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PREFACE

It is probably fair to say, and has been said before by many
others, that graph theory began with Euler’s solution in 1735 of
the class of problems suggested to him by the Konigsberg bridge
puzzle. But had it not started with Euler, it would have started
with Kirchhoff in 1847, who was motivated by the study of
electrical networks; had it not started with Kirchhoff, it would
have started with Cayley in 1857, who was motivated by certain
applications to organic chemistry, or perhaps it would have started
earlier with the four-color map problem, which was posed to De
Morgan by Guthrie around 1850. And had it not started with any
of the individuals named above, it would almost surely have
started with someone else, at some other time. For one has only to
look around to see “real-world graphs” in abundance, either in
nature (trees, for example) or in the works of man (transportation
networks, for example). Surely someone at some time would have
passed from some real-world object, situation, or problem to the
abstraction we call graphs, and graph theory would have been
born.

Today graph theory is a vast and somewhat sprawling subject,
embracing as it does applications in many diverse areas: physics,
chemistry, engineering, operations research, genetics, economics,
psychology, and sociology, to name some. Dozens of books and
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proceedings of conferences on graph theory have appeared, mostly
within the last fifteen years, and the number of journal articles
dealing with graphs that have appeared in this time interval must
number in the thousands. Today there are journals devoted exclu-
sively to graph or network theory, and other journals, devoted
exclusively to combinatorial mathematics, in which many, if not
most, of the papers that appear are about graphs.

This recent explosion in a subject that was fairly dormant over a
long period of time creates a difficult situation for one who is
asked to edit a study on graph theory. Many facets of the subject
must be omitted entirely; others can be treated in only a sketchy
fashion. The resulting study will be biased by the editor’s
ignorance of some topics in the subject, and by his likes and
dislikes for topics he knows something about. These remarks
would apply to almost any editor; they certainly apply to me.
Some of the important omissions that I know about include the
fairly recent and lengthy affirmative resolution of the Heawood
map conjecture by Ringel and Youngs, the solution. of the Shan-
non switching game by Lehman, and the work of Edmonds on
weighted matching theory, together with its application to very
practical generalizations of the Euler problem. The latter would
have brought us back to where it all started.

I shall let the papers that comprise the two volumes of this study
speak for themselves. Some of them have appeared elsewhere;
others appear here for the first time.

D. R. FULKERSON
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POLYTOPAL GRAPHS*

Branko Griunbaum

A graph G is called d-polytopal provided there exists a d-
dimensional convex polytope P such that the vertices and edges of
G are in a one-to-one incidence-preserving correspondence with
those of P. In other words, G is d-polytopal if and only if it is
isomorphic to the 1-skeleton of some convex d-polytope P. The
polytope P is then said to realize G, and G is called the graph of P.
Instead of “3-polytopal graph,” we shall often say “polyhedral
graph.”

Convex polygons and polyhedra (that is, 3-dimensional convex
polytopes) have been frequent topics of investigation since antiq-
uity; about a century ago, their study was extended to polytopes of
arbitrary dimension d. While much of the early interest was of a
metric character (Pythagorean theorem, regular polygons, Platonic
and Archimedean solids, etc.), in more recent times the com-
binatorial point of view has attracted most of the attention.
Among problems of this type, two deserve particular mention as
they had great influence on the study of polytopal graphs.

*Research supported in part by the Office of Naval Research under Grant
N00014-67-A-0103-0003.
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202 Branko Griinbaum

Two polytopes are called isomorphic (sometimes also “com-
binatorially equivalent) provided their faces of all dimensions
(vertices, edges, ..., facets) can be brought into a one-to-one
inclusion-preserving correspondence. The determination of all
isomorphism types of polygons is trivial: for every n > 3, there exist
n-gons (that is, convex polygons with n sides) and every two
n-gons are isomorphic. But already in dimension 3 the problem is
very difficult. Leonhard Euler, Jacob Steiner, Arthur Cayley, and
others, worked on the determination of the number of non-
isomorphic polyhedra with a given number v of vertices (or of
suitable subclasses of such polyhedra) with no success beyond the
experimental solution for very small values of v. (It should be
mentioned that Euler’s study of the question led him to the
discovery of the “Euler formula” relating the numbers of vertices,
edges and faces of a polyhedron, which was one of the starting
points of modern topology.) As we shall see below, the
isomorphism of polyhedra is equivalent to the isomorphism of
their graphs; thus an important geometric problem becomes
translated into a problem in graph theory. The reader interested to
learn about the present state of the enumeration problem for
polyhedra and about references to its history and literature should
consult Federico [1], [2] and Tutte [4].

The second problem which has exerted great influence on the
development of the theory of polytopal graphs was the question of
efficiency of linear programming and other computational
techniques. It led to a renewal of interest in the combinatorial
theory of polytopes in general, and to various questions regarding
paths in polytopal graphs in particular, thus motivating many of
the investigations. An account of the relevant results and their
history, with numerous references to the literature, may be found
in the stimulating paper of V. Klee [2].

Polytopal graphs are endowed with many remarkable proper-
ties; their study naturally leads to a large number of questions .in
graph theory, combinatorics, topology and geometry. A few such
questions will be mentioned later.

The following discussion is meant to impart to the reader some
feeling about the type of results known on polytopal graphs, the
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methods used in proving them, and the open questions related to
them. We attempted to provide the reader with a few historical
facts in the hope that he will share our enjoyment of the interplay
between old, almost forgotten knowledge and new ideas and
points of view. Without striving for completeness, we have also
attempted to include enough bibliographic references to enable the
interested reader to locate the original publications.

Most of the material deals with 3-polytopal graphs. This is
natural since their properties have been investigated in more
detail, and are easier to understand without detailed technical
background, than those of d-polytopal graphs with d > 4. Some
aspects of the latter are discussed in the last part of the report.

One of the simplest and most elegant general results on poly-
topal graphs was first established by M. L. Balinski [1] in 1961:

THEOREM 1. Every d-polytopal graph is d-connected.

In other words, any two vertices of a d-polytopal graph are
connected by d paths that are pairwise disjoint except for their
endpoints.

Theorem 1 clearly supplies a partial answer to the fundamental
problem of characterizing, for each d, the family of d-polytopal
graphs. It is obvious that for 4 = 2 this characterization is trivial:
G is 2-polytopal if and only if G is a circuit with n > 3 vertices
and edges. But the following characterization of 3-polytopal
graphs found by E. Steinitz [1] in 1916 is one of the most
remarkable results about polytopal graphs:

THEOREM 2: A graph G is polyhedral if and only if G is planar
and 3-connected.

Easily accessible proofs of Steinitz’ theorem may be found in

. Griinbaum [1] and in Barnette-Griinbaum [1}. A proof that paral-
lels part of one of Steinitz’s original proofs is attempted in Lyus-
ternik [1]; unfortunately, Lyusternik’s formulation (in the Russian
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original, as well as in the two English translations) is fallacious in
failing even to mention the need for an argument at the crucial
stage of one of the main steps of the proof, and also in failing to
include conditions that would force the graph to be 3-connected.

With Theorem 2, we arrived at one of the reasons for the
importance of polytopal graphs: like the 4-color problem, many of
the interesting questions about planar graphs deal with 3-
connected graphs, or can easily be reduced to deal with such
graphs. But then they become questions about polyhedral graphs,
and the scene is set for mutual influences of geometric and
combinatorial ideas.

Before pursuing this direction in some detail, it appears
worthwhile to make a few comments on the history, proof, and
meaning of Theorem 2.

Steinitz was aware of the basic nature of his result; he called it
the “Fundamental Theorem on Convex Types [of Polyhedra]” and
—in analogy to Gauss’ four proofs of the “Fundamental Theorem
of Algebra”—gave three completely different proofs. The details
are meticulously worked out in the book by Steinitz and Rade-
macher [1]. It should be remarked, however, that Steinitz estab-
lished his theorem before the emergence of graph theory and the
notions of connectivity and planarity. Hence he was obliged to use
other notions and a different terminology; he works with 2-
dimensional complexes, and so his formulation of the result as
well as the details of the proofs are rather cumbersome.

The assertion that every polyhedral graph G is 3-connected is
clearly just a special case of Theorem 1; it may also be easily
established in a direct way. The planarity of each polyhedral graph
G may be proved using the so-called Schlegel diagrams (named
after V. Schlegel [1] who introduced them in 1881 in connection
with his investigations of 4-dimensional regular polytopes). Let P
be a polyhedron that realizes G; imagining P made of cardboard,
we omit one of its faces and view the opening from a point
sufficiently close by to see all the other faces of P from the inside.
A Schlegel diagram of P is any projection of all the vertices and
edges of P from such a point into the deleted face; thus each
Schlegel diagram appears as a partition (tessellation) of a convex
polygon into convex polygons. The existence of Schlegel diagrams
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for each polyhedron P establishes the planarity of every poly-
hedral graph G.

The other half of Steinitz’ theorem is the difficult one. It
amounts to the construction of a polyhedron P that realizes a
given 3-connected planar graph G. The reader will possibly have
an inkling of some of the difficulties involved by studying the
various parts of Figure 1. All the graphs in it are mutually
isomorphic, and although people endowed with a good 3-
dimensional intuition may imagine a convex solid realizing that
graph G, it is rather hard to describe the construction of the solid
from the graph. (The reader may wish to convince himself that
none of the shown representations of G is a Schlegel diagram of
any convex polyhedron.) It should also be noted that the graph G
in Figure 1 has several features that make the construction of a
solid realizing it uncharacteristically easy.

Fic. 1

All the known proofs of Steinitz’ theorem proceed by induction
on the number of edges of G, the assertion being obviously true
for the unique 3-connected planar graph G with 6 edges (as well as
for some other classes of graphs). In the inductive step there are
two stages: (i) By a suitable method, to each 3-connected planar
graph G with more than 6 edges a graph G’ is associated that is of
the same type but has fewer edges than G. (ii) A method is
described by which from each polyhedron P’ that realizes G a
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polytope P realizing G may be constructed. The different proofs
vary in the methods used in the two stages; for details, the reader
should consult Steinitz-Rademacher [1], Griinbaum [1] or Barnet-
te-Griinbaum [1].

It is rather curious to observe that many mathematicians
seemed (and still seem) to have an intuitive feeling that any planar
graph that somehow resembles a Schlegel diagram is polyhedral,
and that a polyhedron realizing it may be obtained by “lifting”
part of the graph above the plane. But more curious still is the fact
that many—Schlegel among them—did not seem to feel that this is
an assertion needing some proof. One of the most interesting of
such cases is that of T. P. Kirkman. In 1857, Kirkman discovered
the planar variant of the characterization of 3-connected graphs
obtained by Tutte [3] in 1961—but Kirkman was not aware of the
need of justifying the possibility of moving various vertices, that
possibility being completely obvious for planar graphs but not at
all evident for vertices of polyhedra. The importance of Steinitz’s
theorem is, among others, that it provides post-factum justification
for many such arguments. (By the way, much of the work of the
Reverend Thomas P. Kirkman is undeservedly forgotten. He was
an original and industrious investigator in geometry and com-
binatorics, and some of his results will be mentioned later. Kirk-
man antedated Steiner in posing, and Reiss in solving, the problem
of “Steiner triples,” invented “Hamiltonian” circuits, etc.)

Among the many ramifications of Steinitz’s theorem, we men-
tion only the following few:

(2.a) Every maximal planar graph (that is, triangulation of the
plane or the sphere) with at least 4 vertices is polyhedral.

(2.b) The faces (“countries”) of every 3-connected planar graph
are uniquely determined by the graph. (Whitney’s theorem.)

(2.c) A 3-connected planar graph G and its dual graph G’ may
be realized by polyhedra P and P’ that are polar (or dual) to each
other. (In this context, it should be mentioned that the treatment
of dual graphs in many texts is obviously patterned on 3-
connected graphs although the statements are frequently formu-
lated in a generality in which they are no longer valid.)

(2.d) Every planar graph has planar realizations in which each
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edge is a rectilinear segment. (Wagner’s theorem.)

(2.€) Every 3-connected planar graph has realizations in the
plane in which all the bounded countries are convex, as is the
complement of the unbounded country.

(2.f) Every polyhedral graph G has a realization by a
polyhedron P such that all automorphisms of G are induced by
symmetries of P. (Mani [1].)

For details about these results and their literature, see
Griinbaum [2].

As a challenging open problem related to (2.a), we mention the
following (compare Duke [1] for other problems, known results,
and references): If a graph G triangulates the torus, does there
exist an isomorphic triangulation of a torus such that each of its
triangles is a geometric (rectilinear) triangle? An open problem
related to (2.€) is due to Ungar [1]: Does there exist a constant
¢ > 0, such that for each 3-valent polyhedral graph G there is an
imbedding of G in the plane with all faces convex, and for each
face the ratio of its incircle to its circumcircle (or the ratio of its
width to its diameter) is at least ¢? Also unsolved is the question:
Which imbeddings of a 3-connected planar graph are actually
obtainable as Schlegel diagrams of suitable polyhedra?

We turn now to a discussion of several other properties of
3-polytopal graphs.

One line of investigations, motivated at least in part by the
problem of enumeration of polyhedra, was substantially advanced
by V. Eberhard [1] in 1891. To-simplify the exposition, let us agree
to denote by v, e, p the numbers of vertices, edges, and faces of a
polyhedron or of a polyhedral graph, and by v, and p, the
numbers of k-valent vertices and k-sided faces. If we wish to
indicate which polyhedron P or graph G is considered, we shall
write o(P), v(G), etc. With those symbols Euler’s relation reads
p — e + p = 2, and it is easily seen that we also have the follow-
ing relations:

v= 2 ) p= ZPk,
k>3 k>3

2e= D kop = D kpg.
k>3 ; k>3 -
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Appropriate combinations yield, among others,

DE-Kp+22 (G- ko =12 (*)
k>3 k>3
D @-K)(p+0)=8 (**)
k>3

from which it follows at once that p, + p, + ps > 4 and p; + v,
> 8.

Eberhard was the first to consider questions of the following
type: Given finite sequences (p,) and (v,) of non-negative integers
that satisfy (*) or (**), does there exist a polyhedron or a 3-
polytopal graph with those preassigned values of p, and ov,?
Eberhard’s main result concerns the case of relation (*) provided
v, = 0 for all k¥ > 4; he proved:

THEOREM 3: For any finite sequence (p,) of non-negative integers
satisfying

26— kp, =12, (***)
k>3

there exists a 3-valent polyhedral graph G with p, (G) = p, for all
k # 6.

Eberhard’s original proof was based on a detailed investigation
of systems of hexagons that form part of the boundary of a convex
polyhedron and was very involved. Using Steinitz’ theorem, it is
possible to prove this result (and many others) by the much
simpler construction of appropriate 3-connected planar graphs.
The main idea in those proofs is to put together, in a suitable way,
convenient standardized “building blocks,” each of which
accounts for one of the “large” polygons; in certain cases addi-
tional “repairs” must be performed. A detailed proof along those
lines may be found in Griinbaum [1].

Eberhard’s result served as a starting point for many different
investigations, some of which we shall now briefly mention; their
proofs are mostly based on suitable variations of the above idea.

(3.2) If sequences (p,) and (v,) satisfy (**) and if 2, 3kv, is
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even, then there exists a polyhedral graph G with p,(G) = p, and
0,(G) = v, for all k # 4.

(3.b) If in Theorem 3 we have p; = p, = 0, then even py(G) may
be required to have any preassigned value > 8. In any case, the
“gaps” in the possible values of pg are not great, as follows from
the recent result of Fisher [1]: If a sequence (p,) satisfies (***),
there exists a constant my < 32 ,_.Py, such that for each choice of
pg = mg + 2m, m a positive integer, there is a 3-valent polyhedral
graph G with p,(G) = p, for all k.

(3.c) There exist non-trivial lower bounds on Pe(G) in terms of
P.(G), k # 6, valid for all 3-valent polyhedral graphs G (Barnette
[2]; Jucovig [1]); for example, Jucovid established

3ps(G) > 12 = 2p,(G) — 3ps(G) + k§7 ([3(k + D] = 6)p(G).

(3.d) If 2-connected planar graphs G are considered, 2-valent
vertices and digons may be reasonably admitted; their numbers
may be denoted by v,(G) and p,(G). Similarly, if G is assumed
only to be connected, then we may have v,(G) >0 and p,(G)
> 0. Theorem 3 and remark (3.a) have analogues in those in-
stances as well, with 2-connected, or connected, planar graphs
instead of polyhedral graphs (Rowland [1]).

(3.e) All the results mentioned above have analogues valid for
graphs imbedded in orientable 2-manifolds other than the sphere
(or the plane); the case corresponding to equation (*) for a
manifold of genus g has been settled by Jendrol-Jucovi€ [1],
where the reader may also find references to the rather abundant
literature.

(3.f) As conjectured already by Eberhard in 1891 but first
proved only in 1964 by T. S. Motzkin, if a 3-valent polyhedral
graph G is a multi-3-gon (that is, satisfies p,(G) = 0 whenever & is
not a multiple of 3) then p(G) is even. Many extensions and
variants of this result are known (see, in particular, Malkevitch [1],
Gallai [1], Medyanik [1]), although the understanding of the
phenomenon is still rather lacunary. Possibly this is to be expected
in view of the fact that the 4-color problem is equivalent to the
question whether every 3-valent polyhedral graph G can be made
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into a multi-3-gon by “cutting off” suitable vertices of G (that is,
replacing each of them by a triangular face).

A challenging open problem in this area is the characterization
of the sequences (v,) for which there exist polyhedral graphs, or
Just planar graphs, G such that v,(G) = v, for all k. This question
was posed (in a dual formulation) already by Sainte-Marie [1] in
1895, but only very superficial partial answers are known (see
Griinbaum [2, p. 1142] for references to the literature).

Related to (3.d) and (3.f) is a remarkable problem about 3-
valent 2-connected planar graphs, such that p, = 3 and p, = 0 for
k # 2,6. It was conjectured by Brunel [1] in 1897 that a value of p
is possible for such graphs if and only if pg = x> + xp + y2 — 1,
where x and y are non-negative integers with x2 + y> > 0. The
problem was independently raised by Malkevitch [2] in 1970, but a
solution has still not been found.

A different direction of investigations concerns “Hamiltonian”
and other circuits and paths in polyhedral graphs. Introduced by
T. P. Kirkman [1] in 1855, simple circuits through all the vertices
of a polyhedral graph appear in surprisingly varied contexts. (We
shall not attempt to correct the historical injustice by trying to
substitute “Kirkmanian” for “Hamiltonian.”) Kirkman used them
in deriving a method of representing certain polyhedra; he ob-
served that not every polyhedron admits a Hamiltonian circuit
and gave an example of one that did not (the example is repro-
duced in Steinitz [1, p. 49)).

A famous conjecture proposed by Tait [1] in 1880 asserts that
every 3-valent polyhedral graph admits a Hamiltonian circuit. A
proof of Tait’s conjecture would lead to an affirmative solution of
the 4-color problem; it is also relevant to some questions of
systematics of cyclic compounds in organic chemistry, as pointed
out by J. Lederberg in 1966. Although already Kirkman [2] in 1881
doubted the validity of Tait’s conjecture, the first counterexample
to it was found only in 1946 by W. T. Tutte [1]. A brilliant—but
post factum almost trivial—method of generating such graphs was
found by Grinberg [1] in 1968; it is rather touching to realize that
Kirkman in 1881 had essentially the same idea and condition—but
due to notational clumsiness stopped just short of the goal. Kirk-
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man’s equation (F) on page 113 is, except for notation and trivial
uses of the Euler relation, identical to Grinberg’s condition: If a
3-valent polyhedral graph G admits a Hamiltonian circuit, then
there exists a decomposition p,(G) = p; + p; (with non-negative
integers p;, py), such that

2 (k-2)p; = Ea(k - 2)p{.

k>3

Considering this equation modulo 3, it is immediate that the graph
G, obtained from the graph G’ in Figure 2 by “shrinking” each
small triangle to a vertex, has no Hamiltonian circuit since 24G)
= 1, ps(G) = 18, p(G) = 4 and p;(G) =0 for j # 4, 5, 8. (Since
in a 3-valent graph “cutting off” vertices does not affect the
existence or non-existence of a Hamiltonian circuit, it follows that
the graph G’ shown in Figure 2 has no Hamiltonian circuit.)

Among the ramifications of the fact that polyhedral graphs—
and even 3-valent ones—may fail to have Hamiltonian circuits we
mention the following:

(4.a) A deep result of Tutte [2] establishes that every 4-
connected polyhedral (that is, 4-connected planar) graph possesses
Hamiltonian circuits. Concerning extensions to graphs imbedded
in 2-manifolds see Duke [2].

(4.b) G. Ewald [1] recently established that every triangulation
of the plane in which each vertex is of valence at most 6 has a
Hamiltonian circuit; he also proved a number of related results on
other families of polyhedral graphs. (The existence of Hamiltonian
circuits in 6-valent triangulations of the torus was established by
Altshuler [1]))

(4.c) For various classes of polyhedral graphs there exist con-
stants @ < 1 and B (depending on the class) such that h(G)
< B(v(G))* for each G of the class, where h(G) denotes the
maximal length of a simple circuit in G. For a survey of results
and literature on that topic and for improvements of many of the
previous results, see Griinbaum-Walther [1]. For the class of all
polyhedral graphs one may choose any a > log 2/log 3 (Moon-
Moser [1]); it may be conjectured that a > log 2/log 3 for every
infinite family of polyhedral graphs.
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(4.d) Let I'(j, m) denote the family of all graphs G, such that
©v(G) — h(G) = m and that for every j vertices of G there exists a
circuit of length 4(G) missing those j vertices; I'y(j, m) denotes the
subfamily of I'(j, m) consisting of polyhedral graphs. The graphs
belonging to I'(1, 1) are usually called “hypohamiltonian;” they
have recently been investigated by several authors, who also dealt
with various related notions. It is known (see Griinbaum [5] for
this result and for references to earlier literature) that T'(1, 3) %0 ;
it may be conjectured that T(1, 1) = T'(1, 2) =4, and that each
I'y(j, m) contains only finitely many non-isomorphic graphs. On
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the other hand we conjecture that for each j there is an m; such
that To(j, m) #4.

Before turning our attention to d-polytopal graphs for d > 4, we
would like to focus attention on a few additional results and
problems dealing with polyhedral graphs.

A surprising result of Barnette [1] is:

THEOREM 5: Every polyhedral graph G contains a spanning tree
(that is, a tree containing all the vertices of G) of maximal valence
3.

Among open questions related to Theorem 5 are:

If G is a polyhedral graph and G* a graph dual to G, does there
exist a spanning tree T of G with maximal valence 3, such that the
edges of G not in T correspond in G* to a spanning tree of G*
with maximal valence 3?

Does every 3-connected graph imbedded in the torus have a
spanning tree of maximal valence 3? What are the analogues of
Theorem 5 for 3-connected graphs imbeddable in an orientable (or
else, in a non-orientable) manifold of genus g?

A beautiful result of Kotzig [1] deals with the weight w(E) of an
edge E of a graph G, where w(E) is defined as the sum of the
valences of the two vertices of E.

THEOREM 6: Every polyhedral graph G contains an edge E such
that w(E) < 13, and this inequality is best possible.

Since Kotzig’s result is not well known and its proof is not
readily accessible, we bring here an outline of the arguments. The
assertion that the result is best possible is established by the graph
in Figure 3. For the proof of the inequality, we first note that if a
polyhedral graph G, is not a triangulation, but has the property
that w(E) > k for each edge FE of G,, then by adding suitable
diagonals G; may be enlarged to a triangulation G, of the plane
such that w(E) > k for each edge E of G,. Thus it is enough to
prove the inequality of the theorem for triangulations G. Let ¢; ;
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denote the number of edges of G that have one vertex of valence j,
the other of valence k. Assuming that ¢; , = 0 for all pairs (j, k)
such that j + k < 12, we consider the 3v, edges incident with the
v, vertices of valence 3. Counting from the other endpoints of
those edges, and observing that two adjacent edges may not both
lead to vertices of valence 3, we obtain

30, < €350+ 2 [$K]0,.
k>11

V@:ﬁ@%

mapped onto each other by a self-isomorphism of the graph. One matching is
emphasized by heavy edges.
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Similarly, considering the 3v; + 4v, edges incident with the ver-
tices of valence at most 4, or the 3v, + 4v, + Sv5 edges incident
with vertices of valence at most 5, we obtain

3v, + 4v, < D, [$k]o,,
k>9
3v; + 4o, + Sv5 < D) [$K]o,.
k>8

Multiplying these inequalities by 5, 3, and 2 and adding, we obtain
300, + 200, + 1005

< 583. 10 + 808 + 2009 + 250.0 + 10 2 [%k]vk.
k>»11

But by Euler’s relation 3o, + 20, + vs = 12 + X, (k — 6)v;, so
that k>7

120 + 100, + 1205 + 100y + 150, + 10 X ([ (k + 1)] — 6)v,
k>11
< 563, 10-

Therefore, e, ;o > 24, thus establishing Theorem 6.

Among applications of Theorem 6 and of the related results
about polyhedral graphs with v; =0 and/or with v, =0, we
mention the following:

(6.2) A set M of edges of a graph G is called a (set-wise
maximal) matching of G provided the edges in M are disjoint but
each edge of G meets some edge in M. Then Theorem 6 implies
that the maximal number of edge-disjoint matchings of a poly-
hedral graph is 12; in the graph of Figure 3 the numerals 0,
1,...,9 and the letters 4, B indicate a family of 12 edge-disjoint
matchings. (See Griinbaum [6] for this and other results on match-
ings.) It may be conjectured that in every polyhedral graph there
exist at least 3 edge-disjoint matchings. Another open problem is
whether every polyhedral graph G contains a matching with at
most 20(G)/5 edges.
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(6.b) The vertices of every planar graph G may be colored by 5
colors a, f3, v, 8, € in such a manner that no edge connects vertices
of the same color and each of the graphs G(a, B), G(y, 8), G(v, €)
and G(9, €) is acyclic, where G(A, p) is the subgraph of G spanned
by the vertices of colors A and p. (See Griinbaum [4] for a proof of
this and some related results, and for references to previously
known results in this area.) It is not known whether the vertices of
each planar graph G may be colored by 5 colors, a, 8, v, 8, and ¢,
so that all the graphs G(8, v), G(B, 8), G(B, €), G(v, 8), G(y, €)
and G(4, €) are acyclic.

The graph G of the polyhedron obtained from the dode-
cahedron by placing a 5-sided pyramid on each of its 12 faces is
an example of a 5-connected polyhedral graph that is cyclically-
11-connected. (A graph G is cyclically-k-connected if the removal
of less than k edges cannot disconnect it into two components,
each of which contains a circuit.) Although there exist polyhedral
graphs (and even 4-connected ones) of arbitrarily high cyclic
connectivity, a remarkable result of Plummer [1] establishes that
no S-connected polyhedral graph can be cyclically-14-connected.
It may be conjectured that no 5-connected polyhedral graph can
by cyclically-12-connected, and that either Kotzig’s theorem or the
ideas used in its proof may lead to a proof of this conjecture.

Many results are known concerning d-polytopal graphs with
d > 4, but for the main problem no solution is in sight. That
problem is the characterization of d-polytopal graphs for each 4.
The difficulties seem to have several sources, at least two of which
can be readily identified:

First, in contrast to the situation for d < 3, in case d > 4 the
condition of d-polytopality does not force the graph to have
relatively few edges. Indeed, for d > 4 the complete graph K, with
n vertices is d-polytopal whenever n > d + 1.

Second, for d > 4 a d-polytopal graph may happen to be
realizable by d-polytopes which are not isomorphic to each other,
and even by polytopes of different dimensions. Thus not only do
we have no analogue of Steinitz’s theorem for d > 4, but even
Whitney’s theorem (see (2.b) above) does not generalize. (A similar
ambiguity of generalizations complicated the extension of the
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well-known planarity condition of Kuratowski to the question of
imbeddability in manifolds of higher genus.)

One of the promising directions of investigation is to inquire
about properties of higher-dimensional skeleta of polytopes—
although then difficulties of another nature are frequently en-
countered. It would lead us too far to try to survey here the
various results known about graphs and higher-dimensional
skeleta of d-polytopes for d > 4. Many of them were established
or surveyed in Griinbaum [1], [2]; in the present paper, we shall
recall only two such results on polytopal graphs, and then report
on some newer investigations.

As a relative of Theorem 1 we have:

THEOREM 7: Every d-polytopal graph, d > 2, contains a subdivi-
sion of the graph K |.

It is of some interest to note that the simplest proof known for
Theorem 7 actually establishes the corresponding result for poly-
topal skeleta of all dimensions.

By way of comparing Theorems 1 and 7, and as an example of
influence of polytopal graphs on geometry, we mention the result
of Larman-Rogers [1] that meaningfully generalizes Theorem 1 to
the 1-skeleton of every d-dimensional compact convex set; the
corresponding generalization of Theorem 7 is still open.

In order to establish (for each d) the existence of d-polytopal
graphs which are dimensionally unambiguous (that is, graphs that
are not e-polytopal for e # d) Klee [1] introduced the notion of
“degree of total separability” of a graph G. We shall say that a set
A of vertices of a graph G is totally separated by a set B of vertices
provided 4 and B are disjoint and every path in G with endpoints
in A meets B. The nth degree of total separability s,(G) of G is the
largest cardinality of a set of vertices of G totally separated by
some set of n vertices of G. Klee’s surprising result is:

THEOREM 8: The maximum of values of s,(G) possible for d-
polytopal graphs G with d + 1 < n equals p(n, d), the maximal
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number of facets (that is, (d — 1)-faces) possible for a d-polytope
With n vertices.

The values of u(n, d) (which are relevant also to linear program-
ming) formed the topic of many investigations. Extending pre-
viously known results, McMullen [1] established the relation

“(n,d)=(”‘[(d+1)/2])+(n—[(d+2)/2])
n—d n—d

foralln > d + 1.

The function s,(G) will probably be useful in other graph-
theoretic investigations as well. Part of the proof of Theorem (9.a)
below relies on it. On the other hand, Chvatal [1] found that
{(G) = min,{n/s,(G)} is of interest in the study of Hamiltonian
circuits. Among his results is the following:

(8.a) If G is a planar graph with #(G) > 3/2, then G has a
Hamiltonian circuit.

This is probably the best possible result; the 63 dark vertices of
the non-Hamiltonian graph G’ in Figure 2 show that 1(G’) < 3/2,
and it may be conjectured that 1(G") = 3/2.

Among the open problems related to the facts just mentioned
are:

Do there exist for each d > 4 d-polytopal graphs that are
completely unambiguous? (A graph G is completely unambiguous
provided every two polytopes that realize G are isomorphic as
polytopes by the correspondence of their vertices which establishes
them as realizations of G.) The existence of such graphs is known
for d < 5 (see Barnette [3]) but the question is open for all larger
values of d.

If a graph is d’-polytopal as well as d”-polytopal for some
d” > d’, is it necessarily d-polytopal for all 4 such that d’' < d
<d"?

A few results are known about matchings of polytopal graphs G.
We denote by m(G) and m(G) the least and the largest numbers
of edges in a matching of G, and by g(v,d) and g(v, d) the

minima of m(G) and m(G) for d-polytopal graphs G with v
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vertices. Clearly g(v,2) =[(v + 2)/3] and g(v, 2) = [v/2]. The

following results are among those proved in Griinbaum [6}:
(9.a) There exist positive constants ¢; and ¢;, d > 2, such that

o'/ < g(v,d) < g(v,d) < c;ol/14/3,

(9.b) g(v, 3) = [(v + 9)/6].

The values of (v, 3) seem not to have been determined (see
also (6.a) above).

R. Forcade [1] recently established the following unexpected
result, in which I, denotes the graph of the d-dimensional cube
(we recall that v(I,) = 2%).

O.0) lim,_, ., m(I)/v(I) = 1/3.

Results similar in spirit to the above probably hold for covers of
d-polytopal graphs G, that is sets of edges that contain all vertices
of G but have no proper subsets with that property.

As a last topic we consider the cut-numbers, which are actually
concerned not with polytopal graphs but with their realizations by
vertices and edges of polytopes. If P is a d-polytope, a cut of P is
any set of edges of P that may be simultaneously intersected by a
(d — 1)-dimensional hyperplane that misses all the vertices of P.
We denote by c¢(P) the maximal number of edges in a cut of P,
and we define the cut-number k(P) of P as the minimal number of
cuts needed to-cover all the edges of P. Clearly k(P)c(P) > e(P),
the number of edges of P.

A recent result of O’Neil [1] deals with cuts of the d-dimensional
(regular) cube I4:

(10.2) c(I%) = [(d + 1)/2]( d )
[d/2]

It follows that k(I%) > ad'/? for a suitable constant a > 0 but
the exact values of k(I¢) are not known for d > 4. While it is
easily seen that k(I?) < d, a remarkable example of Paterson
shows that k(I6) < 5.

D. W. Barnette [4] has established the following remarkable
theorem, in which ]x[ denotes the least integer > x:

(10.b) For every d-polytope P k(P) > Jlogy(d + 1)[, with equal-
ity if P is the d-dimensional simplex.
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Among open problems related to cuts and cut numbers we
mention:

Is ¢(P) = c(I?) for every d-polytope P isomorphic to 792

What is k(/¢), and what is the least value of k(P) for P
isomorphic to 74?

Is k(P) > 1 + Jlog, d[ for every centrally symmetric d-polytope
P?

Additional results, problems and references may be found in
Griinbaum [3].

Remarks added November 18, 1974.

Since the completion of the preceding survey, many new devel-
opments have occurred that would deserve to be included. In
order to keep the length of the survey within reasonable bounds,
we shall report here only on a few items that materially changed
the situation reported above.

1. Brunel’s conjecture (discussed on page 210) has been com-
pletely established; details and extensions are given in B.
Griinbaum and J. Zaks, “The existence of certain planar maps,”
Discrete Math., 10(1974), 93-115.

2. A detailed account of Grinberg’s condition for the non-
existence of a Hamiltonian circuit (see above, page 211) appears in
Chapter 7 of R. H. Honsberger, “Mathematical Gems” (Dolciani
Math. Expositions No. 1, Math. Assoc. of America, 1973).

3. A far-reaching improvement of Kotzig’s theorem was
obtained in E. Jucovi¢, “Strengthening of a theorem about 3-
polytopes,” Geometriae Dedicata 3(1974), 233-237.

4. For results on acyclic colorings of planar graphs related to
those discussed in (6.b) see J. Mitchem, “Every planar graph has
an acylic 8-coloring,” Duke Math. J. 41(1974), 177-181.
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EIGENVALUES OF GRAPHS

A. J. Hoffman*

1. INTRODUCTION

Let G be a graph. The adjacency matrix 4(G) of G is a matrix
of 0’s and 1’s defined as follows: number the vertices of G from 1
to n = |V (G)| in some order, and set

1if i and j are adjacent vertices
A=A(G>=(a,-,)={ Fhancy are agat . }
0if i and j are not adjacent vertices

Apart from the numbering of the vertices, the adjacency matrix
contains in principle all information about the graph. It is there-
fore natural to ask if any of the tools and concepts from matrix
theory can be useful in studying graphs.

Another widely studied “adjacency matrix” for a graph has 0 on
the diagonal, and the off diagonal entries —1 or + 1 depending on

*This work was supported (in part) by the Army Research Office under contract
number DAHCO04-72-C-0023.
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whether the corresponding vertices are adjacent or non-adjacent.
A survey of properties and many interesting applications of these
matrices is given in [35). In this chapter, we will confine ourselves
to adjacency matrices of the type described in the preceding
paragraph.

In this article, we shall study some relations between properties
of a graph and properties of the eigenvalues of its adjacency
matrix. If 4 is any matrix of order n, the eigenvalues of 4 are the n
roots A, ..., A, of the polynomial det(AJ — A), where I is the
identity matrix. We shall confine ourselves to topics arising only in
graph theory, but related questions in permutation groups, design
of experiments, elliptic geometry, statistical mechanics, and other
disciplines, have also arisen. We shall assume a bare minimum of
knowledge of matrix theory, citing facts from that subject as
needed.

The author has spent a number of years mvestxgatmg the
interplay between a graph and the spectrum (set of eigenvalues) of
its adjacency matrix, but still is reluctant to assert strongly that the
spectrum of the adjacency matrix offers much or little insight into
the graph. Given an arbitrary question about a graph, it is prob-
ably true that knowledge of the spectrum tells you little. But for
some questions, the spectrum tells a great deal.

2. TWO EASY QUESTIONS

In this section, we shall show that the questions of whether the
graph is regular (i.e., every vertex has the same valence), and
whether the graph is bipartite, are completely determined by the
spectrum. These are easy to show, and will establish some of the
tools for studying more complicated questions.

We assume the graph G has at least one edge, now and
throughout the article. Since all diagonal entries of A(G) are 0, we
know that the sum of the eigenvalues of 4 is 0, since (for any
matrix A4), trace 4 = 3Z;a; = Z\,. Next, 4 = A(G) is a real
symmetric matrix, since q; =1 if and only if g; = 1. Con-
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sequently, every eigenvalue of A4 is real, and we will use the
notation A, > A, > - - - to denote the eigenvalues in descending
order, and A' < A2 < - - - to denote the eigenvalues in ascending
order.

