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Chapter 1

Examples

We introduce projective and affine spaces over fields.

1.1 Projective Space and Subspaces

Let F be a field and let V be the vector space Fn×1. The projective space of
rank d consists of the subspaces of V . The 1-dimensional subspaces of V are
the points and the 2-dimensional subspaces are the lines. The subspaces of V
of dimension n− 1 are called hyperplanes.

We can represent each point by a non-zero element x of V , provided we
understand that any non-zero scalar multiple of x represents the same point.
We can represent a subspace of V with dimension k by an n× k matrix M over
F with linearly independent columns. The column space of M is the subspace it
represents. Clearly two matrices M and N represent the same subspace if and
only if there is an invertible k× k matrix A such that M = NA. (The subspace
will be determined uniquely by the reduced column-echelon form of M .)

If M represents a hyperplane, then dim(kerMT ) = 1 and so we can specify
the hyperplane by a non-zero element a of Fn×1 such that aTM = 0. Then x is
a vector representing a point on this hyperplane if and only if aTx = 0.

We introduce the Gaussian binomial coefficients. Let q be fixed and not
equal to 1. We define

[n] :=
qn − 1
q − 1

.

If the value of q needs to be indicated we might write [n]q. We next define [n]!
by declaring that [0] := 1 and

[n+ 1]! = [n+ 1][n]!.

Note that [n] is a polynomial in q of degree n− 1 and [n]! is a polynomial in q
of degree

(
n
2

)
. Finally we define the Gaussian binomial coefficient by[

n

k

]
:=

[n]!
[k]![n− k]!

.

1



2 CHAPTER 1. EXAMPLES

1.1.1 Theorem. Let V be a vector space of dimension n over a field of finite
order q. Then the number of subspaces of V with dimension k is

[
n
k

]
.

Proof. First we count the number Nr of n × r matrices over GF (q) with rank
r. There are qn − 1 non-zero vectors in V , so N1 = qn − 1.

Suppose A is an n × r matrix with rank r. Then there are qr − 1 non-zero
vectors in col(A), and therefore there are qn−qr non-zero vectors not in col(A).
If x is one of these, then (A, x) is an n×(r+1) matrix with rank r, and therefore

Nr+1 = (qn − qr)Nr.

Hence

Nr = (qn − qr−1) · · · (qn − 1) = q(
r
2)(q − 1)r [n]!

[n− r]!
.

Note that Nn is the number of invertible n × n matrices over GF (q). Count
pairs consisting of a subspace U of dimension r and an n×r matrix A such that
U = col(A). If νr denotes the number of r-subspaces then

Nr = νrq
(r
2)(q − 1)r[r]!.

This yields the theorem.

Suppose U1 and U2 are subspaces of V . We say that U1 and U2 are skew if
U1 ∩ U2 = {0}; geometrically this means they are skew if they have no points
in common. We say that U1 and U2 are complements if they are skew and
V = U1 + U2; in this case

dimV = dimU1 + dimU2.

Now suppose that U and W are complements in V and dim(U) = k. If H is a
subspace of V that contains U , define ρ(H) by

ρ(H) = H ∩W.

We claim that ρ is a bijection from the set of subspaces of V that contain U
and have dimension k + ` to the subspaces of W with dimension `.

We have H +W = V and therefore

n = dim(H +W ) = dim(H) + dim(W )− dim(H ∩W )
= k + `+ n− k − dim(H ∩W )
= n+ `− dim(H ∩W ).

This implies that dim(H ∩ W ) = `. It remains for us to show that ρ is a
bijection.

If W1 is a subspace of W with dimension `, then U +W1 is a subspace of V
with dimension k + ` that contains U . Then

ρ(U +W1) = W1,
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which shows that ρ is surjective. Suppose ρ(H1) = ρ(H2). Then

H1 ∩W = H2 ∩W

and so both H1 and H2 contain U +(H1∩W ). Since these three spaces all have
dimension k + `, it follows that they are equal. Therefore ρ is injective.

We also notes that H and K are subspaces of V that contain U and H ≤ K,
then ρ(H) ≤ ρ(K). Therefore ρ is an inclusion-preserving bijection from the
subspaces of V that contain U to the subspaces of W . The subspaces of W
form a projective space of rank n − dim(U) and so it follows that we view the
subspaces of V that contain U as a projective space.

1.1.2 Lemma. Let V be a vector space of dimension n over a field of order q,
and let U be a subspace of dimension k. The number of subspaces of V with
dimension ` that are skew to U is qk`

[
n−k

`

]
.

Proof. The number of subspaces of V with dimension k + ` that contain U is[
n−k

`

]
. If W1 has dimension ` and is skew to U , then U + W1 is a subspace

of dimension k + ` that contains U . Hence the subspaces of dimension k + `
that contain U partition the set of subspaces of dimension ` that are skew to
U . The number of subspaces of dimension k + ` in V that contain U is

[
n−k

`

]
.

We determine the number of complements to U in a space W of dimension m
that contains U .

We identify W with Fm×1. Since dimW = m and dimU = k, we may
assume that U is the column space of the m× k matrix(

Ik
0

)
Suppose W1 is a subspace of W with dimension m − k. We may assume that
W is the column space of the m× (m− k) matrix(

A
B

)
where B is (m− k)× (m− k). Then W1 is a complement to U if and only if the
matrix (

Ik A
0 B

)
is invertible, and this hold if and only if B is invertible. If B is invertible, then
W1 is the column space of (

AB−1

Im−k

)
.

So there is a bijection from the set of complements to U in W to the set of
m× (m− k) matrices over F of the form(

M
I

)
,

and therefore the number of complements of U is equal to qk(m−k), the number
of k × (m− k) matrices over F.
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1.2 Affine Spaces

We define affine n-space over F to be Fn, equipped with the relation of affine
dependence. A sequence of points v1, . . . , vk from Fn is affinely dependent if
there are scalars a1, . . . , ak not all zero such that∑

i

ai = 0,
∑

i

aivi = 0.

We also say that v is an affine linear combination of v1, . . . , vk if

v =
∑

i

aivi

where ∑
i

ai = 1.

Thus if v is an affine linear combination of v1, . . . , vk, then the vectors −
v, v1, . . . , vk are affinely dependent.

Note that if v 6= 0 and a 6= 1 then the vectors v, av are not affinely dependent.
In particular if v 6= 0, then 0, v is not affinely dependent. In affine spaces the
zero vector does not play a special role.

If u and v are distinct vectors, then the set

{au+ (1− a)v : a ∈ F}

consist of all affine linear combinations of u and v. If F = R then it is the set
of points on the straight line through u and v; in any case we call it the affine
line through u and v. A subset S of V is an affine subspace if it is closed under
taking affine linear combination of its elements. Equivalently, S is a subspace if,
whenever it contains distinct points u and v, it contains the affine line through
u and v. (Prove it.) A single vector is an affine subspace. The affine subspaces
Fn are the cosets of the linear subspaces.

Suppose A denotes the elements of Fn+1 with last coordinate equal to 1.
Then a subset of S of A is linearly dependent in Fn+1 if and only if it affinely
dependent. This allows us to identify affine n-space over F with a subset of
projective n-space over F. (In fact projective n-space is the union of n + 1
copies of affine n-space.)

1.3 Coordinates

We start with the easy case. If A is the affine space Fn, then each point of A
is a vector and the coordinates of a point are the coordinates of the associated
vector.

Now suppose P is the projective space associated to Fn. Two non-zero
vectors x and y represent the same point if and only if there is a non-zero scalar
a such that y = ax. Thus a point is an equivalence class of non-zero vectors.
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As usual it is often convenient to represent an equivalence class by one of its
elements. Here there is no canonical choice, but we could take the representative
to be the vector with first non-zero coordinate equal to 1. Normally we will not
do this.

The map that takes a vector in Fn to its i-th coordinate is called a coordinate
function. It is an element of the dual space of Fn. The sum of a set of coordinate
functions is a function on Fn. If f1, . . . , fk is a set of coordinate functions then
the product f1 · · · fk is a function on Fn. The set of all linear combinations of
products of coordinate functions is the algebra of polynomials on Fn. Many
interesting structures can be defined as the set of common zeros of a collection
of polynomials.

Defining functions on projective space is trickier, because each point is rep-
resented by a set of vectors. However if p is a homogeneous polynomial in n
variables with degree k and x ∈ Fn, then

p(ax) = akp(x).

Thus it makes sense to consider structures defined as the set of common zeros
of a set of homogeneous polynomials.

If we are working over the reals, another approach is possible. If x is a unit
vector in Rn, then the n× n matrix xxT represents orthogonal projection onto
the 1-dimensional subspace spanned by x. Thus we obtain a bijection between
the points of the projective space and the set of symmetric n × n matrices X
with rk(X) = 1 and tr(X) = 1. However it is a little tricky to decide if three
such matrices represent collinear points. (A similar trick works for complex
projective space; we use matrices xx∗, which are Hermitian matrices with rank
one.)
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Chapter 2

Projective and Affine
Spaces

We start by considering geometries in the abstract, and then projective and
affine geometries in particular.

2.1 Lots of Definitions

An incidence structure I consists of a set of points P , a set of blocks L and
an incidence relation between the points and blocks. If the point p is incident
with the block ` then we say p is on `, and write p ∈ `. A linear space is an
incidence structure with the property that any pair of distinct points lies in a
unique block, and any block contains at least two points. In this case blocks are
usually called lines. Any two lines in a linear space have at most one point in
common. The unique line through the points p and q will be denoted by p ∨ q.
A set of points is collinear if it is contained in some line.

A subspace of a linear space is a subset S of its points with the property
that if p ∈ S and q ∈ S then p ∨ q ⊆ S. (The last is an abuse of notation,
and is intended to indicate that all points in p ∨ q lie in S.) We can make S
into a linear space by defining its line set to be the lines of I which meet it in
at least two points. The intersection of any two subspaces is a subspace. The
empty set and the entire space are subspaces. The join of two subspaces H and
K is defined to be the intersection of all subspaces which contain both H and
K, and is denoted by H ∨ K. Every subset S of the points of a linear space
determines a subspace, namely the intersection of all subspaces which contain
it. This subspace is said to be spanned by S.

A rank function rk on a set P is a function from the subsets of P to the
non-negative integers such that:

(a) if A ⊆ P then 0 ≤ rk(A) ≤ |A| and

(b) if B ⊆ A then rk(B) ≤ rk(A).

7



8 CHAPTER 2. PROJECTIVE AND AFFINE SPACES

If, in addition

1. rk(A ∪B) + rk(A ∩B) ≤ rk(A) + rk(B)

then we say the rank function is submodular. A set equipped with a submodular
rank function is called a matroid. A flat in a matroid is a subset F such that, if
p 6∈ F then rk(p ∪ F ) > rk(F ). A combinatorial geometry is a set P , together
with a submodular rank function rk such that if A ⊆ P and |A| ≤ 2 then
rk(A) = |A|. Every combinatorial geometry can be regarded as a linear space
with the flats of rank one as its points and the flats of rank two as its lines.

We can often make a linear space into a matroid as follows. A set of distinct
subspaces S0, . . . , Sr of a linear space L such that

S0 ⊂ · · · ⊂ Sr

is called a flag. Define the rank rk(A) of a subspace A to be the maximum
number of non-empty subspaces in a flag consisting of subspaces of A. We then
define the rank of a subset to be the rank of the subspace spanned by it. If
we refer to a rank function on a linear space without otherwise specifying it,
this is the function we will mean. This function trivially satisfies conditions (a)
and (b) above, but may not be submodular. When it is, we say that the lattice
of subspaces of L is semimodular. The lattice of subspaces of a combinatorial
geometry, viewed as a linear space, is always semimodular. If (c) holds with
equality for subspaces then the subspace lattice is modular. The lattice of
subspaces of a vector space provide the most important example of this. It is
left as an exercise to show that the maximal proper flats of a combinatorial
geometry all have the same rank. These flats are called the hyperplanes of the
geometry. The flats of rank two are its lines and the flats of rank three are its
planes. The rank of a combinatorial geometry is the maximum value of its rank
function. We will always assume this is finite, even if the point set is not.

A collineation of a linear space is bijection of its point set onto itself which
maps each line onto a line. Similarly we define collineations between distinct
linear spaces. It should be clear that the image of a subspace under a collineation
is a subspace. The set of all collineations of a linear space onto itself is its
collineation group. Two linear spaces are isomorphic if there is a collineation
from one onto the other.

2.2 Axiomatics

A projective geometry is officially a linear space such that

(a) if x, y and z are non-collinear points and the line ` meets x∨ y and x∨ z in
distinct points then it meets y ∨ z,

(b) every line contains at least three points.

The first condition is known as Pasch’s axiom. Linear spaces satisfying the
second condition are often said to be thick. We show that PG(n,F) satisfies
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these axioms. Suppose that x, y, z are three non-collinear points and that ` is
a line meeting x ∨ y and x ∨ z in distinct points. Then

rk(` ∩ (y ∨ z)) = rk(`) + rk(y ∨ z)− rk(` ∨ (y ∨ z)). (2.1)

Our conditions imply that

` = (` ∩ (x ∨ y)) ∨ (` ∩ (x ∨ z)).

Since ` thus contains two points of the subspace x∨ y ∨ z, it must be contained
in it. It follows that ` ∨ (y ∨ z)) is also contained in it. Now x, y and z are not
collinear and therefore (x ∨ y) ∩ z = ∅. Thus

rk(x ∨ y ∨ z) = rk(x ∨ y) + rk(z)− rk((x ∨ y) ∩ z) = rk(x ∨ y) + rk(z) = 3.

and consequently rk(`∨(y∨z)) ≤ 3. From (2.1) we now infer that rk(`∩(y∨z)) ≥
1, which implies that ` meets y ∨ z. Since any field has at least two elements,
any line of PG(n,F) contains at least three points. This proves our claim.

We make some comments about projective planes. The standard description
of a projective plane is that it is an incidence structure of points and lines such
that

(a) any two distinct points lie on a unique line,

(b) any two distinct lines have a unique point in common,

(c) there are four points, such that no three are collinear.

The third axiom is equivalent to the requiring that every line should have at
least three points, and that there be at least two lines. (The proof of this claim
is an important exercise.) It is easy to verify that any projective plane is a
projective geometry of rank three; the converse is less immediate.

The main result of the first part of this course will be that any finite projec-
tive geometry with rank n at least four is isomorphic to PG(n− 1,F) for some
finite field F. (This result also holds for infinite projective geometries of finite
dimension, if we allow F to be non-commutative.) We begin working towards a
proof of this.

2.2.1 Lemma. Let G be a projective geometry. If H is a subspace of G and p
is a point not on H then p∨H is the union of the lines through p which contain
a point of H.

Proof. Let S be the set of all points which lie on a line joining p to a point of
H. We will show that S is a subspace of G. Suppose that ` is a line containing
the points x and y from S. By the definition of S, the point y is on line joining
p to a point in H and if x = p then this line must be `. If both x and y lie in H
then ` ∈ H, since H is a subspace. Thus we may assume that x and y are both
distinct from p and do not lie in H. It follows that both x and y lie on lines
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through p which meet H. Suppose that they meet H in x′ and y′ respectively.
The line ` meets the line p ∨ x′ and p ∨ y′ in distinct points; therefore it must
intersect x′ ∨ y′ in some point q. If u is a point on ` then the line p ∨ u meets
y ∨ y′ in p and y ∨ q in u. hence it must meet the line q ∨ y′, which lies in H.
As u was chosen arbitrarily on `, it follows that each point of ` lies on a line
joining p to a point of H. This shows that all points on ` lie in S, and so S is a
subspace. Any subspace which contains both p and H must contain all points
on the lines joining p to points of H. Thus S is the intersection of all subspaces
containing p and H, i.e., S = p ∨H.

2.2.2 Corollary. Let p be a point not in the subspace H. Then each line
through p in p ∨H intersects H.

Proof. Let ` be a line through p in p ∨H. If x is point other than p in ` then
x lies on a line through p which meets H. Since x and p lie on exactly one line,
it must be `. Thus ` meets H.

We can now prove one of classical results in projective geometry, due to
Veblen and Young.

2.2.3 Theorem. A linear space is a projective geometry if and only if every
subspace of rank three is a projective plane.

Proof. We prove that any two lines in a projective geometry of rank three must
intersect. This implies that projective geometries of rank three are projective
planes. Suppose that `1 and `2 are two lines in a rank three geometry. Let p
be a point in `1 but not in `2. From the previous corollary, each line through
p in p ∨ `2 must meet `2. Since p ∨ `2 has rank at least three, it must be the
entire geometry. Hence `1 ∈ p ∨ `2 and so it meets `2 as required. To prove
the converse, note that Pasch’s axiom is a condition on subspaces of rank three,
that is, it holds in a linear space if and only if it holds in all subspaces of rank
three. But as we noted earlier, if every two lines in a linear space of rank three
meet then it is trivial to verify that Pasch’s axiom holds in it.

2.3 The Rank Function of a Projective Geome-
try

One of the most important properties of projective geometries is that their rank
functions are modular. Proving this is the main goal of this section. A useful
by-product of our will be the result that a linear space is a projective geometry
if and only if all subspaces with rank three are projective planes. (If there are
no projective planes then our geometry has rank at most two, and is thus either
a single point or a line.) Note that if p is a point and H a subspace in any linear
space then rk(p ∨H) ≥ rk(H) + 1. We will use this fact repeatedly.
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2.3.1 Lemma. Let H and K be two subspaces of a projective geometry such
that H ⊂ K and let p be a point not in K. Then p ∨H ⊂ p ∨K.

Proof. Clearly p ∨ H ⊆ p ∨K and if p ∨ H = p ∨K then K ⊆ p ∨ H. If the
latter holds and k ∈ K \H then the line p ∨ k must contain a point, h say, of
H. This implies that p ∈ h ∨ k and, since h ∨ k ⊆ K, that p ∈ K.

2.3.2 Corollary. Let H be a subspace of a projective geometry and let p be a
point not in H. Then H is a maximal subspace of p ∨H.

Proof. Let K be a subspace of p ∨ H strictly containing H. If p ∈ K then
K = p ∨H. If p /∈ K then, by the previous lemma, p ∨H is strictly contained
in p ∨K. Since this contradicts our assumption that K ⊆ p ∨H, our result is
proved.

2.3.3 Theorem. All maximal subspaces of a projective geometry have the
same rank.

Proof. We will actually prove a more powerful result. Let H and K be two
distinct maximal subspaces. Let h be point in H \K and let k be a point in
K \H. The line h∨ k cannot contain a second point, h′ say, of H since then we
would have k ∈ h ∨ h′ ⊆ H. Similarly h ∨ k cannot contain a point of K other
than k. By the first axiom for a projective geometry, h∨k must contain a point
p distinct from h and k, and by what we have just shown, p /∈ H ∪K. Since
H and K are maximal p ∨ H = p ∨K. By Corollary 3.2, each line through p
must contain a point of H and a point of K. Using p we construct a mapping
φp from H into K. If h ∈ H then

φp(h) := (p ∨ h) ∩K.

