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Chapter 1

Finite Fields

Finite fields and the principles of linear algebra will be fundamental for ev-
erything we do in this class. Recall the definition of a field:

1.1 Definition. A field F is a set with two binary operations + (addition)
and · (multiplication) such that the following hold:

• (F, +) is an abelian group (the additive group of F ). Denote the
neutral element by 0.

• (F \ {0}, ·) = F ∗ is an abelian group (the multiplicative group of
F ),

• 0 · a = a · 0 = 0 for all a ∈ F,

• a(b + c) = ab + ac for all a, b, c ∈ F (distributive law).

Observe a condition, which is hidden in the second axiom: the product
of two nonzero elements is nonzero: a field has no divisors of 0.

Let p be a prime number. Then Z/pZ is a finite field. We denote it by
Fp. If n is a composite number (not a prime), then Z/nZ cannot be a field
as it has divisors of 0. Why is Z/pZ a field? As p is prime there are no
divisors of 0 (the product of two integers, both of which are not divisible by
p is again not divisible by p). The only field axiom which could possibly be
in doubt is the existence of multiplicative inverses. So let an integer a be
given, which is not divisible by p. As p is prime it follows gcd(a, p) = 1. The
main theoretical consequence of the Euclidean algorithm is that gcd(n, m)
can always be written as a linear combination of n and m. In our situation
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we obtain integers b, c such that ab + cp = 1. This shows that b represents
the inverse of a in Fp. A different proof is sketched in the first problem. For
example, as 3 · 4 = 12 we have 4 = 1/3 in F11. The inverse of 4 in F13 is 10
as 4 · 10 = 40 ≡ 1( mod 13).

Let F be any finite field. Denote the sum of n copies of 1 by n · 1 ∈ F.
As F is finite the n · 1 ∈ F cannot all be different. So there must be some
m < n such that n · 1 = m · 1. It follows (n − m) · 1 = 0. Denote by a the
smallest natural number such that a · 1 = 0. As F has no zero divisors we
conclude that a = p must be prime. It follows from the minimality that p
is the only prime with this property and that n · 1 = 0 if and only if n is a
multiple of p. We see that the i · 1, i = 0, 1, . . . p − 1 form a subfield of F,
which is isomorphic to Fp. We call p the characteristic of F and Fp, the
subfield of F generated by 1, its prime field. So every finite field F may be
described as an extension of its prime field Fp. As F is by definition a vector
space over Fp its number of elements is pn for some n.

1.2 Theorem. Every finite field has pn elements for some prime p. The
subfield generated by the element 1 is Fp = Z/pZ.

In order to generate finite fields we use irreducible polynomials. So let
f(X) ∈ Fp[X] be an irreducible polynomial of degree n. Take f(X) to be
monic (its leading coefficient is 1), so that f(X) = Xn + an−1X

n−1 + · · · +
a1X+a0. We claim that F = Fp[X]/(f(X)), the factor ring of the polynomial
ring over the ideal generated by f(X), is a field with pn elements:
denote by x the image of X mod the ideal (f(X)). Remark that (f(X))
simply is the set of all polynomials, which are divisible by f(X). At first
we see that F is a vector space of dimension n over Fp, so |F | = pn. The
elements of F can be uniquely represented in the form u =

∑n−1
i=0 cix

i. In
fact, as xn = −an−1x

n−1 − · · · − a1x − a0, every element of F has this form.
On the other hand, the xi, i = 0, 1, . . . , n − 1 are linearly independent as
otherwise f(X) would divide a nonzero polynomial of degree < n, which
is impossible. So every element of F can be written in a unique way as a
polynomial of degree < n with coefficients in Fp. Assume g(x), h(x) are such
polynomials and g(x)h(x) = 0. This means that f(X) divides g(X)h(X). As
f(X) is irreducible it must divide either g(X) or h(X). Thus either g(x) = 0
or h(x) = 0. We have shown that F has no zero divisors. It remains to
show that every nonzero element of F has a multiplicative inverse. So let
g(X) a nonzero polynomial of degree < n. As f(X) is irreducible, it must be
coprime to g(X). We use the Euclidean algorithm again. We apply it here to
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the polynomial ring Fq[X]. We have (g(X), f(X)) = 1 as f(X) is irreducible.
We can therefore find polynomials such that 1 = g(X)h(X)+f(X)l(X). If we
read this mod (f(X)) we get 1 = g(x)h(x) and have found the multiplicative
inverse. In fact, these arguments are valid for any ground field. We have
shown the following:

1.3 Theorem. Let K be a field and f(X) an irreducible monic polynomial
of degree n over K. Then F = K[X]/(f(X)) is a field. It contains K as
a subfield and is a vector space of dimension n over K. If x denotes the
image of X mod f(X), then the xi, i = 0, 1, . . . , n− 1 form a basis of F as a
K-vector space. We call n the degree of F over K.

In order to illustrate this mechanism we construct the field F4 of 4 ele-
ments.