From the theory of real symmetric matrices, we use the follow-
ing:

(2.1) If B is any principal submatrix of A, N,(B) < \;(A) and
Ai(B) > Ai(A) for all i at most the order of B.

We shall only be concerned with real vectors, and use the
notation (x, y) = Zxy;.

(22) For any x # 0, (4x, x)/(x, x) < A. If equality occurs,
Ax = \,x. For any x # 0, (4x, x)/(x, x) > AL If equality occurs,
Ax = Alx.

Now we can prove [5].

(2.3) For any G, with |V(G)| = n, (1/n)ZN? < A,. Equality oc-
curs if and only if G is regular of valence A,.

Proof: Since A = A(G) is symmetric, trace 4% = SA? = 2d,
where d, is the valence of vertex i. To see this, realize that row i of
A contains exactly 4, I’s. Hence, (4%),; = d.. ;

Let u=(1,...,1). Then (Au, u)/(u, u) = =d;/n. Thus, (2.3)
follows from the first sentence in (2.2).

Notice that, besides being real and symmetric, A(G) has all
entries nonnegative. From the theory of nonnegative matrices, we
inherit.

2.4) A\, > |\ for all i. If G is connected, x # 0, at least one
coordinate of x positive and Ax = \x, then x > 0. Also, when G is
connected, \; > X, for all i > 1.

With this we can prove [15].

2.5) If G is bipartite, \; = —\' for all i. If G is connected, and
A\, = —Al, then G is bipartite.

Proof: Assume G bipartite, so

A(G)=(° B).
B 0
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Let A be an eigenvalue of 4, x the corresponding eigenvector (i.e.,
Ax = Ax). Write x = (y; z) so that Ax = Ax is equivalent to
Bz = \y, By = A\z. Then clearly A(y; — z) = —\(y; — 2).

Next, assume G connected, Ax = A;x, x > 0 (2.4). Let X be the
diagonal matrix whose ith coordinate is x;. Then C = X "'4X is a
nonnegative matrix whose row sums are A,. Further, we know
from matrix theory that C and 4 have the same spectrum, so
Al = —), is the least eigenvalue of C. Let Cy =AY,y # 0, and
let i* be defined by |y.| = max;|y,. Then Aly. = =,c.;. By
taking absolute values of both sides, we obtain

Alysl = P‘l}’i'] = Izcivyj'l <2¢i'j|yji <2‘3"/")’1‘4 = Ayl yis]-
J J J

Since the term on the left equals the term on the right, it follows
that for all vertices j adjacent to i*, the corresponding y; are the
same, and have the same absolute value as |y.|. From Aly,
= ¢y, we conclude that these y; have sign opposite to the sign
of y... But since G is connected, this proves G is bipartite.

3. REGULAR CONNECTED GRAPHS AND THEIR POLYNOMIALS

The most common application of the regularity of a graph in
studies involving eigenvalues is through the polynomial of a graph
[15]). Let G be a regular connected graph of valence d with distinct
eigenvalues (we shall speak of eigenvalues of 4(G) as eigenvalues
of Gay=d>ay,>a;> -+ > a If |V(G) = n,let

TlGx - )
P(x)= 22— ()
I;I(d - a)

Then, if 4 = A(G), P(4) = J, where J is the matrix all of whose
entries are 1.

The proof relies on the fact that, if two real symmetric matrices
commute, then they can be simultaneously diagonalized by an
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orthogonal transformation. This means that, if 4B = BA, there is
a matrix U such that U" = U™}, and U"AU and U"BU are both
diagonal, respectively 4, and B, The entries in 4, are the ei-
genvalues of 4 and the entries in B are the eigenvalues of B.
Indeed, there is a pairing of the eigenvectors of 4 and B so that,
for each i, the ith diagonal entry of A, and the ith diagonal entry
of B, share a common eigenvector.

Now A regular of valence d shows that 4J = J4, where A
= A(G). By (2.3) and (2.4), the distinct eigenvalues of 4 are 4,
a,, . . . , &, and d has multiplicity one. The distinct eigenvalues of
J are n, and 0, and » has multiplicity one and is paired with d,
with the common eigenvector u = (1,...,1) of J and 4. Let
UAU™ = A, UJ U™ = J. Since P(A4,) = J, it follows that

UP(A)U™ = UJ,U",

but UP(Ay))U™ = P(UA,U") = P(A), and UJ U™ = J.

It is easy to show that, if P(4) = J for any polynomial, where
A = A(G), then G is regular and connected, and that (3.1) is the
polynomial of least degree satisfying P(4) = J.

An interesting application of the polynomial of a graph occurs
in the study of Moore graphs (d, k) [14]. A Moore graph of
diameter k and valence d is a regular connected graph of valence d
whose girth (the smallest cycle of length at least three) is 2k + 1.
Let us study what Moore graphs can exist apart from 2k + 1 —
gons (d = 2).

We consider the case k = 2. The definitions tell us that |V(G)|
= d? + 1, and 4 = A(G) satisfies

A2+ A—(d-DI=1J,

so from (3.1), the eigenvalues of A are d (with multiplicity 1) and
numbers « that satisfy a> + a — (d — 1) = 0, so

_ —1+V4d -3 _ —1-V4d -3
a]———'—z—'—, az—-——z—,

with respective multiplicities m, and m,. Suppose 44 — 3 is not a
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square. Then a,; and a, are algebraic conjugates and must have the
same multiplicity, so m; = m, = d2/2. Since trace 4 = 0, we have
0=4d—d?/2,s0d=2.1f 4d — 3 = 5% then m, and m, satisfy
m; + m, = d?, and trace

A=0=d+ —_12+sm,+ _12-sm2.

Expressing everything in terms of s, we find that s is a root of a
monic polynomial whose constant term is 15. Therefore, s = 1, 3,
5, 15. The case s = 1 is impossible. The case s = 3 corresponds to
the Petersen graph (figure 1).

Fic. 1

The case s = 5 corresponds to a graph of 50 vertices completely
described in [14). See also [2]. Whether there is a graph corres-
ponding to the case s = 15 is unknown.

To study the problem for more general k, let P, be the poly-
nomial of the graph. If we set Py = 1, P, = 1 + x, then

Bannai and Ito [1] and also Damerell [7] have shown from a

detailed examination of (3.2) and properties of the spectrum of the
graph that no Moore graphs exist for k > 2.
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4. LINE GRAPHS

If G is a graph, the line graph of G (denoted by L(G)) is a graph
whose vertices are the edges of G, with two vertices of L(G)
adjacent if the corresponding edges of G have one common vertex.
The spectrum of 4 (L(G)) has the following remarkable property:

ANL(G)) > -2 4.1)
To see this, we use

If K is any real (rectangular) matrix, \'(KK") > 0. (4.2)

To prove (4.1), let K be the (0, 1) matrix whose rows correspond
to the edges of G, columns to vertices of G, with the entry in K
equal to 1 if and only if the edge contains the vertex. Then
A(KK™) > 0 by (4.2). But KK" = 21 + A(L(G)), whence (4.1)
follows.

Inspired either by (4.1) or by problems arising naturally in other
ways, there have been many studies of the line graphs and their
spectra. For example, L(K,) is characterized by its spectrum if
n 5= 8 (there are three exceptions if n =8, [3], [4], [12], [13]);
L(K, ,) is characterized by its spectrum if n # 4 (there is one
exception if n = 4, [32]); L(SBIBD(v, k, N)) is characterized by its
spectrum unless v = 4, k = 3, A = 2 (one exception, [18]); etc. To
give the flavor of this work, let us look at L(K, ,) from our
viewpoint (which was not used originally). First, we determine the
distinct eigenvalues of its spectrum.

If K is the edge-vertex incidence matrix of K, ,. we have

KK™ =21+ A(L(K,,)), K'K=nl+A(K,,).

By a well-known theorem of matrix theory, KK" and KK have the
same non-zero eigenvalues, and 0 is also an eigenvalue of both.
Now the distinct eigenvalues of A(K, ,) are n,0, — n, so the
distinct eigenvalues of KK are 2n, n, 0; so the distinct eigenvalues
of L(K, ,) are

2m—2,n-2 —2. (4.3)
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Assume G a regular connected graph on n? vertices with (4.3) as
distinct eigenvalues. We wish to prove that, if n = 4, G is L(K, )

To do this, we first define H C G to mean that the graph H is
obtained from G by choosing a subset of its vertices, and all edges
of G which join vertices in the subset. Another way of expressing
the same idea is that 4 (H) is a principal submatrix of 4 (G). Thus
from (2.1), we have

ifHCG, A(H)>A(G). (4.4)
In addition,

If G regular, H C G, A\\(H) = AN(G), A(H)x = A(H)x, then
2x; = 0; also, if v € V(G) — V(H), then 2'x; =0, where 3’ is
over all vertices in H adjacent to v. 4.5)

Proof of (4.5): Let y =(x;0...0) be the vector of | V(G)|
coordinates obtained by setting y, = x, for i€ V(H), y; =0 for
i€ V(G) — V(H). Then (4(G)y,)/(»,y) = (A(H)x, x)/(x, x)
= Al(x, x)/(x, x) = A.. Therefore, by (2.2), y is an eigenvector of
A(G) corresponding to the eigenvalue Al. Butu = (1, ..., 1)is an
eigenvector of 4(G) corresponding to the eigenvalue d, where d is
the valence of each vertex of G. A theorem about real symmetric
matrices says that eigenvectors corresponding to different ei-
genvalues are orthogonal (their inner product is 0). Thus (y, u)
= (x, u) = Zx; = 0. Further, the fact that y is an eigenvector of
A(G) says 3a,y; = 0= Z'x,.

From (4.3), we know —2 = A!Y(G). Then the following graphs
cannot be subgraphs of G (we have attached coordinates of the
eigenvector x corresponding to the eigenvalue —2 to the corre-
sponding vertices).

|

AN

| |
(4.6) 4.7 (4.8) 4.9)
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Graphs (4.6) and (4.7) are excluded because the corresponding
eigenvectors have the sum of coordinates not 0, violating the first
part of (4.5). Graphs (4.8) and (4.9) violate the second part of (4.5).

Now we show that (4.3) implies

K),3®

cannot be a subgraph of G if n # 4. This is as far as we go here.
(Note K, ; ¢ G is a necessary condition for G to be a line graph.)
From then on, the proof that (4.3) characterizes L(K, ,) if n # 4
need not exploit eigenvalues.)

From (4.3) and (3.1), we conclude that P(4) = J, where

P(x) = n*(x — n + 2)(x + 2)/2n?

=3(x2+ (4 — n)x — 2(n - 2)).
This can be rewritten as
A2=2n—-DI+(n—-2)4A+2(J - 1—-4). (410)
Assume K, ;C G, with the vertices of K, ; labelled 0, 1, 2, 3, so
that 0 is adjacent to each of (I, 2,3}, no two of which are
adjacent to each other. Since (4.6) Z G, every vertex of G adjacent
to 0 other than 1, 2, 3 must be adjacent to at least one of {1, 2, 3};
it cannot be adjacent to all of {1, 2, 3}, for that would make
(4.7 G. So the 2(n — 1) — 3 vertices adjacent to 0 other than 1,
2, 3 can be thought of as belonging to six sets S, S,, S3, S5, S5,
Sy3, where S; consists of vertices adjacent to i/ but not to j or k, S
consists of vertices adjacent to / and j but not to k. From (4.10), if
two different vertices of G are not adjacent, there are exactly two
vertices adjacent to both. Since (4.8) 2 G and (4.9) G, it follows
that |S;| = 1. Thus

2n—1)-3=3|S| + 2S5}l
=>|S|+3, or 3|S|=2n-8.

Also from (4.10), if two vertices of G are adjacent, there are
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exactly (n ~ 2) vertices adjacent to both. Thus
IS]+ 1Sl + ISl = 1S +2=n -2,

Therefore Z|S;| = 3(n — 4). Therefore, 3n — 12 =2n - 8 or
n = 4. Hence, n # 4 implies K, ;Z G.

One can show that if G is a regular connected graph of valence
> 12, A/(G) = —2, then K| ;& G. One can also show that, if G is
a regular connected graph of valence > 16, A}(G) = —2, then G
is a line graph or a cocktail party graph (the complement of the
graph consisting of n disjoint edges). The numbers 12 and 16 are
best possible. More generally, one can show there is an integer

function f defined on the open interval (—1 — V2, — 1) such that
if G is any connected graph with A(G) in the interval, and the
minimum valence of the vertices of G exceeds f(A\!(G)), then G is a
“generalized” line graph (described in [22]). In addition, all regular
connected graphs with three distinct eigenvalues and A! = —2 are
known [31]. Also, if m + n is sufficiently large, L(K,, ,) is
characterized by its spectrum, except for an infinite number of
exceptions corresponding precisely to line graphs associated with
certain symmetric Hadamard matrices [9]. There are other results
in this spirit for line graphs associated with Steiner triple systems
and other designs [8].

(Added in galley: P. J. Cameron, J. M. Goethals, J. J. Seidel and
E. E. Shult “Line graphs, root systems, and elliptic geometry” (to
appear), using -the concept of root systems from Lie theory, have
subsumed and improved many of the results of this section.)

5. SIGNIFICANCE OF BOUNDS ON THE SPECTRUM

The significance of A}(G) » —2 has been roughly summarized,
but almost nothing is known about the significance of other
specific lower bounds. What is known is the meaning of the
existence of some lower bound [25]. Let us first explain the
question.

Let G be any (infinite) family of graphs. The following state-
ment about G may be true or false:
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(5.1) There exists a number \ such that, for all G €G, AY(G)
> A

We shall describe “local” and “global” properties of the graphs
G €G equivalent to (5.1). First, local properties.

Let us define H, to be the graph on 2n + 1 vertices in which
one vertex is not adjacent to n other vertices, otherwise all vertices
are adjacent. Then A!(H,)— — 0. To see this, first note

0 u 0
AH)=(w J-1 J
0 J J-1
Clearly, —1 is an eigenvalue of multiplicity at least 2n — 2, with
corresponding eigenvectors of the form all coordinates 0 except
two coordinates + 1, — 1. It follows that the eigenvectors for the
three remaining eigenvalues have all coordinates the same on each

block; i.e., are of the form (0; x, ..., x; ¥, ...,y). Thus the three
remaining eigenvalues are eigenvalues of the 3 X 3 matrix

0 n 0
M=|1 n-1 n

0 n n—1

Now det(xI — M) =x>*-2(n—Dx>+ (1 —-3nmx + n(n—1)
= M, (x). By Descartes’ rule of signs, there is exactly one negative
root of M(x), say a,. Further, this a, < —1, since H, contains
K, , and A(K, ) = -\/_ < —1 and we apply (4.4). Thus a,

)\‘(H ). Since H, c H,,,, it follows from (4.4) that AlH)is a
non-increasing sequence. If it is false that A'(H,) > —oo, then
AYH, )—»A # —oo. Since M,(A'(H,)) =0, it follows that
M,A'(H,))/n(n — 1) = 0. But fi(x)= M, (x)/n(n—1) is a
polynormal which is a sum of terms each of which approaches a
limit as A'(H,) — X. Therefore, lim f,(A'(H,)) = 0 = lim,_, . f,(A)
= ] # 0. This contradiction shows A!(H,) —» — co.

Also, A(K; ) = —Vn — —co. Thus, (44) shows that (5.1)
implies

(5.2) There exists an integer n, such that, for all G €G,
H,7G K, ,zG.
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It is a remarkable fact that (5.2) implies (5.1), but we will not
prove it here. But (5.2) is the local property of graphs equivalent to
(5.1) which we promised. Now for the global property.

We first define a distance between two graphs G and H where
V(G) = V(H). For each vertex i€ V(G) = V(H), let ¢, be the
larger of the two numbers {number of edges in G on i which are
not in H, number of edges in H on i which are not in G}. Then
d(G, H) = max,e;. Now consider the following statement about
G:

(5.3) There exists an integer L such that, for each G €G, there is
a graph H with V(G) = V(H) such that d(G, H) < L, and H
contains a distinguished family of cliques K', K2, . . ., satisfying

(a) Every edge of H is in at least one of the distinguished cliques.

(b) Every vertex of H is in at most L of the distinguished cliques.

(c) Any two distinguished cliques have at most L common ver-
tices.

We assert that (5.3) is also equivalent to (5.1). The full proof of
the equivalence of (5.1) and (5.3) consists of showing (5.1) implies
(5.2) (which we have done), (5.2) implies (5.3) (a lengthy argument,
entirely graph-theoretical, which we omit), and (5.3) implies (5.1),
which we now indicate. But first some facts about matrices:

(5.4) If A, B, and C are real symmetric matrices and A — B
= C, then \'(4) — A'(B) < A\(C).

(5.5) If A is any matrix and abs A is defined by (abs A); = |a;]|
for all i, j, then each eigenvalue of A is in absolute value at most the
largest eigenvalue of abs A.

(5.6) If A is any nonnegative matrix, then its largest eigenvalue is
at most the largest row sum.

_From d(G, H) < L, we conclude that there exist graphs G and
H such that

A(G) + A(G) = A(H) + A(H),

where G and H have no common edges, and each has valence less
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than L. Using (5.4), we have
—ANG) + \'(H) < A (-4(H)+ 4(G))
< N(A(H)+ 4(G)) (by (5.5)) < 2L (by 5.6)).

Therefore, all we need show is that A}(H) is bounded from below
by a function of L.

Let M be the incidence matrix of points versus distinguished
cliques of H. Then MMT = A(H) + S, where S is a nonnegative
matrix (by (5.3) (a)). Every diagonal entry of S is at most L (by
(5.3)(b)), and the sum of the off diagonal entries in each row is at

most (L — 1)( z ) (using (5.3)(b) and (c)). Thus

0 < A(MMT) < AY(H) + A (S)

< AI(H) + L+ (L — 1)( 12‘ ) (using (5.6)),

which was to be proven.

One can raise analogous questions for each eigenvalue: upper
bounds on A,? lower bounds on A’? For A,, the corresponding local
and global properties have been found in [26]. For A,, the local
and global equivalences are easy. Nothing has yet been found
about other A, and A"

6. IMBEDDINGS OF GRAPHS

If G C H, we know A,(G) < N,(H), N'(G) > X\’ ‘(H). Suppose G
given, and we wish to find the smallest amount by which A; or Al
changes when G is imbedded in H satisfying certain condmons
The most interesting results on this question so far deal with
changes in A! and A, when every vertex of H is required to have
large valence. The general problem can be stated:

Define d(G) to be the minimum valence of the vertices of G,
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and
#(G) = lim * inf  A(H)
d(H)>d
p'(G) = lim sup A‘(H).
d—»o HgHG
d(H)>d

A fact about nonnegative matrices asserts that the largest ei-
genvalue is at least the minimum row sum. Hence, d(H) large
implies A,(H) large, so u, = oo. Every other y, and p' is finite,
however, because p, and ! are finite. In fact, there are formulas
for p, and p'. Let |V (G)| = m. Let C' be the set of rectangular
(0, 1) matrices C with m rows satisfying:

(6.1) every row sum is positive, and
(6.2) if any column C is deleted, (6.1) is false.

Let C, be the set of rectangular (0, 1) matrices C with m rows and
at least two columns, satisfying (6.1), and, if C has more than two
columns, (6.2).

Then, letting 4 = A(G),

pl= énea‘):(l}\‘(A - CC"). (6.3)

hy = Cmeigle(A ~cW-17'CcT), if|V(G)>2 (64)

We shall prove here
p' > maxAl(4 - ccT)  ([19]) (6.3)
cec!

and merely indicate the proof of the reverse inequality.

Let G and C €C! be given. Construct a graph H(n) as follows:
Assume C has columns C,, ..., C,. The vertices of H(n) consist
of the vertices of G and the vertices of ¢ cliques K!,..., K’ of n
vertices. The edges in G and the edges in each K’ are edges of
H(n). In addition, vertex i of G is adjacent to every vertex of K/ if
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c; = 1. If ¢; =0, vertex i of G is adjacent to no vertex of Kj.
Finally, if j # k, each vertex of K is not adjacent to each vertex

of K¥. Thus,
A(H(n)) = ( 4(G) D )
DT E

where D is a matrix of m rows and nt columns, obtained by
substituting 4 = (1, ..., 1) for each 1 in C, and E is the direct
sum of ¢ matrices of order n, each of whichis J — I. )

We first assume A'(G) < —1. Now —1 is an eigenvalue of
A(H (n)) of multiplicity at least ¢(n — 1). Using the same argu-
ments that arose in consideration of H, in §5, the remaining
eigenvalues of H (n) are the eigenvalues of the matrix of order

m+t
B(r) = (A(G) nC )
cr (n=1I

Since AY(4) < —1, AY(B(n)) = AY(H(n)). Since H(n)C H(n + 1),
Al(H(n)) is nonincreasing. Further, let H’(n) be the graph
obtained from H(n) by first deleting all edges in G, then putting in
all edges of G joining all vertices i, k such that ¢; = ¢,; = 1 for
some j = 1,...,t Then H’'(n) satisfies (5.3) with L = (|V(G))).
Thus A(H(n)) is bounded from below and must approach a limit.

Now Al(H(n)) is the least root of det(A] — B(n)). A theorem of
analysis (Hurwitz’s theorem) tells us that if P(n, x) is a polynomial
in x, each of whose coefficients is a polynomial in », then the limit
points (as n—p), if any exists, of the roots of P(n, x) (for fixed n)
are precisely the roots of Q(x), where Q(x) is the coefficient of the
highest power of n when P(n, x) is expressed as a polynomial in n.
If we apply Laplace’s expansion to det(Al — B(n)), it is clear that
o@) is

det(M—A ——C).
-C" -1

This determinant is 0 if and only if there exists a vector (x; y) not
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0, such that
WMW-A)x—-C =0

-Cx—-y=0
or

(M - (4 — CC™)x =0,

which means A is an eigenvalue of 4 — CC". Clearly, lim A\'(H(n))
= A4 — CC™), which was to be proven.

There remains the case when A'(G) > — 1. Let us first observe
that for a graph H with at least one edge A'(H) < 1, since

10

serve also that A'(K) = —1 for K a clique. It follows that u!(G)
= —1 for G a union of disjoint cliques, since each clique could be
expanded to arbitrarily large size. And this can be realized by
letting each column of C correspond to the cliques (= com-
ponents). And if there is at least one component of G not a clique,
then K, ,C G, s0 A(G) < A'(K, )= -V2 < -1

To prove the reverse of (6.5) is more delicate. One shows using
Ramsey’s theorem and an analogous theorem for bipartite graphs
that, if H D G is a graph in which every vertex has large valence
and A'(H) is bounded from below, then for some C €C', there is a
large n such that G c H(n)C H, whence (4.4) applies.

}\‘(0 1 ) = —1, and we apply (4.4). Therefore p!(G) < —1. Ob-

7. PARTITIONING OF GRAPHS

We will consider here only partitionings of the set of vertices
([20], [21], [6]), (some results on edge partitionings are given in
[23]). The most famous partitioning of the vertices occurs in the
coloring of a graph. A coloring of a graph is an assignment of
colors to the vertices so that adjacent vertices have different
colors. The symbol x(G) stands for the smallest number of colors
required. We shall easily derive upper and lower bounds for x(G) .
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from its spectrum
A(G)

- < x(G) < 1+ A (G). 7.1
v <XO 1 (1.1)

To prove the left inequality of (7.1), we use the following (not so
well-known) theorem of matrix theory:

a2 If

AnAi; o Ay,
A={ -

A, o A,

is a partitioning of the real symmetric matrix A into blocks, with
each diagonal block square, then

=1 '
A(4) + §l>‘i(A) < gl}‘l(Aii)'

Now if 4 = A(G), x(G) = ¢, we can arrange so each 4; =0,
whence A,(4;) = 0. This yields the left side of (7.1).

To prove the right side, discard vertices of G to obtain a graph
H such that x(H) = x(G), but discarding any other vertex lowers
the coloring number. Then each vertex of H must be adjacent to
at least x — 1 other vertices. Therefore, every row sum of 4(H) is
at least x — 1. But A\\(G) > A(H) > x(G) — 1, which yields the
right side of (7.1). [34]

One can also derive an upper bound for x(G) in terms of the
number of eigenvalues of G which are at most —1 (see [23]), and
also prove

149

X&) > wen-n

(6],

but the trouble with (7.1) and other spectral bounds is that they
cannot be sharp. The lower bound is sharp for x = 2 (see § 2) and
for line graphs and for cliques. The upper bound is sharp for
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cliques and many other cases. But given any N > 3, one can find
two graphs G and H with identical spectra, x(G) = 3, x(H) > N
(see [23]). .

It is interesting to look at the following vertex partition. Call
vertices a and b equivalent if a = b or if a # b and every other
vertex is adjacent to both or adjacent to neither. Let e(G) be the
number of equivalence classes. Now the number of equivalence
classes is not determined by the spectrum. For example,

N and

Gy G2

each has spectrum (2,0,0, 0, — 2), e(G,) = 2, e(G,) = 3. But a
very rough order of magnitude of e(G) is determined by the
spectrum in the following sense:

For a < b, define A(a, b)(G) to be the number of eigenvalues
of G each of which is at most a or at least b. Then there exists a
function f such that, for all graphs,

A(a, b)(G) < e(G) < f(A(a, b)(G)), 72)

where a = =2, b= (V5 = 1)/2, ora=(-V5 = 1)/2, b= 1.
Further, in (7.2) we cannot replace a by a — e or b by b + € and
have (7.2) remain true.

To prove the left inequality in (7.2), we first observe that each
equivalence class consists of a clique or an independent set. A
clique of size n; produces n; — 1 eigenvalues — 1. An independent
set of size n, produces n;, — 1 eigenvalues 0. Thus e(G) > number
of eigenvalues of G which are not 0 or —1 > A(aq, b)(G) for the
(a, b) pairs cited in (7.2).

To prove the right-hand ride, we use Ramsey’s theorem to prove
that, if e(G) is large, then 4(G) contains a subgraph H with

A(H)=(M B),
BT N



EIGENVALUES OF GRAPHS 243

where ord M = ord N = large, M =0orJ - I, N=0orJ — I,
B = I orJ — I or a triangular matrix 7. We omit the subsequent
calculations, which are based on knowledge of the eigenvalues of

M, N, and (0 r OB ) and applications of (5.4).
B

8. SOME QUESTIONS

What numbers can be eigenvalues of graphs? It is clear that any
ecigenvalue of a graph must be a totally real algebraic integer (a
real algebraic integer all of whose conjugates are real). One can
also show that every eigenvalue of a symmetric matrix of rational
integers is an eigenvalue of a graph. So.the question can be
rephrased: is every totally real algebraic integer an eigenvalue of a
symmetric matrix of rational integers? It is known that every
totally real algebraic number is an eigenvalue of a symmetric
matrix of rational numbers.

What numbers can be limit points of eigenvalues of graphs? By
this we mean: fix i, and let G, G,, . . ., be a sequence of graphs
such that A,(G)) (or A'(G))) approaches a limit X, (or A*) as j — oo.
We know only the following sketchy information: all limit points

of the set of A,’s which are at most Y2 + V5 [24] and all limit
points of the set of As which are at least —2.

Another question is: how do the eigenvalues change if, starting
with a given graph G, we consider all graphs homeomorphic to G?
All that is known are formulas for the inf and sup of A (H), as H
ranges over all graphs homeomorphic to G.
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ON THE AXIOMATIC FOUNDATIONS
OF THE THEORIES

OF DIRECTED LINEAR GRAPHS,
ELECTRICAL NETWORKS AND
NETWORK-PROGRAMMING*

George J. Minty

1. INTRODUCTION

Matroid-theory, founded by Hassler Whitney [41] in 1935, is an
abstract combinatorial theory with ramifications into algebra
(theory of linear dependence {41}, lattice theory [36]), projective
geometry [39], electrical network theory [18], switching theory [23],
and linear programming. In this paper, it is proposed to develop

*The writing of this paper was partially supported by N. S. F. Grants 23830 and
GP-3465. An abstract (under the same title [30]) was given at the Seventh Midwest
Symposium on Circuit Theory, Ann Arbor, Michigan, May 4-5, 1964. The paper
was presented substantially in its present form at the Symposium on Matroid
Theory sponsored by the Applied Mathematics Division of the National Bureau of
Standards at Washington, D. C.; September 1-11, 1964.
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matroid-theory from the beginning in such a way as to put the
phenomenon of duality into the forefront by starting with a
self-dual axiom-system, following the model of projective
geometry. The paper is, however, also intended as an expository
paper on matroid-theory for the electrical engineer, the graph-
theorist, and in fact the general mathematician. It is complete for
each of these audiences, and the reader may skip over any remark
obviously intended for another class of readers.

One of the main contributions of this theory to electrical theory
is the clarification of the “duality principle,” which every electrical
engineer knows, but few can state so exactly that it is provable.
(Since this paper was written, the writer has become aware of the
work of members of the Research Association for Applied
Geometry (R.A.A.G.) on duality-theory. A representative of that
group, M. Iri, has compared their point of view with the present
one in the paper [18].) By the end of this paper, it will be so clear
that we shall not even find it necessary to state it! Another
purpose will be to help clarify the meaning of the contentions of
G. Kron [21] that “graphs are illegitimate tools for studying
network-theory” and that “l-networks have no nodes.”

The axiom-system we shall work with is highly appropriate for the
treatment of matroids as generalizations of linear graphs; the
axioms we shall work with (for a “graphoid”™) are rather easily seen
to be satisfied in a graph, and are powerful enough to enable us to
get rather quickly to fairly deep theorems. They are, however, not
so useful for the study of linear dependence, so the connection
between a “graphoid” and a matroid in the sense of Whitney
(whose axioms are more appropriate for this purpose) is devel-
oped. The class of theorems we treat in this framework is essen-
tially the well-known theorems, and some less well-known but
highly important theorems, of graph-theory, electrical networks,
and network-programming. (It is theorems of electrical-network
analysis that are meant here, not synthesis. It is expected, however,
that the ultimate contribution of matroid-theory to electrical
theory will be in the synthesis area; it seems to the writer that
there have been a number of ingenious schemes for network-
synthesis which terminate with the discovery of an incidence-
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matrix which meets many of the requirements for being the
“cut-set matrix” of a graph, and yet is not in general realizable as
a graph. In such a case, it is very likely to be an incidence-matrix
for a matroid. A better understanding of the nature of this pitfall
would thus facilitate the development of better network-synthesis
schemes.)

It may seem to the reader that the re-doing of theorems known
in the context of graphs, electrical networks, etc., in this abstract
context is of doubtful value, since it tends to render invisible that
which was formerly visible. However, it has been the experience of
Mathematics that this process of “axiomatization,” “abstraction,”
or “formalization” is a very healthy thing for a subject—in the
process of eliminating intuition in favor of logic, many interesting
facets of the subject-matter are brought out clearly which were
before hidden.

A purely formal development of this subject-matter would in-
volve many trivial or repetitious proofs, or an excessive number of
the usual excuses for not presenting them. The writer has taken the
liberty of including them in the form of “Exercises” with perhaps
over-explicit “Suggestions”; some less easy results have been in-
cluded in this form in order not to break the thread of the main
discussion.

As for preliminaries: It is assumed that the reader is familiar
with the notions AU B, AN B, and 4 (complement of A) of the
Boolean algebra of sets. The notation 4 — B means AN B, and
AAB means (AU B) — (AN B).

The notation {x} means “the set whose only element is x; we
shall frequently write 4 + x, 4 — x when more properly we
should write AU{x}, 4 — {x}. When we want to indicate, in a
Venn-diagram, a one-element set, we shall draw a “small” area.
The empty set is called &.

ACB (“4 is contained in B”) means 4N B is the empty set.
The phrase “A is properly contained in B” means 4 C B but
A # B. A set is called minimal with respect to a property p if it
possesses property p but does not properly contain another set
having property p. “Maximal” is defined similarly.

The reader is also assumed to be familiar with the notions of
“field,” “abstract vector space,” “dimension,” and “basis.” (These
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concepts are now commonly taught in courses in “linear algebra
for engineers” in the university, and can be found, e.g., in the
book of Birkhoff and MacLane [3].)

The reader who is interested in two-terminal networks should
shut this term out of his mind and concentrate on a one-port
network, which is a network with one line distinguished and treated
differently from the others. (The “distinguished line” can be thought
of electrically as a piece of testing-apparatus attached to the two
terminals.)

A graph consists of two finite sets (of undefined objects), L and
P (“lines” and “points,” or “elements” and “solder-joints,” or
“branches” and “nodes” or “edges” and “vertices™) and a function
assigning to each line an unordered pair of points. The diagram of a
graph is a “picture” like that of Figure 1. It should be clear to the
reader in what way the diagram “represents” the graph. Note that
a “loop” is allowed (line with two end-points the same) because we
said unordered pair and not “two-element set.” A directed graph,
or digraph, consists of lines and points and a function assigning to
each line an ordered pair of points. Figure 2 shows the diagram of
a digraph.

L <>

Fic. 1

In a graph: a circuit is a set of lines forming a simple closed
curve. When we say “delete a line,” we do not delete the
associated points. A cocircuit is a minimal separating set of lines: a
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set whose deletion increases the number of connected components,
but is minimal with respect to this property (does not properly
contain another separating set).

=

FiG. 2

In a one-port graph (a graph with a distinguished line x!) a tie-set
is a circuit containing x, minus x; a cut-set is a cocircuit contain-
ing x, minus x. (These terminologies are not entirely standard;
some authors use them for what we call “circuit” and “cocircuit.”)

In the course of proofs, we have to make many “constructions.”
No attempt is made to keep the constructions efficient. There are two
reasons for this: (1% it is not known at present what the important
computational problems will be, especially the form in which the
data will be presented; (2°) it is usually more efficient to prove an
existence-theorem without regard to the question of constructivity
or efficiency of the proof, and afterwards to seek a construction,
rather than search for a constructive or efficient proof.

2. GRAPHOIDS AND PRE-GRAPHOIDS.

In order to keep the definition of a “graphoid” concise, we
introduce the notion of a painting of a finite set L. A painting of L
is a partitioning of L into three subsets: R, G, B, such that G is a
one-element set, i.e., |G| = 1. For easy visualization, it helps to
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think of the objects in R as being “painted red,” the object in G as
being “painted green,” and the objects in B “painted blue.” Note
that RN G, GN B, and RN B are all empty, and that RUGU B
= L.

DErFINITION 2.1: A graphoid is a structure consisting of a finite
set L of (undefined) objects, called “lines”, and two collections C,
D of nonempty subsets of L, called “circuits” and “cocircuits,”
satisfying the conditions:

(G-I) For any circuit C and cocircuit D: their intersection
CND is not one line—i.e., |CND| may =0, 2, 3, 4,
etc., but # 1.
(G-11) For any painting of L: there exists either
(i) a circuit C consisting of the green line and other-
wise only red lines, or '
(ii) a cocircuit D consisting of the green line and
otherwise only blue lines.
(G-III) No circuit contains another circuit properly; no co-
circuit contains another cocircuit properly.

Axiom (G-II) is not particularly easy to visualize; the Venn-
diagram of Figure 3 may help, but it is hard to draw a picture
showing “either one thing or another” being true! Figure 3 also
fails to illustrate the fact that we did not require that R be
nonempty, or that B be nonempty.

Fi1G. 3
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EXERCISE 2.1: Show (using Axiom (G-I)) that the two possibili-
ties of Axiom (G-II) are mutually exclusive (cannot occur simul-
taneously).

EXERCISE 2.2: Let m,, m, be any two positive integers, with
m; + m, > 2. Let L be a set consisting of (m, + m, — 2) objects;
let the “circuits” be the subsets of L consisting of precisely m,
objects, and the “cocircuits” be the subsets consisting of precisely
m, objects. Show that the structure is a graphoid. (Suggestion: for
concreteness, try first m; = 10, m, = 9.)

The example of Exercise 2.2 is rather trivial, in the sense that
later theorems will have nothing interesting to say about it. (It is,
however, useful as a “counterexample,” to show that some
“theorems” about graphoids are not true.) A much more interest-
ing example is as follows: take a finite linear graph G, and let L be
the set of lines (“edges,” or “branches™) of G. Let a set of lines be
called a “circuit” if they form a simple closed curve (note that the
word “simple” excludes figure-eights!) and a “cocircuit” if they
form a minimal separating set of lines. In this example, Axiom
(G-I) holds because |C N D| is always an even number, and (G-II)
is a special case of a theorem of the writer [25, 26].

We caution the reader that not all graphoids correspond to graphs.
(In fact, Exercise 2.2 exhibits a situation in which |C N D| can be
an odd number.) Thus pictures of graphs, although useful for the
purpose of inspiring new theorems, can be highly misleading if one
uses them to illustrate the proofs; the use of Venn-diagrams is
highly recommended in preference.

DEFINITION 2.2: A pre-graphoid is a structure (L, C, D) satisfy-
ing (G-I) and (G-II), but not necessarily (G-III).

EXERCISE 2.3: In the context of Exercise 1: show that, if
“circuit” means “set containing at least m, objects,” and
“cocircuit” means “set containing at least m, objects,” we obtain a
pre-graphoid. For what values of (m, + m, — 2) does it fail to be
a graphoid?
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Exercise 2.4: Show that in a pre-graphoid the two alternatives
of (G-II) are mutually exclusive.

