye, + ze;. (12)

The numbers x, y, z are called the
coordinates of the vector a. These are
obviously just the coordinates of the
end point M of this vector, if its
initial point lies at the origin O of
the coordinate system (figure 44).
From this it follows at once that in
adding vectors their corresponding
coordinates are to be added, and in
subtraction they are to be subtracted.
) e If the first vector “carries” us along
the Ox-axis by a distance xe,, and
the second by x'e, , then clearly their
sum “‘carries” us along the Ox-axis by
a distance (x + x')e, , etc. (figure 45).
FiG. 45. It also follows at once that in mul-
tiplication of a vector by a number,

its coordinates are multiplied by the number.

Scalar product and its properties. If we are given two vectors a and
b, then the number equal to the product of their lengths by the cosine
of the angle between them | a | | b | cos ¢ is called their scalar product and
is denoted by ab or (ab). Let x, », z be the coordinates of the vector a
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and %, 7, # the coordinates of the vector b; then the scalar product is
equal to
ab = x% + yy + zz, (13)

i.e., to the sum of the products of their corresponding coordinates.
This important result can be proved as follows. First we make the
following remarks:

(1) If we multiply one of the vectors of a scalar product, for example a,
by a number A, this is obviously the same as multiplying their scalar
product by the same number, i.e.,

(Aa)b = A(ab).

(2) The scalar product is distributive, i.e., if
a ==4a, + a,, then ab = a,b + a,b.

In fact, the left-hand side of this equality is
equal to the product of the length of the vector b
by the numerical value of the projection of the
vector a on the axis of the vector b (figure 46),
and the right-hand side is equal to the product of FiG. 46.
the length of b by the sum of the numerical values
of the projections of the vectors a, and a, on the axis of b. But
proj a = proj a; + proj a,, which proves the equality.

Now we consider two vectors a and b whose decompositions in terms of
the vectors e, , e,, e; are a = xe, + ye, + ze;, b = ie, + je, + Ze,,
so that

ab = (xe, + ye, + ze;)(ie, + ye, + Ze,).

By the distributivity (2) of the scalar product, the sums of vectors in
parentheses can be multiplied as polynomials, and by (1) the scalar
factors in each of the terms can be taken outside the parentheses, so that

ab = xiee, + xyee, + xzee; + yiee, + yyee, + yiee;
+ ziese, + zyeze, + zZege;.

But
le,| = |e,| =1legl =1, cos0 =1 and cos 90° = 0.
Consequently,
ee, =1 ee; =0 ee=0,
ee; = 0, ee; =1, ee;=0,
ee, =0, epe; =0, ee;=1
Thus,

ab = x& 4 yy + z2. (14)
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We remark, in particular, that if the vectors a and b are mutually
perpendicular, then ¢ = 90° and cos ¢ = 0. Therefore the equality

xi+yp+22=0 (15)

serves as an easily verifiable condition of perpendicularity of the vectors

aandb.

Angle between two directions. Let us consider a direction charac-
terized by its angles «, B, v with the coordinate axes. We draw the line

F4

FiG. 47. FiG. 48.

in this direction through the origin of the coordinate system and mark
off on it from the origin a segment OA of unit length (figure 47). In this
case the coordinates of the point A, i.e., the coordinates of the vector 0A
are exactly cos «, cos B, and cos y. If we have a second direction given

by the angles &, B, 7, then the analogous vector OB for this second direc-
tion has coordinates cos &, cos B, cos 7 (figure 48). Let ¢ be the angle
between these vectors; then their scalar product is equal to 1-1 cos¢
from which we find

cos¢ = cos a cos & + cos B cos B + cos y cos 7. (16)

This is the very important formula for the cosine of the angle between
two directions.

§10. Analytic Geometry in Space; Equations of a Surface in Space and
Equations of a Curve

If an equation z = f(x, y) is given and if x and y are regarded as the
abscissa and ordinate and z the altitude of a point, then this equation
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itself represents some surface P, which can be obtained by erecting
perpendiculars of length z at the points (x, y) of the Oxy-plane. The
locus of the end points of these perpendiculars gives the surface P re-
presented by this equation. If the equation connecting x, y, and z is not
already solved with respect to z, then it can be solved for z and after
that we can construct the surface P. In general, in analytic geometry the
totality of all those points of space whose coordinates x, y, z satisfy a
given equation (figure 49) in three variables x, y, z is said to be the surface
represented by the equation.
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FiG. 49. FiG. 50.

A function of two variables f(x, y), as was pointed out already in
Chapter 1I, can represent not only a surface P, but also its system of
level curves, i.e., curves in the Oxy-plane on each of which the function
f(x,y) has a constant value. This system of curves is clearly nothing
else than the topographical map of the surface P on the Oxy-plane.

Example. The equation xy = z gives, for instance, the level curves:
cLxy=—3,xy=—2,xy=—Lxy=0xy=1; xy=2,xy=3, .
All of them are hyperbolas (figure 50) except xy = 0, which represents
the two coordinate axes. What is obtained is clearly a saddlelike surface
(figure 51) (the so-called hyperbolic paraboloid).

In order to define a curve in space, we can give the equations of any
two surfaces P and Q which intersect along the curve. For example, the
system

xy z,
x4+ =1

gives a space curve (figure 52). The equation xy = z determines the
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earlier hyperbolic paraboloid, and the equation x® + y* = | determines
a circular cylinder of unit radius, whose axis is the Oz-axis. The system
of equations consequently defines the curve of intersection of the para-
boloid with the cylinder, which is represented in figure 52.

FiG. 51. FiG. 52.

If in this system one of the unknowns, say x, is chosen arbitrarily,
and then the system is solved with respect to y and z, we will obtain
the coordinates x, y, z of the various points of the curve.

Equation of a plane and equations of a straight line. It can be shown
that every equation of the first degree with three variables
Ax + By+ Cz+ D=0

represents a plane, and conversely. By what has already been said, it is
clear that a line can be given by a system of two such equations:

A1x+ Bly+CIZ+Dl=0,
Asx + By + Coz + Dy, = 0,

i.e., as the curve of intersection of two planes.
The general second-degree equation in three variables and its 17 canonical
forms. A second-degree equation in three variables

Ajx? + App* + Ayz? 4 2B yz + 2B,xz -+ 2B3xy
+ 2Cx + 2Cp +2Cz + D=0, (17)
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contains 10 terms. Analogously to what was done earlier for an equation
with two variables, it can be shown that by a suitable rotation of the
given coordinate system about the origin, equation (17) can be reduced
to the form

Ax’? + Ay + Az + 2Cix" + 2Cyy" +2C32’ + D = 0, (18)

i.e., so as to eliminate the terms with products of the variables. However,
the proof here of the possibility of such a simplification of the equation
is considerably more difficult than in the case of the plane. The difficulty
of the proof arises from the fact that in the plane a rotation about a
point is given by one angle ¢, which we selected suitably, while in space
the rotation of a body about a fixed point is given by three independent
angles (Euler angles) ¢, 8, ¢ and in a quite complicated way. So the
equation must be cleared of the terms with products of variables in a
roundabout way (see Chapter XVI on the theory of reduction by orthogon-
al transformations of a quadratic form to a sum of squares). Then, as
in the case of the plane, a parallel translation of the axes is made and
the equation is simplified, after which equation (18) finally assumes one
of the following canonical forms:

z2

l£+£+——l—0 Ellipsoid
@TRET e S & B
2 2
2. § + % + % +1=0 (o Imaginary ellipsoid
x oy 2 ;
3. - + woa 1 = 8 Hyperboloid of one sheet
2 2
4, § + % — % +1= g Hyperboloid of two sheets
x2 2P
5 s + woa 0 X Second-order cone
2 2 -
6. § -+ % —~ % =0 ;‘{ Imaginary second-order cone
Xty . .
Tatu— 2cz =0 7 Elliptic paraboloid
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2
8. g — % —2cz=0 > Hyperbolic paraboloid
2
9. ;‘—: + % —1=0 ﬁ Elliptic cylinder
i =}.‘.‘
10. § + % +1=0 § Imaginary elliptic cylinder
1 Xy 0 F@ A pair of intersecting
. —_— + _2 = w : e
a b imaginary planes
2
12. %.: — % —1=0 Hyperbolic cylinder
13. g — % =0 A pair of intersecting planes

14, y2 — 2px = 0 Parabolic cylinder

15, x* — a® = A pair of parallel planes

16. x* +a* =0 % A pair of imaginary parallel
planes

17. x* =0 A pair of coincident planes.

The last nine canonical equations 9-17 do not contain terms in z and
represent exactly the canonical equations of second-order curves in the
Oxy-plane. In space these equations represent cylinders, whose directrices
are the corresponding second-order curves in the Oxy-plane and whose
generators are parallel to the Oz-axis. Indeed, if one of these equations
is satisfied by a point with coordinates (x,,y,,0), then it will also be
satisfied by any point with coordinates (x,, y,, z) whatever z may be,
since there are in any case no terms with z in the equation.

Among the equations 1-8 as can easily be seen, equation 2 is not
satisfied by any point with real x, y, z and equation 6 is satisfied only
by one such point (0, 0, 0), i.e., the origin. It remains, therefore, to study
only the six equations 1, 3, 4, §, 7, 8.

Ellipsoid. Let us compare the surfaces represented by the equations
x%a® + y%/b% 4 z%/c?— | = 0 and x? + y® + 22— 1 = 0. The second
of these is obviously the equation of a sphere C with center at the origin
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and with unit radius, since x* 4+ y* + 2% is the square of the distance
from the point (x, y, z) to the

origin O. If (x, y, z) is a point z
lying on the sphere, i.e., satisfy-
ing the second equation, then
(ax, by, cz) is a point whose
coordinates satisfy the first
equation. The surface repres-
ented by the first equation is
thus obtained from the sphere
C if all abscissas x of points of
the sphere are replaced by ax, FiG. 53.

y by by, and z by ez, i.e., if the

sphere C is uniformly stretched from the Oyz-, Oxz-, and Oxy-planes with
coefficients of expansion a, b and ¢, respectively. This surface is called
an ellipsoid (figure 53).

Hyperboloids and the second-order cone. Let us consider equations
3, 4, and 5, i.e., the equation of the form

I
atE-a=? 19

where 8 = |, —1 or 0. Let us compare it with the equation

R - W
§+§ ?—3, (20)

in which the denominator of y® is also a* and not b2, as in equation (19).
As before, we observe that surface (19) is obtained from surface (20) by
expansion from the Oxz-plane with coefficient b/a.

Let us now see what surface is represented by (20). We take a plane
z = h perpendicular to the Oz-axis and examine its intersection with the
surface (20). Substituting z = 4 in equation (20), we obtain

ﬂ+ﬁ=ﬁ@+§+

If 8 + K*/c® is positive, then this equation together with z = h gives
a circle, lying in the plane z = & with center on the Oz-axis. If § + A¥/c?
is negative, which can be the case only with 8 = —I and A® small, then
the plane z = & does not intersect surface (20) at all, since the sum of
squares x* +)* cannot be a negative number.
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The whole surface (20) thus consists of circles lying in planes perpen-
dicular to the Oz-axis and having their centers on the Oz-axis. But in
this case the surface (20) is a surface of revolution about the Oz-axis.

ZA
Z
\\/ '
/4
17) X
FiGg. 54. Fi1G. 55.

If we intersect it with a plane passing through the Oz-axis, we obtain
its “meridian,” i.e., a curve, lying in a plane passing through the axis,
by the revolution of which the surface is generated.

If we intersect the surface (20) with the coordinate plane Oxz, i.e.,
the plane y = 0 (figure 54), by substituting y = 0 in equation (20), we
obtain the equation of the meridian x%/a* — z%/c® = 8. In case 8 = 1
ol |

A ZA

FiG. 56. FiG. 57.
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this is the hyperbola /1, for 8 = —1, it is the hyperbola //, and for é = 0,
the pair of intersecting lines /1. By revolution around the z-axis these
produce, respectively, a so-called hyperboloid of revolution of one sheet
(figure 55), a hyperboloid of revolution of two sheets (figure 56) and a
straight circular cone (figure 57).

The general hyperboloid of one sheet, hyperboloid of two sheets, and
second-order cone 3, 4, and 5 are obtained from these surfaces of revolution
by an expansion from the Oxz-plane with coefficient b/a.

Paraboloids. Only equations 7 and 8 remain. Let us compare the
first of these x?/a® + y*/b* = 2¢z with the equation

P
@ ta=%

which we investigate in the same way as before. Ii represents a surface
obtained by revolving the parabola x* = 24%z about the Oz-axis,

FiG. 58. FiG. 59.

namely the so-called paraboloid of revolution (figure 58) discussed earlier
in connection with parabolic mirrors. The general elliptic paraboloid 7
is obtained from the paraboloid of revolution by an expansion from the
Oxz-plane.

The surface 8 has to be studied in a different way, namely by examining
its intersections with planes z = h, which are hyperbolas. The contour map
of the surface 8 is represented in figure 50; in a different position of
the coordinate axes we considered this surface in figure 51. It is saddle-
shaped, as illustrated in figure 59 and is called a hyperbolic paraboloid.
Its intersections with planes parallel to the Oxz-plane turn out to be
identical parabolas. The same result is obtained by intersections with
planes parallel to the Oyz-plane.
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Rectilinear generators of a hyperboloid of one sheet. It is a very
curious and not at all obvious fact that the hyperboloid of one sheet
and the hyperbolic paraboloid can be obtained, just like the cone and
the cylinder, by the motion of a straight line. In case of the hyperboloid,
it is sufficient to prove this fact for a hyperboloid of revolution of one
sheet x?/a® + y?/b* — z2/c® = |, since the general hyperboloid of one
sheet is obtained by a uniform expansion from the Oxz-plane and under
such an expansion any straight line will go into a straight line. Let us

(G <

pamm e ———

e —

ERAR R

FiG. 6l.

intersect the hyperboloid of revolution with the plane y = a parallel to
the Oxz-plane. Substituting y = a we obtain

x2  a* oz x2  z®
dtg-a=lo g-=0

But this equation together with y = a gives in the plane y = a a pair
of intersecting lines: x/a— z/c = 0 and x/a + z/c = 0.

Thus we have already discovered that there is a pair of intersecting
lines lying on the hyperboloid. If now we revolve the hyperboloid about
the Oz-axis, then each of these lines obviously traces out the entire
hyperboloid (figure 60).

It is easy to show that: (1) two arbitrary straight lines of one and the
same family of lines so obtained do not lie in the same plane (i.e., they
are skew lines), (2) any line of one of these families intersects all the
lines of the other family (except its opposite, which is parallel to it),
and (3) three lines of one and the same family are not parallel to any
one and the same plane,
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With two matches and a needle it is easy to obtain a representation of
the hyperboloid of revolution of one sheet. Let us puncture one of the
matches through its middle by the needle, and on the sharp end point
of the needle we pin the other match parallel to the first match. If we
then revolve the whole apparatus about the first match as an axis, the
second match will trace the surface of a cylinder (figure 61). But if the
second match is not parallel to the first match, then during a revolution
it will trace the surface of a hyperboloid of revolution of one sheet, as
can easily be visualized if the rotation is rapid (figure 62).

Snmmary of the investigation of the second-degree equation. Although
the general second-degree equation with three variables can represent
essentially 17 different surfaces, it is not difficult to remember them.
The last nine are cylinders over the nine possible second-order curves,
while the first eight are divided into four pairs: two ellipsoids (real and
imaginary), two hyperboloids (of one sheet and two sheets), two second-
order cones (real and imaginary), and two paraboloids (elliptic and hyper-
bolic). All these surfaces play an essential role in mechanics, physics,
and technology (ellipsoid of inertia, ellipsoid of elasticity, hyperboloid
in the Lorentz transformation in physics, paraboloid of revolution for
parabolic mirrors, etc.).

§11. Affine and Orthogonal Transformations

The next important step in the development of analytic geometry was
the introduction into it, and into geometry in general, of the theory of
transformations. Here it will be necessary to explain the matter in some
detail.

“Contraction” of the plane toward a line. Let us consider one of the
simplest transformations of the plane,
namely uniform “contraction” toward a
line with coefficient k. In the plane let ' "
there be given a line a and a positive
coefficient k, for example, k = 2/3. All
points of the line a are fixed, and every
point M not lying on this line is sent into
the point M’suchthat M’lies on the same
side of the line as M on the perpendicular ‘
from M to a at a distance from a equal
to 2/3 of the distance from M to a. If the
coefficient k, as here, is smaller than unity,
then we have a proper contraction of the FiG. 63.

= >
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plane to the line; but if k is greater than unity, we have an expansion
of the plane from the line, but for convenience we will in this and
other cases talk about “contraction,” except that the word “contraction”
will be put in quotation marks.

The point or figure to be transformed is called the preimage and the
one into which it is sent is its image. The point M’, for example, is the
image of the point M (figure 63).

We show that under a uniform “contraction” of a plane to a line,
any line of the plane is transformed into a line. For let the plane be
“contracted” to a line a lying in it with coefficient of “‘contraction” k.
Let b be any line of the plane, O the point in which it intersects the line a,
B another arbitrary point of b, and BA the perpendicular to the line a
from the point B (figure 64). In the “contraction” the point B goes to

Fi1G. 64, Fi1G. 65.

the point B’ on this perpendicular such that B’A = k - BA. Therefore,
the tangent of the angle B'OA will be equal to AB'JOA = k- AB/OA,
i.e.,, will be equal to k times the tangent of the angle which the line b
makes with line a, i.e., for all points B’ into which different points of
the line 4 are transformed, it will be one and the same, All points B’
consequently lie on one and the same line, passing through the point O
and making with line a an angle with this tangent,

Under *“contraction” parallel lines remain parallel. Indeed, if the
tangents of the angles which lines b and ¢ make with line a are the same,
then the tangents of those angles which the images b’ and ¢’ make with a
differ from them only by a factor k, i.e., they are still equal to each other,
which means that the lines 4’ and ¢’ are also parallel to each other.

Any rectilinear segment of the plane under ‘“‘contraction” to a line is
contracted (or expanded) uniformly (although to various degrees for
segments of various directions). When we speak here of “uniform”
contraction, we mean that the midpoint of the segment remains the
midpoint, the third remains the third, etc,, i, the segment shrinks
uniformly along its full length. Indeed, in whatever ratio the point M
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divides the segment M, M,, its image M’ will divide M, M, , in the same
ratio, since parallel lines (in this case perpendiculars to the line a) cut
lines intersecting them (in this case b and 5’) in proportional parts
(figure 65),

The ellipse as the result of “contraction” of a circle. We consider a
circle with center at the origin and radius a. By the theorem of Pythagoras
its equation is x2 + y2 = a2, where we have written y instead of y, since y
will be needed later. Let us see what this circle is contracted into if we
“contract” the plane to the Ox-axis with coefficient b/a (figure 66).
After this “contraction” the x-values of all points remain the same, but
the j-values become equal to y = y(b/a), ie., 7 = (a/b) y. Substitu-
ting 7 in the above equation of the circle, we will have:

a? x2
x9+32-yz=02 or -§+§=I

as the equation, in the same coordinate system, of the curve obtained
from the given circle by contraction to the Ox-axis. As we see, we obtain
an ellipse. Thus we have proved that
an ellipse is the result of a ‘*‘con-
traction” of a circle.

From the fact that an ellipse is a
“contraction” of a circle, many
properties of the ellipse follow di- i
rectly. For example, the afore-
mentioned property of diameters,
namely that if parallel secants of an |

3 : o : [7) x
ellipse are given, then their midpoints J
lie on a straight line (see figure 12),
can be shown in the following way.
We perform the inverse expansion X
of the ellipse into the circle. Under
this expansion parallel chords of the
ellipse go into parallel chords of the FiGg. 66.
circle, and their midpoints into the
midpoints of these chords. But the midpoints of parallel chords of a
circle lie on a diameter, i.e., on a straight line, and so that the midpoints
of parallel chords of the ellipse also lie on a straight line. Namely, they
lie on that line which is obtained from the diameter of the circle under
the “contraction” which sends the circle into the ellipse.

Here is another application of the theory of “contraction.” Since any
vertical strip of the circle under its contraction to the Ox-axis does not

)
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change its width and its length is multiplied by b/a, the area of this strip
after contraction is equal to its initial area multiplied by b/a, and since
the area of the circle is equal to ma®, the area of the corresponding ellipse
is equal to wa® (b/a) = mab.

Example of the solution of a more complicated problem. Let an el-
lipse be given and let it be required to find the triangle with smallest area
circumscribed to this ellipse. We first solve the problem for a circle. We
show that in the case of a circle, this is an equilateral triangle. Indeed,
let the circumscribed triangle be nonequilateral; i.e., the smallest of its
angles (denoted by B) is less than 60°, and the largest C > 60°, If then,
without varying the angle 4, we move side BC into the position B,C,
(figure 67) by shifting the vertex B toward A until one of the angles B,
or C, becomes equal to 60°, we obtain a circumscribed triangle 48,C,

&8

c
CO
Fig. 67. Fig. 68.

with smaller area, since here* OC < OB, OC, < OB, and therefore the
discarded area OBB, is greater than the added one OCC, . If the triangle
so obtained is not equilateral, then by repeating the above procedure
we reduce its area still further and arrive at an equilateral triangle. Hence,
any nonequilateral triangle circumscribed to a given circle has a greater
area than an equilateral one.

We now return to the ellipse. Let us make an expansion of it from
the major axis, thereby converting it back into the circle from which it
was obtained by *‘contraction.” Under this expansion (figure 68): (1) all

* As can be_easily shown,
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triangles circumscribed to the ellipse are transformed into triangles
circumscribing the resultant circle; (2) the areas of all figures, and in
particular of these triangles are increased in one and the same ratio.
From this we see that the triangles circumscribing the given ellipse with
the smallest area will be those that are converted into equilateral triangles
circumscribing the circle. There are infinitely many such triangles; each
of them has its center of gravity at the center of the ellipse and the points
of tangency are in the middle of its sides. Any of these triangles can
easily be constructed (figure 68), starting from the aforementioned
circle,

“Contractions” of the plane to a line are only a particular case of
more general, so-called affine transformations of the plane.

General affine transformations. A pair of vectors ¢, e, starting from
a common origin O and not lying on the same line will be called a co-
ordinate “frame” of the plane. The coordinates of a point M of the
plane relative to this frame Oee, will then be numbers x, y such that
in order to reach the point M from the origin O it is necessary to lay
off from the point O x-times the vector e, and then y-times the vector e,
This is a general Cartesian coordinate system of the plane Analogously,
a general Cartesian coordinate system can be introduced in space The
ordinary, so-called rectangular Cartesian coordinate system that we have
made use of up to now corresponds to the particular case when the
coordinate vectors e,, e, are mutually perpendicular and their lengths
are equal to the unit of measurement

A general affine transformation of the plane is one under which a
given net of equal parallelograms is transformed into another arbitrary
net of equal parallelograms. More precisely, it is a transformation of
the plane under which a given coordinate frame Oe,e, is transformed
into a certain other frame (generally speaking, with another “metric,” i.e.,
with different lengths for the vectors e; and e, and a different angle
between them) and an arbitrary point M is sent into the point M’ having
the same coordinates relative to the new frame as M had relative to the
old (figure 69).

“Contraction” to the Ox-axis with coefficient k is a special case in
which the rectangular frame Oe;e, passes into the frame Oejke; .

It can easily be shown that under an affine transformation every
straight line is sent into a straight line, parallel lines are mapped into
parallel lines, and if a point divides a segment in a given ratio, then its
image divides the image of this segment in the same ratio. Moreover, we
can prove the remarkable theorem that any affine transformation of the
plane can be obtained by performing a certain rigid motion of the plane
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onto itself, and then, in general, two ‘“‘contractions” with different
coefficients k, and k, to two mutually perpendicular lines.

For the proof of this assertion, we
consider all radii of some circle of the
plane (figure 70). Let radius OA be the
one which, after the transformation,
= turns out to be the shortest, and let
-43@” it be mapped into O’A’. The perpen-

N\ AN dicular AB to OA is then transformed
: into A’B’, which must be perpendicular
// a \ / to O'A’, since if the perpendicular O'C’
o/ 777 were different from O’A’, then it would
3 o be the image of the oblique OC, and
the image O'D’ of the radius OD would
be a part of the perpendicular O'C’,
i.e., shorter than the oblique 0O'A4’,
r ~ contrary to assumption,
VAVAV The mutually perpendicular lines OA4
z and AB are therefore mapped into
mutually perpendicular lines 0’4’ and
A'B'. Consequently, the square net
constructed on OA and AB is trans-
formed into a net of equal rectangles
(figure 71) and uniform “‘contractions”
take place along the straight lines of
this square net,
In a completely analogous way a
general affine transformation of space
can be defined as one under which a
space coordinate frame Oeee, is
transformed into some other frame
O'eje,e;, generally speaking, with a
different “metric,” i.e., with unit
segments of different lengths and with
different angles between them, and
a point M is sent into. point M’ having the same coordinates
relative to the new frame as those of the point M relative to the old
frame.

All the properties enumerated here also hold for affine transformations
of space, except that in the last theorem there will be a rigid motion of
space and then three ‘‘contractions” to three mutually perpendicular
planes with certain coefficients k,, &, , k;.

L 1A G
=1 1A
1T L]
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FiG. 70. Fig, 71.

Applications of affine transformations. The most important applications
of affine transformations are:

1. In the first place there is the application in geometry to solving
problems concerning affine properties of figures, i.e., properties that are
preserved under affine transformations. The theorem about the diameters
of an ellipse and the problem of circumscribed triangles were examples.
To solve such problems we make an affine transformation of the figure
to some simpler one, for which we prove the desired property and then
return to the original figure.

2. Second, there is the application in analytic geometry to the classifica-
tion of second-order curves and surfaces. The main point is, as can be
shown, that different ellipses are related to one another in the sense that
one can be obtained from another by an affine transformation (the Latin
word affinis means “‘related”), Also all hyperbolas are affine to one
another, and so are all parabolas. But we cannot convert an ellipse into
a parabola, or a hyperbola into a parabola, by an affine transformation,
ie., they are not affinely related to one another. It is natural to divide
up all second-order curves into affine classes of curves, affinely related
to one another. It turns out that the reduction of an equation to canonical
form gives exactly this classification; i.e., there are nine affine classes of
second-order curves. (We will not go into detail why imaginary ellipses
and pairs of imaginary parallel lines belong to different affine classes.
Properly speaking, neither in one case nor in the other are there any
curves on the plane at all. The question here is really about algebraic
properties of the equation itself.)

Similarly, the classification of second-order surfaces according to their
canonical equations into 17 forms is the same as the affine classification.

Let us give a simple example of the application of the affine classification
of second-order surfaces. We show that if we arbitrarily select in space three
lines a, b, ¢ such that (1) any two of them do not lie in the same plane
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(i.e., they are skew to each other) and (2) they are not all parallel to one
and the same plane, then the set of all straight lines 4 of space, each of
which simultaneously intersects all three given lines a, b, ¢ (figure 72)
constitutes the entire surface of a hyperboloid of one sheet,

N

N

N
N
N
\

FiG, 72. FG. 73.

Let us explain more fully the set of lines d we are discussing here.
Through an arbitrary point 4 of line a, we can pass a plane P containing
the line b and a plane Q containing the line ¢, These planes P and Q
intersect in a unique line 4, which passes through the point A of line a
and intersects lines b and ¢. Drawing all such lines 4 through arbitrary
points of line a, we obtain the set of all those lines 4 of space each of
which intersects all three given lines a, b, and ¢, This collection of lines
determines a surface. We note that any given hyperboloid of one sheet
can be obtained in this way, since we only need to take for the lines
a, b, and ¢ three distinct straight lines a,, b, , ¢, of one family (figure 73)
and for the lines 4 all the straight lines of the other family. Conversely,
let there be given three arbitrary pairwise skew lines of space a, b, c,
not all parallel to one and the same plane. Then, as can be shown, these
lines always form the three edges (without common points) of some
parallelepiped (figure 74). After constructing such parallelepipeds for the
given lines a, b, ¢ and for three lines a,, b,, ¢, of one and the same
family of an arbitrary hyperboloid of one sheet, we make an affine
transformation of space that sends the parallelepiped a,, b,, ¢, into the
parallelepiped a, b, ¢; obviously, this transformation maps the hyperboloid
onto the surface in question. But according to the affine classification
of second-order surfaces, the affine image of a hyperboloid of one sheet
is again a hyperboloid of one sheet.

3. Third, there is the application to the theory of continuous trans-
formations of continuous media, for example, in the theory of elasticity,
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in the theory of electric or magnetic fields, etc, Very small elements of
the given continuous medium transform ‘“almost™ affinely. So to speak,
*“in the small the transformation is linear” (we call a first-degree expression
linear, and in the following section we see that in analytic geometry the
formulas of affine transformations are of the first degree). This is evident
in figure 75. On the lines of the large square net, their distortion or

Fia, 75.

c a

FG. 74. FiGg. 76.

“fanning out™ is clearly noticeable. But for a small piece of the very
dense square net, all this shows itself very little, and the square net
transforms “almost” into a net of equal parallelograms. A similar picture
is obtained in space also (figure 76). By the fact that any affine trans-
formation of space reduces to a motion and three mutually perpendicular
**contractions,” it follows that an element of a body under an elastic
deformation first moves as a rigid body and then undergoes three mutually
perpendicular “‘contractions.”