If φp(h1) = φp(h2) then the lines p∨ h1 and p∨ h2 have two points in common,
and therefore coincide. This implies that they meet H in the same point and
hence φp is injective. If k ∈ K then k ∨ p must contain a point h′ say, of H.
We have φp(h′) = k, whence φp is surjective. Thus we have shown that φp is a
bijection. We prove next that φp maps subspaces onto subspaces. Let L be a
subspace ofH. Then φp(L) lies in (p∨L)∩K. Conversely, if x ∈ (p∨L)∩K then x
is on a line joining p to a point of L and so x ∈ φp(L). Hence φp(L) = (p∨L)∩K.
Since p∨L is a subspace, so is (p∨L)∩K. As φp is bijective on points, it must map
distinct subspaces of H onto distinct subspaces of K. A similar argument to the
above shows that φ−1

p maps subspaces of K onto subspaces of H. Consequently
we have shown that φp induces an isomorphism from the lattice of subspaces of
H onto the subspaces of K. This implies immediately that H and K have the
same rank. (It is also worth noting that it implies that φp is a collineation—it
must map subspaces of rank two to subspaces of rank two.)

A more general form of the next result is stated in the Exercises.
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2.3.4 Lemma. Let H and K be subspaces of a projective geometry and let p
be a point in H. Then (p ∨K) ∩H = p ∨ (H ∩K).

Proof. As H∩K is contained in both p∨K and H and as p ∈ H, it folllows that
p∨ (H ∩K) ⊆ (p∨K)∩H. Let x be a point in (p∨K)∩H. By Corollary 3.2,
there is a point k in K such that x ∈ p∨ k. Now p∨ k = p∨ x and so k ∈ p∨ x.
Since x ∈ H then this implies that p ∨ x ⊆ H and thus that k lies in H as well
as K. Summing up, we have shown that if x ∈ (p ∨ K) ∩ H then x ∈ p ∨ k,
where k ∈ H ∩K, i.e., that x ∈ p ∨ (H ∩K).

2.3.5 Theorem. If H and K are subspaces of a projective geometry then

rk(H ∨K) + rk(H ∩K) = rk(H) + rk(K).

Proof. We use induction on rk(H)−rk(H∩K). Suppose first that this difference
is equal to one. This implies H ∩K is maximal in H. From the previous lemma
we now deduce that

rk(H)− rk(H ∩K) = 1. (2.2)

If p ∈ H\K then, using the maximality of H∩K in H, we find that p∨(H∩K) =
H and H ∨K = p∨K. By Corollary 4.2, it follows that K is maximal in H ∨K
and so

rk(H ∨K)− rk(K) = 1. (2.3)

Subtracting (2.2) from (2.3) and rearranging yields the conclusion of the Theo-
rem. Assume now that H ∩K is not maximal in H. Then we can find a point
p ∈ H ∩K such that p∨ (H ∩K) 6= H. Suppose L = p∨ (H ∩K). Then H ∩K
is maximal in L (by Corollary 4.2) and so, by what we have already proved,

rk(L ∨K) + rk(L ∩K) = rk(L) + rk(K). (2.4)

Next we note that rk(H)− rk(L∨K) < rk(H)− rk(H ∩K) and so by induction
we have

rk(H ∨ (L ∨K)) + rk(H ∩ (L ∨K)) = rk(L ∨K) + rk(H). (2.5)

Now L ∨K = p ∨ (H ∩K) ∨K = p ∨K. By the previous lemma then,

H ∩ (L ∨K) = H ∩ (p ∨K) = p ∨ (H ∩K) = L.

Furthermore H ∨ (L ∨K) = H ∨K, and so (2.5) can be rewritten as

rk(H ∨K) + rk(L) = rk(L ∨K) + rk(H). (2.6)

Since L ∩K = H ∩K, we can now derive the theorem by adding (2.4) to (2.6)
and rearranging.

An important consequence of this theorem is that that the rank of a subspace
of a projective geometry spanned by a set S is at at most |S|. In particular,
three pairwise non-collinear points must span a plane, rather some subspace of
larger rank.
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2.4 Duality

Let H and K be two maximal subspaces of a projective geometry with rank n.
Then rk(H ∨K) = n and from Theorem 4.5 we have

rk(H ∩K) = rk(H) + rk(K)− rk(H ∨K) = (n− 1) + (n− 1)− n = n− 2.

Thus any pair of maximal subspaces intersect in a subspace of rank n− 2, and
therefore we can view the subspaces of rank n − 1 and the subspaces of rank
n − 2 as the points and lines of a linear space. We call this the dual of our
projective geometry. (Linear spaces in general do not have duals.)

2.4.1 Theorem. The dual of a projective geometry is a projective geometry.

Proof. We first show that each line in the dual lies on at least three points. Let
K be space of rank n − 2 and let H1 be a hyperplane which contains it. Since
H1 is not the whole space, there must be point p not in it. Then K is maximal
in p ∨K and so p ∨K is a subspace of rank n − 1 on k. It is not equal to H,
because p is in it. Now choose a point q in H \K. The line p ∨ q must contain
a third point, x say. If x ∈ H then p ∈ x ∨ q ⊆ H, a contradiction. Similarly x
cannot lie in K and so it follows that x ∨K is a third subspace of rank n − 1
on K. (We also used this argument in the proof of Theorem 4.3.) Now we
should verify the second axiom. However we will show that any two subspaces
of rank n− 2 intersecting in a subspace of rank n− 3 lie in a subspace of rank
n− 1. This implies that any two lines in the dual which line a subspace of rank
three must intersect, and so all rank three subspaces are projective planes. An
appeal to Corollary 4.6 now completes the proof. So, suppose that K1 and K2

are subspaces with rank n− 2 which meet in a subspace of rank n− 3. Then

rk(K1∨K2) = rk(K1)+rk(K2)−rk(K1∩K2) = (n−2)+(n−2)−(n−3) = n−1

and K1 ∨K2 has rank n− 1 as required.

Our next task is to determine the relation between the subspaces of a pro-
jective geometry and those of its dual. It is actually quite simple—it is equality.

2.4.2 Lemma. Let G be a projective geometry and let L be a subspace of it.
Then the hyperplanes which contain L are a subspace in the dual of G.

Proof. Suppose that G has rank n. The lines of the dual are the sets of hy-
perplanes which contain a given subspace of rank n − 2. Suppose that if K
is a subspace of rank n − 2 and H1 and H2 are two maximal subspaces which
contain K. If both H1 and H2 contain L then L ⊆ H1 ∩H2 = K. This proves
the lemma.

It can be shown that, if the lattice of subspaces of G is semimodular, any
subspace is the intersection of the hyperplanes which contain it. As we have no
immediate use for this, we have assigned it as an exercise, but it is worth noting
that it inplies that each subspace of a projective geometry is the intersection of
the hyperplanes which contain it.
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It is clear from the axioms that any subspace H of a projective geometry is
itself a projective geometry. The previous lemma yields that the hyperplanes
which contain H are also the points of a projective geometry. Furthermore, if K
is a subspace of rank m contained in H then the maximal subspaces of H which
contain K are again the points of a projective geometry. Applying duality to
this last remark, we see that the subspaces of rank m+1 in H which contain K
are the points of projective geometry. We will denote this geometry by H/K,
and refer to it as an interval of the original geometry. Duality is a useful, but
somewhat slippery concept. It will reappear in later sections, sometimes saving
half our work.

2.5 Affine Geometries

We have already met the affine spaces AG(n,F). An affine geometry is defined
as follows. Let G be a projective geometry and let H be a hyperplane in it. If
S is set of points in G \H, define rkH(S) to be rk(S). This can be shown to
be a submodular rank function on the points not on H, and the combinatorial
geometry which results is an affine geometry. (It will sometimes be denoted by
GH .) From Lemma 2.2 we see that AG(n,F) can be obtained from PG(n,F) in
this way. The flats of A are defined to be the subsets of the form K \H, where
K is a subspace of G. They will be referred to as affine subspaces; these are all
linear subspaces. However, in some cases there will be linear subspaces which
are not flats. (This point will be considered in more detail later in this section.)
If K1 and K2 are two subspaces of G such that K1 ∩K2 ⊆ H and

rk(K1 ∩K2) = rk(K1) + rk(K2)− rk(K1 ∨K2),

we say that they are parallel. The most important cases are parallel hyperplanes
and parallel lines. The hyperplane H is often called the “hyperplane at infinity”,
since it is where parallel lines meet. From the definition we see that two disjoint
subspaces of an affine geometry are parallel if and only if the dimension of their
join is ‘as small as possible’. In particular, two lines are parallel if and only
they are disjoint and coplanar. It is not too hard to verify that parallelism is an
equivalence relation on the subspaces of an affine geometry. (This is left as an
exercise.) The lines of G which pass through a given point of H partition the
point set of the affine geometry. We call such a set of lines a parallel class. Any
set of parallel lines can be extended uniquely to a parallel class. For given two
parallel lines, we can identify the point p on H where the meet; the remaining
lines in the parallel class are those that also meet H at p.

Any collineation α of an affine geometry must map parallel lines to parallel
lines, since it must map disjoint coplanar lines to disjoint coplanar lines. Thus α
determines a bijection of the point set ofH. It actually determines a collineation.
To prove this we must find a way of recognising when the ‘points at infinity’ of
three parallel classes are collinear. Suppose that we have three parallel classes.
Choose a line line ` in the first. Since the parallel classes partition the points
of the affine geometry, any point p on ` is also on a line from the second and
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the third parallel class. The points at infinity on these three lines are collinear,
in H, if and only if the lines are coplanar. It follows that any collineation of
an affine geometry determines a collineation of the hyperplane at infinity, and
hence of the projective geometry. Because of the previous result, we can equally
well view an affine geometry as a projective geometry G with a distinguished
hyperplane. The points not on the hyperplane are the affine points and the
lines of G not contained in H are the affine lines. It is important to realise that
there are two different viewpoints available, and in the literature it is common
to find an author shift from one to the other, without explicit warning.

There is a difficulty in providing a set of axioms for affine spaces, highlighted
by the following. Consider the projective plane PG(2, 2). Removing a line from
it gives the affine plane PG(2, 2) which has four points and six lines; each line
has exactly two points on it. (Thus we could can identify its points and lines
with the vertices and edges of the complete graph K4 on four vertices.) This
is a linear space but, unfortunately for us, it has rank four. Any set of three
points is a subspace of rank three. More generally, any subset of the points of
AG(n, 2) is a subspace of AG(n, 2) viewed as a linear space. However not all
subspaces are flats. One set of axioms for affine spaces has been provided by H.
Lenz. An incidence structure is an affine space if the following hold.

(a) Any two points lie on a unique line.

(b) Given any line ` and point p not on `, there is a unique line `′ through p
and disjoint from `. (We say ` and `′ are parallel, and write ` ‖ `′. Any line
is parallel to itself.)

(c) If `0, `1 and `2 are lines such that `0 ‖ `1 and `1 ‖ `2 then `0 ‖ `2. (Or more
clearly: parallelism is an equivalence relation on lines.)

(d) If a∨ b and c∨ d are parallel lines, and p is a point on a∨ c distinct from a
then p ∨ b intersects c ∨ d.

(e) If a, b and c are three points, not all on one line, then there is a point d
such that a ∨ b ‖ c ∨ d and a ∨ c ‖ b ∨ d.

(f) Any line has at least two points.

It is not hard to show that all lines in an affine space must have the same number
of points. This number is called the order of the space. If the order is at least
three then the axiom (e) is implied by the other axioms. On the other hand, if
all lines have two points then (d) is vacuously satisfied. Hence we are essentially
treating separately the cases where the order is two, and where the order is
at least three. Any line trivially satisfies the above set of axioms. If any two
disjoint lines are parallel then we have an affine plane. These may be defined
more simply as linear spaces which are not lines and have the property that,
given any point p and line ` not on p, there is a unique line through p disjoint
from `. We can provide a simpler set of axioms for thick affine spaces. Call two
lines in a linear space strongly parallel if they are disjoint and coplanar. Then
the linear space L is an affine space if
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(a) strong parallelism is an equivalence relation on the lines of L,

(b) if p is a point, and ` is a line of A, then there is a unique line through p
strongly parallel to `.

As with our first set of axioms, no mention is made of affine subspaces. However,
in this case they are just the linear spaces. In the sequel, we will distinguish
this set of axioms by referring to them as the “axioms for thick affine spaces”.
The first, official, set will be referred to as “Lenz’s axioms”.

2.6 Affine Spaces in Projective Space

We outline a proof that any thick affine space arises by obtained by deleting a
hyperplane from a suitable projective plane.

2.6.1 Lemma. Let A be a thick affine space with rank at least four. Let π be
a plane in A and let D be a line intersecting, but not contained in π. Then the
union of the point sets of those planes which contain D, and meet π in a line,
is a subspace.

Proof. Let W denote the union described. Since the subspace D ∨ π is the join
of D and any line in π which does not meet π, no line in π which does not meet
D can be coplanar with it. Hence no line in π is parallel to D. If x is point
in W which is not on D then x ∨D is a plane. Since x ∈ W , there is a plane
containing x and D which meets π in a line. Thus x∨D must meet π in line, l
say. As x is not on l, there is unique line, l′ say, parallel to it through x. Since
D is not parallel to l, it is not parallel to l′. Therefore D meets l′. We will
denote the point of intersection of D with l′ by d(x). Now suppose that x and
y are distinct points of W . We seek to show that any point on x ∨ y lies in W .
There are unique lines through x and y parallel to D; since they lie in x ∨ D
and y ∨D respectively they meet π in points x′ and y′. If u is a point on x ∨ y
then the unique line through u parallel to D must intersect x′ ∨ y′. Hence u lies
in the plane spanned by this point of intersection and D, and so u ∈W .

This lemma provides a very useful tool for working with affine spaces. We
note some consequences.

2.6.2 Corollary. Let π be a plane in the affine space A and let x and y be two
points not on π such that x ∨ π = y ∨ π. If x ∨ y is disjoint from π then it is
parallel to some line contained in π.

Proof. Let p be a point in π. From the previous lemma we see that since
y ∈ x ∨ π, the plane spanned y and the line x ∨ p meets π in a line l. As l lies
on π it is disjoint from x ∨ y and hence it is parallel to it.
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2.6.3 Corollary. Let A be an affine space. If two planes in A have a point in
common and are contained in subspace of rank four, they must have a line in
common.

Proof. Suppose that p is contained in the two planes σ and π. Let l be a line in
σ which does not pass through p. As l is disjoint from π it is, by the previous
corollary, parallel to a line l′ in π. Let m be the line through p in σ parallel to
l and let m′ be the line in π parallel to p. Then

m′ ‖ l′, l′ ‖ l, l ‖ m

and thus m = m′. Therefore m ⊆ σ ∩ π.

Let A be an affine geometry. We show how to embed it in a projective
geometry. Assume that the rank of A is at least three. (If the rank is less than
three, there is almost nothing to prove.) Let P be a set with cardinality equal
to the number of parallel classes. We begin by adjoining P to the point set of A.
If a line of A lies in the i-th parallel class, we extend it by adding the i-th point
of P . It is straightforward to show that each plane in A has now been extended
to a projective plane. Each plane in A determines a set of parallel classes,
and thus a subset of P . These subsets are defined to be lines of the extended
geometry; the original lines will be referred to as affine lines if necessary. Two
points a and b of A are collinear with a point p of P if and only the line a ∨ b
is in the parallel class associated with p. With the additional points and lines
as given, we now have a new incidence structure P. We must verify that it is
linear space. Let a and b be two points. If these both lie in A then there is
a unique line through them. If a ∈ A and b ∈ P then there is a unique line
in the parallel class determined by b which passes through a. Finally, suppose
that a and b are both in P . Let l be a line in the parallel class determined
by a. If x is an affine point in l then there is unique line in the parallel class
of b passing through it. With l, this line determines a plane which contains
all the lines in b which meet l. This shows that each line l in a determines a
unique plane. We claim that it is a projective space. This can be proved by
showing that each plane in P is projective. The only difficult case is to verify
that the planes contained in P are projective. Each plane of P corresponds to
a subspace of A with rank four, so studying the planes of P is really studying
these subspaces of A. The planes contained in P are projective planes if every
pair of lines in them intersect. Thus we must prove that if σ and π are two
planes of A contained in a subspace of rank four, then there is line in σ parallel
to π. There are two cases two consider. Suppose first that σ ∩ π = ∅. Then,
by Corollary 7.2, any line in σ is parallel to a line in π, and therefore there is a
point in P lying on both the lines determined by σ and π. Suppose next that
σ and π have a point in common. Then, by Corollary 7.3, these planes must
have a line in common and so the parallel class containing it lies on the lines
in P determined by them. This completes the proof that all affine spaces are
projective spaces with a hyperplane removed. In the next chapter we will use
our axiomatic characterisation of affine spaces to show that all projective spaces
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of rank at least four have the form PG(n,F), that is, are projective spaces over
some skew field. I do not know if the proof just given is any sense optimal, nor
who introduced the axiom system we have used.

2.7 Characterising Affine Spaces by Planes

We have seen that a linear space with rank at least three is a projective geometry
if and only if every plane in it is a projective plane. The corresponding result
for affine geometries is more delicate and is due to Buekenhout.

2.7.1 Theorem. Let A be a linear space with rank at least three. If each line
has at least four points, and if all planes of A are affine planes, then A is an
affine geometry.

Proof. We verify that the axioms for thick affine spaces hold. Since the second
of these axioms is a condition on planes, it is automatically satisfied. Thus we
need only prove that parallelism is an equivalence relation on the lines of A. If
π is a plane and D a line meeting π in the point a, we define W = W (π,D) to
be the union of the point sets of the planes which contain D and meet π in a
line.

Suppose w ∈W \D. The only plane containing w and D is w∨D, hence the
points of this plane must belong to W . In particular, it must meet π in a line
l. Since w is not on l, there is a unique line m in w ∨D through w and parallel
to l. The line D meets l in a, and is therefore not parallel to it. Hence it is not
parallel to m. Denote the point of intersection of m and D by d(w). Note that
if b is point on D, other than a or d(w) then bw is a line in w ∨D not parallel
to l. Thus it must intersect l in a point.

Our next step is to show that W is a subspace. This means we must prove
that if x and y are points in W \π then all points on xy lie in W . Suppose first
that xy ∩ π = ∅. Since the lines of A have at least four points on them, there
is a point b on D distinct from a, d(x) and d(y). The line bx and by must meet
π, in points x′ and y′ say. As xy and π are disjoint, xy ∩ x′y′ = ∅. Accordingly
xy and x′y′ are parallel (they both lie in the plane b ∨ xy). If u is point on xy
then bu canot be parallel to x′y′ and so u is on a line joining b to a point of π.
This implies that the plane u ∨ D meets π in two distinct points. Hence it is
contained in W , and so u ∈W , as required.

Assume next that xy meets π in a point, z say. Let σ be the plane y∨x∨d(x).
If σ ∩ π is a line then, since it is disjoint from x ∨ d(x), it is parallel to it. So,
if u is a point distinct from x and y on xy then u ∨ d(x) cannot be parallel to
σ∩π. Accordingly u∨d(x) contains a point of π, implying as before that u∨D
is in W . Hence u ∈W . The only possibility remaining is that σ ∩ π is a point,
in which case it is z. Assume u is a point distinct from x and y on xy. Since
the line z ∨ d(x) has at least four points, and since there is only one line in σ
parallel to x ∨ d(x) through u, there is a line through u meeting x ∨ d(x) and
z ∨ d(x) in points x′ and y′ respectively. Now x ∨ d(x) is disjoint from π and
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therefore all points on it are in W . Also all points on z ∨ d(x) are in W . Hence
x′ and z′ lie in W . Since z does not lie on x′z′, this line is disjoint from π.
This shows that all points on it lie in W . We have finally shown that W is a
subspace, and can now complete the proof of the theorem.