Notice that every graphoid is automatically a pre-graphoid, so
that any theorem about pre-graphoids is a theorem about graphoids.

DEerFINITION 2.3: In a pre-graphoid: a line which is itself a
circuit is called a Joop; a line which is itself a cocircuit is called a
bridge.

EXERCISE 2.5: Show that a line is a loop if and only if it is
contained in no cocircuit. State the dual-theorem.

DEFINITION 2.4: In a pre-graphoid: If two lines form a circuit,
they are said to be in parallel; if they form a cocircuit, they are
said to be in series.

EXERCISE 2.6: Verify that in a graph, two lines need not have a
common vertex (node) in order that they be “in series.”

We now introduce the incidence-matrices of a graphoid (or
pre-graphoid). Number the lines 1, ...,/ the circuits 1,...,¢c,
and the cocircuits 1, ..., d. The circuit incidence matrix has en-
tries Cyis where ¢ = 1 if line j is in circuit i, and ¢ = 0 otherwise.
The cocircuit incidence matrix is defined correspondingly. These
matrices are shown in Figure 5 for the graphoid of the graph
shown in Figure 4. We shall use the symbols C, D to denote these
matrices, even though we have used these symbols for another
purpose. (No confusion will arise.) The rows of C may be denoted:
Cy...,C,and thoseof D: D, ..., D, again without danger of
confusion. (Note that these rows are essentially the so-called
“characteristic functions” of the corresponding sets.)

FiG. 4
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3. TREES AND COTREES.

Throughout this section, we shall assume that we have before us
a graphoid rather than a pre-graphoid (but see Exercise 4.4).

DEFINITION 3.1: A tree T is a set of lines which contains no
circuit, and which is maximal with respect to this property (i.e.:
augmenting T by adjoining any line produces a set which contains
at least one circuit). A cotree is a set of lines containing no
cocircuit, and maximal with respect to this property.

In graph-theory, the phrases “maximal tree,” “spanning tree,”
“framework,” and “skeleton” are often used. Our terminology
“tree” follows the usage of the electrical engineers.

ExXERCISE 3.1: What are the trees and cotrees of the graphoid of
Exercise 2.27

ExeRrcise 3.2: For the graphoid of a graph: find a formula
relating the number of lines in a tree, the number of vertices of the
graph, and the number of connected components.

LemMA 3.1: Let T be a set of lines. Then T is a tree if and only
if: T contains no circuit, and T (the set of lines not in T) contains no
cocircuit. ’

Proof: Suppose T is a tree. Now, if T contains a cocircuit D: let
x be any line of D. Then T + x contains a circuit C; this circuit
contains x because T contains no circuit. But then C N D is just x,
and |CND| =1, contradicting Axiom (G-I). (Draw a Venn-
diagram!)
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Conversely: suppose T contains no circuit and T contains no
cocircuit. We must show that for any line x in 7, T + x contains a
circuit. Paint all lines of T red, paint x green, and paint the
remaining (unpainted) lines of T blue. (Draw a Venn-diagram!)
Since there is no green-and-blue cocircuit, by Axiom (G-II) there
is a green-and-red circuit.

EXERCISE 3.3: State the dual of Lemma 3.1, beginning with
“Let S be a set of lines - - - ”

THEOREM 3.1: Let T be a tree. Then T, the complement of T, is a
cotree.

Proof: By Lemma 3.1, T contains no circuit and T contains no
cocircuit. The conclusion follows immediately by Exercise 3.3,
putting S = T.

THEOREM 3.2: Let T be a tree, and x a line of T Then T + x
contains a unique circuit (which we shall name C.,).

Proof: Suppose C, and C, are distinct circuits in T + x. Then
either C, — C, or C, — C, is nonempty; without loss of generality,
assume the former. (See Figure 6.)

FiG. 6
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Let y be a line of C; — C,. Then, by Theorem 3.1, T +y
contains a cocircuit D; since |C;N D| # 1, D contains x. But then
C,n D = x, contradicting Axiom (G-I).

ExEercise 3.4: State the duals of Theorem 3.1 and 3.2. (Notice
that the dual of Theorem 3.2 is not trivial in the application to
graph-theory!)

Now we come to a fairly deep theorem.

THEOREM 3.3: Let T\, T, be any two trees. Then |T,| = |T,|.

Exercise 3.5: Check the truth of this theorem in the graphoid
of Exercise 2.2.

Proof: Ignoring the trivial case T, = T,, we see (by the “maxi-
mality” property of a tree) that neither contains the other, so
T, - T, and T, — T, are nonempty. (See Figure 7.) Choose any
line x of T, — T,. Now, T, + x contains a circuit C, which (since
T, contains no circuit) must contain a line y of 7, — T,. (See
Figure 8, where the heavy line delineates C.) Now, T, is a cotree
(Theorem 3.1) so T, + y contains a cocircuit D which in turn
contains y; by Axiom (G-I) it must also contain x. (See Figure 9.)

By Theorem 3.2, T, + x — y contains no circuit (because re-
moving y from T + x destroys the unique circuit C) and by
Exercise 3.3, T, + y — x contains no cocircuit (for the exact
dual-reason). It now follows from Lemma 3.1 that T, + x — y isa
tree.

Now (see Figure 10) we have a new tree T’ which has the same
number of lines as 7, but is “one jump closer” to T),. This tree
may be exactly T); in this case the proof is complete. If not, we
can repeat the above process, with 7" in the place of T,. Continu-
ing in this way we get a sequence of trees {7}, T', T”, ..., T™}
such that each tree of the sequence has the same number of lines
as its predecessor, and finally T® = T,. Q.E.D.
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The reader will recall that this is the same kind of process as is
used in proving that two bases of a finite-dimensional vector space
have the same number of vectors. We shall see that this connec-
tion is a deep (not superficial!) one in Exercise 5.10 later.

EXERCISE 3.6: State the dual of Theorem 3.3. Give a proof of
this dual using Theorem 3.3, but which does nor proceed by
“dualizing” the theorem.

We now state a definition. We have no immediate use for the
concept introduced here (i.e., we cannot at this point prove any
interesting theorems involving the concept!) but this is the natural
place to state it, anyway.

DEFINITION 3.2: Let T be a tree, and let x,, . . ., x, be the lines
of T. Then (T + x,),...,(T + x,) contain unique circuits
Cxl, ..., C,. We call these the fundamental system of circuits
associated with T, and shall sometimes call them simply
Cy...,C,.~

e
EXxERcISE 3.7: Formulate the dual definition to Definition 3.2.

Exercise 3.8: Let C be a circuit, and let x, y be two lines of C.
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Show that there exists a cocircuit containing x and y but no other
lines of C. (Suggestion: form a tree by adding lines to (C — x).)

4, MORE ON PRE-GRAPHOIDS.

EXERCISE 4.1: Let (L, C, D) be a pre-graphoid. Let C' be any
system of subsets of L such that (i) C’ contains all of C, and (ii)
each set C’ in C' is a union of elements of C. Let D’ be another
system of subsets related to D in the same way as C' is related to
C. Prove that (L, C’, D) is a pre-graphoid.

Pre-graphoids are not very interesting objects per se; however,
the concept is very useful in the study of graphoids. The theorems
of this section are not very impressive, but we shall have good use
for them later. From this point on, we shall use the terms “pre-
circuit” and “pre-cocircuit” for the members of C and D of a
pre-graphoid, for reasons which will be clear shortly. (See Defini-
tion 4.1.)

LemMA 4.1: In a pre-graphoid: suppose a pre-circuit C is not
minimal—i.e., it contains properly another pre-circuit. Then C is a
union of properly smaller pre-circuits.

Proof: Let C, Cc C,x € C,,y € C — C,. (See Figure 11.) Paint
y green, x blue, the rest of C red, and the rest of L blue (see Figure
12). Now if there is a pre-cocircuit D containing the green line and
otherwise only blue lines, then to prevent |C N D| =1 we must
have x € D. But then |C; N D| = 1. Thus there is no such D, and
there is by (G-II) a pre-circuit C, containing y but not x.

Now, let the lines in C — C, be called y,, y,, ..., y,. Form a
system of pre-circuits C, , . . ., C, as above, and observe that C is
the union of these pre-circuits and C;; these are all properly
smaller than C.

LEMMA 4.2. In a pre-graphoid: each pre-circuit is a union of
minimal pre-circuits.
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Proof: By Lemma 4.1, if a pre-circuit is not itself minimal, it
can be broken up into (i.e., written as a union of) smaller pre-
circuits. Each of these, in turn, if not itself minimal, can be broken
up into smaller ones; and so on until we get all minimal pre-
circuits.

Now we come to an important theorem:

THEOREM 4.1: In a pre-graphoid (L, C, D): let C' be the collec-
tion of minimal pre-circuits, and D' the collection of minimal
pre-cocircuits. Then (L, C', DY) is a graphoid.

EXERCISE 4.2: Prove Theorem 4.1, using Lemma 4.2.

DEerFINITION 4.1. In a pre-graphoid (L, C, D): the graphoid
composed of all minimal pre-circuits and minimal pre-cocircuits is
called the underlying graphoid of (L, C, D). These minimal pre-
circuits and pre-cocircuits of the pre-graphoid will often be called
its circuits and cocircuits.
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The usefulness of Theorem 4.1 will be as follows: we shall
sometimes want to construct a graphoid having certain properties.
We can now proceed by constructing a pre-graphoid, and then by
discarding the non-minimal precircuits and pre-cocircuits obtain
the underlying graphoid, and then prove that it has the desired
properties.

DEFINITION 4.2: In a pre-graphoid, we define a tree as a set of
lines containing no pre-circuit, and maximal with respect to that

property.

EXERCISE 4.3: What is the relationship between a tree of a
pre-graphoid and a tree of the underlying graphoid?

EXERCISE 4.4: Observe that Axiom (G-III) was used in Section
3 in Ex. 3.8, so that all the results of that Section could have been
proved for pre-graphoids as well as graphoids. Explain (in the light
of the answer to Exercise 4.3) why it was not worthwhile to prove
the theorems in this greater generality.

5. CONNECTED GRAPHOIDS; GRAPHOIDS AND MATROIDS.

Let us introduce a relation S between the lines of a graphoid.
We write x,Sx, provided either x, = x, or there exists a circuit C
containing x; and x,.

EXERCISE 5.1: Verify that the relation S is “symmetric”: x,;Sx,
if and only if x,Sx,. Also, show that the word “cocircuit” could
have been used instead of “circuit” in the above definition without
changing the meaning of S. Suggestion: suppose x; # x,, and
both lines are in some circuit C. Paint x, green, x, blue, the rest of
C red, and all remaining lines blue; apply (G-III), (G-II), and
(G-D.
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Now, let us write x, = x, if either x,Sx, or: there is a sequence
(xp X's x”, ..., x™, x,) of lines such that each line is S-related to
its predecessor and successor in the sequence. (By the way, (=) is
sometimes called the “transitive extension of S.”)* It is easily seen
that (=) is an equivalence-relation—i.e., it is reflexive, symmetric,
and transitive. By a famous theorem (see [3]) the set L of lines can
be partitioned into classes L, L,, ..., L,, such that: if x, and x,
are in the same class, then x; = x,, and if they are in different
classes, then x, & x,.

An equivalence-class of lines is called a component of the
graphoid. If the graphoid has only one component, it is called
connected; if more than one, it is called separated or separable.

EXERCISE 5.2: Show that if the components of a graphoid are
L,...,L, and C, is the set of circuits containing lines of L,,
and D, is the set of cocircuits containing lines of L,: then L,
together with C, and D, is a connected graphoid.

EXERCISE 5.3: What are the components of the graphoid of the
graph of Figure 1? (There are four altogether, not two!)

EXERCISE 5.4: Suppose the lines of L are numbered so that the
lines of L, are 1,...,/, the lines of L, are numbered /, +
1,..., 1 + L, and so on. With this kind of numbering, what can
one say about the appearance of the line-circuit and line-cocircuit
incidence matrices? (See Section 2.) Can one see the incidence-
matrices of the graphoid of Exercise 5.2 in this picture?

DEerINITION 5.1: A matroid is a structure consisting of a finite
set L of (undefined) objects called “lines” and collection C of

*It can be shown (see [41]) that x,Sx, and x,Sx, imply x,Sx;, and hence the
transitive extension of S is S itself.
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nonempty subsets of L, called “circuits”, satisfying:

(M-I) No circuit contains another circuit properly.
(M-II) If C, and C, are any two circuits, x€C,N C,, y E(C, —
C,), then there exists a circuit C, such that yeC,,
x & C;, and C;C(C,U C,). (See Figure 13.)

F1G. 13

ExERCISE 5.5: Let (L, C, D) be a graphoid. Show that (L, C) is
a matroid. (Suggestion: to show (M-II): paint y green, x blue, the
rest of C,U C, red, and the rest of L blue. Use (G-I) and (G-II).)
Also state the dual-theorem.

3

DEerINITION 5.2: Let (L, C) be a matroid. Suppose there is a
system D of subsets of L such that (L, C, D) is a graphoid. Then
(L, D) which is a matroid by Exercise 5.5, is called a dual-matroid
of (L, C). (Note: although this definition is the writer’s, the
original concept and another definition are due to Whitney [41).)

THEOREM 5.1: Let (L, C, D) be a graphoid, and E a nonempty
set of lines. Then E is a cocircuit if and only if: for any circuit C,
|C N E|+# 1, and E is minimal (nonempty) with respect to this
property.
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Proof: Clearly if E is a cocircuit, |C N E| # 1 by (G-I). Also:
suppose E'CE but E' #+ E. Let x€EE’, yE(E — E’) and apply
Exercise 3.8 to conclude there exists a C such that [E'N C| = 1.
Thus E’ = E.

Now, assume E has the two properties, and let x be any line of
E. Paint x green, the rest of E blue, and the rest of L red. (Draw a
Venn-diagram!) By hypothesis on E, there is no green-and-red
circuit, so by (G-II) there is a green-and-blue cocircuit D. D Cc E
and for any circuit C, |C N D| # 1. Thus if E # D, E cannot be
minimal; hence E = D.

Let us give some interpretations of Theorem 5.1:

Interpretation 1. If we know the line-circuit incidence-matrix of
a graphoid, then we can construct (reconstruct?) from it the
line-cocircuit incidence-matrix.

Interpretation 2. If a matroid has a dual-matroid, then this
dual-matroid is unique, so that we are justified in speaking of “the
dual-matroid.”

ExERCISE 5.6: Show that if a matroid M has M’ as its dual,
then M’ has M as its dual.

Now we are finally going to make use of some of the theory of
pre-graphoids which we developed earlier. We are leading up to
the theorem that every matroid has a dual-matroid.

LeMMA 5.1: Let (L, C) be a matroid. Then there exists a system
D of subsets of L such that (L, C, D) is a pre-graphoid.

Proof: Let p be a painting of L such that there is no circuit
consisting of the green line and otherwise only red lines. Form a
set D, as follows:

() D, contains the green line.
(ii) For each circuit C containing the green line, D, contains
at least one blue line in common with C.
(iii) D, is minimal with respect to properties (i) and (ii).
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Notice that there is no doubt of the existence of a set satisfying
(1) and (ii): one has only to take the set consisting of the green line
and all those blue lines which are contained in circuits containing
the green line. Notice also that for a given p, there may be several
possible sets D,; in this case, choose one of them arbitrarily and
call it D,

Now, let D be the collection of all the sets D,, with p ranging
over all paintings of the type described above. (Note there are
possible duplications.)

Obviously (L, C, D) satisfies Axiom (G-II), and we need only
show that it satisfies (G-I). Consider any circuit C and any set D,
together with the associated painting p.

If C contains the green line, (G-I) is automatically satisfied, by
property (ii) of D,. Since D, contains no red lines we can ignore
the case where C consists of red lines only, and we have only to
consider the case where C consists of blue and red lines (possibly
none of them being red, but at least one being blue). Suppose
C N D is a single line x. We shall try to show a contradiction.

By property (iii) of D,, there is a circuit Cl which contains the
green line, and other\mse has only the line x in common with D,.
Referring now to Figure 14, we see that the shaded area contams
no line of D,.

Now, by (M-II) there is a circuit C, containing the line G and
otherwise entirely contained in the shaded area of Figure 14. But
then it has only the line G in common with D,, which contradicts
either the definition of p or property (ii) of D,. Q.E.D.

THEOREM 5.2: For any matroid (L, C): there is a unique system
D of subsets of L such that (L, C, D) is a graphoid; i.e., every
matroid has a unique dual-matroid.

Proof: By Lemma 5.1, there is a pre-graphoid (L, C, D’). Let
(L, C, D) be the underlying graphoid. (Definition 4.1.) (Note: it is
easily seen from the way the underlying graphoid is formed that
the circuits of the graphoid are the same as those of the matroid!)
The uniqueness has already been stated and proved; see Interpre-
tation 2 of Theorem 5.1.
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EXERCISE 5.7. (optional) Is the pre-graphoid (L, C, D") of the
above proof actually a graphoid, so that the reduction to the
underlying graphoid was really unnecessary?

EXERCISE 5.8: Let V be a vector space. Let L be a finite set of
vectors in V. Define C as follows: C is in C if C is a (non-empty)
minimal linearly dependent set of vectors of L. Prove that (L, C) is
a matroid.

Notice, now, that all the terminology we have for graphoids, like
“tree,” “cotree,” “cocircuit,” etc., have meaning for a matroid:
they are taken as simply the corresponding concepts in the (uni-
que) associated graphoid.

EXERCISE 5.9: For the matroid of Exercise 5.8: what is a tree of
this matroid?

EXERCISE 5.10: Prove that any two bases of a finite-
dimensional vector space have the same number of vectors.
(Suggestion: let L be the union of the two bases, and use Exercise
5.9 and Theorem 3.3.)
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One last comment before leaving this topic: G. Kron [21] has
been heard to proclaim, not only that electrical networks have no
nodes, but also that they have no cut-sets (cocircuits). One of the
main points of this paper is that it is not only possible, but also
desirable, to study graphs in such a way that nodes are never
mentioned. However, it is clear from the content of this Section
that it is possible, but not desirable, to dispense with the notion of
cocircuit—for, given the circuit-matrix, one can always construct
the cocircuit-matrix, and the cocircuits may be very useful objects
to have at one’s disposal as fools, even if one’s primary interest is
in the circuits.

6. NEW GRAPHOIDS FROM OLD.

(Later sections do not depend strongly on this section, so it
could be omitted on first reading; the exercises are, however,
rather valuable.)

For a graph G: two interesting operations, each of which
produces a new graph G’ (with one fewer line) are called deleting a
line and shrinking a line. Concentrating on the latter, we see that
when a line x is “shrunk to a point” (its two vertices then become
one) the following phenomena occur:

(1% Any cocircuit containing x is “destroyed”—i.e., does not
correspond to a cocircuit of G’. However, a cocircuit not
containing x is not destroyed.

(2% Any circuit containing x goes over into a circuit with one
line fewer.

(3% A circuit not containing x may cease to be a circuit,
because it goes over into a union of two circuits.

Comment (3% seems to suggest that it will be easiest to mimic
these considerations in graphoid-theory by dealing with a pre-
graphoid rather than a graphoid.

Let (L, C, D) be a pre-graphoid with |L| > 2, and distinguish a
line x. Let L’ be L — x. For each pre-circuit C form a subset of L
as follows: if x € C,let C' = C; if x € C,let C' = C — x. (Note
that if x is a loop, C’ is the empty set.)
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For each pre-cocircuit D not containing x, let D’ = D.

Now let C’ and D’ be the collections of all the sets C’ and D’
formed as above (except that we do not use the empty set, if it
appears as a C’, in forming C’).

ExXErcise 6.1: Show that if C, # C,, then C|# Cj; also, if
D, # D,, then D{ # D;.

EXERCISE 6.2: Show that (L', C’, D’) is a pre-graphoid.

EXERCISE 6.3: Show that if D is a cocircuit of (L, C, D)—i.e., a
minimal set in D—then D’ is a cocircuit in (L', C', D).

DEFINITION 6.1: We shall say that (L, C’, D), formed as above
from (L, C, D), is the pre-graphoid formed by shrinking x. If the
roles of C and D are interchanged, it will be said to be formed by
deleting x. The underlying graphoid of (L', C’, D) will be called
the graphoid obtained by shrinking x (resp. deleting x). We will
ordinarily use this terminology only when (L, C, D) is a graphoid.

ExercisE 6.4: For a pre-graphoid (L, C, D), show that if two
lines x,, x, are shrunk successively, the pre-graphoid (L', C’, D’)
obtained does not depend on the order in which they are shrunk.
State the dual-theorem.

EXERCISE 6.5. Show that the pre-graphoid obtained by first
shrinking x; and then deleting x, is the same as the one obtained
by performing these operations in reverse order.

EXERCISE 6.6: Let P and Q be two disjoint subsets of L with
|[PuU Q| < |L|. Show that it is meaningful to speak of “the pre-
graphoid obtained by shrinking all lines of P and deleting all lines
of Q”—i.e., that the order of shrinkings and deletions is im-
material. Suggestion: invent some notation!
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EXERCISE 6.7: State what operations on the incidence-matrix
correspond to the process of Exercise 6.6, and how to obtain the
matrices of the underlying graphoid of the final pre-graphoid.

DEFINITION 6.2: We define a series-parallel (s.-p.) graphoid re-
cursively as follows:

(i) A graphoid with one line is s.-p.

(ii) A graphoid is s.-p. provided either: (a) there are two lines in
series (Definition 2.4) such that shrinking one of them
produces an s.-p. graphoid, or (b) there are two lines in
parallel such that deleting one of them produces an s.-p.
graphoid. '

EXERCISE 6.8: Show that any s.-p. graphoid is the graphoid of a
graph, with C playing the role of the circuits and D the cocircuits
of the graph. Show also that the dual-graphoid (L, D, C) is realiz-
able as a graph!

EXERCISE 6.9: Show that if the line x is a loop, and two new
graphoids are obtained by shrinking x and by deleting x respec-
tively, these two new graphoids are identical.

EXERCISE 6.10: Show that if a loop is shrunk (or deleted) the
trees of the graphoid are unchanged. What are the cotrees of the
new graphoid (i.e., how are they related to the cotrees of the “old”
graphoid)?

Now let us look at a more interesting way of making new graphs
out of old ones. Two two-terminal graphs can be put together to
form a new graph (with no distinguished terminals) in an obvious
way—solder a terminal of the first to a terminal of the second, and
then solder together the two “loose” terminals. (In mathematical
terminology, “identify” is preferred to “solder together.”) Can we
mimic this procedure with graphoids? Recall that in this theory we
shall have to deal with two one-port graphoids (L,, C,, D, x,) and
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(L,, C,, D,, x,). We begin by letting L' = L,U L, — x; — x, (here
L, and L, are assumed disjoint). A circuit of the new graphoid will
be any one of the following: (i) a circuit of the first, not containing
x,; (ii) a circuit of the second, not containing x,; (iii) for any
circuit C, of the first which contains x,, and any circuit C, of the
second which contains x,, form a circuit C' = C,U C, — x; — x,.
Form the cocircuits correspondingly.

EXERCISE 6.11: Show that the structure (L', C’, D) obtained as
above is a graphoid.

EXERCISE 6.12: (For matroid-theorists only!) Take two copies
of the complete graph on five points, distinguish a line of each,
and think of them as one-port graphoids. Put them together as
described above, but reverse the roles of the circuits and cocircuits in
one of the copies before “assembly.” Is the resulting graphoid
realizable as the graphoid of a graph?

7. EVEN GRAPHOIDS AND BINARY MATROIDS.

DEFINITION 7.1: An even graphoid is a graphoid satisfying the
following axiom: (G-I-E) for any circuit C and cocircuit
D : |CnDj|is an even number.

It has already been remarked that the graphoid of a graph is an
even graphoid. Thus everything we have to say about even
graphoids will automatically be applicable to graph-theory. Notice
that we now need pay no attention to Axiom (G-I), since it is
implied by (G-I-E).

ExerciSE 7.1: Show that the graphoid of Exercise 2.2 is not (in
general) an even graphoid, so that the conjecture “every graphoid
is even” is in fact false.
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DEFINITION 7.2: An even pre-graphoid is a pre-graphoid whose
pre-circuits and pre-cocircuits satisfy (G-I1-E).

Exercise 7.2: Let (L, C, D) be an even pre-graphoid. Let C’ be
related to C as follows: C’ contains all of C; any remaining set of
C' is a disjoint union of sets in C—i.e., it can be decomposed into
disjoint elements of C. Let D’ be related similarly to D. Show that
(L, C', D') is an even pre-graphoid.

Even pre-graphoids (like other pre-graphoids!) are not very
interesting objects per se, but are useful tools in the development
of the theory of even graphoids.

ExeRrcIsE 7.3: Let (L, C, D’) be an even pre-graphoid, and let
(L, C, D) be the underlying graphoid. Show that (L, C, D) is an
“even graphoid.

Let us investigate further the relationship between an even
pre-graphoid and its underlying graphoid.

THEOREM 7.1: (Context as in Exercise 1.3.) Any pre-circuit
C' € C is a disjoint union of circuits. Furthermore, for any circuit
C, properly contained in C', the disjoint decomposition can be
chosen so as to include C,.

Proof: Suppose C’ is not a circuit. Then there is a circuit C,
properly contained in C; let x, be a line of C’ not in C,. (See
Figure 15.) Color x, green, C, blue, the rest of C’ red, and the rest
of L blue. Suppose there is a cocircuit D containing the green line
and otherwise only blue lines. Then clearly either |C N D| or
|Cy N D| is odd; both these possibilities are forbidden. Hence,
since the underlying graphoid obeys Axiom (G-II), there is a
red-and-green circuit C,.

Now, C, and C, are disjoint (see Figure 16). Either they fill up
C’ or there is a line x, left over. Color x, green, C, and C, blue,
‘the rest of L blue (Figure 17). If there is a cocircuit D containing
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the green line and otherwise only blue lines, then at least one of
[C’'n D|, |C, N D|, |C, n D| must be odd, since the former is
the sum of the latter two, plus 1; all these are forbidden, so there is
a green-and-red circuit Cj.

B

. ©

: (D
FiG. 16 Fic. 17

The argument continues along these lines until C’ is exhausted:
C'=C,u CGuU - - UC,, with all C; disjoint from each other.
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Exercise 7.4: Rewrite the above proof in a formal way
(without using the phrase “and so on” or any of its disguises).

DEFINITION 7.3: A binary matroid [41] is a matroid with the
property: For any tree T and circuit C: let x,, . . ., x,, be the lines
of C which are not in 7. Then C = C,AGA - - - AC,,, where A is
“symmetric difference” and C; is the fundamental circuit corre-
sponding to T and x;. (See Definition 3.2).

The primary object of this section is to elucidate the connection
between even graphoids and binary matroids.

Exercise 7.5: Let (L, C) be a binary matroid, (L, D) its dual.
Show that (L, C, D) is an even graphoid. Suggestions: for any
cocircuit D, form a cotree containing all but one line of D, and let
T be the associated tree. Write the circuit C in terms of the
fundamental-circuits corresponding to 7.

Exercise 7.6: (For graph-theorists only!) Show that the circuit-
matroid of a graph is binary; show also that the cocircuit-matroid
is binary. (This exercise will be given again later, when we have
enough tools to make it easy.)

LEMMA 7.1: Let (L, C, D) be an even pre-graphoid. Let C,, C,
be two distinct pre-circuits (with |C,AC,| # 0). Form C' as C with
C,AC, adjoined. Then (L, C', D) is an even pre-graphoid. Further-
more, the underlying (even) graphoid of (L, C', D) is the same as
that of (L, C, D).

Exercise 7.7: Prove Lemma 7.1, following this outline:

(1% Show (L, C, D) satisfies Axiom (G-II).

(2% Show it satisfies Axiom (G-I-E). (Draw a Venn-diagram!)

(3% Show that (L, minimal elements of C) and (L, minimal
elements of C’) are matroids having the same dual-matroid,
and are hence the same (see Exercise 5.6).
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LemMA 7.2: Let (L, C, D) be an even pre-graphoid. Let C' be
composed of C and some nonempty symmetric differences (like
C,AGCA - - - AC,) of elements of C. Then (L, C', D) is an even
pre-graphoid whose underlying (even) graphoid is the same as that of
(L, C, D).

Proof: Consider first the case where C’' consists of all the
nonempty symmetric differences. Then C' can be built up by
adjoining “single” symmetric differences (like C,AC,) one-at-a-
time, and Lemma 7.1 can be applied in each step.

EXERCISE 7.8: Complete the proof of Lemma 7.2 for the case
where some of the nonempty symmetric differences are “missing.”

LemMA 7.3: Let (L, C, D) be an even pre-graphoid. Let C' con-
sist of C plus some certain nonempty symmetric differences of
elements of C, and D’ be formed analogously from D. Then
(L, C', DY) is an even pre-graphoid.

EXERCISE 7.9: Prove Lemma 7.3 as follows: first use Lemma
7.2, then use the dual of Lemma 7.2, and complete the proof
following the outline of Exercise 7.8.

LeMMA 7.4: Let (L, C, D) be an even graphoid, and T a tree. Let
x and y be distinct lines of T. Let C be a circuit containing x and y,
and otherwise only elements of T. Let C, and C, be the (unique!)
circuits containing x and y respectively, and otherwise only elements
of T. Then C = (C,AC)).

Proof: We have to show (A) that every line of C is a line of
C,AC,, and (B) that every line of C,AC, is a line of C.

Proof of (A): Those lines of C which are in T are obviously in
C,AC,. If we can show that no line of C is in C;N C, and no line
of Cisin T — (C,U C,), we will be through. (See Figure 18.)
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(C is not shown)
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Suppose z€ C and zE(C,N C,). Since T is a cotree, we can
form the fundamental cocircuit D consisting of z and otherwise
only lines of 7. By Axiom (G-I) applied to C, and C,, x and y are
lines of D (see Figure 19). But then C N D must consist of the lines
x,y, and z, contradicting Axiom (G-I-E).

9

‘ (C is not shown)

F1G. 19



276 George J. Minty

020

. (C is not shown; D only partially shown)

F1G. 20

Now suppose z€C, z€T — (C,U C,). Form the fundamental
cocircuit D just as above (see Figure 20). Apply Axiom (G-I) to C
and D to see that D must contain x or y, so that either |D N C|
= 1or |DNC,| = 1, in violation of Axiom (G-I). (This paragraph
is referred to in Exercise 7.10 below.) '

We have finished the proof of (A), and move on to (B). Let C’
be formed by adjoining C,AC, to C. By Lemma 7.1 above,
(L,C,D) is a pre-graphoid, and its underlying graphoid is
(L, C, D). By Theorem 7.1, C,AC, is a disjoint union of circuits,
and the decomposition can be chosen to include C. (Note this is
true because we proved (A) above!) but if there were any other
circuit, say C,, in the decomposition, then C,C T (draw a Venn-
diagram!) which is impossible. Hence C = C,AC,.

EXERCISE 7.10: One of the paragraphs of this proof uses only
Axiom (G-I), not (G-I-E). What theorem about graphoids (not
necessarily even graphoids) is really proved in that paragraph?

We now come to a highly important theorem.

THEOREM 7.2: The two matroids of an even graphoid are both
binary matroids.

Proof: We shall show that (L, C) is a binary matroid. Consider
the even graphoid (L, C, D), let T be a tree and C be a circuit; let
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C — T be the lines x,,...,x,, let T —C be the lines
Xpap - -s X, and let C; be the (unique) circuit contained in
T + x,. We shall proceed by mathematical induction on m; note
that the case m = 1 is obvious, and the case m = 2 is covered by
Lemma 74.

Form the tree T’ by adjoining x,, to T and then removing a line
y of (C,NT)— C (just as in the proof of Theorem 3.3). By the
induction-hypothesis, since C has only the lines x,,..., x,_,
outside of T’, we can write C = C{AC;A - - - AC,,_, (the meaning
of these symbols is obvious). We now show that each C/ is a
symmetric difference of fundamental circuits associated with 7. It
is easy to see that C; has either one or two lines outside of T in
the former case, it is itself a fundamental circuit of T, and the
latter case is covered by Lemma 7.4.

We now know that C is a symmetric difference of fundamental-
circuits associated with T. Is it precisely that one referred to in the
Theorem? It must be, for: using the rules for manipulating sym-
metric differences EAE =8, 8 AE = E, the expression can be
reduced to one with no repeated terms; and if any C; with
i# 1,..., m appears, then the expression would contain a line
outside of C; also, each C, with i = 1, ..., m obviously appears.

Having finished the proof of this formidable theorem, we see
that we have proved a highly nontrivial theorem of graph-theory:

ExEeRrcISE 7.11: Now do Exercise 7.6, using Theorem 7.2.

A few words are now in order concerning digital computation
(although we generally stay away from that topic in this paper).
Consider a relatively small graph—say, the complete graph on 8
points. The numbers of circuits and cocircuits of this graph are so
enormous that corestorage of the circuit-and cocircuit-incidence
matrices is virtually unthinkable (with present-day machines). This
suggests that even for “rather small” matroids, (having, say, on the
order of 28 lines) it might be very difficult to store the matroid-
structure in the machine. But this is not so for binary matroids!
One only has to know one tree and the associated fundamental-
circuits; this small amount of information contains the complete
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matroid-structure. For: the collection of all nonempty symmetric
differences of these fundamental-circuits contains all the circuits
and otherwise only symmetric-differences of circuits. Lemma 7.2
then asserts that by rejecting all these sets which are not minimal,
we obtain all the circuits of the matroid. This procedure is not
computationally feasible for a moderate-sized matroid, but we
shall ignore the problem of giving a computationally feasible
scheme, simply because it is not known to the writer at present
whether this will turn out to be an important problem. It is only
- the question of storage-feasibility which we are attempting to
answer here.

A rather compact, and well-known to electrical network-
theorists, method for storing the structure (for binary matroids) is
as follows: number (or renumber, if necessary!) the lines of a
cotree 1, ..., s, and suppose L has / lines in all. Form the s X /
incidence-matrix of the fundamental circuits. This matrix will have
the partitioned form []|A4], where I stands for the identity-matrix.
The matrix 4 then contains (implicitly) the complete matroid-
structure.

But the most important feature of binary matroids (and even
graphoids) is of an algebraic character.

DErFINITION 7.4: Let C and D be the incidence-matrices of a
graphoid with / lines. Consider the vector space (over the field F of
integers mod 2, whose elements are 0 and 1) of /-tuples of zeros
and ones, called F’. The circuit-space mod 2 of the graphoid (which
could also be called “current-space mod 2”) is the subspace of F'
generated by the rows of C; the cocircuit space mod 2 is the
subspace generated by the rows of D. A current (mod 2) is an
element of the current-space mod 2; a voltage (mod 2) is an
element of the cocircuit-space mod 2. (In the remainder of this
Section, we shall drop the phrase “mod 2”; it is understood
throughout.) These definitions “make sense” in a general (non-
even) graphoid, but are not especially interesting in that context.

DEFINITION 7.5: Given a tree T a fundamental-circuit vector is
an n-tuple of 0’s and I’s having its I’s in precisely those entries
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corresponding to a fundamental-circuit (with respect to 7). A
Jundamental-cocircuit-vector is defined analogously.

THEOREM 7.3: Consider an even graphoid and consider any tree
T. Then the fundamental-circuit-vectors are a basis for the circuit-
space; the dual theorem also holds.

Proof: 1t is obvious that these vectors are linearly independent,
since each has a 1 in a position where all the others have 0’s; thus
no one of these vectors is a linear combination of the others.

Now, Theorem 7.2 tells us that any circuit C can be written as a
symmetric difference of fundamental-circuits. It is routine to
check that if we add up the corresponding vectors (mod 2) we get
the vector corresponding to C. Thus any sum of vectors corre-
sponding to C’s can be written in terms of the fundamental-
circuit-vectors.

(This phenomenon is known to mathematicians as isomorphism;
the correspondence between vectors and the corresponding subsets
of L is an isomorphism carrying the operation + into A. Inciden-
tally, this isomorphism and the well-known theorem which states
that a vector can have only one representation as a linear combina-
tion of a set of independent vectors, is an alternative proof for the
last paragraph of the proof of Theorem 7.2.)

The reader who wishes to know more about binary matroids
should now refer to Whitney’s original paper [41]; if he wishes to
see contact with more concrete subject-matter, he can now refer to
Lehman’s paper [23] on matroids vis-a-vis switching theory. If, on
the other hand, he wants to try out his wings as a matroid-theorist,
I would suggest that he try to put Duffin’s paper on the Wang
algebra of networks [9] into matroid-language!

8. DIGRAPHOIDS, ELECTRICAL NETWORKS,
AND NETWORK-PROGRAMMING.

We now wish to consider what part of the theory of directed
graphs can be built up in the wider context of graphoids/
matroids. To this end, we shall introduce the concepts of
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digraphoid (short for “directed graphoid™) and orientable graphoid.
Now, Tutte [38] has implicitly defined an orientable matroid as
one on which a regular Abelian chain-group can be built up, and
it is (essentially) oriented by choosing one particular such chain
group. However, this work has a very formidable and technical
appearance, and this notion of “orientation” has very little direct
intuitive appeal. Although the objects we shall study are essentially
a regular Abelian chain-group and its dual (axiomatized simul-
taneously), our approach will involve much more elementary
“primitive” notions than Tutte’s. The connection with regular
chain-groups is discussed in the Appendix.