Formulas of affine transformations. If the frame Oee, is affinely
transformed and O'ee; is its image, while the coordinates of the new
origin O’ relative to the old frame are £, » and the coordinates of the
vectors e, and e, relative to the old frame are a,, a, and b,, b,
respectively, then the formulas of the affine transformation, as can be
easily seen from figure 77, are

X' =ax +by+§
Y = ax + by + 7
in the sense that if x, y are the coordinates of any point M relative to
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the old frame Oe,e, , then x’, y° given by these formulas, are the coor-
dinates relative to the same frame of the image M’ of this point.

M Indeed, let Oee, be a
frame before transformation,
and O’ee, its image, while
M is an arbitrary point of
the plane and M’ is its
image. Then by the very
definition of an affine trans-
formation, if the coordinates
of the point M relative to
the frame Oee, are x, y,
then the coordinates of its
image M’ relative to the
image O'eje, of this frame
are exactly the same x, y.

Fig. 77. Now consider a vector

m' joining the origin O of

the old frame to the image M’ of the point M. Then m' = x'e, + y'e,.
But this vector is equal to a certain vector sum

m' = £e, + ne, + xe; + ye;
and the vectors e, and e, are
e, = a6, + ase,, e, = bie, + bye,
so that
m' = fe, + ne; + a,xe, + axe; + byye, + byye,
or
m' = (ayx + by + £)ey + (axx + byy + ey .

Comparing this expression with the first expression for m’ we obtain

X =ax+by+E&,,

V' = apx + by + 7. ) @b
The determinant 5
_ |G O _ _
A s a, bz 0162 azbn

as can be shown, is not zero and is equal to the ratio of area of the
parallelogram constructed on the vectors of the new frame to the area
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of the same parallelogram constructed on the vectors of the old frame.
Analogous formulas are obtained for space

"=ax + by + ez + €
Y =8 + by + cz + m, (22)
Z' = ayx + byy + 3z +
where (£, », {) are the coordinates of the origin O’ of the transformed
frame O'ejese; and (ay, a,, as), (by, by, by), (¢1, ¢2, ¢;) are the coor-
dinates of its vectors ¢, , e, , e; relative to the old frame Oe,e.e; .
The determinant*

a b o
a, by ¢
a; by ¢

*
|

4= = @ybyc3 + azbyey + azhycy — aybycy — agbyc; — agbycy

is not zero and is equal to the ratio of the volume of the parallelepiped
formed by the vectors of the new frame to the volume of the parallelepiped
formed by the vectors of the old frame.

Orthogonal transformations. Rigid motions of the plane onto itself
or such motions plus a reflection about a line lying in the plane, are
called orthogonal transformations of the plane, and rigid motions of space,
or such motions plus a reflection of the space about one of its planes,
are called orthogonal transformations of space. It is clear that orthogonal
transformations are affine transformations under which the “metric” of
the frame does not change, since it only undergoes a rigid motion, or
else such a motion plus a reflection.

We will investigate orthogonal transformations by means of rectangular
coordinates, i.e., when the vectors of the original frame are mutually
perpendicular and have lengths equal to the unit of measurement. After
an orthogonal transformation the vectors of the frame remain mutually
perpendicular, i.e., their scalar product remains equal to zero and their
lengths remain equal to unity. Therefore (see formula (14), this chapter)
in the case of the plane, we have

ab, +ab, =0, a®+a=1 b +b=1, @l

and in the case of space
aby + ahy +aghy =0, & +d, +ai =1,
ay0y + G0y + azc3 = 0, b} + b} + b5 = 1, (22)
bicy + bocy + by =0, i+ + =1

* On determinants see Chapter XVI.
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Hence, if the initial frame is taken to be rectangular, then formulas (21)
give an orthogonal transformation if and only if the conditions (21°) of
orthogonality are fulfilled, and formulas (22) give an orthogonal trans-
formation of space if the conditions (22°) of orthogonality are satisfied.
It can be shown that if 4 > 0, we have a rigid motion, and if 4 < 0
a rigid motion plus a reflection.

§12. Theory of Invariants

The concept of invariant.* Invariants of a second-degree equation with
two variables. In the second half of the last century still another
important new concept was introduced, that of invariant.

Consider, for example, a second-degree polynomial in two variables

Ax® +4 2Bxy + Cy* + 2Dx + 2Ey + F. (23)

If we regard x, y as rectangular coordinates and make a transformation
to new rectangular axes, then after replacing x, y in (23) by their ex-
pressions in terms of the new coordinates x’, y’, removing parentheses,
and reducing similar terms, we obtain a new transformed polynomial
with different coefficients

A'X? + 2B'x'y + Cy2 + 2D'x' + 2E'y + F'. (24)

It turns out that there exist expressions formed from the coefficients
which under this transformation do not change their numerical value,
although the coefficients themselves change. Such an expression in
A', B', C', D', E', F' has exactly the same numerical value as when it is
formed with the 4, B, C, D, E, F.

Expressions of this kind are called invariants of the polynomial (23)
with respect to the group of orthogonal transformations (i.e., relative to
transformations from one set of rectangular coordinates x, y to any
other rectangular coordinates x’, p’).

Invariants of this sort, as it turns out, are

]]=A+C,

PP
ABD

1;={B C E| = ACF + 2BDE — AE? — CD? — FB?,
DEF

* Invarians in Latin means *‘unchanged.”
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ie.,
A+ C=A"+C, AC—B*= A'C'— B,
ACF + 2BDE — AE*— CD? — FB?
= A'C'F'+ 2B DE' — A'E?— C'D?— F'B?

It is possible to prove the important theorem that any orthogonal
invariant of the polynomial (23) can be expressed in terms of these three
basic invariants,

If we equate the polynomial (23) to zero, we obtain an equation of
some second-order curve. Any quantity, connected with this curve but
not with its location in the plane, will clearly not depend on what coor-
dinates its equation is written in, and therefore, when expressed in terms
of the coefficients, it will be an orthogonal invariant of the polynomial
(23), and thus it will be expressible in terms of the three basic invariants.
Moreover, since under multiplication of all six coefficients of the equation
by any given number ¢ (different from zero) the curve represented by
the equation remains the same, an expression of any property of the
curve in terms of the /,, I,, I, must certainly be such that if the A, B,
C, D, E, F in it are multiplied by #, the number r cancels out. The ex-
pression in question must be, as they say, homogeneous of degree zero
relative to 4, B, C, D, E, F.

Let us verify this by an example. For instance, let the equation

Ax® + 2Bxy + C)® + 2Dx + 2Ey + F=0

represent an ellipse. Since the equation completely determines this ellipse,
we can calculate from it (i.e., from its coefficients) all the basic quantities
connected with the ellipse. For example, we can calculate its semiaxes a
and b, i.e., we can express the semiaxes in terms of the coefficients. The
expressions for these semiaxes will be invariants and therefore, expressible
in terms of /,, J,, I; . By reduction of the equation to canonical form
and some subsequent calculation, the following rather complicated
expressions for the semiaxes are obtained in terms of I,, I, I;:

\/ 2|15
| 111, £VI* -4l

which are homogeneous relative to 4, B, C, D, E, F.

From this it is clear that the invariants I, , I, , /;, themselves, being
homogeneous but not of degree zero, do not have straightforward
geometric meanings; they are algebraic entities.
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It can be shown that the expression

AD CE
K‘_|DF|+|EF = AF — D* + CF — E?

can be varied by parallel translation but not by pure rotation of the
given rectangular axes, and it is therefore called a semi-invariant.

As an example of an application of invariants and semi-invariants,
we give Table 1, which if we calculate /,, /,, I, and K,, allows us to
determine directly from its equation the affine class of a second-order

curve.

In Table 1 the necessary and sufficient conditions are given that an

Table 1
Criterion of the class Name Reduction equation Canon.lcal
equation
2 2
I,>0,LI; <0 | ellipse % 4 % -
2 2
I,>00L1, >0 imaginary ellipse % + %; = -1
. I xt )yt
I,>0,1,=0 point A,x‘+52y’+f—:=0 fgp=0
2 2
I, <0, I, # 0 hyperbola %2-—%=1
- pair of intersect- X
I, <0,7, =0 ing lines a@ b g
L=0,1,#0 parabola Lx® 4+ 2\/— %y =0]| x* =2py
ll = 0,’3 = 0, pall' Of pal'a]]el ,\’2 - 02
K, <0 lines
I, =0,1I; =0, pair of imaginary ., K .
K, >0 parallel lines b T 9 R
I,=01=0, pair of coincident e
K, =0 lines
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equation of a second-order curve be reducible to one or another of the
nine canonical forms (/,/, designates the product of /, and I,).

Consider, for example, the equation x> — 6xy + 5y2 — 2x +4y + 3=0.
We have A=1, B= -3, C=5, D=—1,E=2,F=23, so that I, =6,
I, = —4, I; = —9. The conditions of the 4th line of the table are
satisfied: J, < 0, I; # 0, i.e. this is a hyperbola. Its semiaxes are
equal to

79
—— ~0.57 and 1.93.
\/4-|6ix/36+16| "

The coefficients of the reduced equation (I), (1I) and (1I1) are given
in terms of invariants and semi-invariants as follows:

Ax" 4 Ay 4 ‘;—" =0, I
2
" _!_3 "
L+ 24— 2y =0, (1)
1
RS N an
T,

where A and A, are the roots of the so-called characteristic quadratic

equation
B—IA+ I, =0.

Formulas (1-111) allow a quick calculation of the semiaxes a and b
of an ellipse and a hyperbola, the parameter p of an ellipse and the
distance 2a between parallel lines. The formulas for semiaxes were given
earlier. The parameter p is equal to

_ ]k i - \/_5
p—\/ I and the distance 2a = 2 i

A completely analogous theory of invariants and semi-invariants, with
a corresponding table for the determination of the affine class and the
formulas of the coefficients of reduced equations, can be given for second-
order surfaces in three-dimensional space.

It should be pointed out that so far we have been discussing only
those invariants that are considered in analytic geometry for curves and
surfaces of the second order. The concept of invariant, however, has a
far broader meaning.



242 1. ANALYTIC GEOMETRY

By an invariant of some object under study, relative to certain of its
transformations, we mean any quantity numerical, vectorial, etc. con-
nected with this object that does not vary under these transformations.
In the previous problem the object is a second-degree polynomial with
two variables (i.e., more precisely, the set of its coefficients), and the
transformations are those of the polynomial obtained by the transition
from one rectangular coordinate system to another.

Another example: The object is a given mass of a given gas under
a given temperature. The transformations are changes in volume or
pressure of this mass of gas. The invariant, according to the Boyle-
Mariotte law, is the product of the volume by the pressure. We can
speak of lengths of segments in space or the size of angles as invariants
of the group of motions of space, of ratios in which a point divides a
segment, or of ratios of areas, as the invariants of the group of affine
transformations of space, etc.

Various invariants are particularly important in physics.

§13. Projective Geometry

Perspective projections. Artists began long ago to study the laws of
perspectivity. This was necessary because a human being sees objects in
perspective projection on the retina of the eye, in such a way that the

=D
|“7

d
/ \

Fig. 78. Fig. 79.

form and mutual location of objects are distorted in a characteristic
manner. For example, telegraph poles in the distance look smaller and
closer together, parallel tracks of a railway seem to converge, etc. We
will not consider here space perspectivities, i.e., properties of perspective
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projections of objects in space onto a plane but only the properties of
perspective projections of a plane onto a plane.

Let us consider a photograph (for example, one frame of a moving
picture film) P, a screen P’, and between them a lens § (figure 78). Then,
if the photograph is transparent and is illuminated from behind (if it is
nontransparent, let it be illuminated from the front, i.e., from the side
where the lens is), then the illuminated points of the photograph radiate
beams of light, which are collected by the lens in such a way that they
appear again on the screen P’ in the form of points. We will assume that
this projection takes place as if the points of the photograph P were
projected on the screen P’ on straight lines passing through the optical
center S of the lens.

The situation will be a very simple one if the planes P and P’ are
parallel. In this case we will obviously obtain on the plane P’ an un-
distorted image of everything that is on the plane P. This image will be
smaller or larger than the original depending on whether the ratio d'.d,
where d and d’ are the distances from the center of the lens to the planes
P and P’ respectively, is smaller or larger than 1.

The situation will be considerably more difficult if the planes P and P’
are not parallel (figure 79). In this case, under projection through the
point S not only the size of the figure changes but also its form is distorted.
Parallel lines under such projection may become convergent, the ratio
in which a point divides a segment may change, etc. In general, some
of the relations that remain invariant under arbitrary affine transformation
may change here.

This sort of projection takes place, for example, in aerial photography.
The airplane oscillates in flight and therefore the photographic apparatus
(figure 80a) rigidly attached to it is, in general, not oriented altogether
vertically but at the moment of exposure is usually in an oblique position,
i.e., we obtain a distorted image of the locality (which we assume to be
plane).

How are we to correct this image ? For this it is necessary to study
the properties of projection of a plane P onto another plane /7 (in general,
the two planes are not parallel) by lines passing through a point S which
is not on plane P nor on plane 11. Such projections are called perspective
projections.

We will prove later the following important theorem.

Theorem. If we have two perspective projections of a plane P on plane 11
such that under both projections the points A, B, C, D of a quadruple of
points of “‘general position” on the plane P (i.e., a quadruple in which no
three of the points lie on one line), are projected into the same points A’
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B', C', D' respectively of plane 11, then all points of plane P are also
projected under both projections into the same points of plane 11.

In other words, the result of a perspective projection is completely
determined if it is known into which points this projection sends the
points of an arbitrary quadruple of points of general position in the
figure to be projected.

This is the so-called uniqueness theorem of the theory of projective
transformations or the fundamental theorem of plane perspectivity.

Application of the fundamental theorem of plane perspectivity in aerial
photography. Let us show how this theorem provides a suitable method
for correcting this image in photography.

If at the moment of aerial exposure, we imagine a horizontal screen 11
placed at a distance 4 below the center S of the lens (figure 80a), then
the projection onto this screen through the center S of the image recorded
on the photographic plate P will obviously not be distorted but will be
similar to the horizontal locality with a scale h:H, where H is the height
of the airplane at the moment of exposure. In order to correct the image
received on the photograph P so as to convert it into an undistorted
image, we treat it as follows. The developed photograph P is placed in
a projecting apparatus resting on a special tripod on which, by means
of adjustable screws, the apparatus can be moved closer to the screen 11
or farther from it and can be rotated in every way.

To the screen II (figure 80b) we attach a topographical map of the
locality made by measurements on the surface of the Earth (not a detailed
map, since the details of interest to us are to be provided by the aerial
photograph). On this map attached to the screen Il we select four points
A', B', C’, D' that can be found easily on the photograph also (for example,
an intersection of roads, a corner of a house, etc.), and at the corresponding
points 4, B, C, D of the picture P we pierce the film with a needle. We
then place a projection lamp behind the plate P in such a position that
the picture is projected onto the screen Il through a lens S of the sup-
porting apparatus. By using the adjustable screws we arrange that the
light beams from the pinholes fall on the corresponding points 4’, B',
C’, D' of the map attached to the screen. After this has been done, we
replace the topographical map by a plateholder with a photographic
plate and then, without changing the settings of the screws, we photograph
the image projected on the screen Il of the picture P taken from the
airplane.

By the theorem stated previously, we thereby obtain a true (ie.,
similar to the locality) and not a distorted map of the photographed
region.
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We now pass to the presentation of the theory necessary for proving
the fundamental theorem.

The projective plane. The totality of al/ lines and planes of space
passing through a given point S of the space is called the projecting
bundle of lines and planes with center S. If this bundle is intersected
by a plane P, not passing through the center, then to every point of the
plane P will correspond a line of the bundle intersecting the plane P
in this point, and to each line of the plane P will correspond that plane
of the bundle which intersects the plane P along this line. However, we
do not in this way establish a one-to-one mapping from the set of lines
and planes of the bundle of the set of points and lines of the plane P.
As a matter of fact, the lines and planes of the bundle which are parallel
to the plane P do not in this sense correspond to any points or lines of
the plane P, since they do not intersect it. Nevertheless, we agree to say
that these lines of the bundle intersect the plane P but in its ideal (or
infinitely distant) points, lying in the corresponding directions, and that
such a plane of the bundle intersects the plane P along an ideal (or infinitely
distant) line. The plane P, complemented by these ideal points and ideal
line, is called a complemented or projective plane. We will denote it by P*.
The sets of lines and planes of the bundle S are then mapped one-to-one
onto the sets of points (real and ideal) and lines (real and ideal) of this
projective plane P*.

Hence, we agree to say that a point (real or ideal) lies on a line (real
or ideal) of the projective plane P* if the corresponding line of the bundle
lies in the corresponding plane of the bundle. From this point of view,
any two lines of the projective plane intersect (in a real or ideal point),
since any two planes of the bundle intersect along some line of the bundle,
It follows from this, among other things, that the ideal line consists
simply of the set of all ideal points.

In essence, the complementation of the plane by its ideal elements
means that we use this plane as a cross section to study the bundle of
all lines and planes passing through one point.

Projective mappings; the fundamental theorem. By a projective map-
ping we understand such a mapping of a projective plane P* onto some
other projective plane P* (which can also coincide with the plane P*,
in which case we speak of a projective transformation of the plane P*),
which, first of all, is pointwise a one-to-one mapping, and second, is
such that collinear sets of points of the plane P* go into collinear sets
of points of the plane P*', and conversely. (Here, by points and lines
we always understand real as well as ideal points and lines.)
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It is clear that two arbitrary perspective projections of one and the
same plane P* onto a plane 11* may be obtained from each other by
projective transformations.

In fact, 1, Their points (real or ideal) are in one-to-one correspondence
with the points (real or ideal) of the projective plane P* and consequently
with each other, and 2, collinear points of the first projection correspond
to collinear points of the plane P* and consequently also of the second
projection, and conversely. Therefore, the aforementioned theorem of
the theory of perspectivities is a direct consequence of the following
theorem about projective transformations: if under a projective trans-
formation of the plane 11*, four of its points A, B, C, D, forming a
quadruple of general position remain fixed, then all of its points remain
fixed.

Let us outline the idea of the proof of this theorem by means of the
so-called Mobius net.

We note that (1) if under a projective transformation two points
remain fixed, then the line that passes through them is mapped into
itself, and (2) if two lines are mapped into themselves, then the point
of their intersection remains fixed. Therefore, from the fact that the
points 4, B, C, D of the plane 11* remain fixed, it follows in turn that
also the points E, F, G, H, K, L, etc. remain fixed (figure 81). The con-

Fig. 81. Fig. 82.

struction of such points can be continued by joining the points already
obtained. This is the so-called Mbius net. By continuing its construction,
we can find points as densely placed as we like. It can be shown that the
set of these nodes everywhere.densely covers the whole plane. Therefore,
if we further assume the continuity of a projective transformation (which
in fact, already follows from its definition, although the proof of this
fact is not easy), the result is that if under a projective transformation
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of the plane l1* the points A, B, C, D remain fixed, then all the points
of the plane II* remain fixed.

Projective geometry. By two-dimensional projective geometry we mean
the totality of theorems about those properties of figures in the projective
plane, i.e., the ordinary plane complemented by ideal elements, which
do not change under arbitrary projective transformations.

Here is an example of a problem of projective geometry. Given two
lines @ and b and a point M (figure 82), the problem is to construct the
line ¢ passing through the point M and through the point of intersection
of lines a and b, not using this point of intersection (as may be necessary,
if this point is very distant). If through the point M we draw the two
secants | and 2 and then the lines 3 and 4 through the points of their
intersection with lines a and b, we obtain the point K. Let us draw through
it line 5 and secants 6 and 7; then it can be shown that the line ¢ passing
through point L of intersection of lines 6 and 7 and point M, is the desired
line.

From the theory of conic sections, it follows (figure 83) that the ellipse,
hyperbola and parabola are perspective projections of one another, and
moreover all of them are perspective projections of the circle.

If we regard perspective projections as projective transformations of
projective planes P* and P* one onto the other, then by superposing
these planes we obtain the result that all ellipses, hyperbolas, and para-
bolas are projective transformations of the circle. The difference in them

Fig. 83. FiG. 84.

is that projective images of the circle under transformations in which
a line not intersecting the circle is mapped into the infinitely distant line
are ellipses; on the other hand, if a line tangent to the circle is mapped
into the infinitely distant line, then a parabola is obtained, and if a secant,
then a hyperbola (figure 84).
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The notation of projective transformations in formulas. If on the
plane P* we take an ordinary Cartesian coordinate system, then, as can
be shown, the formulas for projective transformations of the plane are
as follows

¥ = ax + by + ¢, y = a.x + byy + ¢
a3x + byy +¢3° ax + byy +¢3°

where the determinant

a b ¢
a, b, ¢,
a; by ¢

# 0,

and conversely.
If for some point (x, y) the denominators are equal to zero, this means
that its image (x’, y') is an ideal (infinitely distant) point. The equation

ax + by +c¢; =0

represents the line which under the given projective transformation goes
into the ideal (infinitely distant) line.

§14. Lorentz Transformations

The derivation of the formulas of the Lorentz transformation for motion
on a straight line and in the plane from the condition of the constancy of
the speed of light. At the very end of the 19th century a fundamental
contradiction was discovered in physics. Michelson’s well-known ex-
periment, in which the speed of light (which is about 300,000 km/sec)
was measured in the direction of motion of the Earth along its orbit
around the Sun (the speed of the Earth is about 30 km/sec) and per-
pendicular to this direction, showed irrefutably that all moving bodies
in nature, even if they are moving in a vacuum, are contracted in the
direction of motion. The theory of this contraction was investigated in
detail by the Dutch physicist, Lorentz. He showed that this contraction
is greater as the speed of the moving body gets closer to the speed of
light in a vacuum, and at a speed equal to the speed of light the contraction
becomes infinite. Lorentz derived the formulas for this contraction. But
shortly afterwards the physicist Einstein introduced into this problem a
completely different point of view, to which Poincaré was already close.
Einstein argued as follows. If we assume that for the propagation of
light, as for ordinary motion of a material body, Galileo’s law of composi-
tion of velocities is valid, then the speed of light is ¢’ = ¢ + v, where v
is the speed of the observer moving toward the propagation of the light,
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and c is the speed of light for a stationary observer. From Michelson’s
experiment it follows that ¢" = ¢. The law ¢’ = ¢ + v is based on the
transformation

x = x4+ v,
Fi=g (25)

connecting the coordinate x of a point relative to a coordinate system |
with its coordinate x’ relative to a coordinate system 1l which has its
axes parallel to the axes of system I and which moves parallel to the
Ox-axis with velocity v, relative to system I. Clearly, these are the
formulas, as Einstein says, that must be changed.

It can be shown, as was recently done, for example, by A. D.
Aleksandrov, that from the equality of the speed of light in both coor-
dinate systems x, y, z, tand x', ', z', t" it already follows that the formulas
of transformation from coordinates x, y, z, ¢ to coordinates x', y', ', ¢’
are linear and homogeneous, i.e., have the form

x' =ax+ by+ ¢z + dy,
V' = asx + byy + caz + dyt, 26)
Zz' = agx + byy + ¢3z + dyt,
U =ax + by + cz + dyt.

From other considerations one can show that their determinant* is
equal to unity.

If a point in system | moves rectilinearly and uniformly in an arbitrary
given direction with the speed of light ¢, then x = v,1, y = v,1, z = vt
and v? + v} + 0! = ¢? from which

X4yt 22— = 0. @7

But according to Michelson’s experiment this point in system Il also
necessarily moves with the same speed of light ¢, so that it is also necessary
that

xT4yt4 2t— et =0

Consequently the formulas (26) are not just arbitrary transformations
which are linear, homogeneous, and with determinant equal to 1, but
must at the same time satisfy the condition that if the coordinates x, y, z, ¢
are such that

X4 p+E—c =0,

’

then the transformed coordinates x’, ', z’, ' must also satisfy this
equation. Such transformations (26) are called Lorentz transformations.

* See Chapter XVI.



§14. LORENTZ TRANSFORMATIONS 251

Let us first consider the simplest case, when the point moves along
the Ox-axis. In this case formulas (26) have the form

x' = ax +dy,

(26")
1 = ax + dyt,

and equation (27)
xt—c¥? = 0. (27)

Let us introduce the notation ¢ = u, when formulas (26) and equation
(27') take the form

x' =ax + % u,
(26,)
U = a,cx + E{-"fﬁ u
and
x2—ut=0.

Let us find the explicit forms of formulas (26,). Consider x and u as
a Cartesian rectangular system in the plane, i.e., consider the problem
geometrically; then we may regard
formulas (26,) as those of an affine
transformation of the plane Oxu (whose
determinant, as was shown is equal
to 1). We will denote this transformation
by L. If, as we assume, x*—u? =0
implies x? + u'? = 0, then this trans-
formation translates the intersecting
straight lines

XE—u =0

into themselves. The transformation L
is therefore a combination of a contrac-
tion and expansion with identical coef- Fig. 85.
ficients = along these lines.

From figure 85 we obtain
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But after the transformation L, the numbers p and ¢ will go into p’ = p/r
and ¢’ = g, so that

'3 =P _
X'V2="—gr
u'\/§=£+q7.

Expressing p and ¢ in terms of x and u from the first pair of equations,
substituting inte the second and simplifying, we obtain

72 — 1 y 172 —1
PO WS X Lk bl
27 ! - 2r :
72 4+ 1 T2 41
or, setting (12— 1)/(#? 4 1)c = v, we have
; x — vt _t—(vx/c?)

which are the famous Lorentz formulas.
In particular, if we take x = 0, i.e., if we consider the motion of the
origin of coordinate system 1, we obtain

] _v! ’ !
X By I = ——— ¥
V1 — (v/o) V1 — (vfc)
or x' = —ur’, from which obviously v is the speed of motion of coordinate

system 11 relative to system 1.

Suppose, for example, that we are given two points on the Ox-axis
with coordinates x, and x, relative to system 1, so that the distance
between them relative to system 1 is r = | x; — x, |. Let us see what the
distance between them is for an observer attached to system I11. We have

B Xy — VI b Xy — VI
VT @ T VT — o
from which
I , , I xl, e x2 |
— —_ X, T ————————o
r | X, 2 I \/] — (U}"(‘)z

The factor V'1 — (v/c)? is exactly the coefficient of the Lorentz con-
traction. Since ¢ is very large, this coefficient is very close to 1 for
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moderately large v, and therefore the contraction is not significant. But
such elementary particles as electrons or positrons often move with
velocities comparable to the speed of light, and therefore in studying
their motion it is necessary to take this contraction into account, or,
as they say, to consider the relativistic effect.

We pass now to the case next in complexity, namely, when the point
moves in the Oxy-plane. For this case the transformations (26) will have
the form

X = ayx + by + dy,
V' = apx + byy + dt, (267
1= azx + byy + dyt,

where
a, b, 4,
ay, b, dy|=1,
a; by d,
and equation (27) will be
X+ pP—ci =0, (277

These are the Lorentz formulas for motion in the Oxy-plane.
Again we put ¢¢ = u. Then transformations (26") can be rewritten as

I3

x =a,x+b,y+%u,

VY = axx + byy + % u, (26,)

I3

U = agex + byey + E-C’Eu,

where the determinant will again be equal to one, and equation (277)
will assume the simpler form

X4 p—u =0 27

We will regard x, y, v as the Cartesian rectangular coordinates of a
point in ordinary three-dimensional space and will consider formulas (26,)
as those of affine transformations of this space. Equation (27,) represents
a straight circular cone K with an angle of 90° at the vertex (figure 86).

From the point of view of this geometric interpretation (we call it
geometric because here we regard v = cr simply as a space coordinate)
of a Lorentz transformation, the set of motions in the plane is identical
with the set of all equi-affine (i.e., affine and volume-preserving) trans-
formations of the space which map the cone K onto itself.
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Let us consider some special Lorentz transformations.

1. 1t is clear that any simple rigid rotation about the axis of the cone K
through an angle « is an equi-affine transformation of space, mapping
the cone K into itself, i.e., it is a special Lorentz transformation. We will
denote it by w.

2. Reflections of the space in an arbitrary plane # passing through
the axis of the cone K are clearly also Lorentz transformations. We will
denote them by #.

3. Finally, let us consider the following transformation (figure 87).

Let v and w be any pair of opposite generators of the cone, and let P
and Q be the planes tangent to the cone along these generators. These

FiG. 86. Fig. 87.

planes are mutually perpendicular. Let us make a contraction of the
space to the plane P and an expansion of it with the same coefficient
from the plane Q, or conversely. For example, we contract the space
by a factor of three to the plane P and expand it also by a factor of three
from the plane Q. Such a transformation of space is clearly also affine
and preserves all volumes. We will denote it by L. We show that this
transformation maps the cone K into itself. Because the cone K has the
axis u as its axis of revolution, any figure can be rotated in such a way
that the generators v and w lie, for example, in the plane Sxw. Therefore
it is sufficient to carry out the proof for this case.

For the proof we intersect the cone K by an arbitrary plane R parallel
to the Sxu plane. The equation of this plane is y = b, where b is a
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constant. Substituting this value in the equation of the cone K, we obtain
x2—u? = —b2

This is the equation of a hyperbola for which the lines of intersection
of the plane R with the planes P and Q are exactly the asymptotes. But
since for a point of such a hyperbola it is characteristic that the product
of distances p and g to the asymptotes, i.e., to the planes P and Q, is
constant, under transformation L all points of this hyperbola remain on
the same hyperbola, and the hyperbola is mapped onto itself. But the
whole surface of the cone K consists of such hyperbolas, and therefore
under the transformation L of the space the cone K is sent into itself,
This transformation L is therefore also a Lorentz transformation.