1.4 Example. The only irreducible polynomial of degree 2 over F2 is f(X) =
X2 + X + 1. Let us check that f(X) is indeed irreducible: if it was reducible
it would have a root. As f(0) = f(1) = 1 6= 0 we conclude that f(X) is
irreducible. We have F2[X]/(f(X)) = {0, 1, x, x + 1}, where x is the image
of X mod (f(X)). We have 1 = f(X)+X(X+1). Reading this mod (f(X)) we
obtain 1 = x(x+1). It follows that x and x+1 are multiplicative inverses. We
conclude that F2[X]/(f(X)) = {0, 1, x, x+1} = F4 is a field with 4 elements.

This method of generating extension fields is not limited to finite fields.
In the second problem you are asked to use this method to construct the
complex number field as a quadratic extension of the reals.

We accept from field theory the fact that an algebraic closure always
exists and is uniquely determined. Denote by Fp a fixed algebraic closure
of Fp. Recall that this means two things: firstly every element a ∈ Fp is
algebraic over Fp, that is it satisfies a polynomial equation with coefficients
in Fp. Secondly, Fp is algebraically closed, equivalently every polynomial
with coefficients in Fp splits into linear factors over that same field. Consider
the polynomial Xpn

−X. Assume a field with pn elements exists. As it is finite
it must be algebraic over Fp, so it can be considered as a subfield of Fp. As
the multiplicative group of this field has order pn − 1, each nonzero element
u satisfies upn−1

= 1. Thus every element of a field of pn elements is a root
of our polynomial. We see that a field of order pn is uniquely determined
as a subfield of the algebraic closure, if it exists. On the other hand, the
polynomial Xpn

− X has pn different roots. It suffices to check that these
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do form a field. As we are working inside a field it is sufficient to prove that
sums, products and multiplicative inverses of roots are roots. For products
and inverses this is obvious. For sums this is a consequence of the following
lemma:

1.5 Lemma (Frobenius automorphism). Let F be a field of characteristic
p. Then the mapping σ, where σ(x) = xp, is a field automorphism from F
onto the field F p of p-th powers. In the case of a finite field we have F p = F.
The fixed field of σ is Fp.

Proof. It suffices to prove that σ is linear with respect to addition and mul-
tiplication. In the case of multiplication this is obvious. Consider addition:
obviously the binomial theorem applies, hence (x + y)p =

∑p
i=0

(

p
i

)

xiyp−i.
Here the binomial coefficients are field elements, hence in Fp. We see that
(

p
i

)

is divisible by p and hence = 0 unless i = 0 or i = p. Hence the sum
simplifies, giving the desired result: (x + y)p = xp + yp.

We conclude that our field of pn elements exists and is uniquely deter-
mined.

1.6 Theorem. For every prime p and natural number n there is a field with
pn elements. Moreover a fixed algebraic closure Fp contains precisely one
subfield with pn elements, consisting of the roots of the polynomial Xpn

−X.
We denote this field by Fpn.

Once a field Fqn is constructed we can go through the same process and
construct fields of qnk elements as extensions of Fqn , for every k. As we
saw that these fields are uniquely determined we conclude that Fqn ⊂ Fqm

provided n divides m. On the other hand, assume Fqn ⊂ Fqm. Then the big
field is a vector space over the small field. It follows that qm must be a power
of qn, so n divides m. We have seen the following:

1.7 Theorem. We have Fqn ⊆ Fqm if and only if n divides m.

1.8 Theorem. The multiplicative group of a finite field is cyclic.

Proof. Let F = Fpn. The multiplicative group of F is abelian of order pn−1.
Assume it is not cyclic. Then for some prime l there must be a subgroup
Zl × Zl, an elementary abelian subgroup of order l. This is impossible as it
would yield l2 roots of the polynomial X l = 1.
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1.9 Corollary. Let q be an odd prime-power. Then -1 is a square in Fq if
and only if q ≡ 1(mod 4).

Proof. We have just seen that the multiplicative group of Fq is cyclic. The
element −1 is the unique involution (= element of order 2) in this group. It
is a square if and only if elements of order 4 exist.

To sum up: we have found, for every q = pm, a uniquely determined field
Fq of q elements. Consider its extension field Fqn.

1.10 Lemma. Consider the field extension Fqn ⊃ Fq for some prime-power
q. The mapping σ, where σ(x) = xq, is a field automorphism of Fqn over Fq,
this last term meaning that each element of the ground field is fixed under σ.
More precisely we have σ(x) = x if and only if x ∈ Fq. The powers of σ form
a group of automorphisms of order n. We call this group the Galois group
G(Fqn|Fq).

Proof. Our σ is a power of the Frobenius automorphism introduced in
Lemma 1.5, so it certainly is a field automorphism of Fqn . As the elements
of Fq satisfy xq = x we see that each element of Fq is fixed by σ. For the
same reason we see that σn acts as the identity mapping on Fqn , and this is
not the case for any smaller power of σ. As the polynomial Xq −X of degree
q cannot have more than q roots we conclude that the fixed points of σ are
precisely the elements of Fq.