It is necessary to introduce a notion of orientation into electri-
cal-network theory for the treatment of non-bilateral elements,
such as rectifiers. The notion of an orientable graphoid is a
valuable one because some of the theorems (e.g., on networks of
bilateral elements) do not require the distinguishing of any par-
ticular orientation for their statement—the orientation is needed as
a tool in the proof.

Let us briefly review and classify “methods of electrical-network
analysis.” The writer believes that four classes of theory are
sufficient:

I. The so-called “topological” method. This method was
originated by the great graph-theorist Kirchhoff (see, e.g., [19])
and advanced by Feussner [12], [13]. These fundamental works are
for some reason not well-known to engineers; the basic ideas were
recently rediscovered by Percival [34], [35].

II. The “linear algebra and matrix-theory” method. This has its
origins in the “mesh-analysis” method of J. Clerk Maxwell, and is
computationally so convenient that electrical engineers often think
of it as “the” method. It has probably retarded the study of
nonlinear electrical networks in the same way that the Laplace
transform has retarded the study of nonlinear differential equa-
tions. It does, however, lend itself well to the study of networks
containing triodes operated in the linear range.

III. The “variational” method. The beginnings of this method
are due to Maxwell, who proved the first (known to the writer)
extremum-properties of solutions of electrical networks. Duffin [8]
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became aware of the extendibility of these principles to nonlinear
networks, and used them to prove existence-theorems; the same
ideas were rediscovered and stated explicitly by Millar [24] and
popularized by Cherry. A synthesis with methods of solving varia-
tional problems of the Operations Research field was seen by
Charnes and Cooper [6]. The theory was further developed by the
writer [25] and a lucid treatment is given by Berge [2]. General
“pseudo-variational” methods for the treatment of a large class of
nonlinear problems of mathematical physics are given by the
writer [29], [27], [32], F. E. Browder [4], [5], and Zarantonello [42],
[43] but have been very little applied to network-analysis because
of their newness.

IV. The “digital topological” method. This was pioneered by
Ford and Fulkerson (see [14]), but in a way which does not bring
out its relevance to either electrical networks or matroid/graphoid
theory. A complete treatment, in a form making the theory im-
mediately transferable to the context of digraphoids, is given in
the writer’s works [25], [26}. A good treatment (in which, however,
the fundamental existence theorems for solutions are missing) is
given by Berge [2], using the writer’s algorithm. Appendix B of the
present paper contains the most important of the results.

But let us begin. We shall call the structures we are about to
introduce “digraphoids” (short for “directed graphoids”), in
analogy with the term “digraph” (for “directed graph”). We pre-
sent an inscrutable-looking axiom-system first and explain it later.

DEFINITION 8.1: A digraphoid is a structure consisting of: 1%a
graphoid, and (2°) a partitioning of each circuit and cocircuit of the
graphoid, each being partitioned into two sets; this partitioning is
to satisfy the axiom:

(DG) For any circuit C and cocircuit D: let C’, C” and D', D”
be the partitioning (note |C'NC"|=0, C'UC” = C,
etc.). Then |[C'ND'|+ |C"NnD"|=|C'NnD"|+
|C"nD’|

Notice that it was not prescribed that both of C’, C” (or both of
D’, D”) be nonempty.
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EXERCISE 8.1: Show that, in Axiom (DG), it does not matter
which of the two sets of the partitioning of C, is called C’ and
which C”.

Let us now re-state the definition in more understandable but
less concise form.

DEFINITION 8.2: A graphoid is called orientable, or directable, if
it is possible to change some of the 1’s in the incidence-matrices C,
D to (—1)’s in such a way that each row of C (corresponding to a
circuit) is orthogonal to each row of D (corresponding to a co-
circuit). Here, the numbers +1, —1, 0 are to be treated as real
numbers (or integers) in computing the “dot-product” (or “inner
product”). (Notice that we are abusing notation by referring to the
signed matrices as C and D.)

To make an example: Figure 21 shows the incidence-matrices C
and D of an orientable graphoid; Figure 22 shows C and D after
signs have been introduced, proving that it is indeed orientable.

1 0 0 o0 0O 1 1 O
0 0 1 1
0 1 1 1
0 1t 0 1
Fi6. 21
0 +1 +1 0
+1 0 0 0
0 0 -1 —1
0 +1 -1 +1
0 -1 0 +1
Fic. 22

EXERCISE 8.2: Show that any orientable graphoid is an even
graphoid. '
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ExERcISE 8.3: Show that, given an establishment of signs as in
Definition 8.2, the resulting partitioning of each circuit and co-
circuit into a “plus-set” and a “minus-set” satisfies Axiom (DG).

ExeRCISE 8.4: Show that the graphoid of any digraphoid is
orientable. (Use the partitionings!)

Having done Exercise 8.4, the reader will notice that, for each
row of the matrices C, D, it does not matter which of (say) C’, C”
is taken as the plus-set and which the minus-set. When signs have
been established as in Exercise 8.4, we shall call the resulting
matrices the incidence-matrices of the digraphoid, noticing that we
are abusing the definite article “the” by using it to describe a
non-unique pair of objects. Definition 8.1 avoids this abuse, be-
cause it does not say that each C and D is partitioned into an
ordered pair of subsets. Otherwise expressed: any set of rows of
“the” matrices C, D can be multiplied through by (—1) without
changing the digraphoid represented by the matrices.

From now on, we shall abuse the word “the,” in this connection
only.

EXercCISE 8.5: Verify that the graphoid of any graph is orient-
able. (Suggestion: “draw arrows on the lines” of the graph!)

DEerFINITION 8.3: Let S be a set of lines of a digraphoid. Multi-
plying through by (—1) all columns corresponding to lines of S in
both C and D produces a new digraphoid, called the “digraphoid
obtained by reversing the orientations of the lines of S.” (Note
that we do not define the concept “orientation of a line,” however!)

EXERCISE 8.6: Show that the structure produced by the opera-
tion of the above definition is indeed again a digraphoid.

Now let G be any Abelian group. (The reader who is unfamiliar
with the definition may substitute: “let G stand for any of (i) the
integers mod 2, (ii) the integers, (iii) the real numbers, or (iv) the
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complex numbers.” This substitution is inadequate, but will serve
as a crutch.) We shall call G the coefficient-group. (There is no
abuse of “the” here, since although G might be any one of, say,
four things, we are developing four theories “in parallel,” and in
any one of these theories, G is just one single object!)

DerINITION 8.4: Suppose we take the circuit-incidence-matrix
C of a digraphoid; replace every (1) in row 1 by an element g, of
G; every (1) in row 2 by an element g, (possibly the same as g,);
and so on. (The minus-signs remain where they are.) Then add the
rows to produce an n-tuple of elements of G. Any n-tuple which
can be produced in this way is called a “current,” or a “flow.” For
a single fixed G: the set of a// currents is called “the current-space
(relative to G).”

We define “voltage-drop” and “voltage-drop space”
analogously, with D in place of C. (The phrase suggests that we
should previously have defined “voltage”; however, this concept
has no place in the present theory.) The current-space will be
called K’, and the voltage-drop-space K”. The letter is chosen in
honor of Kirchhoff. (Perhaps a topologist would prefer P’ and P”,
since they correspond to familiar objects in homology-theory.)

EXeRcISE 8.7: In case G is a field F (say, the real or complex
numbers) show that K’ and K” are vector-spaces over F.

ExercISE 8.8: (Important!) In case G is the real or complex
numbers, show that K’ and K” are orthogonal complements in R’
(resp. C'). Suggestion: let d’, d” be their dimensions. Let ¢ be the
number of lines in a tree, s the number of lines in a cotree. Show
as in Theorem 7.3 that d’ > s and d” > {. Then observe that
every vector of K’ is orthogonal to every vector of K”, so that
d’' + d” < I, by the theorem “the sum of the dimensions of two
subspaces is the dimension of the sum plus the dimension of the
intersection.”

Exercise 8.9: (For functional analysts only!) Let H be a Hil-
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bert space, with real or complex scalars, and take G = H. Show
that K’ and K” are orthogonal complements in H'.

We remark that Exercise 8.8 contains implicitly the famous
formula

and Exercise 8.9 contains the formula

! +
> f “e.(1)i,(1)dt = 0,
i=1"~0o
Both formulas, of course, are conservation-of-energy principles.
(In the latter case, consider H = L%(— o0, + o0).)
We now formulate some problems of electrical-network theory.

ProBLEM 1. For given (fixed) complex numbers z,, ..., z; and
E,, ..., E, does there exist a 2 X / matrix of complex numbers
i ns iy
el, PEEEEEY el
such that (i, . . ., §) is in the current-space, (e;, . . . , €) is in the
voltage-drop space, and: for each column, ¢ = iiz; + E;
(G=1...,D71If so, give formulas for the solution.

PrOBLEM 2. Same as Problem 1, but with the real numbers in
place of the complex numbers throughout.

We present the outline of the scheme called “mesh-analysis™ for
the solution of these problems. First: the dimension of the current-
space is known (from Exercise 8.8) to be s, the number of lines in
a cotree. Let ¢;, . . ., ¢, be linearly independent vectors in K’ (in
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“mesh-analysis,” they are usually chosen for convenience to be
linearly independent rows of C, obtained for example as in Exer-
cise 8.8.) Let x,,...,x, be “unknown” coefficients. Then set
x,¢, + - -+ + x,c, = the first row of the unknown matrix. This
vector can be written as

(e + o - F X000, xcp F 00+ X0

Set

e=(xc;,+-- +x0c)z;,+E, for i=1...,1
The way we demand that the vector e be in K” is to demand that
it be orthogonal to K’, or equivalently, that it be orthogonal to a
basis for K’. So let ¢}, ..., ¢, be a (possibly different!) set of
independent rows of C. We write the equations:

i [ ki
’ _ ' =
2 cmjej - 2 cmj Zj( 2 xkckj) + E] =0.
Jj=1 Jj=1 k=1

This is now a system of s equations in s unknowns x;. After solving
for these, we can construct the solution (the 2 X / matrix) in an
obvious way.

It is clear that Problem 1 (or Problem 2) has a solution if and
only if the set of simultaneous equations has a solution. We cannot
guarantee that the problem has a solution without further
‘hypotheses on the numbers z; and/or E;, however.

ExERCISE 8.10. Write out in full the dual of the above process,
using i; = ¢a; + I, as “given” equations (here, @; and I; are as-
sumed “known”).

EXEeRrcISE 8.11: Rewrite the mesh-analysis process with maxi-
mum use of matrix notation; specialize it to the case where ¢; = ¢;
and the ¢; are derived from a tree as in Exercise 8.8; write the
matrices [c,] in partitioned form, with the “identity-matrix” dis-
played explicitly where it occurs.



DIRECTED LINEAR GRAPHS 287

Exercise 8.10 brings us close to the method called “node-
analysis”; however, we cannot approach closer because we have
no concept of “node” in digraphoid-theory!

ExerciSE 8.12: Develop all of Section 6 over again for
digraphoids—i.e., show how to construct “new digraphoids from
old” in each of the ways suggested there; be sure to prove that the
resulting structures are, indeed, digraphoids. Suggestion: draw
pictures of digraphs for inspiration, but be careful not to use them
in the proofs!

This is as far as we shall carry the “linear algebra and matrix
theory” approach to electrical network analysis; i.e., just far en-
ough to demonstrate its feasibility in the digraphoid-context.

We shall not delve at all into the “topological” method. The
writer is confident that all the classical formulas for the solution of
Problems 1 and 2 can be developed in the digraphoid-context—I
shall leave it as a “research problem.”

Let us turn now to the “digital topological” method. To show
the feasibility of doing network-analysis in this style in the
digraphoid-context, it is sufficient to prove the fundamental
“Lemme des Arcs Colorés,” as it has been called by Berge [2].
(The original theorem, for graphs, is due to the writer [25]; an
expository presentation of the theorem is given in Reference 26.)
We first introduce the notion of a painting of a digraphoid. This
consists of a partitioning of the lines into three sets, R, G, and B,
and the distinguishing of one line of the set G. One can think of it
as “a painting of the lines with three colors, each line being red,
green, or blue, and exactly one green line being colored dark-
green.”

THEOREM 8.1: (“Lemme des Arcs Colorés™ for digraphoids.)
Given a digraphoid; for any painting of the lines (as defined above)
there exists one, but not both, of:

(i) A circuit containing the dark-green line but no blue lines, in
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which all the green lines are similarly-oriented (i.e., have all
the same sign in the incidence-matrix C), or

(i) A cocircuit containing the dark-green line but no red lines, in
which all the green lines are similarly-oriented.

Proof: The proof will proceed by mathematical induction on the
number of green lines. If there is only one (the dark-green line) the
conclusion follows by Axiom (G-II).

Now suppose the theorem has been proved when there are m
green lines, and consider the case of (m + 1) green lines. Choose a
green line x other than the dark-green line (see Figure 23).

@ FiG. 23

Color the line x red. If there is a cocircuit of type (ii), we are
through.

Now color x blue. If there is a circuit of type (i), we are through.

Suppose neither of these phenomena occurs. Then, by the
induction-hypothesis, there is a cocircuit of type (ii) when x is
painted blue, and a circuit of type (i) when x is painted red. Let us
examine the corresponding rows of the incidence-matrices (Figure
24). In this figure, we have assumed the lines numbered so that the
dark-green line comes first, then the red lines, then the blue lines,
then the remaining green lines, and finally x. We have also chosen



DIRECTED LINEAR GRAPHS 289

the sign-conventions so (+ 1) appears in the “dark-green” position
of both vectors.

dg R B G X
D:(+1 0 0 00 0 0 +10-14+10+1+1 0 7
C:(+1 0+1-10-1-1 00 0 00+1 O+1 7

FiGc. 24

By Axiom (DG), these two vectors are orthogonal. The contri-
bution to the inner product from the dark-green line is +1; from
all the red and blue lines, zero; from the green lines, a nonnegative
integer p; and from x, an unknown number g, which must be 0,
+1, or —1. Now, we have 1 + p+¢g=0,s0 1+ ¢ <0, and
obviously ¢ = — 1. Thus one of the question-marks in Figure 24 is
+1, and the other is — 1. Choosing the vector in which it is +1,
we have the desired circuit or cocircuit.

ExerCISE 8.13: In Theorem 8.1: show that both (i) and (ii)
cannot be present. Suggestion: use the orthogonality of the two
corresponding rows of the incidence-matrices.

The development of the writer’s papers [25, 26], which give a
complete theory of nonlinear networks of two-terminal elements
with “monotonic” current-vs.-voltage-drop characteristics, will
now go through essentially without difficulty. (There are two
arguments concerning the finiteness of certain constructions which
must be modified to transfinite constructions, but this is an easy
matter—see Appendix B.) Since the fundamental existence-, uni-
queness-, and extremum-principle theorems for such networks are
also the fundamental theorems of the field of Operations Research
mathematics called “network-programming,” it is clear that
digraphoid-theory also forms a natural context for network-
programming. A review of the most fundamental theorems is given
here in Appendix B.

The special case of linear networks does not require so many
definitions. For example, we can state:
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THEOREM 8.2: In Problem 2 above: if all z; > 0, and if there is
no circuit such that z; =0 for all lines of the circuit, then the
equations of the mesh-analysis method have a solution, and the
solution is unique.

Proof: Follows immediately from the theorems of Reference 25,
thought of in the digraphoid-context. (The existence-theorem is
given as Theorem B3 of our Appendix B, taking E; = {(j, e):
e=zi+ E})

Let us give an existence-uniqueness theorem for Problem 1. In
the proof, I shall violate my promise to use no tools but ele-
mentary linear algebra.

THEOREM 8.3: In Problem 1 above: if all z; lie in the right-hand
part of the complex plane, then the equations of the mesh-analysis
method have a unique solution.

Proof: 1t is easy to find a real positive constant ¢ such that for
all j, Re z, > ¢. Now, consider the linear transformation 4 on C’
(the space of /-tuples of complex numbers) defined by: A}, . . .,
i) = (i1zy, ..., §z;). Let us compute the real part of the inner
product {4i, i); it is

i
Reddi, i) = Re 3 ziji,
j=1

! _ ! _
=} Elzj'}iﬁ 2%‘
ju j o=

L z;+ %
|

=,§1 (Re z)|i*.
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It follows that
Red4i, i) > c|li]>

Now, let A’ be the restriction of 4 to K’, and let P be the
orthogonal projection-operator on K’. We have, for i€ K’,

Re(PA'i, i) > cllil?,

and by a famous theorem on bounded linear operators in Hilbert
space (“the closure of the numerical range contains the
spectrum”), we see that 0 is not in the spectrum of PA’, considered
as an operator on K’. Consequently, the equation

0i + PA'i= PE

has a unique solution in K’. Thus A'i — EEK", or since i€ K’, we
can write Ai — E€ K”. The proof is complete.

9. CONCLUSION AND ACKNOWLEDGEMENT.

The writer hopes that one of the purposes of this paper has been
accomplished, and that the reader previously unacquainted with
matroid-theory has become sufficiently interested in it to dig more
deeply into the subject via the already-published literature. We
have been able to present only a sampling (fairly representative, to
be sure) of the kinds of theorems easily provable in this context
rather than the more restricted context of graph-theory.

The writer wishes to acknowledge his debt to Professor W. T.
Tutte for reading several earlier versions of this paper and point-
ing out to what extent their contributions were original (and to
what extent not!) The writer regrets that proper acknowledgement
of the work of H. Whitney in the usual way—by crediting specific
theorems—has not been possible because of the reorganization of
the subject-matter on the basis of new axiom-systems; let it suffice
to say that his influence is all-pervasive in this paper.
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APPENDIX A

D1GRAPHOIDS AND REGULAR CHAIN-GROUPS.

Tutte [38] makes the following definitions (we shall completely
change the terminology but not the concepts). Given a finite set L
of undefined objects (called “lines™), numbered (for convenience)
l,...,n, a chain is an n-tuple of integers (x,,...,x,). The
support of a chain is the subset of L for which the corresponding
entries of the chain are nonzero. A chain-group is a set A of chains
(on a fixed set L) such that, for any two chains x,, x, in L, the
difference

—_ — /_ ’ n_ n
X, = Xy = (X} — X3 ..., x{' — x}),

is in 4. It follows automatically that the zero-chain, the negative of
any chain in G, and the sum of any two chains in G, are all in G.

A chain x is called elementary if there is no (nonzero) chain with
smaller support than x. If in addition, x,, . . ., x, are all =1 or 0,
the chain is called primitive.

Now, the chain-group A4 is called regular if to every elementary
chain in G, there corresponds a primitive chain with the same
support. The elements (n-tuples) of A will in this case be called
integer-valued current flows.

Tutte now defines the dual A* of a regular chain-group 4 as the
set of all chains orthogonal to it. He shows (his number (5.1)) that
the dual is regular and that (4*)* = 4.

Now, let us call the supports of elementary chains in A4, circuits,
and the supports of elementary chains in A*, cocircuits. Let us
define “tree” and “cotree” just as we did for graphoids. Tutte
shows (his number (5.2)) that the complement of a tree is a cotree,
and (of course) vice-versa.

Let us call the set of circuits C, and the set of cocircuits D, and
show that (L, C, D) is an even graphoid.

Axiom (G-I-E) follows from the definition of the dual (orthog-
onality). Axiom (G-III) comes from the definition of “elementary
chain.” Now consider any painting of L. If there is no red-and-
green circuit, then by repainting some (possibly none) blue lines so
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that they become red, we can form a green-and-red tree. By the
theorem of Tutte referred to above, the blue lines are now a
cotree, so there is a cocircuit containing the green line and
otherwise only blue lines; this proves Axiom (G-II)

It now follows immediately from Tutte’s definition of “dual”
that the primitive chains of 4 and A* yield a digraphoid.

Conversely: let us now show that the circuit-space of a
digraphoid, using the integers as coefficients, is a regular chain-
group. Choose any elementary chain in the circuit-space. It might,
for example, have the form x = (0,0, + 5, —= 5, +5,0,0, + 5).
However, we do not know yet that the nonzero entries all have the
same absolute value. Paint any line of its support green, the rest of
its support red, and the rest of L, blue. If there were a green-and-
blue cocircuit, the corresponding row of the (oriented) cocircuit-
matrix could not be orthogonal to x; hence, since Axiom (G-II)
holds, there is a green-and-red circuit. The corresponding row of
the circuit-matrix is a primitive chain whose support is contained
in that of x; hence (since x is elementary) is the same as that of x.

Thus we have demonstrated that the structures studied under
the name of “digraphoids” are really the primitive chains of a
regular chain-group and its dual. However, we believe that the
digraphoid-axioms will be more palatable to the engineer than
those of Tutte.

APPENDIX B.
THEOREMS OF NETWORK-PROGRAMMING.

This material is placed in an appendix because it has a rather
technical appearance, and is not essential if the reader’s interest is
in digraphoids as a basis for the theory of linear electrical net-
works.

THEOREM B1: Given a digraphoid (or equivalently, by Appendix
A, a regular chain-group) with lines numbered 1,...,n. Let G
stand for either of the real numbers or the integers. Let K’ be the
current-space. (If G is the integers and we are in the context of a
regular chain-group, K’ is the regular chain-group.)
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Let intervals in G:1,,...,1, be given. Does there exist an
element (i, . . ., i,) of K’ such that, for eachj = 1, . .., n, we have
i€l?

v} i

The answer is “yes” if and only if: for each oriented cocircuit (row
of the oriented-cocircuit matrix) we have

0e

J

n
51

=1

where: the ¢; are the entries of this row; (—1)I; means the set of all

negatives of elements of I;; (+1)1; = I; (0)1; is O; and the sum of

sets is the set of all sums of representatives.

Proof: Discussion postponed.

THEOREM B2: (Max-flow-min-cut theorem for digraphoids.)

Let a one-port digraphoid (or regular chain-group) be given, with
lines numbered 1, . . ., n, the distinguished line being numbered 1; G
is the reals or the integers. Let constants ¢; 2 0 (forj =2,...,n)
be given. An admissible flow is defined as a vector (iy, . . .,i)EK’
such that ~c¢; < i; < ¢ for j=2,...,n What is the maximum
value that i, may have in an admissible flow?

The answer is the minimum, over the collection of all cut-sets

(see§ 1) of
2

where only the ¢; corresponding to the lines of the cut-set appear in
the sum.

Proof: Follows easily from Theorem Al, by letting b be a real
number, putting I}, = {b}, putting [, = [—¢;, ¢]] (the closed in-
terval bounded by —¢;, ¢)) forj=2,...,n, and inquiring for the
maximum value which b can have so that there is an admissible
flow.
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THEOREM B3: (A fundamental theorem on existence of solution of
a nonlinear electrical network.)

Let G be the reals or the integers. In G X G, write (i}, ¢,)
M(i,, e;) provided (i, — iy)-(e; — e;) > 0. Define a resistor as a
subset E of G X G such that: for any (i), e;) and (i,, ;) in G,
(i, e))M(i,, e,) and E is maximal with respect to this property. (If G
is the reals, this is seen to be “a curve going upward and to the
right.”)

Now let a digraphoid (or a regular chain-group and its dual) be
given, with lines numbered 1,...,n. Let K', K" be the current-
space and voltage-drop space over G. (If G is the integers, and we
are in the regular chain-group context, K' is the chain-group, and
K" is the dual.) Let resistors E,, . . ., E, be given.

Does there exist a pair of vectors (iy,...,1,) and (e, ...,e,)
with entries in G, with (i, )€ E; forj=1,...,n?

The answer is “yes” if and only if: the projections of the E; on the
i-axes satisfy the conditions of Theorem B,, and the projections on
the e-axes satisfy the same conditions, but with “cocircuit” replaced
by “circuit.”

Proofs of Theorems Bl and B3: These proofs are word-for-word
the same as the proofs of Theorems 4.1, 7.3, and 8.1 of [25].
Lemma 7.2 (i) (and all that follows from it) is deleted, and the
finite construction is replaced by an existence-theorem and easy
transfinite (contrapositive) proof. Before attempting to read these
proofs (or concurrently) the reader should probably read [26],
which is an expository discussion of the existence-proofs.

Remark. The engineer will prefer to replace the term “resistor”
in the above theorem by the phrase “characteristic of a monotone
nonlinear resistor.”

THEOREM B4: Let a digraphoid and resistors E,, . . ., E, be giv-
en; let indefinite integrals F(i) and G;(e) be defined as in [25], pp.
200-201. Suppose the system has a “solution” in the sense of
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Theorem B3. Then (iy, . . . , i,) solves the “programming problem”:

and (e,, . . . , e,) solves the dual-problem

min 3, Gy(¢),
j=1

j=
subj. 1o (e;, ...,e,)EK".

The proof is identical with that of the Corollary on p. 203 of
[25]. In the above programming problems, it is understood that the
variables are also constrained by the requirement that the F; and
G; are defined for the values under consideration.

In mathematical programming, these extremum-problems are
solved following the recipe of [28], which uses the algorithm of [26]
and Theorem B4 above. In electrical problems, it is Theorem B3
which is considered as important, B4 being only a “bonus.”

Let us give one theorem about “orientable” graphoids, - the
line-form of Menger’s Theorem (see [11] for its statement in the
context of graphs).

THEOREM BS: Given an orientable one-port graphoid. Let a col-
lection S of paths be called admissible if, for any two paths in the
collection, no line of p, is a line of p,. Then

max|S| = min|D|

where S ranges through all admissible collections, and D ranges
through all cut-sets (see § 1).
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Outline of proof. 1t is clear even without the orientability that max
|S| < min |D|; the proof is left to the reader.

To show equality we must produce an S and a D for which
|S| = |D|.

Number the distinguished line (“port™) 1, and therest 2, .. ., n.
Let ¢, = +1 forj =2,..., n. Using Theorem B2, with G as the
integers, we sece that there exists an admissible flow (i, ..., i)
with —1 < < +1 forj=2,...,n and with

i1=26,-= |D],
D

for some D. We now produce S as follows. (*) Let line 1 be
painted green; the jth line is blue if i; = 0, green if i = x1, for
J=2,...,n Reorient lines so that all j and > 0 for j
=1,...,n. Apply the Lemme des Arcs Colorées (Theorem 8.1 of
this paper.) Now, there can be no blue-and-green cocircuit with all
green lines similarly oriented, for then this row of the cocircuit-
matrix would not be orthogonal to (i, ..., i,). Thus there is a
green circuit with all lines similarly oriented. This circuit contains
a path (rejecting line 1). Subtract this row of the circuit-matrix
from (i, . .., i) with ij = i; — 1. Repeat this process from (*).
The above construction is easily followed if the orientable
graphoid corresponds to a graph. It is easily seen that repetition of
the process (*) produces a sequence S of line-disjoint paths with
|S| = i, but we know i, = |D|. Q.E.D.

(Note by author, 1973): In retrospect, I feel that the principal
defect or omission of this paper is its failure to exhibit that
orientable graphoid/matroid theory and the theory of regular
chain groups are intimately connected with (in fact, essentially
synonymous with) the theory of totally unimodular matrices. As a
beginning exercise in this direction, one can try proving that the
“nullspace” of a totally unimodular matrix is a regular chain
group. (Only vectors with integer entries are admitted to the
“nullspace™.)
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HAMILTONIAN CIRCUITS

C. St. J. A. Nash-Williams

1. INTRODUCTION

A circuit is a non-empty finite connected graph in which the
valency (or degree) of each vertex is 2 (Fig. 1). A Hamiltonian
circuit of a finite graph G is a circuit, contained in G, which
includes all the vertices of G. For example, the graph in Fig. 2 has
a Hamiltonian circuit whose edges are indicated by thick lines in
the figure, but the graphs in Figs. 3 and 4 have no Hamiltonian
circuits, as the reader can probably convince himself by a little
experimentation.

A persistent theme in graph theory has been a desire to deter-
mine, in some reasonable sense, which graphs have Hamiltonian
circuits and which have not, i.e., we want necessary and sufficient
conditions for a graph to have a Hamiltonian circuit. Of course,
such necessary and sufficient conditions must be of a psychologi-
cally satisfactory kind, and we should not, for example, want a
theorem which merely said, perhaps in a slightly disguised form,
that a graph has a Hamiltonian circuit if and only if it has a
Hamiltonian circuit. Probably the desired theorem would say that,

301
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for every graph G, either G has a Hamiltonian circuit or the
“shape” or “structure” of G has some particular feature which
fairly obviously precludes the presence of a Hamiltonian circuit,
and when we realize that this obstruction to the existence of a
Hamiltonian circuit must rule out apparently promising graphs
like those of Figs. 3 and 4, the difficulty of finding (let alone
proving) the right conjecture can be recognized. Indeed, it may be
that, in the very nature of things, no such necessary and sufficient
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condition for a graph to have a Hamiltonian circuit exists. Even if
it exists, however, experience suggests that the problem of discov-
ering it might well be of the same order of difficulty as the Four
Colour Problem.

This situation has, however, not deterred graph-theorists from
studying the problem and obtaining some results which, although
far from constituting a complete solution, are nevertheless interest-
ing. This paper will review some of these.

2. HAMILTONIAN CIRCUITS AND VALENCIES

We shall sometimes call a graph round if it has a Hamiltonian
circuit and tortuous if not. (Many authors call a graph a Ham-
iltonian graph if it has a Hamiltonian circuit, but I personally
prefer to use a different adjective.)

The valency of a vertex ¢ of a graph is the number of edges
incident with £. It will usually be denoted by v(£). However, when
we are discussing two graphs G, H and £ is a common vertex of
these graphs, we shall write vg(§) for the valency of £ in G and
vy (£) for the valency of ¢ in H.

In the remainder of this paper, all graphs considered will be
understood to be simple, i.e., without loops or multiple edges. This
does not significantly limit the generality of our discussion: in a
non-simple graph with at least three vertices, removal of all loops
and all but one of the edges joining each pair of adjacent vertices
will not affect the roundness or tortuosity of the graph. Further-
more, throughout this paper, all graphs which we consider will be
understood to be finite simple graphs and the word “graph” will
mean “finite simple graph.”

Since we cannot at present find necessary and sufficient condi-
tions for a graph to have a Hamiltonian circuit, we might ask
whether we can at least find any reasonably interesting sufficient
conditions. It seems reasonable to guess that a graph might be
certain to have a Hamiltonian circuit if, in some sense, there are
enough edges present, and hence that conditions requiring the
valencies of the vertices to be, in some sense, large enough might
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guarantee the presence of a Hamiltonian circuit. A succession of
results of this nature were proved by G. A. Dirac [7], L. Posa [19],
J. A. Bondy [1] and V. Chvatal [5], in that chronological order.
Each of these results (after the first) strengthened the preceding
one. After some preliminary definitions and lemmas, we shall
present a proof of the first and weakest of these results (Theorem 1
below), and then some further definitions and lemmas will enable
us to prove the last and strongest one (Theorem 2).

DEerINITIONS: In this paper, the letter G will always denote a
graph. The set of vertices of G will be denoted by V(G) and the
set of edges of G will be denoted by E(G). If two vertices § and 7
are joined by an edge, we shall say that £ is adjacent to n and write
£ adj m. If G is a subgraph of a graph H, we shall say that H is a
supergraph of G. If G is a subgraph of H and V(G) = V(H), we
shall say that G is a spanning subgraph of H and H is a spanned
supergraph of G. A one-edge extension of G is a graph H obtained
from G by adding an edge joining two vertices which are not
adjacent in G. In other words, a one-edge extension of G is a
spanned supergraph of G which has exactly one more edge than G.
A graph G will be called hypertortuous if G is tortuous but every
one-edge extension of G is round (i.e., if G has no Hamiltonian
circuit but no further edge can be added to G without giving it a
Hamiltonian circuit).

If A € E(G), the graph obtained from G by removing the edge
A will be denoted by G — A: thus G — A is a spanning subgraph of
G. Somewhat analogously, we may sometimes use the symbol
G + p to denote a one-edge extension of G obtained by adding an
edge p joining two vertices which are non-adjacent in G.
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An ordering of a finite set S is a sequence x,, x,,..., X,
obtained by arranging the elements of S in a definite order: for
instance, the sequence 2, 8,9, 3, 1, 5, 4, 6, 7 is an ordering of the
set of positive integers less than 10. A graph P is a path if there is
an ordering §,,£,,...,§, of V(P) and an ordering A,,
Ay ...y A, of E(P) such that A, joins § to &, for i
=1,2,...,n— 1: Fig. 5 illustrates this definition for n = 7. [A
graph with one vertex and no edge counts as a path, since, in the
foregoing definition, we may allow n to be 1 and “A,,
Ay ..., A, _,” to be the empty sequence. But the “empty” graph,
which has no vertices and no edges, is not considered to be a
path.] A Hamiltonian path of G is a path in G which includes all
the vertices of G, i.e., a path which is a spanning subgraph of G. If
P is a path with at least two vertices, then the two vertices of P
which are each incident with only one edge of P will be called the
end-vertices of P: for instance, £, and £, are the end-vertices of the
path in Fig. 5.

LEMMA 1: Every tortuous graph has a hypertortuous spanned
supergraph.

Proof: Let G be a tortuous graph. Then G has at least one
tortuous spanned supergraph, viz., G itself, and moreover any
tortuous spanned supergraph H of G has the property that |E(G)|

< |E(H)| <(‘V(G)I) because (lV(G)l), being the number of
2 2

two-element subsets of V(G), is the largest possible number of
edges of a graph with the same vertices as G. Hence, amongst the

integers |E(G)|, |[E(G)| + 1, |E(G)]| +2, ..., ('V(G)| ) there
2

must be a largest one (¢, say) which is the number of edges of
some tortuous spanned supergraph of G. Let H be a tortuous
spanned supergraph of G with ¢ edges. If any one-edge extension
H’ of H were tortuous, then H’ would be a tortuous spanned
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supergraph of G with 7z + 1 edges, which would contradict the
definition of ¢: hence H has no tortuous one-edge extension and
so is hypertortuous. This proves that G has a hypertortuous
spanned supergraph.

LemMA 2. If a, B are the end-vertices of a Hamiltonian path P of
a graph G and v(a) + v(B) > |V(G)| > 3, then G has a Hamil-
tonian circuit.

Proof: Suppose that £, £,, ..., §, are the vertices of G in the
order in which they are encountered as we proceed along P from a
to B, so that §, = a, §, = B and, for each positive integer i less
than n, an edge (A, say) of P joins § to §,,. Since V(G)
= {£, ¢, ...,&,} it follows that £, must be adjacent in G to v(§))
of the vertices £,,...,§, and hence the set (4, say) of those
elements i of the set {1,2,...,n — 1} for which ¢, adj §;,, has
cardinality v(£,). [Of course, £, is adjacent in G to §, since A, joins
these vertices; and so 1 is one of the numbers in the set A.]
Furthermore, ¢, must be adjacent in G to v(§,) of the vertices
£,%,...,§,_, and so the set (B, say) of those elements i of the
set {1,2,...,n— 1} for which £ adj§ has cardinality o(,).
Hence

|[4] + |B] = o(§)) + v(4,) = v(a) + v(B);
and by hypothesis
o(a) + 0(B) > V(G)| = {4, .-, &M = m

so that 4 and B are subsets of {1,2,...,n — 1} such that
|A| + |B| > n. 1t follows that 4 and B must have at least one
element in common. Let I be a common element of 4 and B.
Then ¢, adj §;,, since I €4 and £, adj §; since I € B. Therefore
there is a £,§,, ,-edge p and a £,{,-edge v in G. It is now easily seen
that P — A; + p + », i.e., the subgraph of G obtained from P by
removing the edge A, and adding the edges g and », is a Hamil-
tonian circuit of G (cf. Fig. 6).
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Fi1G. 6

The following slightly curious definition turns out to be very
useful for our discussion: G will be said to be stout if a adj B for
every two distinct vertices «, 8 of G such that v(a) + v(8)
> |V(G)|. In words, a stout graph is one in which every two
distinct vertices, whose valencies add up to at least the number of
vertices of the graph, are adjacent.

LeMMA 3: Every hypertortuous graph is stout.

Proof: Let G be hypertortuous and «, 8 be distinct vertices of G
such that

o(a) + o(B) > [V(G)|. (1)

Then we must prove that a adj 8, and we shall prove this by
contradiction.
Suppose, therefore, that a is not adjacent to 8. Then adding an
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edge A joining a to B will transform G into a one-edge extension
G + X of G, and, since G is hypertortuous, G + A must be round.
Consequently G + A has a Hamiltonian circuit C, say. If
AZ E(C), then C is a Hamiltonian circuit of G. If A€ E(C) then
C — X is a Hamiltonian path of G with end-vertices a, 8, and the
existence of this Hamiltonian path and (1) together imply, by
Lemma 2, that G has a Hamiltonian circuit. Thus, whether A
belongs to £(C) or not, we find that G has a Hamiltonian circuit,
contradicting the hypothesis that G is hypertortuous. This contra-
diction shows that a« must be adjacent to B, and the lemma is
proved.