Suppose that l1, l2 and l3 are lines in A, with l1 ‖ l2 and l2 ‖ l3. Let π be
the plane l1 ∨ l2, let D be a line joining a point b on l3 to a point a in l2 and
let W = W (π,D). Since b ∈W and W is a subspace, the plane b∨ l1 lies in W .
In this plane there is a unique line through b parallel to l1. Denote it by l′3. As
l3 ∨ l2 meets π in l2, we see that l3 is disjoint from π. Similarly l′3 ∨ l1 meets
π in l1, and so l′3 is disjoint from π. The plane a ∨ l′3 is contained in W , and
contains D. By the definition of W , any point of a ∨ l′3 lies in a plane which
contains D and meets π in a line. This plane must be a ∨ l′3. Denote its line
of intersection with π by l′2. Since l′3 is disjoint from π, the lines l′2 and l′3 are
parallel. If l2 = l′2 then l3 and l′3 are two lines in b ∨ l2 intersecting in b and
parallel to l2. Hence they must be equal. If l2 6= l′2 then l′2 must intersect l1,
in a point c say. But then l1 and l′2 are lines in c ∨ l3 parallel to l3. Therefore
l1 = l′2, which is impossible since a ∈ l′2 and a /∈ l1. Thus we are forced to
conclude that l1 ‖ l3.

The above proof is based in part on some notes of U. S. R. Murty. There
are examples of linear spaces which are not affine geometries, but where every
plane is affine. These were found by M. Hall; all lines in them have exactly
three points.
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Chapter 3

Collineations and
Perspectivities

The main result of this chapter is a proof that all projective spaces of rank at
least four, and all ‘Desarguesian’ planes, have the form PG(n,F) for some field
F.

3.1 Collineations of Projective Spaces

A collineation of a linear space is a bijection φ of its point set such that φ(A)
is a line if and only if A is. It is fairly easy to describe the collineations of
the projective spaces over fields. Consider PG(n,F), the points of which are
the 1-dimensional subspaces of V = V (n+ 1,F). Any invertible linear mapping
of V maps 2-dimensional subspaces onto 2-dimensional subspaces, and hence
induces a collineation of PG(n,F). The set of all such collineations forms a
group, called the projective linear group, and denoted by PGL(n,F). There is
however another class of collineations. Suppose τ is an automorphism of F, e.g.,
if F = C and τ maps a complex number to its complex conjugate. If α ∈ F,
x ∈ V and ατ 6= α then

αxτ = ατxτ 6= αxτ .

Thus τ does not induce a linear mapping of V onto itself, but it does map
subspaces to subspaces, and therefore does induce a collineation. If we apply
any sequence of linear mappings and field automorphisms to PG(n,F) then we
can always obtain the same effect by applying a single linear mapping followed
by a field automorphism (or a field automorphism then a linear mapping). The
composition of a linear mapping and a field automorphism is called a semi-linear
mapping. The set of all collineations obtained by composing linear mappings
and field automorphisms is called the group of projective semi-linear transfor-
mations of PG(n,F), and is denoted by PΓL(n+1,F). It contains PGL(n,F) as
a normal subgroup of index equal to |Aut(F)|. (If F is finite of order pm, where

21
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p is prime, then Aut(F) is a cyclic group of order m generated by the mapping
which sends an element x of F to xp.) We can now state the “fundamental
theorem of projective geometry”.

3.1.1 Theorem. Every collineation of PG(n,F) lies in PΓL(n+ 1,F).

Proof. Look it up, for example in Tsuzuku [].

This theorem can be readily extended to cover collineations between distinct
projective spaces over fields. These are all semi-linear too. It is even possible
to describe all ‘homomorphisms’, that is, mappings from one projective space
which take points to points and lines to lines, but which are not necessarily
injective. (This requires the use of valuations of fields.) The most important
property of PΓL(n + 1,F) is that it is large. One way of making this more
precise is as follows.

3.1.2 Theorem. . The group PGL(n,F) acts transitively on the set of all
maximal flags of PG(n− 1,F).

Proof. Exercise.

Every invertible linear transformation of V = V (n,F) determines a collineation
of PG(n−1,F). The group of all invertible linear transformations of V is denoted
by GL(n,F). This groups acts on PG(n − 1,F), but not faithfully—any linear
transformation of the form cI, where c 6= 0, induces the identity collineation.
(You will show as one of the exercises that all the linear transformations which
induce the identity collineation are of this form.)

To compute the order of PGL(n,F) when F is finite with order q, we first
compute the order of GL(n,F). This is just the number of non-singular n × n
matrices over F. We can construct such matrices one row at a time. The number
of possible first rows is qn− 1 and, in general, the number of possible (k+1)-th
rows is the number of vectors not in the span of the first k rows, that is, it is
qn − qk. Hence

|GL(n, q)| =
n−1∏
i=0

(qn − qi) = q(
n
2)(q − 1)n[n]!.

The number of maximal flags in PG(n − 1,F) is [n]!. Thus we deduce, using
Theorem 1.2, that the subgroup G of GL(n,F) fixing a flag must have order
q(

n
2)(q−1)n. This subgroup is isomorphic to the subgroup of all upper triangular

matrices.
A k-arc in a projective geometry of rank n is a set of k points, no n of which

lie in a hyperplane. To construct an (n + 1)-arc in PG(n − 1,F), take a basis
x1, . . . , xn of V (n,F), together with a vector y of the form

∑
i aixi, where none

of the ai are zero. The linear transformation which sends each vector xi to
aixi maps

∑
xi to

∑
aixi. Hence the subgroup of PGL(n,F) fixing each of

x1, . . . , xn acts transitively on the set of points of the form
∑
aixi, where the
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ai are non-zero. It is also possible to show that a collineation of PG(n − 1,F)
which fixes each point in an (n+ 1)-arc is the identity. (The proof of this is left
as an exercise.) Together these statements imply that the subgroup of GL(n,F)
fixing each of x1, . . . , xn acts regularly on the set of points of the form

∑
aixi,

where the ai are non-zero, and hence that it has order (q−1)n. The subgroup of
PΓL(n+1,F) fixing each point in an (n+1)-arc can be shown to be isomorphic
to the automorphism group of the field F. (See Hughes and Piper [].)

3.2 Perspectivities and Projections

A perspectivity of a projective geometry is a collineation which fixes each point
in some fixed hyperplane (its axis), and each hyperplane through some point (its
centre). The latter condition is equivalent to requiring that each line through
some point be fixed, since every line is the intersection of the hyperplanes which
contain it. While it it is clear that this is a reasonable definition, it is probably
not clear why we would wish to consider collineations suffering these restrictions.
However perspectivities arise very naturally. Let G be a projective geometry of
rank four, and let H and K be two hyperplanes in it. Choose points p and q
not contained in H ∪K. If h ∈ H, define φp(h) by

φp(h) := (p ∨ h) ∩K.

This works because H is a hyperplane, and so every line in G meets H. Similarly
if k ∈ K then we define ψq(k) by

ψq(k) = (q ∨ k) ∩H.

It is a routine exercise to show that φp is a collineation from H to K and ψq is a
collineation from K to H. Hence their composition φpψq is a collineation of H.
(We made use of φp earlier in proving Theorem 4.3, that is, that all maximal
subspaces of a projective geometry have the same rank.)

If G has rank n then the hyperplanes H and K meet in a subspace of rank
n − 2 and each point in this subspace is fixed by φpψq. All lines through the
point (p ∨ q) ∩ H are also left fixed by φpψq. As H ∩ K is a hyperplane in
H, it follows that φpψq is a perspectivity. We will make considerable use of
these perspectivities in proving that all projective geometries of rank at least
four arise as the 1- and 2-dimensional subspaces of a vector space. It is easy to
provide a class of linear mappings of a vector space which induce perspectivities
of the associated projective space PG(n,F). They are known as transvections,
and can be described as follows. Let V = V (n,F) and let H be a hyperplane in
V . A linear mapping τ of V is a transvection with axis H if xτ = x for all x
in H, and xτ − x ∈ H for all x not in H. It is easy to construct transvections.
Choose non-zero vectors h and a such that (h, a) = 0 and define τh,a by setting

xτh,a = x− (x, h)a.

Then x is fixed by τh,a if and only if (h, x) = 0. Thus τh,a fixes all points of
the hyperplane with equation (h, x) = 0. If x is not fixed by τh,a then xτh,a− x
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is a multiple of a and, since (h, a) = 0, it follows that a lies in the hyperplane
of points fixed by τh,a. As τh,a fixes a, it follows that it also fixes all the 2-
dimensional subspaces a ∨ x.

3.2.1 Lemma. Let H be hyperplane in the projective geometry G. If the
collineation τ fixes all the points in H then it fixes all lines through some point
of G, and is therefore a perspectivity.

Proof. Assume first that τ fixes some point c not in H and let l be a line through
c. Then l must meet H in some point, x say. As x ∈ H, it is fixed by τ and
thus τ fixes two distinct points of l. This implies that l is fixed by τ . Assume
now that there are no points off H fixed by τ . Let p be a point not in H and
let l = p∨ pτ . Once again l must intersect H in some point, x say. As τ fixes x
and maps p in l to pτ in l, it follows that it fixes l. Let q be a point not on H
or l. The plane π = q ∨ l meets H in a line l′ (why?). Since τ fixes the distinct
lines l and l′ from π, it also fixes π. This implies that qτ ∈ π. Now qτ 6= q,
since q /∈ H, and so the q ∨ qτ is a line in π. Hence it intersects l′ and, since
l′ ⊆ H, the point of intersection is fixed by τ . Therefore q ∨ qτ is fixed by τ .
The line q ∨ qτ must intersect l in some point, c say. As q ∨ qτ and l are both
fixed by τ , so is c. Therefore c ∈ H and so c = H ∩ l = x. Thus we have shown
that the lines q ∨ qτ , where q /∈ H, all pass through the point c in H. From
this it follows that all lines through c are fixed by τ .

3.2.2 Corollary. The set of perspectivities with axis H form a group.

Proof. If τ is the product of two perspectivities with axis H, then it must fix
all points in H. By the lemma, it is a perspectivity.

Lemma 2.1 shows that perspectivities are the collineations which fix as many
points as possible, and thus makes them more natural objects to study. By
duality it implies that any collineation which fixes all hyperplanes on some
point must fix all the points in some hyperplane. Note however that we cannot
derive the lemma itself by appealing to duality, that is, by asserting that if τ
fixes all points on some hyperplane then, by duality, it fixes all hyperplanes on
some point. A perspectivity with its centre on its axis is often called an elation.
If its centre is not on its axis it is a homology. (Classical geometry is full of
strange terms.) From our remarks above, any transvection induces an elation.
It can be shown that the perspectivities of PG(n−1,F) all belong to PG(n,F),
and not just to PΓL(n,F). (In fact PG(n,F) is generated by perspectivities in
it.)

3.2.3 Corollary. Let τ be a collineation fixing all points in the hyperplane
H. If τ fixes no points off H it is an elation, if it fixes one point off H it is a
homology and if it fixes two points off H it is the identity.

Proof. Only the last claim needs proof. Suppose a and b are distinct points off
H fixed by τ . If p is a third point, not in H, then τ fixes the point H ∩ pa as
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well as a. hence τ fixes pa and similarly it fixes pb. Therefore p = pa ∩ pb is
fixed by τ . This shows that τ fixes all points not in H.

3.3 Groups of Perspectivivities

In general the product of two perspectivities of a projective geometry need not
be a perspectivity. There is an important exception to this.

3.3.1 Lemma. Let τ1 and τ2 be perspectivities of the projective geometry G
with common axis H. Then τ1τ2 is a perspectivity with axis H and centre on
the line joining the centres of τ1 and τ2.

Proof. Denote the respective centres of τ1 and τ2 by c1 and c2. Let c be the
centre of τ1τ2 and let l be the line c1 ∨ c2. We assume by way of contracdiction
that c is not on l. As cτ1τ2 = c it follows that cτ1 = cτ−1

2 . Suppose that c 6= cτ1.
Then cτ1 must lie on c1 ∨ c, since τ1 fixes all lines through c1. Similarly cτ−1

2

lies on c2 ∨ c. Hence

c1 ∨ c = cτ1 ∨ c = cτ−1
2 ∨ c = c2 ∨ c,

implying that c2 ∈ c1 ∨ c and thus that c ∈ l. Thus c is fixed by both τ1 and
τ2. If c /∈ H then we infer that c is the common centre of τ1 and τ2, whence
we have c = c1 = c2. Thus we may assume that c ∈ H. Since l lies on c1, it
is fixed by τ1 and, since it lies on c2, it is also fixed by τ2. Hence it is fixed by
τ1τ2. If the centre of τ1τ2 is not on H then it must lie on l, as required. If τ1τ2
fixes no point off H then the proof of Lemma 2.1 shows that the centre of τ1τ2
is l ∩H. Thus we may assume that l lies in H. If our geometry has rank three
then H must be equal to l, and so c ∈ l as required. Thus we may assume that
G has rank at least four, and that c /∈ l. We show in this case that τ1τ2 is the
identity. Let p be a point not in H. Then the plane p ∨ l is fixed by τ1τ2, and
so is the line p ∨ c (because c is the centre of τ1τ2). As c /∈ l, we see that p
is the unique point of intersection of the line p ∨ c with the plane p ∨ l. This
shows that p must be fixed by τ1τ2. Since our choice of p off H was arbitrary,
it follows that τ1τ2 is the identity collineation.

One consequence of the previous lemma is that if Γ is a group of collineations
of a projective geometry G then the perspectivities of G with axis H and with
centres in the subspace F is a subgroup of Γ. In particular, the product of two
elations with axis H is always a perspectivity with axis H and centre on H,
that is, it is an elation. It is possible for the product of two homologies with
axis H to be an elation—with its centre the point of intersection of H with the
line through the centres of the homologies.

We now come to an important definition. Let p be a point and H a hyper-
plane in the projective geometry G and let Γ be a group of collineations of G.
Let Γ(p,H) denote the subgroup of Γ formed by the perspectivities with centre
p and axis H. We say that Γ is (p,H)-transitive if, for any line ` through p
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which is not contained in H, the subgroup Γ(p,H) acts transitively on the set
of points of ` which are not on H. If Aut(G) is itself (p,H)-transitive then we
say that G is (p,H)-transitive. This is a reasonable point to explain some group
theoretic terms as well. If Γ is a permutation group acting on a set S and x ∈ S
then Γx is the subgroup of Γ formed by the permutations which fix x. Recall
that the length of the orbit of x under the action of Γ is equal to the index of Γx

in Γ. The group Γ is transitive if it has just one orbit on S. It acts fixed-point
freely on S if the only element which fixes a point of S is the identity, that is,
if Γx is the trivial subgroup for each element x in S. In this case each orbit of
Γ on S will have length equal to |Γ| (and so |Γ| divides |S| when everything is
finite). Suppose that Γ is the group of all perspectivities of G with centre p and
axis H. Let q be a point not in H and distinct from p. If an element γ of Γ
fixes q then it is the identity. For since q /∈ H and since γ fixes each point in H
it fixes all lines joining q to a point in H. But as H is a hyperplane, this means
that it fixes all lines through q. Hence q must be the centre of γ, and so q = p.
This contradiction shows that Γ must act fixed-point freely on the points of G
not in H ∪ p. In particular, for any line l, we see that Γ acts fixed-point freely
on the points of l\p not in H. (Since p ∈ l, the line l must be fixed as a set by
Γ.) Therefore if G is finite and p /∈ H then |Γ| must divide |l| − 2, and if p ∈ H
then |Γ| divides |l| − 1.

3.4 Desarguesian Projective Planes

Let P be a projective plane, with p a point and ` a line in it. The condition
that P be (p, `)-transitive can be expressed in a geometric form. A triangle
in a projective plane is a set of three non-collinear points {a1, a2, a3}, together
with the lines a ∨ b, b ∨ c and c ∨ a. These lines are also known as the sides
of the triangle. For convenience we will now begin to abbreviate expressions
such as a ∨ b to ab. Two triangles {a1, a2, a3} and {b1, b2, b3} are said to be in
perspective from a point p if the three lines a1b1, a2b2 and a3b3 all pass through
p. They are in perspective from a line ` if the points a1a2 ∩ b1b2, a2a3 ∩ b2b3
and a3a1 ∩ b3b1 all lie on `. We have the following classical result, known as
Desargues’ theorem.

3.4.1 Theorem. Let P be the projective plane PG(2,F). If two triangles in P
are in perspective from a point then they are in perspective from a line.

Proof. Wait.

A projective plane is (p, `)-Desarguesian if, whenever two triangles {a1, a2, a3}
and {b1, b2, b3} are in perspective from p and both a1a2∩b1b2 and a2a3∩b2b3 lie
on `, so does a3a1∩b3b1. We call a plane Desarguesian if it is (p, `)-Desarguesian
for all points p and lines `. Since the projective planes over fields are all De-
sarguesian, by the previous theorem, this concept is quite natural. However we
will see that a plane is Desarguesian if and only if it is of the form PG(2,F) for
some skew-field F.
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3.4.2 Theorem. A projective plane is (p, `)-transitive if and only if it is (p, `)-
Desarguesian.

Proof. Suppose P is a (p, `)-transitive plane. Let {a1, a2, a3} and {b1, b2, b3} be
two triangles in perspective from p with both a1a2∩b1b2 and a2a3∩b2b3 lying on
`. By hypothesis, there is a perspectivity τ with centre p and axis ` which maps
a1 to b1. Let x be the point a1a2 ∩ `. Since xτ = x, the perspectivity τ maps
xa1 onto xb1. Now xa1 = a1a2 and xb1 = b1b2; thus τ maps a1a2 onto b1b2.
Since the line pa2 is fixed by τ , we deduce that a2 = pa2 ∩ a1a2 is mapped onto
pa2∩ b1b2 = b2. A similar argument reveals that a3τ = b3. Thus (a2a3)τ = b2b3
and therefore (a2a3 ∩ `)τ = b2b3 ∩ `. As τ fixes each point of `, this implies that
a2a3 ∩ ` = b2b3 ∩ ` and hence that a2a3 and b2b3 meet at a point on `. Thus
our two triangles are (p, `)-perspective.