Since under affine transformations straight lines go into straight lines,
and intersecting lines go into intersecting lines, therefore a bundle S of
straight lines under any Lorentz transformation is mapped one-to-one
onto itself. Moreover, under affine transformations of space all planes
go into planes, so that under these transformations of the bundle § onto
itself a projective transformation of the bundle is obtained. If we intersect
this bundle by a plane II perpendicular to the axis of the cone K, which
as a whole is not altered by the given Lorentz transformation of space,
and extend this plane to the projective plane II* and then trace the points
of intersection of the lines of the bundle S with the plane II*, we have
the result that the Lorentz transformations of the bundle will simultaneous-
ly produce projective transformations A of the plane II* and these latter
will transform the circle «, in which the plane IT* intersects the interior
part of the cone K, into itself. To analyze the properties of Lorentz
transformations, it is easier to examine these projective transformations
A of the circle « into itself.

Projective transformations of a circle into itself. A point, a ray or
half line issuing from it, and one of the half planes cut off by the entire
line will be called a “frame” of the plane II* (not to be confused with
a coordinate frame, §11). We show (figure 88) that if we take two arbitrary
frames M and M’ containing interior points of the circle «, then by
means of the transformations L, w, 7 can send one of these frames
into the other. For this it is sufficient to make the transformations
A=L,-w- L' (orelse A =L, w:m-L3"). The transformation L,
sends the first frame M to the center O of the circle «, the transformation
w rotates it as necessary, and finally the transformation L' brings it
into coincidence with the second frame M.

Let us show, in addition, that there is only one transformation A which
translates a given frame M into a given frame M. In order to do this
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we observe first that if there were two transformations A, and A, sending
frame M into frame M’, then the transformation A = A,4;! would not
be the identity transformation A and would send frame M into itself.
Therefore, it is sufficient to show that
if a transformation A sends frame M
into itself, then it is the identity, i.e.,
leaves all points of the plane of circle
o fixed.

FiG. 88. FiG, 89,

Let us show this. Suppose that the transformation A sends frame M
into itself (figure 89). Then it maps the line AB of this frame into itself,
but since it sends the circumference of the circle « into itself, it therefore
leaves points 4 and B fixed, or else interchanges them. The latter, however,
is impossible, since the half line of the frame is mapped into itself. Let us
draw the tangents at points 4 and B to the circle «. They are mapped
into themselves, since if such a tangent were mapped into a secant 44,
then the inverse transformation would send the different points 4 and 4
of the circle « into the one point 4. But the A are projective transforma-
tions, and consequently one-to-one. Since under the transformations A
these tangents go into themselves, therefore the point N of their inter-
section remains fixed, and consequently the line MN is mapped into
itself. From the fact that the half line of the frame M is mapped into
itself, we conclude as above that points C and D are not interchanged,
but remain fixed. Hence, under the given projective transformation A
of the projective plane 1I* four of its points A, B, C, D, no three of which
lie on the same line, remain fixed. According to the uniqueness theorem
of projective transformations this is the identity transformation.

Later, in §5 of Chapter XVII it will be shown that by using these
properties of the Lorentz group, it is easy to construct a model of
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Lobacevskii's plane geometry, and if we consider Lorentz transformations
for the general case of motion of a point in space, then we can do the
same for Lobadevskil’s space geometry, and thereby prove its consistency.

We see that the theory of Lorentz transformations, projective geometry
and the theory of perspectivity and non-Euclidean geometry are closely
related to one another. It turns out that there is still another theory that
is also closely related to them, namely, the so-called conformal transfor-
mations in the theory of functions of a complex variable, which solve
such important problems of mathematical physics as the distribution of
temperature in a heated plate, the flow of air around the wing of an
airplane, the distribution of charge in a plane electrostatic field, the
problems of elasticity in the plane, and many others.

Conclusion

Analytic geometry is an absolutely indispensable method for the
investigation of other branches of mathematics, physics, and other
natural sciences. Therefore it is studied not only at universities but in
all technical higher institutions of learning, and also in some vocational
schools. It is also a question of whether we should not include a fairly
detailed treatment of the elements of analytic geometry in high school
courses.

Various coordinates. The essential elements of the concept of analytic
geometry, as we have seen, are the coordinate method and the investigation
of equations connecting these coordinates. Besides Cartesian coordinates,
other different ones can be considered. For example, in the plane, we
can choose a point P (the so-called pole) and a ray originating from it
(the polar axis) and determine the position of a point M by the length p
of the polar radius from the pole to the point and the value w of the
angle made by this radius with the polar axis (figure 90).

In particular, the ellipse, hyperbola, or parabola, if for the pole we take

M

FiG. 90. FiG. 91.
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a focus, and for the polar axis the ray passing from the focus along the
axis of symmetry to the side opposite the nearer vertex (figure 91), have
one and the same equation

_ 4
P=T —eccosm’
where € is the eccentricity of the curve, and p is its so-called parameter.
This equation is of a great importance in astronomy. For it was with
its help that the result was derived, from the law of inertia and the law
of universal gravitation, that the planets revolve about the Sun in ellipses.

The geographical coordinates, latitude and longitude, by which the
position of a point is given on a sphere, are well known,

Analogously, we can take a coordinate network on an arbitrary surface,
as is done in differential geometry (see Chapter VII), etc.

Many-dimensional and infinite-dimensional analytic geometry; algebraic
geometry. It would seem thatin the 19th century analytic geometry under-
went such an immense development, described earlier in a general way, and
produced so many ideas, that it would have necessarily exhausted itself,
but this is not so. In very recent times, two new, extensive branches of
mathematics have been rapidly developed and have extended the concepts
of analytic geometry, namely so-called functional analysis and general
algebraic geometry. It is true that both of these only halfway represent
a straightforward continuation of classical analytic geometry: Much of
functional analysis is analysis, and in algebraic geometry there is more
than a little of the theory of functions and of topology.

Let us explain what we mean. In the middle of the last century
mathematicians had already begun to consider four-dimensional and
general n-dimensional analytic geometry, ie., to study those questions
of algebra that are straightforward generalizations of algebraic questions
of the kind involved in two- and three-dimensional analytic geometry,
to the case when there are four or n unknowns. At the very end of the
19th century a series of outstanding analysts came to the idea that for
the purposes of analysis and mathematical physics it is significant to
consider infinite-dimensional analytic geometry.

At first glance it may seem that n-dimensional or even four-dimensional
spaces seem like farfetched mathematical fictions, then the same can also
be said about an infinite-dimensional space. But it is not really so. The
arguments concerning an infinite-dimensional space are not at all difficult.
They now constitute an important branch of mathematics, functional
analysis (see Chapter XIX).
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It is curious that infinite-dimensional analytic geometry has most
important practical applications and plays a fundamental role in con-
temporary physics.

As to algebraic geometry, it is a more immediate continuation of
ordinary analytic geometry, which is itself only a part of algebraic
geometry. Algebraic geometry can be regarded as that part of mathematics
which is occupied with curves, surfaces, and hypersurfaces, represented
in Cartesian coordinates by algebraic equations of not only first and second
degree, but also of higher degrees. It turns
out that in these investigations it is advanta-
geous to consider not only real but also @
complex coordinates, i.e., to consider every-
thing in a so-called complex space. The most O
important results in this domain were
obtained in the last century by Riemann. As O @
a brilliant example of theorems about higher
order curves, we point out a remarkably
general result of I. G. Petrovskii about the
number of ovals into which an nth-order curve Fig. 92.
can be decomposed. Petrovskil showed that
if p is the number of such ovals which do not lie at all in other ovals,
or lie in an even number of ovals, and m is the number of those ovals
which lie in an odd number of ovals, and if we consider only curves
whose component ovals neither intersect themselves nor each other
(figure 92), then

In® — 6n

it

p—m<
where n is the order of the curve, i.e., the degree of the equation by which
the curve is represented.

This result is the more important as up to then almost nothing had
been known about the general form of a higher order curve. It is no
doubt one of the most important recent general theorems in analytic
geometry.
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CHAPTER I ~

ALGEBRA : THEORY
OF ALGEBRAIC EQUATIONS

§1. Introduction

The characteristic features of algebra are well known to everyone, since
the elementary but fundamental information about it is already given in
high school. Algebra is characterized, first of all, by its method, involving
the use of letters, and expressions in letters, on which we perform opera-
tions according to definite laws. In elementary algebra the letters denote
ordinary numbers, so that the laws of operations on expressions in letters
are based on the general laws of operations on numbers. For example,
the sum does not depend on the order of the summands, a fact which in
algebra is written as: a + b = b + a; in multiplying the sum of two
numbers, we can multiply each one of the numbers individually and then
add the products so obtained: (@ + b)c = ac + be, etc.

If we trace the proof of an algebraic theorem, it is easy to see that it
depends only on these laws for operations on numbers and not at all on
what the letters represent.

The algebraic method, i.e., the method of calculations with letters,
penetrates all of mathematics. In fact, substantial part of the solution of a
mathematical problem often turns out to be nothing but a more or less com-
plicated algebraic computation. Besides, in mathematics we employ various
symbolic calculations in which the letters no longer denote numbers but
some other entities, where the laws for operations on these entities may be
different from the laws of elementary algebra. For example, in geometry,
mechanics, and physics we make use of vectors, and as is well known, the
laws for operations on vectors are in part the same as for numbers and in
part essentially different.

261
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The significance of the algebraic method in modern mathematics and
the range of its applications have greatly increased in recent decades.

First of all, the growing demands of technology force us to reduce to
numerical results the solutions of difficult problems of mathematical
analysis, and this usually proves to be feasible only after the algebraiza-
tion of these problems, a process which in turn creates new and sometimes
difficult problems in algebra itself.

Second, certain problems of analysis became clear and understandable
only after they were attacked by algebraic methods based on a profound
generalization (to the case of infinitely many unknowns) of the theory
of systems of equations of the first degree

Finally, the more advanced parts of algebra have found application in
contemporary physics: In fact, the fundamental concepts of quantum
mechanics are expressed in terms of complicated and nonelementary
algebraic entities.

The basic features of the history of algebra are as follows.

First of all we must point out that our ideas regarding what algebra
is and what its fundamental problem consists of have changed twice:
once in the first half of the past century, and the second time at the
beginning of our century. Thus, algebra has meant at different times three
quite different things. In this respect the history of algebra differs from
the history of the three famous branches of mathematics: analytic geo-
metry, differential calculus, and integral calculus, which were forged into
shape at the hands of their creators, Fermat, Descartes, Newton, Leibnitz,
anhd others and were later rapidly developed and amplified, sometimes by
the addition of great new sections, but were comparatively little changed
in their fundamental character.

In ancient times any law that was discovered for the solution of a class
of mathematical problems was recorded simply in words, since symbolic
calculations had not yet been invented. The word “algebra” itself was
created from the name of the important work of the Kharizmian scientist
of the 9th century, Mohammed Al-Kharizmi (see Chapter I), in whose
works the first general law for the solution of first- and second-degree
equations was deduced. However, the introduction of the symbolic
notation itself is usually associated with the name of Viéte, who not only
began to denote the unknowns by letters but also the given quantities.
Descartes also did a great deal for the development of symbolic notation,
and he too, of course, took the letters to mean ordinary numbers. It is at
this moment that algebra really begins as the science of symbolic calcula-
tions, of transformations of formulas composed of letters, of algebraic
equations, and so forth, in contrast to arithmetic, which always operates
on concrete numbers. Only now did complicated mathematical concepts
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become perspicuous and accessible to investigation, since by taking a
lock at a formula in letters, it is in most cases possible for us to see its
general arrangement or law of formation and to subject it to suitable
transformations. At that time everything in mathematics which was neither
geometry nor infinitesimal analysis was called algebra. This is the first,
the so to say Viéte point of view, concerning algebra. It was very clearly
expressed in the well-known book “Introduction to Algebra” by a member
of the Russian Academy of Sciences, the famous L. Euler, written in the
1760’s, i.e., 200 years ago.

Euler defined algebra as the theory of calculations with quantities of
various kinds. The first part of his book contains the theory of calculation
with integral rational numbers, ordinary fractions, square and cube roots,
the theory of logarithms, progressions, the theory of calculations with
polynomials, and the theory of Newton’s binomial series and its applica-
tions. The second part consists of the theory of first-degree equations and
of systems of such equations, the theory of quadratic equations and of
solutions of third- and fourth-degree equations by radicals, and also an
extensive section on methods of solutions of various indeterminate
equations in integers. For example, it was shown that Fermat’s equation
x3 + y* = 2% cannot be solved in integers x, y, z.

At the end of the 18th and the beginning of the 19th century, one of the
problems of algebra gradually began to occupy the central place, namely
the theory of solution of algebraic equations, in which the fundamental
difficulty is the solution of an nth-degree algebraic equation with one
unknown

X 4 @™ 4 apx™? 4 @, X + a, = 0.

This happened as a natural consequence of the importance of the problem

for the whole of pure and applied mathematics, and also because of the

difficulty and depth of the majority of the theorems connected with it.
The general formula for the solution of a quadratic equation,

A

was known to everybody. Italian algebraists of the 16th century found
analogous, though more complicated, general rules for the solution of
arbitrary third- and fourth-degree equations. Further investigations in
this direction for higher degree equations, however, met with insurmount-
able difficulties. The greatest mathematicians of the 16th, 17th, 18th and
the beginning of the 19th century (Tartaglia, Cardan, Descartes, Newton,
d’Alembert, Tschirnhausen, Bézout, Lagrange, Gauss, Abel, Galois,
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Lobadevskil, Sturm, and others) created an impressive edfice of theorems
and methods connected with this problem. The two-volume algebra of
Serret (an epoch-making work of its time, since it presented for the first
time the high point of the theory of algebraic equations, namely the theory
of Galois), appeared in the middle of the 19th century, exactly 100 years
after Euler’s text, in it algebra was already defined as the theory of alge-
braic equations. This is the second point of view concerning what algebra
is.

In the second half of the past century there occured, on the basis of the
ideas of Galois about the theory of algebraic equations, a profound
development of group theory* and the theory of algebraic numbers (in
the creation of which a great part was played by the Russian mathematician
E. L. Zolotarev).

In this second period also, in connection with the same problems of
solution of an algebraic equation, and with the theory of algebraic varieties
of higher order (which were then being studied in analytic geometry) the
algebraic apparatus was developed in different directions, e.g., the theory
of determinants and matrices, the algebraic theory of quadratic forms and
linear transformations, and, in particular, the theory of invariants. During
almost the entire second half of the 19th century, the theory of invariants
was a central theme in algebra. In turn, the development of group theory
and the theory of invariants exerted in this period a great influence on
the development of geometry.t)

A new, third point of view as to what algebra is came into existence
chiefly in the following connection. In the second half of the last century,
in mechanics, physics, and mathematics itself, scientists began more and
more often to investigate objects for which it was natural to consider
operations of addition and subtraction, and sometimes multiplication
and division, but for which these operations were subjected to altogether
different laws from those for rational numbers.

We have already spoken of vectors. Other sorts of mathematical objects
with different laws of operation can only be mentioned here: e.g., matrices,
tensors, spinors, hypercomplex numbers. All these quantities are denoted
by letters, but their laws of operation differ from one another. If for some
set of objects (denoted by letters) certain operations are defined together
with the laws or rules that they must satisfy, then we say that an algebraic
system is defined. The third point of view on what algebra is consists of
regarding the whole of algebra as the study of various algebraic systems.
This is the so-called axiomatic or abstract algebra. 1t is abstract because

* See Chapter XX.
1 See Chapter XVII.
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at a given step in the calculation we are not all concerned with what the
letters in the algebraic system denote, the only important thing is the
axioms or laws satisfied by the operations; and it is called axiomatic,
because it is constructed exclusively from the axioms stated at the begin-
ning. It is as though we have returned, but on a higher level, to the first or
Viéte point of view on algebra, that algebra is the theory of symbolic
calculations. Although it makes no difference what the letters denote and
only the rules of operation are important, it is still true, of course,
that only those algebraic systems are interesting which have great
significance either in mathematics itself or in its applications.

The great amount of algebraic material collected in the previous period
served as the actual basis for the construction of contemporary abstract
algebra.

The early 1930’s saw the appearance of van der Waerden’s well-known
book “Modern Algebra,” which has played a great role in the propagation
of this third point of view as to what algebra is. The text of A. G. Kuro
on algebra is oriented in the same direction.

In the present century algebra has found deep applications to geometry
(topology and the theory of Lie groups) and, as mentioned earlier, to
contemporary physics, especially to functional analysis and quantum
mechanics.

Particularly important at the present time are the problems of mecha-
nization of algebraic calculations by means of various mathematical
computing machines, especially high-speed electronic machines. The
questions connected with this type of computational mathematics raise
new distinctive problems in algebra.

In the present work, there are two chapters (not counting the present
one) that are devoted to algebra: linear algebra (Chapter XVI) and the
theory of groups and other algebraic systems (Chapter XX).

§2. Algebraic Solution of an Equation

An algebraic equation of the nth-degree with one unknown is an
equation of the form

X" 4 a1l 4 ayxn-t 4 o 4@, x +a, =0,

where a, , a; , *, a, are given coefficients. *

* We assume that all terms of the equation are transferred to the left-hand side
and that the equation is divided by the coefficient of the highest power of the unknown.
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Equations of the first- and second-degree. If the equation is of the
the first-degree, then it has the form
x+a=20

and is solved at once

The second-degree equation
x24+px+qg=0

was solved in early antiquity. Its solution is very simple: If we transfer ¢
with the opposite sign to the right-hand side and then add p?/4 to both
sides we have

x3+px+%2=7p2—q.
But 2 e

wap - (ced),
hence

from which we obtain the well-known formula for the solutions of a
quadratic equation
s o P
= 2*J4 g

Third-degree equation. It was completely different with equations of
degree higher than 2. Already the general equation of the third-degree
required quite profound considerations and resisted all the efforts of the
mathematicians of antiquity. It was only solved at the beginning of the
1500’s, in the era of the Renaissance in Italy, by the Italian mathematician
Scipio del Ferro. Del Ferro, following the custom of his time, did not
publish his own discoveries but communicated them to one of his pupils.
After the death of del Ferro this pupil challenged to competition one of
the great Italian mathematicians Tartaglia and proposed to him for
solution a series of third-degree equations. Tartaglia (1500-1557) accepted
the challenge and eight days before the end of the competition found a
method of solving any cubic equation of the form x® 4 px + ¢ = 0.

In two hours he solved all problems of his opponent. A professor of
physics and mathematics in Milan, Cardan (1501-1576), learning of
Tartaglia’s discoveries, began to entreat Tartaglia to inform him of his
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secret. Tartaglia finally agreed, but with the condition that Cardan keep
his method in deep secret. Cardan violated his promise and published
Tartaglia’s result in his work *“The great art” (“Ars Magna™).

The formula for the solution of a cubic equation has since then been
called Cardan’s formula, although it would be correct to call it Tartaglia’s
formula,

Cardan’s formula is derived as follows.

In the first place, the solution of the general cubic equation

V+ayr+by4c=0 (1)
can easily be reduced to the solution of the cubic equation of the form
x¥ 4+ px 4+ g =0, 2

not containing a term with the square of the unknown. To do this it is
sufficient to set y = x —a/3. Indeed, substituting this expression into
equation (1) and removing the parentheses, we obtain

( —§)3+a[x—g)e+b(x—g)+c=x’—3x2%+ 4 ax® 4y

where the dots indicate those terms in which x is raised to first power or
does not appear at all. We see that the terms containing x2 cancel each
other out.

Let us now consider the following equation

x4+ px+g=0.

We set x = u + v, i.e., in place of one unknown we put two, u and v,
and thereby turn the whole problem into a problem with two unknowns.
We have

(w+ v)*+ pu+ v) 4+ g =0,
or
w4+ 03+ q+ QGuo+ p)u+ v) =0

Whatever is the sum of the two numbers u + v, it is always possible to
require that their product uv be equal to some quantity given beforehand.
If u + v = A, and we require uv = B, then since v = 4 — u, we obtain

u(A e H) — Bs
so that it is sufficient that « be a solution of the quadratic equation
u? — Au+ B =0,

and we know that every quadratic equation has real or complex roots,
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given by the well-known formula. In our case, ¥ + v is equal to the desired
root x of our cubic equation and we require that

up = — 3 )
i.e., that 3up + p = 0. With this choice of # and v we obtain
w+ovt4¢g=0,

3uv 4 p = 0. ®

Consequently, if we find the numbers « and o, satisfying this system of
equations then the number x = u 4 v will be the root of our equation.

From system (3) it is easy to form a quadratic equation whose roots will
be u® and 3. Indeed, it gives

“3+03=—9‘,
- B
B = 75

and, consequently by a theorem already used earlier 43 and v® are the
roots of the quadratic equation
3

2 N
gz — %5 0.

Solving it by the usual formula, we obtain

q° __9_ ¢ P
+J +n’ﬁ‘ 2 J4+n’

and, consequently,

3 T 2 Ty
_ ] _q A _q_ /¢ P
x‘\/ 2+\/4+27+\/ 2 \/4"'27’

this is the formula of Cardan.

Fourth-degree equation. Soon after the solution of the cubic equation
the general fourth-degree equation was solved by Ferrari (1522-1565).
For the solution of the third-degree equation we have seen that the
preliminary solution of the auxiliary quadratic equation,

3

P
2 Y R
zt gz 27 0,

was necessary, where z = u3 or v®; analogously, the solution of a fourth-
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degree equation can be based on the preliminary solution of an auxiliary
cubic equation.

Ferrari’s method consists of the following. Let the general fourth-
degree equation be given

x4 ax® +bx?+cx+d=0.
Let us rewrite it as:
X} 4ax*= —bx* —cx —d
and add to both sides a®x?/4; then on the left we obtain a perfect square
ax )2

(xz—i——i— =(—‘f¥—b)x3—c‘x—a‘.

4

Adding now to both sides of the equation the terms

' ax 2

(+3)r+7
where y is a new variable, on which we later impose a necessary condition,
on the left we obtain a perfect square

e R S Let = I

Thus we have reduced the problem to one with two unknowns.

On the right of equation (4) we have a quadratic trinomial in x, whose
coefficients depend on y. We select y such that this trinomial will be the
square of the first-degree binomial ax + B.

In order that the quadratic trinomial Ax? 4 Bx + C be the square of
the binomial ax + B it is sufficient that

B —44C = 0.
Indeed, if B2 — 44C = 0, then

Ax®* 4 Bx + C = (W Ax + VO
ie.,
Ax® + Bx + C = (ax + B),
where

x=1vA4, B=+vC

Consequently, if we select y such that

& | ) fptfst
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then the first part of equation (4) will be the complete square (ax + B)%
Removing the parentheses, we obtain a cubic equation in y

¥ — byt + (ac — 4d)y — [d(@® — 4b) + ¢ = O,

Solving this auxiliary cubic equation (for example, by Cardan’s formula)
we find o and 8 in terms of its solution y, , namely

(e + &+ 2o) = (ax + B,

from which

ax a
xﬁ+5+%=ax+ﬁ or x*—|—7x—|-%= —ax — B.

From these two quadratic equations we can find all four roots of the given
fourth-degree equation.

This is how third- and fourth-degree algebraic equations were solved
by ltalian mathematicians in the 1500’s.

The success of the Italian mathematicians produced a very great effect.
It was the first instance when modern science had exceeded the achieve-
ments of the ancients. Until then, in the whole course of the Middle
A ges, the aim had always been only to understand the work of the ancients,
and now, finally, certain questions were solved which the ancients had not
succeeded in conquering. And this happened in the 1500’s, i.e., in the
century before the invention of new branches of mathematics: analytic
geometry, differential calculus, and integral calculus, which finally affirmed
the superiority of the new science over the old. After this there was no
important mathematician, who did not attempt to extend the achievements
of the ltalians and to solve equations of fifth, sixth, and higher degree in
an analogous way by means of radicals.

The prominent algebraist of the 17th century, Tschirnhausen (1651-
1708) even believed that he had finally found a general method of solution.
His method was based on the transformation of an equation to a simpler
one, but this very transformation required the solution of some auxiliary
equations. Subsequently, by a deeper analysis it was shown that Tschirn-
hausen’s method of transformation indeed gives the solution of second-
third-, and fourth-degree equations, but already for a fifth-degree equation
it requires the preliminary solution of an auxiliary equation of the sixth-
degree, whose solution in turn was not known.
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Factorization of a polynomial and Viéte’s formulas. If we accept
without proof the so-called fundamental theorem of algebra* that every
equation

fx) =0,
where ﬂx) = x® 4 a, xn1 4 4 a,

is a polynomial in x of given degree n and the coefficients a, , a,, -, a,
are given real or complex numbers, has at least one real or complex root,
and take into consideration that all computations with complex numbers
are carried out by the same rules as with rational numbers, then it is easy
to show that the polynomial f{x) can be represented (and in only one way)
as a product of first-degree factors

Sx) = (x —a)x —b) - (x — 1),

where a, b, -+, [ are real or complex numbers.

Indeed, let a be a root of f{x); we divide f{x) by x — a; since the divisor
is of the first-degree, the remainder will be a constant number R, i.e., we
will have the identity

f(x) = (x —a) fi(x) + R,

where fy(x) is a polynomial of degree n — | and R is a constant. Substi-
tuting here in place of x the number a, we obtain

fla) = (@ —a) fy(@) + R = R

But since a is a root of f(x), we have f(a) = 0, and hence R = 0, i.e.,
a polynomial can always be divided by (x — a) without remainder, where
ais a root of this polynomial. Thus

fix) = (x —a) fi(x)

But if the fundamental theorem of algebra is true, then in turn the poly-
nomial fi(x) has a root b, and we obtain analogously

fHx) = (x — b) fu(x),

where the polynomial fy(x) is already of degree (n — 2), etc. This factoriza-
tion, as can easily be shown, is unique.

Every nth-degree polynomial f(x) has in this sense n and only n roots
a, b, -+, I. These roots may be all distinct but it can happen that some
among them are identical. Then we say that the corresponding root of

* The proot:f the fundamental theorem of algebra is difficult and was given con-
siderably later. We devote §3 to it. But its validity was assumed long before it was
rigorously proved.
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the polynomial f(x) is a multiple root with such and such a multiplicity.
Multiplying out the expression

(x —a)(x —b)(x —c) - (x—1

and comparing the coefficients of the same powers of x, we see immediately
that
—a,=a+b+c+ -+
a, = ab + ac + --- + ki,
—a; = abc + abd + -+,

which are Viéte’s formulas.

A theorem on symmetric polynomials. Viéte's formulas are poly-
nomials in the n letters a, b, ---, / which do not vary under any permutation
of these letters. Indeed, a +-b+ -+ k+l=b4+a+ -+ k+ 1]
etc. In general, any such polynomials in n letters, which do not change
under any permutations of these letters, are called symmetric polynomials
in n letters. For example, 5x2 + 5y — 7xy is a symmetric polynomial in x
and y. It is possible to prove the theorem that every integral symmetric
polynomial in n letters with arbitrary coefficients A, B, --- can be expressed
integral rationally, i.e., with the operations of addition, subtraction, and
multiplication, in terms of the coefficients A4, B, --- and of Viéte’s poly-
nomials in the letters. If a, b, -+, / are the roots of an nth-degree equation
X"+ ax™' 4 -« 4+ a, =0, then every symmetric polynomial in
a, b, -+, | with arbitrary coefficients A, B, -+ can thus be expressed integral
rationally in terms of these coefficients 4, B, -+ and the coefficients
a,,a,, -, a, of the equation. This is the so-called fundamental theorem
of symmetric polynomials.

Lagrange’s contributions. The famous French mathematician Lagrange
in his great work “Reflections on the solution of algebraic equations”
published in 1770-1771 (with more than 200 pages), critically examined
all the solutions of second-, third- and fourth-degree equations that were
known up to his time and showed that their success was always based on
properties which did not hold for equations of degree 5 or higher. From
del Ferro’s time until this work of Lagrange more than two and a half
centuries had passed by and nobody during this long interval had doubted
the possibility of solving equations of degree 5 and higher by radicals,
i.e., of finding formulas involving only the operations of addition, sub-
traction, multiplication, division, and radicals with integral positive
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exponents, which would express the solution of an equation in terms of
its coefficients, that is, formulas similar to those by which the quadratic
equation had been solved in antiquity and the third- and fourth-degree
equations in the 1500’s by the Italians. They regarded this situation as
being due only to their own inability to find a valid but apparently deeply
hidden solution.

Lagrange says in his memoir: “The problem of solving (by radicals)
equations whose degree is higher than four is one of those problems which
have not been solved although nothing proves the impossibility of solving
them” and two pages later he supplements this: “From our reasoning we
see that it is very doubtful that the methods which we have considered
could give a complete solution of equations of the fifth-degree.”

In his investigations, Lagrange introduced the expression

a+ eb+ ec+ -+ el

in the roots a, b, -, [ of an equation, where ¢ is an nth root of unity,*
having established that such expressions are closely connected with the
solution of equations by radicals. These expressions are now called
“Lagrange resolvents.” g

In addition, Lagrange observed that the theory of permutations of roots
of an equation is of great importance in the theory of solution of equations.
He even expressed the thought that the theory of permutations is the
“true philosophy of the whole question,” in which he was completely
right, as was shown in the later investigations of Galois.