As we mentioned before, the first theorem on the lines of saying
that “a graph has a Hamiltonian circuit if the valencies of its
vertices are large enough” was given by Dirac [7]. We now state
and prove Dirac’s theorem.

THEOREM 1: If |V(G)| = n > 3 and every vertex of G has va-
lency > %n, then G has a Hamiltonian circuit.

Proof: Let G be a graph such that |V (G)| = n > 3 and every
vertex of G has valency > in.

Suppose that G is tortuous. Then, by Lemma 1, G has a
hypertortuous spanned supergraph (H, say). Then V(G) = V(H)
since H is a spanned supergraph of G, so that |V(H)| = n.
Moreover, for every §¢€ V(H), we have vg(§) > v5(%) > 3n and
consequently, for every pair £ n of distinct vertices of H, we have
vy (§) + vy(n) > n = |V(H)|. But H is by Lemma 3 stout. Hence
every two distinct vertices of H are adjacent in H. From this it
obviously follows that H has a Hamiltonian circuit and so is not
tortuous. On the other hand, H is supposed to be hypertortuous,
and therefore H is tortuous.

Thus the supposition that G is tortuous leads to a contradiction,
whence we can conclude that G has a Hamiltonian circuit.

In Figures 7 and 8, we have shown two graphs with 11 vertices
and no Hamiltonian circuits, in which every vertex has valency
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Fic. 7

> 5. These and similar counterexamples show that, in Theorem 1,
¥ n cannot be reduced even as far as (n — 1)/2. Nevertheless, it is
possible to improve Theorem 1 in the direction of allowing some
but not all of the vertices to have valencies somewhat less than 4 n
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whilst still being able to conclude that the graph has a Ham-
iltonian circuit. To this end, we define the valency sequence vs(G)
of a graph G to be the sequence of numbers obtained by listing the
valencies of the vertices of G in nondecreasing order: for example,
the graph of Figure 9 has valency sequence 1, 1, 2, 2, 4 and that of
Figure 7 has valency sequence 5, 5, 5, 5,5, 5, 5, 5, 5, 5, 10. A non-
decreasing sequence of numbers q,, . . ., a, is called graphic if it is
the valency sequence of some graph: for example, the reader will
readily see that the sequence 0,0,0,0,0, 0, 3, 3 is not graphic.
[Remember that only simple graphs count as “graphs” for the
purposes of our present discussion.] In fact, according to a
theorem of Erd6s and Gallai (see [13], Theorem 6.2), a nonde-
creasing sequence a,, . . . , @, of nonnegative integers is graphic iff
a+ --- +a,iseven and

n

S o ag<rir-1+ nirmin(a,., r) (r=12,...,n).

i=n—r+1 i=1

Fic. 9
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Our next theorem, a considerable strengthening of Theorem 1
due to V. Chvital, will concern graphs whose valency sequences
satisfy a certain condition: we shall say that a valency sequence
a,, a,, . .., a, satisfies Chvatal’s condition if

for each positive integer i less than n/2, at least @)
one of the inequalitiesa, > i + 1,a,_;, > n — iis true.

To illustrate this condition, let us suppose for example that
n = 31, so that the positive integers less than n/2arel,2,...,15
and (2) asserts that, for each of these values of i, one or both of
the inequalities @; > i + 1, a;,_, > 31 — i is true. So, if, for in-
stance,

a=a,=3,a3=a,=as=4,a5=a,=5a=9,

ay=10, ajy= 11, a,, = a;, = 12, a; =14,

14 = a5 = a6 = ay; = aj3 = 16, a)9 = a, = 20, 3)
Ay =y = Ay =22, 4y, = ays = 25, ays = 26,

Ay = g = Ay = Gy = 27, a3 = 28,

then the inequality a; > i + 1 is satisfied for i = 1, 2, 3, 8, 13, 14,
the inequality a,,_, > 31 — i is satisfied for i = 4, 5, 6, 7, 12 and
both of the inequalities a; > i + 1, a5, _; > 31 — i are satisfied for
i =9,10, 11, 15. Thus the sequence a,, ..., a,; in (3) satisfies
Chvatal’s condition. If we took n = 30, then the positive integers
less than n/2 would be 1,2, .. ., 14 and so a sequence a,, . . . , a3,
would satisfy Chvatal’s condition iff, for each of the values
L2,...,14 of i, at least one of the inequalities g, > i + 1,
asy_; > 30 — i is true.

We notice also that if a graph G satisfies the hypotheses of
Theorem 1, then its valency sequence satisfies Chvatal’s condition.
For the hypothesis that the valencies of the vertices of G are > in
really means (since valencies are integers) that they are > in if n
is even and > ¥(n+ 1) if n is odd, ie. that g, > in
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(i=12...,n)ifnisevenand g, > i(n+ 1) (i=12,...,n)
if n is odd, where a, .. ., a, is the valency sequence of G. This
implies that @, > dn > i+ 1 fori=12,...,(n/2)—1if nis
evenandag, > $(n+ 1) > i+ 1fori=12,...,(n—1)/2ifnis
odd, so that, in both cases, a; > i + 1 for every positive integer i
less than n/2 and thus the valency sequence a,, . . ., 4, satisfies
2).

Our next lemma records, for convenient reference, two very
simple consequences of Chvatal’s condition.

LemMA 4: Let a,, ..., a, be the valency sequence of a graph.
Suppose that n > 3 and a,, . . ., a, satisfies (2). Then

(a>2fri=1,...,n;
(i) a; > n/2 for every integer j such that nf2<j<n

Proof: From the definition of what we mean by saying that
a, ...,a, is the valency sequence of a graph (G, say), it follows
that this sequence is nondecreasing, i.e.,

al < a2 < - e < a", (4)
and that there is an ordering §,, . . ., £, of ¥(G) such that
v(()=a fori=1,...,n (5)

To prove (i), observe that, since (2) holds for i = 1, either a; > 2
ora,_, > n— 1.If a; > 2, then (4) implies that all the g; are > 2,
i.e., that (i) holds: so we may assume that @,_, > n — 1. Then, in
view of (4), a,_, and g, are both > n — 1, i.e., (by (5)) v(§,-,) and
v(£,) are > n — 1, and this can only be achieved if £,_, is joined
by edges to all of the other n — 1 vertices §;, &, . .., §,_3, &2 &,

and £, is joined to all of §,&,,...,§, 5 §,-,. Hence each of
¢, ..., ¢&,_, must be joined by edges to both §,_, and §,, so that
the valencies a,,...,a,_, of &,...,§,_, must be > 2; and

a,_,, a, are > 2 since they are > n — 1. This establishes (i).
To prove (ii), suppose that j is an integer such that n/2 < j
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< n. Suppose, first, that n is even. Then (n/2) — 1 is a positive
integer less than n/2 and so (2) holds for i = (n/2) — 1, i.e.,

r

2 O Gw/p+1? 2+ 1. (©6)

either a(n/z)_ 1 >4 P

But, since j is an integer greater than n/2 and n is even, it follows
thatj > (n/2) + 1 and consequently, by (4),

a4 2 Any2+12 /-1 (M

From (6) and (7), it is clear that a; > n/2. Now suppose that n is
odd. Then (n — 1)/2 is a positive integer less than n/2 and so (2)
holds for i = (n — 1)/2, ie.,

either ag_yy > (n+1)/2 or auiy,>»(n+1)/2; (8)

and, since ag,, 1)/, > d¢,—1)/2 by (4), the first alternative in (8)
implies the second and so we have g, s2 2 (n+1)/2 in any
case. But, since j is an integer greater than n/2, it follows that
J 2 (n+1)/2 and so, by (4), @ > G(,41) > (n + 1)/2> n/2.
Thus, considering first the case in which n is even and then the
case in which » is odd, we have shown that a; > n/2 for each
integer j such that n/2 < j < n.

DEFINITION: Let s denote a finite sequence of numbers
a ...,a, and ¢ denote a finite sequence of numbers b,, ..., b,
with the same number of terms as s. Then the statement s < ¢ will
mean thata, < b, fori=1,...,n, ie., each term of s is less than
or equal to the corresponding term of ¢.

LEMMA 5: If G is a spanning subgraph of H, then vs (G)
< vs(H).

Proof: Let§,, ..., §, be an ordering of ¥ (G) such that
v6(§1) < 05(8) < ... < v6(§,) )
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and 9, . . ., , be an ordering of V(H) (= ¥(G)) such that
vg(m) < vg(m) < ... < vy(n,) (10)

Consider any r€(1, . .., n}. Since | V(G)| = n and the sum of the
cardinalities of the subsets {§, &, ..., &) and {n;, M5 ..., 0}
of ¥(G) is n + 1, these two subsets cannot be disjoint, and so
§, = n; for some i > r and somej < r. Then since G is a subgraph
of H, we have v5(£) < vy(£) = vy(n): combining this with the
facts that v;(¢) < vg(£) by (9) and vy(n) < vy(n,) by (10), we
conclude that vg(£,) < vy(n,). This argument proves that vg(§)
< vy(n,) for r=1,...,n, and since vG(£), vy(n,) are the rth
terms of vs(G), vs(H) respectively we conclude that ovs(G)
< vs(H).

For example, if H is the graph of Fig. 10 and G is the spanning
subgraph of H shown in Fig. 9, then vs(G) is 1, 1, 2, 2, 4 and
vs(H) is 2, 2, 3, 3, 4 and the inequalities 1 <2, 1 <2, 2<3,
2 < 3, 4 < 4 show that vs(G) < vs(H) as predicted by Lemma 3.

Fic. 10
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We notice, however, that the sequences 1, 1,2, 2,4 and 2, 2, 3, 3, 4
must be derived from different orderings of the vertices: for
example, the former sequence can be thought of as
06 (8), v5($), vg(B), v5(Y), vg(a) whilst the latter is
v5(8), v4(B), vy (), vy(Y), vy(a). Thus Lemma 5 is not just a
trivial matter of observing that v;(§) < v, (§) for each vertex £: the
statement that vs(G) < vs(H) may entail comparisons of valen-
cies of certain vertices in G with valencies of different vertices in
H.

LeMMA 6: If G is stout and |V(G)| > 3 and vs(G) satisfies
Chvatal’s condition, then every two distinct vertices of G are adja-
cent.

Proof: The valency sequence of G can be written as
v(§)), 0(§y), . . ., v(£,) where £, ..., &, is an ordering of V(G)
such that

v(§) < ov(§) < ... <o) (11)

Since this valency sequence satisfies Chvatal’s condition (2), we
know that

for each positive integer i less than n/2, at least one } (12)
- of the inequalities v(§;) > i + 1, v(§,_;) > n — iis true.

Let S, denote the statement that every two distinct vertices in
the set {£,£ .1, 4.2 .. .,&,) are adjacent. Thus S, is the state-
ment that every two distinct vertices of G are adjacent, which is
what we wish to prove. However, by Lemma 4(ii), any two distinct
vertices & (j > n/2) and & (k > n/2) have valency-sum > n
= IV(G)f and are consequently adjacent since G is stout. There-
fore S,/41 is true if n is even and S, ) , is true if n is odd. So
the desired conclusion S, can be established if we show that

S(n/2)+l=> Sn/2= S(n/2)—-1: c s = S2= Sl
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if n is even and that
Sr+1/2=> Si-1/2= Sn-n/2=>* * = S =5

if n is odd, i.e., we need to prove that S, ,, = S,, whenever mis a
positive integer < n/2.

Therefore, suppose that m is a positive integer < n/2 and that
S,+ is true. Since S, ,, is true, the n — m vertices &, .,
£,.2 ..., &, are pairwise adjacent, so that each of them, being
joined by edges to the n — m — 1 others, has valency > n —m—1.
Hence, if v({,) > m + 1, then the sums

0(§n) + 0(6ns1), 0(6) + 0(6s0) - -5 0(5,) + 0(5) (13)

will be > n and so £, will be adjacent to each of §,,,
£.402 -+ &, and this fact combined with the pairwise adjacency
of &, 010 &nsa - -+ » &, will imply that S, is true, as required. Also,
if v(§,) > n/2 then by (11) the valencies v(§,,), v(§,+1) - - - » 0(§,)
will all be > n/2 and so the sums (13) will all be > #, from which
S,, will follow as before. So it suffices to prove that either v(§,,)
>m+ 1 or v, > n/2. [Of course the latter of these alterna-
tives is weaker than the former only when m = n/2.] We prove
this by contradiction: suppose that v(§,,) is an integer p less than
m + 1 and less than n/2. This integer p = v({,,) is by Lemma 4(i)
a positive integer less than n/2, so that by (12) either v(§)) > p +
loro(,_,) > n— p. Butsince p < m + 1, it follows that p < m
and hence, by (11), v(§) < v(£,) = p, which rules out the al-
ternative v(§,) > p + 1. So we must have v(§,_,) > n — p. From
this inequality and (11), it follows that the vertices §,_,,
§i—p+1> - - -» & all have valencies > n — p, and so, since v(§,)
= p, the sums

v(gm) + v(gn—p)’ U(£m) + v(£n—p+l)’ DR D(gm) + v(gn)

are all > n. Moreover, §, isnotoneof §,_,, §,_,41---» £, since
m < n/2 and p < n/2. These facts imply,since G is stout, that §,,
is joined by p + 1 edges to the p + 1 vertices §,_,, &, _p415 -« - &po
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contradicting the fact that v(£,) = p. Thus the supposition that
v(§,,) is less than both m + 1 and n/2 leads to a contradiction, i.e.,
we must have v(§,) > m + 1 or v(,) > n/2, and we have shown
that either of these inequalities implies the truth of S,,. So the
implication §,,,,=S,, has been proved for all positive integers
m < n/2, thus completing the proof of Lemma 6.

THEOREM 2: (Chvatal’s Theorem). If |V(G)| > 3 and vs(G)
satisfies Choatal’s condition, then G has a Hamiltonian circuit.

Proof: Let G be a graph such that |V (G)| = n > 3 and vs(G) is
a sequence a,, . . ., a, satisfying Chvatal’s condition (2). _

Suppose that G is tortuous. Then, by Lemma 1, G has a
hypertortuous spanned supergraph (H, say). By Lemma 5, vs(G)
< vs(H), i.e., vs(H) is a sequence b, b, . . ., b, such that

a,< b,a, < by...,a,< b, (14)

From (14) and the condition (2) satisfied by 4, .. ., a,, it follows
that for each positive integer i less than n/2, we have either
b>a,>i+1o0rb,_;>a,;,>n—i (or both), so that the
valency sequence b,, ..., b, of H also satisfies Chvatal’s condi-
tion. Moreover, H is stout by Lemma 3. Since H is stout and
|V(H)| = |V(G)| > 3 and vs(H) satisfies Chvatal’s condition, it
follows by Lemma 6 that every two distinct vertices of H are
adjacent in H. This leads to a contradiction exactly as in the proof
of Theorem 1, showing that G cannot have been tortuous and
consequently must have a Hamiltonian circuit.

As a corollary to Theorem 2, we deduce Posa’s Theorem. This
procedure actually reverses the historical order of events: Pdsa’s
Theorem was discovered some eight years before Theorem 2 and
was almost certainly a major contributory cause of various sub-
sequent developments including an improved version of Pdsa’s
Theorem due to J. A. Bondy and then the still stronger Theorem 2.
To give a convenient statement of Posa’s Theorem, we define P, to
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be a sequence of n numbers defined as follows:
(i) if n is even, P, is the sequence

n n n n n
2,3,4,5,...,2 2,2 1,2,2,2,

(ST
N
SIE

(ii) if » is oad, P, is the sequence

n-5 n—-3 n—-—1 n-1
233’4959'--: 2 ’ 2 s 2 ’ 2 >

It is to be understood that the number of appearances of n/2 at
the end of the sequence in (i) and the number of appearances of
(n + 1)/2 in (i) is such as to make the total number of terms
equal to n, i.e., (n/2) + 2 appearances and (n + 1)/2 appearances
respectively. Since this definition is not too clear for small values
of n, we state that P, is the sequence 1, 2,2 and P,is 2, 2, 2, 2 and
Pgis2,2,3,3,3and Pgis 2,3,3,3,3,3and P;is 2,3,3,4,4,4, 4.

COROLLARY 2A: (Posa’s Theorem). If |V(G)|=n > 3 and
vs(G) > P,, then G has a Hamiltonian circuit.

Proof: Let vs(G) be ay, ..., a,. If nis even, the ith term of P,
is i + 1 for every positive integer i less than n/2 and consequently
the hypothesis vs(G) > P, implies that a; > i + 1 for every posi-
tive integer i less than n/2: therefore the sequence a,,...,a,
satisfies (2). If n is odd, the ith term of P, is i + 1 for every
positive integer i less than (n — 1)/2 and, for i = (n — 1)/2, the
(n — i)th term of P,, i.e., its (n + 1)/2th term, is (n + 1)/2, ie,
n — i, Thus, in this case, the hypothesis vs(G) > P, implies that
a; > i+ 1 for every positive integer i < (n — 1)/2 and aq,_,
>n—i for i=(n—-1)/2, so that once more the sequence
a,, ..., a, satisfies (2). Thus, whether n be even or odd, the
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valency sequence 4y, . . . , a, of G satisfies Chvatal’s condition (2)
and consequently by Theorem 2, G has a Hamiltonian circuit.

If |V(G)|=n >3 and every vertex of G has valency > in,
then in fact, because the valencies of the vertices of G are integers,
they are > 4n if n is even and > 3(n + 1) if » is odd, and hence
vs(G) > P,. This makes it clear that Dirac’s Theorem is contained
in Posa’s Theorem, which in turn is shown by the proof of
Corollary 2A to be contained in Chvatal’s Theorem. Obviously
Posa’s Theorem is in fact stronger than Dirac’s Theorem, and
valency sequences such as (3), which satisfy Chvatal’s condition
but not the hypotheses of Pdsa’s Theorem, show that Chvatal’s
Theorem is strictly stronger than Posa’s.

3. DIRECTED GRAPHS

In this section, we consider directed graphs, commonly referred
to as digraphs, and examine briefly the extent to which they give
rise to results and problems analogous to those of Section 2. In a
directed graph, each edge is associated with an ordered pair of
vertices, which it is said to join, the first member of the ordered
pair being called the tail of the edge and the second member of the
ordered pair being called its head. We denote the tail and head of
an edge A by At, Ak respectively. In diagrams representing digraphs
(e.g., Fig. 11) we place an arrow on each edge, pointing in the
direction from the tail to the head of the edge. The outvalency
0,u(§) of a vertex £ of a digraph is the number of edges with tail &
and its invalency vy (£) is the number of edges with head & The
valency v(§) of £ is the total number of edges incident with £, i.e.,
() = v, (&) + v, (). The outvalency sequence ovs(D) of the
digraph D is the sequence of numbers obtained by listing the
outvalencies of the vertices of D in nondecreasing order, and the
invalency sequence ivs(D) of D is obtained by listing the invalen-
cies of its vertices in nondecreasing order: for example, the
digraph of Fig. 12 has outvalency sequence 2,2,2,4,4,5 and
invalency sequence 1, 2, 4, 4, 4, 4. We call a digraph D disimple if
(i) for every edge A of D, Ar # Ak and (ii) D does not possess two
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edges A, p such that Az = pt and Ak = ph. However, two distinct
vertices £,  of a disimple digraph can be joined by 0, 1 or 2 edges,
since (ii) does not preclude the existence of two edges A, p such
that At = ph = § M = wt = n. All digraphs considered in Section
3 will be understood to be finite (in the sense that they have only
finitely many vertices and edges) and disimple. The letter D will
always denote a digraph.

In general, terminology and notation relating to digraphs
should, in the absence of a special definition, be understood to be
used in the same sense as when it is applied to graphs: for
instance, V(D) denotes the set of vertices of a digraph D.

A non-empty digraph P is a dipath (or directed path) if there is

an ordering §,,&,,...,%, of V(P) and an ordering
AbAy ..., A, of E(P) such that A,y =§ and Ah = ¢, for
i=12,...,n—1: we call £ the initial vertex of P and &, its

terminal vertex. Fig. 13 illustrates this definition for n = 6. [A
digraph with just one vertex ¢ and no edge counts as a dipath
whose initial and terminal vertex are both £.] A non-empty digraph
C is a dicircuit (or directed circuit) if there is an ordering
§b6 ..., &, of V(C) and an ordering A, A,, ..., A, of E(C)
such that At =¢ and Ah=¢§,, for i=1,2,...,n—1 and
At = §, and A h = §,. Fig. 14 depicts dicircuits with 2, 3, 4 and 5
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vertices. (Since only disimple digraphs are allowed in our discus-
sion, a dicircuit with 1 vertex is impossible.) A Hamiltonian di-
circuit of a digraph D is a dicircuit, contained in D, which includes
all the vertices of D: for example, if D is the digraph depicted in
Fig. 12, then D has a Hamiltonian dicircuit made up of all the
vertices of D and those edges which are shown in the diagram by
thick lines.

By analogy with our discussion of Hamiltonian circuits in
graphs, one can ask questions about which digraphs have Hamil-
tonian dicircuits. In particular, the line of thinking pursued in
Section 2 raises the analogous question of what we can learn about
the existence of Hamiltonian dicircuits in a digraph from informa-
tion about the invalencies, outvalencies and valencies of its ver-
tices; and it transpires that the following analogue of Dirac’s
theorem is true.

THEOREM 3: If |V(D)|=n > 2 and every vertex of D has
invalency » in and outvalency > %n, then D has a Hamiltonian
dicircuit.

In fact, there is a stronger theorem, for whose statement we
need first the definition of a strongly connected or (as the present
author prefers to call it ) diconnected digraph. A digraph D is
diconnected if, for every ordered pair (£, ) of vertices of D, there
exists a dipath in D with initial vertex £ and terminal vertex n. For
instance, the digraph in Fig. 11 is not diconnected since it contains
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no dipath with initial vertex « and terminal vertex 8. On the other
hand, if a digraph D satisfies the hypotheses of Theorem 3, then it
is diconnected. This can be established either by an appeal to
Theorem 3 or, much more simply, by the following direct argu-
ment. Suppose that |V (D)| = n > 2 and every vertex of D has
invalency > 4n and outvalency > }n. Let (£, i) be an ordered
pair of vertices of D. We wish to prove that there is a dipath with
initial vertex £ and terminal vertex 7. If £ = 7, then the dipath P
such that V(P) = {{} = {#} and E(P) = @ has initial vertex §
and terminal vertex 1. If some edge A of D has tail £ and head 7,
then £, A and 1 make up a dipath with initial vertex £ and terminal
vertex 7. Now consider the remaining case, in which { # n and D
has no edge with tail £ and head . Then, if A, ..., A, are the
edges of D with tail £ and y,, . . . , p, are the edges of D with head
1, the r distinct vertices A}k, ..., Ak and the s distinct vertices
Mt ..., ut all belong to V(G)\ {£n}. But r = ov,(8) > n/2
since r is the number of edges with tail £ and s = v, (n) > n/2,
and so r+ s > n=|V(G)| > |V(G)\{£ n}|. Hence one of
Ah, ..., A h must be the same as one of y,t,..., ut, and so
A;h = y;t for some i and j, with the result that §, A;, A:h, i, and 7
make up a dipath with initial vertex § and terminal vertex 7.

Intuitively, it is natural to think of edges of a digraph as one-
way streets; and from this point of view a diconnected digraph is
one in which we can drive from any vertex to any other without
violating traffic regulations.

The following ingenious result was proved by Ghouila-Houri
[12].

THEOREM 4: If |V(D)|=n > 2 and every vertex of D has
valency 2> n and D is diconnected, then D has a Hamiltonian
dicircuit. '

Since the valency of a vertex of a digraph is the sum of its
invalency and outvalency, it follows that, if D satisfies the
hypotheses of Theorem 3, then the valencies of its vertices are
> n. We have also observed that any digraph which satisfies the
hypotheses of Theorem 3 is diconnected. Thus digraphs which
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satisfy the hypotheses of Theorem 3 automatically satisfy those of
Theorem 4, and so Theorem 4 contains Theorem 3. But Theorem 4
is considerably stronger, since many digraphs, such as that of Fig.
12, satisfy the hypotheses of Theorem 4 but not those of Theorem
3.

Not only does Theorem 4 contain Theorem 3, but also Theorem
3 in turn contains Theorem 1 in a certain sense. To explain this
remark, we define the notion of a digraph equivalent to a graph G.
This is a digraph D such that (i) V(D) = V(G), (ii) if two vertices
are non-adjacent in G, then they are not joined by any edge of D,
and (iii) if two vertices &, n are adjacent in G, then they are joined
in D by two edges, of which one has tail £ and head n whilst the
other has tail 7 and head £ For example, the digraph of Fig. 15 is
equivalent to the graph of Fig. 9. Intuitively, if one thinks of edges
of a graph as two-way streets and edges of a digraph as one-way
streets, this notion of “equivalence” is a natural one. To join two
vertices by two one-way streets permitting travel in opposite
directions is, for travelling purposes, “equivalent” to joining them
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by a two-way street, and so a digraph equivalent to a graph G can
be thought of as a network of one-way streets capable of replacing
the network G of two-way streets. :

If D is equivalent to a graph G with at least 3 vertices, then it is
easily seen that G has a Hamiltonian circuit if and only if D has a
Hamiltonian dicircuit, and also that the valency in G of any vertex
is equal to both the invalency and the outvalency of that vertex in
D. Thus Theorem 3 contains Theorem 1 in the sense that, if G is a
graph satisfying the hypotheses of Theorem 1, we have only to
construct a digraph D equivalent to G and observe that D then
satisfies the hypotheses of Theorem 3 and so has, by Theorem 3, a
Hamiltonian dicircuit, implying that G has a Hamiltonian circuit.
In other words, Theorem 1 can be considered as the special case of
Theorem 3 in which the digraph concerned is of such a kind that it
is equivalent to some graph. In fact a digraph is called symmetric if
it is equivalent to some graph; or, to express this definition in
another way, a symmetric digraph is one in which every two
vertices are joined either by two edges such that the tail of each of
these edges is the head of the other or by no edge at all (Fig. 15).

Theorem 3 might be thought of as the analogue of Dirac’s
Theorem (Theorem 1) for digraphs, and I was motivated by this to
conjecture in [14] that the following digraph analogue of Pdsa’s
Theorem (Corollary 2A) might be true.

CONIECTURE 1: If a digraph D has n(> 3) vertices and ivs(D)
> P, and ovs(D) > P,, then D has a Hamiltonian dicircuit.

If Conjecture 1 is true, Posa’s Theorem could be deduced from
it in the same way that Dirac’s Theorem is deducible from
Theorem 3; but until now nobody has either proved or disproved
Conjecture 1, and the problem may be a very difficult one. It is
possible to propose also quite a number of variants of Conjecture
1; inter alia, one might generalize it to some stronger conjecture in
something like the way in which Theorem 4 generalizes Theorem
3. Again, one might propose a conjecture about digraphs which
generalizes Chvatal’s Theorem, possibly on some such lines as the
following:
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CONJECTURE 2: If a diconnected digraph D has n(> 3) vertices

and invalency sequence a,, ...,a, and outvalency sequence
b,,...,b, and if

(i) for every positive integer i < n/2, at least one of the in-
equalities a; > i + 1,b,_, » n — i is true, and

(ii) for every positive integer i < n/2, at least one of the in-
equalities b; > i + 1,a,_; > n — i is true,

-1

then D has a Hamiltonian dicircuit.

To conclude this section, it may be worth remarking that
“which graphs have Hamiltonian circuits?” and “which digraphs
have Hamiltonian dicircuits?” are equivalent questions in the
sense that a complete answer to either of them would provide a
complete answer to the other. For, if we knew which digraphs
have Hamiltonian dicircuits, then, to determine whether a graph G
had a Hamiltonian circuit, we would only have to consider a
digraph A; equivalent to G (in the sense defined above) and
observe that G has a Hamiltonian circuit if and only if A; has a
Hamiltonian dicircuit: so our knowledge of whether or not A; has
a Hamiltonian dicircuit would answer the question about G also.
Conversely, if we knew which graphs had Hamiltonian circuits
then, to determine whether a given digraph D had a Hamiltonian
dicircuit, we could use a certain construction to form a graph I'j,
which has a Hamiltonian circuit if and only if D has a Ham-
iltonian dicircuit: so our knowledge of whether I';, has a Hamil-
tonian circuit would answer the question about D also. The
method of constructing ', from D is illustrated by Figs. 12 and
16. If D has vertices §,, §,, . . . , §,, then ', has vertices

0l,02,..-,0,.,¢p¢29--'a¢m¢lﬂ‘p2"""l’n;

and the edges of T, are inserted as follows: join 6, to ¢, by an edge
and ¢; to {; by an edge for i=1,2,...,n and, in addition,
whenever D has an edge with tail § and head §;, join y; to §; by an
edge of T',. For the example of this construction represented by
our diagrams, Fig. 12 exhibits, by means of thick edges, a Hamil-
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tonian dicircuit in D and Fig. 16 exhibits, by means of thick edges,
the “corresponding” Hamiltonian circuit in I';,. These diagrams
should provide any interested reader with a sufficient hint for
proving that, in general, T';, has a Hamiltonian circuit if and only
if D has a Hamiltonian dicircuit. Unfortunately this construction
does not permit us to deduce Conjecture 1 from the
“corresponding” result (Corollary 2A) about graphs, because a
digraph D satisfying the hypotheses of Conjecture 1 gives rise to a
graph T';, which does not satisfy the hypotheses of Corollary 2A.

4. A WEAKER PROPERTY THAN HAVING A HAMILTONIAN CIRCUIT

The length L(P) of a path P is the number of edges in P. A path
whose end-vertices are £ and n will be called a &n-path. The
distance d (¢, 7) between two distinct vertices £ n of a connected
graph G is the minimum of the lengths of all £&»-paths in G, i.e.,
intuitively, the minimum number of edges along which one would
have to travel in order to get from £ to n. For instance, in the
graph of Fig. 2,d(a, B) = 1,d(p, §) = 2,d(8, v) = 3. To say that
a graph G (with at least 3 vertices) has a Hamiltonian circuit is
clearly equivalent to saying that its vertices can be arranged in a
sequence £, §,, . . ., £, such that the distances

d(gl’ g2)’ d(ﬁzs §3)’ L d(£n—2s gn—l)’ d(gn—l’ gn)’ d(gn’ gl)

are all 1. For example, the existence of the Hamiltonian circuit
indicated by the thick edges in the graph of Fig. 2 corresponds to
the fact that the vertices of the graph can be arranged in the
sequence a, p, B, v, 6, 8, ¢, ¥, § which has the property that the
distances d(a, p), d(p, B), d(B,v), d(y,0), d(o,d), d(8,¢),
d(¢, ¥), d(y, ), d(0, a) are all 1. Thus we can identify a property
of a graph which is in general weaker than having a Hamiltonian
circuit by saying that a connected graph G is k-round (where k
denotes a positive integer) if there exists an ordering §,, &, . . . , &,
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of V(G) such that the distances
d( &), d( &), - - -, (€2 §-1): A6, 1 §): A6 €)

are all < k: then, provided that |V(G)| > 3, 1-roundness of G is
equivalent to its having a Hamiltonian circuit and, for any k& > 1,
k-roundness is a weaker property. Thus, deciding which connected
graphs are l-round is equivalent to the very difficult problem of
determining which of them have Hamiltonian circuits. Can we
expect more luck in enquiring which connected graphs are 2-
round, which ones are 3-round, etc.? It turns out (see Theorem 6
below) that all connected graphs are 3-round (and hence also
k-round for all k > 3); but which of them are 2-round seems to be
a non-trivial problem, which is not yet fully settled, although, as
we shall indicate, very interesting progress has recently been made
with it.

50 )4
o Q—0 o o- 0%,

gi ‘5;10 Eu. ~§12- 13
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A few definitions at this point will help us to proceed with
clarity and precision. Throughout Section 4, the word sequence will
mean “finite sequence.” A sequence on a set S is a sequence all of
whose terms belong to S: for example, the sequence 2, 3, 5, 3, 7 is
a sequence on the set {1, 2, 3, 4, 5, 6, 7, 8}. Our earlier definitions
of “én-path” and of the “distance” d (£, 1) between vertices £ and 5
will be extended to the case in which ¢ = 9 by defining a £§-path
to be a path P such that V(P) = {£} and E(P) = & and defining
the distance d (&, £) between £ and itself to be the length of this
path, i.e., zero. Let G be a connected graph and k be a positive
integer. Then a sequence §,, §,, . . . , £, on V' (G) is k-gradual if the
distances

d(fp £2)9 d(fz, 53)’ v d(gn—z’ n—l)’ d(gn—l’ En)

are < k. If these distances and the distance d(§,, £,) are all < k,
we say that the sequence §,, 5, . . ., &, is k-cyclic. [If n = 1, ie,, if
£, is the sole term of the sequence “§, §,,...,§,”, then this
sequence is considered to be both k-gradual and k-cyclic for all
positive integers k.] Thus, in the graph of Fig. 17, the sequence

£ &5 80 & S16 S20 S0 S0

is 3-gradual. It is not 3-cyclic because d(§,,, &) = 4; but it is
4-cyclic. A connected graph G will be called k-orderable if V(G)
has a k-gradual ordering. We observe also that our definition of
“k-round” amounts to saying that a connected graph G is k-round
iff ¥(G) has a k-cyclic ordering. The graph of Fig. 17 is 2-round,
since, for example,

£1> gza 53; £4’ £5a gﬁa $8’ £14, 5133 512’ £“a sloy 59, } (15)
$I7a $]95 gzp 216’ &22’ £209 £18’ €157 £7
is one possible 2-cyclic ordering of its set of vertices. The graph of
Fig. 18 is 3-round, one possible 3-cyclic ordering of its set of
vertices being
ay, a3, s, O, gy A, By B3, Bs, Ber Bas B @5 Y2 Yo Yoo
Ys Y3 Y1 81, 83, 85, 86, 84, 82, €1, €5, €5, €6, €4, €3,
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but the reader will probably fairly quickly convince himself by
experiment that this graph is not 2-round, nor even 2-orderable. It
will be convenient to make the convention that the empty graph
(i.e., the graph which has no vertices and no edges) is considered
to be k-round for every positive integer k. Let a, 8 be elements of
a finite set S. Then an aB-ordering of S is an ordering
b6, ..., ¢ of Ssuch that§, = aand §, = B. If a, B are vertices
of a connected graph G and if V(G) has a k-gradual af-ordering,
we shall say that G is k-af3-orderable.

Of course, distances between vertices are measured in a particu-
lar graph, so that, if «, 8 are common vertices of two connected
graphs G and H under discussion, the distance between a and 8 in
G could be different from the distance between a and 8 in H: in

FiG. 18
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such a case, we denote these two distances by d;(a, B) and
dy(a, B) respectively. For example, if G is the graph of Fig. 10
and H is the subgraph of G depicted in Fig. 9, then d;(0, ¢) = 1
but dy; (8, ¢) = 2. This illustrates the following lemma:

LemMmA 7: If a, B are vertices of a connected subgraph H of a
connected graph G, then dy(a, ) > dg(a, B).

Proof: Since dy(a, B) is the minimum of the lengths of all
apB-paths in H, there must be an af-path P in H such that
dy(a, B) = L(P). Since H is a subgraph of G, it follows that P is
an af-path in G and so, since d;(a, B) is the minimum of the
lengths of all aB-paths in G, it follows that d;(a, 8) < £(P)
= dy(a, B).

Since the definition of a k-gradual sequence of vertices involves
distances, which are measured in some graph, it follows that the
term “k-gradual” may also have different meanings in different
graphs: for instance, the sequence 8, ¢, v, B8 is l-gradual in the
graph of Fig. 10 but not 1-gradual in the subgraph of this graph
shown in Fig. 9. For our subsequent discussion, the following
corollary of Lemma 7 will be needed:

COROLLARY 7a: Let H be a connected subgraph of a connected
graph G and k be a positive integer. If a sequence on V (H) is
k-gradual in H, then it is k-gradual in G.

Proof: Let &, &,,...,§, be a sequence on V(H) which is
k-gradual in H. If n = 1, the sequence is k-gradual in G since a
sequence on ¥ (G) with only one term is automatically considered
to be k-gradual in G. Otherwise, fori =1,2,...,n — 1, we have
dy(§, §+1) < k because our sequence is k-gradual in H and
dg(§, &) < dy(§, 4, 1) by Lemma 7. Hence dg(§;, &,,) < k for
i=12,...,n—1,1ie, the sequence §, &, ..., &, is k-gradual
in G.
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A particularly important and simple kind of graph, which makes
its appearance time and again in graph theory, is a tree, which
may be defined to be a connected graph T such that T — A is
disconnected for every edge A of 7. Such a graph has the kind of
tree-like structure illustrated by Fig. 19. The following lemma
states some elementary properties of trees which will be relevant to
the proof of our next main theorem.

FiG. 19



HAMILTONIAN CIRCUITS - 335

LemMMA 8: Let a, B8 be distinct vertices of a tree T. Then there is
one and only one af-path in T. If X is any edge of this af3-path then

(1) T — A has exactly two components,
(ii) one of these components includes o and the other includes B,
(ili) one component of T — X includes one end-vertex of A and the
other component of T — X includes the other end-vertex of A.