We turn now to the slightly more difficult task of showing that if P is (p, `)-
Desarguesian then it is (p, `)-transitive. Let x be a point distinct from p and
not on ` and let y be a point of px distinct from p and not on `. We need to
construct a perspectivity with centre p and axis ` which sends x to y. If a is a
point not on px or `, define

aτ := ((ax ∩ `) ∨ y) ∩ pa

and if a ∈ `, set aτ equal to a. As thus defined, τ is a permutation of the point
set of the affine plane obtained by deleting px from P. We will prove that it
is a collineation of this affine plane, and hence determines a collineation of P
fixing px. Since aτ ∈ pa, the mapping τ fixes the lines through p. Hence, if
τ is a collineation then it is a perspectivity with centre and axis in the right
place. Suppose that a and b are two distinct points of P not on px. If b ∈ xa
then ax = ab and ((ax ∩ `) ∨ y) = ((ab ∩ `) ∨ y), implying that bτ is collinear
with y = xτ and aτ . Conversely, if bτ is collinear with y and aτ then b must be
collinear with x and a. Thus we may assume that x, a and b are not collinear.
Then {x, a, b} and {y, aτ, bτ} are two triangles in perspective from the point p.
By construction xa meets y∨aτ and xb meets y∨ bτ on `. Therefore a∨ b must
meet aτ ∨ bτ on `. Let u be a point on ab. Then, applying Desargues’ theorem
a second time, we deduce that au and aτ ∨ uτ meet on `. Since au = ab, they
must actually meet at ab ∩ `. Therefore

aτ ∨ uτ = aτ ∨ (` ∩ ab) = aτ ∨ (` ∩ (aτ ∨ bτ)) = aτ ∨ bτ

and so uτ is on aτ ∨ bτ , as required.

3.4.3 Lemma. Let G be a projective geometry of rank at least four. Then all
subspaces of rank three are Desarguesian projective planes.

Proof. Let π be a plane in G and let p a point and ` a line in π. Let a and b
be distinct points on a line in π through p, neither equal to p or on `. Let σ
be a second plane meeting π in ` and let v be a point not in π ∨ σ but not in
π or σ. If x ∈ π then v ∨ x must meet σ in a point. The mapping sending x
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to (v ∨ x) ∩ σ is collineation φv from π to σ. The line ba′ is contained in the
plane p ∨ a ∨ v, as is pv. Hence ba′ meets pv in a point, w say. Note that w
cannot lie in π or σ. Hence it determines a collineation φw from σ to π which
maps a′ to b. Both φv and φw fix each point in `, and so their composition is a
collineation of π which fixes each point of ` and maps a to b. This shows that
π is a (p, `)-transitive plane. As our choice of p and ` was arbitrary, it follows
from the previous two results that all planes in G are Desarguesian.

3.4.4 Theorem. A projective geometry with rank at least four is (p,H)-transitive
for all points p and hyperplanes H.

Proof. Let x and y be distinct points on a line through p, neither in H. If a is
a point in G not on px define

aτ = (((ax ∩H) ∨ y) ∩ pa.

(This is the same mapping we used in proving that a (p, `)-transitive plane is
(p, `)-Desarguesian.) Let π be a plane through pa meeting H in a line. If a ∈ π
then aτ ∈ π and, from the proof of Theorem 4.2, it follows that τ induces a
perspectivity on π with centre p and axis π ∩H. Thus if a and b are points not
both on H and ab is coplanar with px, the image of ab under τ is a line. (The
proof of Theorem 4.2 can also be used to show that tau can be extended to the
points on px; we leave the details of this to the reader.) Suppose then that a
and b are points not both on H and ab is not coplanar with px. The plane x∨ab
meets H in a line `, hence if c ∈ ab then cτ lies in the intersection of the planes
p ∨ ab and y ∨ `. As y ∈ px, we have

y ∨ ` ⊆ px ∨ ` = px ∨ ab.

Therefore y ∨ ` is a hyperplane in px ∨ ab and so it meets p ∨ ab in a line. By
construction, this line contains the image of ab under τ , and so we have shown
that τ is a collineation.

There are projective planes which are not Desarguesian, and so the restric-
tion on the rank in the previous theorem cannot be removed. We will call an
affine plane P l Desarguesian if P is.

3.5 Translation Groups

Let H be a hyperplane in the projective geometry G. (We assume that G
has rank at least three.) The ordered pair (G,H) is an affine geometry and
an elation of G with axis H and centre on H is called a translation. From
Lemma 3.1, it follows that the set of all translations form a group. We are
going to investigate the relation between the structure of A and this group.
Some group theory must be introduced. A group Γ is elementary abelian if it is
abelian and its non-identity elements all have the same order. If Γ is elementary
abelian then so is any subgroup. As any element generates a cyclic group, and
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as the only elementary abelian cyclic groups are the groups of prime order, all
non-zero elements of a finite elementary abelian group must have order p, for
some prime p. The group itself thus has order pn for some n. We will usually use
multiplication to represent the group operation, and consequently refer to the
‘identity element’ rather than the ‘zero element’. (There will be one important
exception, when we consider endomorphisms.) If H and K are subsets of the
group Γ then we define

HK = {hk : h ∈ H, k ∈ K}.

If H and K are subgroups and at least one of the two is normal then HK is
a subgroup of Γ. If S ⊆ Γ then 〈S〉 is the subgroup generated by S and 〈1〉 is
the trivial, or identity subgroup. Let G be a projective geometry and let H be
a hyperplane in it. Let A be the affine geometry with H as the hyperplane at
infinity. If F is a subspace of H then T (F ) is the group of all elations with axis
H and centre in F . If we need to identify H explicitly we will write TH(F ).

3.5.1 Lemma. Let H be a hyperplane in the projective geometry G. If p and
q are distinct points on H such that T (p) and T (q) are both non-trivial then
T (H) is elementary abelian.

Proof. Since a non-identity elation has a unique centre, T (p) ∩ T (q) = 〈1〉.
Suppose that α and β are non-identity elements of T (p) and T (q) respectively.
If l is a line through p then so is lβ−1. Hence the latter is fixed by α and

lβ−1αβ = lβ−1β = l.

This shows that β−1αβ ∈ T (p). In other words, T (p) is normalised by the
elements of T (q). If β−1αβ ∈ T (p) then the commutator α−1β−1αβ must also
lie in T (p). A similar argument shows that α−1β−1α ∈ T (q). Accordingly
α−1β−1αβ also lies in T (q). As T (p)∩T (q) = 〈1〉, it follows that α−1β−1α = 1.
Consequently αβ = βα. (In other words, two non-identity elations with the
same axis and distinct centres commute.) We now show that T (p) is abelian.
Let α′ be a second non-identity elementt of T (p). Then α′β is an elation. If its
centre is p then β must belong to T (p). Thus its centre is not p. Arguing as
before, but with α′β in place of β, we deduce that α and α′β commute. This
implies in turn that α and α′ commute. Finally, assume that α is an element of
T (p) with order m. If βp 6= 1 then

(αβ)p = αpβp = βp ∈ T (q). (3.1)

Since αβ is an elation with axis H, so is (αβ)p, and (3.1) shows that its centre
is q. Therefore the centre of αβ is q and so αβ ∈ T (q). Since β ∈ T (q), we
infer that α also lies in T (q). This is impossible, and forces us to conclude that
βp = 1. Thus we have proved that two non-identity elations with distinct centres
must have the same order. It is now trivial to show that T (H) is elementary
abelian.
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The group T (p) may contain no elements of finite order, but in this case it
is still elementary abelian.

3.5.2 Lemma. Let H be a hyperplane in the projective geometry G. If G is
(p,H)-transitive and (q,H)-transitive then it is (r,H)-transitive for all points r
on p ∨ q.

Proof. If p = q there is nothing to prove, so assume they are not equal. Let r
be a point on pq and let a and b be distinct points not on H and colinear with
r. We construct an elation mapping a to b. The lines ab and pq are coplanar;
let x be the point pa ∩ ab. Since G is (p,H)-transitive, there is an element α of
T (p) which maps a to x. Similarly there is an element β of T (q) mapping x to
b. Hence the product αβ maps a to b. It fixes r, and therefore it fixes the line
ra = ab. Thus it is an elation with centre r.

Any element of T (p)T (q) is an elation with centre on p ∨ q. Thus the proof
of the lemma implies the following.

3.5.3 Corollary. If G is (p,H)- and (q,H)-transitive then T (p∨q) = T (p)T (q).

3.6 Geometric Partitions

Assume now that G is a projective geometry which is (p,H)-transitive for all
points p on the hyperplane H, e.g., any projective geometry with rank at least
four, or any Desarguesian plane. Then T (H) is an elementary abelian group
and the subgroups T (p), where p ∈ H, partition its non-identity elements. In
fact T (H), together with the subgroups T (p), completely determines G. The
connection is quite simple: the elements of T = T (H) correspond to the points
of G\H and the cosets of the subgroups T (p) are the lines. The correspondence
between points and elements of T arise as follows. Let o be a point not in H.
We associate with the identity of T . If a is a second point not on H then there
is a unique elation τa with axis H and centre H ∩ oa which maps o to a. Then
the map a 7→ τa is a bijection from T to the points of GH . If l is a line of GH

then then the affine points of l are an orbit of T (l ∩ H), and conversely, each
such orbit is a line. This leads us naturally to conjecture that an elementary
abelian group T , together with a collection of subgroups Ti (i = 1, . . . ,m) such
that the sets Ti\1 partition T\1, determines an affine geometry. This conjecture
is wrong, but easily fixed. Let T be an elementary abelian group. A collection
of subgroups Ti (i = 1, . . . ,m) is a geometric partition of T if

(a) The sets Ti \1 partition T \1,

(b) Ti ∩ TjTk 6= ∅ implies that Ti 6 TjTk.

A set of subgroups for which (a) holds is called a partition of T , although it
is not quite. The partitions we have been studying are all geometric. For
T (p)T (q) = T (p ∨ q) and so if τ ∈ T (r) ∩ T (p)T (q) then r must lie on p ∨ q
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and so T (r) 6 T (p)T (q). A geometric partition of an elementary abelian group
determines an affine geometry GH . We take the affine points to be the elements
of T and the lines to be the cosets of the subgroups Ti. This gives us a linear
space. Showing that this is an affine geometry is left as an exercise.

3.6.1 Lemma. Let Ti (i = 1, . . . ,m) be a geometric partition of the elementary
abelian group T and let A = GH be the affine geometry it determines. If o is
the point of A corresponding to the identity of T then any (o,H)-homology of G
determines an automorphism of T which fixes each subgroup Ti, and conversely.

Proof. Let α be an (o,H)-homology of G. If τ ∈ T , then we regard it as an
elation of G and thus we can define τα = α−1τα. Then τα fixes each point off
H and the line joining o to the centre of τ . Hence, if τ ∈ Ti, so is τα. As α is an
element and T a subgroup of the collineation group of A, the mapping τ 7→ τα

is an automorphism of T . The proof of the converse is a routine exercise.

For the remainder of this section, we will represent the group operation in
abelian groups by addition, rather than multiplication. This also means that
the identity now becomes the zero element. If α and β are automorphisms of
the abelian group T then we can define their sum α+β by setting τα+β equal to
τα + τβ , for all elements τ of T . This will not be an automorphism in general,
but it is always an endomorphism of T . The endomorphisms of an abelian group
form a ring with identity. We require one preliminary result.

3.6.2 Lemma. Let Ti (i = 1, . . . ,m) be a geometric partition of the elementary
abelian group T . If Tk ≤ Ti + Tj and k 6= i then Ti + Tj = Ti + Tk.

Proof. This can be proved geometrically, but we offer an alternative approach.
We claim that

Ti + ((Ti + Tk) ∩ Tj) = (Ti + Tk) ∩ (Ti + Tj). (3.2)

To prove this, note first that both terms on the left hand side are contained in
the right hand side. Conversely, if u belongs to the right hand side then we can
write it both as x + y where x ∈ Ti and y ∈ Tj , and as x′ + z where x′ ∈ Ti

and z ∈ Tk. Since x + y = x′ + z we have y = −x + x′ + z ∈ (Ti + Tk) and so
y ∈ (Ti + Tk) ∩ T. If Tk ≤ Ti + Tj then the right hand side of (3.2) is equal to
Ti + Tk while, since the partition is geometric, the left hand side equals Ti or
Ti + Tj . As Tk 6= Ti, this provs the lemma.

3.6.3 Lemma. Let Ti (i = 1, . . . ,m) be a geometric partition of the elementary
abelian group T . Then the set of all endomorphisms of T which map each
subgroup Ti into itself forms a skew field.

Proof. Let K be the set of endomorphisms referred to. We show first that the
elements of K are injective. Suppose that α ∈ K and xα = 0 for some element
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x of T . Assume that x is a non-zero element of T1 and let y be a non-zero
element of Ti for some i. Then

(x+ y)α = xα+ yα = yα

and therefore (x+ y)α must lie in Ti, since yα does. On the other hand, x+ y
cannot lie in Ti, and therefore (x + y)α = 0. This shows that yα = 0. As our
choice of y in Ti was arbitrary, it follows that each element of Ti is mapped to
zero and, as our choice of i was arbitrary, that (T \Ti)α = 0. Since yα = 0, we
may also reverse the role of x and y in the first step of our argument and hence
deduce that T1α = 0. Thus we have proved that if α is not injective then it is
the zero endomorphism.

We now show that the non-zero elements of K are surjective. Suppose that
v ∈ Ti + Tj and α ∈ K. We prove that v is in the range of α. We may assume
that v ∈ Ti. Choose a non-zero element u of Tj . Then uα 6= 0 and we may
also assume that uα − v 6= 0. Then uα − v must lie in some subgroup Tk and
Tk must be contained in Ti + Tj . Since Tk + Tj = Ti + Tj , we see that Tk is a
complete set of coset representatives for Tj in Ti +Tj and so Tk +u must contain
a non-zero element w of Ti. Now w − u ∈ Tk and therefore (w − u)α ∈ Tk. As
uα − v ∈ Tk we see that wα − v ∈ Tk. On the other hand, v and w belong to
Ti and so wα− v ∈ Ti. Hence wα− v ∈ Ti ∩ Tk = 0. Consequently v lies in the
range of α. We have now proved that any non-zero element of K is bijective.
It follows that all non-zero elements of K are invertible, and hence that it is a
skew field.

A famous result due to Wedderburn asserts that all finite skew fields are
fields. It is useful to keep this in mind. It is a fairly trivial exercise to show
that any endomorphism of a geometric partition induces a homology of the
corresponding projective geometry.

3.7 The Climax

The following result will enable us to characterise all projective geometries of
rank at least four, and all Desarguesian projective planes.

3.7.1 Theorem. Let G be a projective geometry of rank at least two, and let
H be a hyperplane such that G is (p,H)-transitive for all points p in H. Then
if G is (o,H)-transitive for some point o not in H, it is isomorphic to PG(n,F)
for some skew field F.

Proof. Let T = T (H) and let K be the skew field of endomorphisms of the
geometric partition determined by the subgroups T (p), where p ∈ H. The non-
zero elements of K form a group isomorphic to the group of all homologies of G
with axis H and centre some point o off H. Since K is a skew field, we can view
T as a vector space (over K) and the subgroups T (p) as subspaces. As T acts
transitively on the points of G not in H, it follows that G is (o,H)-transitive.
This implies that K \ 0 acts transitively on the non-identity elements of T (p),
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and hence that T (p) is 1-dimensional subspace of T . Consequently the affine
geometry GH has as its points the elements of the vector space T , and as lines
the cosets of the 1-dimensional subspaces of T . Hence it is AG(n,K), for some
n. This completes the proof.

We showed earlier that every projective geometry G with rank at least four
was (p,H)-transitive for any hyperplane H and any point p. Hence we obtain:

3.7.2 Corollary. A projective geometry of rank at least four has the form
PG(n,F) for some skew field F.

Similarly we have the following.

3.7.3 Corollary. A Desarguesian projective plane has the form PG(2,F) for
some skew field F.

If P is a projective plane which is (p, l)-transitive for all points on some line
l then the affine plane P l is called a translation plane. Translation planes which
are not Desarguesian do exist, and some will be found in the next chapter.
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Chapter 4

Spreads and Planes

We are going to construct some non-Desarguesian translation planes. This will
make extensive use of the theory developed in the previous chapter.

4.1 Spreads

Every projective geometry which is (p,H)-transitive for all points p on some
hyperplane H gives rise, as we have seen, to a geometric partition of an abelian
group T . The ring of endomorphisms of this partition is a skew field K. Hence
T is a vector space over K and the subgroups T (p) are subspaces. These all have
the same dimension over K. To see this note that T (p)T (q) contains elements
not in T (p) ∪ T (q) and so there is a point r, not equal to p or q, such that
T (r) ⊆ T (p)T (q). Since T (p)T (r) = T (q)T (r) and T (p), T (q) and T (r) are
disjoint, it follows that T (p) and T (q) must have the same dimension. Our
claim follows easily from this. It is not hard to see that the original geometry
is a plane if and only if T = T (p)T (q) for any pair of distinct points p and q. A
geometric partition with this property is called a spread.

Since projective geometries with rank at least four are all of the form PG(n,F),
we no longer have much reason to bother working with geometric partitions in
general. However spreads remain objects of considerable interest. Spreads can
be defined conveniently as follows. Let V = V (2n,F) be a vector space over the
skew field F. A spread is set of n-dimensional subspaces of V which partitions
the non-zero elements of V . These subspaces are often referred as the com-
ponents of the spread. Every spread determines a translation plane, on which
the vector space V acts as a group of translations. The ring consisting of the
endomorphisms of V which fix each component is the kernel of the spread (or of
the plane it determines). As we have seen, it is a skew field, which necessarily
contains F in its centre. The points of the affine plane can be identified with
the elements of V and the lines are then the cosets (in V ) of the components of
S. The point corresponding to the zero of V will be denoted by o.

35
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4.1.1 Lemma. LetA be the affine plane determined by the spread S of V (2n,F)
and let K be its kernel. Then the collineations of A which fix o are induced by
the semilinear mappings of V which map the components of S onto themselves.

Proof. Let α be a collineation of A fixing o. If v ∈ V , define the mapping τu on
the points of A by

τu(x) = x+ u.

A routine check shows that this is a translation of A. It is also easy to show
that if τ is a translation then so is α−1τα. Hence the mapping

τ 7→ α−1τα

is an automorphism of the group of translations ofA. Thus it induces an additive
mapping of V . Similarly we see that if β is a homology of A with centre o and
axis the line at infinity then so is α−1βα. The group formed by these homologies
is isomorphic to the multiplicative group formed by the non-zero elements of K.
AS V is a vector space over K, it follows that α induces a semilinear mapping
of V . That is, it can be represented as the composition of a linear mapping and
an automorphism of the skew field K. The converse is straightforward.

Lemma 1.1 can be extended without thought to isomorphisms between trans-
lation planes. The next result is an important tool for working with spreads.

4.1.2 Lemma. Let V = V (2n,F) and let X1, X2, X3 and Y1, Y2 and Y3 be
subspaces such that

X1 ⊕X2 = X2 ⊕X3 = X3 ⊕X1 = V

and
Y1 ⊕ Y2 = Y2 ⊕ Y3 = Y3 ⊕ Y1 = V.

Then there is linear mapping σ in GL(V ) such Xiσ = Yi.

Proof. Our hypothesis implies all six subspaces have dimension n and that X1

and X2 are disjoint (well, excepting zero). Each subspace can be represented
as the row space of an n× 2n matrix over F. There is an element α of GL(V )
sending X1 to the subspace equal to the row space of the n × 2n matrix [I 0]
and X2 to the row space of [0 I]. Suppose that X3α is the row space of [AB].
Since X3 is disjoint from X1, the matrix(

I 0
A B

)
must be non-singular. This implies that B must be non-singular. As X3 is
disjoint from X2, we deduce similarly that A is non-singular. Let β be the
element (

A−1 0
0 B−1

)
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of GL(V ). Then [AB]β = [I I], while the row spaces of [I 0] and [0 I] are both
fixed by β. (Do not forget that [I0] and [A−1 0] have the same row space.) Thus
there is an element of GL(V ) which sends X1, X2 and X3 respectively to the
row spaces of the matrices [I 0], [0 I] and [I I]. The lemma follows at once from
this.