Lagrange’s method of solution of second-, third- and fourth-degree
equations were not the same as those of the Italians, which in every case
were based on special transformations of a complicated and so to speak
accidental kind. Lagrange’s methods were altogether orderly and devel-
oped from one general idea involving the theory of symmetric polynomials,
the theory of permutations, and the theory of resolvents.

* Le., a complex number which raised to the nth power is equal to one. For example,
the cube roots of unity can have the values

Lol Vi 1 V3
U R B B T
where i = v —1 (see §3 ). Indeed,
1 V3 1 3 9 3V3
i gz TN pe o s S Vv S B W e
( 2+2f) B p= g,
and analogously
1 V3
(320
2 3
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Let us consider, for example, the solution by Lagrange’s method of
the general fourth-degree equation

x4+ mx3+nx®+px+q=0.
Let the roots of this equation be a, b, ¢, d. Consider the resolvent

a+b—c—d,

ie.,
a+ ec + € + €%,

where e = — 1. If we permute a, b, ¢, din all 1:2-3-4 = 24 different ways,
we obtain altogether six different expressions

a+b—c—d,

a4 c—b—d,

a+d—c—b, (5)

¢c+d—a—b,

bi+d—a—ec

b4+c—a—d

An equation of the sixth-degree, whose roots are these six expressions,
will thus have coefficients that do not vary with all 24 permutations of
a, b, ¢, d, since any of the 24 permutations can only permute these expres-
sions among themselves and the coefficients of the sixth-degree equation
do not depend on the order in which we take its roots. Thus, these
coeflicients are symmetric polynomials in a, b, ¢, d. But then, by virtue of
the fundamental theorem on symmetric polynomials, these coefficients are
expressed integral rationally in terms of the coefficients m, n, p, g of the
equation. In addition, since expressions (5) are pairwise of opposite signs,
this sixth-degree equation will contain only terms of even powers. Indeed,
if expressions (5) are denoted by «, 8, y, — o, — B, — y respectively, then
the left-hand side of the sixth-degree equation will be equal to

V=) +) =B+ —nur+v
= (»* — ) — By — YD)

Direct computation gives the sixth-degree equation

V8 — (3m? — 8myt — 3(m* — 16mn — 16n% + 16mp — 64q))*
— (m® — 4m + 8p)2 = 0.

Letting y* = t, we obtain a cubic equation in ¢, and if ¢’, 1", " are its
roots, then

a+b—c—d=r,
at+c—b—d=Vr,
a+d—b—c=Vr",



§2. ALGEBRAIC SOLUTION OF AN EQUATION 275

We also have
at+b+t+c+d=—m

Adding these equations after multiplication by 1, 1, I, 1 or 1, —1, —1, 1,
or —1,1, —1, 1, or —1, —1, 1, 1, we obtain

a =

(—m + VU + V17 4 V7,

Bl —

b=t (m 4 VT - VT VP,
= Hem = VP 4 VT -V,
d=Yem—vi - vy v,

Thus, the solution of a fourth-degree equation is reduced to the solution
of a cubic equation; and third- and second-degree equations are solved
analogously.

Lagrange achieved a great deal in the theory of algebraic equations.
However, even after his persistent efforts the problem of solution in
radicals of algebraic equations with degree higher than 4 remained to be
settled. This problem, on which mathematicians had worked in vain for
almost three centuries, constituted, in the expression of Lagrange, “a
challenge to the human mind.”

Abel’s discovery. Consequently it was a great surprise to all mathe-
maticians when in 1824 the work of a young Norwegian genius Abel
(1802-1829) came to light, in which a proof was given that if the coefficients
of an equation a,,a,, ---, a, are regarded simply as letters, then there
does not exist any radical expression in these coefficients that is a root of
the corresponding equation, if its degree n = 5. Thus, for three centuries
the efforts of the greatest mathematicians of all countries to solve equations
of degree 5 or higher in radicals did not lead to success for the simple
reason that this problem simply does not have a solution.

Such a formula is known for second-degree equations, and as we saw
analogous formulas exist for third- and fourth-degree equations, but for
equations of degree 5 or greater there are no such formulas.

Abel’s proof is difficult and we will not give it here.

Galois theory, But this was not yet all. A very remarkable result in
the theory of algebraic equations still remained to come. The point is
that there are arbitrarily many special forms of equations of any degree
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that are solvable in radicals, and many of them are exactly those equations
that are important in the applications. Such, for instance, are the binomial
equations x* = A. Abel found another very broad class of such equations,
the so-called cyclic equations and still more general ““Abelian” equations.
In connection with the problem of construction by ruler and compass of
regular polygons, Gauss explicitly considered the so-called cyclotomic
equations, i.e., equations of the form

x4 xr-2 e L x4+ 1 =0,

where p is a prime number, and showed that they can always be reduced
to a chain of equations of lower degree; moreover, he found necessary
and sufficient conditions that such an equation can be solved in square
roots. The necessity of these conditions was rigorously proved only by
Galois.

Thus, after Abel’s work the situation was the following: Although, as
was shown by Abel, the general equation of degree higher than 4 cannot
be solved by radicals, there are arbitrarily many different special equations
of arbitrary degree, all of which can be solved by radicals. The whole
question of solving equations in radicals was placed by these discoveries
on completely new ground. It became clear that the task now was to deter-
mine exactly which equations can be solved by radicals, or in other words,
what are the necessary and sufficient conditions for the solvability of an
equation in radicals. This problem, the answer to which gave in some
sense the final elucidation of the whole problem, was solved by the ingen-
ious French mathematician Evariste Galois.

Galois (1811-1832) perished at the age of 20 in a duel. In the last two
years of his life he could not devote much time to mathematics, since he
was carried away by the stormy whirl of political life at the time of the
1830 Revolution and languished in jail for his speech against the reac-
tionary regime of Louis Philippe. Nevertheless, in his short life, Galois
made discoveries far ahead of his time in various parts of mathematics
and in particular produced some very remarkable results in the theory of
algebraic equations. In a small publication “Memoir on the conditions
of solvability of equations in radicals” which remained in manuscript
form after his death and was first published in 1846 by Liouville, Galois
started from some very simple but profound concepts and finally untangled
the whole complex of difficulties surrounding the solution of equations
in radicals, difficulties with which the most outstanding mathematicians
had struggled unsucessfully up to his time. The success of Galois was
based on the fact that for the first time he introduced into the theory
of equations a series of exceedingly important new general concepts,
which subsequently played a great role in mathematics as a whole.
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Let us consider the Galois theory for a special case, namely when the
coefficients a, , a, , ---, a, of the given nth-degree equation

x*+ax*!'+ - +a,_x+a,=0 (6)

are rational numbers. This case is particularly interesting and already
involves essentially all the difficulties of the general Galois theory. We will
also assume that the roots a, b, ¢, -+ of this equation are distinct.
Galois begins, like Lagrange, with considering a first-degree expression
ina, b, c, ---
V = Aa +~ Bb + Cc + ---,

although he does not require that the coefficients A, B, C, -+ of this
expression should be the roots of unity, but takes for A4, B, C, --- any
integral rational numbers such as to give numerically distinct values for
all the n! = 1-2-3-- n quantities ¥, V', V"', -++, V==V gbtained from ¥’ by
permuting the roots a, b, ¢, --- in all n! possible ways. This can always be
done. Then Galois constructs the equation of degree n! whose roots are
V, V', V", -, V=0 The theorem on symmetruc polynomials shows
that the coefficients of this equation @(x) = 0 of degree n! will be rational
numbers.

Up to now everything is quite similar to what Lagrange did.

Next Galois introduced the first important new concept, the concept of
irreducibility of a polynomial in a given field of numbers. If a polynomial
in x is given, whose coefficients, for example, are rational numbers, then
the polynomial is called reducible in the field of rational numbers if it can
be represented in the form of a product of polynomials of lower degrees
with rational coefficients. If not, then the polynomial is called irreducible
in the field of rational numbers. The polynomial x3 — x* —4x — 6 is
reducible in the rational number field, since it is equal to
(x® + 2x + 2)(x — 3), but for instance, the polynomial x* + 3x% + 3x — 5
is irreducible, as can be shown, in the field of rational numbers.

There exist methods, admittedly requiring long computations, of
factoring any given polynomial with rational coefficients into irreducible
polynomials in the field of rational numbers.

Galois then factors the above polynomial @(x) into irreducible factors
in the field of rational numbers.

Let F(x) be one of these irreducible polynomials (which one of them is
immaterial for what follows) and let it be of degree m.

The polynomial F(x) will then be the product of m of the n! first-degree
factors x — V, x — V', -, x — V-1 into which the n!th-degree
polynomial ®(x) was decomposed. Let these m factors be x — V,
x — V', -, x — V"-1_We enumerate in any order the roots, a, b, ¢, -+, /
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of the given nth-degree equation (6) by giving them the indices, 1,2, --+, n.
Then the quantities ¥, V', +--, ¥™-1 correspond to all possible n! permu-
tations of the numbers 1, 2, -+, n, corresponding to permutations of the
roots,and the ¥, V', ---, V™~V carrespond to only m of these permutations.
The set G of these m permutations of the numbers 1, 2, ---, n is called the
Galois group of the given equation (6).*

Then Galois introduces some new concepts and develops simple but
truly remarkable arguments by which he proves that a necessary and
sufficient condition for the solvability of equation (6) in radicals is that
the group G of permutations of the numbers 1, 2, ---, n satisfies a certain
definite condition.

Thus, Lagrange’s prophecy that at the basis of the whole problem lay
the theory of permutations proved to be true.

In particular, Abel's theorem on the nonsolvability of a general fifth-
degree equation in radicals can now be proved as follows. It can be shown
that there exist arbitrarily many fifth-degree equations, even with integral
rational coefficients for which the corresponding 120th-degree polynomial
@(x) is irreducible, i.e., whose Galois group is the group of all 5! = 120
permutations of the indices 1, 2, 3, 4, 5 of its roots. But this group, as can
be shown, does not satisfy the Galois criterion, and therefore these fifth-
degree equations cannot be solved in the radicals.

For instance, it can be shown that the equation x* + x —a = 0,
where a is a positive whole number, in most cases cannot be solved by
radicals. For example, it is not solvable in radicals for a = 3,4, 5, 7,
8,9,10, 11, ---

The application of Galois theory to the problem of solvability of geometric
problems by ruler and compass, One of the most remarkable special
applications of Galois theory is the following. Many problems of plane
geometry can be solved by constructions with ruler and compass alone.
For example, we can construct with ruler and compass a regular
triangle, square, pentagon, hexagon, octagon, decagon, etc., but it is
impossible to construct a regular polygon of seven, nine, or eleven sides.
Which problems can be solved by ruler and compass, and which not?
Before Galois it was an unsolved problem. From the Galois theory we
obtain the following answer.

The simultaneous solution of equations of two lines, a line and a
circle, or two circles can be reduced to the solution of equations of first- or
second- degree. For a line and a circle it is clear, and in the case of two
circles (x —a,)? + (y — b)) = r} and (x — a,)? + (y — by)? = r} if we

* More will be said about Galois groups in §5, Chapter XX.
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substract one equation from the other, the x? and y2? cancel out, and we
obtain a first-degree equation, which is to be solved simultaneously with
the equation of one of the circles, so that again we have a quadratic
equation. Therefore, every step of the problem to be solved by ruler and
compass is reduced to an equation of first- or second-degree, and con-
sequently, all problems solvable with ruler and compass are reduced to
an algebraic equation with one unknown, whose solution involves the
extraction of a chain of square roots. Conversely, if the solution of a
geometric problem is reduced to such an algebraic equation, then it can
be solved by ruler and compass, since square roots, as is well known,
can be constructed by ruler and compass.

If a geometric problem is given, we must first set up an algebraic
equation equivalent to the given problem. If it is impossible to set up such
an equation, the problem is obviously not solvable by ruler and compass.
If the equation has been set up, then we must select that one of its irre-
ducible factors that is connected with the solution of the problem, and
determine whether this irreducible equation can be solved in square roots.
As the Galois theory shows, for this it is necessary and sufficient that the
number m of permutations that constitute its Galois group be a power
of 2.

With this test we can prove the theorem stated by Gauss that a regular
polygon with a prime number p of sides can be constructed by ruler and
compass if and only if the prime number p has the form 2% + 1, ie.,
for p = 3, 5, 17, 257 but not for p = 7, 11, 13, 19, 23, 29, 31, -, etc.
Gauss proved only the “if” part of this assertion.

By the same method we can prove that it is impossible to divide an
arbitrary angle into three equal parts by ruler and compass, or to duplicate
the cube, i.e., from the edge of a given cube to find the edge of a cube with
twice as great a volume, and so forth.

The impossibility of squaring the circle, i.e., of constructing with ruler
and compass the side of a square equal in area to a circle with given radius,
is proved in a different way. Namely, it can be shown that the side of such
a square is not connected with the radius by any algebraic equation, i.e.,
it is so to speak transcendental relative to the radius, and consequently
it is a fortiori not expressible in terms of the radius by a chain of square
roots. This proof is difficult and it does not follow from Galois theory.

Two fundamental unsolved problems connected with Galois theory.
In Galois theory there remain two further basic problems which have not
yet been solved in their general form although many excellent mathe-
maticians have been working on them almost uninterruptedly.

The first of these is the problem of the so-called Hilbert-Cebotarev
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resolvents (not to be confused with the Lagrange resolvents) which is a
direct generalization of the problem of solution of equations in radicals.
The idea is this: Saying that an equation is solvable in radicals is exactly
the same as saying that its solution is reduced to a chain of successive
binomial equations, since the radical V' A is a root of the binomial equation
x" = A. But it may happen that although the equation cannot be reduced
to a chain of such simple equations as the binomial ones, it can
nevertheless be reduced to a chain of certain other very simple equations.
Back at the end of the 18th century, it had been shown that the general
fifth-degree equation can be reduced to a chain of binomial equations
together with one further equation of the form x* + x + 4 = 0, which,
although not binomial, has like the binomial equations, only one para-
meter A.

Later on it was proved that a sixth-degree equation a ready cannot
be reduced to a chain of one-parameter equations. For equations of any
degree we require to solve the problem: what kind of simpler equations,
i.e., with a minimum number of parameters, make up the chain to which
our equation can be reduced.

If the given equation is reduced to a chain of one-parameter equations
of a definite type, then for each of these one-parameter equations we can
compute a table, giving its roots as a function of its parameter. Then the
solution of the given equation is reduced to the use of a chain of such
tables.

Second, a still deeper problem consists of the converse of Galois theory.
Galois proved that the properties of the solutions of an equation depend
on its group. But conversely, can any group of permutations be the Galois
group of some equation and can we set up all the equations whose Galois
group is a given group?

As to the first of these two questions only partial results are known,
although such outstanding mathematicians as Klein and Hilbert worked
on it persistently; the first general theorems were given by the remarkable
Soviet algebraist H. G. Cebotarev.

The second question for the so-called solvable groups, i.e., groups
satisfying Galois’ criterion was solved in the affirmative in recent years
by the Soviet mathematician 1. R. Safarevic.

§3. The Fundamental Theorem of Algebra

In the previous section we considered the attempts, lasting three
centuries, to solve by radicals an nth-degree equation. The problem turned
out to be very deep and difficult and led to the creation of new concepts,
important not only for algebra but also for mathematics as a whole,
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As for the practical solution of equations, the result of all this work was
the following. It became clear that solution by radicals is far from being
available for all algebraic equations, and even when it is available, it is
of little practical value because of its complexity, except in the case of the
quadratic equation.

In view of this, mathematicians long ago began to work on the theory
of algebraic equations in three completely different directions, namely:
(1) on the problem of the existence of a root; (2) on the problem of how
can we learn from the coefficients of the equation something about its
roots without solving it; for example, does it have real roots and how
many; and finally, (3) on the approximate calculation of the roots of an
equation,

First of all, it was necessary to prove that in general any nth-degree
algebraic equation with real or complex coefficients always has at least
one real or complex root. *

This theorem, which is one of the most important in the whole of
mathematics, remained for a long time without rigorous proof. In view
of its importance and difficulty, it is generally called the “fundamental
theorem of algebra,” although the majority of the methods by which it
has been proved are as closely related to infinitesimal analysis as to algebra.
The first proof was given by d’Alembert. One point in d’Alembert’s proof,
as was later made clear, turned out to be defective. Namely, d’Alembert
assumed as trivial the general proposition of analysis that a continuous
function, given on a bounded and closed set of points, has somewhere
on the set a minimum. This is true but it had to be proved. A rigorous
proof of this property was obtained only in the second half of the 19th
century, i.c., a hundred years after d’Alembert’s investigations.

It is generally considered that the first rigorous proof of the funda-
mental theorem of algebra were given by Gauss; however, some of his
proofs require for full rigor no lesser additions than those required for
d’Alembert’s proof. Today a number of different completely rigorous
proofs of this theorem are known.

In the present section we consider the proof of the fundamental theorem
of algebra based on the so-called lemma of d’Alembert, and we also give
a complete proof of the aforementioned proposition from analysis.

The theory of complex numbers. Before considering the proof of the
fundamental theorem of algebra, we must first of all recall the theory of
complex numbers as studied in high school. The difficulties which led to
the creation of the theory of complex numbers are first encountered in

: ;ﬁ; point is that there exist nonalgebraic equations, for example, a* = 0, which
definitely do not have roots, either real or complex.



282 IV. ALGEBRA: THEORY OF ALGEBRAIC EQUATIONS

solving quadratic equations. What should we do, if the number p%/4 —¢
under the square root in the formula for the solution of the quadratic
equation is negative ? There exists no real number, positive or negative,
which is the square root of a negative number, since the square of any
real number is either positive or zero.

After long doubts, lasting more than a century, mathematicians arrived
at the conclusion that it is necessary to introduce a new form of numbers,
the so-called complex numbers, with the following laws of operations on
them. L

Conventionally, a number of new character is introduced: i = V' —1
such that i = — |, and numbers of the form a 4 bi are considered, where
a and b are ordinary real numbers. The numbers a + bi are called complex.
Two such numbers a + bi and ¢ | di are regarded as equal, if a = ¢,
b =d The sum of two such numbers is defined to be the number
(a + ¢) + (b + d)i, and their difference is the number (@ — ¢) + (b — d)i.
In multiplication we agree to multiply these numbers as if they were
binomials but to take into consideration that i? = —1, i.e,

(a + bi)(c + di) = ac + bci + adi + bdi* = (ac — bd) + (bc + ad)i.

If a and b are regarded as rectangular coordinates of a point, and the
point is associated with the complex number a 4 bi, then the addition
and subtraction of complex numbers corresponds to the addition and
subtraction of vectors, i.e., of directed segments from the origin to
the points with coordinates (a, ) and (¢, d), since in addition of vectors
their corresponding coordinates are added. As to the geometrical meaning

of a product in the so-called plane of

’A complex numbers, we can see it more
easily if we consider the length p of the

vector from the origin of the coordinate

: system to the point (x, y) (this length is

called the modulus of the complex number

L ¥ z = x 4 iy) and the angle ¢ which the

2 _ vector makes with the Ox-axis (this angle

2 x “x is called the argument of the complex

number z = x + iy); in other words, if

we consider not the Cartesian coordinates
Fig. |. x and y but the so-called polar coordinates

p and ¢ (figure I). Then x = pcosg,
y = psing and consequently the complex number itself can be written
as

x + iy = p(cos ¢ + ising).
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If

a+ bi = p(cos¢, + ising), ¢ + di = py(cose, + ising,),
then

ac — bd = p,p,(cos ¢, cos ¢, — sin g, sin ¢y) = pyp, €0s ($y + $o),
be + ad = pypy(sin ¢, cos b, + cos P, sin ) = pp, sin ($y + ),

from this we see that in multiplication of twe complex numbers their
moduli p, and p, are multiplied, and the arguments ¢, and ¢, are added.
In division, since it is the inverse operation of multiplication, one modulus
is divided by the other, and the arguments are subtracted

pi(cos @, + ising,) p(cos ¢, + ising,)

= pipalcos(p, + ¢,) + isin (b, + ¢,)]
and

picosé, + ising,) P . . B
0ACOSP, + T5indy)  p [cos (¢, — ¢o) + isin (P, — ¢2)].

In raising to a power with positive integral exponent n, consequently,
the modulus is raised to the same nth power, and the argument is multiplied
by n

[p(cos ¢ + isin@)]* = p*(cos nd + isin ng).

Conversely, taking roots

Vp(cos¢ + ising) = Vp (cos%

+isin%).

However, in taking roots a special situation arises. Let n be a positive
integral exponent. Then

Vp(cos ¢ + isin )
is equal to the number

i @ -3
\/p(COS—n— + isin n)
since raising this number to the nth power gives the radicand.
But this only one value of the root. The point is that the complex
number

Vo [cos (% + %’—) 4+ isin (% Jk 2kw )],

n
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where k is any of the numbers 1, 2, ---, n — 1, will also be an nth root of
the number

p(cosg + isin ¢).

Indeed, according to the rule for raising to a power, if we raise this number
to the nth power, we obtain the number

(T foosn (& + 27) +ssinn (& + 2]

n n

= plcos (¢ + 2km) + isin (¢ + 2km)),

where the addend 2k, because of the properties of sines and cosines, can
be neglected, since it changes neither sine nor cosine. Thus the nth power
of this number is also

p(cos ¢ + isin¢),

i.e., this number is

V p(cos ¢ + isin ).

1t is easy to see that no other complex number, besides these n numbers
fork =0,1,2 -+, n—1isan nth root of

plcos ¢ + ising).

Geometrically, the extraction of nth roots can be described as follows.
The points of the complex plane corresponding to the values of the v/~
of the number p(cos¢ isin¢) lic at the vertices of the regular n-sided
polygon inscribed in a circle drawn about the origin with radius v/p and
so rotated that one of the vertices of this n-sided polygon has argument
¢/n (figure 2).

We make the following observation. If

fla) = 2" + ezt ez +

is a polynomial in z with given real or complex coefficients ¢,, ¢, ---, ¢,
and we change z continuously, i.e., continuously shift the point z = x 4 iy
in the complex plane, then the complex point Z = X 4 iY = f(z) will
also move continuously in the complex plane. This is clear from the fact
that if we substitute in f(z) the value of z = x + iy, ¢, = a, + i,
¢y = ay + byi, -+, ¢, = a, + b,i, and perform all computations, we find
that
flzy = X + 1Y,
where
X=Pxy, Y=0(x1y)
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are nth-degree polynomials in x and y with real coefficients expressed in
terms of a; and b, . Under continuous change of x and y, these polynomials
will also change continously. o
We also note that, since the modulus p = | f(2)| is equal to V' X2 + Y2,
during a continuous shift of the point z in the complex plane, the modulus
| f(z)| will also change continucusly. In other words, if the point z is
sufficiently close to the point « then the difference | f(z)| — | f(«)| of
absolute values is smaller than any preassigned positive number.

Fig. 2. FiG. 3.

Let us also remark that the modulus of a sum of several complex
numbers is always smaller than or equal to the sum of the moduli of these
numbers, which is equivalent to saying that the rectilinear segment OF
(figure 3) is shorter than or equal to the polygonal line OABCDE, being
equal to it if and only if all of its segments lie on one line and in one
direction.

We recall finally that to say “a complex number is equal to zero” is
the same as to say that “its modulus is equal to zero,” since the modulus
p of a complex number is the distance from the origin to the corresponding
point.

We now apply the theory of complex numbers to the proof of the
fundamental theorem of algebra; though it must be remarked that the
significance of the theory of complex numbers goes far beyond the limits
of algebra. In many parts of mathematics other than algebra, we cannot
get along without them. In many applications, for example in the theory
of alternating currents, numerous problems are most simply solved by
means of complex numbers. But what is most important is the application
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of complex numbers, or more precisely the theory of functions of a complex
variable, to the theory of certain special functions of two real variables
which are called harmonic. By means of these functions, important
problems in the theory of airplane flight, of heat conduction in a plate, of
plane electric fields, and of elasticity can be solved. A famous theorem
on the lifting force on an airplane wing was obtained by the founder of
contemporary aerodynamics, N. E. Zukovskil, through investigations of
functions of a complex variable.*
We now pass to the proof of the fundamental theorem of algebra.

Theorem. Any polynomial
f(z) = azz" + ayz" ' + -+ 4 a,_,z + a,,

whose coefficients
Ao,y , " Oy, Ay

are any given real or complex numbers, has at least one real or complex
root.

We will assume that the given polynomial is of degree n, i.e., that
a, # 0.

The surface of the modulus of a polynomial. We consider the whole
problem geometrically. Above each point z of the complex plane, we erect
a perpendicular altitude ¢, equal in length to the modulus | f(z)| of the
polynomial f(z) at this point z. The ends of these altitudes define a surface
M, which -can be called the modulus surface of the polynomial f(z).
We see that this surface: (1) nowhere drops below the complex plane,
since the modulus of any complex number (in this case, the number f(z))
is nonnegative; (2) for any given point z of the complex plane, the surface
has one and only one point which either lies vertically above this point
or else coincides with it, i.e., the surface M extends in one sheet above the
whole complex plane and may at some points touch the plane itself;
(3) the surface is continuous in the sense that a continuous change in the
position of the point z on the complex plane produces a continuous change
in the value of t = | f(z)|, i.e., in the altitude ¢ of points of the surface.
(This was shown in the last subsection.)

The fundamental theorem of algebra consists in proving that the surface
M touches the complex point in one point at least and does not remain
everywhere at a positive distance above it.

On the growth of the modulus of a polynomial with increasing distance
from the origin. We show that no matter how large a positive number G

"% 'See Chapter IX.
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is given, we can find a radius R such that for all points z of the complex
plane, lying outside of the circle of radius R with center at the origin,
the altitude ¢ of points of the surface M above the complex plane is
greater than G.

For let us write the polynomial f(z) as

2™ [l+ aoz +aj;3+m+?:_zn_ﬂ_)]'

The modulus of the expression

g € B ]

is not greather than the sum of the moduli of the moduli of the summands

o | [t g
= |+ oo |
and, with an increase in the modulus of z, every one of these summands
decreases, so that the sum also decreases. Therefore, for all z whose moduli
are greather than some number R’, the modulus of this expression in
parentheses is smaller, for example, than 3.

But then for all such z, the expression

a, a, a,
= [1 e st

will have modulus greater than 3. The modulus of the first factor a,z” is
equal to |a, | - | z|", so that it increases with increasing modulus of z;
moreover, it increases beyond all bounds. Therefore, no matter how large
a positive number G is given, there exists a positive number R such that
for all z, whose moduli are greater than R, | f(z)| = | @, - |z |" - | 2| is
greater than G.

The existence of minima of the surface M. We will say that at a
point « of the complex plane the surface M has a minimum if the value
of the altitude ¢ of the point of the surface M at this point « is smaller than
or equal to its values at all points of some neighborhood of the point
a, i.e., at all points of some circle, however small, with center at the point o.

Let the altitude ¢ of the point of the surface M corresponding to the
origin, i.e., to the point z = 0 of the complex plane, be equal to g, i.e.,
| f(0)] = g. We take G > g. All altitudes ¢ of points of the surface M are
nonnegative and continuously change during continuous movement of the
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point z in the complex plane. The surface M has altitude ¢t > G outside
of a circle drawn about the origin with radius R and altitude t = g < G
at the center of the circle. D’Alembert regarded it as an obvious conse-
quence that somewhere in the interior of the circle R there is a point where
the altitude is a minimum; more precisely, where the value of ¢ is smaller
than or equal to its values at all remaining points of the circle R, ie.,
the surface M has at least one minimum.

The rigorous proof of the existence of such a minimum is based on the
following axiom of continuity of the set of real numbers.

If two sequences of real numbers are given: a, < a, < --- <a, ---and
by= by =+ =b, =, suchthat b, > a, for all n and b, — a, — 0 as
n — o, then there exists one and only one real number ¢, such that
a, < c < b, for all n.

Geometrically, this continuity property means that if on the line a
sequence of interval [a, , b,] (figure 4) is given, such that every successive
interval is contained in the preceding interval, and the lengths of the
intervals become arbitrarily small, then there exists a point ¢ belonging
to all intervals of the sequence. In other words, the intervals *‘shrink™
to a point, and not to ‘““an empty place.”

a; gz [+ b, be 0,
bl i A A

¢
Fia. 4.

Since the length of the segment [a,, , b,] approaches zero with increasing
n, there is only one such point ¢. From the property of continuity for the
set of all points on the number axis, immediately follows the property
of continuity for complex numbers, i.e., for points of the plane. We give
a geometrical formulation of this property.

If in the plane a sequence of rectangles 4, , 4, , -+, 4,,, -+ is given, with
sides parallel to the coordinate axes, such that every rectangle is contained
in the previous one, and such that the length of their diagonals decreases
indefinitely, then there exists one and only one point which is contained
in all the rectangles of the sequence. This property of continuity of the
plane directly follows from the continuity property of the line. For the
proof it is sufficient to project the rectangles on the coordinate axes.

Now it is easy to establish the so-called Bolzano-Weierstrass theorem.