1.11 Definition (trace). Let σ be the generator of the Galois group of
Fqn |Fq as introduced in Lemma 1.10. Then the trace tr : Fqn −→ Fq is
defined by

tr(x) =
n−1
∑

i=0

σi(x)

So tr(x) is defined as the sum of the images of x under the elements
of the Galois group. It is obvious that tr is an Fq-linear mapping. As an-
other application of σ permutes the elements of the Galois group we see that
σ(tr(x)) = tr(x). It follows tr(x) ∈ Fq, as stated in Lemma 1.10. Moreover
tr is not identically 0, as otherwise a polynomial of degree qn−1 would have
qn roots. We conclude that the kernel of tr is a hyperplane (an (n − 1)-
dimensional subspace) of Fqn , seen as a vector space over Fq). For every
x ∈ Fqn the mapping y −→ tr(xy) is a linear functional. As the space of



10 CHAPTER 1. FINITE FIELDS

linear functionals of an n-dimensional vector space clearly has dimension n
we can describe every linear functional in this way:

1.12 Proposition. Let F be an n-dimensional vector space over Fq. Impose
the structure of Fqn on F. Then the linear functionals of F are in bijection
with the elements of F, each x ∈ F yielding the linear functional y −→ tr(xy).

We also see that dual bases always exist. In fact, let v1, v2, . . . , vn be
a basis of F

n
q . Consider the linear functionals φi, where φi(

∑

j αjvj) = αi.
Choose xi ∈ Fqn such that tr(xiy) = φi(y). Then tr(xivj) = δij. We have
seen the following:

1.13 Theorem. Let F be an n-dimensional vector space over Fq. Impose
the structure of Fqn on F. For every basis v1, v2, . . . , vn of F |Fq there exists
another basis x1, x2, . . . , xn (the trace-dual basis) such that

tr(xivj) = δij .

Let us have a look at the smallest fields of non-prime order. It is in
general handy to fix the multiplicative structure of the field (simply a cyclic
group, as we know) and to determine the additive structure afterwards, using
the irreducible polynomial. Write Fq = {0} ∪ {ǫi | i = 0, 1, . . . , q − 1}. We
know that the field is independent of the irreducible polynomial f(X) chosen
to describe it. However, there are good and bad choices. It is for example
obviously advantageous to choose a polynomial of maximal exponent, mean-
ing that the image of X is a generator of the multiplicative group. We will
always do this. The addition in Fq will be completely known once the 1 + ǫi

are known for all i.

F4 : The only irreducible F2-polynomial of degree 2 is f(X) = X2+X+1. It
follows 1 + ǫ = ǫ2. This determines the addition. For example 1 + ǫ2 =
ǫ, ǫ + ǫ2 = ǫ(1 + ǫ) = ǫǫ2 = 1.

F8 : We choose f(X) = X3 + X2 + 1, hence 1 + ǫ2 + ǫ3 = 0. Further
1 + ǫ4 = (1 + ǫ2)2 = (ǫ3)2 = ǫ6, and then necessarily 1 + ǫ = ǫ5.
We know that these relations:

1 + ǫ2 + ǫ3 = 0, 1 + ǫ4 = ǫ6, and 1 + ǫ = ǫ5

determine the field structure completely. As an example, ǫ3 + ǫ4 =
ǫ3(1 + ǫ) = ǫ3ǫ5 = ǫ.
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F9 : Take X2 − X − 1 as irreducible polynomial. This leads to the relation
ǫ2 = ǫ + 1. Then ǫ3 = −ǫ + 1, ǫ4 = −1, as it should be.

1. For every prime-power q there is a finite field Fq with q
elements.

2. If p is a prime, then Fp = Z/pZ.

3. If q = pf , then Fq can be constructed as an extension
of Fp, with the help of an irreducible polynomial.

4. The fields F4, F8 and F9 have been given in detail.

5. Among the most important notions concerning finite
fields are the trace and the
Frobenius automorphism.

Problems

1. Let 0 6= a ∈ Fp. Show that a has an inverse in Fp by proving that the
function fa defined by fa(x) = ax is an injective and therefore bijective
mapping : F ∗ → F ∗. This proof uses the finiteness of F.

2. Construct the field of complex numbers as a quadratic extension of
the field R of real numbers. What is the natural choice of a quadratic
irreducible polynomial?

3. Prove that the polynomial X3 + X2 + 1 is irreducible over F2.

4. Determine the product of all nonzero elements of Fq.

5. Determine the sum of all elements of Fq.

6. Prove the following: if a, b ∈ F9 are nonsquares and a 6= ±b, then a + b
and a − b are squares.
Prove that every element of F9 is an F3-linear combination of two non-
squares.
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Chapter 2

Projective geometries

We use basic linear algebra to construct projective geometries.
Let V be an (n+1)-dimensional vector space over the field K. We simply

think of this object in geometrical terms. Call the 1-dimensional subspaces of
V points, the 2-dimensional subspaces lines, the 3-dimensional subspaces
planes and so on. Finally the n-dimensional subspaces of V are hyper-
planes. This is justified by observations like the following:

Any two points are on precisely one common line.
Indeed, two different 1-dimensional subspaces (points) generate precisely

one 2-dimensional space (a line). We begin with the smallest geometrically
interesting case:

2.1 Definition. The 2-dimensional projective geometry PG(2, K) over the
field K, also called classical projective plane over K, is based on a fixed
3-dimensional vector space V.