The representation of the components of a spread in V (2n,F) by the row
spaces of n × 2n matrices is very useful. By virtue of the previous lemma, we
may assume that a given spread contains the rows spaces of the matrices [0 I]
and [I 0]. Thus any third subspace is the row space of a matrix [AB] where A
and B are non-singular. As the row space of [AB] and [I A−1B] are equal, this
means each of the remaining subspaces can be specified by a n × n invertible
matrix. (In this case, A−1B.) The condition that the row spaces of [I A] and
[I B] be disjoint is equivalent to the condition that the matrix(

I A
I B

)
be non-singular. This is equivalent to requiring that B − A be non-singular,
since this is the determinant of the above matrix. If A and B are elements of
GL(U) then B − A is invertible if and only if (I − B−1A) is, and the latter
holds if and only if there is no non-zero vector u such that B−1Au = u. Thus
B−A is invertible if and only if I−B−1A acts fixed point freely on the non-zero
elements of U . We will find that it is sometimes more convenient to verify that
A−1B acts fixed-point freely than to show that A − B is invertible. If σ is an
n × n matrix then the row space of the matrix [I σ] will be denoted by V (σ).
The row space of [0 I] will be denoted by V (∞).

4.1.3 Theorem. Let V = U ⊕ U be a 2n-dimensional vector space over F.
Then a spread of V is equivalent to a set Σ of elements of GL(U), indexed by
the non-zero elements of U , such that the difference of any two elements of Σ is
invertible.

Proof. Suppose we are given the set Σ. Then the subspaces V (∞), V (0) and
V (σ) where σ ∈ Σ are pairwise skew. To show that they form a spread we must
verify that if (u, v) is a non-zero vector in V then it lies in one of these subspaces.
If u = 0 or v = 0 then this is immediate. Consider the vectors (u, uσ), where
σ ranges over the elements of Σ. Since these act fixed-point freely on U , the
vectors we obtain are all distinct. We obtain all vectors with first ‘coordinate’
u if and only if |Σ| = |U \0|.

Theorem 1.3 provides us with a compact representation of a spread. Note
that different spreads can give rise to the same translation plane. If α is the
matrix (

W X
Y Z

)
in GL(U ⊕ U) then α maps the row space of [I A] to the row space of [W +
AY X+AZ]. If W+AY is invertible this shows that the subspace parameterised
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by A is mapped to the subspace parameterised by (W +AY )−1(X +AZ). If α
fixes [I 0] and [0 I] then both X and Y must zero. If Σα = Σ then α induces a
collineation of the affine plane determined by Σ.

4.2 Collineations of Translation Planes

Let V = U ⊕ U and let Σ be a subset of GL(U) determining a spread S of V .
Let A be the affine plane belonging to S. The subspaces V (σ) are the lines
through the point o = (0, 0) in A. The elements of V can all be written in the
form (u, v), where u and v belong to U . Then

V (∞) = {(0, u) : u ∈ U}

and
V (σ) = {(u, uσ) : u ∈ U}

for any element σ in Σ ∪ 0. Since U is a vector space over the kernel K of S, it
follows that any non-identity automorphism of K must act non-trivially on it.
(That is, it cannot fix each element of U .) From this it follows in turn that any
perspectivity of A fixing o must be induced by a linear mapping of V , and not
just a semilinear one. We consider the line at infinity l∞ in A as a distinguished
line, rather than as a missing line. Let (0) and (∞) be the points at which V (0)
and V (∞) respectively meet l∞.

4.2.1 Theorem. The set {σ ∈ GL(U) : σΣ = Σ} is a group, and is isomorphic
to the group of homologies of A with centre (0) and axis V (∞). The set {σ ∈
GL(U) : Σσ = Σ} is a also a group, and is isomorphic to the group of homologies
of A with centre (∞) and axis V (0).

Proof. Suppose that δ′ is a homology of A with centre (0) and axis V (∞).
Since δ′ fixes each point on the line V (∞), it is induced by a linear mapping.
Since δ′ fixes the lines V (0) and V (∞), it must map (u, v) to (uδ, vγ) for some
elements δ and γ of GL(U). (This follows from one of the remarks at the end of
the previous section.) Since δ′ fixes each point on V (∞), we must have γ = 1.
Suppose that δ′ maps V (σ) to V (τ). Then

(u, uσ)δ′ = (uδ, uσ)

and therefore δ−1σ = τ . From this we infer that δ−1Σ = Σ, and so the first
part of the lemma is proved. The second part follows similarly. The converse is
routine.

4.2.2 Corollary. If Σ contains the identity of GL(U) and the plane it deter-
mines is Desarguesian, then Σ is a group.
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Proof. If A = P l is Desarguesian then it is (p,H)-transitive for all points p and
lines H. By the previous lemma, it follows that

{σ ∈ GL(U) : σΣ = Σ}

has the same cardinality as Σ. Since I ∈ Σ, we see that if σΣ = Σ then σ must
belong to Σ. Consequently Σ is closed under multiplication. As it consists of
invertible matrices and contains the identity matrix, it is therefore a group.

The group of homologies with centre (0) and axis V (∞) in the previous
lemma has the same cardinality as Σ. This implies our claim immediately.

The converse to this corollary is false. (See the next section.) There is an
analog of Lemma 2.1 for elations.

4.2.3 Lemma. Let Σ0 = Σ ∪ 0. The set

{σ ∈ Σ0 : σ + Σ0 = Σ0}

is an abelian group, and is isomorphic to the group of elations with centre (∞)
and axis V (∞).

Proof. If α is represented by the matrix(
W X
Y Z

)
and (u, v) ∈ V then

(u, v)α = (uW + vY, uX + vZ).

If (0, v) ∈ V (∞) then (0, v)α = (Y v, Zv). Hence if each point on V (∞) is fixed
by α then Y = 0 and Z = I. If α also fixes all lines through (∞) then it must
fix the cosets of V (∞). The elements of a typical coset of V (∞) have the form
(a, b+ v), where v ranges over the elements of U . Now

(a, b+ v)α = (aW, aX + b+ v)

and so if α fixes the lines parallel to V (∞) then W = I. Consequently, if α is
an elation with centre (∞) and axis V (∞) and σ ∈ Σ then

(u, uσ)α = (u, uX + uσ)

As α is a collineation fixing o, it maps V (σ) to V (τ) for some τ in Σ, or to V (0).
Therefore X+Σ0 = Σ0. Thus we have shown that the elations with centre (∞)
and axis V (∞) correspond to elements σ ∈ Σ such that σ+Σ0 = Σ0. The proof
of the converse is routine.

4.2.4 Corollary. If the plane P determined by Σ is Desarguesian then Σ0 is a
skew field.
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Proof. Since P is (p, l)-transitive for all points p and lines l, we deduce from
Lemma 2.1 that Σ is a group and from Lemma 2.3 that Σ0 is a group under ad-
dition. If σ ∈ Σ then σ−1Σ = Σ, implying that I = σ−1σ ∈ Σ. As both addition
and multiplication are the standard matrix operations, the usual associative and
distributive laws hold. Therefore Σ0 is a skew field.

4.2.5 Lemma. If, for all elements σ and τ of Σ we have στ = τσ then Σ0 is a
field and the plane determined by Σ is Desarguesian.

Proof. Suppose that α is an element of GL(U) which commutes with each
element of Σ. Then the map sending (u, uσ) to

(uα, uσα) = (uα, uασ)

fixes each component of the spread S and hence it must lie in its kernel. Denote
this by K. The hypothesis of the lemma thus implies that Σ is a commutative
subset of K \ 0. The elements of Σ determine distinct homologies of the plane
determined by the spread, with centre o and axis l∞. Hence the plane must be
Desarguesian (by Theorem 2.7.1) and Σ must coincide with K \0.

4.3 Some Non-Desarguesian Planes

We propose to construct non-Desarguesian planes of order 9 and 16. Let U be
a vector space over F and let Σ be a subset of GL(U) determining a spread S
of V = U ⊕ U . As customary, we assume that V (0) and V (∞) are components
of S. The plane determined by S is a nearfield plane if Σ is a group. (Thus
Desarguesian planes are nearfield planes.)

First we construct a plane of order nine. Consider the group SL(2, 3) of 2×2
matrices over GF (3) with determinant 1. Let U be the 2-dimensional vector
space over GF (3). We take Σ to be a Sylow 2-subgroup of SL(2, 3). Since
SL(2, 3) has order 24, this means Σ has the right size. There is also no question
that its elements are invertible.

To show that Σ determines a spread, we first show that 2-elements of SL(2, 3)
act fixed-point freely on U . Suppose that α2 = 1. If α =

(
ab
cd

)
then the off-

diagonal entries of σ2 are b(a + d) and c(a + d). Hence either b = c = 0 or
a+ d = 0. In the first case, since detα = 1, we deduce that α = ±I. Otherwise
it follows that α has the form(

a b
− (1 + a2)/b − a

)
whence a simple calculation shows that α2 = −1. Thus −1 is the only involution
in SL(2, 3). As it acts fixed-point freely on U , all 2-elements of SL(2, 3) must act
fixed-point freely. If σ and τ belong to Σ then σ−1τ is a 2-element, and so acts
fixed point freely on U . Hence σ − τ is invertible and therefore Σ determines
a spread of U ⊕ U . Since Σ is not commutative, the plane we obtain is not
Desarguesian.
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Our second plane needs more work. Consider the projective plane over
GF (2). If we number its points 1 through 7, its lines may be taken to be

123, 145, 167, 246, 257, 347, 356.

Each line gives us two 3-cycles belonging to the alternating group A7. (For
example the line 257 produces (257) and (275).) Let Σ be the set formed by
these fourteen 3-cycles, together with the identity. Let X be the 4-dimensional
vector space over GF (2). We claim that A7 can be viewed as a subgroup of
GL(4, 2) acting transitively on the 15 non-zero elements of X. The proof of
this is given in the next section. We prove that if σ and τ are elements of Σ
then σ−1τ acts fixed-point freely on the non-zero vectors of X. A routine check
shows that σ−1τ is either a 3-cycle or a 5-cycle. If x is a non-zero vector in X
then the subgroup of A8 leaving it fixed has order 8!/30 = 21 · 26. Thus this
subsgroup contains no elements of order 5, and so all elements of order 5 in A8

must act fixed-point freely. Suppose then that θ = σ−1τ is 3-cycle in A8. Then
there is a 5-cycle φ which commutes with θ. If x is non-zero vector fixed by θ
then

xφθ = xθφ = xφ

and so xφ is also fixed by θ. This shows that the number of non-zero vectors
fixed by θ is divisible by 5. As θ has order three, the number of non-zero vectors
not fixed by it is divisible by three. This implies that θ cannot fix 5 or 10 vectors,
and hence that it must have 15 fixed points, that is, it is the identity element.
Thus we have now shown that Σ determines a spread of X ⊕X. The resulting
plane is not a nearfield plane, for then Σ would be a group of order 15. The
only group of order 15 is cyclic, and hence abelian. But the Sylow 2-subgroups
of SL(2, 3) are isomorphic to the quaternion group, which is not abelian. The
plane we have constructed is called the Lorimer-Rahilly plane. Note that the
collineation group of the plane over GF (2) induces a group of collineations of the
new plane fixing V (0), V (1) and V (∞), and acting transitively on the remaining
components.

4.4 Alt(8) and GL(4, 2) are Isomorphic

We outline a proof thatA8 is isomorphic toGL(4, 2). Let S be the set {0, 1, . . . , 7}.
There are 35 partitions of S into two sets of size four and since S8 acts on S,
it also acts on this set of partitions. Any partition can be described by giving
the elements of the component containing 1. Let Ω be the set of all 35 triples
from S\0. It is not hard to check that A7 acts transitively on Ω. A set of seven
triples from Ω will be called a heptad if it has the property that every pair of
triples from it intersect in precisely one point, and there is no point in all seven.
We say that a set of triples are concurrent if there is some point common to
them all, and the intersection of any two of them is this common point. A star
is a set of three concurrent triples. The remainder of the argument is broken up
into a number of separate claims.
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4.4.1 Claim. No two distinct heptads have three non-concurrent triples in com-
mon.

It is only necessary to check that for one set of three non-concurrent triples,
there is a unique heptad containing them.

4.4.2 Claim. Each star is contained in exactly two heptads.

Without loss of generality we may take our star to be 123, 145 and 167. By a
routine calculation one finds that there are two heptads containing this star:

123
145
167
246
257
347
356

123
145
167
247
256
346
357

Note that the second of these heptads can be obtained from the first by applying
the permutation (67) to each of its triples.

4.4.3 Claim. There are exactly 30 heptads.

There are 15 stars on each point, thus we obtain 210 pairs consisting of a star
and a heptad containing it. As each heptad contains exactly 7 stars, it follows
that there must be 30 heptads.

4.4.4 Claim. Any two heptads have 0, 1 or 3 triples in common.

If two heptads have four (or more) triples in common then they have three
non-concurrent triples in common. Hence two heptads can have at most three
triples in common. If two triples meet in precisely one point, there is a unique
third triple concurrent with them. Any heptad containing the first two triples
must contain the third. (Why?)

4.4.5 Claim. The automorphism group of a heptad has order 168, and consists
of even permutations.

First we note that Sym(7) acts transitively on the set of heptads. As there
are 30 heptads, we deduce that the subgroup of Sym(7) fixing a heptad must
have order 168. Now consider the first of our heptads above. It is mapped
onto itself by the permutations (24)(35), (2435)(67), (246)(357) and (1243675).
The first two of these generate a group of order 8. Hence the group generated
by these four permutations has order divisible by 8, 3 and 7. Since its order
must divide 168, we deduce that the given permutations in fact generate the
full automorphism group of the heptad.
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4.4.6 Claim. The heptads form two orbits of length 15 under the action of A7.
Any two heptads in the same orbit have exactly one triple in common.

Since the subgroup of A7 fixing a heptad has order 168, the number of heptads
in an orbit is 15. Let Π denote the first of the heptads above. The permutations
(123), (132) and (145) lie in A7 and map Π onto three distinct heptads, having
exactly one triple in common with Π. (Check it!) From each triple in Π we
obtain two 3-cycles in A7, hence we infer that there are 14 heptads in the same
orbit as Π under A7 and with exactly one triple in common with Π. Since there
are only 15 heptads in an A7 orbit, and since all heptads in an A7 orbit are
equivalent, it follows that any two heptads in such an orbit have exactly one
triple in common.

4.4.7 Claim. Each triple from Ω lies in exactly six heptads, three from each
A7 orbit.

Simple counting.

4.4.8 Claim. A heptad in one A7 orbit meets seven heptads from the other in
a star, and is disjoint from the remaining eight.

More counting.

Now we construct a linear space. Choose one orbit of heptads under the
action of A7, and call its elements points. Let the triples be the lines, and
say that a point is on a line if the correponding heptad contains the triple.
The elements of the second orbit of heptads under A7 determine subspaces of
rank three, each isomorphic to a projective plane. It is now an exercise to
show that there are no other non-trivial subspaces, and thus we have a linear
space of rank four, with all subspaces of rank three being projective planes.
Hence our linear space is a projective geometry, of rank four. Since its lines
all have cardinality three, it must be the projective space of rank four over
GF (2). As GF (2) has no automorphisms, the collineation group of our linear
space consists entirely of linear mappings; hence it is isomorphic to GL(4, 2).
(Note that we have just used the characterisation of projective geometries as
linear spaces with all subspaces of rank three being projective planes, the fact
that projective geometries of rank at least four are all of the form PG(n,F) and
the fundamental theorem of projective geometry, i.e., that the collineations of
PG(n,F) are semilinear mappings.) Our argument has thus revealed that A7 is
isomorphic to a subgroup of GL(4, 2). A direct computation reveals that it has
index eight.

With a little bit of group theory it now possible to show that GL(4, 2) is
isomorphic to A8. We outline an alternative approach. Let Φ be the set of all
partitions of S into two sets of size four. These sets can be described by giving
the three elements of S\0 which lie in the same component of the partition as 0.
Since S8 acts on S, we thus obtain an action of S8 on the 35 triples in Ω. This
action does not preserve the cardinality of the intersection of triples. However
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if two triples meet in exactly one point then so do their images. (Because two
triples meet in one point if and only if the meet of the corresponding partitions
is a partition of S into four pairs.) Hence the action of S8 on Ω does preserve
heptads. More work shows that, in this action, A8 and A7 have the same orbits
on heptads. Thus A8 is isomorphic to a subgroup of GL(4, 2), and hence to
GL(4, 2).

4.5 Moufang Planes

A line l in a projective plane P is a translation line if P is (p, l)-transitive for
all points p on l, that is, if P l is a translation plane. We call p a translation
point if P is (p, l)-transitive for all lines l on it. From Lemma 2.3.1, we know
that if P is (p, l)-transitive and (q, l)-transitive for distinct points p and q on l
then l is translation line. Dually, if P is (p, l)- and (p,m)-transitive for two lines
l and m through p then p is a translation point. The existence of more than
one translation line (or point) in a projective plane is a strong restriction on its
structure. The first conseequence is the following.

4.5.1 Lemma. If l and m are translation lines in the projective plane P then
all lines through l ∩m are translation lines.

Proof. Suppose p = l ∩m. Then p is a translation point in P. Let l′ be a line
through p distinct from l and m. Since P is (p,m)-transitive, there is an elation
with centre p and axis m mapping l to l′. (Why?) As l is a translation line, it
follows that l′ must be one too.

It follows from this lemma that if there are three non-concurrent translation
lines then all lines are translation lines. A plane with this property is called a
Moufang plane. We have the following deep results, with no geometric proofs
known.

4.5.2 Theorem. If a projective plane has two translation lines, it is Moufang.

4.5.3 Theorem. A finite Moufang plane is Desarguesian.

These are both proved in Chapter VI of Hughes and Piper[]. A Moufang
plane which is not desarguesian can be constructed using the Cayley numbers.
These form a vector space O of dimension eight over R with a multiplication
such that

(a) if x and y lie in O and xy = 0 then either x = 0 or y = 0

(b) if x, y and z belong to O then x(y + z) = xy + xz and (y + z)x = yx+ zx.
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It is worth noting that this multiplication is neither commutative, nor associa-
tive. To each element a of O we can associate an element ρa of GL(O), defined
by

ρa(x) = xa

for all x in O. (This mapping is not a homomorphism.) Then ρa is injective
and, since O is finite dimensional, it must be invertible. Moreover, if a and b
both belong to O then (ρa − ρb)x = xa − xb = x(a − b) and so ρa − ρb is also
invertible. Thus the set

Σ = {ρx : x ∈ O\0}

gives rise to a spread of O ⊕ O. As Σ is not closed under multiplication, the
plane P determined by Σ cannot be Desarguesian. Since ρ(x+y) = ρx + ρy we
see that Σ is a vector space over R. By Lemma 2.3, this implies that P has two
translation lines and hence that it is Moufang.
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Chapter 5

Varieties

This chapter will provide an introduction to some elementary results in Alge-
braic Geometry.