If in a rectangle an infinite sequence of points z,, z,, -+, z,, - is given—
then in the interior or on the boundary of the rectangle there exists a point
z4 such that in any arbitrarily small neighborhood of z,, i.e., in the interior
of an arbitrarily small circle with center at z,, there are infinitely many
points of the sequence z,, z,, -+, 2, ,***
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For the proof we denote the given rectangle by 4,. We divide it into
four equal parts by lines parallel to the coordinate axes. At least one of
the parts necessarily contains infinitely many points of the given sequence.
This part will be denoted by 4,. We again subdivide the rectangle 4,
into four equal parts and select among them a 4, which contains infinitely
many points of the given sequence, and so on.

We obtain a sequence of imbedded rectangles 4, , 4, , 4,, ---, whose
diagonals decrease indefinitely. By the continuity property we can find a
point z, contained in all these rectangles. Then this z, is the desired point.
For, no matter how small a neighborhood of z, we take, the rectangles
of the sequence 4, , 4, , 4,, -+, beginning with some one of them will be
inside this neighborhood, as soon as their diagonals become smaller than
the radius of the neighborhood, and any one of the rectangles contains
infinitely many points of the sequence z, , z,, ‘-, 2, , --*. Thus the Bolzano-
Weierstrass theorem is proved.

Now it is easy to prove the theorem on the minimum of the modulus
| f(z)| of a polynomial. As before, let | f(0) | = g, let G be a number greater
than g, and let R be such that for z > R, we have | f(z) |> G.

Ifg = 0, i.e., f(0) = 0, then the modulus | f(z) | of the polynomial has a
minimum at the point 0, since at all points it is = 0.

If g > 0 and | f(z)| = g for all points z then | f(z) | still has a minimum
at the point 0. Let g > 0 and let points z exist, in which | f{(z)| < g; then
in the sequence of numbers

g 2 . ng_ N

O 7 " m =8 )

we find the greatest ¢, = (i/n) g, such that all values | f{z) | = c,. For the

next number ¢’, = [(i + 1/n) g] the sequence (*) contains at least one
point z, such that | f(z,) | < ¢/,.

Let n increase to infinity. For all n we have | z, | < R, sinceif | z, | > R,
then | f{z,)| would be greater than G and consequently greater also than g.

Thus ail points z, lie inside a rectangle with sides 2R, and with center
at the origin. It is possible that some of these points coincide.

By the Bolzano-Weierstrass theorem there exists a point z, such that
every neighborhood of z, contains infinitely many points of the sequence
e —

We establish that the point z, furnishes the desired minimum of | f(z}|.

For at any point z we have

|f(z)|>cn=";a—§>|ﬂz,,}| _%
= 1fzo) | + [1fz) | = 1 fz) 1] — £
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This inequality is valid for any a. If we take for n a sequence of values for
which z, indefinitely approaches z,, then on account of the continuity of
| f(z)], the difference | f(z,)| — | f{z¢)| becomes arbitrarily small in absolute
value with g/n.

Consequently, | f(z) | = | f(zo) |, i.€., | f(z) | actually has a minimum
at the point z, .

D’Alembert’s lemma. In view of the fact that all the altitudes ¢ of
points on the modulus surface M are nonnegative, it is clear that any
root of the polynomial f{(z), i.e., any point z of the complex plane where
the polynomial f(z) itself (and consequently its modulus | f(z) | also) is
equal to zero, corresponds to a minimum of the modulus surface M.
However, as d’Alembert showed, the converse is also true: At any mini-
mum the surface M extends down to the complex plane itself, and con-
sequently at that point there is a root of the polynomial f(z). In other
words, at any point at which the altitude ¢ is positive and not zero, there
is no minimum of the surface M. This follows from the so-called
d’Alembert’s lemma:

If o is a given complex number such that f(a) = 0, then a complex number
h can always be found with arbitrarily small modulus, such that
| fle + h) | < | fle) .

Proof, We consider the polynomial

o+ h) = aga + A" + ay(oc + A" + - + ay_y(a + h) + a,

in two indeterminates « and A and arrange it in ascending powers of A.
In this polynomial there will be a term not containing A at all, namely

ag™ + a0t + -+ a, 0 + a, = fla) # 0,
since it was assumed that f(«) 7 0. There will also be a term with A",
namely a,h", since it was assumed that a, %= 0. As to the terms with
intermediate powers of A, some of them, and in some cases all of them

may be missing. Let the lowest power of A which occurs in this polynomial
be m, where | << m < n, i.e., this expression will have the form

Sl + h) = fla) + Ah™ + Bh"+ - Ch™ + 2 4 -« L agh".
Let us write this as:

fla+ by = fla) + Ahn + Ak (B gy Sy Bopum)

where 4 3£ 0, and B, C, etc., may or may not be equal to zero.

After this preparation the proof of d’Alembert’s lemma runs as follows.
For h it is sufficient to take a complex number with modulus so small
that the length of the vector 4A™ is smaller than the length of the vector
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f(e) and with argument such that the direction of the vector Ah™ is opposite
to the direction of the vector f(a). Then the vector f(a) + Ah™ will be
shorter than the vector f(a) But if the modulus of 4 is taken sufficiently
small, the modulus of the expression

B c 2 A0 pn-m

G+ g Pt + 2]
can be made arbitrarily small, for example, smaller than one, and
consequently, the vector

4 = Ahm (g—h+%h2+ +%h~-m)

is shorter than the vector 4A™ and therefore,
the vector fla + h) = f(a) + AR™ + 4, as is
seen in (figure 5), is also shorter than the vector
f(a), even if the direction of the vector 4 is in
the opposite direction of the vector Ah™.

The details of this proof are as follows:

1. Since in multiplication, the arguments of
the factors are added, we have to take the
argument of # such that

arg A + m - arg h = arg f(«) + 180°, FIG. 5.
i.e., it is necessary to take

arg f(e) — arg A + 180°
= .

argh =
2. The modulus of
B C 2 W ao T~
(—h+5 0+ + 2 )
is not greater than the sum of moduli of its summands

— h2 i ﬁn—m|.
”|+| h +|Ah i

T= |
moreover, with decreasing modulus of A, each of the summands of this
sum can be arbitrarily decreased and consequently so can the whole sum.
Therefore, if 4 is a complex number with the above given argument, and
h, is @ modulus such that if 4 has a smallar modulus than #, and satisfies
the two conditions | 44" | < | fle) | and T < 1, then for such # we will
have | f(a + h) | <|f(o) |, which proves d’Alembert’s lemma.
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From d’Alembert’s lemma it immediately follows that every minimum
of the modulus surface M of the polynomial f(z) gives a root of this
polynomial. Indeed, if at the point o, f{a)3~ 0, then by virtue of
d’Alembert’s lemma at arbitrarily close points « 4+ 4 we would have
| flo + Y| > | f(e) |, i.e., there would not exist a circle with center at o,
at all of whose points the modulus of f(z) is not smaller than the modulus
of f(«), and therefore at the
point « we would not have a
minimum of the modulus of
f(z). With this the fundamental
theorem of algebra is proved.

The general form of the modu-
lus surface M., The modulus sur-
face M of the polynomial f(z)
lies above the complex plane z.
It has the form shown in
figure 6. It can be shown that
at greater altitudes ¢, the sur-
face M differs very little from
the surface obtained by revol-
ving the nth degree parabola
t = |a,| x"about the Or-axis.
But for small ¢ the surface M has minima, whose number is equal
to the number of distinct roots of the equation f(z) = 0. At all these
minima the surface M touches the complex plane z itself.

!

§4. Investigation of the Distribution of the Roots of a Polynomial
on the Complex Plane

A number of problems important in practice are connected with this
question: Without solving a given equation, obtain some information
about the distribution of its roots on the complex plane. The first such
problem, historically, was to determine the number of real roots of an
equation. That is, if an equation with real coefficients is given, then by
some test depending on its coefficients, to determine, without solving the
equation, whether it has real roots and if it does, how many; or how many
positive and how many negative roots it has; or how many real roots
lying between given limits a and b.

Derivatives of a polynomial. In this section an essential role will be
played by the derivative of a polynomial. The definition of the derivative
of a function was given in Chapter 11.
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For the polynomial apx* + a,x*! + --- + a,_,x + a, the derivative is
given, as is well known, by the polynomial

nagx*' + (n — yayx"2* + - +a,_,.

The concept of derivative in Chapter II was considered only for functions
of a real variable. In algebra it is necessary to consider the variable as
taking on arbitrary complex values and to introduce polynomials with
complex coefficients,

However, the former definition of derivative-can be retained, namely
as the limit of the ratio of the increment of the function to the increment
of the independent variable. The formula for computing the derivative of
a polynomial with complex coefficients, and the basic laws for the deriv-
ative of sum, product, and power remain the same as before. *

Simple and multiple roots of a polynomial. In §2 of this chapter it
was established that if the number a is a root of the polynomial f(x),
then f(x) is divisible by x — a without remainder. If f(x) is not divisible
by (x — a)?, then the number a is called a simple root of the polynomial
f(x). Generally, if the polynomial f(x) is divisble by (x — a)* but not by
(x — a)*+1, then the number a is called a root of multiplicity &

A root a of multiplicity k is often regarded as k different roots. The
basis for this is that the factor (x — a)*, present in the factorization of
f(x) into linear factors, is the product of k factors, each equal to (x — a).

By virtue of the fact that every polynomial of degree n can be factored
into the product of n linear factors, the number of roots of the polynomial
is equal to its degree, if we take into account the multiplicity of each root.

The following theorems are true:

1. A simple root of a polynomial is not a root of its derivative.

2. A multiple root of a polynomial is a root of its derivative of
multiplicity one less.

For, let f(x) = (x — a)* fi(x) and let f,(x) not be divisible by (x — a),
i.e., fi(a) £ 0. Then

LX) = k(x — @)1 fi(x) + (x — @)* fy(x)
= (x — a)* ' [Kfy(x) + (x — a) f1(x)] = (x — a@)*~! F(x).

The polynomial F(x) = kfy(x) + (x — a) fy(x) is not divisible by
(x — a), since F(a) = kf(a) # 0.

* See Chapter IX.
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Consequently, f'(x) for k = | is not divisible by x —a, and for k > 1 f'(x)
is divisible by (x — a)*~! but not by (x — a)*. With this both theorems
are proved.

Rolle’s theorem and some of its comsequences. According to the well-
known theorem of the Rolle*, if the real numbers a and b are roots of a
polynomial with real coefficients, then there exists a number ¢ lying
between a and b which is a root of the derivative.

From Rolle’s theorem the following interesting theorems follow:

1. If all roots of the polynomial f(x) = apx" + -+ + a, are real, then
all roots of its derivative are also real. In addition, between two adjacent
roots of f(x) there exists one root of f'(x) and this root is simple. Indeed,
let x, << x5 --- < x;. be the roots of f(x) with multiplicities m, , my , -, m1;.,
respectively. Clearly, my + my + -+ + m, = n.

Then the derivative f’(x), by the above theorem on multiple roots, will
have roots x, , Xz, -+, x; with multiplicities my, — 1, my — 1, ==+, m, — 1,
and by Rolle’s theorem there is at least one root y,, ¥s, **, Y- in the
interior of each of the intervals (x;, x;), (X3, X3), ***, (X3_y , X)) between
two successive roots of f(x). Thus, the number of real roots of f'(x) is
equal (with regard to multiplicities) to at least (m, — 1) + (my — 1) 4 -+
+(my —1)+k—1=n—1. But f'(x) as an (n — l)th-degree poly-
nomial has (with regard to multiplicities) n — 1 roots. Consequently, all
roots of f’(x) are real, y,, ys, ***, ¥z, are simple roots, and roots other
than x,, x;, -, x; and y,, ¥, ---, yp; of the polynomial f'(x) do not
exist.

2. If all roots of a polynomial f(x) are real and of these p are positive,
then f'(x) has p or p — 1 positive roots.

For, let x;, < x, < --- < x, be all positive roots of the polynomial
Jf(x) with multiplicities m, , my , -+-, m,., respectively. Then m, 4 my 4 -
+ m; = p. The derivative f'(x) will have the following positive roots:
X, 5 X3, ==,y X with multiplicities m, — 1, my — 1, ---, m;, — 1; simple
roots y,, ¥z, -*-» ¥x_; lying in the intervals (x,, xp), **-, (xp, , Xi); and it
can also have a simple root y, lying in the interval (x,, x,) where x, is the
largest nonpositive root of f{x). Consequently, the number of positive
roots is equal to (m — D+ -+ m—D+k—1=p—1 or
m — 1+ -4+ (@m.— 1)+ (k — 1) + | = pwhich was required to be
proved.

Descartes’ law of signs. In his significant book of 1637 “Geometry,”
in which the first presentation of analytic geometry was given, Descartes,

* This theorem is the simplest form of the mean value theorem, which was mentioned
in Chapter II.
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among other things, gave the first significant algebraic theorem concerning
the distribution of roots of a polynomial on the complex plane, the so-
called “Descartes law of signs.” It can be stated as follows:

If the coefficients of an equation are real and all its roots are also known
to be real, then the number of its positive roots, with account taken of
multiplicities, is equal to the number of changes of sign in the sequence of
its coefficients. If it also has complex roots, then this number is equal to or
an even number less than the number of these changes in sign.

We first explain what we mean by the number of changes of sign in the
sequence of coefficients of the equation. To obtain this number we write
down all coefficients of the equation, for example in the order of decreasing
powers of the unknown, including the coefficient of x* and the constant
term, but omitting coefficients equal to zero, and consider all pairs of
successive numbers of the sequence so obtained. If in such a pair the signs
of the numbers are different, then we call this a change of sign. For
example, if the given equation is

X1+ 3x5 —5x' —8x*+ Ix+2=0
then the sequence of its coefficients is
l’ 3’ '_Ss '_8; 7’ 2

and chere are 2 changes of sign.

Now we pass to the proof of the first part of the theorem.*

Without loss of generality we can assume that the leading coefficient a,
of the polynomial f(x) = agxx* + - + a, is positive.

First of all, we establish that if f{x) has only real roots and of these p
are positive (counting multiplicities) then (—1)* is the sign of the last
coefficient of f(x) different from zero.

Indeed. let

f(x) = agx* + -+ + apxn=*
= X" H(x — xy) (X — X)) (x — Xpi) (X — Xuoi),

where x,, -, x, are the positive roots of f(x), x,,,,, x,_, are the
negative roots of f(x), account being taken of the multiplicity of each root.
Then a, = ag(—1)" x; -+ x, (—X, 1) -+ (—Xa+2) and, since all the numbers
numbers @, X, , ***, X, —Xp.1, ' —X,_i are positive, the sign of a; is
(=Dhrt

The subsequent proof'is based on the method of mathematical induction.

* We could give another, direct proof, not involving derivatives, but it would be
somewhat longer.

tWe note that this assertion is also correct for the case when some of the roots of
f(x) are complex.
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For first-degree polynomials the theorem is trivial. Indeed, a first-degree
polynomial a,x + a, has a unique root —a,/a, , which is positive if and
only if a, and a, have opposite signs.

Let us assume now that the theorem is proved for all polynomials of
(n — 1)th degree with real roots, and with this assumption we will prove
it for any polynomial f(x) = apx" + - + a,_, x + a, of degree n.

1. a, = 0. We consider the polynomial fi(x) = @ex"! + -+ +-a,_,.
The positive roots of the polynomials f(x) and fy(x) are the same; the
number of changes of sign in the sequence of their coefficients is also the
same. For the polynomial fi(x) Descartes’ law is valid; consequently it
is valid for the polynomial f(x).

2. a, = 0. We consider the derivative
S(x0) = nag™t + (n — 1) @x™2 + =+ + @, .

It is clear that the number of changes of sign in the sequence of coef-
ficients of the polynomial f(x) is equal to the analogous number for the
derivative f'(x), if the signs of a, and the last nonzero coefficient of the
derivative coincide, or it is one more, if the signs are opposite.

By what was said above at the beginning of the proof, in the first case
the number of positive roots of f(x) and of f’(x) have the same parity
(are both even or both odd), and in the second case they have opposite
parity. But as we deduced from Rolle’s theorem, the number of positive
roots of a polynomial, if all its roots are real, can be either equal to the
number of positive roots of its derivative, or be one more. Taking this
into consideration, we note that in the first case f{(x) has the same number
of positive roots as f'(x), and in the second case one more. For [(x)
Descartes’ law is valid by the induction assumption, i.e., the number of
positive roots of f'(x) is equal to the number of changes of sign in the
sequence of its coefficients. Consequently, in both cases the number of
positive roots of f(x) is equal to the number of changes of sign in the
sequence of coefficients, and this is the required proof.

The second part of Descartes’ law is not more complicated to establish,
and we will omit the proof here.

Remark 1. The first assertion of Descartes’ theorem is particularly
important, since in many practical problems it is automatically known
whether all roots of a given equation are positive. In this case it can be
quickly determined, how many roots are positive and how many negative.
Also it can be seen at once, how many zero roots the equation has.

Remark 2. If in the given polynomial we set x = y + a where a is
an arbitrary given real number, i.e., we form the polynomial f{y + a),
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then the positive roots y of this polynomial will be those and only those
that are obtained from the roots x of the given polynomial f(x) that are
greater than a. Therefore the number of roots of the given polynomial
f(x), all of whose roots are real, lying between given limits a and b (b > a),
is equal to the number of changes of sign for the polynomial f{y + a)
minus the number of changes of sign for the polynomial f{(z + b). If,
however, not all roots of f(x) are real, then it can be shown that this
number is equal to this difference or some even number less. This is the
so-called Budan theorem.

Sturm’s theorem. Descartes’ law of signs, as well as Budan’s theorem
do not, however, give an answer to the problem: Does a given equation
with real coefficients have at least one real root, how many real roots does
it have altogether, and how many real roots does it have lying between
given limits @ and b7 For more than two centuries mathematicians
attempted to solve these problems but without result. A long series of
efforts in this direction were made by Descartes, Newton, Sylvester,
Fourier, and many others, but they did not succeed in solving even the
first of these problems, until, finally in 1835 the French mathematician
Sturm suggested a method that solved all three problems.

Sturm’s method is really not very complicated, but it is of such a
character that one might seek it for a long time and not find it. Sturm
himself was very happy that he had succeeded in solving this remarkable
and exceedingly important pratical problem of algebra. In his lectures,
when he came to the presentation of his result, he usually said: “Here is
the theorem whose name | bear.” But it must be said that Sturm did not
solve this problem by mere chance; he pondered for many years on
questions related to it.

Let f{z) be a polynomial with real coefficients and f,(z) be the derivative
f'(z). Let us divide the polynomial f{z) by f,(z) and denote the remainder
in this division by fy(z), taking it with the opposite sign. Then, divide
fi(z) by ffz) and denote the remainder, taken with opposite sign, by
f4(2), etc.

It can be shown that the last nonzero polynomial f,(z) of the constructed
sequence will be a constant number c.

Sturm'’s theorem is as follows: If @ < b are two real numbers, which are
not roots of the polynomial f(z). then substituting in the polynomials

f(z)afl(z)-) " ”9./;—1(2)0 ¢
z = a and z = b, we obtain two sequences of real numbers

‘f‘(a)sfl(a)!.fé(a)v Tty f;—l(a)! C, (I)
f(b)afl(b)af;(b)’ '"sfs—l(b)s C, (“)
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such that the number of changes of sign in sequence (1) is greater than or
equal to the number of changes of sign in sequence (11) and the difference
between these numbers of changes of sign is exactly equal to the number
of real roots of f(z) lying between a and b, or in other words, the number
of these roots is equal to the loss of changes of sign in sequence (1) in
going from a to b.

The proof of Sturm’s theorem is not more difficult than the proof of
Descartes’ theorem, but we will not give it here.

Sturm’s theorem enables us to compute the number of roots of a poly-
nomial with real coefficients on an arbitrary of the real axis. Therefore
the application of Sturm’s theorem to any given polynomial gives a clear
picture of distribution of roots of a polynomial on the real axis, in partic-
ular it enables us to separate the roots, i.e., to construct segments in each
of which only one root of the polynomial is contained.

In many applications, the solution of the analogous problem for the
complex roots of a polynomial is equally important. Since complex
numbers are represented by points not on the line but in the plane, it is
impossible to speak of “segments” in which complex roots are contained;
instead of a segment, we have to consider a region, i.e., a part of the plane,
chosen in one way or another.

Thus, with respect to complex roots the following problem arises:

Given a polynomial f{z) and a region in the complex plane, it is required
to find the number of roots of the polynomial inside this region.

We assume that the region is bounded by a closed contour (figure 7)
and that on the contour the polynomial f(z) does not have roots.

Imagine that the point z goes around the contour of the region once in
the positive direction. Every value of the polynomial is also represented
by points on the plane. With continuous change of z the polynomial f(z)
also changes continuously. Therefore, while z goes once around the
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contour of the region, f{z) describes some closed curve. This curve will
not go through the origin of the coordinate system, since f{z) by assumption
does not reduce to zero at any of the points of the contour (figure 8).

The answer to the above mentioned nroblem is given by the following
theorem:

Principle of the argument. The number of roots of the polynomial
f(2) inside the region bounded by a closed curve C is equal to the number
of times the point f(z) winds around the origin as z goes around the contour
C once in the positive direction.

For the proof we decompose f(z) into linear factors

f2) = az" + az*t + o @y = ayz — 7)) (2 — 25) (2 — Za).

We know that the argument of the product of several complex numbers
is equal to the sum of the arguments of the factors. Consequently,

arg f(z) = arga, + arg (z — z,) + arg (z — zy) + =+ + arg (z — z,).

Let us denote by 4 arg f(z) the increment of the argument of f{z),
computed under the assumption that z goes once around the contour C.
It is clear that 4 arg f(z) is 27 multiplied by the number of times the point
f(z) winds around the origin.

Clearly,

Adargf(z) = darga, + darg(z — z;)
4+ darg(z — zo) + + + darg (z — z,).

It is clear that 4 arga, = O since a, is a constant. Then, z — z, is
represented by the vector going from the point z;, to the point z. Let us
assume that z, is in the interior of the region. Geometrically it is clear
(figure 9) that as the point z goes around the contour C the vector z — z,
makes a complete revolution about its initial point, so that
4 arg (z — z,) = 2m. We assume now that the point z, is in the exterior
of the region. In this case the vector *“‘oscillates™ to one side and back,
and returns to its original position without making a revolution about
its initial point, so that 4 arg (z — z,) = 0. We can reason the same way
about all the roots. Consequently 4 arg f(z) is equal to 27 multiplied by
the number of roots of f{z) lying in the interior of the region. Hence the
number of roots of f{(z) inside the region is equal to the number of times
the point f(z) winds around the origin, and this is the required proof.

This theorem enables us to solve the problem in every particular case,
and to draw the curve traced by the point f(z) with any degree of accuracy.
To do this it is necessary to take a sufficiently dense set of points z on the
contour C, to compute the corresponding values f{z) and to join them by
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a continuous curve. However, in some cases we can get by without these
tedious computations. We indicate one of the methods with a numerical
example.

Example. Let us find the number of roots of the polynomial
f(z) = 2" + 5z% — 2 inside a circle of radius | with center at the origin.

On the indicated circle | z| = I, one of the three terms which make
up the polynomial f(z), namely 5z2, dominates the others. Indeed,
| 522| = 5, but | 2" — 2| < |z |" 4+ 2 = 3. This property allows us to
reason thus. Let us denote z!! + 5z2 — 2 by w, 5z2by N, , and z1' — 2 by
N, . While the point z goes once around the unit circle, N, = 5z2 winds
around a circle of radius 5 twice, since | N, | = 5 and arg N, = 2argz.
The point w is “tethered™ to the point N, by a vector whose length is
| Ny | < 3, i.e., the distance from the point w to the point N, is at all
times smaller than the distance from N, to the origin of the coordinate

system.
NS

Z
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Consequently, the point w, however it may “wind’” around N, (figure 10)
cannot “independently” go around the origin, and therefore winds around
the origin exactly as many times as the point N, does, i.e., twice. Con-
sequently, the number of roots of f{z) in the interior of the region in
question is equal to two.

Hurwitz’s problem. In mechanics, particularly in the theory of
oscillations and control, an important role is played by the conditions
that permits us to decide whether all the roots of a given polynomial
fz) = az™ + ayz" ' + -+ + a, (with real coefficients) have negative real
parts, i.e., lie in the half plane left of the imaginary axis.

One of the criteria for solving this problem is easy to obtain from reasons
similar to the principle of the argument.

We will assume that a, > 0.
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Let the point z (figure 11) move on the imaginary axis downward from
above, i.e., let z = iy as y changes from + oo to — oo, remaining real,
Then f{(z) describes a curve with infinite branches. For our investigation
the closely related curve described by the function

[H@) = f2) = agy™ — ayy™? + @yt + o —iaynt — a4 o)
=) — ih(y),
where
) = ay" —ay"t + o,
W) — alyn——l E_= aayn—:t +
is more convenient.
Since arg i = =/2, therefore arg fi(z) = — n#/2 + arg f(z), and conse-
quently the increments of the arguments of f(z) and fi(z) are the same.
Let us compute the increment of the argument of the point fi(z) as z
moves on the imaginary axis downward.
Let fz) = ag(z — z,) (z — 2z3) ** (z — z,). Then

argfy(z) = arg (ai™") + arg(z — z,) + arg(z — z,) + * + arg(z — z,).

It is clear geometrically that the increment of arg (z — z;) is equal to =, if
z;. lies in the right half plane and to —m, if z lies in the left half plane
(figure 11).

FiG. 11. Fic. 12.

Therefore the increment of the argument of f(2) is equal to #(N, — N,),
where N, is the number of roots of f(z) in the right half plane and N, is the
number of roots in the left half plane. For all the roots to lie in the left
half plane it is necessary and sufficient that the increment of the argument
of the point fi(z) be equal to —=n, i.e., that the point fi(z) make n half
revolutions clockwise about the origin (figure 12).

We note that the point fi(z) = ¢(y) — if(y) intersects the imaginary
axis for those values of y that are roots of ¢(y) and the real axis for the
roots of Yi(y). Since ¢(y) has no more than n real roots and the number of
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real roots of (y) is not more than n — 1, it is easy to see geometrically
that fi(z) can make n complete revolutions in the clockwise direction if
and only if the curve comes from the fourth quadrant and intersects in
turn the negative half of the imaginary axis, the negative half of the real
axis, the positive half of the imaginary axis, the positive half of the real
axis, etc., so that the general number of points of intersection with the
imaginary axis is equal to n (one for every half revolution), and with the
real axis it is equal to n — | (one less than the number of half revolutions).
Therefore the coefficient @, must be positive, and the roots of the poly-
nomials ¢(y) and () must be all real and alternating. This last statement
means that if y, > y, > -+ > y, are the roots of () arranged in
decreasing order, and 7, > n, > *** > 9,_, are the roots of y(y), then
N>M>>Ve >N > e Z Vo1 = Mt = Vn

Thus, in order that all roots of the polynomial f{z)>z"ta,z" 1+ +a,
with real coefficients and a, > 0 lie in the left half plane, it is necessary
and sufficient that the coefficient a, be positive and the roots of the
polynomials  ¢(y) = agy™ — ap™? + ay™* — -+ and Y(y) =
ayy*t — a;y*~* + -+ be all real and alternating.

This condition is equivalent to the well-known condition of Hurwitz
to the effect that all the following determinants are positive:

4y G a4, " Qzg
a a. a AR / Y
ay, ap a, 3 2 1 4-n
ay a4y
ﬂ] 3 a. a ] as ﬂz al » ) i & i T : '
3 42
Aan—y Agn-p Agn—3 " dy

where all a; with indices less than O or greater than n are replaced by zero
(on determinants, see Chapter XVI, §3).

§5. Approximate Calculation of Roots

Sturm’s method in combination with the lower limit of the difference
of two distinct real roots allows us to construct the “‘separation” of real
roots of a polynomial with real coefficients, i.e., allows us to determine
for each root limits @ and b between which only this one root can be found.
It remains to discover a suitable method for finding, in the segment
a<b, numbers o <oy <oy <-+ and B, > B, > B3 > -+, which
converge as rapidly as possible to the desired root, the first sequence
being an approximation by defect and the second by excess. Each of the
two approximations «, and B, clearly differs from the desired root x by
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less than their difference 8, — «, , since the root lies between them. Thus
we can find upper bounds for the error when we stop at any given
approximation.

Graph of a polynomial. Let the given nth-degree polynomial with
real coefficients be

ﬂx) = ao.x“ + alx“_l + -+ apx + a, .

Let us consider the curve that represents in rectangular coordinates
the equation y = f{(x), i.e., the graph of this polynomial. This curve is
sometimes called an nth-order parabola. First of all, it is clear that for any
real x there is one and only one definite y = f(x); consequently, the graph
S ranges arbitrarily far to the right and to the left. In addition, for contin-
uous change of x, f(x) as well as f'(x) change continously, i.e., without
jumps. Therefore, the graph fis a smooth curve. For x large in absolute
value the first term a,x™ exceeds in absolute value the sum of all remaining
terms, since they are all of lower degree. From this it follows that if n is
even and a, > 0, then the graph f on the right and on the left goes to
infinity upward (and if a, < 0, downward); but if n is odd and a, > 0,
then on the right it goes upward and on the left downward (if a, < 0,
then conversely).