The points of PG(2, K) are the 1-dimensional subspaces of V, the lines
of PG(2, K) are the 2-dimensional subspaces of V. A point P is on a line l
(P and l are incident) if the corresponding subspaces are contained in each
other.

2.2 Proposition. The following hold for PG(2, K) :

• Any two points are on precisely one line, and dually

• any two lines have precisely one point in common.

Proof. We have convinced ourselves of the validity of the first claim already.
As for the second: two different 2-dimensional vector spaces generate the

13
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Figure 2.1: The Fano plane

ambient 3-dimensional vector space, and, by a familiar dimension formula of
linear algebra, they intersect in a 1-dimensional vector space.

Observe the shift of 1 in dimension from linear algebra to geometry. A
point is a 0-dimensional geometric object but a 1-dimensional vector space,
a line (seen as 1-dimensional in geometry) is a 2-dimensional vector space,
and so forth.

We are mostly interested in finite geometries, so we choose K = Fq and
write PG(2, q) for PG(2, Fq). Here q is called the order of the projective
plane. In the finite case it must be possible to count the basic objects. Indeed,
this is easy to do: the number of points in PG(2, q) is (q3 − 1)/(q − 1) =
q2 + q + 1, the number of lines is the same. The number of points on a line
is (q2 − 1)/(q − 1) = q + 1, equal to the number of lines through a point.

2.3 Lemma. PG(2, q) has q2 + q + 1 points and equally many lines. Any
line has q + 1 points, any point is on q + 1 lines.

As F2 is the smallest field, the classical projective plane PG(2, 2) of order
2 is the smallest projective plane. We have seen the following: PG(2, 2) has
7 points and 7 lines. Each line has 3 points, each point is on three lines, each
pair of distinct points is on a unique line, each pair of distinct lines meets in
a unique point. It should be possible to draw this little structure. In fact,
the reader can convince himself or herself that the basic properties uniquely
determine this structure. It is also known as the Fano plane.



15

001

010100

111
011101

110

Figure 2.2: The Fano plane

If we need to calculate with the points of PG(2, q) we use homogeneous
coordinates: let V = F

3
q be the underlying vector space. Its elements are

the triples (a, b, c) of field elements. Let P = Fq(a, b, c) be the 1-dimensional
vector space generated by the nonzero triple (a, b, c). We write P = (a : b : c).
As any nonzero scalar multiple of (a, b, c) generates the same point P we
have (a : b : c) = (λa : λb : λc) for every 0 6= λ ∈ Fq. In the binary case
(K = F2) there are no different nonzero scalar multiples. Here are the points
of PG(2, 2), written in homogeneous coordinates:

P1 = (0 : 0 : 1), P2 = (0 : 1 : 0), P3 = (1 : 0 : 0),

P4 = (1 : 1 : 0), P5 = (1 : 0 : 1), P6 = (0 : 1 : 1), P7 = (1 : 1 : 1).

In Figure 2.2 we labelled the points with their homogeneous coordinates
(writing 001 for (0 : 0 : 1) and so on). This labelling is far from being
uniquely determined. There are as many labellings of our picture as there
are symmetries of the Fano plane (see the Problems section).

Back to the projective geometry PG(n, K) of arbitrary dimension n. It
is based on an (n + 1)-dimensional vector space V and therefore has n types
of objects (from points=1-dimensional subspaces to
hyperplanes=n-dimensional subspaces).

2.4 Definition. The n-dimensional projective geometry PG(n, K) over the
field K, is based on a fixed (n + 1)-dimensional vector space V.
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The r-dimensional objects described by (r + 1)-dimensional subspaces of
V are also known as r-flats.

As before write PG(n, q) for PG(n, Fq). The number of points PG(n, q)
clearly is (qn+1 − 1)/(q − 1) = qn + qn−1 + · · ·+ 1.

As an example consider PG(3, 2). It has 24 − 1 = 15 points and also 15
planes. The number of lines is 15 · 14/6 = 35. Each point is on 7 lines, each
line has 3 points, each plane has 7 points.

The main reason why projective geometries are so important is the fol-
lowing: let f(X0, X1, . . . , Xn) be a homogeneous polynomial of degree d
with coefficients in the field K. Recall that a polynomial is called homo-
geneous of degree d if each of its monomials has degree = d. For exam-
ple, XY 3 + Y Z3

2 + ZX3 is homogeneous of degree 4, whereas X2 + Y 3 is
not homogeneous. Let f(x0, . . . , xn) = 0 for our homogeneous polynomial
f (where x0, . . . , xn ∈ K). For each λ ∈ K we have f(λx0, . . . , λxn) =
λdf(x0, . . . , xn). It follows that whenever f(x0, . . . , xn) = 0 for some nonzero
vector (x0, . . . , xn) ∈ Kn+1, then f vanishes on the whole 1-dimensional space
generated by that vector. It is therefore natural to interpret the zeroes of f
as points in PG(n, K).