5.1 Definitions

Let V = V (n,F) be the n-dimensional vector space over the field F. An affine
hypersurface in V is the solution set of the equation p(x) = 0, where p is a
polynomial in n variables, together with the polynomial p. If n = 2 then a
hypersurface is usually called a curve, and in three dimensions is known as
a surface. An affine variety is the solution set of a set of polynomials in n
variables together with the ideal, in the ring of all polynomials over F, generated
by the polynomials associated to the hypersurfaces. (This ideal is the ideal of
polynomials which vanish at all points on the variety.) It is an important result
that every affine variety can be realised as the solution set of a finite collection
of polynomials. Affine varieties may also be defined as the intersection of a set
of hypersurfaces.

A projective hypersurface is defined by a homogeneous polynomial in n+ 1
variables, usually x0, . . . , xn. If p is such a polynomial and p(x) = 0 then
p(αx) = 0 for all scalars α in F. The 1-dimensional subspaces spanned by
the vectors x such that p(x) = 0 are a subset of PG(n,F), this subset is the
projective hypersurface determined by p. A projective variety is defined in
analogy to an affine variety. The ‘ideal’ of all homogeneous polynomials which
vanish on the intersection is used in place of the ideal of all polynomials.

A quadric is a hypersurface defined by a polynomial of degree two. It may
be affine or projective. A projective curve is a hypersurface in PG(2,F) and a
projective surface is a hypersurface in PG(3,F). The hypersurface determined
by the equation g(x) = 0 will be denoted by Vg. Only the context will determine
if g is homogeneous or not. A conic is a quadric given by a polynomial of degree
two.

Every affine variety gives rise to a projective variety in a natural way. This
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happens as follows. Let p be a polynomial in n variables x1, . . . , xn with degree
k. Let x0 be a new variable and let q be the polynomial xk

0p(x1/x0, . . . , xn/x0).
This a homogeneous polynomial of degree k in n + 1 variables. By way of
example, if p is the polynomial x2−y−1 then q can be taken to be x2−yz−z2.
If we set z = 1 in q then we recover the polynomial p. Geometrically, this
corresponds to deleting the line z = 0 from PG(2,F) to produce an affine
space. The only point on the curve q(x) = 0 in PG(2,F) and on the line
z = 0 is spanned by (0, 1, 0)T . The remaining points are spanned by the vectors
(x, x2 − 1, 1)T , and these correspond to the points on the affine curve p(x) = 0.
We can also obtain affine planes by deleting lines other than z = 0. Thus
if we delete the line y = 0 then remaining points on our curve are spanned
by the vectors (x, 1, z)T such that x2 − z − z2 = 0. Although the original
affine curve x2 − y − 1 was a parabola, this curve is a hyperbola. This shows
that each projective variety determines a collection of affine varieties. These
affine varieties are said to be obtained by dehomogenisation. (But we will say
this as little as possible.) Two affine varieties obtained in this way are called
projectively equivalent. The number of different affine varieties that can be
obtained from a given projective variety is essentially the number of ways in
which it is met by a projective hyperplane.

The affine variety determined by a homogeneous polynomial g is said to be
a cone. More generally, Vg is a cone at a point a if g(y) is a homogeneous
polynomial in y = x− a. The projective variety associated with Vg is also said
to be a cone at a. Everything we have said so far is true whether or not the
underlying field is finite or not. One difficulty in dealing with the finite case
is that it may not be clear how many points lie on a given hypersurface. (Of
course similar problems arise if we are working over the reals.) The next result
is useful; it is known as Warning’s theorem.

5.1.1 Theorem. Let f be a polynomial of degree k in n variables over the field
F with q = pr elements. If k < n then the number of solutions of f(x) = 0 is
zero modulo p.

Proof. We begin with some observations concerning F. If a ∈ F then aq−1 is
zero if a = 0 and is otherwise equal to 1. For a non-zero element λ of F, consider
the sum

S(λ) =
∑
a∈F

(λa)d.

Then S(λ) = λdS(1). On the other hand, when a ranges over the elements of F,
so does λa. Hence S(λ) = S(1), which implies that either S(1) = 0 or λd = 1.
We may choose λ to be a primitive element of F, in which case λd = 1 if and
only if q− 1 divides d. This shows that if q− 1 does not divide d then S(1) = 0.
If q − 1 divides d then S(1) ≡ q − 1 modulo p.

We now prove the theorem. The number of (affine) points x such that
f(x) 6= 0 is congruent modulo p to∑

a∈Fn

f(a)q−1. (5.1)
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The expansion of f(x)q−1 is a linear combination of monomials of the form

x
k(1)
1 · · ·xk(n)

n

where ∑
i

k(i) ≤ (q − 1)k < (q − 1)n.

This shows that for some i we must have k(i) < q − 1. Therefore∑
ai∈F

a
k(i)
i

is congruent to zero modulo p. This implies in turn that (5.1) is congruent to
zero modulo p.

The following result is due to Chevalley.

5.1.2 Corollary. If f is a homogeneous polynomial of degree k in n+1 variables
over the field F and k ≤ n then Vf contains at least one point of PG(n,F).

These results generalise to sets of polynomials in n variables, subject to the
condition that the sum of the degrees of the polynomials in the set is less than
n. (See the exercises.)

5.2 The Tangent Space

Let f be a polynomial over F in the variables x0, . . . , xn. By fi we denote the
partial derivative of f with respect to xi. Even when F is finite, differentiation
works more or less as usual. In particular both the product and chain rules
still hold. The chief surprise is the constant functions are no longer the only
functions with derivative zero. Thus, over GF (2) we find that ∂

∂xi
x2

i = 0. If f
is homogeneous and a ∈ Vf then the tangent space of Vf at a is the subspace
given by the equation

n∑
i=0

fi(a)xi = 0.

It will be denoted by Ta(Vf ), or Ta(f). The tangent space at a always contains
a. This follows from Euler’s Theorem, which asserts that if f is a homogeneous
polynomial of degree k then

n∑
i=0

xifi = kf.

(The proof of this is left as a simple exercise. Note that it is enough to verify it
for monomials.) The tangent space at the point a in the variety V defined by
a set S of polynomials is defined to be the intersection of the tangent spaces of
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the hypersurfaces determined by the elements of S. If fi(a) = 0 for all i then a
is a singular point of the hypersurface Vf . When a is a singular point, Ta is the
entire projective space and has dimension n. If a is not a singular point then Ta

has dimension n− 1 as a vector space. A singular point of a general variety can
be defined as a point where the dimension of the tangent space is ‘too large’,
but we will not go into details. A point which is not singular is called smooth,
and a variety on which all points are non-singular is itself called smooth or
non-singular. Questions about the behaviour of a variety at a particular point
can usually be answered by working in affine space, since we can choose some
hyperplane not on the point as the hyperplane at infinity.

5.3 Tangent Lines

If f is a homogeneous polynomial then the degree of the hypersurface Vf is
the degree of f . The degree is important because it is an upper bound on the
number of points in which V is met by a line. To see this, we proceed as follows.
Assume that f is homogeneous of degree k, that a is a point and that b is a
point not on Vf . We consider the number of points in which a ∨ b meets V.
Suppose that a and b are vectors representing a and b. All points on a ∨ b are
represented by vectors of the form λa + µb. Thus the points of intersection of
a∨ b with V are determined by the values of λ and µ such that f(λa+µb) = 0.
Since f(b) 6= 0 and f is homogeneous, all the points of intersection may be
written in the form a + tb. Thus the number of points of intersection is the
number of distinct solutions of

f(a + tb) = 0.

Now f(a + tb) is a polynomial of degree k in t, and hence has at most k
distinct zeros. If the field we are working over is infinite then it can be shown
that the degree of a hypersurface is actually equal to the maximum number of
points in which it is met by a line. With finite fields this is not guaranteed—in
fact the hypersurface itself is not guaranteed to have k distinct points on it.
There is more to be said about the way in which a line can meet a hypersurface.
Continuing with the notation used above, we can write

f(a + tb) = F (0)(b) + tF (1)(b) + · · ·+ tkF (k)(b), (5.2)

where F (i) is a polynomial in the entries of b, with coefficients depending on a..
If the first nonzero term in (5.2) has degree m in t, we say that the intersection
multiplicity at a of a ∨ b and Vf is m. If a ∈ V then F (0)(b) = 0; thus the
intersection multiplicity is greater than zero if and only if a is on V. We have

F (1)(b) =
n∑

i=0

fi(a) bi.

and so the intersection multiplicity is greater than 1 if and only if b lies in the
tangent space Ta(f). Since a ∈ Ta(f), the point b is in Ta(f) if and only if the
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line a ∨ b lies in Ta(f). A line having intersection multiplicity greater than one
with Vf is a tangent line. We have just shown that Ta(f) is the union of all the
tangent lines to Vf at a. A subspace is tangent to Vf at a if it is contained in
Ta(f). It is possible for the hypersurface V to completely contain a given line
a ∨ b. In this case the left side of (5.2) must be zero for all t, whence it follows
that a∨ b is a tangent. More generally, a subspace contained in Vf is tangent to
Vf at each point in it. There is another important consequence of (5.2) which
must be remarked on.

5.3.1 Lemma. Any line meets a projective hypersurface of degree k in at most
k points, or is contained in it.

Proof. Let l be a line a let a be a point on l which is not on the hypersurface
Vf . The points of l on V are given by the solutions of (5.2). If this is identically
zero then l is contained in the hypersurface, otherwise it is polynomial of degree
k and has at most k zeros.

We have only considered tangent spaces to hypersurfaces. Everything ex-
tends nicely to the case of varieties; we simply define the tangent space of the
variety V at a to be the intersection of the tangent spaces at a of the hyper-
surfaces which intersect to form V. Since we will not be working with tangent
spaces to anything other than hypersurfaces, we say no more on this topic. The
tangent space to a quadric is easily described, using the following result, which
is a special case of Taylor’s theorem.

5.3.2 Lemma. Let f be a homogeneous polynomial of degree two in n + 1
variables over the field F and let H = H(f) be the (n+1)× (n+1) matrix with

ij-entry equal to ∂2

∂xi∂xj
f . Then

f(λx + µy) = λ2f(x) + λµxTHy + µ2f(y).

The matrix H(f) is the Hessian of f . It is a symmetric matrix and, if the
characteristic of F is even, its diagonal entries are zero. The tangent plane at the
point a has equation aTHx = 0, and therefore a is singular if and only aTH = 0.
Consequently the quadric determined by f is smooth if H(f) is non-singular.
(However it is possible for the quadric to be smooth when H is singular. For
example, consider any smooth conic in a projective plane over a field of even
order.) If the characteristic of F is not even then f(x) = 1

2x
TH(f)x. Since we

do not wish to restrict the characteristic of our fields, we will not be making
use of this observation. One important consequence of Lemma 3.2 is that if a
tangent to a quadric at a meets it at a second point b then it is contained in the
quadric. (For these conditions imply that f(a) = aTHb = f(b) = 0.) Since all
lines through a singular point are tangents, it follows that a line which passes
through a singular point and one other point must be contained in the quadric.
Of course any line meeting a quadric in three or more points must be contained
in it, by Lemma 3.1. A line which meets a quadric in two points is a secant.
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5.3.3 Lemma. Any line which meets a quadric in exactly one point is a tan-
gent.

Proof. Suppose l is a line passing through the point a on a given quadric
f(x) = 0 and that b ∈ l. Then the points of l on the quadric are given by the
solutions of the quadratic in λ and µ:

λ2f(a) + λµaTAb + µ2f(b) = 0.

Since f(a) = 0 this quadratic has only one solution if and only aTAb = 0, i.e.,
b ∈ Ta(f). Thus any line which meets the quadric in only the single point a
must lie in the tangent space Ta.

5.4 Intersections of Hyperplanes and Hypersur-
faces

Suppose that f is a homogeneous polynomial defined over a field F. Then f
is irreducible if it does not factor over F, and it is absolutely irreducible if it
does not factor over the algebraic closure of F of F. If g is a factor of F over F
then Vg is a component of Vf . Thus Vf is a union of components, although not
necessarily a disjoint union. Over finite fields the situation is a little delicate,
in that Vg may be empty. However this possibility will not be the source of
problems—such components tend to remain completely invisible.

A hyperplane can be viewed as a projective space in its own right. By
changing coordinates if needed, we may assume that the hyperplane has equation
x0 = 0. Suppose that f is homogeneous in n + 1 variables with degree k and
that g is the polynomial obtained by setting x0 equal to zero. Now g might be
identically zero, in which case we must have f = x0f

′ with f ′ a homogeneous
polynomial of degree k − 1. Thus the hyperplane is a component of Vf . If g is
not zero then it is a homogeneous polynomial of degree k in n variables, and
defines a nontrivial hypersurface. One interesting case is when the intersecting
hyperplane is the tangent space to Vf at the point a. Every line through a in
Ta(f) is a tangent line to Vf and hence to Ta(f)∩Vf . Thus a is a singular point in
the intersection. We will not have much cause to consider the intersection of two
general hypersurfaces. There is one case concerning intersecting ‘hypersurfaces’
in projective planes where we will need some information. This result is called
Bézout’s theorem.

5.4.1 Theorem. Let f and g be homogeneous polynomials over F in three
variables with degree k and l respectively. Then either the curves Vf and Vg

meet in at most kl points in PG(2,F), or they have a common component.

In general two hypersurfaces of degrees k and l meet in a variety of degree
kl. The theory describing the intersection of varieties is very complicated, even
by the standards of Algebraic Geometry. The proof of the above result is quite
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simple though. (It can be found in “Algebraic Curves” by Robert J. Walker,
Springer (New York) 1978. The proof of Bézout’s theorem given there is over
the complex numbers, but is valid for algebraically closed fields of any charac-
teristic.) In making use of Bézout’s lemma, we will need the following result,
which is an extension of the fact that if a polynomial in one variable t over F
vanishes at λ then it must have t− λ as a factor.

5.4.2 Lemma. Let f and g be polynomials in n + 1 variables over an alge-
braically closed field, with f absolutely irreducible. If g(x) = 0 whenever
f(x) = 0 then f divides g.

As an immediate application of the previous ideas, we prove the following.

5.4.3 Lemma. There is a unique conic through any set of five points which
contains a 4-arc.

Proof. Suppose that abcd is a 4-arc. Let f be the homogeneous quadratic
polynomial describing the conic formed by the union of the two lines a ∨ b and
c∨d, and let g be the quadratic describing the union of the lines a∨d and b∨ c.
Consider the set of all quadratic polynomials of the form

λf + µg. (5.3)

Each of these is a quadratic, and thus describes a conic. If x is a point not
on the 4-arc then the member of (5.3) with λ = g(x) and µ = −f(x) vanishes
at x and at each point of the 4-arc. This establishes the existence of a conic
through any set five points containing a 4-arc. Suppose now that C and C′ are
two conics meeting on the 4-arc abcd and the fifth point p. By Bézout’s lemma,
these two conics must have a common component. If the conics are distinct,
this component must be described by a linear polynomial, i.e., it must be a line
`. Hence C and C′ must each be the union of two lines, possibly the same line
twice. But now each conic contains ` and at least two points from the 4-arc not
on `. We conclude that the conics must coincide.

The hypersurfaces determined by the set of polynomials

λf + µg, λ, µ ∈ F

are said to form a pencil. We shall see that pencils can be very useful.
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Chapter 6

Conics

We now begin our study of quadrics in PG(2,F), i.e., conics. We will prove the
well known theorems of Pappus and Pascal, along with Segre’s theorem, which
asserts that a (q+1)-arc in a projective plane over a field of odd order is a conic.

6.1 The Kinds of Conics

By Corollary 4.1.2, every conic over the field F contains at least one point. We
will see that conics with only one point on them exist, but there is little to be
said about them. There are two obvious classes of singular conics. The first
consists of the ones with equations (aT x)2 = 0, with all points singular. We
will call this a double line. The second have equations (aT x)(bT x) = 0, with
a and b independent. The variety defined by such an equation is the union
of two distinct lines; the point of intersection of these two lines is the unique
singular point. A single point is also a conic. To see this, take an irreducible
quadratic f(x0, x1), then view it as a polynomial in three variables x0, x1 and
x2. Its solution set in the projective plane is the point (0, 0, 1)T . Smooth conics
do exist—the points of the form (1, t, t2)T where t ranges over the elements of
F, together with the point (0, 0, 1)T provide one example. (This is the variety
defined by the equation x0x2 − x2

1 = 0. You should verify that it is smooth.)
The four examples just listed exhaust the possibilities.

6.1.1 Theorem. A conic in PG(2,F) is either

(a) a single point,

(b) a double line,

(c) the union of two distinct lines, or

(d) smooth, and a (q + 1)-arc if F is finite with order q.
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Proof. To begin we establish an important preliminary result, namely that if is
a is a non-singular point in a conic C = Vf then

|C| = q + |Ta(C) ∩ C|

(This implies that the cardinality of C is either q + 1 or 2q + 1.) Suppose f is
homogeneous of degree two and that f(a) = 0. Then

f(λa + µx) = λµaTAx + µ2f(x).

If aTAx 6= 0, this implies that f(x)a − (aTAx)x is a second point on the line
through a and x which is on the conic. This shows that there is a bijection
between the lines through a not in Ta(f) and the points of Vf \Ta(f). If a is a
non-singular point then Ta is a line. By the previous lemma it contains either 1
or q+1 points of the conic. There are q+1 lines through any point in PG(2,F).
Thus if a is non-singular then the conic contains either q + 1 or 2q + 1 points
according as the tangent at a is contained in C = Vf or not.

We now prove the theorem. Suppose that C is a conic. Assume first that
it contains two singular points a and b. From our observations at the end of
the previous section, all points on a ∨ b must belong to C. If c is point of the
conic not on a ∨ b then all points on c ∨ a and c ∨ b must also lie in C. If x is a
point in PG(2,F) then there is a line through x meeting c∨ a, c∨ b and a∨ b in
distinct points. Hence this line lies in C and so x ∈ C. This proves that C is the
entire plane, which is impossible. Thus we have shown that if C contains two
singular points then it must consist of all points on the line joining them, i.e.,
it is a repeated line.

Assume then that C contains exactly one singular point, a say, and a further
point b. Then a ∨ b is contained in C. As there is only one singular point,
there must a point of C which is not on a ∨ b. The line joining this point to
a is also in C. This accounts for 2q + 1 points of C, hence our conic must be
the union of two distinct lines. Finally suppose that C contains at least two
points, and no singular points. If |C| = 2q+ 1 then each point of C must lie in a
line contained in C. Hence C must contain two distinct lines, and their point of
intersection is singular. Consequently C can contain no lines, but must rather
be a (q + 1)-arc.

This theorem is still valid over infinite fields, but the proof in this case is
left to the reader. One consequence of it is that a conic is smooth if and only if
it contains a 5-arc. In combination with Lemma 5.1, this implies that there is
a unique smooth conic containing a given 5-arc.