The points of intersection of the graph f with the Ox-axis, i.e., those
points where y = f{x) = 0, correspond to the real roots of the equation
f(x) = 0; there are no more than n of them. At the maxima and minima
of the graph y = f(x), the derivative /(x) = 0; consequently, the number
of maxima and minima is not greater than » — |. If on some section
f"(x) > 0, the first derivative increases there, i.e., the graph is concave
upward; if f"(x) < 0, then the graph is concave downward. Because some
roots of f'(x) = 0 may be complex, ri
the number of maxima and minima of
the graph fmay be smaller thann — 1.

¥i
1 #txr=x3-30+1

o
X

fix) = x*-x3- 4xPr dx+1

] et

W
\J

Fic. 13. Fic. 14.
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Here are examples of the graphs of polynomials

fx) = x% —3x 4+ 1 (figure 13),
f(x) = x* — x® — 4x® + 4x + | (figure 14).

After constructing the graph of a polynomial it is easy to find approxi-
mations to its roots. Namely, the roots are the abscissas of the points of
intersection of the graph with the Ox-axis.

The method of “undershot” and “overshot.” Let us substitute in the
polynomial f(x) some integral rational number, for example 3, and then
substitute 4, 5, «+-. If in substituting 4, 5, 6 we still obtain the same sign
as for 3, but for 7 the opposite sign, then it is clear that between 6 and 7
the polynomial f{x) has at least one root. Now we substitute 6,6.1,6.2, ---
and find two neighbors of this sequence of numbers, for example 6.4 and
6.5 which when substituted give different signs. Accordingly, there will
be at least one root between them. Then we substitute 6.4, 6.41, 6.42,
6.43, --- and find even closer limits for the root, for example, 6.42 and
6.43, etc. This is the method of “undershooting and overshooting.” The
method can be considerably simplified by applying at each step of the
calculations a supplementary transformation of the polynomial, and then
at each step after the first, it will be necessary to substitute only whole
numbers and not fractions, and moreover, only the whole numbers 1, 2, -+,
9. But we will not dwell on this simplification.

The method of tangents and the method of chords. The method of
tangents, called Newton’s method, and the method of chords, or of linear
interpolation, called also the method of false position (regula falsi), are
used either separately or together to obtain estimates of error. Suppose
a < b and a and b we have only one root of the polynomial f(x), so that
f(a) and f(b) are of opposite sign, and let us also suppose that the second
derivative f”(x) between @ and b is of constant sign. In this case the part
of the graph of f(x) between a and b has one of four forms (figure 15).

In cases I and 11 in figure 15, the tangent to the graph at the point with
abscissa a intersects the Ox-axis at a point with abscissa «, lying between
the desired root and a. If we calculate the abscissa «, and consider now
the tangent to the graph from the point with abscissa «, , we analogously
find a point «, lying between the point «, and the desired root, and then
find a corresponding «; and so on. In this way we will obtain better and
better approximations with defect. As can be seen from the diagram,
these values approach the desired root with great rapidity.

In cases 111 and IV it is necessary, on the other hand, to start with the
abscissa b, and then obtain points 8, , 8., B;, '*-, i.e., better and better
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approximations with excess. Which of the four cases actually occurs, is
easy to determine by the signs of f{a), f(6), and /*'(x) for a < x < b.

Since the equation of the tangent to the curve y = f{x) at its points with
abscissa a is

y = fla) = f'a) (x — a),

i4 YA
a afa P Ny} s
4 Y b x ol @ q b x
Case 1 Case 11
i 4 \ YA
By b a Y
o| @ 1A x o B v x
Case 111 Case IV
FiG. 15.

the abscissa «, of the point of its intersection with the Ox-axis is obtained
from the equality
0 — fla) = f'(@) (o, — @)
fla)
fa’
_ S(e) Ss)

T P

A CA

that is
C\.’l = a —

Then

and so on.



306 IV. ALGEBRA: THEORY OF ALGEBRAIC EQUATIONS

Analogously,

&) 1By f(Bs)
= B gyl = Pe B =g
and so on.
This is Newton’s method.*
The method of linear interpolation or false position, consists of the
following. The equation of a chord, as the equation of a line passing
through two given points, has the form

x—a _ y—fla
b—a fb) — fla)’

and the abscissa y, of the point of its intersection with the Ox-axis, as
obtained from the equation

xX—a _ 0 — f(a)

b—a 7~ fla)

is equal to

b —af@ , , _ o) —bf@

"= 7 1) — fla) f(by — f(a)

Taking this number for the new b in cases | and II and for the new a in
cases III and 1V, we find in cases | and II

Ve S —nf@ _ afly) —yifta)
2T ) —f@ T T fve) — fla)

and so forth.
In cases 111 and IV, taking y, for the new a we find

- v1f(6) — bfiyy) _ v2f16) — bflys)

7B —flr)y * VT b)) —flv)

and so forth.

The combination of these two methods is particularly important, since
(as may be seen from the diagrams) it allows us, if the approximations
from above and below are known, to estimate the error, which is clearly

* From these formulas we also obtain a rigorous proof of the two assertions made
from a consideration of the diagrams. Namely, the values «, (or 8,) with increasing n
change monotonically, for example in case [ they increase and are bounded, i.e., by
virtue of the Weierstrass lemma, they approach some limit «. Replacing «, in these
formulas by its limit «, we obtain « = o — [f(«)/f («)] from which f(a) = 0, ie.,
a is a root of f.
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not greater than the difference between these approximations, since the
desired root is between them.

Remark. It is important to note that the fact that f(x) is a polynomial,
and not some other function of x, does not play any role at all either in
Newton’s method, or in the method of linear interpolation, i.e., both
of these methods and their combination can be adapted, under the
aforementioned conditions, to transcendental equations.

Lobaéevskii’s method. One of the most widely used methods of
calculation of roots, especially of complex roots, is the method* proposed
by N. I. Lobacevskil in his book “Algebra,” published in 1834. The basic
idea of this method goes back to Bernoulli.

We note, first of all, that if we are given a polynomial whose roots are
Xy, Xy, ***, X, , then it is easy to write down the polynomial, also of the
nth-degree, whose roots are x3, x2, :-+, x2, i.e., the squares of the roots
of the given polynomial. Indeed, if x,, x,, -, x, are the roots of the

polynomial
x" + alxn—l + asxn—ﬁ 4 e 4 a,,

then it may be written as
(x —x) (x — Xxg) = (x — Xp),
and the polynomial
X" —ax™l 4 gpx™t — - + a,,

whose roots are the roots of the given polynomial taken with opposite
sign, may be written as

(x + xp) (x + Xxg) - (x + Xxp).
The product of these two polynomials is consequently
(8— i) (e — ) )

and therefore contains only even powers of x. Setting x* == y, we obtain
an nth-degree polynomial in y

YU by by A e - by,
which may be written as

O =D —x) - —x5),

* This melh;)d was discovered independently by Dandelin (1826), N. I. Lobacevskii
(1834), and Graeffe (1837).
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since its roots are xi,xZ, .-, x2. Instead of directly multiplying the
polynomial

X"+ ax™ o apxt? - gy,

by the polynomial
x" — alxn-l + azxn-Z — e 0

we can obtain the coefficients b, according to the following scheme. In
first row above a horizontal line, we write 1, @, , a,, -+, a, and then below
the line, under each of these coefficients a, , we write first its square aZ,
then minus twice the product of its neighbors

—2a5, G4y,
then plus twice the product of the coefficients
+ 2a; 5 Ay,

symmetric with respect to a,, etc., alternating in sign until all further
coefficients on one side or the other are equal to zero. The coefficients b,
are then obtained as the sum of the corresponding columns of numbers
written under the line.

After obtaining these coefficients |, b,, b,, --+, b, of the polynomial
whose roots are 1, x¥,x3, -+, x2, we next construct the coefficients 1,
¢, €3, -, ¢, of the polynomial whose roots are the squares of the roots
of the polynomial

P+ byt byt e - By,

i, x},x}, -, xi. Then analogously we obtain the coefficients 1, 4, ,
d, , -++, d, of the polynomial whose roots are x{, x3, -+, x; and then the
polynomial whose roots are x;°, x3°, -, x}*, and so forth.

Let us consider only the fundamental idea of Lobacevskil’'s method;
moreover, we restrict ourselves for simplicity to the case when all roots
of the equation are real and distinct in absolute value. Let

[ X | > X >->1x,1

i.e., let x; be the root largest in absolute value, x, the next largest, and so
on. Let N be a sufficiently large number and let the polynomial

X + A[Xn——l + AsXII-Q R An
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have roots equal to the Nth power of the roots x, , x5, ***, x,, of the given
polynomial, i.e.,
— A=A A,
Ay = X R

Then in the sequence of numbers | x¥ |, | x|, ---, | x| for large N each
sucessive number is so much smaller than its predecessor that in these
expressions for 4, , A;, -+, A, we may retain only the first summand, the
sum of all remaining summands being neglected in comparison with the
first. We thus obtain the approximate formulas

Noa NN
XY Mol xNxl ~ 4,,

b st I PRI o o6 M i B 0 B

or, dividing pairwise and taking the Nth roots, we have the following
formulas for x,:

N N A N A N A
xlz\/Tnx2=\/—A—ssxs=\/—A—3,“‘,xn=A\/—A“-
1 2 n=1

It can be shown that it is sufficient to extend the computation up to the
polynomial whose coefficients taken with signs + — + — -+ will be
equal with the necessary degree of exactness, to the squares of the cor-
responding coefficients of the preceding polynomial.

A detailed exposition of Lobacevskil’s method can be found in the well-
known book of Academician A. N. Krylov “Lectures on approximate
calculations.”
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CHAPTER ~

ORDINARY
DIFFERENTIAL EQUATIONS

§1. Introduction

Examples of differential equations. The equations that we have
encountered up to now have been for the most part concerned with
finding the numerical value of one magnitude or another. When, for
example, in the search for maxima and minima of functions, we solved
an equation and found those peints for which the rate of change of a
function vanishes, or when in Chapter IV we considered the problem of
finding the roots of polynomials, we were in each case looking for isolated
numbers. But in the applications of mathematics there often arise problems
of a qualitatively different sort, in which the unknown is itself a function,
a law expressing the dependence of certain variables on others. For
example, in investigating the process of the cooling of a body, our task
is to determine how its temperature will change in the course of time; to
describe the motion of a planet or a star we must determine the dependence
of their coordinates on time, and so forth.

We can quite often construct an equation for finding the required
unknown functions, such equations being called functional equations.
The nature of these may, generally speaking, be extremely varied; in fact,
it may be said that we have already met the simplest and most primitive
functional equations when we were considering implicit functions.

The problem of finding unknown functions will concern us in Chapters
V, V1, and VII. 1n the present chapter, and in the following one, we will
consider the most important class of equations serving to determine such
functions, namely differential equations; that is, equations in which not only
the unknown function occurs, but also its derivatives of various orders.

311



312 V. ORDINARY DIFFERENTIAL EQUATIONS

The following equations may serve as examples:

d—" L P(t)x = Q(r) 4 mtx = Asinw, ‘f;" 1x,
3 2 2 2
u  Pu Pu Pu u iy _ o )

%o e o

In the first three of these, the unknown function is denoted by the letter
x and the independent variable by ¢; in the last three, the unknown function
is denoted by the letter ¥ and it depends on two arguments, x and ¢, or
x and y.

The great importance of differential equations in mathematics, and
especially in its applications, is due chiefly to the fact that the investigation
of many problems in physics and technology may be reduced to the
solution of such equations.

Calculations involved in the construction of electrical machinery or of
radiotechnical devices, computation of the trajectory of projectiles,
investigation of the stability of an aircraft in flight, or of the course of a
chemical reaction, all depend on the solution of differential equations.

It often happens that the physical laws governing a phenomenon are
written in the form of differential equations, so that the differential
equations themselves provide an exact quantitative (numerical) expression
of these laws. The reader will see in the following chapters how the laws of
conservation of mass and of heat energy are written in the form of dif-
ferential equations. The laws of mechanics discovered by Newton allow
one to investigate the behavior of any mechanical system by means of
differential equations.

Let us illustrate by a simple example. Consider a material particle of
mass m moving along an axis Ox, and let x denote its coordinate at the
instant of time ¢. The coordinate x will vary with the time, and knowledge
of the entire motion of the particle is equivalent to knowledge of the
functional dependence of x on the time ¢. Let us assume that the motion
is caused by some force F, the value of which depends on the position of
the particle (as defined by the coordinate x), on the velocity of motion
v = dx/dt and on the time 1, ie., F = F(x, dx/dt, t). According to the
laws of mechanics, the action of the force F on the particle necessarily
produces an acceleration w = d%x/dr? such that the product of w and the
mass m of the particle is equal to the force, and so at every instant of the
motion we have the equation

d*x

dx
m? ,f),

== F(x,z

(2)
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This is the differential equation that must be satisfied by the function
x(t) describing the behavior of the moving particle. It is simply a represen-
tation of laws of mechanics. Its significance lies in the fact that it enables
us to reduce the mechanical problem of determining the motion of a
particle to the mathematical problem of the solution of a differential
equation.

Later in this chapter, the reader will find other examples showing how
the study of various physical processes can be reduced to the investigation
of differential equations.

The theory of differential equations began to develop at the end of the
1 7th century, almost simultaneously with the appearance of the differential
and integral calculus. At the present time, differential equations have
become a powerful tool in the investigation of natural phenomena. In
mechanics, astronomy, physics, and technology they have been the means
of immense progress. From his study of the differential equations of the
motion of heavenly bodies, Newton deduced the laws of planetary motion
discovered empirically by Kepler. In 1846 Leverrier predicted the existence
of the planet Neptune and determined its position in the sky on the basis
of a numerical analysis of the same equations.

To describe in general terms the problems in the theory of differential
equations, we first remark that every differential equation has in general
not one but infinitely many solutions: that is, there exists an infinite set of
functions that satisfy it. For example, the equation of motion for a particle
must be satisfied by any motion induced by the given force F(x, dx/dt, t),
independently of the starting point or the initial velocity. To each separate
motion of the particle there will correspond a particular dependence of
x on time ¢. Since under a given force F there may be infinitely many
motions the differential equation (2) will have an infinite set of
solutions.

Every differential equation defines, in general, a whole class of functions
that satisfy it. The basic problem of the theory is to investigate the functions
that satisfy the differential equation. The theory of these equations must
enable us to form a sufficiently broad notion of the properties of all
functions satisfying the equation, a requirement which is particularly
important in applying these equations to the natural sciences. Moreover,
our theory must guarantee the means of finding numerical values of the
functions, if these are needed in the course of a computation. We will
speak later about how these numerical values may be found.

If the unknown function depends on a single argument, the differential
equation is called an ordinary differential equation. 1f the unknown function
depends on several arguments and the equation contains derivatives with
respect to some or all of these arguments, the differential equation is
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called a partial differential equation. The first three of the equations in (1)
are ordinary and the last three are partial.

The theory of partial differential equations has many peculiar features
which make them essentially different from ordinary differential equations.
The basic ideas involved in such equations will be presented in the next
chapter; here we will examine only ordinary differential equations.

Let us consider some examples.

Example 1. The law of decay of radium says that the rate of decay is
proportional to the initial amount of radium present. Suppose we know
that a certain time ¢+ = ¢, we had R, grams of radium. We want to know
the amount of radium present at any subsequent time 1.

Let R(r) be the amount of undecayed radium at time ¢. The rate of devay
is given by the value of — (dR/dr). Since this is proportional to R, we have

dR
— =T = kR,
o7 R (3)
where k is a constant
In order to solve our problem, it is necessary to determine a function
from the differential equation (3). For this purpose we note that the
function inverse to R(¢) satisfies the equation

dt 1
—4R — %R’ 4

since dt/dR = (1/dR)/dt. From the integral calculus it is known that
equation (4) is satisfied by any function of the form

] .
— —?‘lnR+C,

where C is an arbitrary constant. From this relation we determine Ras a
function of 1. We have

R = e kt+kC — Cle—kt_ (5)

From the whole set of solutions (5) of equation (3) we must select one
which for t = t, has the value R, . This solution is obtained by setting
C; = Rgelh.

From the mathematical point of view, equation (3) is the statement
of a very simple law for the change with time of the function R; it says that
the rate of decrease — (dR/dt) of the function is proportional to the value
of the function R itself. Such a law for the rate of change of a function is
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satisfied not only by the phenomena of radioactive decay but also by
many other physical phenomena.

We find exactly the same law for the rate of change of a function, for
example, in the study of the cooling of a body, where the rate of decrease
in the amount of heat in the body is proportional to the difference between
the temperature of the body and the temperature of the surrounding
medium, and the same law occurs in many other physical processes. Thus
the range of application of equation (3) is vastly wider than the particular
problem of the radioactive decay from which we obtained the equation.

Example 2. Let a material point of a mass m be moving along the
horizontal axis Ox in a resisting medium, for example in a liquid or a
gas, under the influence of the elastic force of two springs, acting under
Hooke’s law (figure 1), which states that the elastic force acts toward the

Fic. 1.

position of equilibrium and is proportional to the deviation from the
equilibrium position. Let the equilibrium position occur at the point
x = 0. Then the elastic force is equal to —bx(b > 0).

We will assume that the resistance of the medium is proportional to the
velocity of motion, i.e., equal to —a(dx/dr), where a > 0 and the minus
sign indicates that the resisting medium acts against the motion. Such an
assumption about the resistance of the medium is confirmed by experiment.

From Newton’s basic law that the product of the mass of a material
point and its acceleration is equal to the sum of the forces acting on it,
we have

d*x dx
— = —bx —a—. 6
m e bx —a i (6)
Thus the function x(f), which describes the position of the moving point
at any instant of time ¢, satisfies the differential equation (6). We will
investigate the solutions of this equation in one of the later sections.

If, in addition to the forces mentioned, the material point is acted upon
by still another force, F outside of the system, then the equation of motion
(6) takes the form

d*x

dx p
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Example 3. A mathematical pendulum is a material point of mass m,
suspended on a string whose length
will be denoted by /. Wewill assume
that at all stages the pendulum
stays in one plane, the plane of the
drawing (figure 2). The force tend-
ing to restore the pendulum to the
vertical position OA is the force
of gravity mg, acting on the
material point. The position of
the pendulum at any time ¢ is
given by the angle ¢ by which it

A differs from the vertical O4. We

\ take the positive direction of ¢ to

|

?%,ﬁ/f/%’ 0.

x be counterclockwise. The arc
2  AA = Ipisthe distance moved by
the material point from the posi-

iyl
. 7 tion of equilibrium A. The velocity
of motion v will be directed along
FiG. 2. the tangent to the circle and will
have the following numerical value:
_ 4
v=1, ?f; .

To establish the equation of motion, we decompose the force of gravity
mg into two components Q and P, the first of which is directed along the
radius O A’ and the second along the tangent to the circle. The component
Q cannot affect the numerical value of the rate o, since clearly it is balanced
by the resistance of the suspension OA'. Only the component P can affect
the value of the velocity ». This component always acts toward the equi-
librium position 4, i.e., toward a decrease in ¢, if the angle ¢ is positive,
and toward an increase in ¢, if ¢ is negative. The numerical value of P is
equal to —mg sin ¢, so that the equation of motion of the pendulum is

W= mg sin ¢
or
d* .
d—rf= —g—;smtﬁ. )

It is interesting to note that the solutions of this equation cannot be
expressed by a finite combination of elementary functions. The set of
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elementary functions is too small to give an exact description of even
such a simple physical process as the oscillation of a mathematical pen-
dolum. Later we will see that the differential equations that are solvable
by elementary functions are not very numerous, so that it very frequently
happens that investigation of a differential equation encountered in physics
or mechanics leads us to introduce new classes of functions, to subject
them to investigation, and thus to widen our arsenal of functions that
may be used for the solution of applied problems.

Let us now restrict ourselves to small oscillations of the pendulum for
which, with small error, we may assume that the arc 44’ is equal to its
projection x on the horizontal axis Ox and sin¢ is equal to ¢. Then
¢ ~ sin ¢ = x// and the equation of motion of the pendulum will take
on the simpler form

d*x g

FAm ®)
Later we will see that this equation is solvable by trigonometric functions

and that by using them we may describe with sufficient exactness the “small

oscillations”” of a pendulum

Example 4. Helmholtz’ acoustic resonator
(figure 3) consists of an air-filled vessel V, the
volume of which is equal to v, with a cylindrical
neck F. Approximately, we may consider the air
in the neck of the container as cork of mass

m = psl, 9)

where p is the density of the air, s is the area of
the cross section of the neck, and / is its length.
If we assume that this mass of air is displaced
from a position of equilibrium by an amount x, FIG. 3.
then the pressure of the air in the container
with volume v is changed from the initial value p by some amount which
we will call dp.

We will assume that the pressure p and the volume v satisfy the
adiabatic law pv* = C. Then, neglecting magnitudes of higher order, we
have

dp - v* + pkv*1-dv =0
and
Av kps
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(In our case, 4v = sx.) The equation of motion of the mass of air in the
neck may be written as:
d*x
m d? = AP * 8. (] ])
Here 4dp - s is the force exerted by the gas within the container on the
column of air in the neck. From (10) and (11) we get
d*x kps

F— —Tx, (12)

where p, p, v, I, k, and s are constants.

Example 5. An equation of the form (6) also arises in the study of

electric oscillations in a simple

R oscillator circuit. The circuit diagram

is given in (figure 4). Here on the left

we have a condenser of capacity C,

in series with a coil of inductance L,

e 2 L and a resistance R. At some instant

let the condenser have a voltage

across its terminals. In the absence

of inductance from the circuit, the

FIG. 4. current would flow until such time

as the terminals of the condenser

were at the same potential. The presence of an inductance alters the

situation, since the circuit will now generate electric oscillations. To find a

law for these oscillations, we denote by »(¢), or simply by v, the voltage

across the condenser at the instant ¢, by /() the current at the instant ¢,

and by R the resistance. From well-known laws of physics, /(¢) R remains

constantly equal to the total electromotive force, which is the sum of the
voltage across the condenser and the inductance — L(dl/dt). Thus,

dl
IR= —v—L 7 (13)
We denote by Q(¢) the charge on the condenser at time ¢. Then the
current in the circuit will, at each instant, be equal to dQ/dt. The potential
difference »(r) across the condenser is equal to Q(¢)/C. Thus I = dQ/dt =
C (dv/dt) and equation (13) may be transformed into

d*

LC o +RC - +0=0. (14)
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Example 6. The circuit diagram of an electron-tube generator of
electromagnetic oscillations is shown in figure 5. The oscillator circuit
consisting of a capacitance C, across a resistance R and an inductance L,
represents the basic oscillator system. The coil L’ and the tube shown in
the center of figure 5 from a so-called “‘feedback.” They connect a source
of energy, namely the battery B, with the L-R-C circuit; K is the cathode
of the tube, A4 the plate, and § the grid. In such an L-R-C circuit “self-
oscillations™ will arise. For any actual system in an oscillatory state the
energy is transformed into heat or is dissipated in some other form to the
surrounding bodies, so that to maintain a stationary state of oscillation it
is necessary to have an outside source of energy. Self-oscillations differ
from other oscillatory processes in that to maintain a stationary oscillatory
state of the system the outside source does not have to be periodic.
A self-oscillatory system is constructed in such a way that a constant
source of energy, in our case the battery B, will maintain a stationary
oscillatory state. Examples of self-oscillatory systems are a clock, an
electric bell, a string and bow moved by the hand of the musician, the
human voice, and so forth.

Ia

©
i

FiG. 5. FiG. 6.

The current K(r) in the oscillatory L-R-C circuit satisfies the equation

dl dl,
LE+RI+v_Mdr' (15)

Here v = v(t) is the voltage across the condenser at the instant ¢, I(?)
is the plate current through the coil L'; M is the coupling coefficient
between the coils L and L’. In comparison with equation (13), equation
(15) contains the extra term M(dl,/dt).

We will assume that the plate current 7,(¢) depends only on the voltage
between the grid S and the cathode of the tube (i.e., we will neglect the
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reactance of the anode), so that this voltage is equal to the voltage v(?)
across the condenser C. The character of the functional dependence of
I, on v is given in figure 6. The curve as sketched is usually taken to be a
cubical parabola and we write an approximate equation for it by:

I, = ayv + a? + azpd.

Substituting this into the right side of equation (15), and using the fact
that

dv
="
we get for v the equation
L% + [R — M(a; + 2ap + 30302)]% +v=0 (16)

In the examples considered, the search for certain physical quantities
characteristic of a given physical process is reduced to the search for
solutions of ordinary differential equations.

Problems in the theory of differential equations. We now give exact
definitions. An ordinary differential equation of order n in one unknown
Jfunction y is a relation of the form

Fx, y(x), y'(x), y"'(x), ==, y"™(x)] = 0 a7
between the independent variable x and the quantities

o W Ay _dvy
‘V(x),}’(x)—a,}’(x)— dxg9 ] l'(x)_dxn'

The order of a differential equation is the order of the highest derivative
of the unknown function appearing in the differential equation. Thus the
equation in example 1 is of the first order, and those in examples 2, 3, 4, 5,
and 6, are of the second order.

A function ¢(x) is called a solution of the differential equation (17) if
substitution of ¢(x) for y, ¢'(x) for y’, -+, ¢"(x) for y'* produces an
identity.

Problems in physics and technology often lead to a system of ordinary
differential equations with several unknown functions, all depending on
the same argument and on their derivatives with respect to that argument.

For greater concreteness, the explanations that follow will deal chiefly
with one ordinary differential equation of order not higher than the second
and with one unknown function. With this example one may explain the
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essential properties of all ordinary differential equations and of systems
of such equations in which the number of unknown functions is equal to
the number of equations.

We have spoken earlier of the fact that, as a rule, every differential
equation has not one but an infinite set of solutions. Let us illustrate this
first of all by intuitive considerations based on the examples given in
equations (2-6). In each of these, the corresponding differential equation
is already fully defined by the physical arrangement of the system. But in
each of these systems there can be many different motions. For example,
it is perfectly clear that the pendulum described by equation (8) may
oscillate with many different amplitudes. To each of these different oscil-
lations of the pendulum there corresponds a different solution of equation
(8), so that infinitely many such solutions must exist. 1t may be shown that
equation (8) is satisfied by any function of the form

x=C,cos\/§r+Cgsin\/f-'t, (18)

where C, and C, are arbitrary constants.

It is also physically clear that the motion of the pendulum will be
completely determined only in case we are given, at some instant ¢,,
the (initial) value x, of x (the initial displacement of the material point
from the equilibrium position) and the initial rate of motion
X, = (dx/dt) |;o - These intial conditions determine the constants C, and
C, in formula (18).

In exactly the same way, the differential equations we have found in
other examples will have infinitely many solutions.

In general, it can be proved, under very broad assumptions concerning
the given differential equation (17) of order n in one unknown function
that it has infinitely many solutions. More precisely: If for some “initial
value™ of the argument, we assign an “‘initial value” to the unknown
function and to all of its derivatives through order n — 1, then one can
find a solution of equation (17) which takes on these preassigned initial
values. It may also be shown that such initial conditions completely
determine the solution, so that there exists only one solution satisfying
the initial conditions given earlier. We will discuss this question later in
more detail. For our present aims, it is essential to note that the initial
values of the function and the first n — 1 derivatives may be given
arbitrarily. We have the right to make any choice of n values which define
an “‘initial state” for the desired solution.

If we wish to construct a formula that will if possible include all solutions
of a differential equation of order n, then such a formula must contain n
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independent arbitrary constants, which will allow us to impose » initial
conditions. Such solutions of a differential equation of order n, containing
n independent arbitrary constants, are usually called general solutions
of the equation. For example, a general solution of (8) is given by formula
(18) containing two arbitrary constants; a general solution of equation (3)
given by formula (5).

We will now try to formulate in very general outline the problems
confronting the theory of differential equations. These are many and
varied, and we will indicate only the most important ones.

If the differential equation is given together with its initial conditions,
then its solution is completely determined. The construction of formulas
giving the solution in explicit form is one of the first problems of the theory.
Such formulas may be constructed only in simple cases, but if they are
found, they are of great help in the computation and investigation of the
solution.

The theory should provide a way to obtain some notion of the behavior
of a solution: whether it is monotonic or oscillatory, whether it is periodic
or approaches a periodic function, and so forth.

Suppose we change the intial values for the unknown function and its
derivatives; that is, we change the intial state of the physical system. Then
we will also change the solution, since the whole physical process will
now run differently. The theory should provide the possibility of judging
what this change will be. In particular, for small changes in the initial
values will the solution also change by a stnall amount and will it therefore
be stable in this respect, or may it be that small changes in the initial
conditions will give rise to large changes in the solution so that the latter
will be unstable ?

We must also be able to set up a qualitative, and where possible,
quantitative picture of the behavior not only of the separate solutions of
an equation, but also of all of the solutions taken together.

In machine construction there often arises the question of making a
choice of parameters characterizing an apparatus or machine that will
guarantee satisfactory operation. The parameters of an apparatus appear
in the form of certain magnitudes in the corresponding differential
equation. The theory must help us make clear what will happen to
the solutions of the equation (to the working of the apparatus) if
we change the differential equation (change the parameters of the
apparatus).

Finally, when it is necessary to carry out a computation, we will need
to find the solution of an equation numerically, and here the theory will
be obliged to provide the engineer and the physicist with the most rapid
and economical methods for calculating the solutions.