2.5 Definition. Let f = f(X0, X1, . . . , Xn) be a homogeneous polynomial
of degree d with coefficients in the field K. The variety V (f) ∩ PG(n, K)
consists of all points in PG(n, K) on which f vanishes.

Here is an interesting example: let f(X, Y, Z) = XY 3 + Y Z3 + ZX3,
where we see the coefficients as elements of F2. The points of PG(2, 2) on
which f vanishes are (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1). This shows

V (f) ∩ PG(2, 2) = {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)}.

As F2 ⊂ F4 we can also consider f as a polynomial with coefficients in F4.
We have

V (f) ∩ PG(2, 4) = (V (f) ∩ PG(2, 2)) ∪ {(1 : ω : ω2), (1 : ω2 : ω)}.

Let us consider f as defined over F8. We use the description from Chapter 1:

F8 = F2(ǫ), ǫ2 + ǫ3 = ǫ + ǫ5 = ǫ4 + ǫ6 = 1.

Let P = (x : y : z) ∈ V (f) ∩ PG(2, 8). The points with 0-coordinates
are the three points from PG(2, 2), which we know already. From now on
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all coordinates are nonzero. We can choose x = 1. If y = 1 we obtain 3
solutions:

(1 : 1 : ǫ3), (1 : 1 : ǫ5), (1 : 1 : ǫ6).

The remaining points are easy to find once we observe the symmetry σ : (x :
y : z) 7→ (x : ǫy : ǫ3z) on V (f)∩PG(2, 8). In fact, σ maps xy3 + yz3 + zx3 7→
ǫ3(xy3 + yz3 + zx3). In particular it maps points from V (f) ∩ PG(2, 8) to
points from V (f)∩PG(2, 8). The reader will doubtless already have observed
another symmetry of V (f), the cyclic permutation ρ : (x : y : z) 7→ (y : z : x).
We see that |V (f) ∩ PG(2, 8)| = 24

A homogeneous polynomial of degree d with 3 variables describes what
is known as an algebraic curve of degree d. The algebraic curve described by
XY 3 + Y Z3 + ZX3 is known as the Klein quartic (quartic because it has
degree 4). The points in V (f) ∩ PG(2, K) are also known as the K-rational
points of f. The mathematical discipline which studies the algebraic varieties
defined by homogeneous polynomials is algebraic geometry. This is not
the topic of our lecture. However it is important to note that homogeneous
polynomials with coefficients in finite fields define highly structured interest-
ing sets of points in projective geometries. We are going to study the case of
degree 2 (quadrics) in detail. This is interesting in itself and it gives us rich
material for everything to come.
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1. The projective plane PG(2, q) is based on a 3-
dimensional vector space V = V (3, q) over Fq. Its points
are the 1-dimensional subspaces, its lines are the 2-
dimensional subspaces of V.

2. PG(2, q) has q2 + q + 1 points and equally many lines.
Any two points are on precisely one line, any two lines
intersect in one point. Each line has q + 1 points, each
point is on q + 1 lines.

3. PG(2, 2) is the Fano plane.

4. The n-dimensional projective geometry PG(n, q) is
based on an (n + 1)-dimensional vector space V =
V (n+1, q) over Fq. Its elements are the subspaces of V
(points, lines, . . . hyperplanes).

5. PG(n, q) has (qn+1−1)/(q−1) points and equally many
hyperplanes.

6. Homogeneous coordinates are used for calculations
with points and hyperplanes.

7. Let f(X0, . . . , Xn) be a homogeneous polynomial in n+
1 variables, with coefficients in Fq. The roots of f can
be seen as points in PG(n, q). They form the variety
V (f) ∩ PG(n, q).
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Problems

1. Determine as many symmetries of the Fano plane as possible. Here
a symmetry (or automorphism) is a permutation of the points (an
element of the symmetric group S7) having the property that the image
of any line is a line again: the set of lines is unchanged under the
permutation. Can we find out exactly how many symmetries there
are? At least give a reasonable upper and lower bound.

2. Give a list of the points of PG(2, 3) in homogeneous coordinates.

3. Prove that the number of hyperplanes of PG(n, q) equals the number
of points of PG(n, q).

4. Set up a list of all 24 F8-rational points of the Klein quartic.

5. Let F be the group generated by the symmetries σ and ρ of the F8-
rational points of the Klein quartic. Determine |F |.
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Chapter 3

The link to codes

We want to understand in this chapter that linear error-correcting codes can
equivalently be described by sets of points in projective spaces. This also
provides an important application of our finite geometries. We start with a
brief introduction to the scenario that led to the definition of error-correcting
codes.