6.2 Pascal and Pappus

The theorems of Pascal and Pappus are two of the most important results
concerning projective planes over fields. We will prove both of these results
using Bézout’s lemma, and then give some of their applications. There are a
few matters to settle before we can begin. A hexagon in a projective plane
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consists of cyclically ordered set of six points A0, A1 . . . , A5, together with the
six lines AiAi+1. Here the addition in the subscripts is computed modulo six.
The six lines, which we require to be distinct, are the sides of the hexagon. Two
sides are opposite if they are of the form AiAi+1 and Ai+3Ai+4. Let ai,i+1,
i = 0, . . . , 5 be the homogeneous coordinate vectors of the sides of the hexagon.
Then the polynomial

f(x) = (xT a01)(xT a23)(xT a45) (6.1)

is homogeneous with degree three. Similarly, the three sides opposite to those
used in (6.1) determine a second cubic, g say. By Bézout’s lemma, two cubics
with no common component meet in at most nine points. A common component
of our two cubics would have to contain a line, and our hypothesis that the sides
are distinct prevents this. Therefore Vf and Vg meet in the six points of our
hexagon, together with the points of intersection of the three pairs of opposite
sides.

6.2.1 Theorem. (Pascal). The six points of a hexagon lie on a conic if and
only if the points of intersection of the three pairs of opposite sides lie on a line.

Proof. Let A0, A1 . . . , A5 be a hexagon. Suppose that the three points

A0A1 ∩A3A4, A1A2 ∩A4A5, A2A3 ∩A0A5

lie on a line l, with equation aT x = 0. Let f and g be the two cubics defined
above. For any scalars λ and µ, the polynomial F = λf + µg is cubic and
contains the nine points in which Vf and Vg intersect. We wish to choose the
scalars so that the line l is contained in VF . If l has only three points, there
is no work to be done. Thus we may choose a fourth point p on l, and choose
λ and µ so that F (p) = 0. Thus the cubic curve VF meets the line l in four
points, and if we extend F to its algebraic closure, then the line extending l still
meets the extension of VF in at least four points. Bézout’s theorem now implies
that l must be contained in the curve and so we deduce, by Lemma 4.4.2, that
F = (aT x)G for some polynomial F1. But G must be homogeneous of degree
two and therefore VG is a conic. Thus VF is the union of the line l and the
conic VG. If the hexagon is contained in the union of two lines then it is on a
conic, and we are finished. Otherwise a simple check shows that no points on
the hexagon lie on L (do it), hence they line on the conic. This proves the first
part of the theorem.

Assume now that the points of the hexagon lie on a conic. There is no loss
on assuming that this conic is not a double line or a single point. Thus it is
either the union of two distinct lines, or is smooth. It is convenient to treat
these two cases separately. Supose then that our conic is the union of the two
lines l and m, with respective equations aT x = 0 and bT x = 0. As the sides of
our hexagon are distinct, no four points of it are collinear. (Why?) Hence three
points of the hexagon lie on l and three on m. In particular, p = l ∩m is not a
point of the hexagon. Now choose λ and µ so that F = λf +µg passes through
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p. Then the lines l and m each meet the cubic F in four points, and so they must
lie in VF . Hence F is divisible by (aT x)(bT x) and the quotient with respect to
this product must be linear. Thus F is the union of three lines. Consequently
the points of intersection of the opposite sides of the hexagon must be collinear.

There remains the case that the points of the hexagon lie on a smooth conic
C, with equation h(x) = 0. This conic meets any curve of the form

F (x) := λf(x) + µg(x) = 0 (6.2)

in at least the six points of the hexagon. As |C| ≥ 6, our field must have
order at least five. If it is exactly five then C is contained in the solution set
of (6.2) for any choice of scalars; otherwise we may choose a point p of C not
in the hexagon and then choose λ and µ so that VF meets C in at least seven
points. By Bézout’s theorem, this implies that these two curves have a common
component. The only component of C is C itself, thus F = hG for some linear
polynomial G. Hence VF is the union of a line and the conic C, and the points
of intersection of the opposite sides of our hexagon must be on the line.

Pappus’ theorem is the assertion that the intersections of the opposite sides
of a hexagon are collinear if the points of the hexagon lie on two lines. It is
particularly important because it can be proved that a projective plane has
the form PG(2,F), where F is a field, if and only if Pappus’ theorem holds.
Thus, if we could prove geometrically that Pappus’ theorem held in all finite
Desarguesian planes then we would have a geometric proof that a finite skew
field is a field. No such proof is known. Planes for which Pappus’ theorem is
valid are called Pappian. All Pappian planes are, of course, Desarguesian.

6.3 Automorphisms of Conics

If C is a conic described by the equation f(x) = 0 and τ ∈ PGL(3,F) then we
let fτ denote the polynomial defining the conic Cτ . The automorphism group
of a conic in the Pappian plane PG(2,F) is the subgroup of PGL(3,F) which
fixes it as a set. The concept is well defined in all cases, but we will mainly be
interested in automorphisms of smooth conics. Our previous theorem implies
that smooth conics have many automorphisms.

6.3.1 Theorem. Let abcd be a 4-arc in a Pappian projective plane and let C
be a conic containing it. Then there is an involution τ in the automorphism
group of C such that aτ = d and bτ = c.

Proof. As PGL(3,F) is transitive on ordered 4-arcs, it contains an element τ
mapping abcd to badc. Hence τ fixes both the conics ac∪bd and ab∪cd. Suppose
that these conics are defined by the polynomials f and g repectively. For any λ
and µ in F, we find that

(λf + µg)τ = λfτ + µgτ = λf + µg.

Hence τ fixes each quadric in the pencil determined by f and g. Since every
conic containing the given 4-arc belongs to this pencil, this proves the theorem.
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One immediate consequence of this theorem is the following result.

6.3.2 Corollary. Let C be a smooth conic in a Pappian plane. Then its auto-
morphism group acts sharply 3-transitively on the points in it.

Proof. If |F| = 2 or 3, this result can be verified easily. Assume then that
|F| > 3. From the theorem, Aut(C) is 2-transitive on the points of C. To prove
that Aut(C) is 3-transitive it will suffice to prove that if A, B, C and D are four
points on C then there is an automorphism of it fixing A and B and mapping
C to D.

Let X be a fifth point on the conic. By the theorem, there is an involution in
Aut(C) swapping A and B, and sending C to X. Similarly, there is an involution
swapping B and A and sending X to D. The product of these two involutions is
the required automorphism. Suppose that A, B and C are three points on the
conic. Any automorphism which fixes these three points must fix the tangents
at A and B. Hence it fixes their point of intersection, which we denote by P .
Thus the automorphism fixes each point in a 4-arc, and the only element of
PGL(3,F) which fixes a 4-arc is the identity.

It follows at once from the corollary that if |F| = q then |Aut(C)| = q3−q.
We have already seen that the conics in PG(2,F) correspond to the points in
PG(5,F), and are thus easily counted, there are

[6] = q5 + q4 + q3 + q2 + q + 1

of them. As for the smooth conics, we have:

6.3.3 Lemma. Let F be the field with q elements, where q > 3. Then the
number of smooth conics in PG(2,F) is equal to q5 − q2.

Proof. Let nk denote the number of ordered k-arcs and let N be the number
of smooth conics. Then, as we noted at the end of Section 6, there is a unique
smooth conic containing a given 5-arc. Hence

N(q + 1)q(q − 1)(q − 2)(q − 3) = n5. (6.3)

We find that
n3 = (q2 + q + 1)(q2 + q)q2.

Let ABC be a 3-arc. There q − 1 lines through A which do not pass through
B or C, and on each of these lines there are q − 1 points which do not lie on
any line joining B and C. Thus we can extend a ABC to a 4-arc using any
one of (q − 1)2 points, and so n4 = (q − 1)2n3. There are q − 2 lines through
a point in a 4-arc ABCD which do not meet a second point on the arc, and
each of these lines contains q− 3 points not on the lines BC, BD or CD. Thus
n5 = (q − 2)(q − 3)n4. Accordingly

n5 = (q − 3)(q − 2)(q − 1)2q3(q + 1)(q2 + q + 1)

and, on comparing this with (6.3), we obtain that N = (q2 + q + 1)q2(q − 1) as
claimed.
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The group PGL(3,F) permutes the smooth conics in PG(2,F) amongst
themselves. The number of conics in the orbit containing C is equal to

|PGL(3,F)|/|Aut(C)|.

The order of PGL(3,F) is

(q − 1)−1(q3 − 1)(q3 − q)(q3 − q2) = (q2 + q + 1)(q + 1)q3(q − 1)2.

Since the automorphism group of a smooth conic has order q3 − q, the orbit of
C has cardinality equal to

(q2 + q + 1)(q + 1)2q3(q − 1)2/(q3 − q) = (q5 − q2).

As there are altogether q5 − q2 smooth conics, this implies the following.

6.3.4 Theorem. All smooth conics in the Pappian plane PG(2,F) are equiv-
alent under the action of PGL(3,F).

6.4 Ovals

An oval in a projective plane of order q, i.e., with q + 1 points on each line, is
simply a (q+1)-arc. Every smooth conic in a Pappian plane is a (q+1)-arc; we
show now that ovals have many properties in common with conics. As usual,
some definitions are needed. Let K be a k-arc. A secant to K is a line which
meets it in two points, a tangent meets it in one point. A line which does not
meet the arc is an external line. Since no line meets K in three points, it has
exactly

(
k
2

)
secants. Each point in K lies on k−1 of these secants, whence there

are q+ 2− k tangents through each point and k(q+ 2− k) tangents altogether.
An immediate consequence of these deliberations is that a k-arc has at most
q+ 2 points on it. (If q is odd this bound can be reduced to q+ 1. Proving this
is left as an exercise.) Our next result is an analog of the fact that a circle in
the real plane divides the points into three classes:

(a) the points outside the circle, which each lie on two tangents

(b) the points on the circle, which lie on exactly one tangent

(c) the points inside the circle, which lie on no tangents.

6.4.1 Lemma. Let F be the field of order q, where q is odd, and let Q be a
(q + 1)-arc in PG(2,F). Then there are

(
q+1
2

)
points, each lying on exactly two

tangents to Q, and
(
q
2

)
points which lie on none.

Proof. Suppose P is a point on a tangent to Q, but not on Q. Then the lines
through P meet Q in at most two points, and thus they partition the points of
Q into pairs and singletons. Each singleton determines a tangent to Q through
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P . Since q + 1 is even, P lies on an even number of tangents. As P is on
one tangent, it therefore lies on at least two. On the other hand, each pair of
tangents to Q meet at a point off Q, and this point is on two tangents. Thus
there are at most

(
q+1
2

)
triples formed from a pair of distinct tangents and their

point of intersection. This implies that any point off Q which is on a tangent is
on exactly two.

When q is even, the tangents to a (q+1)-arc behave in an unexpected fashion.

6.4.2 Lemma. Let F be the field of order q, where q is even, and let Q be a
(q + 1)-arc in PG(2,F). Then the tangents to Q are concurrent. Thus there is
one point which lies on all tangents to Q, and the remaining points off Q all lie
on exactly one tangent.

Proof. Let P and Q be two distinct points on Q. Since the number of points
in the oval is odd, each point on the line PQ which is not on Q must lie on a
tangent to it. As P and Q both lie on tangents, it follows that each point on
PQ is on a tangent. The number of tangents to Q is q + 1 and the number of
points on PQ is also q + 1. Thus each point on a secant to Q is on a unique
tangent. Now let K be the point of intersection of two tangants which do not
meet on Q. Then K cannot lie on any secant, and so all lines through K are
tangents to Q.

The point K is called the nucleus or knot of the oval. The oval, together with
its nucleus forms a (q + 2)-arc. A (q + 2)-arc is sometimes called a hyperoval.
Since we can delete any point from a hyperoval to obtain an oval, a given oval
can thus be used to form a number of distinct ovals. In particular, if we start
with a conic in a Pappian plane of even order, we can construct (q + 1)-arcs
which are not conics.

6.5 Segre’s Characterisation of Conics

B. Segre proved that, if q is odd, any (q + 1)-arc in the projective plane over
GF (q) is a conic. We now present the proof of this important result. We first
describe one property of (q+1)-arcs in projective planes over fields of odd order.

6.5.1 Lemma. Let Q be a (q+1)-arc in the projective plane over GF (q), where
q is odd. Let A0, A1 and A2 be three distinct points on Q and let l0, l1 and l2 be
the tangents at these three points. Then the triangle A0A1A2 is in perspective
with the triangle formed by the points l1 ∩ l2, l0 ∩ l2 and l0 ∩ l1.

Proof. Since PGL(3,F) is transitive on 3-arcs, we may take the points A0, A1

and A2 to be represented by

(1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T



62 CHAPTER 6. CONICS

respectively. The line A0A1 can be represented by (0, 0, 1) and A0A2 by (0, 1, 0).
Hence the tangent to Q at A0 can be represented by a vector of the form

(0, 1, 0)− k0(0, 0, 1) = (0, 1,−k0)

Similarly the tangents atA1 andA2 are represented by (−k1, 0, 1) and (1,−k2, 0).
We will show that k0k1k2 = −1, and then deduce the lemma from this. Let B
be a point (b0, b1, b2)T on Q distinct from A0. The line A0B can be taken to be
represented by the vector

(0, 1,−h0)

for some scalar h0 = h0(B), and this scalar is non-zero if the line does not pass
through A1. Similarly, if B is distinct from A1, the line A1B can be represented
by

(−h1, 0, 1)

and, if B is distinct from A2 then A2B can be represented by

(1,−h2, 0).

Since B lies on the lines represented by these three vectors, we find that

b1 = h0b2, b2 = h1b0, b0 = h2b1.

This shows that if one coordinate of B is zero than all coordinates are zero.
Hence none of b0, b1 and b2 is equal to zero, and this implies in turn that

h0(B)h1(B)h2(B) = 1. (6.4)

Conversely, if h is an element of F different from 0 and k0 then the line
represented by (0, 1,−h) passes through A0 and some point on Q distinct from
A1 and A2. The product of the q − 1 non-zero elements of F is equal to − 1
and so the product of the parameters h0(B) as B ranges over the points of Q
distinct from A0, A1 and A2 must be − 1/k0. It follows now using (6.4) that

(−1)3

k0k1k2
= 1

and hence k0k1k2 = −1, as claimed. The tangents at A0 and A1 meet at
(1, k0k1, k1)T and the line joining this to A2 is represented by the vector

(k0k1,−1, 0).

The tangents at A1 and A2 meet at (k2, 1, k1k2) and the line joining this to A0

is given by
(0, k1k2,−1).

The tangents at A2 and A0 meet at (k0k2, k0, 1) and this joined to A1 by the
line

(−1, 0, k0k2).

These three lines are concurrent, passing through the point (1, k0k1,−k1).
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6.5.2 Theorem. (Segre). If q is odd then any (q + 1)-arc in the projective
plane over GF (q) is a conic.

Proof. We continue with the notation of the previous lemma. Since PGL(3,F) is
transitive on ordered 4-arcs, we may assume without loss that the triangles of the
lemma are in perspective from the point (1, 1, 1)T , i.e., that k0 = k1 = k2 = −1.
Let B be a fourth point on Q with coordinate vector (x1, x2, x3)T and tangent
vector (l0, l1, l2). The line joining B to the intersection of the tangents at A0

and A1 has coordinate vector of the form

α0(0, 1, 1) + β0(1, 0, 1).

Since this line passes through B we may take α = x0 + x2 and β = −(x1 + x2).
Similarly the line through A0 and the intersection of the tangents at A1 and B
can be taken to have coordinate vector

l0(1, 0, 1)− (l0, l1, l2)

while the line joining A1 to the intersection of the tangents at B and A0 has
coordinate vector

(l0, l1, l2)− l1(0, 1, 1).

Since these three coordinate vectors represent concurrent lines, they are linearly
dependent. Since the tangents at A0, A1 and B are not concurrent, they are
linearly independent. Since we have the former written as linear combinations
of the latter, it follows that the matrix of coefficients 0 x0 + x2 − (x1 + x2)

− 1 0 l0
1 − l1 0


must have determinant zero. This implies that

l1(x1 + x2) = l0(x0 + x2).

The last identity was derived by working with the three points B, A0 and A1.
If instead we use B, A1 and A2 we obtain

l2(x0 + x2) = l1(x0 + x1).

Thus the respective ratios between l0, l1 and l2 are the same as the ratios
between x1 + x2, x0 + x2 and x0 + x1. We also have

l0x0 + l1x1 + l2x2 = 0,

since B lies on the tangent to Q at B. Hence we get

0 = (x1 + x2)x0 + (x0 + x2)x1 + (x0 + x1)x2 = 2(x0x1 + x1x2 + x0x2).

Since our field has odd order, we can now divide this by two, and thus deduce
that the points of Q distinct from A0, A1 and A2 lie on the conic

x0x1 + x1x2 + x0x2 = 0.

It is trivial to check that A0, A1 and A2 lie on it too.
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More general results are known. Every q-arc in a projective plane over a field
of odd order q ≥ 5 must be contained in a conic. (We present one proof of this
in the next section. A more elementary proof will be found in Lüneburg.) In
addition to its beauty, Segre’s theorem has a number of important applications.
We will meet some of these later. There do exist (q+1)-arcs in projective planes
over fields of even order which are not related to conics. (See the Exercises for
an example.)

6.6 q-Arcs

Let K be a k-arc in the projective plane over the field of order q. Then each
point in the arc lies on

(q + 1)− (k − 1) = q + 2− k

tangents to the arc. These tangents thus form a set of k(q+2−k) points in the
dual space. We have the following result. A proof will be found in Hirschfeld
[PGOFF].

6.6.1 Theorem. (Segre). Let K be a k-arc in the projective plane over the field
of order q. Then the points in the dual plane corresponding to the tangents to
the arc lie on a curve. This curve does not contain a point corresponding to a
secant, and has degree q+2−k if q is even and degree 2(q+2−k) if q is odd.

6.6.2 Corollary. (Segre). Let K be a q-arc in the projective plane over the
field with order q, and let q be odd. Then K is contained in a conic.

Proof. We have already proved that every 3-arc in contained in a 4-arc, so we
may assume that q > 3. By the theorem, there is a curve of degree four C in
the dual plane which contains the 2q points corresponding to the tangents to
K, and none of the points corresponding to the secants. Let a be a point off K.
Since q is odd, the number of tangents to K through a is odd. Suppose that a
lies on at least five tangents to K. The lines through a correspond to the points
on a line ` in the dual plane, and ` meets C in at least five points. Since C has
degree four, Bézout’s theorem yields that ` must be a component of C. Thus all
the points of ` are on C, and so none of the lines through a can be secants to
K. Therefore all the lines through a which meet K are tangents, and so K ∪ a
is a (q + 1)-arc. Since q is odd, all (q + 1)-arcs are conics by Theorem 5.2.

We can complete the proof by showing that for any q-arc, there is a point
a on at least five tangents. If y /∈ K, let ty be the number of tangents to K
through y. By counting the pairs (`, y), where y is a point off K and ` is a
tangent through y, we find that ∑

y/∈K

ty = 2q2
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and by counting the triples (`, `′, y) where ` and `′ are distinct tangents and
y = ` ∩ `′, we obtain ∑

y/∈K

ty(ty − 1) = 2q(2q − 2).

Together these equations imply that∑
y/∈K

(ty − 1)(ty − 3) = (q − 1)(q − 3).

Since q is odd, ty is odd for all points y not on K. As q > 3, the last equation
thus implies that ty ≥ 5 for some point y not on K.

The above proof is an improvement on the original argument of Segre, due
to Thas.
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Chapter 7

Polarities

In this chapter we study polarities of projective geometries. We will see that
they are closely related to quadrics.