§2. LINEAR DIFFERENTIAL EQUATIONS 323

§2. Linear Differential Equations with Constant Coefficients

For certain important classes of ordinary differential equations the
general solution may be expressed in terms of simple well-known functions.
One of these classes consists of those differential equations with constant
coefficients that are linear with respect to the unknown function and its
derivatives (in short, linear). The differential equations (3), (6), (8), and
(14) are examples of such equations. A linear equation is called homo-
geneous if it has no term which does not contain the unknown variable,
and nonhomogeneous if there is such a term.

Homogeneous linear equations of the second order with constant
coefficients. Such equations have the form

d*x dx
mEF+aE+bx—0, (6)

where m, a, and b are constants. We will assume that m is positive; this
does not restrict the generality, since we can always ensure this situation
if need be by changing the sign of all coefficients, provided that m 0,
which we will assume.

We will look for a solution of this equation in the form of an expo-
nential function ¢** and ask how the constant Ashould be chosen so that
the function x = ¢! satisfies the equation. Putting x = €*, dx/dr = Ae'!
and d%x/di® = A%¢* in the left side of equation (6), we get

&(mA® + aX + b).

Thus, in order that x(¢) = €** be a solution of equation (6) it is necessary
and sufficient that
mA 4+ a4+ b =0 (19

If A, and A; are two real roots of equation (19), then it is easy to prove that
a solution of equation (6) is given every function of the form

x = Cehrt + Cyetet, (20)

where C, and C, are arbitrary constants.

Below we will show that formula (20) gives all solutions of equation
(6) in the case that equation (19) has distinct real roots.

We note the following important properties of the solution of equation
(6):

1. The sum of two solutions is also a solution.

2. A solution multiplied by a constant is also a solution.
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In case A, is a multiple root of equation (19), i.e., mA2 +aX, + b =0
and 2mA, + a = 0,* then a solution of equation (6) will also be given by
the function te*?, since if we substitute this function and its derivatives
into the left side of equation (6) we get

1M (md} + ad, + b) + e'(2mA, + a),

which is seen from the previous equations to be identically zero.
The general solution of equation (6) in this case has the form

x = Cyeht + Cyeht, Q1)

Now let equation (19) have complex roots. These roots will be complex
conjugates of each other since m, a, and b are real numbers. Let A = « + iB
The equation

m(a + if)? + a(e + iB) + b =0

is equivalent to the two equations
mao? —~ mpBt + ae + b =0 and 2maf + af = 0. 22)

It is easy to show that in this case the functions x = e** cos 8t and
x = e** sin Bt are solutions of equation (6). Thus, for example, putting
the function x(f) = e* cos Bt and its derivatives in the left side of equation
(6), we get

et cos Bt(ma® — mB? + ao + b) — e** sin Br(2mof + aB).

By equation (22) this expression is identically equal to zero.
The general solution of equation (6), if equation (19) has complex roots,
has the form
x = Cye*sin Bt + Cye*t cos fit, (23)

where C, and C, are arbitrary constants.
In this way, if we know the roots of equation (19), called the charac-
teristic equation, we can write down the general solution of equation (6).
We note that the general solution of a linear homogeneous equation of
order n with constant coefficients

d"x d"x dx
n in +an-lF fath ‘Fﬂil—r + apx =0

may be written in a similar manner as a polynomial in exponential and

“_"l'-'he- sufn of the roots A, and A, of the quadratic equation (19) is A, + A, = —a/m,
and if the roots are the same, that is A, = A, , then the second of the previous equations
is true.
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trigonometric functions, provided we know the roots of the algebraic
equation
a,.)l" + a“_ll‘“_l + e + ao — 0,

which again is called the characteristic equation. Thus, the problem of
integrating a linear ordinary differential equation with constant coefficients
is reduced to an algebraic problem.

We now show that formulas (20), (21), and (23) give all the solutions
of equation (6). We note that C, and C; in these formulas may always be
so chosen that the function x(r) satisfies arbitrary initial conditions
X(ty) = Xo, X'(to) = X, . For this C, and C, need only to be determined
from the system of equations

X = Cighit i gl
x‘; - Alclel‘t. + %Czea"..

in the case of formula (20), or by two similar equations in the case of
formulas (21) and (23). Clearly, if there existed a solution of equation
(6) not contained among the solutions we have constructed, then there
would exist two distinct solutions of equation (6) satisfying the same
initial conditions. Their difference x,(r) would not be identically zero and
would satisfy the zero initial conditions x,(75) = 0, x,(t,) = 0. We will
show that a solution of equation (6) which satisfies the zero initial condi-
tions can only be x,(r) = 0. Let us first show this under the assumption
that m > 0,a > 0, and b > 0. We multiply the two sides of the equation

d’x, dx

m—_g +a d:l +bx, =0 (24)

by 2(dx,/dt). Since

dx, d®x, d (dx,

2222 -2 (5

dx, — d 2
d drt i ) and. 2al) 5 = g ik

equation (24) may be put in the form
d [m dx,

dx, ) +b d_a: 3 = 0.

] +2 (5
Integrating this identity between ¢, and ¢, we get
(dx‘) + 2a f dx' ) dt + bx¥(e) = 0.

This equation is possible only if x,(¢) = 0. Otherwise, for ¢t = t,, we would
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clearly have a positive quantity on the left and zero on the right, with a
similar situation for r < ,.

In order to establish our proposition for all constant coefficients m, a,
and b, we consider the function y,(1) = x,(t)e~** which, as it is easy to
show, also satisfies the zero boundary condtions. If the value of « > Qs
chosen sufficiently large, then the function y(¢) will satisfy some equation
of the form (6) for a >0, b > 0, and m > 0. This equation is easily
derived by substituting the function x,(1) = y,(t)e** and its derivatives
into equation (6). Then, as was shown earlier, we have y,(t) = 0, which
means that x,(t) = yy(0)ext = 0.

Thus we have shown that formulas (20), (21), and (23) give all the
solutions of equation (6).

Let us see what information these formulas give about the character
of the solutions of equations (6). To this end we note the formulas

a a® . b
A1‘2=_2_miJW_E (25)

for the roots of equation (19). In accordance with the physical applications
which led us to equation (6), we will assume m >0, a >0, and b > 0.

Case 1. a® > 4bm. The two roots of the characteristic equation (19)
are real, negative, and distinct. In this case the function x(¢) given by
by formula (20) is a general solution of equation (6). All the functions
given by this formula together with their first derivatives tend to zero for
t — + oo, and there is no more than one value of ¢ for which they vanish.
It follows that the function x(¢f) has no more than one maximum or
minimum. Physically, this means that the resistance of the medium is
sufficiently large to prevent oscillations. The moving point cannot pass
through the equilibrium position x = 0 more than once. From then on,
after attaining a maximum distance from the point x = 0, it will begin a
slow approach to the point but will never pass through it again.

Case 2. a® = 4bm. The two roots of equation (19) are equal to each
other and the general solution of equation (6) given by formula (21).
In this case again all solutions x(¢) and their first derivatives tend to zero
for t — + oo. Here x(¢) and x(¢) cannot vanish more than once. The
character of the motion of the material point with abscissa x(¢) is the same
as in the first case.

Case 3. a® < 4bm. The roots of the characteristic equation (19) have
nonzero imaginary part. The general solution of equation (6) is given by
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formula (23). The point x performs oscillations along the x-axis with a
constant period 27/8, which is the same for all solutions of (6), and with
amplitude Ce*, where o = —(a/2m).

The oscillations of a physical system which take place without the action
of an exterior force are called characteristic oscillations (eigenvibrations)
of the system. From the previous discussion, it follows that the period of
such oscillations for the systems discussed in examples 2, 3, 4 and 5,
depends only on the structure of the system and will be the same for
all oscillations which could possibly arise in it. In example 2 this period
is equal to 2. Vb/m — a®/4m®; in example 4 to 2=: V'kps/vpl, and
example 5 to 27 V' 1/LC — R*412

If a = 0, ie., if the medium offers no resistance to the motion, then
the amplitude of the oscillations is constant: the point oscillates harmoni-
cally. But if a > 0, i.e., if the medium offers resistance to the motion,
although this resistance is small (a* < 4bm), then the amplitude of the
oscillations tends to zero and the oscillations die out.

Finally, the solution x(r) == 0 of equation (6) in all cases indicates a
state of rest for the point x at the position x = 0, which is called the
position of equilibrium.

If the real parts of both roots of equation (19) are negative, then it can
be seen from formulas (20), (21), and (23), that all the solutions of equation
(6), together with their derivatives, tend to zero for t — + oo; that is that
is, the oscillations die out with the passage of time.

However, if the real part of even one of the roots of equation (19) is
positive, then there are solutions of equation (6) not tending to zero for
t — + oo, so that some of the solutions of (6) would not even be bounded
for t — + 0. Such a case can occur only for negative b or negative a,
if m > 0. Physically, this would correspond to the case in which the
elastic force does not attract the point x to the equilibrium position but
repels it or else that the resistance of the medium is negative. Such cases
cannot be realized in the physical examples considered at the beginning
of this chapter, but they are entirely realizable in other physical models.

If the real part of the roots A, and A, of equation (19) is equal to zero,
which is possible only if the coefficient a in equation (19) is zero, then for

= 0 the point x(r), as can be seen from formula (23), carries out
harmonic oscillations with bounded amplitude and bounded velocity.

Nonhomogeneous linear equations with constant coefficients. Let us
consider in detail the equation

d*x dx
mF +GE + bx = A cos wt. (26)
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This is the equation of linear oscillations of a material point under the
action of an elastic force, of the resistance of a medium and of an external
periodic force 4 cos wt (see equation (6’) in §1).

Equation (26) is a nonhomogeneous linear equation and (6) is the corre-
sponding homogeneous equation.

We will now look for the general solution to equation (26).

We note that the sum of a solution of a nonhomogeneous equation and
a solution of the corresponding homogeneous equation is also a solution
of the nonhomogeneous linear equation. Thus, in order to find a general
solution of equation (26), it is sufficient to find any one particular solution.
The general solution of equation (26) will then be given in the form of
the sum of this particular solution and a general solution of the corre-
sponding homogeneous equation.

It is natural to expect that the motion will follow the rhythm of the
external periodic force and to look for a particular solution of equation
(26) in the form x = Bcos (w? + 8), where B and 8 are as yet undeter-
mined constants. We will attempt to determine B and 8 in such a way that
the function x = B cos (wt + 8) will satisfy equation (26). Calculating the
derivatives dx/dt = —Bw sin (wt + 8) and d*x/d* = — Bw?® cos (wt + &)
and substituting them into equation (26), we get

m[ —Bw? cos (wt + 8)] + a[— Bw sin (wt + 8)]
+ bB cos (wt + 8) = A cos wt.

Applying well-known formulas, we have

Bl(b — mw?) cos (wt + 8) — aw sin (wt + )]

= BV(b — mw?)? + a’w?cos (wt + 8') = A cos wt,

where 8 = 8 + y and y = arc tan aw/(b — mw?). Obviously, if we set

(N N AR -
b — mw? V(b — me?)? + a2w?’
the function x = B cos (wt + 8) will satisfy equation (26).

A solution of the form B cos (wt + 8) will always exist if (b — mw?)? 4
a’w? == 0. In case (b — mw?)? + a®w?® = 0,ie., whena = Oand b = me?,
equation (26) has the form

8 = —arc tan

d*x
m—= 4+ mw?x = Acos wl.
p7D + S

A particular solution in this case, as is easily established, is

x = (At2 vV mb) sin wr.
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Solutions of the nonhomogeneous equation (26) are called forced
oscillations. The multiplier ¢(w) = 1/4/(b — mw?)? + a®w® characterizes
the relation of the amplitude B of the forced oscillation to the amplitude 4
of the disturbing force. The graph of the function ¢(w) is called the
resonance curve. The frequency w for which ¢(w) attains its maximum is
called the resonant frequency. Let us calculate it. If ¢(w) attains the
maximum at w, % 0, then for this value of w the derivative ¢'(«) vanishes,
ie., — 4b — mw}) mw, + 2w, = 0, so that w, = Vb/m — a*/2m®. For
this value of w,

1
aVvbjm — ajam*

?"(“’1) =

Hence it can be seen that the amplitude of the forced oscillation for
w = w, is greater for smaller values of a. For very small a, the frequency
w, is very close to the value \/Eff:}, i.e., to the frequency the free oscil-
lations. For @ = 0 and b = mw?, as we saw, the forced oscillation has the
form

x = —AI_ sin wt
2vmb ’
i.e., the amplitude of this oscillation increases beyond all bounds as
t— 4 oo, a situation which represents the mathematical meaning of
resonance. Resonance will occur if the period of the external force is the
same as the period of one of the characteristic oscillations of the system.
In the practical world, in cases where the period of the external force and
the period of the characteristic oscillations are close together, the
displacements of the system may become extremly large.

The possibility of large oscillations is often made use of in the con-
struction of various kinds of amplifiers, for example in radio technology.
But large oscillations may also lead to the breaking up of structures such
as bridges or the framework of machines. Thus it is very important to
foresee the possibility of resonance or of oscillations close to it.

From the remarks made earlier, any solution of equation (26) can be
written as a sum of the forced oscillation we have found and of one of
the solutions of the homogeneous equation given in formulas (20), (21),
and (23). For a > 0 and & > 0 the solution of the homogeneous equation
tends to zero for 1 — + co, i.e., any motion eventually approximates the
forced oscillations. If @ = 0and b > 0, the forced oscillation is superposed
on a nondecaying characteristic oscillation of the system. For b = mw?
and a = 0, we have resonance.

If a periodic external force f{(t) is imposed on the sytem, the forced
oscillations of the system may be found in the following manner. We
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may represent f{¢) with sufficient exactness as a segment of a trigonometric
series*

2 (a; cos w,t + b, sin w;t). 27

i=1

Let us find the forced oscillations corresponding to each term of this sum.
Then the oscillation corresponding to the force f(¢) will be found by adding
together the oscillations corresponding to the various terms of the sum
(27). If any of these frequencies is identical with the frequency of a charac-
teristic oscillation of the system, we will have resonance.

§3. Some General Remarks on the Formation and Solution of
Differential Equations

There are not many differential equations with the property that all
their solutions can be expressed explicitly in terms of simple functions, as
is the case for linear equations with constant coefficients. It is possible to
give simple examples of differential equations whose general solution
cannot be expressed by a finite number of integral of known functions, or
as one says, in quadratures.

As Liouville showed in 1841, the solution of the Ricatti equation of
the form dy/dx + ay* = x*, for a > 0, cannot be expressed as a finite
combination of integrals of elementary functions. So it becomes important
to develop methods of approximation to the solutions of differential
equations, which will be applicable to wide classes of equations.

The fact that in such cases we find not exact solutions but only approxi-
mations should not bother us. First of all, these approximate solutions
may be calculated, at least in principle, to any desired degree of accuracy.
Second, it must be emphasized that in most cases the differential equations
describing a physical process are themselves not altogether exact, as can
be seen in all the examples discussed in §1.

An especially good example is provided by the equation (12) for the
acoustic resonator. In deriving this equation, we ignored the compres-
sibility of the air in the neck of the container and the motion of the air
in the container itself. As a matter of fact, the motion of the air in the
neck sets into motion the mass of the air in the vessel, but these two
motions have different velocities and displacements. In the neck the
displacement of the particles of air is considerably greater than in the
container. Thus we ignored the motion of the air in the container, and

* Cf. Chapter XII, §7.
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took account only of its compression. For the air in the neck, however,
we ignored the energy of its compression and took account only of the
kinetic energy of its motion.

To derive the differential equation for a physical pendulum, we ignored
the mass of the string on which it hangs. To derive equation (14) for
electric oscillations in a circuit, we ignored the self-inductance of the wiring
and the resistance of the coils. In general, to obtain a differential equation
for any physical process, we must always ignore certain factors and idealize
others. In view of this, A. A. Andronov drew especial attention to the
fact that for physical investigations we are especially interested in those
differential equations whose solutions do not change much for arbitrary
small changes, in some sense or another, in the equations themselves.
Such differential equations are called “intensitive.” These equations
deserve particularly complete study.

It should be stated that in physical investigations not only are the
differential equations that describe the laws of change of the physical
quantities themselves inexactly defined but even the number of these
quantities is defined only approximately. Strictly speaking, there are no
such things as rigid bodies. So to study the oscillations of a pendulum,
we ought to take into account the deformation of the string from which
it hangs and the deformation of the rigid body itself, which we approxi-
mated by taking it as a material point. In exactly the same way, to study
the oscillations of a load attached to springs, we ought to consider the
masses of the separate coils of the springs. But in these examples it is easy
to show that the character of the motion of the different particles, which
make up the pendulum and its load together with the springs, has little
influence on the character of the oscillation. If we wished to take this
influence into account, the problem would become so complicated that
we would be unable to solve it to any suitable approximation. Our solution
would then bear no closer relation to physical reality than the solution
given in §1 without consideration of these influences. Intelligent idealiza-
tion of a problem is always unavoidable. To describe a process, it is
necessary to take into account the essential features of the process but by
no means to consider every feature without exception. This would not
only complicate the problem a great deal but in most cases would result
in the impossibility of calculating a solution. The fundamental problem
of physics or mechanics, in the investigation of any phenomenon, is to
find the smallest number of quantities, which with sufficient exactness
describe the state of the phenomenon at any given moment, and then
to set up the simplest differential equations that are good descriptions of
the laws governing the changes in these quantities. This problem is often
very difficult. Which features are the essential ones and which are non-
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essential is a question that in the final analysis can be decided only by long
experience. Only by comparing the answers provided by an idealized
argument with the results of experiment can we judge whether the idealiza-
tion was a valid one.

The mathematical problem of the possibility of decreasing the number
of quantities may be formulated in one of the simplest and most charac-
teristic cases, as follows.

Suppose that to begin with we characterize the state of a physical system
at time ¢ by the two magnitudes x,(s) and x,(r). Let the differential
equations expressing their rates of change have the form

B — fit 10,00,

€ﬁ *-fz(‘ xl’x2)$

(28

In the second equation the coefficient of the derivative is a small constant
parameter e. If we put e = 0, the second of equations (28) will cease to be
a differential equation. It then takes the form

Sty Xy, x) = 0.
From this equation, we define x, as a function of  and x, and we substitute
it into the first of the equations (28). We then have the differential equation

dxl = F{t, x,)

for the single variable x, . In this way the number of parameters entering
into the situation is reduced to one. We now ask, under what conditions
will the error introduced by taking € = 0 be small. Of course, it may
happen that as € — 0 the value dx,/dt grows beyond all bounds, so that
the right side of the second of equations (28) does not tend to zero as
e—0.

§4. Geometric Interpretation of the Problem of
Integrating Differential Equations; Generalization of the Problem

For simplicity we will consider initially only one differential equation
of the first order with one unknown function

= flx, ), 29

where the function f{(x, y) is defined on some domain G in the (x, y) plane.
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This equation determines at each point of the domain the slope of the
tangent to the graph of a solution of equation (29) at that point. If at each
point (x, y) of the domain G we indicate by means of a line segment the
the direction of the tangent (either of the two directions may be used) as
determined by the value of f(x, y) at this point, we obtain a field of direc-
tions. Then the problem of finding a solution of the differential equation
(29) for the initial conditon y(x,) = y, may be formulated thus: In the
domain G we have to find a curve y = ¢(x), passing through the point
M y(x, , ¥o), which at each of its points has a tangent whose slope is given
by equation (29), or briefly, which has at each of its points a preassigned
direction.

From the geometric point of view this statement of the problem has
two unnatural features:

1. By requiring that the slope of the tangent at any given point (x, y)
of the domain G be equal to f(x, y), we automatically exclude tangents
parallel to Oy, since we generally consider only finite magnitudes; in
particular, it is assumed that the function f(x, y) on the right side of
equation (29) assumes only finite values.

2. By considering only curves which are graphs of functions of x, we
also exclude those curves which are intersected more than once by a line
perpendicular to the axis Ox, since we consider only single-valued func-
tions; in particular, every solution of a differential equation is assumed to
be a single-valued function of x.

So let us generalize to some extent the preceding statement of the
problem of finding a solution to the differential equation (29). Namely,
we will now allow the tangent at some points to be parallel to the axis Oy.
At these points, where the slope of the tangent with respect to the axis
Ox has no meaning, we will take the slope with respect to the axis Oy.
In other words, we consider, together with the differential equation (29),
the equation

jijf = fix 7). 29)

where f,(x, ) = 1/f(x, ), if f(x, y) 7= 0, using the second equation when
the first is meaningless. The problem of integrating the differential
equations (29) and (29) then becomes: In the domain G to find all curves
having at each point the tangent defined by these equations. These curves
will be called integral curves (integral lines) of the equations (29) and
(29) or of the tangent field given by these equations. In place of the
plural “‘equations (29), (29°), we will often use the singular “equation
(29), (29°)". 1t is clear that the graph of any solution of equation (29)
will also be an integral curve of equation (29), (29°). But not every integral
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curve of equation (29), (29') will be the graph of a solution of equation
(29). This case will occur, for example, if some perpendicular to the axis
Ox intersects this curve at more than one point.

In what follows, if it can be clearly shown that

M(x, y)
X, = o
fex.7) N(x, y)
then we will write only the equation
dy _ M(x,»)
dx N(x,y)’
and omit writing
dx _ N(x,y)
dy  M(x, )’

Sometimes in place of these equations we introduce a parameter ¢, and
write the system of equations

dx dy
E - N(x’ y);a - M(xa y)’

where x and y are considered as functions of 1.

Example 1. The equation

dy _y
dx x

(30

defines a tangent field everywhere except at the origin. This tangent field
is sketched in figure 7. All the tangents given by equation (30) pass
through the origin.
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It is clear that for every k the function

y + kx (3D

is a solution of equation (30). The collection of all integral curves of this
equation is then defined by the relation

ax = by =0, (32)

where a and b are arbitrary constants, not both zero. The axis Oy is an
integral curve of equation (30), but it is not the graph of a solution of it.

Since equation (30) does not define a tangent field at the origin, the
curves (31) and (32) are, strictly speaking, integral curves everywhere
except at the origin. Thus it is more correct to say that the integral curves
of equation (30) are not straight lines passing through the origin but
half lines issuing from it.

Example 2. The equation
— = —= (33)

defines a field of tangents everywhere except at the origin, as sketched in
figure 8. The tangents defined at a given point (x, y) by equations (30)
and (33) are perpendicular to each other. It is clear that all circles centered
at the origin will be integral curves of equation (33). However the solutions
of this equation will be the functions

y=+4+VvVR-xy=—-vVR-—x —-R<x<R

For brevity in what follows we will sometimes say ‘““a solution passes
through the point (x, y)’’ in place of the more exact statement “the graph
of a solution passes through the point (x, y).”

§5. Existence and Uniqueness of the Solution of a
Differential Equation; Approximate Solution of Equations

The question of existence and uniqueness of the solution of a differential
equation. We return to the differential equation (17) of arbitrary order n.
Generally, it has infinitely many solutions and in order that we may pick
from all the possible solutions some one specific one, it is necessary to
attach to the equation some supplementary conditions, the number of
which should be equal to the order n of the equation. Such conditions
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may be of extremely varied character, depending on the physical, mechan-
ical, or other significance of the original problem. For example, if we have
to investigate the motion of a mechanical system beginning with some
specific initial state, the supplementary conditions will refer to a specific
(initial) value of the independent variable and will be called initial
conditions of the problem. But if we want to define the curve of a
cable in a suspension bridge, or of a loaded beam resting on supports at
each end, we encounter conditions corresponding to different values of
the independent variable, at the ends of the cable or at the points of support
of the beam. We could give many other examples showing the variety of
conditions to be fulfilled in connection with differential equations.

We will assume that the supplementary conditions have been defined
and that we are required to find a solution of equation (17) that satisfies
them. The first question we must consider is whether any such solution
exists at all. It often happens that we cannot be sure of this in advance.
Assume, say, that equation (17) is a description of the operation of some
physical apparatus and suppose we want to determine whether periodic
motion occurs in this apparatus. The supplementary conditions will
then be conditions for the periodic repetition of the initial state in the
apparatus, and we cannot say ahead of time whether or not there will
exist a solution which satisfies them.

In any case the investigation of problems of existence and uniqueness
of a solution makes clear just which conditions can be fulfilled for a given
differential equation and which of these conditions will define the solution
in a unique manner. But the determination of such conditions and the
proof of existence and uniqueness of the solution for a differential equation
corresponding to some physical problem also has great value for the
physical theory itself. It shows that the assumptions adopted in setting
up the mathematical description of the physical event are on the one
hand mutually consistent and on the other constitute a complete descrip-
tion of the event.

The methods of investigating the existence problem are manifold, but
among them an especially important role is played by what are called
direct methods. The proof of the existence of the required solution is
provided by the construction of approximate solutions, which are proved
to converge to the exact solution of the problem. These methods not
only establish the existence of an exact solution, but also provide a way,
in fact the principal one, of approximating it to any desired degree of
accuracy.,

For the rest of this section we will consider, for the sake of definiteness,
a problem with initial data, for which we will illustrate the ideas of Euler’s
method and the method of successive approximations.
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Euler’s method of broken lines. Consider in some domain G of the
(x, ) plane the differential equation

Y = fon. (34)

As we have already noted, equation (34) defines in G a field of tangents.
We choose any point (x4, yo) of G. Through it there will pass a straight
line L, with slope f(x,, yo).
On the straight line L, we
choose a point (x, , y,), suf-
ficiently close to (x,, y,); in
figure 9 this point is indic-
ated by the number 1. We
draw the straight line L,
through the point (x,, »)
with slope f(x,, y,) and on
it mark the point (x;, y);
in the figure this point is
denoted by the number 2. FiG. 9.

Then on the straight line L,

corresponding to the point (x,, y,) we mark the point (x;, y,), and
continue in the same manner with x, < x; < x, < x; < ---. It is assumed,
of course, that all the points (x4, yo), (X1, 31), (X2, ¥s), *+ are in the
domain G. The broken line joining these points is called an Euler broken
line. One may also construct an Euler broken line in the direction of
decreasing x; the corresponding vertices on our figure are denoted by
-1, =2, =3

It is reasonable to expect that every Euler broken line through the point
(xo, yo) with sufficiently short segments gives a representation of an
integral curve / passing through the point (x,, y,), and that with decrease
in the length of the links, i.e., when the length of the longest link tends to
zero, the Euler broken line will approximate this integral curve.

Here, of course, it is assumed that the integral curve exists. In fact it is
not hard to prove that if the function f(x, y) is continuous in the domain
G, one may find an infinite sequence of Euler broken lines, the length of
the largest links tending to zero, which converges to an integral curve /.
However, one usually cannot prove uniqueness: there may exist different
sequences of Euler broken lines that converge to different integral curves
passing through one and the same point (x,, y,). M. A. Lavrent’ev has
constructed an example of a differential equation of the form (29) with a
continuous function f{x, y), such that in any neighborhood of any point P
of the domain G there passes not one but at least two integral curves,
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In order that through every point of the domain G there pass only one
integral curve, it is necessary to impose on the function f(x, y) certain
conditions beyond that of continuity. It is sufficient, for example, to assume
that the function f{x, y) is continuous and has a bounded derivative with
respect to y on the whole domain G. In this case it may be proved that
through each point of G there passes one and only one integral curve and
that every sequence of Euler broken lines passing through the point (x4, yo)
converges uniformly to this unique integral curve, as the length of the
longest link of the broken lines tends to zero. Thus for sufficiently small
links the Euler broken line may be taken as an approximation to the
integral curve of equation (34),

From the preceding it can be seen that the Euler broken lines are so
constituted that small pieces of the integral curves are replaced by line
segments tangent to these integral curves. In practice, many approxima-
tions to integral curves of the differential equation (34) consist not of
straight-line segments tangent to the integral curves, but of parabolic
segments that have a higher order of tangency with the integral curve.
In this way it is possible to find an approximate solution with the same
degree of accuracy in a smaller number of steps (with a smaller number of
links in the approximating curve). The coefficients of the equation for
the (higher order) parabola

Yy =ay+ ay(x — xp) + ay(x — xx° + 0+ anlx — x)",  (39)

which at the point (x,, y,) has nth-order tangency with the integral
curves of equation (34) through this point, are given by the following
formulas:

y = Vi (36)
a=(2) = fouw (36)
2 = ()= [T = A e (3)
=f-’;(xk§yk) +fl:(xk'yk)f(xk§yk)| (36,)

6 = (G2) =12 72, 500) + Aix v x|

=Xy

= for(Xi s Vi) + 2 X Vi) (X0, Vi)
+ Lo X VL 7 + £ ) S5 90
+ ft;(xk ’ yk)f::(xk s Vi) (36')

T Iy



§5. EXISTENCE AND UNIQUENESS OF THE SOLUTION 339

The polynomial (35) is needed only in order to compute its value for
X = X4 . The actual values of the coefficients a,, a,, a,, ***, a, them-
selves are not needed. There are many ways of computing the value for
X = X, of the polynomial (35) whose coefficients are given by formula
(36), without computing the coefficients a, , a, , -, a, themselves.

Other approximation methods exist for finding the solution of the
differential equation (34), which are based on other ideas. One convenient
method was developed by A. N. Krylov (1863-1945).