C

FiG. 20
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For instance, Fig. 19 depicts a tree two of whose vertices are
labelled @, B, and the unique aB-path in the tree is the path whose
edges are shown as thick edges. One edge in this path is labelled A;
and Fig. 20 depicts the graph T — A, which has two components C
and D as predicted by Lemma 8(i), and « € V(C), 8 € V(D) as
predicted by Lemma 8(ii), and C includes the end-vertex # of A
whilst D includes the end-vertex ¢ of A, as predicted by Lemma
8(iii). If we replace Fig. 19 by any other diagram depicting a tree T
and select any two distinct vertices a, 8 of this tree, it will again be
apparent from the diagram that the assertions of Lemma 8 are
valid for this choice of 7, a and B8; and Lemma 8 seems so
intuitively obvious when a few such diagrams have been consid-
ered that it seems reasonable to leave its proof as an exercise.

THEOREM 5 (Sekanina [22]): If G is a connected graph and a, B
are distinct vertices of G, then G is 3-af-orderable.

Proof: Our proof will be by induction on the number of edges
of G, by showing that Theorem 5 is true for G if it is true for all
graphs with fewer edges. More precisely, let us make the following
assumptions:

(D) a, B are distinct vertices of a connected graph G.

(I) G’ is 3-a’B’-orderable for every triple G’, a’, B’ such that
G’ is a connected graph with fewer edges than G and «’, 8’ are
distinct vertices of G".

If, from these assumptions, we can deduce that G is 3-af-
orderable, then Theorem 5 will be proved by induction.

Suppose, first, that G is not a tree. Since G is connected but not
a tree, it follows from the definition of a tree that G has an edge A,
such that G — A, is connected. Since G — A, is connected and
|E(G — Ap)| < |E(G)), it follows from our inductive hypothesis
(II) that G — A, is 3-afB-orderable. Consequently, there exists an
af-ordering of V(G — Ay) which is 3-gradual in G — A,. But
V(G — Ay) = V(G), and any sequence on this set which is 3-
gradual in G — A, will also by Corollary 7a be 3-gradual in G.
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Hence there exists an afB-ordering of V(G) which is 3-gradual in
G, i.e., G is 3-afB-orderable.

Now suppose that G is a tree. Then, by Lemma 8, there is a
unique aB-path in G and, if we select any edge A of this path,
G — X will have exactly two components, one of which includes a
and one end-vertex of A whilst the other includes 8 and the other
end-vertex of A. Let C, D be the two components of G — A, C
being the one which includes a and D being the one which
includes B. Let # be the end-vertex of A which belongs to V(C)
and ¢ be the one which belongs to V(D). We now prove the
following two statements:

(i) There is an ordering &,,£,,...,§ of V(C) which is 3-
gradual in C and has the properties that £, = a and £, is either §
or a vertex adjacent to @ in C.

(i) There is an ordering 71,, m,, . . ., n, of V(D) which is 3-
gradual in D and has the properties that n, = 8 and 7, is either ¢
or a vertex adjacent to ¢ in D.

To prove (i), consider separately the three cases in which (a)
a # 0, (b) a = 8 and « (alias #) is not the only vertex of C, and
(c) a = § and a (alias @) is the only vertex of C. Since C is a
connected graph with fewer edges than G, our inductive hypothe-
sis (II) tells us in Case (a) that there exists an af-ordering of V(C)
which is 3-gradual in C, and taking this ordering to be §,, . . ., §,
we have £, = a, £ = 0. In Case (b), since a is not the only vertex
of C, the connectedness of C clearly requires that a be incident
with at least one edge of C: let o be a vertex joined to a by an
edge of C incident with it. Then by our inductive hypothesis (II)
there exists an ac-ordering of V(C) which is 3-gradual in C:
taking this ordering to be §,,...,§ we have §, = a and §, = o,
which is adjacent in C to a and hence (since a = ) to 4. In Case
(c), where a (= ) is the only vertex of C, take §,, . . ., & to be the
only possible ordering of V(C), i.e., take r =1 and £, = § = a
= @: this ordering of V(C) is trivially 3-gradual in C and has the
desired properties £, = a, £ = 6. This completes the proof of (i);
and evidently (ii) can be proved in a very similar manner.

The orderings §;, . .., & and m,, . . ., 1, given by (i) and (ii) can
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be combined to yield a sequence
fp sza AR ] gr’ nl’ 7'2’ LR ] "l, (16)

and we easily see that (16) is an aB-ordering of V' (G) which is
3-gradual in G. In fact, since C, D are the components of G — A
and §;,...,§ and 7,,...,n, are orderings of ¥V (C), V(D) re-
spectively, it follows that (16) is an ordering of V(G — M)
= V(G). Moreover, this ordering of ¥ (G) is an af-ordering
because £, = a by (i) and n, = B by (ii). To see that (16) is
3-gradual in G, observe, first, that the sequences £, ..., £ and
M5 - - - » 7, being 3-gradual in C, D respectively, are by Corollary
7a 3-gradual in G, and, secondly, that d; (£, n,) < 3 because £, is
equal or adjacent to 8, which is joined by A to ¢, which is equal or
adjacent to 7,.

Since (16) is a 3-gradual aB-ordering of V' (G), we have now
proved that G is 3-afB-orderable.

THEOREM 6: Every connected graph is 3-round.

Proof: A graph with just one vertex is trivially 3-round, and a
graph with no vertices (i.e., the empty graph) is 3-round by
convention. If G is a connected graph with two or more vertices,
then the connectedness of G implies that it must have at least one
edge, and if a, B are the vertices joined by some edge of G, then
by Theorem 5 there is a 3-gradual aB-ordering of V(G). Since
d(B, a) = 1 < 3, this 3-gradual ordering is in fact 3-cyclic, and so
G is 3-round.

A vertex £ of a connected graph G is a cut-vertex of G if G can
be expressed as the union of two subgraphs H and K such that
E(H)# @, E(K) #* @ and V(H) N V(K) = {£}. For example,
if G is the graph of Fig. 21, then w is a cut-vertex of G because G
can be expressed as the union of two subgraphs H, K such that
V(H) = {§, &, 65 0}, E(H) = (A}, Ay A5, Ay A5}, V(K)
= {0, &0 &5 §00 &), E(K) = {Ae Ay Ags A, Mg, Ay} and these
subgraphs satisfy the conditions E(H) # @, E(K) # @, V(H) N
V(K) = {w}. In the graph of Fig. 9, a is a cut-vertex: there is in
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fact more than one way of expressing this graph as a union of two
subgraphs H, K with E(H) # g, E(K) #* @, V(H)n V(K)
= {a}, since we could for example choose H, K so that ¥V (H)
= {(a,0}, E(H)= {A}, V(K)= {a,B,7,9}, E(K)
= {u, »,m, p} or alternatively we could choose them so that
V(H) = {a,0,¢}, E(H)={\p), V(K)= (o B, 7}, E(K)
= {», m, p}. The central vertex in Fig. 7 is a cut-vertex of the
graph, the graph of Fig. 5 has five cut-vertices £,, §;, &4, &5, & [for
instance, §; is a cut-vertex because the graph is the union of
subgraphs H, K with V(H) = {§,, £, §3}, V(K)
= {£3’ $4, fs, 56’ 57}, E (H) = {}\p A2} # g;E (K)
= {A3, Ay A, A} # @, V(H) N V(K) = {§}], and in the graph
of Fig. 19 every vertex of valency > 2 is a cut-vertex. Thus,
intuitively, a cut-vertex of a connected graph is characterised by
the property that we can cut the graph into two parts, each
containing at least one edge, by cutting through that vertex. A
connected graph which has no cut-vertices is said to be nonsepar-
able: for example, the graphs in Figs. 1, 2, 3, 4, 8, 10 and 16 are
nonseparable.

As we have remarked, the counter-example in Fig. 18 shows that
some connected graphs fail to be 2-round, but Sekanina [23]
proposed the problem of trying to characterise those which are
2-round. Subsequently L. W. Beineke and M. D. Plummer, and
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independently the present author [15], conjectured that every non-
separable graph is 2-round. For several years, this very tempting
conjecture defeated a considerable number of people who thought
about it; but in 1971 H. Fleischner [10, 11] discovered an in-
genious proof, too elaborate to be reproduced here. Once this
notable theorem had been proved, it was (as several people no-
ticed independently) a not too difficult next step to prove a
theorem related to it as Theorem 5 is related to Theorem 6. This
theorem asserts that, if a, B are distinct vertices of a nonseparable
graph G, then G is 2-af-orderable, and one method of proof [4] is
to deduce it as a corollary to Fleischner’s theorem by a trick which
consists in constructing, from the given graph G, a new nonsepar-
able graph whose 2-roundness implies the 2-af-orderability of G.
In view of the important breakthrough achieved by Fleischner, it
may be realistic to predict the complete characterisation of 2-
round graphs as a possible achievement in graph theory during the
next few years.

We have hitherto been viewing 2-roundness, 3-roundness, 4-
roundness, etc., as properties of a graph which are weaker than the
property of having a Hamiltonian circuit (which, for graphs with
at least three vertices, is equivalent to being 1-round). However,
there is also another type of relationship between k-roundness and
Hamiltonian circuits: a connected graph G with at least three
vertices is k-round if and only if a certain related graph G* has a
Hamiltonian circuit, and, more specifically, any ordering of V' (G)
which is G-k-cyclic (i.e., k-cyclic in G, as opposed to G*) corre-
sponds in a certain way to a particular Hamiltonian circuit of G*.
The graph G* is defined by specifying that it has the same vertices
as G and that two distinct vertices £, n of G are joined by an edge
of G* if and only if d;(£, 1) < k. For example, if G is the graph of
Fig. 17, then G* will be as depicted in Fig. 22 and G* as in Fig. 23.
It is customary to call G2 the square of G, G* the cube of G and
G* the kth power of G: whether or not this nomenclature is fully
appropriate might be an arguable question into which we shall not
digress. It is easy to see that, if G is a graph with at least three
vertices, any G-k-cyclic ordering of V' (G) gives rise to a Hamil-
tonian circuit of G¥ and any Hamiltonian circuit of G* gives rise
to a G-k-cyclic ordering of V' (G): for example, if G is the graph of
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Fig. 17, then the G-2-cyclic ordering (15) of V' (G) gives rise to the
Hamiltonian circuit of G2 whose edges are the thick edges in Fig.
22 and conversely, given this Hamiltonian circuit of G2, we could
use it to construct the G-2-cyclic ordering (15) of V' (G) by listing
the vertices in the order of their occurrence as we go round the
circuit starting at £,. (Of course, if, for example, we started at &
and went round the circuit in the opposite direction, this would
yield a different G-2-cyclic ordering

gs» £4, 535 gza gp £7’ &[5) gls’ 520’ £225 516, gzp
g]ga §|7) £99 £|0’ gl]s 5129 §13’ £|4’ £8’ §6

of V' (G); so there are strictly speaking several k-cyclic.orderings of
the set of vertices of a graph associated with any Hamiltonian
circuit of its kth power, but this in no way conflicts with what we
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have been saying.) Fig. 23 exhibits by means of thick edges the
Hamiltonian circuit of G* associated with the G-3-cyclic ordering

51, $4: 22, £3’ sﬁy 55, £8, 512! $103 51[: 513,
514’ £21’ £16’ $22’ £19’ £20’ 518’ €9’ 517’ 515’ 57

of V(G), where G is the graph of Fig. 17. These examples should
make it clear that k-roundness of a connected graph G with at
least 3 vertices is essentially the same thing as roundness of G¥,
and so Theorem 6 and Fleischner’s theorem can be expressed
respectively in the forms the cube of every connected graph with at
least three vertices is round and .the square of every nonseparable
graph with at least three vertices is round.
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5. TOUGHNESS AND HAMILTONIAN CIRCUITS

If X is a subset of V(G), then G — X will denote the graph
obtained from G by removing the vertices in X and all edges
incident with them: for example, if G is the graph of Fig. 24 and X
is the set of “square” vertices, then G — X is as shown in Fig. 25.

The number of connected components of G will be denoted by
c(G).

In looking for possible sufficient conditions for graphs to be
round, one may tend to notice that some of the most easily found
examples of tortuous graphs are, in a certain sense, “structurally
weak,” or “badly connected” graphs. For example, disconnected
graphs are obviously tortuous. Again, connected graphs with at
least one cut-vertex are obviously tortuous, and these graphs might
be considered as being “structurally weak” or “badly connected”
in the sense that “one has only to cut through one vertex in order
to disconnect them.” Again, a graph like that of Fig. 27 is easily
seen to be tortuous, and this graph is “structurally weak” in the
sense that three parts of it are held together only at the two
vertices @, B: more mathematically speaking, G — {a, B} is a
disconnected graph with three connected components, where G
denotes the graph in Fig. 27. We shall now prove a lemma and
corollary based on the idea that “structurally weak graphs tend to
be tortuous.”

LEMMA 9: If G is round, then c¢(G — X) < |X| for every non-
empty subset X of V(G).

Proof: Since G is round, we can select a Hamiltonian circuit C
of G. Let X be a non-empty subset of V' (G). Clearly the connected
components of C — X are disjoint paths 4,, 4,, . . ., 4,, say, and,
if we start at some vertex (a, say) in X and travel round C in a
selected direction until we arrive back at «, we shall pass along
each A4, once. Let £ be the next vertex of C encountered after we
have passed through all the vertices of 4; in this journey round C.
Then clearly £,,..., ¢ are distinct elements of X, and hence
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[X| > r. Moreover, A, . . ., 4, include between them all the ver-
tices of G — X and, since each 4; is a connected subgraph of
G — X, its vertices must all belong to the same connected com-
ponent of G — X. Hence G — X can have at most r connected
components, i.e., c(G — X) < r. We have thus proved that

c(G - X) <r<|X|
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g

G-X>

This proof is illustrated by Figs. 24, 25 and 26, which represent
G, G — X and C — X respectively, the elements of X being the
“square” vertices in Fig. 24. Edges of C are shown as thick edges
in these diagrams.

Another way of writing Lemma 9 is:

COROLLARY 9a: If ¢(G — X) > |X| for some non-empty subset
X of V(G), then G is tortuous.
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c-x>’

For example, G is tortuous if (as in Fig. 21) G — {w} has at least
two connected components for some vertex w of G or if (as in Fig.
27) G — {a, B} has at least three connected components for some
pair of vertices a, 8 of G. In general, graphs which become split up
into a relatively large number of connected components by the
removal of a relatively small number of vertices (and the edges
incident with these vertices) may be thought of as being
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“structurally weak” and Corollary 9a says, roughly speaking, that
graphs with a certain degree of “structural weakness” are nec-
essarily tortuous. One might ask whether, on the other hand,
graphs with a certain degree of “structural strength” or
“toughness” are necessarily round, and in this direction Chvatal
[6] has proposed the following conjecture.
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CoNJECTURE 3: If |V(G)| > 3 and ¢(G — X) < %|X| for every
subset X of V(G) such that G — X is disconnected, then G is round.

[The words “such that G — X is disconnected” could not rea-
sonably be left out in Conjecture 3: if we required ¢(G — X) to be
less than %|X| for every subset X of V(G) then we would be
requiring it to be less than 4 when |X| = 1 and to be less than 0
when |X| = 0.]

As Chvatal pointed out in [6], it is a tolerably easy exercise to
prove that, if G is any nonseparable graph, then ¢(G? — X)
< 3| X| for every subset X of V(G?) [= V(G)] such that G — X
is disconnected. Hence the square of any nonseparable graph with
at least three vertices satisfies the hypotheses of Conjecture 3 and
so, if we could prove Conjecture 3, then this result would contain
the statement that the square of every nonseparable graph with at
least three vertices is round; and we have seen that this statement
is essentially a reformulation of Fleischner’s theorem that every
nonseparable graph is 2-round. So Conjecture 3, if true, must be a
sufficiently deep result to contain Fleischner’s theorem, and in-
deed it would evidently go considerably beyond Fleischner’s
theorem.

6. HAMILTONIAN CIRCUITS IN PLANAR GRAPHS

Informally speaking, a planar graph is a graph drawn in the
plane so that no two edges intersect and no edge passes through
any vertex (although of course the points at each end of an edge
must be vertices). For example, if Figures 1, 2, 4, 5, 9, 10, 17, 18,
19, 20, 21, 24, 25, 26, 27, 28, 29 and 30 are interpreted as
representing graphs drawn in the plane, then all of these graphs
are planar; but Figs. 3, 7, 8, 16, 22 and 23 represent graphs drawn
in the plane with some pairs of intersecting edges, and such graphs
are not planar. These examples should adequately indicate what
we mean by a “planar” graph, but for those desiring a more
precise and more technical definition we can define a planar
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graph* to be a graph G such that

(i) the vertices of G are points of R? where R? denotes the
Euclidean plane,

(ii) the edges of G are disjoint subsets of R\ V(G),

(iii) for each edge A of G, there exists a continuous one-to-one
mapping f, of the closed interval [0, 1] into R? such that A is the
image under f, of the open interval (0, 1) and f,(0), fi(1) are the
vertices joined by A in G.

Any planar graph G can be re-drawn, if we so wish, on the
surface of a sphere. All we have to do is cut out from the plane a
circular disc which contains all the vertices and edges of G and,
assuming it to be made of sufficiently elastic material, paste it
onto the surface of the sphere, and we will then have G drawn on
the surface of the sphere.

A graph G is sometimes said to be r-connected (where r is a
positive integer) if G — X is connected for every subset X of V' (G)
such that |X| < r. Of course, this includes saying that G — X is
connected when X = @@, i.e., that G itself is connected. Thus an
r-connected graph is a connected graph which cannot be rendered
disconnected by removing less than r vertices. (When we speak of
“removing” vertices from a graph, it is always understood that the
edges incident with those vertices are removed as well: see the
definition of G — X in Section 5.)

An elementary property of r-connected graphs is stated in the
following lemma:

LeMMA 10: If an r-connected graph has at least r + 1 vertices,
then all of its vertices have valency > r.

Proof: We will show that, if a graph G has at least r + 1 vertices

*It might, in terms of customary usage, be more accurate to call the type of
graph thus defined a plane graph and -to call any graph which is isomorphic to a
plane graph planar. However, we shall in this section adhere to the definition given
above, since we shall have no particular reason to concern ourselves with graphs
isomorphic to plane graphs other than plane graphs themselves.
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and some vertex a of G has valency less than r, then G is not
r-connected. In fact, if in these circumstances N denotes the set of
vertices adjacent to a in G, then |[N| = v(a) < r and so G will
certainly fail to be r-connected if G — N is disconnected. But
G — N is disconnected because (i) a is a vertex of G — N which is
not adjacent in G — N to any other vertex of G — N and (ii)
V(G — N)| > 1 since |V(G — N)| = |V(G)| - N, [V(G)
>r+1,|N|<r
Tutte [24] has proved the following theorem:

THEOREM 7: Every 4-connected planar graph with at least three
vertices has a Hamiltonian circuit.

The proof, which may be found in [18] or [24], involves a
complicated and ingenious argument by induction on the number
of edges of the graph. Theorem 7 generalized a previous result of
Whitney [25], which was in fact the special case of Theorem 7 in
which the theorem is restricted to 4-connected planar graphs all of
whose faces have valency 3, the terms “face” and “valency of a
face” being defined later in this section.

In trying to learn more about which graphs have Hamiltonian
circuits, it may be useful to have, not only positive results like
Theorems 1, 2 and 7 which say that certain graphs have Hamil-
tonian circuits, but also some examples of graphs which are known
not to possess them other than rather obvious examples such as
those provided by Corollary 9a. An ingenious device which yields
a few such examples (including that of Fig. 4) has recently been
found in the study of planar graphs, and we conclude with a brief
description of it.

Observe, first, that a planar graph divides the rest of the plane
(i.e., that part of the plane not occupied by vertices and edges of
the graph) into a number of regions which we shall call faces of
the graph: for instance, the graph of Fig. 28 divides the rest of the
plane into 22 regions 1,, I, ..., Iy, J;, Jp, . . ., J i3, and these 22
regions are the faces of the graph. Clearly one of the faces of a
planar graph will be an unbounded region of the plane, extending
to infinity in all directions, and the remaining faces will be
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FiG. 28

bounded regions: in Fig. 28 the unbounded face is J;; and the
other faces are bounded. Thus, informally speaking, the un-
bounded face is the region “outside the graph.” If we take a planar
graph and re-draw it (as described above) on the surface of a
sphere, then the graph thus re-drawn will divide the rest of the
surface of the sphere into regions which might be called “faces” of
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the re-drawn graph, and these faces will closely correspond to the
faces of the graph as originally drawn in the plane, but with the
difference that all faces on the sphere are bounded regions, includ-
ing the one corresponding to the unbounded face in the plane.
Thus the distinction between the unbounded face of a planar
graph and its bounded faces is, in a sense, a slightly artificial one,
since it disappears when the graph is re-drawn on a sphere and all
faces become bounded.

The above definition of the faces of a planar graph has been
given informally: in more precise topological language, the faces
of a planar graph G are the connected components of the subspace
of the Euclidean plane whose points are those points of the plane
which belong neither to ¥(G) nor to any edge of G.

If C is a Hamiltonian circuit of a planar graph G, then some
faces of G lie inside C and will be called C-internal faces, whilst
others lie outside C and will be called C-external faces: for
instance, if G is the graph in Fig. 28 and C is the Hamiltonian
circuit indicated by the thick edges in Fig. 28, then the C-internal
faces of G are I, . . ., I; and the C-external faces are J,, . . . , J,,.

A Hamiltonian circuit C of a planar graph G divides the edges
of G into three categories, viz., edges of C, edges lying inside C
which will be called C-internal edges, and edges lying outside C
which will be called C-external edges: for example, if G and C are
as depicted in Fig. 28, then the edges of C are the thick edges, the
C-internal edges of G are A,, ..., A; and the C-external edges of
Garep,...,p,

In the example of Fig. 28, we notice that the number of
C-internal edges is one less than the number of C-internal faces
and the number of C-external edges is one less than the number of
C-external faces. This phenomenon is in fact not peculiar to this
particular example, but is a consequence of the following general
lemma:

LemMmaA 11. If C is a Hamiltonian circuit of a planar graph G and
if G has r C-internal faces and s C-external faces, then G has r — 1
C-internal edges and s — 1 C-external edges.
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To indicate why this is true, we begin by noticing that, if Cis a
Hamiltonian circuit of a planar graph G, then the C-internal faces
form a somewhat tree-like structure, as may be seen in Fig. 28,
and the C-external faces form another somewhat tree-like struc-
ture, also discernible in Fig. 28. In fact, this statement can be
made precise by saying how we can actually associate a tree with
the C-internal faces and another with the C-external faces. Our
next lemma does this for the C-internal faces.

LeMMA 12: Let C be a Hamiltonian circuit of a planar graph G.
Let the C-internal faces of G be I,, . . ., I, and the C-internal edges
of G beh,...,\ and let T(G, C) be a graph with r vertices
Ii,.... 1] and y edges X\, . . ., N, such that, for k =1,...,y, the
vertices joined by N, in TG, C) are those corresponding to the
C-internal faces on opposite sides of N,. (By the vertex of T,(G, C)
“corresponding” to a C-internal face I,, we mean the vertex I,.)
Then T,(G, C) is a tree.

For instance, if G and C are as in Fig. 28, then G has C-internal
faces I,, ..., Iy and C-internal edges A,, . . ., A; and so 7;(G, C)
must have nine vertices I, ..., Iy and eight edges A}, ..., Ag:
since the C-internal faces on opposite sides of A, are I; and I, A}
must join the corresponding vertices /; and I3 in T;(G, C) and
since the C-internal faces on opposite sides of A, are I; and I3, A
must join the corresponding vertices I; and Ig, and so forth. Thus
T.(G, C) will be as in Fig. 29.

We shall not actually write out a proof of Lemma 12: to gain
insight as to why this lemma is true, the reader is recommended to
draw a number of diagrams like Fig. 28 which depict a planar
graph G and a Hamiltonian circuit C of G, and then construct the
graph T;(G, C) associated with each diagram. It will in all cases
turn out to be a tree, and, if he needs further convincing, the
reader is recommended to spend a little time deliberately trying to
draw a pair G, C for which T;(G, C) is not a tree.

Similarly, by studying illustrative diagrams, one can easily con-
vince oneself of the truth of the following lemma:
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LEMMA 13: Let C be a Hamiltonian circuit of a planar graph G.
Let the C-external faces of G be J,,...,J, and the C-external
edges of Gbe p,, . .., u, and let T,(G, C) be a graph with s vertices
Ji ooy J] and z edges p, . . ., w, such that, for 1 = 1, ..., z, the
vertices joined by w in T,(G, C) are those corresponding to the
C-external faces on opposite sides of ,. (By the vertex of T,(G, C)
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“corresponding” to a C-external face Jg, we mean the vertex Jg.)
Then T,(G, C) is a tree.

If G and C are as in Fig. 28, then T,(G, C) will be as depicted
in Fig. 30.

It is not particularly surprising that Lemma 13, which describes
what happens outside C, bears such a close resemblance to
Lemma 12, which describes what happens inside C. The distinc-
tion between “inside” and “outside” would disappear if we re-

T
, 3 o-/‘?

M 12

Fi1G. 30
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draw G on the surface of a sphere, when C would become a
circuit on the sphere’s surface and, although this circuit would
divide the sphere’s surface into two regions, we could not now
identify one of them as being “outside” the circuit and the other as
being “inside.”

We are now in a position to prove Lemma 11. Let C be a
Hamiltonian circuit of a planar graph G. Then the definition of
T,(G, C) implies that the number of C-internal faces of G is equal
to the number of vertices of T;(G, C) and the number of C-
internal edges of G is equal to the number of edges of T;(G, C).
But 7;(G, C) is by Lemma 12 a tree, and it is a well-known
elementary fact that |E(T)| = |V(T)| — 1 for every non-empty tree
T: the reader can readily convince himself of this fact by examin-
ing examples of trees, and a proof by induction is fairly easy to
give. Hence |E(T,(G, C))| = |V(T,(G, C))| =1, and so the
number of C-internal edges of G is one less than the number of
C-internal faces. In a similar way, it follows from Lemma 13 that
the number of C-external edges of G is one less than the number
of C-external faces; and Lemma 11 is proved.

DEeFINITION: Let G be a nonseparable planar graph with at least
three vertices. Then we define the valency v(F) of a face F of G to
be the number of edges of G in the boundary of F. For example,
in the graph of Fig. 28, v(J;) = 3 since the boundary of J,
contains three edges u,, ug, i) of the graph, and v(J,p) = 4 since
the boundary of J,, contains four edges, viz., p,, s, g and one
thick edge, and v(J,;) = 5 since the boundary of J,; contains five
edges, viz., g, 4, p; and two thick edges. These five edges are in
the boundary which bounds J,; on the inside; and in general the
valency of the unbounded face of a nonseparable planar graph
with three or more vertices will be the number of edges in the
circuit forming the outer perimeter of the graph, because this
circuit constitutes the only boundary of the unbounded face of the

graph.

LeMMA 14: Let C be a Hamiltonian circuit of a planar graph G.
Let I,,...,1I, be the C-internal faces of G and J,, . .., J; be the
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C-external faces of G. Then
(o(1) =2+ (o(I) - 2) + - - - +(v(]) - 2)
=) -2+ @U) -2+ +(v(,)-2). (17)

Proof: The sum o(I,)) + v(I)) + - - -+ + v(J,) is obtained by
considering the C-internal faces one by one and, for each such
face, counting the edges in its boundary. Each C-internal edge gets
counted twice in this process because it is in the boundary of two
C-internal faces, and each edge of C gets counted once because it
is in the boundary of one C-internal face. Hence v(I})) + - - - +
v(l) = 2y + |E(C)|, where y is the number of C-internal edges.
But y =r—1 by Lemma 11, and hence v(I) + - - - + v(1)
=2r—- 1D+ |E(C)|,ie, o(I)+ -+ +0v()—2r=|E(C)| —
2ie,

() =)+ () =)+ -+ +(v([)-2)
=|E(O)]-2. (18)

In a similar way, the number of C-external edges of G is s — 1
by Lemma 11, and each C-external edge is in the boundary of two
C-external faces whilst each edge of C is in the boundary of one
such face, so that v(J,) + : - - + v(J,) counts each of the s — 1
C-external edges twice and each edge of C once. Hence
o(JD)+ - +o(J)=2s—-1)+|EC)ie,

() =2+ () -2+ - +(v(J,) - 2)

=|EO)]-2. (19

Now (17) follows from (18) and (19).
We have now almost completed the proof of the following
elegant theorem of Grinberg [26, 21]:

THEOREM 8: Suppose that a nonseparable planar graph G has one
and only one face whose valency is NOT one of the numbers 5, 8, 11,
14, 17, 20, 23, 26, . . . . Then G has no Hamiltonian circuit.
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Proof: Suppose that G has a Hamiltonian circuit C. Then, if
I,...,I are the C-internal faces of G and J,,...,J, are its
C-external faces, the valencies of these faces must by Lemma 14
satisfy (17). It follows from (17) that, if all but one of the numbers
o(I)) =2, 0(I)—2,...,v(1) = 2,0(J) — 2,0(J,) - 2,

.»0(J,) — 2 are divisible by 3, then the remaining one must also
be divisible by 3. In other words, if the valencies of all but one of
the faces of G belong to the set {5, 8, 11, 14, 17, .. . }, then the
valency of the remaining face must also belong to this set, i.e., G
cannot have just one face whose valency is not one of
5,8,11, 14,17, . . .. But, by hypothesis, G has just one such face:
so assuming G to have a Hamiltonian circuit leads to a contradic-
tion and Theorem 8 is proved.

The nonseparable planar graph of Fig. 4 has one and only one
face whose valency is not one of 5, 8, 11, 14, 17, ... : in fact, the
unbounded face of this graph has valency 9 since its boundary
contains the nine edges in the circuit running round the outside of
the graph, but all of its bounded faces have valencies of 5 or 8.
Hence, by Theorem 8, the graph of Fig. 4 has no Hamiltonian
circuit. This example is due to Grinberg and appeared in [26] and
[21].

REFERENCES

Considerations of space and time have both precluded any attempt to
provide an exhaustive bibliography of the subject. The following ref-
erences are confined to publications referred to above and two survey
articles [16, 17):

1. Bondy, J. A., “Properties of graphs with constraints on degrees”,

Studia Sci. Math. Hungar., 4 (1969), 473-475.

2. Capobianco, M., J. B. Frechen and M. Krolik (editors), “Recent
trends in graph theory”, Proc. First New York City Graph Theory
Conference in Lecture Notes in Mathematics, 186, Berlin, Heidelberg
and New York: Springer-Verlag, 1971.

3. Chartrand, G., and S. F. Kapoor (editors), “The many facets of graph
theory”, Proc. Conference at Western Michigan University, November



10.

11.

12.

13.
14.

15.
16.

17.

18.

19.

HAMILTONIAN CIRCUITS 359

1968, in Lecture Notes in Mathematics, 110, Berlin, Heidelberg and
New York: Springer-Verlag, 1969.

. Chartrand, G., A. M. Hobbs, H. A. Jung, S. F. Kapoor, and C. St. J.

A. Nash-Williams, “The square of a block is Hamiltonian connected”,
J. Combinatorial Theory, Ser. B., 16 (1974), 290-292.

. Chvatal, V., “On Hamilton’s ideals”, J. Combinatorial Theory, Ser. B,

12 (1972), 163-168.

——, “Tough graphs and Hamiltonian circuits”, Discrete Math., §
(1973), 215-228.

. Dirac, G. A., “Some theorems on abstract graphs”, Proc. London

Math. Soc., 2 (1952), 69-81.

. Erdés, P., and G. Katona (editors), “Theory of graphs”, Proc. sym-

posium at Tihany, Hungary, Budapest: Publishing House of the
Hungarian Academy of Sciences; New York: Academic Press, 1968.

. Fiedler, M. (editor), “Theory of graphs and its applications”, Proc.

Symposium held in Smolenice in June 1963; Prague: Czechoslovak
Academy of Sciences, 1964.

Fleischner, H., “On spanning subgraphs of a connected bridgeless
graph and thelr application to DT-graphs”, J. Combmatorzal Theory,
Ser. B., 16 (1974), 17-28.

——, “The square of every two-connected graph is Hamiltonian”, J.
Combinatorial Theory, Ser. B., 16 (1974), 29-34.

Ghouila-Houri, A., “Une condition suffisante d’existence d’un circuit
Hamiltonien”, C. R. Acad. Sci. Paris, 251 (1960), 495-497.

Harary, F., Graph Theory, Reading, Mass.: Addison-Wesley, 1969.

Nash-Williams, C. St. J. A., Unsolved Problem, No. 47, on page 366 of
reference 8 above.

——, Unsolved Problem, No. 48, on page 367 of reference 8 above.
——, Hamiltonian circuits in graphs and digraphs, on pages 237-243 of
reference 3 above.

——, Hamiltonian arcs and circuits, on pages 197-210 of reference 2
above.

Ore, O., “The four-color problem”, in Pure and Applied Mathematics,
27, New York and London: Academic Press, 1967.

Pésa, L., “A theorem concerning Hamiltonian lines”, Magyar Tud.
Akad. Mat. Fiz. Oszt. Kozl., 7 (1962), 225-226.



360

20.

21.

22,

23.
24.

25.

26.

C. St. J. A. Nash-Williams

Sachs, H., H.-J. Vosz, and H. Walther (editors), “Beitrige zur
Graphentheorie, vorgetragen auf dem internationalen Kolloquium in
Manebach (DDR), 9.-12.Mai 1967”, Leipzig: B. G. Teubner, 1968.

Sachs, H., Ein von Kozyrev und Grinberg angegebener nichtham-
iltonischer kubischer planarer Graph, on pages 127-130 of reference

20 above.

Sekanina, M., “On an ordering of the set of vertices of a connected
graph”, Spisy Prirod. Fak. Univ. Brno, 412 (1960), 137-141,

——, Unsolved Problem, No. 28, on page 164 of reference 9 above.
Tutte, W. T., “A theorem on planar graphs”, Trans. Amer. Math. Soc.,
82 (1956), 99-116.

Whitney, H., “A theorem on graphs”, Ann. of Math., 32 (1931),
378-390.

Grinberg, E. Ja., “Plane homogeneous graphs of degree three without
Hamiltonian circuits” (Russian, Latvian and English summaries)
Latvian Math. Yearbook, 4 (1968), 51-58 (Izdat. “Zinatne”, Riga,
1968).



CHROMIALS

W. T. Tutte

In the beginning was the Four Colour Problem.

It was the problem of proving that for every possible planar
map, the regions, faces or countries can be coloured in not more
than four distinct colours so that no two of the same colour have a
common frontier line, or of finding a counter-example.

Many there were who sought to solve the problem, and all their
methods were but one method. It is a method that is practiced
even unto this day. One assumes a map M such that all maps with
fewer faces can be four-coloured, and one tries to deduce from
this information that M is itself four-colourable. It is called the
“qualitative method” by Birkhoff and Lewis in their great work
Chromatic Polynomials [4]. But the workings of this method, and
the fruits thereof, are they not written in the book of Ore? [10].

In a paper of 1912, G. D. Birkhoff called for a quantitative
method. “Let us not,” said he in effect, “be content with the
distinction between four-colourable and not four-colourable. For
each map M there is an integer P(M, 4) which is the number of
ways of four-colouring it. Let us study the properties of this
function of a general map. And while we are about it, let us

361
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generalize the function to other numbers of colours than four. Let
us study the function P(M, A), which is the number of ways of
colouring the map M in A colours” [3]. At this stage, we should try
to be precise in our definitions. We suppose given a set of A
“colours.” The integers from 1 to A will do very nicely. A A-
colouring is an assignment of exactly one of these colours to each
face so that no two faces with a common boundary have the same
colour. Not all the A colours need actually be used, and a (non-
identical) permutation of the colours actually used is considered to
give a new A-colouring,.

Birkhoff found that for each map M the function P(M, A) was a
polynomial in A whose degree was the number of faces of M.
Wherefore this function was called the chromatic polynomial of
M, or by a recent abbreviation the chromial of M.

Clearly, Birkhoff hoped to gain deeper insight into colouring
problems by switching to the quantitative method and a general A.
He was encouraged by finding some simple general formulae
connecting the chromials of three or more closely related maps.
These made fairly easy the computation of the chromial of a
reasonably simple map, but they made no detectable breach in the
defences of the Four Colour Problem.

In 1932, Hassler Whitney showed that the notion of a chromatic
polynomial was applicable also in the case of vertex-colourings of
graphs. In this case, one has a graph instead of a map, and the
graph need not be planar. Again one has a set of A colours, and a
vertex-colouring is an assignment of exactly one colour to each
vertex, subject to the restriction that the two ends of an edge must
receive two distinct colours. The number of A-colourings of a
graph G is denoted by P (G, A). This function turns out to be a
polynomial in A, and if G is loopless, its degree is the number of
vertices. If G has a loop then no A-colouring is possible and
P(G, A) is identically zero. In either case P(G, A) is called the
chromatic polynomial or chromial of G [13].