The objective of coding theory is the transmission of messages over noisy
channels. Below is the standard picture visualizing the situation:

We assume that in the channel information gets destroyed according to
certain probabilistic laws. This is a physical problem unlike the scenario in
cryptography where we have to fight an opponent.

encode receivertransmitter decode receiver

channel

errors

Figure 3.1: Information transmission over a noisy channel

21
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3.1 Definition. A linear code is a linear subspace of F
n
q .

The elements of a code are also known as code-words. Observe that the
space F

n
q is an n-dimensional space over the field Fq. The parameter n (the

dimension of the ambient space) is the length of the code. A second basic
parameter is the dimension k of the code. A third parameter allows the
application we have in mind.

3.2 Definition. The Hamming distance between two tuples
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) is defined as follows: d(x, y) is
the number of coordinates i where xi 6= yi.

It is easy to see that d is in fact a metric. This is a natural notion in our
context as d(x, y) is simply the minimal number of errors in the coordinates
that can transform the sent vector x into the received vector y.

The minimum distance of the linear code C is the largest number d
such that any two different vectors from C have distance at least d. As we
deal with linear codes this notion can be further simplified. The distance to
the 0-tuple is known as the weight wt(v). As each distance is also a weight
(d(x, y) = wt(x − y)) the minimum distance equals the minimum weight
among the nonzero code-words. We summarize:

3.3 Definition. An [n, k, d]q-code is a linear k-dimensional subspace of F
n
q

such that each nonzero code-word has weight at least d.

How can a code be used to allow reliable communication? Observe that
any two different code-words are very different. For example, imagine we
have d = 7 and we sent a code-word. Imagine further not more than three
coordinates get corrupted during transmission. The received vector will re-
semble the sent code-word more (Hamming distance 3) than any code-word
(Hamming distance ≥ 4). Of course, transmitter and receiver know the code.
In particular the receiver knows that a code-word was sent. He will decode
the received tuple as the closest code-word.

Imagine the plaintext as a sequence with entries in Fq (in this business it
is often assumed that q = 2). On the transmitter side this stream is divided
into blocks of length k. Fix a linear isomorphism α : F

k
q → C. The image of

this encoding function is a code-word, in particular an n-tuple. This code-
word is sent. If not too many errors occur (if the channel is not all that
bad) the receiver can correct the errors. A final application of α−1 yields the
original message.
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It is clear that the code has to be adapted to the channel. There is a
trade-off involved. k-tuples are sent as n-tuples, where n > k, in order to
allow error-correction. The factor k/n (the information rate) represents
the fraction of the coded message that actually represents information. The
fraction representing additional costs is the redundancy 1 − k/n. We have
to introduce redundancy in order to allow error correction, but we want to
keep it low to avoid additional cost.

The basic problem of coding theory is the construction of linear codes
[n, k, d]q, where d is maximized when the other parameters are given. A
data base of the best known linear code parameters and upper bounds in
maintained by A.E.Brouwer:

http://www.win.tue.nl/~aeb/voorlincod.html

It is an advantage of linear codes that k code-words suffice to describe a
k-dimensional code (which has qk elements). We write the elements of such
a basis as rows of a matrix. This matrix describes the code.

3.4 Definition. A generator matrix G of a k-dimensional q-ary linear
code is a (k, n)-matrix whose rows form a basis of the code.

This allows us to see the promised connection between sets of points in
projective spaces and linear codes. As an example consider the [7, 3]2-code
with generator matrix

G =





1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1





Here comes the trick: we read this matrix columnwise instead of rowwise.
Consider the 7 columns as generators of 1-dimensional subspaces of F

3
2, hence

as points in PG(2, 2), the Fano plane. In our example each point of the Fano
plane occurs precisely once as a column. What are the weights of codewords?
Let v1, v2, v3 the rows of G (a basis of the code). A generic code-word is
v = λ1v1 + λ2v2 + λ3v3. It is described by the triple (λ1, λ2, λ3). What does
it mean geometrically that v has entry 0 in coordinate i? Let the point Pi

corresponding to coordinate i be (a : b : c). The entry of v in coordinate
i is then λ1a + λ2b + λ3c. This is 0 if point Pi satisfies the linear equation
with coefficients λ1, λ2, λ3, that is if it is in a certain hyperplane (line). So
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wt(v) equals the number of points among P1, . . . , P7 which are outside the
line described by the coefficients λj.

In our example we took all points of PG(2, 2) to describe columns. Out-
side each line there are 4 points of PG(2, 2). This shows that every nonzero
code-word has weight 4. In particular we have a code [7, 3, 4]2.

It is rather clear how this generalizes. In order to describe k-dimensional
q-ary codes we work in PG(k−1, q). The length of the code is the number of
points chosen from PG(k−1, q). Observe that there is no reason why a point
should not occur more than once as a column of G. We should therefore not
speak of a set of projective points but rather of a multiset. The formal way
to describe this is by a weight function which assigns a non-negative integer
weight w(P ) to each point P ∈ PG(k − 1, q). If w(P ) = 0, then P does not
occur among the columns, if w(P ) = 3 say, then 3 of the columns of the
generator matrix correspond to P.