7.1 Absolute Points

A polarity of a symmetric design is a bijective mapping φ sending its points
to its blocks and its blocks to its points, such that if x ∈ yφ then y ∈ xφ. A
point x such that x ∈ xφ is called absolute, and if every point is absolute we
say that φ is a null polarity. A polarity of a design determines automatically
a polarity of the complementary design. (This will be null if and only if φ has
no absolute points.) The points and hyperplanes of a projective geometry form
a symmetric design. The mapping which takes the point with homogeneous
coordinate vector a to the hyperplane with vector aT is our first example of
a polarity. Let D be a symmetric design with points v1, . . . , vn and a polarity
φ. Then the incidence matrix, with ij-entry equal to 1 if xi ∈ xφ

j and zero
otherwise, is symmetric. (In fact, a symmetric design has a polarity if and only
if it has a symmetric incidence matrix.)

7.1.1 Theorem. Let D be a symmetric (v, k, λ)-design with a polarity φ. Then

(a) if k − λ is not a perfect square, φ has exactly k absolute points,

(b) if φ is null then
√
k − λ is an integer and divides v − k,

(c) if φ has no absolute points then
√
k − λ is an integer and divides k.

Proof. Let N be the incidence matrix of D. As just noted, we may assume that
N is symmetric, whence we have

N2 = (k − λ)I + λJ. (7.1)

(Here J is the matrix with every entry equal to 1.) The number of absolute
points of the polarity is equal to trN , which is in turn equal to the sum of the

67
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eigenvalues of N . From (7.1) we see that the eigenvalues of N2 coincide with the
eigenvalues of (k − λ)I + λJ . This means that N2 must have as its eigenvalues

k − λ+ (v − 1)λ

with multiplicity one and k−λ, with multiplicity v− 1. A simple design theory
calculation shows that k − λ + (v − 1)λ = k2. The eigenvalues of N2 are the
squares of the eigenvalues of N . As each row of N sums to k, we see that k is
an eigenvalue of N . Since k2 is a simple eigenvalue of N2, it follows that − k
cannot be an eigenvalue of N . Hence N has v − 1 eigenvalues equal to either√
k − λ or −

√
k − λ. Suppose that there are exactly a eigenvalues of the first

kind and b of the second. Then

trN = k + (a− b)
√
k − λ (7.2)

and, as trN , k, a and b are all integers, this implies that either a = b or (k−λ)
is a perfect square. This proves (a) in the statement of the theorem. If the
polarity is null then trN = v, whence (7.2) implies that

√
k − λ =

v − k

b− a
.

Since the right hand side is rational this implies again that k − λ is a perfect
square, and in addition that

√
k − λ must divide v−k. Finally, (c) follows from

(b) applied to the complement of the design D.

7.1.2 Corollary. Every polarity of a finite projective space has an absolute
point.

Proof. Continuing with the notation of the theorem, we see that if k − λ is a
perfect square then

√
k − λ divides k if and only if it divides λ. For a projective

geometry of rank n and order q we have

v = [n], k = [n− 1], λ = [n− 2],

whence k − λ = qn−1 and v − k = qn. Therefore k and λ are coprime for all
possible values of q and n.

7.2 Polarities of Projective Planes

The results in this section are valid for all projective planes, Desarguesian or
not. If x is a point or line in a projective plane and φ is a polarity of the plane
then we denote the image of x under φ by xφ.

7.2.1 Lemma. Let φ be a polarity of a projective plane. Then each absolute
line contains exactly one absolute point, and each absolute point is on exactly
one absolute line.
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Proof. The second statement is the dual of the first, which we prove as follows.
Suppose a is an absolute point and that b is a second absolute point on ` = aφ.
Then a ∈ bφ since b ∈ aφ. So

a ∈ ` ∩ bφ.

Now bφ 6= `, because aφ = bφ implies a = b. Hence

a = ` ∩ bφ

Since b = ` ∩ bφ, this proves that a = b.

7.2.2 Theorem. Let φ be a polarity of a projective plane of order n. Then φ
has at least n + 1 absolute points. These points are collinear if n is even and
form a q + 1-arc otherwise.

Proof. Let m be a non-absolute line. We show first that the number of absolute
points on m is congruent to n, modulo 2. Suppose a ∈ m. If a is not an absolute
point then b = aφ ∩ m is a point on m distinct from a. Further, bφ contains
both a and mφ; hence it is a line through a distinct from m. Thus bφ ∩m = a,
and we have shown that the pairs

{a, aφ ∩m}

partition the non-absolute points on m into pairs. This proves the claim.
Assume now that n is even and let p be a non-absolute point. The n + 1

lines through p partition the remaining points of the plane. As each line must
contain an absolute point (n+1 is odd) there are at least n+1 absolute points.
Suppose that there are exactly n+ 1 absolute points, and let x and y be two of
them. If there is a non-absolute point q on x∨y then the argument we have just
shows that the n lines through q distinct from x ∨ y contain at least n distinct
absolute points. Taken with x and y we thus obtain at least n + 2 absolute
points. This completes the proof of the theorem when n is even.

Assume finally that n is odd and let p be an absolute point. Then pφ is the
unique absolute line through p and so there are n non-absolute lines through p.
Each of these contains an even number of absolute points, and hence at least
one absolute point in addition to p. This shows that there are at least n + 1
absolute points. If there are exactly n + 1, this argument shows that each line
through p contains either one or two absolute points. As our choice of p was
arbitrary, it follows that the absolute points form an arc.

7.2.3 Theorem. Let φ be a polarity of a projective plane of order n. Then φ
has at most n3/2 +1 absolute points. If this bound is achieved then the absolute
points and non-absolute lines form a 2-(n3/2 + 1, n1/2 + 1, 1) design.

Proof. Denote the number of absolute points by s and ki be the number of
absolute points on the i-th non-absolute line. (The ordering is up to you.) Let
N = n2 + n+ 1− s; thus N is the number of non-absolute lines. Consider the
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ordered pairs (p, `) where p is a absolute point and ` is a non-absolute line on p.
Each absolute point is on n non-absolute lines, so counting these pairs in two
ways yields

ns =
N∑

i=1

ki. (7.3)

Next we consider the ordered triples (p, q, `) where p and q are absolute points
on the non-absolute line `. Counting these in two ways we obtain

s(s− 1) =
N∑

i=1

ki(ki − 1). (7.4)

The function x2 − x is convex and so

N∑
i=1

ki(ki − 1)
N

≥
∑N

i=1 ki

N

(∑N
i=1 ki

N
− 1

)
,

with equality if and only if the ki are all equal. Using (??) and (7.4), this implies
that n2s ≤ (s+n−1)N . Recalling now that N = n2 +n+1−s and indulging in
some diligent rearranging, we deduce that (s− 1)2 ≤ n3, with equality holding
if and only if the ki are equal. This yields the theorem.

A 2-(m3 +1,m+1, 1)-design is called a unital. We will see how to construct
examples in the following sections. We record the following special properties
of the set of absolute points of a polarity realising the bound of the theorem.

7.2.4 Lemma. Let φ be a polarity of a projective plane of order n having
n3/2 + 1 fixed points. Then every line meets the set U of absolute points of φ
in 1 or n1/2 + 1 points. For each point u in U there is a unique line ` such that
` ∩ U = u, and for each point v off U there exactly n1/2 + 1 lines through it
which meet U in one one point.

7.3 Polarities of Projective Spaces

We are now going to study polarities of projective spaces over fields, and will
give a complete description of them. The key observation is that a polarity is
a collineation from PG(n,F) to its dual and is therefore, by the Fundamental
Theorem of Projective Geometry, induced by a semi-linear mapping. Let φ be a
polarity of PG(n− 1,F). Then there is an invertible n×n matrix A over F and
a field automorphism τ such that, if a is represented by the vector a then Aφ is
represented by (aτ )TA. Thus aφ is the hyperplane with equation (aτ )TAx = 0.
Since φ is a polarity,

(xτ )TAy = 0 ⇐⇒ (yτ )TAx = 0.
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But (yτ )TAx = 0 if and only if xTAT yτ = 0, and this is equivalent to requiring
that (xTAT )τy = 0. Hence (xτ )TA and (xTAT )τ−1

are coordinate vectors for
the same hyperplane. This implies that AT xτ = κ1(Ax)τ−1

for some non-zero
scalar κ1, and so

A−1(Aτ )T xτ2
= κx (7.5)

with κ = κτ
1 .

Since A−1(Aτ )T is a linear and not a semilinear mapping, it follows from
(7.5) that xτ2

must lie in V (n,F), and hence that τ2 = 1. Therefore (7.5) implies
that A−1(Aτ )T = κI and so we have shown that every polarity is determined
by a field automorphism τ of order dividing two and a linear mapping A such
that (Aτ )T = κA. Now

A = Aτ2
= ((Aτ )T )τ )T = ((κA)τ )T = κτ (Aτ )T = κτκA

and therefore κτ = κ−1. If we set B = (1 + κ)A then

(Bτ )T = (((1 + κ)A)τ )T = ((1 + κ)τ )(Aτ )T = (1 + κ−1)κA = (κ+ 1)A = B.

The hyperplanes with coordinate vectors (xτ )TAT and (xτ )BT are the same,
for any vector x. Hence, if κ 6= −1, we may take our polarity to be determined
by a field automorphism τ with order dividing two and an invertible matrix B
such that (Bτ )T = B. If κ = −1 then we observe that we may replace A by
C = λA for any non-zero element of of F. Then

(Cτ )T = −λ
τ

λ
C.

Thus if λτ/λ 6= 1 we may replace A by C and then reapply our trick above to
get a matrix B such that (Bτ )T = B. Problems remain only if λτ = λ for all
elements λ of F. But then τ must be the identity automorphism and AT = −A.
Our results can be summarised as follows.

7.3.1 Theorem. Let φ be a polarity of PG(n−1,F). Then there is an invertible
n × n matrix A and a field automorphism τ such that xφ = (xτ )TA. Further,
either

(a) (Aτ )T = A and τ has order two,

(b) AT = A and τ = 1, or

(c) AT = −A, the diagonal entries of A are zero and τ = 1.

The three types of polarity are known respectively as Hermitian, orthogonal
and symplectic. The last two cases are not disjoint in characteristic two; a po-
larity that is both orthogonal and symplectic is usually be treated as symplectic.
Our argument has actually established that polarities of these types exist—we
need only choose an invertible matrix A and an optional field automorphism of
order two.
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7.4 Polar Spaces

Suppose that φ is a polarity of PG(n,F). If H is a hyperplane then p ∈ ∩{uφ :
u ∈ H} if and only if H = pφ, or equivalently, if and only if p = Hφ. If U is a
subspace, we may therefore define

Uφ =
⋂

u∈U

uφ.

A subspace U is isotropic if U ⊆ Uφ. Any polarity thus determines a collection
of isotropic spaces of PG(n,F). (A point is isotropic if it is absolute.) The set
of isotropic points of a polarity φ, together with the collection of its isotropic
subspaces, provides the canonical example of a polar space. A polar space of
rank n consists of a set of points S, together with a collection of subsets of S,
called subspaces, such that the following axioms hold.

(a) A subspace, together with the subspaces it contains, forms a generalised
projective space of rank at most n. (A generalised projective space is either
a projective space, or consists of a set with all two-element subsets as lines.)

(b) Given a subspace U of rank n and a point p not in U , there is a unique
subspace V which contains p and all points of U which are joined to p by a
line; rk(U ∩ V ) = n− 1.

(c) There are two disjoint subspaces of rank n.

A polar space is not a linear space, since there are pairs of points which are not
collinear and the entire point set is not a subspace. However polar spaces make
perfectly good matroids, as we will see. From Lemma 6.2.2 and Lemma 6.2.4,
we see that every quadric is a polar space. In the next section we will study
the connection between quadrics and polarities. To prove that the isotropic
subspaces of an arbitrary polarity form a polar space requires some work. (The
difficulty is to verify that there are pairs of disjoint maximal isotropic subspaces.)

There is an alternative, and simpler, approach to polar spaces. We define a
Shult space to be an incidence structure S with the property that if p is a point
and ` is line not on p then p is collinear with one, or all, the points on `. A Shult
space is not automatically a linear space, because we have not required that any
two points lie on at most one line. A Shult space is non-degenerate if there is no
point which is collinear to all the others. Buekenhout and Shult proved that any
non-degenerate Shult space is a polar space. (The converse is an easy exercise.)
We will present a proof of their result later. Note, however, that it is trivial
to verify that the isotropic points and lines of a polarity form a Shult space,
and hence a polar space. In the next few sections we consider the properties
of the classical, finite, examples of polar spaces. Following this we will make
an axiomatic study of polar spaces, including a proof of the Buekenhout-Shult
theorem.
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7.5 Quadratic Spaces and Polarities

Let V be a vector space over F. A quadratic form Q over F is a function from
V to F such that

(a) Q(λu) = λ2Q(u) for all λ in F and u in V , and

(b) Q(u+ v)−Q(u)−Q(v) is bilinear.

Let β be the bilinear form defined by

β(u, v) = Q(u+ v)−Q(u)−Q(v).

We say that β is obtained from Q by polarisation. The above conditions imply
that

4Q(u) = Q(2u) = Q(u+ u) = 2Q(u) + β(u, u)

whence we have β(u, u) = 2Q(u). Thus, if the characteristic of F is not even,
the quadratic form is determined by β. If the characteristic of F is even then
β(u, u) = 0 for all u in V . In this case we say that the form is symplectic. Each
homogeneous quadratic polynomial in n variables over F determines a quadratic
form on Fn.

A quadratic form is non-singular if, when Q(a) = 0 and β(a, v) = 0 for all
v, then v = 0. In odd characteristic a quadratic form is non-singular if and only
if β is non-degenerate. (Exercise.) A subspace U of V is singular if Q(u) = 0
for all u in U .

We are going to classify quadratic forms over finite fields. One consequence
of this will be the classification of orthogonal polarities over fields of odd char-
acteristic. For any subspace W of V , we define

W⊥ = {v ∈ V : β(v, w) = 0 ∀w ∈W}

If S is a subset of V we write 〈S〉 to denote the subspace spanned by V . If w is
a vector in V then we will normally write w⊥ rather than 〈w〉⊥.

We define an quadratic space to be a pair (V,Q) where V is a vector space
and Q is a quadratic form on V . We say that (V,Q) is non-singular if Q is. If
(V,Q) is a quadratic space and U is a subspace of V , then (U,Q) is a quadratic
space. This may be singular even if (V,Q) is not—for example, let U be the
span of a singular vector. The form on (U,Q) is actually the restriction of Q to
U , and should be denoted by Q�U .

We note the following result, the proof of which is left as an exercise.

7.5.1 Lemma. If W is a subspace of the quadratic space (V,Q), then the
quotient space W⊥/W ∩ W⊥ is an quadratic space with quadratic form Q
satisfying Q(v +W ) = Q(v).
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Suppose (U,QU ) and (V,QV ) are quadratic spaces over F. If W := U ⊕ V ,
then the function QW defined by

QW ((u, v)) = QU (u) +QV (v)

is a quadratic form on W . (It may be best to view this as follows: if w ∈ W
then we can express w uniquely as w = u + v where u ∈ U and v ∈ V , then
QW (w) is defined to be QU (u) +QV (v).) The form QW is non-singular if and
only if QU and QV are.

7.5.2 Lemma. If W is a subspace of the quadratic space (V,Q) and W ∩W⊥ =
{0}, then (V,Q) is the direct sum of the spaces (W,Q) and (W⊥, Q). If (V,Q)
is non-singular, so are (W,Q) and (W⊥, Q).

An quadratic space is anisotropic if Q(v) 6= 0 for all non-zero vectors v
in V . You may show that if a subspace (W,Q) of (V,Q) is anisotropic, then
W ∩W⊥ = {0}.

7.5.3 Lemma. If V is an anisotropic quadratic space overGF (q) then dimV ≤
2. If dimV = 2 then V has a basis {d, d′} such that Q(d′) = (d, d′) = 1.

Proof. Assume that dimV ≥ 2. Choose a non-zero vector e in V and a vector
d not in e⊥. Let W = 〈d, e〉. Assume Q(e) = ε and that d has been chosen so
that (d, e) = ε. Assume further that σ = Q(d)/ε. Then

Q(αe+ βd) = α2ε+ β2σε+ αβε = ε(α2 + αβ + β2σ).

If W is anisotropic then α2 +αβ+β2σ 6= 0 for all α in F. Hence the polynomial
x2 + x + σ is irreducible over F = GF (q). Let θ be a root of it in GF (q2) and
let a 7→ ā be the involutory automorphism of F(θ). Then

Q(αe+ βd) = ε(α+ βθ)(α+ βθ̄)

from which it follows that {Q(w) : w ∈ W} = F. This means that we can
assume that e was chosen so that ε = 1. Finally, if n ≥ 3 and v is a non-zero
vector in 〈d, e〉⊥ then Q(v) = −Q(w) for some w in V . Then Q(v+w) = 0 and
V is not anisotropic.

It follows readily from the above lemma that, up to isomorphism, there is
only one anisotropic quadratic space of dimension two over a finite field F. We
note, if F is finite and Q(x) = 0 for some x then (x, x) = 0. For if q is even then
(x, x) = 0 for all x, and if q is odd then 0 = 2Q(x) = (x, x) again implies that
(x, x) = 0.

7.5.4 Theorem. Let (V,Q) be an quadratic space of dimension n over GF (q).
Then V has a basis of one the following forms:

(a) n = 2m : e1, . . . , em; f1, . . . , fm where

Q(ei) = Q(fi) = 0, (ei, fj) = δij , (ei, ej) = (fi, fj) = 0
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(b) n = 2m+2 : d, d′, e1, . . . , em; f1, . . . , fm with the ei and fj as in (a), 〈d, d′〉
an anisotropic quadratic space with Q(d′) = (d, d′) = 1, Q(d) = σ where
x2 + x+ σ is irreducible over GF (q) and

(d, ei) = d(fi) = (d′, ei) = (d′, fi) = 0

(c) n = 2m+ 1 : d, e1, . . . , em; f1, . . . , fm and everything as in (b).

Proof. Assume that dimV ≥ 3, and let e1 be a non-zero vector in V with
Q(e1) = 0. Then there is a vector f in V such that (e1, f) = 1 and

Q(αe1 + f) = Q(f) + α.

If we set f1 equal to −Q(f)e1 + f then Q(f1) = 0 and (e1, f1) = 1. (Here we
are using the fact that (e1, e1) = 0.) Now V is the orthogonal direct sum of
〈e1, f1〉 and 〈e1, f1〉⊥, and the result follows by induction.

We can write down the quadratic forms corresponding to the three cases of
the theorem as follows:

(a) Q(
∑
αiei +

∑
βifi) =

∑
αiβi

(b) Q(γd+ γ′d′ +
∑
αiei +

∑
βifi) = γ2σ + γγ′ + γ′

2 +
∑
αiβi

(c) Q(γd+
∑
αiei +

∑
βifi) = γ2σ +

∑
αiβi

In both (b) and (c), the field element σ is chosen so that x2 +x+σ is irreducible
over GF (q).

An isometry of the quadratic space (V,Q) is an element τ of GL(V ) such
that Q(vτ) = Q(v) for all v in V . The set of all isometries of V is the isometry
group of V . It is denoted by O(V ) in general, and by O+(2m, q), O−(2m+2, q)
and O(2m+ 1, q) respectively in cases (a), (b) and (c) above.