The method of successive approximations. We now describe another
method of successive approximation, which is as widely used as the method
of the Euler broken lines. We assume again that we are required to find
a solution y(x) of the differential equation (34) satisfying the initial condi-
tion

W(xo) = Yo -

For the initial approximation to the function y(x), we take an arbitrary
function y(x). For simplicity we will assume that it also satisfies the
initial condition, although this is not necessary. We substitute it into the
right side f{x, y) of the equation for the unknown function y and construct
a first approximation y, to the solution y from the following requirements:

d
3}-;1 = f1x, yo(2)], »a(x0) = Yo .

Since there is a known function on the right side of the first of these
equations the function y,(x) may be found by integration:

nx® = yo + | , £t D] .

It may be expected that y(x) will differ from the solution y(x) by less than
yd(x) does, since in the construction of y,(x) we made use of the differential
equation itself, which should probably introduce a correction into the
original approximation. One would also think that if we improve the
first approximation y,(x) in the same way, then the second approximation

2@ = vo+ [ Sl y(olds

will be still closer to the desired solution.
Let us assume that this process of improvement has been continued
indefinitely and that we have constructed the sequence of approximations

yt)(x)v yl(x)s Tt y,.(x), L
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Will this sequence converge to the solution p(x)?

More detailed investigations show that if f{x, y) is continuous and f is
bounded in the domain G, the functions y,(x) will in fact converge to the
exact solution y(x) at least for all x sufficiently close to x, and that if we
break of the computation after a sufficient number of steps, we will be
able to find the solution y(x) to any desired degree of accuracy.

Exactly in the same way as for the integral curves of equation (34),
we may also find approximations to integral curves of a system of two or
more differential equations of the first order. Essentially the necessary
condition here is to be able to solve these equations for the derivatives of
the unknown functions. For example, suppose we are given the system

Y - 1D E = fixiy,2). G

Asuming that the right sides of these equations are continuous and
have bounded derivatives with respect to y and z in some domain G in
space, it may be shown under these conditions that through each point
(X0 » Vo » Zo) of the domain G, in which the right sides of the equations in
(37) are defined, there passes one and only one integral curve

y =8, z=(x

of the system (37). The functions fy(x, y, z) and f5(x, y, z) give the direction
numbers at the point (x, y, z), of the tangent to the integral curve passing
through this point. To find the functions ¢(x) and y(x) approximately,
we may apply the Euler broken line method or other methods similar
to the ones applied to the equation (34).

The process of approximate computation of the solution of ordinary
differential equations with initial conditions may be carried out on
computing machines. There are electronic machines that work so rapidly
that if, for example, the machine is programmed to compute the trajectory
of a projectile, this trajectory can be found in a shorter space time than it
takes for the projectile to hit its target (cf. Chapter XIV).

The connection between differential equations of various orders and a
system of a large number of equations of first order. A system of or-
dinary differential equations, when solved for the derivative of highest
order of each of the unknown functions, may in general be reduced, by
the introduction of new unknown functions, to a system of equations of
the first order, which is solved for all the derivatives. For example, consider
the differential equation

@ f(ern ). )
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We set
Y- (39)
Then equation (38) may be written in the form
& _ fxron . (40)

Hence, to every solution of equation (38) there corresponds a solution
of the system consisting of equations (39) and (40). It is easy to show that
to every solution of the system of equations (39) and (40) there corresponds
a solution of equation (38).

Equations not explicitly containing the independent variable. The
problems of the pendulum, of the Helmholtz acoustic resonator, of a
simple electric circuit, or of an electron-tube generator considered in §1
lead to differential equations in which the independent variable (time)
does not explicitly appear. We mention equations of this type here, because
the corresponding differential equations of the second order may be
reduced in each case to a single differential equation of the first order
rather than to a system of first-order equations as in the paragraph
above for the general equation of the second order. This reduction greatly
simplifies their study.

Let us then consider a differential equation of the second order, not
containing the argument ¢ in explicit form

dx d*x
(g ) o @)
We set
dx
i (42)
and consider y as a function of x, so that
dx_ddny_dv_dy dx_ dy
det  dt dr)_dt ax a Yax
Then equation (41) may be rewritten in the form
dyy _
F(X, VA J’-J;) = 0. (43)

In this manner, to every solution of equation (41) there corresponds a
unique solution of equation (43). Also to each of the solutions y = ¢(x)
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of equation (43) there correspond infinitely many solutions of equation
(41). These solutions may be found by integrating the equation

B g0, (44)
where x is considered as a function of ¢.

It is clear that if this equation is satisfied by a function x = x(¢), then
it will also be satisfied by any function of the form x(r + t,), where ¢, is
an arbitrary constant.

It may happen that not every integral curve of equation (43) is the graph
of a single function of x. This will happen, for example, if the curve is
closed. In this case the integral curve of equation (43) must be split up
into a number of pieces, each of which is the graph of a function of x.
For every one of these pieces, we have to find an integral of equation (44).

The values of x and dx/dt which at each instant characterize the state
of the physical system corresponding to equation (41) are called the
phases of the system, and the (x, y) plane is correspondingly called the
phase plane for equation (41). To every solution x = x(t) of this equation
there corresponds the curve

x = x(1), y=x(1)

in the (x, y) plane; ¢ here is considered as a parameter. Conversely, to
every integral curve y = ¢(x) of equation (43) in the (x, y) plane there
corresponds an infinite set of solutions of the form x = x(r + ¢,) for
equation (41); here ¢, is an arbitrary constant. Information about the
behavior of the integral curves of equation (43) in the plane is easily
transformed into information about the character of the possible solutions
of equation (41). Every closed integral curve of equation (43) corresponds,
for example, to a periodic solution of equation (41).
If we subject equation (6) to the transformation (42), we obtain

dy  —ay — bx
- (45)

Setting v = x and dv/dt = y in equation (16), in like manner we get

dy _ —[R — M(a, + 2a,x + 3a,x°)] y — x
dx y ’

(46)

Just as the state at every instant of the physical system corresponding to
the second-order equation (41) is characterized by the two magnitudes*

Tk The values of dx/dr®, d®x/ds®, -+ at the same instant of time are defined by the
values of x and dx/dr from equation (41) and from the equations obtained from (45)
by differentiation (cf. formula (36)).
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(phases) x and y = dx/dt, the state of a physical system described by
equations of higher order or by a system of differential equations is
characterized by a larger number of magnitudes (phases). Instead of a
phase plane, we then speak of a phase space.

§6. Singular Points

Let the point P(x, y) be in the interior of the domain G in which we
consider the differential equation

dy  M(x,y)

dx  N(x, )’

(47)

If there exists a neighborhood R of the point P through each point of
which passes one and only one integral curve (47), then the point P is
called an ordinary point of equation (47). But if such a neighborhood does
not exist, then the point P is called a singular point of this equation. The
study of singular points is very important in the qualitative theory of
differential equations, which we will consider in the next section.

Particularly important are the so-called isolated singular points, i.e.,
singular points in some neighborhood of each of which there are no other
singular points. In applications one often encounters them in investigating
equations of the form (47), where M(x, y) and N(x, y) are functions with
continuous derivatives of high orders with respect to x and y. For such
equations, all the interior points of the domain at which M(x, y) # 0 or
N(x, y) # 0 are ordinary points. Let us now consider any interior point
(Xo, ¥o) Where M(x, y) = N(x, y) = 0. To simplify the notation we will
assume that x, = Oand y, = 0. This can always be arranged by translating
the original origin of coordinates to the point (x,, ¥,). Expanding M(x, y)
and N(x, y) by Taylor’s formula into powers of x and y and restricting
ourselves to terms of the first order, we have, in a neighborhood of the
point (0, 0),

dy _ M0,0) x + My(0,0)y + ¢i(x, )
dx NJ0,0)x + N(0,0)y +yx,)) °

(48)

where ¢,(x, y) and ¢(x, y) are functions of x and y for which

lim ‘f’n(x,}’) =0 and lim ¢3(x,y) -

=20 Vx4 ) SRV

y—+0
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Equations (45) and (46) are of this form. Equation (45) does not define
either dy/dx or dx/dy for x = 0 and y = 0. If the determinant

M0,0) M0, 0)
N'(0,0) N.(0,0)

#0;

then, whatever value we assign to dy/dx at the origin, the origin will be a
point of discontinuity for the values dy/dx and dx/dy, since they tend to
different limits depending on the manner of approach to the origin.
The origin is a singular point for our differential equation.

It has been shown that the character of the behavior of the integral
curves near an isolated singular point (here the origin) is not influenced
by the behavior of the terms ¢,(x, y) and ¢,(x, y) in the numerator and
denominator, provided only that the real part of both roots of the equation

— N/(0,0) A — N(0,0)

0 (49)

is different from zero. Thus, in order to form some idea of this behavior,
we study the behavior near the origin of the integral curves of the equation

dy  ax + by
dx cx +dy G0
for which the determinant
a b
| c d| =0

We note that the arrangement of the integral curves in the neighborhood
of a singular point of a differential equation has great interest for many
problems of mechanics, for example in the investigation of the trajectories
of motions near the equilibrium position.

It has been shown that everywhere in the plane it is possible to choose
coordinates £, , connected with x, y by the equations

x = kyé+ kyam,

(51
V= ky€ + koo,
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where the k,; are real numbers such that equation (50) is tranformed into
one of the following three types:

|)%=k’l§, where k=§f. (52)
2) :%;= ¢ "‘; /2 (53)
3) %: H (54)
Here A, and A, are the roots of the equation
‘";)‘ b‘_’)‘ =0. (55)

If these roots are real and different, then equation (50) is transformed into
the form (52). If these roots are equal, then equation (50) is transformed
either into the form (52) or into the form (53), depending on whether
a® 4+ d® = 0 or a® + d? 3£ 0. If the roots of equation (55) are complex,
A = « 4 Bi, then equation (51) is transformed into the form (54).

We will consider each of the equations (52), (53), (54). To begin with,
we note the following.

Even though the axes Ox and Oy were mutually perpendicular, the axes
O¢ and Oy need not, in general, be so. But to simplify the diagrams, we
will assume they are perpendicular. Further, in the transformation (51)
the scales on the O¢ and Oy axes may be changed; they may not be the
same as the ones originally chosen on the axes Ox and Oy. But again,
for the sake of simplicity, we assume that the scales are not changed.
Thus, for example, in place of the concentric circles, as in figure 8,
there could in general occur a family of similar and similarly placed ellipses
with common center at the origin.

All integral curves of equation (52) are given by a relation of the form

an +b| £ =0,

where a and b are arbitrary constants.

The integral curves of equation (52) are graphed in figure 10; here we
we have assumed that & > 1. In this case all integral curves except one,
the axis O, are tangent at the origin to the axis O¢. The case 0 <k < |
is the same as the case k > | with interchange of £ and 7, i.e., we have
only to interchange the roles of the axes £ and %. For k = 1, equation
(52) becomes equation (30), whose integral curves were illustrated in
figure 7.
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An illustration of the integral curves of equation (52) for k < 0 is given
in figure 11. In this case we have only two integral curves that pass through
the point O: these are the axis O¢ and the axis Ox. All other integral

iy

FiG. 10. FiGg. 11.

curves, after approaching the origin no closer than to some minimal
distance, recede again from the origin. In this case we say that the point
O is a saddle point because the integral curves are similar to the contours
on a map representing the summit of a mountain pass (saddle).

All integral curves of equation (53) are given by the equation

byp=&a+bin| £,

where a and b are arbitrary constants. These are illustrated schematically
in figure 12; all of them are tangent to the axis Ox at the origin.

If every integral curve entering some neighborhood of the singular
point O passes through this point and has a definite direction there, i.e.,
has a definite tangent at the origin, as is illustrated in figures 10 and 12,
then we say that the point O is a node.

Equation (54) is most easily integrated, if we change to polar coordinates
p and ¢, putting

£ =pcosp, n=psing.

Then this equation changes into the equation

= kp, where k= X

dp A
d B’
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and hence,
p = Ce*s, (56)

If k > 0 then all the integral curves approach the point O, winding
infinitely often around this point as ¢ — — oo (figure 13). If k <0,

FG. 12. Fig. 13.

then this happens for ¢ — 4 co. In these cases, the point O is called a
Jfocus. 1f, however, k = 0, then the collection of integral curves of (56)
consists of curves with center at the point 0. Generally, if some neighbor-
hood of the point O is completely filled by closed integral curves, sur-
rounding the point O itself, then such a point is called a center.

A center may easily be transformed into a focus, if in the numerator
and the denominator of the right side of equation (54) we add a term of
arbitrarily high order; consequently, in this case the behavior of integral
curves near a singular point is not given by terms of the first order.

Equation (55), corresponding to equation (45), is identical with the
characteristic equation (19). Thus figures 10 and 12 schematically
represent the behavior in the phase plane (x, y) of the curves

x=x(1), y=x(),

corresponding to the solutions of equation (6) for real A, and A, of the
same sign; Figure 11 corresponds to real A, and A, of opposite signs, and
figures 13 and 8 (the case of a center) correspond to complex A, and A, .
If the real parts of A, and A, are negative, then the point (x(?), y(¢)) ap-
proaches 0 for t — 4 oo; in this case the point x = 0, y = 0 corresponds
to stable equilibrium. If, however, the real part of either of the numbers
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A, and A, is positive, then at the point x = 0, y = 0, there is no stable
equilibrium.

§7. Qualitative Theory of Ordinary Differential Equations

An important part of the general theory of ordinary differential equa-
tions is the qualitative theory of differential equations. It arose at the end
of the last century from the requirements of mechanics and astronomy.

In many practical problems, it is necessary to establish the character
of the solution of a differential equation describing some physical process
and to describe the properties of its solutions as the independent variable
ranges over a finite or infinite interval. For example, in celestial mechanics,
which studies the motion of heavenly bodies, it is important to have
information about the behavior of the solutions of differential equations
describing the motion of the planets or other heavenly bodies for
unbounded periods of time.

As we said earlier, for only a few particularly simple equations can a
general solution be expressed in terms of integrals of known functions.
So there arose the problem of investigating the properties of the solutions
of a differential equation from the equation itself. Since the solution of a
differential equation is given in the form of a curve in a plane or in space,
the problem consisted of investigating the properties of integral curves,
their distribution and their behavior in the neighborhood of singular
points. For example, do they lie in a bounded part of the plane or do they
have branches tending to infinity, are some of them closed curves, and
so forth? The investigation of such questions constitutes the qualitative
theory of differential equations.

The founders of the qualitative theory of differential equations are the
Russian mathematician A M. Ljapunov and the French mathematician
H. Poincaré.

In the preceding section, we considered in detail one of the important
questions of the qualitative theory, namely the distribution of integral
curves in a neighborhood of a singular point. We turn now to some other
basic questions in qualitative theory.

Stability. In the examples considered at the beginning of the chapter,
the question of stability or instability of the equilibrium of a system was
easily answered from physical considerations, without investigating the
differential equations. Thus in example 3 it is obvious that if the pendulum,
in its equilibrium position O A, is moved by some external force to a nearby
position OA’, i.e., if a small change is made in the initial conditions, then
the subsequent motion of the pendulum cannot carry it very far from the
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equilibrium position, and this deviation will be smaller for smaller original
deviations OA’, i.e., in this case the equilibrium position will be stable.

For other more complicated cases, the question of stability of the
equilibrium position is considerably more complicated and can be dealt
with only by investigating the corresponding differential equations. The
problem of the stability of equilibrium is closely connected with the
question of the stability of motion. Fundamental results in this field were
established by A. M. Ljapunov.

Let some physical process be described by the system of equations

dx
z _fl(x’y9 ‘)s

(57)
Y pmnn

For simplicity, we consider only a system of two differential equations,
although our conclusions remain valid for a system with a larger number
of equations. Each particular solution of the system (57), consisting of
two functions x(¢) and y(r), will sometimes be called a motion, following
the usage of Ljapunov. We will assume that fi(x, y, 1) and fy(x, y, t) have
continuous partial derivatives. It has been shown that, in this case, the
solution of the system of differential equations (57) is uniquely defined if
at any instant of time ¢ = ¢, the initial values x(¢,) = x, and y(t) = y,
are given.

We will denote by x(t, x, , yo) and y(¢, x4 , y,) the solution of the system
of equations (57) satisfying the initial conditions

x = xqand y = y, for t = ¢,.

A solution x(t, x4 , ¥o), ¥(1, Xo , o) is called stable in the sense of Ljapunov
if for all t > 1, the functions x(t, x,, ¥o) and y(t, x,, yo) have arbitrarily
small changes for sufficiently small changes in the initial values x, and y, .

More exactly, for a solution to be stable in the sense of Ljapunov, the
differences

|x(f'xo+81syo+82)_x(fvx0vyo) Is

(58)
| ¥(t, Xo + 814 yo + 82) — ¥(t, Xq, yo) |
may be made less than any previously given number € for all ¢t > ¢, if
the numbers 8, and 8, are taken sufficiently small in absolute value.
Every motion that is not stable in the sense of Ljapunov is called
unstable.
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In his investigation, the motion x(¢, x,, yo) and (1, x, , y,) was called
by Ljapunov unperturbed, and the motion x(i, x5 + 8,, yo + dy),
W, xo + 8y, yo + 8;) with nearby initial conditions was called perturbed.
In this way stability in the sense of Ljapunov for an unperturbed motion
means that for all ¢t > ¢, the perturbed motion must differ only a little
from the unperturbed.

The stability of equilibrium is a special case of stability of motion,
corresponding to the case in which the unperturbed motion is

x(t, xo,¥e) = 0 and p(t, xy, y,) = 0.

Conversely, the question of the stability of any motion x = ¢,(¢) and
¥ = (1) of the system (57) may be reduced to the question of the stability
of equilibrium for some system of differential equations. To this end we
replace the unknown functions x(¢r) and y(r) in the system (57) by the
new unknown functions

E=x—¢() and 7 = y — $y(0). (59)

In the system (57) transformed in this way, the motion x = ¢,(¢) and
¥ = ¢o(t) will correspond to the motion £ = Oand y = 0, i.e., the position
of equilibrium. In what follows we will everywhere assume that the
transformation (59) has been made, so that we may consider stability
in the sense of Ljapunov only for the solution x =0, y = 0.

The condition of stability in the sense of Ljapunov now means that,
for 8, and 8, sufficiently small and ¢ > ¢4, the trajectory in the (x, y)
plane of a perturbed motion does not pass outside of the square with
sides of length 2 parallel to the coordinate axes and with center at the point
x=0,y=0.

We will be interested in those cases in which, without knowing an
integral of the system (57), we can nevertheless arrive at conclusions about
the stability or instability of a motion. Stability is a very important
practical question in the motion of projectiles, or of aircraft; and the
stability of orbits is important in celestial mechanics, where the motion
of planets and other heavenly bodies leads to this kind of investigation.

We assume that the functions fi(x, y, 1) and f, (x,y, 1) may be represented
in the form

.f:l(x' Vs I) = allx + ayzy + Rl(x! Vs ‘)v
(60)
fz(xv Vs ‘) = AnX + Ay + Rﬁ(x’ Vs I),
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where the a;; are constants, and Ry(x, y,t) and Ry(x, y, t) are functions of
x, ¥, and ¢ such that

| Ry(x, ¥, 1) | < M(x* + ) and | Ry(x, y, 1) | < M(x* + »%), (61)

where M is a positive constant.

If in the system (57) we substitute equations (60), neglecting R,(x, y, 1)
and Ry(x, y, t), we get a system of differential equations with constant
coefficients

dx—a X + apy
dt 11 12V

(62)

% = anX + Ay,
which is called the system of first approximation to the nonlinear system (57).
Before the time of Ljapunov, researches confined themselves to investi-
gating stability of the first approximation, believing that the results
obtained would carry over to the question of stability for the basic non-
linear system (57). Ljapunov was the first to show that in the general case
this conclusion is false. On the other hand, he gave a series of very wide
conditions under which the question of stability for the nonlinear system is
completely solved by the first approximation. One of these conditions is
the following. If the real parts of both the roots of the equation

ay — A a2 -0
Qg oo — A

are negative and the functions Ry(x, y, 1) and R,(x, y, t) fulfill condition
(61), then the solution x(r) = 0, y(¢) = 0is stable in the sense of Ljapunov.
If the real part of either of the roots is positive, then the solution x(¢) = 0,
M) = 0 of an equation satisfying the conditions (61) is unstable. Ljapunov
also gave a series of other sufficient conditions for stability and instability
of a motion.*

If the right sides of equations (57) do not depend on ¢, then dividing
the first equation of the system (57) by the second we get

& _ fixy)
o ) (50>

The origin will be a singular point for this equation. In the case of stability
of equilibrium, this point may be a focus, a node, or a center, but cannot
be a saddle point.

-_*}k M. Ljapunov, The general problem of stability of motion.
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Thus the character of a singular point may be determined from the
stability or instability of the equilibrium position.

The behavior of integral curves in the large. It is sometimes impor-
tant to construct a schematized representation of the behavior of the
integral curves “in the large”; that is, in the entire domain of the given
system of differential equations, without attempting to preserve the scale.
We will consider a space in which this system defines a field of directions
as the phase space of some physical process. Then the general scheme of
the integral curves, corresponding to the system of differential equations,
will give us an idea of the character of all processes (motions) which can
possibly occur in this system. In figures 10-13 we have constructed
approximate schematized representations of the behavior of the integral
curves in the neighborhood of an isolated singular point,

One of the most fundamental problems in the theory of differential
equations is the problem of finding as simple a method as possible for
constructing such a scheme for the behavior of the family of integral
curves of a given system of differential equations in the entire domain
of definition, in order to study the behavior of the integral curves of this
system of differential equations “in the large.” This problem remains
almost untouched for spaces of dimension higher than 2. It is still very
far from being solved for the single equation of the form

dv _ M(x,»)

dx  N(x,Y) (64)

even when M(x, y) and N(x, y) are polynomials.

In what follows, we will assume that the function M(x, ) and N(x, y)
have continuous partial derivatives of the first order.

If all the points of a simply connected domain G, in which the right side
of the differential equation (64) is defined, are ordinary points, then the
family of integral curves may be represented schematically as a family
of segments of parallel straight lines; since in this case one integral curve
will pass through each point, and no two integral curves can intersect.
For an equation (64) of more general form, which may have singular
points, the structure of the integral curves may be much more complicated.
The case in which equation (64) has an infinite set of singular points (i.e.,
points where the numerator and the denominator both vanish) may be
excluded, at least when M(x, y) and N(x, y) are polynomials. Thus we
restrict our consideration to those cases in which equation (64) has a
finite number of isolated singular points. The behavior of the integral
curves that are near to one of these singular points forms the essential
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element in setting up a schematized representation of the behavior of all
the integral curves of the equation.

A very typical element in such a scheme for the behavior of all the
integral curves of equation (64) is formed by the so-called /limit cycles.
Let us consider the equation

dp
B pn 1,
P P (65)
where p and ¢ are polar coordinates in the (x, y) plane,
The collection of all integral curves of equation (65) is given by the
formula
p =1+ Cet, (66)

where C is an arbitrary constant, different for different integral curves.
In order that p be nonnegative, it is necessary that ¢ have values no larger
than — In | C |, C < 0. The family of integral curves will consist of

1. thecirclep =1 (C=0);

2. the spirals issuing from 1
the origin, which approach
this circle from the inside as
¢— — 0 (C<0)

3. the spirals, which ap-
proach the circle p =1
from the outside as ¢ — — o0
(C > 0) (figure 14).

The circle p = | is called
a limit. cycle for equation
(65). In general a closed
integral curve / is called a
limit cycle, if it can be
enclosed in a disc all points i
of which are ordinary for Fig. 14.
equation (64) and which is
entirely filled by nonclosed integral curves.

From equation (65) it can be seen that all points of the circle are ordinary.
This means that a small piece of a limit cycle is not different from a small
piece of any other integral curve.

Every closed integral curve in the (x, y) plane gives a periodic solution
[x(2), ¥(1)] of the system

dx

_ N
E - N(x, J’)»z - M(X, y)» (67)
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describing the law of change of some physical system. Those integral
curves in the phase plane that as t — 4 co approximate a limit cycle are
motions that as 1 — + oo approximate periodic motions.

Let us suppose that for every point (x,, y,) sufficiently close to a limit
cycle /, we have the following situation: If (x4, y,) is taken as initial point
(i.e., for t = 1) for the solution of the system (67), then the corresponding
integral curve traced out by the point [x(z), y(1)], as t — + oo approximates
the limit cycle /in the (x, ) plane. (This means that the motion in question
is approximately periodic.) In this case the corresponding limit cycle is
called stable. Oscillations that act in this way with respect to a limit cycle
correspond physically to self-oscillations. In some self-oscillatory systems,
there may exist several stable oscillatory processes with different ampli-
tudes, one or another of which will be established by the initial conditions.
In the phase plane for such “self-oscillatory systems,” there will exist
corresponding limit cycles if the processes occuring in these systems are
described by an equation of the form (67).

The problem of finding, even if only approximately, the limit cycles of
a given differential equation has not yet been satisfactorily solved. The
most widely used method for solving this problem is the one suggested by
Poincaré of constructing “cycles without contact.” It is based on the
following theorem. We assume that on the (x, y) plane we can find two
closed curves L, and L, (cycles) which have the following properties:

1. The curve L, lies in the region enclosed by L, .

2. In the annulus 2, between L, and L, , there are no singular points of
equation (64).

3. L, and L, have tangents everywhere, and the directions of these
tangents are nowhere identical with the direction of the field of directions
for the given equation (64).

4. For all points of L, and L, the cosine of the angle between the
interior normals to the boundary of the domain £ and the vector with
components [ N(x, y), M(x, y)] never changes sign.

Then between L, and L,, there is at least one limit cycle of equation
(64).

Poincaré called the curves L, and L, cycles without contact.

The proof of this theorem is based on the following rather obvious fact.
We assume that for decreasing ¢ (or for increasing ¢) all the integral curves

x=x(1), y=y1)

of equation (64) (or, what amounts to the same thing, of equations (67),
where ¢ is a parameter), which intersect L, or L,, enter the annulus £
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between L, and L, . Then they must necessarily tend to some closed curve
! lying between L, and L,; since none of the integral curves lying in the
annulus can leave it, and there are no singular points there.

But the problem of finding cycles without contact is also a complicated
one and no general methods are known for solving it. For particular
examples it has been possible to find cycles without contact, thereby
proving the existence of limit cycles.

In radio technology it is important to find limit cycles (self-oscillatory
processes) for equation (16) for the electron-tube generator. For equations
of the type of (16), N. M. Krylov and N. N. Bogoljubov gave a method,
about twenty Yyears ago, for approximate computation of a certain limit
cycle that exists for this equation. At about the same time the Soviet
physicists L. I. Mandel’stam, N. D. Papaleksi, and A. A. Andronov gave
a proof of the possibility of applying what is called the method of the
small parameter, a method that to some extent had been used earlier in
practice, though without any rigorous justification. Andronov was also
the first to make systematic practical use, in the analysis of self-oscillatory
systems, of the theoretical methods already developed by Ljapunov and
Poincaré. In this manner he obtained a whole series of important results.

As was mentioned earlier, an important role is played in physics by
“insensitive’ systems (cf. §3). Andronov, together with L. S. Pontrjagin, set
up a catalogue of the elements from which one could construct a complete
chart of the behavior of the integral curves in the (x, ») plane for an
insensitive differential equation of the form (64). It had been long known,
for example, that a center near a singular point is easily destroyed by
small changes in the equations (64). Thus in the construction of a chart of
the behavior of the integral curves of equation (64), we cannot have a
center, i.e., a family of closed integral curves surrounding a singular point,
if the equation is “insensitive.”

The question of the behavior of the integral curves in the large is still
far from its final solution. We note that the analogous and probably
simpler question of the form of real algebraic curves in the plane, i.e.,
curves defined by the equation

P(x,y) =0,

where P(x, y) is a polynomial of degree n, is also far from a complete
solution. The form of these curves is completely known only for n < 6.

The solutions of the system (64) define motions in the plane. If we
replace each point (x4, y,) in the plane by the corresponding point
[x(t, X0, ¥o)s Y1, Xo , Yo)], Where X(1, Xo,yo) and y(t, xo,y,) are the
solution of the system (64) with initial conditions x = x, and y = y,
for t = t,, we obtain a transformation of the points of the plane depending
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on the parameter ¢. Similar transformations depending on a parameter,
together with the motions they generate, may be considered on a sphere,
a torus, or other manifolds. The properties of these motions are studied
in the theory of dynamical systems. In a neighborhood of every point
these motions are the solutions of some system of differential equations.
In the past decade the theory of dynamical systems has been developed
on a broad basis in the works of V. V. Stepanov, A. Ja. Hin¢in, N. N.
Bogoljubov, N. M. Krylov, A. A. Markov, V. V. Nemyckii and others,
and also in the works of G. D. Birkhoff and other mathematicians.

In this chapter we have given a brief outline of the present state of the
theory of ordinary differential equations and have attempted to describe
the problems that are considered in this theory. Our study in no sense
pretends to be complete. We have had to omit consideration of many
branches of the theory that arise in the study of more special problems
or that require broader mathematical knowledge than the reader of this
book is assumed to possess. For example, we have nowhere touched
upon the general and important area in which one the theory of differential
equations with complex argument is considered. We have had no oppor-
tunity to examine the theory of boundary-value problems and in particular,
of eigenfunctions, which is of great importance in the applications.

We have also been able to pay very little attention to approximative
methods for the numerical or analytical solution of differential equations.
For these questions, we recommend that the reader consult the specialized
literature.
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