3.5 Theorem. The following are equivalent:

• A linear [n, k, d]q-code such that in every coordinate there is a code-word
with nonzero entry, and

• A function w assigning non-negative integer values w(P ) to the points
of PG(k − 1, q) such that

∑

P∈PG(k−1,q) w(P ) = n and for every hyper-

plane H we have
∑

P∈H w(P ) ≤ n − d.

Proof. As this is such an important theorem let us go through the for-
mal proof. Describe the code by a generator matrix G = (aij), where
i = 1, . . . , k; j = 1, . . . , n. Let Pj = (a1j : a2j : · · · : akj) ∈ PG(k − 1, q)
and vi = (ai1, ai2, . . . , ain). The multiset {P1, P2, . . . , Pn} describes the func-
tion w : the value w(P ) is the multiplicity of P in this multiset. It is clear that
this procedure is reversible: given a weight function w with

∑

P w(P ) = n we
construct a corresponding (k, n)-matrix, which we use as generator matrix
of a code. The code will have dimension k if and only if the points of the
multiset are not contained in a hyperplane.

The basic point is the description of the weights of codewords. Let x 6= 0
be an arbitrary nonzero code-word. As the vi form a basis there are uniquely
determined scalars λ1, . . . , λk (not all = 0) such that v =

∑k
i=1 λivi.

The entry in coordinate j is

vj =

k
∑

i=1

λiaij .
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Figure 3.2: A binary code [11,3,6]

We have vj = 0 if and only if Pj is in the hyperplane given by the λi (the
elements of the vector space satisfying one nontrivial linear equation form
a subspace of codimension 1). We conclude that v determines a hyperplane
H and wt(v) = n − |H ∩ {P1, P2, . . . , Pn}|, where the intersection has to be
taken in the sense of multisets, formally wt(v) = n −

∑

P∈H w(P ).

Here is another illustration in the case of projective planes, where hyper-
planes are lines. Use the points of the Fano plane as indicated in Figure 3.2.
The sum of all weights is n = 11. We see that the sum of weights along lines
does not exceed 5. This shows d = 11 − 5 = 6.

In general one speaks of projective codes if in a generator matrix no
two columns are multiples of each other. In the terminology of Theorem 3.5
this means that w(P ) = 0 or = 1 for each P. Our [7, 3, 4]2 is projective, the
[11, 3, 6]2 is not.

A more solid example is obtained from the Klein quartic, see Chapter 2.
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We saw that it has 24 rational points over F8. As the homogeneous polynomial
has degree 4 it can be shown that no more than 4 of these points are on a line
(are collinear). This shows that the F8-rational points of the Klein quartic
determine a code [24, 3, 20]8.

We know how to calculate with points of PG(k − 1, q), assigning homo-
geneous coordinates to them. The proof of Theorem 3.5 suggests a natural
way to assign homogeneous coordinates to hyperplanes as well. In fact, each
hyperplane can be described as the set of points satisfying a nontrivial linear
equation. The coefficients of this equation are uniquely determined up to
scalar multiples.

3.6 Definition (homogeneous coordinates). The homogeneous coordi-
nates (x1 : x2 : . . . , xk) denote the point of PG(k − 1, q) determined by
(x1, x2, . . . , xk). The homogeneous coordinates [y1 : y2 : . . . , yk] determine the
hyperplane of PG(k−1, q) concisting of all points (x1 : x2 : . . . , xk) such that

x1y1 + x2y2 + · · ·+ xkyk = 0.

1. Codes are used to transmit messages over
noisy channels.

2. Linear q-ary codes of length n are subspaces of F
n
q .

3. A linear code [n, k, d]q is a k-dimensional subspace of F
n
q

such that each nonzero word (element) has a nonzero
entry in at least d of the n coordinates.
d is the minimum distance.

4. A generator matrix of a linear q-ary code is a (k, n)-
matrix with entries from Fq whose rows form a basis of
the code (=subspace).

5. A code [n, k, d]q can equivalently be described as a mul-
tiset of n points in PG(k−1, q), which has the property
that there are at least d points outside any given
hyperplane.
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Problems

1. Assume you have 24 points in PG(11, 2) such that each hyperplane
contains at most 16 of these points. Determine the parameters of the
corresponding code. What is the number of codewords?

2. Find the generator matrix of a code [13, 3, 7]2.

3. Use representatives for all points of PG(k − 1, q) as columns of a gen-
erator matrix. Determine the parameters of this Simplex code.

4. Fix a line l in PG(2, q). Use representatives for all points of PG(2, q)
outside l as columns of a generator matrix. Determine the parameters
of the code.

5. The Singleton bound states that k + d ≤ n + 1 for each linear code
[n, k, d]q. Prove this bound.
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Chapter 4

An application: resilient
functions

Let A = (aij) be a generator matrix of an [n, k, d]q-code C, just as in the
preceding chapter. Let P1, P2, . . . , Pn be the points in PG(k−1, q) described
by the columns of A (eventually with multiplicities). We recall that the
minimum distance d can be expressed in terms of the points Pi as follows:
outside each hyperplane of PG(k− 1, q) there are at least d of the points Pi,
again counted with multiplicities.