Whitney’s paper is fundamental in the theory of the chromials
of general graphs. In it he even contemplates a further generaliza-
tion involving two colour-numbers instead of one, —to what is
now often called a dichromatic polynomial. But this generalization
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goes beyond the scope of the present article.

The chromials of Whitney include those of Birkhoff. A map M
can be replaced by its dual graph G. This has one vertex for each
face of M, and two vertices are joined by an edge if and only if the
corresponding faces of M have a common boundary line. Then
evidently P(M, A) = P(G, ). The graph G can be drawn in the
plane without crossings by the device of taking each vertex to be a
point inside the corresponding face, and making appropriate joins
across face-boundaries. Usually the exterior of a planar map is
counted as one of the faces, and this too has its corresponding
vertex of G.

Because of the correspondence between a map M and its dual
graph G it is possible, and it is now becoming customary, to state
the Four Colour Conjecture in the following form: for any loop-
less planar graph G, P(G, 4) > 0. It is to be noted that a map M,
as a map is usually defined, does not give rise to a dual graph with
a loop; no frontier line separates a face of M from itself.

A loopless connected graph G drawn in the plane defines a map
N whose frontier lines are the edges of G. It may happen that each
face of N (including the outer one) is triangular, that is, bounded
by a simple closed curve made up of exactly three edges of G. In
this case, we call N a triangulation of the plane. If N is not a
triangulation, it can be made one by adding new edges to G. From
this observation it is deduced that if the Four Colour Theorem is
true for the graphs defining triangulations, then it is true in
general. Accordingly, it is the graphs of this kind that receive most
attention in the literature. In what follows we do not distinguish
between a planar triangulation and its defining graph. When we
speak of a colouring of such a figure, we shall always mean a
vertex-colouring. In the dual theory of face-colourings, the tri-
angulations are transformed into the trivalent maps, in which each
vertex lies on the boundary of exactly three faces.

In 1946, G. D. Birkhoff and D. C. Lewis published a long paper
called Chromatic Polynomials [4], which ever since has been the
chief source of information and inspiration for workers in this
field. Its theory is that of trivalent maps and face-colourings, but
in describing its results we shall translate them into the
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terminology of triangulations and vertex-colourings. Much of the
paper is concerned with the problem of calculating the chromial of
a given triangulation. Their attack on this problem is based on
three very simple recursion formulae. We state these below, the
first two in generalized form for the sake of later analogies.

I. Consider a triangulation T with a separating digon. Such a
triangulation is shown in Figure 1, the digon having edges 4 and
B. If we delete from T the edges and vertices outside the digon,
and then delete one edge of the digon, we obtain a simpler
triangulation 7,. Similarly, if we delete the edges and vertices
inside the digon, and then delete one edge of the digon, we obtain
a triangulation T, It is easily seen that :

P(T, N)P(T,, )

PN =—0%")

A>1). 0))

T | A T
FiG. 1

II. Consider a triangulation 7 with a separating triangle (abc in
Figure 2). If we delete from T the edges and vertices inside the
triangle, we obtain a simpler triangulation T,. Similarly, if we
delete the edges and vertices outside the triangle we obtain a
triangulation 7. It is clear that

P(T, \)P(T,, A)

TN =G -Dhe -2

A>2). 2)
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C

T
FiG. 2

II1. Consider a triangulation 7 in which two triangles with a
common edge A = ac form the inside of a quadrilateral abcd,
(Figure 3). From T we can form a triangulation 6,(T) by
“twisting” A, that is, replacing 4 by the other diagonal of the
quadrilateral. If T is without separating digons, we can form a
triangulation ¢,(7) by contracting A to a single vertex and
correspondingly contracting each of the two triangles to a single
segment. The analogous operation on 6,(T) yields a triangulation
Y,(T). It is found that

P(T, M\ + P(‘PA(T)’ A) = P(8,(T), A) + P(y,(T), A (3

This identity is most easily proved by considering the map N, with
one quadrangular face, obtained from T by erasing the edge 4.
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P(T, M) can be interpreted as the number of A-colourings of N in
which a and ¢ have different colours, and P(¢,(T),A) as the
number in which they have the same colour. Hence P(N, A)
= P(T, M) + P(¢,(T), M), and similarly P(N, ) = P(0,(T), A) +
Py, (T), .

It is sufficient, following Birkhoff and Lewis, to specialize I and
II to the cases in which there is only one vertex inside the
separating digon or triangle. Equations (1) and (2) then reduce to

P(T,\) = A\ = 2)P(T,, ) and P(T,\) = (A — 3)P(T,, \),

respectively.

Rules I, II and III can be used to construct lists of chromials of
triangulations. One such list is given in the Birkhoff-Lewis paper.
It extends up to 17 vertices, though completeness is not claimed
beyond 10. Triangulations with separating digons or triangles are
omitted from such lists.

Other simplifications are customarily made. The chromial of a
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planar triangulation T always divides by AA — I)A — 2), and
except in the rare Eulerian case by (A — 3). The chromials are
therefore divided by A — 1)(A — 2)(A — 3). They are moreover
expressed in terms of ¥ = A — 3, because this change is found to
give smaller coefficients. The transformation converts P(T, A) into
a polynomial Q(T, u) in u, called the Q-chromial of T. Normally
it is the Q-chromial that is tabulated.

Ruth Bari, in her thesis [1], lists the Q-chromials of all the
planar triangulations, having no vertex of valency less than five,
with 19 or fewer vertices.

At this stage we should note some important properties of
chromials with very simple inductive proofs based on I, II and III.
Let ay(T) be the number of vertices of a planar triangulation T.
Then the coefficients in P(T, A) are integers. They are non-zero
from the coefficient 1 (of A**™) down to the coefficient of A'. The
coefficients of the other powers of A are zero. Moreover, the
non-zero coefficients alternate in sign.

Birkhoff and Lewis developed the theory by trying to generalize
the identities we have listed as I and II. Consider a planar
triangulation S with a separating quadrilateral Q = abcd. Let D,
be the map, with one quadrangular face, obtained from it by
erasing the edges and vertices inside the quadrilateral. Similarly,
let D, be the map, with a quadrangular outer face, obtained from
S by erasing the edges and vertices outside Q. Ignoring the
quadrangular face, we can regard each of the new maps as
equivalent to a triangulated disc, bounded by the quadrilateral Q.

Birkhoff and Lewis introduced some polynomials, called con-
strained chromials, associated with D, and D,. The first con-
strained chromial, 4,(/) of D, is the number of A-colourings of D,
for which the four vertices of Q have all different colours. The
second, 4,(i) is the number of A-colourings of D, in which a and ¢
have the same colour while b and d have different colours. 4,(i) is
the number in which b and 4 have the same colour while a and ¢
have different colours. 4,(i) is the number in which only two
colours are used in Q.

It is easy to express P(S,A) in terms of the constrained



368 W. T. Tutte

chromials of D, and D,:

_ A4,(1)4,(2) (4,(1)4,(2) + A45(1)45(2))
PN = 5D 203 )
A4 (1)A4,(2)
AA =D @)

It is desirable however to express the constrained chromials in
terms of free chromials, that is ordinary chromials of ordinary
triangulations simply derived from D, and D, .

In the case of D,, we can obtain a triangulation 7" by subdivid-
ing the quadrilateral into two triangular faces by a diagonal
A = ac. We can use the notation of III to denote other triangula-
tions associated with D, by 6,(T), ¢,(T), and ¢,(T). Birkhoff
and Lewis obtained the following identities. In them, we write
A;(1) simply as 4,.

(A2 =3\ + 1)4, = AA = 3)P(T, ) + (A — 3)P(6,(T), N)
= A =3)A - DPY,(T), M), )

(A2 =3A+ )4, = P(T,N) + (A — 2)°P(,(T), A)

— (A= 2)P(Y,(T), M), (6)
A2 =3A+ )45 = P(T,\) — (A = 3)P(¢,(T), N)

+ (A= 3)A - DP(T), A), Q)]
A2 =3+ 1)4,= —P(T,N) + A = 3)P(¢,(T), )

+ A = 2)P(Y,(T), 7). ®)

There are analogous identities for D,.
It is now possible to express P(S, A) directly in terms of the
chromials of triangulations simply related to D, and D,.
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Birkhoff and Lewis made a similar analysis for a separating
pentagon. Again they obtained identities giving constrained
chromials linearly in terms of free chromials. Again the
coefficients were polynomials in A, and again the coefficient of
each constrained chromial was (A2 — 3A + 1).

The problem of the separating hexagon (or 6-ring) was solved
by D. W. Hall and D. C. Lewis in a paper published in 1948. They
obtained 41 identities giving the 15 constrained chromials. The
coefficient of each constrained chromial was (AZ — 3A + )(A® —
5A% + 6A — 1), multiplied by 6 or 6(A — 2) [7].

Now what is the point of all this? We can, of course, argue that
chromials are interesting in themselves and that they even have
applications in the study of certain physical models [5]. But I am
thinking here of a somewhat narrower point of view: why are
chromials considered relevant to the study of the Four Colour
Problem?

It can hardly be a simple matter of analogy between 4 and other
integral values of A; the colouring problem for triangulations is
altogether too easy at those other integers. Birkhoff and Lewis
wrote as follows. “It is also hoped that the theory of the chromatic
polynomials may be developed to the point where advanced
analytic function theory may be profitably applied.”

The present writer thinks that this hope is the real justification
for the study of chromials in connection with the Four Colour
Problem. If so we should at least allow A to take all real values.
Then from theorems about P(T, A) for A # 4 we might be able to
infer something new about P(T, 4) by continuity. Or we might
allow A to take all complex values and use analyticity. There is no
difficulty in so extending the range of values of A. We do indeed
initially define P(T, A) in terms of positive integers. But once that
function of A is determined as a polynomial, it takes a definite
value for each real or complex value of A.

This line of thought leads to one clear conclusion. In our study
of chromials we should ignore the point A = 4 and collect as much
information as we can about other values of A. We should try to
discover a pattern in the behaviour of chromials at these other
values, hoping indeed that the pattern will ultimately guide us
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back in triumph to the point A =4, but giving no premature
emphasis to this point, or indeed to integral points in general.

Not all writers on chromials seem to have accepted this conclu-
sion. For example, some do not think it worth while to point out
that P(T, A) is non-zero whenever A is a negative real number,

- though this is an immediate consequence of the rule of alternating
sign for coefficients. In the Birkhoff-Lewis paper, on the other
hand, it is emphasized that the theorem that P(T, A) > 0 when
A > 5 holds for all real numbers in this region and not merely for
the integers.

Birkhoff and Lewis suggested a conjecture to replace the Four
Colour Conjecture, and it is genuinely a conjecture about
polynomials, not solely concerned with the case A = 4. It concerns
the polynomials (A — 3)",

P(T, M)

%N =35 "ha-2

and (A — 2)", where n + 3 is the number of vertices of the planar
triangulation 7. These are to be expressed as polynomials in
x = A — ¢, where c is an arbitrarily chosen real number not less
than 4. The conjecture asserts that, for each T, each coefficient of
a power of x in @,(A) is not less than the corresponding coefficient
in (A — 3)" and not greater than the corresponding coefficient in
(A — 2)". This conjecture implies the Four Colour Conjecture but,
as far as is known, is not implied by it. This “Birkhoff-Lewis
Conjecture” has undoubtedly stimulated much research on
chromials. Ruth Bari stated as the main result of her thesis that
she had proved the Birkhoff-Lewis Conjecture for all trivalent
maps of fewer than 20 faces.

The present writer has to acknowledge that he does not feel
much enthusiasm for conjectures even stronger than the Four-
Colour one. Admittedly, some propositions become easier to prove
by induction when they are strengthened in the proper way. But he
pessimistically imagines that we must do much more hard work
deepening the theory of chromials for general A before we shall be
in a position to bring off any such coup with the Four Colour
Problem.
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It is suggested then that the correct strategy is to study all values
of A except 4, and even to ignore the point A = 4. That is a strong
point, and we should attack the theory of chromials at its weak
points, when and if we discover them. As for the problem of
finding weak points, one obvious suggestion is that we should look
for them among the zeros of the chromials.

In advocating this procedure we are following D. W. Hall, J. W,
Siry and B. R. Vanderslice. These authors published a paper in
1965 giving the Q-chromial, in terms of face-colourings, of the
truncated icosahedron, [8]. In this paper there is a table of all the
28 zeros, 4 real and 24 complex.

An investigation of the zeros of chromials of planar triangula-
tions was later carried out at Waterloo, using first the chromials
tabulated by Ruth Bari, and then some generously made available
by D. W. Hall. The latter represented intermediate stages of the
work on the truncated icosahedron. The computer results showed
one outstanding regularity. Each of the chromials studied had a
zero close to (3 +V5)/2, that is v + 1 where 7 is the golden ratio.
Reference to the Hall-Siry-Vanderslice paper showed that one of
its four real zeros agreed with = + 1 to eight places of decimals.
There seemed also a tendency for zeros to occur near A = 3.247. It
became customary at Waterloo to refer to v + 1 as the “golden
root,” and to the hypothetical real number to which zeros around
3.247 were approximating as the “silver root.” These results were
reported by G. Berman and W. T. Tutte in 1969, [2].

A letter to D. W. Hall brought the reply that he had not noticed
that his table of roots was auriferous, but that he was now in a
position to identify the silver root. He observed that the poly-
nomial A2 — 3\ + 1, occurring as the coefficient of each con-
strained chromial in the Birkhoff-Lewis equations for the 4-ring,
((5)«8)), had the golden root as one of its zeros. What more
natural then that we should look for the silver root among the
zeros of A3 — 5A2 4+ 6\ — 1, a factor of the corresponding
coefficients in the equations of the 6-ring? Indeed this polynomial
has a zero at A = 3.24698, in close agreement with one of the
Hall-Siry-Vanderslice real roots.

It seemed that two weak points had been detected. The weak-
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ness of the point A = 7 + 1 was soon further demonstrated by the
proof of several theorems, valid at the roots of A2 — 3\ + 1 =0,
but not valid for general A. One of these is similar in form to (3).

P(T, v+ 1)+ P(0,(T), v+ 1)

= 177(P(9y(T) 7+ 1) + P(Y(T), 7+ 1)). 9)

D. W. Hall pointed out that this theorem could be derived from
the Birkhoff-Lewis equations for the 4-ring by putting A = 7 + 1,
and using (3). He modified the new inductive proof of (9) to
simplify the derivation of the Birkhoff-Lewis equations for the
4-ring and 5-ring, [6)].

Another theorem, proved in [11], is as follows:

|P(T, 7+ 1)] < 57K, (10)

where k is the number of vertices of the triangulation T. This
result may remain true, as regards absolute magnitude, but be-
comes much less impressive, when we replace 7 + 1 by the other
zero 7 + 1 = (—77'+ 1) of A2 - 3\ + 1. For when k is large
73~k is very small but |(v*)°~¥| is very large. The theorem seems to
provide an adequate explanation of the observed tendency of
chromials of triangulations to have zeros near 7 + 1. In this
connection it is of interest that P(T, r + 1) never takes the value
zero. This result depends on a theorem, proved by a simple
induction, that the chromial of a connected loopless graph must be
non-zero everywhere in the open interval 0 < A < 1. So in par-
ticular P(T, v* + 1) is non-zero. It follows that P(T, 7 + 1) is
non-zero. In a similar way we find that P (7, A) is non-zero at the
roots of A3 — 5A2 + 6\ — 1 = 0, including the silver root.
We state one more theorem on the golden root:

P(T,7+2)=(7+ 2)r* 1PYT,r + 1). (11)

It is proved in [12]. Theorems (10) and (11) can be used to check
tables of chromials. Theorem (11) suggests that A = 7 + 2 may be
another weak point in chromial theory. Since P(T,7 + 1) is
non-zero it follows from (11) that P (T, 7 + 2) is positive, for every
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planar triangulation T. It is natural to make the conjecture that
P(T, ) is positive whenever A > 7 + 2, but there are counter-
examples.

The weakness of the silver root is not so clearly established. By
substituting it in the equations of the 6-ring we can obtain a linear
relation between chromials which is valid for the silver root but
not for general A. It is analogous to (9), but more complicated. It is
noteworthy that the 15 equations given by Hall and Lewis reduce
to one when this substitution is made. This seems to have been.
first observed by A. M. Hobbs at Waterloo.

At this stage S. Beraha came forward with the suggestion that
all the numbers

B(n) =2 + 2 cos(2w/n), (12)

where n is an integer greater than 1, considered as values of A,
were weak points. Certainly the numbers B(2), B(3) and B(4), that
is 0, 1 and 2, are points of special significance; at these values of A
the chromial is zero for every planar triangulation 7. B(5) is the
golden root and B(6) is 3.

The value 3 of A has some remarkable properties that are
perhaps not yet properly appreciated. We know of course that
P(T,3) =0 unless T is Eulerian, having every vertex of even
valency. If T is Eulerian, then P(T, 3) = 6. There is essentially
only one 3-colouring, but we have to allow for the six permuta-
tions of the three colours. It is a curious fact that A = 3 is often
not merely a zero but a multiple zero of P(7, A). Examples leap to
the eye from the Birkhoff-Lewis table of Q-chromials. S. Beraha
tells of triangulations with amazingly high values of the multiplic-
ity. He has found families of such triangulations in which the
multiplicity increases linearly with the number of faces.

This property of the number 3 is the more remarkable in that
Q-chromials seem only very rarely to factorize into simpler
polynomials (with integral coefficients). Apart from factorizations
involving (A — 3) only two cases are known to the present writer.
Triangulations with separating digons or triangles are of course
not to be counted. The two Q-chromials in question are among
those calculated by Hall, Siry and Vanderslice. Each one divides
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by u? — u + 1. It seems that we should add the complex number
3 — w to our list of weak points. Perhaps in this rarity of factors
we encounter a really deep property of chromials, of which the
apparent absence of the factor (A — 4) is only a special case.

Continuing with the numbers of the Beraha sequence we ob-
serve that B(7) is the silver root. B(8) is 2 + V2, which is fairly
close to the real root A = 3.41539930 found by Hall, Siry ‘and
Vanderslice for the truncated icosahedron. B(9) is 2 + 2 cos 40°,
that is 3.532. With a due allowance for diminishing accuracy this is
perhaps not too far from the remaining real root 3.52004593 of the
truncated icosahedron. B (10) is 7 + 2, a value of A that we have
already encountered in (11).

These considerations have convinced the present writer that the
significance of the Beraha sequence should be admitted, as a
working hypothesis. This admission leads to the following predic-
tion:

P. For each integer n > 2 the n-ring is associated with a linear
relation between chromials, the “free chromials” of Birkhoff and
Lewis, which is valid for A = B(n + 1) but is not valid for all \.

Such a linear relation should be valid for all the roots of the
minimal equation of B(n + 1); Beraha is actually offering us a set
of weak points that is dense in the interval 0 < A < 4. The
prediction is trivially satisfied for n =2 and n = 3, the linear
relation being then P(T, A) = 0. It is of course satisfied also for
n=4andn = 6.

It is not difficult to verify the prediction in the case n =5,
B(n + 1) = 3. Consider a planar map N with a pentagonal face
a,a,asa,as. We suppose all the other faces, including the outer
one, to be triangles. We regard the suffices as residues mod 5. We
define Z, as the triangulation obtained from N by taking the
diagonals a,a,,, and a;a, ., as new edges. (See Figure 4.) We
define Y; as the triangulation obtained by identifying ¢,_, and g, ,
and then deleting the original edge a,q;_,.

Now Z, is Eulerian if and only if a, and a, are the only vertices
of odd valency in N. But Y, is Eulerian if and only if either a, and
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Q,
as 3
2
a4
d al”
N
a' \a.S a,l
ae
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A 6L31\ y 3
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a,, or a; and a,, are the only odd vertices in N. From these and the
symmetrically related propositions we deduce that

P(Y,,3) = P(Z,,3) + P(Zs, 3). (13)

This is the required linear identity. D. W. Hall has pointed out to
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the writer that it can also be derived from the Birkhoff-Lewis
equations for the S-ring.

In a recent paper [9], D. W. Hall gives a partial solution of the
problem of the 7-ring. He says, “A new Beraha number appears
exactly where it should.”

S. Beraha points out that his sequence converges to the number
4. If we can construct a theory of these allegedly weak points we
can even hope to infer properties of P (7, 4) by taking limits as
n - 00.

We are thus able to conclude this account on a note of opti-
mism. Let us continue the work done at the gold and silver roots,
following the Beraha sequence further and further as it advances
along the real axis.

At the end will be the Four Colour Problem.
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KEMPE CHAINS AND THE
FOUR COLOUR PROBLEM*

Hassler Whitney and W. T. Tutte

1. INTRODUCTION

In October 1971 the combinatorial world was swept by the
rumour that the notorious Four Colour Problem had at last been
solved, —that with the help of a computer it had been dem-
onstrated that any map in the plane can be coloured with at most
four colours so that no two countries with a common boundary
line are given the same colour.

The first ostensible proof of the conjecture to be published was
that of A. B. Kempe [4]. This appeared in 1879 and was accepted
for a decade. A flaw in the argument was pointed out in 1890 by
P. J. Heawood [2], whose papers on the problem span the next
sixty years. After Heawood’s first paper, mathematicians began to
suspect that the Four Colour Problem was of surpassing difficulty;
perhaps it was to be ranked with Fermat’s Last Theorem and the

*This work was partly supported by a grant from the National Research Council
of Canada. .
378
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Riemann Hypothesis. G. D. Birkhoff once told one of the authors
that every great mathematician had at some time attempted the
Four Colour Conjecture, and had for a while believed himself
successful. “Proofs™ of the Conjecture are still written every now
and then, and occasionally one gets published. Anyone now hav-
ing a proof that he wishes to be taken seriously would be well
advised to write it out clearly and in full logical detail, so that any
mathematician willing to spend enough time on it will be able to
check it.

For the history and present status of the Four Colour Problem
reference may be made to the book by O. Ore [5] and the recent
article by T. L. Saaty [7].

The rumour mentioned above arose from the work of Y. Shi-
mamoto, who claimed a proof based on the work of H. Heesch [3].
Heesch has for years been studying the “reducibility” of maps. He
shows that some configurations of countries have a property that
he calls “D-reducibility,” and he has a method whereby a given
configuration can be tested for this property. It requires much
computer time. Shimamoto, on the assumption that the Four
Colour Conjecture was false, showed that there must be a non-
colourable map M containing a configuration H that had already
passed the computer test for D-reducibility. He then arrived at a
contradiction by showing that the D-reducibility of H implied the
4-colourability of M. This argument seemed to prove the Conjec-
ture. The burden of proof was not now on a few pages of close
reasoning, but on a computer!

This method of proof was greeted by the present authors (inde-
pendently) first with some misgivings and then with real scepti-
cism. It seemed to both of us that if the proof was valid it implied
the existence of a much simpler proof (to be obtained by confining
one’s attention to one small part of M), and that this simpler proof
would be so simple that its existence was incredible. The present
paper is essentially the result of our attempts to give a proper
mathematical form to our objection.

We found no essential flaw in Shimamoto’s reasoning. (It was
later set out “clearly and in full logical detail” in an article
circulated by W. R. G. Haken.) We therefore decided that the
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computer result must be wrong. (We learned later that a repro-
gramming of the computer had indeed given the result that H was
not D-reducible.) However it turned out that the basic result of
Shimamoto was simply that a certain plane graph G,, (see Figure
12) cannot be vertex-coloured in four colours so that the boundary
of each pentagonal face uses all four colours. (The reader can
check this at once; see the proof near the end of Section 9.)

Is there a moral to be drawn? Perhaps it is that if you are really
interested in the results of a study you should give it an analysis in
depth and try to understand fully its implications. In fact the
strength of present-day mathematics owes much to this principle.
It seems that in the present case deductions were made from the
accepted D-reducibility of H without an adequate understanding
of what D-reducibility is. With this understanding the deductions
become incredible and are seen to constitute a proof by reductio ad
absurdum that H is not in fact D-reducible.

In this paper we give a general description of this type of
approach to the Four Colour Problem. We define Kempe chains,
and we point out some things that can be done with Kempe chains
and some things that cannot. The exposition is intended to be
generally understandable, not requiring any special mathematical
preparation.

2. PRELIMINARIES.

First we note a dual formulation of the problem, easier to
visualize and use. Consider any map M on the plane or the sphere.
In each country we mark the capital; this will be a vertex of a
graph G. If two countries have a common border we join their
capitals by a railroad across it. This railroad is an edge of G. (The
terms “vertex” and “edge” are taken from the theory of poly-
hedra.) Colouring the map M is equivalent to colouring the
vertices of G so that no two vertices joined by an edge are of the
same colour. Any plane graph comes from a map in this way,
provided that no edge is a “loop,” i.e., joins a vertex to itself. From
now on, all the plane graphs that we consider are to be assumed
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loopless. The Four Colour Conjecture can now be formulated as
follows: any plane graph can be 4-coloured. This is the formula-
tion used in Ore’s book.

The edges of a connected plane graph cut the plane into regions
that we call the faces of G; one of these is the outside face. If we
project the plane stereographically onto the sphere the outside face
is made to surround the North Pole. By choosing another diameter
as the axis of the sphere we can arrange that any desired face
contains the North Pole, so on projecting back into the plane we
can arrange that any desired face becomes the outside face.

A face-boundary of G is the boundary of a face of G. A circuit is
a graph defined by the set of edges and vertices of a simple closed
curve. We note that a face-boundary is not necessarily a circuit; it
may include an edge or vertex whose removal disconnects G. (An
edge of this kind is called an isthmus of G.) If Q is a face-
boundary of G we say for short that G is face-bounded by Q. If Q
is a circuit the remainder of G lies on one side of Q, the inside or
the outside, unless G consists solely of Q. A circuit Q made up of
edges of G is vertex-separating in G if G has a vertex inside Q and
a vertex outside Q. Similarly it is edge-separating if G has an edge
inside Q and an edge outside Q.

A triangulation of the plane is a plane graph G whose faces are
all triangles, that is whose face-boundaries consist of three edges
each. The valency v(4) of a vertex A is the number of edges
having A as an end. Most commonly these edges go to distinct
vertices, but it is not necessary to impose this as part of the
definition. A k-wheel is a graph W formed from a circuit of &
edges by adjoining a new vertex A and then joining 4 to each
vertex of the circuit by a single new edge. A is the hub of the
wheel, the circuit is the rim and the new edges are the spokes. In a
triangulation in which at most one edge joins any two vertices
(and which has at least 4 vertices) each vertex is the hub of a
wheel.

A graph is k-chromatic if it can be coloured in k colours but not
in fewer. A full k-colouring of a graph is one that uses exactly k
colours. A 3-colouring is usually accepted as a special kind of
4-colouring, but it is not a full 4-colouring.
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3. THE EULER FORMULA.

In the rest of this paper the symbol G is used to denote a
non-null connected plane graph in which there is no loop. Let
such a graph G have N, vertices, N, edges and N; faces. Then the
Euler formula is

N,— N, + N;=2. (1)

The formula can be proved by induction on N = N, + N, +
N;. The smallest possible value of N is 2. This occurs only when G
has a single vertex, no edge and a single face (which is an “agon”).
In this simple case the Euler formula holds. In the general case
suppose first that G has a circuit. We drop out one edge of the
circuit. This decreases N, and N; by one each, and leaves N,
unchanged. By the inductive hypothesis (1) holds for the resulting
graph, and therefore it holds for G. If G has no circuit we can find
a vertex joined to just one other. Dropping out this vertex and its
edge reduces N, and N, each by one and leaves N; unchanged. (It
is 1.) Again the formula follows for G.

We show next that for triangulations of the plane we have

N;=2N,—4, N,=3N,-6. )

In each face draw a new face-boundary just inside the original
one. We have drawn 3N, new “edges” and two of these are beside
each former edge. Hence 3N, = 2N,. Combining this with (1) we
obtain (2).

We can carry the argument further. Each vertex X is on v(X)
edges and each edge is on two vertices. Hence Zv(X) = 2N,. Let
us write v'(X) = v(X) — 6. Then by (2) we have

v (X) =X v(X)—6N, = —12. 3)

Hence each triangulation has vertices of valency less than 6. If
each valency is at least 5 then there are at least 12 vertices of
valency 5, and more according as vertices of valency greater than
6 are present. :



KEMPE CHAINS AND THE FOUR COLOUR PROBLEM 383

4. KEMPE CHAINS.

Consider a fixed set {a, B3, v, 8} of four colours. There are three
colour partitions of this set into two pairs of colours, namely
(aB; v9), (ay, Bd) and (as, By).

Let the graph be 4-coloured, and let T' denote its 4-colouring.
For each pair of colours, say {a, 8}, let G,5 denote the subgraph
of G consisting of the vertices coloured a or 8 and the edges
joining them. Now the “components” of a graph are its maximal
connected subgraphs. We refer to the components of G,z as the -
Kempe chains belonging to the unordered pair {a, 8} in I'. We call
them also the aB-chains of T. It is possible for a Kempe chain to
consist of a single vertex.

A Kempe interchange in T, with respect to the colour-partition
(af, v6) is an interchange of the colours a and B in one of the
af3-chains, or of the colours y and & in one of the yd-chains. If
there are m Kempe chains belonging to {a, 8} or {y, 8} then we
obtain 2™ colourings of G by performing or not performing the
interchange in each of the m chains. Each interchange leaves the
af3-chains and the y8-chains unaltered.

We note however than an interchange in an af-chain of I' must
alter the system of ay-chains for example. Some of them are
destroyed or new ones appear, or both. We proceed to state an
obvious but important theorem about Kempe chains.

THEOREM 4.1; Let a plane graph U be face-bounded by a circuit
Q. Let the vertices A, B, C, D lie in that order in Q. Let U be
4-coloured. Then if there is an af3-chain of the 4-colouring contain-
ing A and C but not B or D there can be no af3-chain or y8-chain of
the 4-colouring containing both B-and D. (See Figure 1.)

Theorem 4.1 has the following elementary consequence:

THEOREM 4.2: Let a plane graph U be face-bounded by a
quadrilateral Q = ABCD, and let T be a 4-colouring of U using all
Sfour colours in Q. Then we can find a Kempe interchange in T' that
transforms T into a 4-colouring of U using exactly three colours in

Q.
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FiG. 1

FiG. 2

Proof: Let A, B, C and D have colours a, B8, ¥y and 8 respec-
tively. If the ay-chain containing 4 does not contain C, then a
Kempe interchange in it has the required effect. In the remaining
case the 3§-chain containing B does not contain D, by 4.1, and we
can use the Kempe interchange in it.

S. ELEMENTARY REDUCTIONS.

If the Four Colour Conjecture is false, there must be a least
integer N such that a 5-chromatic plane graph of N vertices exists,
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and no two distinct edges of this graph have the same pair of ends.
Such a graph is called minimal. T. L. Saaty calls N the Birkhoff
Number, and completes his definition by saying that N = co if the
Conjecture is true. If the Four Colour Conjecture is assumed for
all finite plane graphs, it follows at once for infinite ones. This is
an easy consequence of the Cantor “diagonal process.” In this
Section we assume that N is finite, and we study the properties of
minimal graphs.

Obviously N > 4. In 1938 C. E. Winn showed that N > 36 [9].
In a paper published in 1970, O. Ore and J. Stemple claim to have
shown that N > 40 [6]. Their numerical calculations are too
lengthy for publication in a Journal, but are available in the
library of the Mathematics Department at Yale University.

Besides the minimal graph, investigators of colouring problems
often use the concept of a critical graph. For our purposes we can
define a critical graph as a 5-chromatic plane graph whose proper
subgraphs are all 4-colourable. A minimal graph, we shall show, is
critical, but we are not entitled to assert that any critical graph
must be minimal.

Most studies of the 4-colour problem have been studies of what
minimal graphs must be like, with the ultimate object of showing
that no such graphs exist. We give some sample properties.

THEOREM 5.1: In a minimal graph G each face-boundary is a
circuit.

Proof: Suppose the boundary P of some face F is not a circuit.
Let us go around it close to the boundary; we pass near some
vertex X at least twice. We can go from X through F and back to
X in such a way as to traverse a simple closed curve having
vertices of G both inside and outside. Thus G is the union of two
plane graphs G, and G, having only the vertex X in common.
Each of these can be 4-coloured since each has fewer than N
vertices. Having 4-coloured G, and G, we can permute the colours
in G, so as to make the two 4-colourings agree at X. We can then
combine the two 4-colourings into a 4-colouring of G. This con-
tradiction establishes the theorem.
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THEOREM 5.2. A minimal graph G is a triangulation.

Proof: Assume the contrary. Then G has a face, which may be
taken as an inside face with a boundary circuit Q (see 5.1)
containing four vertices 4, B, C and D, in that order. Now we
cannot have edges AC and BD outside Q. We may therefore
assume without loss of generality that no edge joins 4 and C. We
may therefore pull 4 and C together inside Q and let them
become a single vertex, so obtaining a plane graph G’. This has
fewer than N vertices and is thus 4-colourable. But a 4-colouring
of G’ obviously determines one of G, and we have a contradiction.

We can argue from 5.2 that it is sufficient to prove the Four
Colour Conjecture for triangulations. If it is true for them, it must
be true for all plane graphs. Accordingly most papers on the
subject are concerned with triangulations only (or their duals, if
face-colourings are being considered). '

THEOREM 5.3: A minimal graph has no vertex of valency less
than 5.

Proof: Suppose a minimal graph G to have a vertex V of
valency < 5. Let G’ be the plane graph obtained from it by
deleting ¥V and its incident edges. Since G’ has fewer than N
vertices it can be 4-coloured. If ¥ is joined to at most 3 other
vertices in G we can obviously extend any 4-colouring of G’ to a
4-colouring of G. In the remaining case G’ is bounded by a
quadrilateral ABCD, by 5.2. By 4.2 we can find a 4-colouring of
G’ that uses only three colours in ABCD, and this can be extended
as a 4-colouring of G, —a contradiction.

THEOREM 5.4: A minimal graph G has no vertex-separating
circuit of fewer than S vertices.

Proof: Suppose G has such a vertex-separating circuit Q. Let Q
bound the subgraphs G, and G,, whose union is G and whose
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intersection is Q. We can find 4-colourings I'; and T'; of G, and G,
respectively, since each of these graphs has fewer than N vertices.
If Q has at most three vertices we can permute the colours in I'; so
as to make T, and T, agree in Q. We can then combine I} and I',
to make a 4-colouring of G.

From now on we may suppose Q to be a quadrilateral ABCD. If
all four colours are used in Q in both I'; and I', we can permute
and combine, much as before, to obtain a 4-colouring of G. We
may therefore assume, without loss of generality, that there is no
4-colouring of G, for which all four colours appear in Q.

Let us modify G, by joining 4 and C across the face Q. The
resulting graph has fewer than N vertices and is thus 4-colourable.
We deduce that G, has a 4-colouring with at least 3 colours in Q.
Hence we can choose T', to have exactly 3 colours in Q, by 4.2.
Without loss of generality we can suppose B and D to have the
same colour a in T',, while 4 and C have distinct colours.

Considering the effect of joining 4 and C across Q in G, we
find that we can choose T, so that 4 and C have distinct colours.
Then B and D must have the same colour, by the restriction we
have been able to impose on G,. We can now permute colours in
T, so as to make it agree with T, in @, and then combine I'; and
T, into a 4-colouring of G.

In every case we have found a contradiction.

By a similar but more complex argument G. D. Birkhoff showed
that a minimal graph has no circuit of 5 edges separating at least
two vertices from at least two others [1].

There is a similar theory of 5-colourings in which one proves, in
the manner of 4.2 and 5.3, that a 5-minimal graph has no vertex of
valency less than 6. It follows that 5-minimal graphs do not exist,
by § 3; the “Five Colour Theorem” is true.

THEOREM 5.5: A minimal graph G is critical.

Proof: Let A be any edge of G. Form G’ from G by deleting 4.
By our definition of a minimal graph there is no second edge of G
joining the ends of A. Accordingly the edge 4 of G can be
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contracted to a single vertex so as to transform G into a new
connected loopless plane graph G” with one vertex fewer. But G”
has a 4-colouring, by the minimality of G, and this evidently
determines a 4-colouring of G’. Hence each subgraph of G’ is
4-colourable. Since 4 was chosen arbitrarily it follows that every
proper subgraph of G is 4-colourable, that is, G is critical.

6. K-REDUCIBILITY.

Consider an edge-separating circuit Q (as defined in Section 2)
in a plane graph G. It decomposes G into two plane graphs U and
V, each having Q as a face-boundary. Each of U and V¥ has one
new face bounded by Q, and its other faces are faces of G. The
graphs U and V¥ have G as their union and Q as their intersection.
Of course each of U and V has an edge not in Q.

Many studies of the Four Colour Problem are concerned with
such figures, which we call Q-decompositions of G. Typically it is
shown that if ¥ has a specified structure, then G cannot be
minimal, whatever the structure of U. We express this property of
the given V, with its boundary Q, by saying “(¥, Q) is reducible.”
As far as we know at present it is not inconsistent with ¥ being
‘S-chromatic, but of course this possibility has not been realized in
practice.

Let U be a plane graph bounded by a circuit Q. Let T be a
4-colouring of Q. It may happen that there is a 4-colouring I of U
that reduces to I on Q. If so we say that T is U-extensible, and
that I'" is a U-extension of T.

Now let T' be a 4-colouring of Q, and let S be a set of
4-colourings of Q. It may happen that T is U-extensible and that
every U-extension of I' can be transformed, by a succession of
Kempe interchanges in U, into a U-extension of some member of
S. If so we say that I' is U-immersible in S.

Let T be a 4-colouring of a circuit Q, and let S be a set of
4-colourings of Q. It may happen that T' is U-immersible in S for
every plane graph U bounded by Q and such that T' is U-
extensible. If so we say simply that T is immersible in S.
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Let V be a plane graph face-bounded by a circuit Q and having
at least one edge not in Q. Let S be the set of all V-extensible
4-colourings of Q. Evidently each member of S is immersible in S.
We say that V is K-reducible with respect to Q, or, briefly, that
(V, Q) is K-reducible, if every 4-colouring of Q is immersible in S.

In applications of the last definition we usually think of Q as
bounding an inner face of V. But of course the distinction between
“inner” and “outer” is only a matter of convenience.

THEOREM 6.1: If (V, Q) is K-reducible, then (V, Q) is reducible.

Proof: Let V be represented as part of a Q-decomposition of a
plane graph G. Then Q is edge-separating in G. Assume that G is
minimal. Then, by 5.5, U has a 4-colouring I, a U-extension of a
4-colouring I of Q. Since (¥, Q) is K-reducible I is transformable
into some 4-colouring I'; of Q that is V-extensible, by a succession
of Kempe interchanges in U starting with I". Now I’} has both a
U-extension and a V-extension. Combining these we obtain a
4-colouring of G, which is a contradiction. Thus G cannot be
minimal, for any U, and so (V, Q) is reducible.

If the 5-wheel could be proved reducible with respect to its rim,
then the Four Colour Conjecture would be verified. For since no
vertex of a minimal graph G can have valency less than 5, by 5.3,
and since no vertex-separating circuit of G has fewer than 5 edges,
by 5.4, it follows from § 3 that G has a vertex of valency 5 and
that this is the hub of a S-wheel contained in G.

Let us consider an attack on the K-reducibility of a 5-wheel,
with rim Q = ABCDE. In Figure 2 we show part of a coloured
plane graph U inside Q. Actually we try to build up a graph U so
that the 4-colouring of Q shown in the figure is U-extensible, but
is not U-immersible in the set S of all 4-colourings of Q using only
3 distinct colours. If we can carry out the proposed construction,
then the 5-wheel is not K-reducible. If we can prove the construc-
tion impossible, K-reducibility is established and the Four Colour
Conjecture is verified. Actually we shall achieve neither of these
results. But let us assume that we have found a plane graph U of
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the required kind, and that we have a U-extension I' of the
4-colouring of Q shown in the diagram. We note that all full
4-colourings of Q are equivalent to within rotations and reflections
of the pentagon and permutations of the four colours.

First, if the 88-chain containing B does not contain E, then an
interchange of B8 and § in this chain removes 8 from Q. Hence we
must construct U and I' so that this chain also contains E.
Similarly we must arrange that the B8y-chain containing B contains
also D. (See Figure 2.) Because of the B8-chain, the ay-chain
containing 4 does not contain D; interchange a and y in it.
Because of the By-chain the ad-chain containing C does not
contain E; interchange a and & in it. At first sight it seems that we
thus remove a from Q; the construction has been proved impos-
sible and the Four Colour Conjecture follows.

This in fact was Kempe’s proof. What is wrong? Simply that we
may not be able to make both the interchanges called for. This
point is clarified by Figure 3. In this figure the ay-chain from A4
contains a vertex of the By-chain from B to D. The interchange of
a and y breaks the latter chain and sets up a new aé-chain from C
to E. This makes it impossible to remove a from Q by an
interchange of a and 8.

FiG. 3
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In the graph shown we can remove a colour from Q by making
first the suggested interchange of a and v, and then operating on a
By-chain and a ya-chain as shown in Figure 4. We ought now to
complicate U so as to make this sequence of operations impos-
sible. If the reader tries to do this we feel safe in saying that other
ways of eliminating a colour from Q will appear, calling for
further complication. If there is an end to this process it is not yet
in sight.

FiG. 4
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7. D-REDUCIBILITY.

The difficulty in studying K-reducibility comes from the fact
that if we make a Kempe interchange, Kempe chains from other
colour partitions are altered. This leads to theoretical complica-
tions that mathematicians have so far been unable to resolve.

One of the present authors sought to make a modest first step
toward resolving them through a theory of “parity,” whereby the
4-colourings of a triangulation can be classified as “even” or
“odd.” He was able to show that the parity of a 4-colouring is
invariant under Kempe interchanges {8]. But this result is not
strong enough to be of much help in the theory of reducibility.

We now discuss a special kind of reducibility, called D-
reducibility, introduced by H. Heesch. Its theory avoids any con-
sideration of the effect of a Kempe interchange on the Kempe
chains of other colour partitions. Heesch gives an algorithm
whereby a given configuration can be tested for D-reducibility. As
a hand method it is long and tedious, but it can be programmed
for a computer. Heesch advocates the construction of a catalogue
of D-reducible, and otherwise reducible, configurations, hoping
that ultimately it can be shown that every triangulation contains a
member of the list. If so it will be proved that no triangulation is
minimal, and so that the Four Colour Conjecture is true.

We define a near-triangulation as a plane graph N in which at
most one face is non-triangular. When we speak of a near-
triangulation as being bounded or face-bounded by a circuit Q it
is to be understood that if there is a non-triangular face it is the
one bounded by Q.

Let I' be a 4-colouring and S a set of 4-colourings of a circuit Q.
It may happen that there is a colour partition II with the following
property: if U is any near-triangulation bounded by Q and if I' is
U-extensible, then there is a U-extension IV of I" that can be
transformed into a U-extension of some member of S by a
succession of Kempe interchanges with respect to II. If so we say
that T is simply immersible in S.

We denote the set of all 4-colourings of Q that are simply
immersible in S by f(S). Evidently S Cf(S). Then f%S)
= f(f(S)) is the set of all 4-colourings of Q simply immersible in
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Jf(8), and so on. A 4-colouring T' is said to be crudely immersible in
S if it belongs to f*(S) for some nonnegative integer k. (f%S)
= §). Its crude immersion in § is effected by a succession of
simple immersions in sets f/(S) with decreasing j, and it is not
necessary that these simple immersions shall all be associated with
the same colour partition II. We say that the set S is dominant if
every 4-colouring of Q is crudely immersible in S.

Can one classify the dominant sets for any given circuit Q?
That would seem to be an interesting question. Heesch does not
solve it, but his algorithm will determine whether a given set of
4-colourings is dominant.

Let V be a near-triangulation bounded by a circuit Q and
having at least one edge not in Q. We say that V is D-reducible
with respect to Q, or, briefly, that (¥, Q) is D-reducible, if the set
of all V-extensible 4-colourings of Q is dominant.

THEOREM 7.1: If (V, Q) is D-reducible, then (V, Q) is reducible.

Proof: Adjoin to V any other near-triangulation U bounded by
Q so as to form a triangulation G with Q as an edge-separating
circuit. Assume that G is minimal. Then U has a 4-colouring I", a
U-extension of a 4-colouring I" of Q, by 5.5. Let S be the set of all
V-extensible 4-colourings of Q. Then T'€f*(S) for some non-
negative integer k, since (V, Q) is D-reducible. Choose I'', T and &
so that k has the least possible value.

If kK > 0 then, by the definition of f*(S), some U-extension of T
can be transformed by a succession of Kempe interchanges, all
with respect to the same colour partition, into a U-extension of
some member T, of f¥~'(S). This being contrary to the choice of k
we deduce that in fact kK = 0. This means that I' has both a
U-extension and a FV-extension. Combining these extensions we
obtain a 4-colouring of G.

From this contradiction we deduce that G is in fact not
minimal. Thus (V, Q) is reducible.

As an example let V be a 4-wheel and Q its rim. Then S, the set
of V-extensible 4-colourings of Q, consists of the non-full 4-
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colourings of Q. By 4.2 each of the remaining 4-colourings of Q is
in f(S). Thus S is dominant and (V, Q) is D-reducible. On the
other hand we have the following theorem:

THEOREM 7.2: Let Q = ABCDE be a pentagon, and let S be the
set of all 4-colourings of Q using only 3 distinct colours. Then S is
not dominant.

Proof: Let T be any full 4-colouring of Q. Adjusting the nota-
tion we can represent it by Figure 5.

FiG. 5

Consider the three colour partitions in turn. In the case of (a8, v8)
whatever U we take, bounded by Q, the vertices 4, B and C are in
one afi-chain and the vertices D and E are in one &y-chain.
Interchanges in this partition yield only full 4-colourings of Q. In
the case of (ay, B8) let us form U by adding an edge BD and an
edge BE. Any Kempe interchange leaves both colours 8 and 8 on
BE, and both colours a« and y on CD. Again, only full 4-
colourings of Q can be derived. By the symmetry of the figure, the
same proof applies to the case (ad, By). We conclude that T is not
in f(S). In fact f(S) must be identical with §, and so S is not
dominant,
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COROLLARY: The 5-wheel is not D-reducible.

THEOREM 7.3: Let U be a near-triangulation bounded by a
pentagon Q, and let U be 4-colourable. Suppose that no 4-colouring
of Q using only three distinct colours is U-extensible. Then every full
4-colouring of Q is U-extensible.

We prove this by “crude chaining”, that is we do not need to
consider the effect of our Kempe interchanges on the Kempe
chains of other colour partitions.

Proof: We may assume that the full 4-colouring of Q shown in
Figure 5 is U-extensible. There is a 88-chain in. U from B to E,
since otherwise an interchange would eliminate 8 from Q. An
interchange on one ay-chain interchanges the colours of C and D,
leaving A coloured a. We have thus moved the pair of vertices
distinguished by a common colour two steps counter-clockwise
round the pentagon. Repetition of this process gives five distinct
full 4-colourings of Q, all U-extensible, from which all the full
4-colourings of Q can be derived by permutations of the four
colours. The theorem follows.

8. CHROMODENDRA.

The definitions of K-reducibility and D-reducibility suffer from
one disadvantage. They require the consideration of an infinity of
possible near-triangulations U bounded by Q. In the case of
K-reducibility we may hope to overcome this disadvantage by
proving general theorems about the interrelations of Kempe
chains of colourings of U, but so far no suitable general theorems
have been established. In the case of D-reducibility we shall show,
following Heesch, that the possible near-triangulations U can be
classified under a finite number of cases, and that each case can
be dealt with by a finite argument. The question of whether a
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given ¥V, bounded by Q, is D-reducible can thus be reduced to a
finite problem.

Let Q be a circuit of # edges, and let T be a 4-colouring of Q. Of
course I' has its Kempe chains, these being subgraphs of Q. If «
and B are any two of the four colours we define an af-cluster of T’
as a non-null set of Kempe chains of T" belonging to the colour-
pair {a, 8}. A clustering of T', with respect to the colour-partition
(af, v8), is a family of aB-clusters and y&-clusters of T such that
each Kempe chain of T belonging to {a, 8} or {1y, 8} is contained
in exactly one of them. A vertex of G is said to be included in a
cluster C if it is a vertex of one of the Kempe chains making up C.

A clustering Z of T', with respect to (af, v8), is said to be
admissible if it has the following properties:

(i) Let C, and C, be any two distinct members of Z. Let a, and
b, be any two vertices included in C,, and let a, and b, be any two
vertices included in C,. Then a, and b; do not separate a, from b,
in Q.

(ii) Let C, be any cluster in Z and let L be any arc in Q such
that no vertex of L is included in C, but each end of L is a vertex
adjacent to a vertex that is included in C,. Then there is a cluster
C, in Z such that each end of L is included in C,.

Two clusters C, and C, in-a clustering Z are said to be adjacent
in Z if there is an edge 4 of Q for which one end is included in C,
and one in C,. We then say that 4 is a joining edge of the two
clusters. Evidently adjacent clusters are associated with comple-
mentary colour-pairs.

THEOREM 8.1: Let C, and C, be adjacent clusters in an admis-
sible clustering Z. Then C, and C, have exactly two joining edges A
and B. Moreover the deletion of A and B decomposes Q into two
disjoint connected graphs L, and L, such that L, contains all the
vertices of Q included in C,, and L, all those included in C,.

Proof: C, and C, have one joining edge A4. Let its ends included
in C, and C, be a, and a, respectively. Follow along Q from a,,
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away from q,, until we reach a last vertex b, not in C,; the next
edge B has its other end b, in C,. This gives L, and L,. (L, is an
arc, unless a; = b,.) By (ii), b, is in C,. By construction L, has no
vertices in C,, and by (i) L, has no vertices in C,. Thus (8.1)
follows.

It is convenient to represent an admissible clustering Z of T,
with respect to (af, y0) by a graph x called its chromodendron.
The vertices of x represent the member-clusters of Z, and two
vertices are joined by an edge if and only if the two member-
clusters corresponding are adjacent. Two vertices are not to be
joined by more than one edge.

If two vertices are adjacent in Q they are included in the same
cluster, or in adjacent clusters, of Z. From this observation we
deduce that x is connected. From 8.1 we deduce that each edge of
x is an isthmus. Thus,

THEOREM 8.2: Every chromodendron is a tree.

The chromodendra of the admissible clusterings of I', with
respect to (af, y8) will be called the chromodendra of T, with
resp%ct to (af, ¥8). If n is reasonably small there is no difficulty in
making a list of all such structures for a given I' and a given
colour-partition.

Let T and T', be 4-colourings of the circuit Q and let x be a
chromodendron of T with respect to (a8, y8). We say that T is
simply x-transformable into T, if it is transformed into T', by
interchanging the two colours in each of the Kempe chains of T
belonging to a single cluster, this cluster being represented by a
vertex of x. All the Kempe chains of this cluster are affected, but
no other aS-chains or y8-chains. We note that after the operation
X remains as a chromodendron of T, with respect to (af, ¥8), and
we can consider the application of a second simple x-
transformation to T',. We say that T is x-transformable into a
4-colouring I of Q if T can be changed into I" by a succession of
simple x-transformations, all of course referring to the same
chromodendron x. We also express this by saying that x admits a
transformation of I into I".
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We proceed to relate the theory of chromodendra to that of
D-reducibility.

Let U be a near-triangulation bounded by a circuit Q. Let T be
a 4-colouring of Q and let IV be a U-extension of T. Let K be a
Kempe chain of I belonging to the colour-pair {«, 8}. Suppose it
to have at least one vertex in common with Q. Then the intersec-
tion of K with Q is a union of one or more af-chains of I. The
af3-chains of I contained in K N Q thus constitute an aB-cluster of
I'. We call this the residue of K in I'. Kempe chains of I having no
vertex in common with Q are considered to have no residues in T'.
Figure 6 shows Q bounding U, with the colourings T’ and I". The
full lines represent the edges of the aB-chains and yd-chains of I”.
There are two af-chains. One of them has a residue consisting of
three afB-chains of I'. These have the vertex-sets {4}, {H} and
{E, F}. The second afB-chain of I" has a residue consisting of a
single Kempe chain of T, this having the vertex-set {C}. One of
the yd-chains of I" is separated from Q by an af-chain, and so has
no residue in I'. There are three others. Two of them have residues
consisting of a single Kempe chain of T" each. The vertex-sets are
{G} and {1, J}. The residue of the third consists of two Kempe
chains of I'. The vertex sets are { B} and { D }. The arrows marked
on some of the edges are intended to clarify part of the following
proof: '

THEOREM 8.3: Let U be a near-triangulation bounded by Q, let T
be a 4-colouring of Q and let T’ be a U-extension of T. Let Z be the
Jamily of residues in T of the af-chains and y8-chains of IV. Then Z
is an admissible clustering of T with respect to (af, v5).

Proof: That Z is a clustering of T follows from the fact that
each vertex of Q belongs to exactly one af-chain or y8-chain of
I

By 4.1, Z satisfies Condition (i) for an admissible clustering.

To prove Condition (ii) for Z let C, be any cluster in Z and let
L be an arc in Q, with ends B and D say, such that no vertex of L
is included in C, but B and D are adjacent in Q to vertices 4 and
E respectively (not necessarily distinct) that are included in C,.
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Let C, be the member of Z that includes B. We have to show that
C, also includes D.

Let C, and C, be residues of Kempe chains K, and K, of I"
respectively. We may suppose K to belong to {a, 8} and K, to
{v.9}.

Let us define a crossing edge of U as an edge with one end in K|
and one in K,. Let a crossing triangle of U be a face, other than the
one bounded by Q, that is incident with a vertex of K, and a
vertex of K,. We assume in this definition that only one face of U
can be bounded by Q. If two are then Q is a triangle identical with
U, and the required result is trivial. Evidently the following rules
hold:

(iii) If T is a crossing triangle, then each vertex of T is in K, or
K,.
(iv) Each crossing triangle is incident with exactly two crossing
edges.

Consider the crossing edge AB of Q. It is incident with a single
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crossing triangle 7', and this has a unique second crossing edge ¢,.
If 7, is not an edge of Q it is incident with a second crossing
triangle T, and this has a second crossing edge #,. If ¢, is not an
edge of Q it is incident with a second crossing triangle 7, and so
on. Such a sequence is indicated in Figure 6. T, is the triangle
incident with AB. An arrow leads from this triangle into T,
another arrow from T), into T, and so on.

Suppose some triangle is repeated in the sequence T}, T, ... .
Let us say T; = T}, where i < j and j has the least value consistent

with this condition. Now _, is either ,_, or #,. If t,_, = ¢,_,, then
T,_, = T,_,, contrary to the choice of j. Hence t,_, =, T,_,

= T;,, and, by the choice of j,j — 1 = i + 1. Butnow £,,, = 1,_,
= ¢, which is impossible.

We conclude that in fact no triangle is repeated in the sequence.
The sequence therefore terminates with a triangle 7, such that z,,
is an edge of Q.

The crossing edge ¢, has one end X, in K, and one end X, in
K, Hence X, and X, are included in the clusters C; and C,
respectively. Following along L from B we cannot reach X, before
reaching E. Applying (i) to 4, E, B and X, we find that X, cannot
lie beyond E. Hence X, = D, C, includes D, and the proof is
complete.

We refer to Z as the admissible clustering of T, with respect to
(af, ¥8), induced by I'. Similarly the corresponding chromo-
dendron x is the chromodendron of T, with respect to (af, v6),
induced by I". An example of such a chromodendron is shown in
Figure 6.

We need the following converse to 8.3:

THEOREM 8.4: Let T be a 4-colouring of a circuit Q, and let x be
a chromodendron of T with respect to (af3, ¥6). Then we can
construct a near-triangulation U bounded by Q, and a U-extension
I of T such that T' induces x by way of the residues of its a8-chains
and y6-chains.
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Proof: Let Z be the admissible clustering of I corresponding to
X
Let n be the number of Kempe chains of T belonging to {a, 8}
or {y, 8}. For the construction of U in the casesn = 1 and n = 2
see Figures 7 and 8 respectively.

Let us assume as an inductive hypothesis that the theorem is
true whenever n is less than some integer ¢ > 3, and let us
consider the case n = g. We can suppose g to be even, since
Kempe chains of T belonging to {a, 8} and {v, 8§} occur alter-
nately in Q.

Evidently we can find vertices 4 and B of Q, each coloured a or
B, and vertices C and D of Q, each coloured y or §, such that 4
and B separate C and D in Q. It may happen that 4 and B are
included in the same cluster of Z. But suppose not. Then there is
an arc M in Q that contains B but no vertex included in the same
cluster as 4, and has the maximum number of vertices consistent
with this condition. We can take C and D to be the ends of M
since these ends will not be coloured a or 8. Then C and D are
each adjacent to a vertex included in the same cluster as A4, since
otherwise M could be extended. It follows from Condition (ii) that
C and D are included in a common cluster of Z.
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Adjusting the notation we can assert that Q has two vertices 4
and B, each coloured a or B, belonging to different af-chains J
and X respectively of Q, but included in the same cluster W of Z.
We join 4 and B by an arc L inside Q as the first step in the
construction of U. If 4 and B have different colours, L consists of
a single edge. Otherwise L consists of two edges, and their com-
mon end is given a colour « or B different from the colour of 4
and B. (See Figure 9.)

F1G. 9

Now @ is the union of two arcs L, and L, with common ends 4
and B but otherwise disjoint. We write Q, and Q, for the circuits
Ly L, and Ly L, respectively. The colours already assigned
determine 4-colourings I'; and T, of Q, and Q, respectively.

Let j be 1 or 2. The Kempe chains of T'; belonging to {a, 8} or
{v, 0} are the correspondingly coloured Kempe chains of I' con-
tained in L;, together with an a-chain H; which is the union of L
with J N L; and K N L;. Let us write n; for the number of aB-chains
and yd-chains of T';. Then evidently n, < ¢. By Condition (i) each
cluster of Z includes vertices of only one of the arcs L, and L,,
except for the cluster W. Hence T, has a clustering Z; consisting of
those clusters of Z that include only vertices of L,, together with a
cluster W, defined as follows. The members of W, are those
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members of W, other than J and K, that are contained in L;
together with H,. It can now be shown that Z; is an admissible
clustering of T;. The proof is quite straightforward, and to save
space we leave it to the reader.

Since n; < g it follows by the inductive hypothesis that we can
triangulate the inside of Q; to form a near-triangulation Uj;
bounded by @), arranging that I'; has a U-extension I/ the
residues of whose afB-chains and yd-chains are the clusters of Z;.

Combining U, and U, we obtain a near-triangulation U
bounded by Q, and we can combine T')’ and T,’ to obtain a
U-extension I” of T. The afB-chains and yd-chains of I'" are those
of T') and T, except that those containing L are replaced by their
union, an aB-chain of I whose residue is the cluster W. Thus Z is
induced by I".

The theorem is now established for the case n = g. It follows in
general by induction.

The next theorem reduces to finiteness the problem of the
dominance of a given set of 4-colourings of a circuit.

THEOREM 8.5: Let T be a 4-colouring of a circuit Q, and let S be
a set of 4-colourings of Q. Then T is simply immersible in S if and
only if the following condition holds: There exists a colour-partition
I such that, for each chromodendron x of T with respect to 11, T is
X-transformable into a member of S.

Proof: Suppose T is simply immersible in S. Then there is a
colour-partition IT with the following property: if U is any near-
triangulation bounded by Q and if T is U-extensible, then there is
a U-extension I" of T that can be transformed into a U-extension
of a member of S by a succession of Kempe interchanges with
respect to I1. By 8.4 we can choose U and I" so that I induces ¥,
where x is an arbitrary chromodendron of T with respect to I1. In
Q the succession of Kempe interchanges reduces to a succession of
simple x-transformations, taking I' into a member of S. Thus the
stated condition holds.
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Conversely suppose the condition to hold. Let U be any near-
triangulation bounded by Q such that I’ has a U-extension I'". Let
I induce the clustering Z of T, corresponding to a chromo-
dendron x. There exists a succession of simple x-transformations
changing I into a member of S. Each affects a single cluster of Z,
and each can be effected by a Kempe interchange applied to the
Kempe chain of I having that cluster as its residue. In this way
we construct a succession of Kempe interchanges in U, with
respect to II, transforming I" into a U-extension of a member of
S. Thus T is simply immersible in S.

Let us consider how to test for dominance a set S of 4-
colourings of a circuit Q. Consider any 4-colouring I' of Q not in
S. Let J|(T), J,(') and J,(T) be the sets of all chromodendra of I’
with respect to (aB, v8), (ay, 88) and (a8, By) respectively. We
begin by determining these three sets. Then for each x € J(T') we
determine all the 4-colourings I'” of Q such that x admits a
transformation of T into T'”. It may happen that for each such x
one of the 4-colourings I'” is in S. If so we have T € f(S), by 8.5.
If not we repeat the procedure with J,(T'), and then if necessary

~with Jy(T). If for some i each chromodendron of J;(I') admits a
transformation of T into a member of S, then I' € f(S), but
otherwise I' is not in f(S). Repeating the whole procedure for each
4-colouring T not in S we complete the determination of the set
f(S). Then we can find f%(S) in the same way, and so on.
Eventually the process must terminate with a set f¥(S) identical
with f¥*1(S). (A set T such that f(T) = T will be called closed.
Perhaps the term “D-closed” would be better; but we shall not
make use of other kinds of reducibility in this connection.) If
f*(S) includes all the 4-colourings of Q, then S is dominant;
otherwise it is not.

This is the procedure applied by Heesch to the set S of V-
extensible 4-colourings of Q to determine if a pair (V, Q) is
D-reducible, that is if S is dominant. Let us call it Heesch’s
algorithm.

It can be shown that if (¥, Q) is D-reducible, then (V, Q) is
K-reducible. The proof uses the fact that in the second paragraph
of the proof of 8.5 I can be any U-extension of I'. We leave it to
the reader to bridge the gap due to the fact that we have defined
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K-reducibility in terms of general planar graphs, and D-
reducibility only in terms of near-triangulations.

Perhaps we should take note here of some other kinds of
reducibility defined by Heesch [3]. If V is a near-triangulation
bounded by Q, then (V, Q) is said to be A-reducible if the
following condition holds: there is a near-triangulation W
bounded by Q, having fewer vertices than V, and such that every
W-extensible 4-colouring of Q is in the set S of V-extensible
4-colourings of Q. To prove that (V, Q) is then reducible consider
a supposedly minimal graph G separated into ¥ and another near
triangulation U by the circuit Q. The union of U and W, we
deduce, is 4-colourable. Hence there is a 4-colouring of Q that is
U-extensible and W-extensible, and therefore V-extensible. This
implies that G has a 4-colouring and we have a contradiction.

B-reducibility is similarly defined except that it requires the
W-extensible 4-colourings of Q to be simply immersible in S, not
necessarily all in S. The definition of C-reducibility replaces
“simply immersible” by “crudely immersible.” In each case the
proof of reducibility is a straightforward generalization of the one
we have sketched in the case of A-reducibility. Heesch gives
examples from the literature of these three kinds of reducibility.

In the theory of D-reducibility we try to make as much progress
as possible without considering the effect of a Kempe interchange
on the Kempe chains of other colour-partitions. Perhaps the Four
Colour Problem can be settled in this way, but perhaps the drastic
simplification rejects essential information. The authors would feel
much more confident in the power of the theory if it could be used
to prove that the Birkhoff number exceeds some reasonable
number, —say 40, or even 20.*

9. A CONSTRUCTION FOR D-IRREDUCIBLE PAIRS.

We now give a method for constructing D-irreducible pairs
(V, Q). Of course an attempt to prove the Four Colour Conjecture

*Most of the reductions used to assign a lower bound to the Birkhoff number
have now been identified as D-reductions.



406 Hassler Whitney and W. T. Tutte

uses, rather, D-reducible pairs; thus the present construction puts
difficulties in the way of the method. It shows directions in which
the method need not be pursued. ,

The authors feel tempted to construct an abstract theory of
dominant sets. They have defined a closed set of 4-colourings of a
circuit Q towards the end of Section 8. The definition amounts to
saying that a set 7 is closed if no member of its complement is
simply immersible in 7. A set R can be called open if its comple-
ment is closed, that is if no member of R is simply immersible in
the complement of R. Here is an example of a theorem from the
abstract theory of dominant sets.

THEOREM 9.1: Let J be the set of all 4-colourings of a circuit Q.
Then each non-null open subset of J meets every dominant subset of
J.

Proof: Let S be a dominant subset of J, and T a non-null open
subset of J. Assume that their intersection is null. There is a least
integer k such that f*(S) meets 7. Moreover k > 0. Choose
T e T Nf*(S). Then T is simply immersible in f*~'(S) and there-
fore it is simply immersible in the complement of 7. This is
contrary to the hypothesis that T is open.

Let us define a pentatriangulation as a plane graph in which each
face is either a triangle or a pentagon. A near-pentatriangulation is
a plane graph in which each face with at most one exception is a
triangle or a pentagon. When we say that a near-pentatri-
angulation is bounded or face-bounded by a circuit Q we shall
imply that Q is the face-boundary of the exceptional face, if there
is one.

A P-colouring of a pentatriangulation G is a 4-colouring of G
such that all four colours appear on the boundary of each pentag-
onal face. A P-colouring of a near-pentatriangulation G bounded
by a circuit Q is defined in the same way, with the understanding
that the four-colour condition may be relaxed for Q if Q is a
pentagon and not the whole of G.

THEOREM 9.2: Let U be a near-pentatriangulation bounded by a
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circuit Q. Let T be the set of all 4-colourings of Q having U-
extensions that are P-colourings of U. Then T is open. ’

Proof: Let T be a 4-colouring of Q having a U-extension I" that
is a P-colouring of U.

We convert U into a near-triangulation bounded by Q as
follows. Consider any pentagonal face P; of U satisfying the
four-colour condition. Let its face-boundary be Q. In I" one
colour, say a, is repeated in Q. (See Figure 5.) Call the vertices
coloured a “special”, and call the vertex between them the *“apex”.
In each face P; we join the apex to the two non-adjacent vertices
of Q. We observe that I" is preserved as a 4-colouring of the
resulting near-triangulation U’. We note also that no succession of
Kempe interchanges in I and U’, provided they are all with
respect to the same colour-partition, can transform I" into a
4-colouring of U’ in which only three colours appear on one of the
circuits Q;. This means that T is not simply immersible in the
complement of 7. We deduce that T is open.

THEOREM 9.3: Let a circuit Q separate a pentatriangulation G
into a near-pentatriangulation U and a near-triangulation V, both
bounded by Q. Suppose U to have a P-colouring, but G to have no
P-colouring. Then (V, Q) is D-irreducible.

Proof: Assume the contrary. Let S be the set of V-extensible
4-colourings of Q, and T the set of 4-colourings of Q having
U-extensions that are P-colourings of U. Then S is dominant. T is
non-null by hypothesis, and open by 9.2. Hence S and T have a
common member I, by 9.1. Combining a V-extension and a
suitable U-extension of T we can obtain a P-colouring of G,
contrary to hypothesis.

We go on to describe a construction due to Shimamoto.

Suppose there is a critical graph containing a S5-wheel, any
minimal graph for example. Dropping out the hub and spokes .of
this wheel gives a plane graph G* that we call a “chromatic
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obstacle”. It is bounded by the pentagonal rim of the wheel. It is
4-colourable, but all four colours must appear on the rim.

In the construction as described by Shimamoto at the time of
the rumours new critical graphs are built up from smaller ones. It
is found that a critical graph obtained in this way must have the
following structure. There is a pentatriangulation X with no P-
colouring, and the critical graph is obtained from X by filling each
face with a chromatic obstacle. It is possible therefore to describe
the construction as one in which new pentatriangulations without
P-colourings are obtained from old ones. We prefer to describe it
in this way and so to avoid any use of such hypothetical figures as
critical graphs and chromatic obstacles.

The principal step in the construction is based on the following
fact. Suppose Q bounds U and V, the whole forms G, and the
conditions of 9.3 hold. Let 4, X, B be three consecutive vertices of
Q. Let us cut along the arc AXB and open it out into a quadrilat-
eral AXBX', with X still on the boundary of V. Finally let us fill
the new quadrilateral with three triangles and a pentagon, as
shown in Figure 10. Let us now replace the arc AXB in Q by the
arc AY,Y,B, to form a circuit Q'. There is a near-triangulation V'’
defined by the faces of G in V together with the three new
triangles. This is separated by Q; from a near-pentatriangulation
U’ defined by the faces of G in U together with the new pentagon
AY,Y,BX'. The new pentatriangulation that is the union of U’
and ¥’ we denote by G'. It is appropriate to call this operation
Shimamoto’s First Construction. The construction is reminiscent
of one used by Hajos for critical graphs [5, Section 11.4].

The conditions of 9.3 hold with Q’, U’ and V"’ replacing Q, U
and V respectively. We know U has a P-colouring, and we can
extend this as a P-colouring of U’ by assigning appropriate
colours to the new vertices Y, and Y,, both divalent in U’. If G’
has a P-colouring it is clear that X and X’ must have the same
colour in it, and so we can derive a P-colouring of G, which is
impossible. We have derived a new D-irreducible pair (V’, Q).
We can now drop the primes and repeat the construction.

As our starting point we can take G to be the 5-wheel and Q its
rim. U is the circuit Q, and V is the 5-wheel itself. U has two
pentagonal faces, both bounded by Q. It is thus a near penta-
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triangulation bounded by Q. In a P-colouring of U each face must
have all four colours in its boundary. Evidently the conditions of
9.3 hold. Thus 9.3 shows that the 5-wheel is D-irreducible, as we
have seen already in 7.2, Corollary.

Figure 11 shows the results of some successive applications of
Shimamoto’s Construction to the 5-wheel. In each diagram the
circuit Q is shown by arrows. An asterisk indicates the vertex X
that is to be split.

For the final step we start with the last diagram of Figure 11
and omit the broken edges. We take two copies of the resulting
graph and identify their arcs AKL. We then introduce new vertices
R, A, and 4}/, and join from them as shown in Figure 12.

This is an example of Shimamoto’s Second Construction.

Let us show that the graph G,, of Figure 12 satisfies the
conditions of 9.3 with Q as the circuit Q,, indicated by the arrows,
V as the near-triangulation, which we shall also call H, inside Q,,,
and U as the near-pentatriangulation U, outside Q,,.

We prove that G, has no P-colouring as follows: If it did, then
using 2 shows that 4 has the same colour as 4, or 4,’; say
col(4) = col(4,"). Using 35 now shows that col(B) = col(B’).
Using 2. and 2, in turn shows that col(C) = col(C’) and col(D)
= col(D’). Noting that K is joined to all of 4, B, C, D and L now
shows that 2’ uses only three colours, a contradiction.



410 Hassler Whitney and W. T. Tutte

It remains to construct a P-colouring for U,,, shown completely
in Figure 12. Ignoring R and the edge 4,’4,’ we find that this
graph consists of two isomorphic parts with only the vertex L in
common. From a P-colouring of the graph U of the last diagram
of Figure 11 we can, for each part, derive a 4-colouring that obeys
the four colour rule for pentagonal faces of G,, bounded by
circuits in the part considered. After a permutation in one of the
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two parts we can combine the two 4-colourings to obtain a
4-colouring of U,,, less R, such that 4," and 4, have different
colours and at least three colours occur among the four vertices
A/, Ay, J, and J,. We can now colour R so as to complete a
P-colouring of U,,.

We can now apply 9.3 to obtain

THEOREM 9.4: The near-triangulation H is D-irreducible.

10. CONCLUDING REMARKS.

The configuration H of 9.4 is the one mentioned in Section 1.
At first it was thought to have been proved D-reducible by a



412 Hassler Whitney and W. T. Tutte

computer programmed to apply Heesch’s Algorithm. In the orig-
inal form of Shimamoto’s Construction the pentagonal faces of
G,, were supposed to be filled with chromatic obstacles. Then U,,
was a near-triangulation and it could be proved to have a 4-
colouring. Arguments resembling those of Section 9 led to a
contradiction corresponding to our 9.4. It seemed that this could
only be resolved by supposing that U,, was impossible, i.e., that no
chromatic obstacles existed and the Four Colour Conjecture was
true. Now it is clear that Shimamoto had discovered not a proof of
the Conjecture but a construction for D-irreducible configurations.

To the present authors the supposed D-reducibility of H meant
that any 4-colouring of U,, could be converted into one extend-
able to all G, by crude chaining applied to U,,. Somehow in the
course of this chaining the four colours on the boundary of one of
the supposed chromatic obstacles would reduce to three. By isolat-
ing the effect of the chaining on this one chromatic obstacle we
should obtain a proof by crude chaining of the reducibility of the
S-wheel. Yet it seemed clear that our 7.3, a well-known result, was
the best that could be expected along this line. It was to rigorize
this objection that we introduced P-colourings and worked out
their theory as given in Section 9.

In this report on the present state of the Four Colour Problem
there is little for which we claim originality, apart from the
recognition of the true meaning of Shimamoto’s Construction. We
have tried to clarify the theory for ourselves, and we dare to hope
that we may thereby have clarified it for others.

It now seems to us that the next step in the theory of D-
reducibility should be an attempt to classify the minimal dominant
sets for the smaller circuits. To test (¥, Q) for D-reducibility we
would then determine the set S of V-extensible 4-colourings of Q
and check it against a list of dominant sets of Q to see if it
contained one of them. Should this method prove feasible it might
eliminate much repetitive work.*

*In the original version of this paper the authors proposed a conjecture here to
the effect that any two non-null open sets of 4-colourings of a circuit must
intersect. It has been pointed out, however, that simple counter-examples exist, one
being provided by the sets of full and non-full 4-colourings of the pentagon.
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Hamiltonian, 304
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imbedding, 237
interval, 5, 10
k-cyclic, 331
k-orderable, 331
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Moore, 229
multi, 45
nonseparable, 339
partitioning, 240, 242
perfect, 1
Petersen, 230
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faces, 350, 361, 381
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product, 14
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duality, 117, 247
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one-port, 249
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series-parallel inequality, 100
Shimamoto’s constructions, 408, 409,

412

silver root, 371
simple graph, 1
sink, 140, 173
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