Consider the function F : F
n
q −→ F

k
q defined by

F (x) = Ax

Here we see x = (x1, x2, . . . , xn)T and y as column vectors. In order to be
perfectly clear: F (x) is a linear combination of the columns of the generator
matrix (the points Pi) with the xi as coefficients. What are the properties
of this mapping F ? First of all it is a linear mapping. As C has dimension k
(equivalently: A has rank k), F is onto. It follows that each y ∈ F

k
q has the

same number of preimages x (this number is qn−k). In the applications we
view x as an input vector and y as an output vector.

Now fix the input in some t coordinates, say the coordinates 1, 2, . . . t. Let
these input values be a1, . . . , at. We consider the function g obtained from F
by making this substitution, to be precise g : F

n−t
q −→ Fk is defined by

g(x1, . . . , xn−t) = F (a1, . . . , at, x1, . . . , xn−t).

We wish to guarantee that g is onto, no matter which set of t input coor-
dinates are fixed and no matter what the fixed value a1, . . . , at are. In the

29
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situation above, when will that be violated? If the points Pt+1, . . . , Pt are on
a hyperplane, in general if some n − t of the points Pi are on a hyperplane,
equivalently if some n− t columns of A form a matrix of rank < k. Our geo-
metric description of the minimum distance shows that this cannot happen
if we choose t = d − 1.

4.1 Definition. A q-ary linear t-resilient function RFq(n, k, t) is a linear
mapping F : F

n
q −→ F

k
q with the property that whenever the value of some t

input variables are fixed the resulting mapping : F
n−t
q −→ F

k
q still is onto.

Our discussion shows that linear resilient functions are linear codes in
disguise:

4.2 Theorem. The following are equivalent:

• A linear RFq(n, k, t),

• a linear code [n, k, t + 1]q.

We also saw how to construct the resilient function from a generator
matrix of the code.

Why is this interesting and what is resilient about a resilient function?
Imagine a situation in cryptography where x is a cryptographic key. We sus-
pect that a certain number of input values may have leaked to an opponent.
In other words, the key x has been compromised and should not be used any
more. The idea is to apply a function F : F

n
q −→ F

k
q for some k < n and

use the shorter string y = F (x) as key. Which conditions will F have to
satisfy? Even if x itself is perfectly safe, there is one condition that F has
to satisfy: each y has to have the same number of preimages under F : the
function F must be balanced. If this was not the case, an opponent could
exploit the fact that some values y are more probable than others. The need
of balance also explains the main axiom of t-resiliency: even if up to t input
values have leaked this does not give the opponent any information about the
output value y, not even in terms of probabilities. Using linear functions is a
cheap way of generating balanced functions: each surjective linear function
is automatically balanced. The term resilient refers to an application in the
construction of ciphers, which offer resistance to a certain type of attack, a
correlation attack.
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As an example consider the following generator matrix of a binary code:

A =









1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0









The code generated by A is known as the extended binary Hamming
code. It is easy to see that its parameters are [8, 4, 4]2. The corresponding
resilient function is

F (x) = (x1 +x6+x7 +x8, x2 +x5+x7 +x8, x3 +x5+x6 +x8, x4 +x5+x6+x7),

an RF2(8, 4, 3). In practice resilient functions are considered only in the bi-
nary case q = 2. Resiliency is not the only design criterion. Satisfying other
cryptographic criteria as well leads to subtle tradeoff questions. One impor-
tant criterion is non-linearity. As the linearity can be used in attacks as
well one wants to design functions which are in a sense far from being linear.
This sounds at first like bad news for our linear construction. However, the
usual way to deal with this problem is to base oneself on linear resilient func-
tions, which are then twisted in some way to obtain non-linearity. Virtually
all constructions involve linear codes or, equivalently, point sets in projective
spaces.

1. Let F : F
n
q −→ F

k
q be linear.

2. F is a linear resilient functions RFq(n, k, t) if all func-
tions obtained by fixing t input variables are onto.

3. Linear RFq(n, k, t) are equivalent with
[n, k, t + 1]q-codes.

4. They have multiple applications in cryptography and
theoretical computer science.
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Problems

1. Prove that the matrix A given above generates an [8, 4, 4]2-code.

2. Give the geometric description for an [8, 4, 4]2-code.

3. Construct an RF2(11, 3, 5).



Chapter 5

Arcs in projective planes

We use homogeneous coordinates to calculate in PG(2, q). What we want
to study are quadrics. Later on it will turn out that it does not make
much difference which quadratic polynomial we use. For now let us con-
sider V (XZ − Y 2). Let (x : y : z) be a point on this quadric. If x = 0, then
y = 0. The corresponding point is (0 : 0 : 1). The remaining points have
x 6= 0. We can choose x = 1. The equation is z = y2. Clearly we have q such
points: y is an arbitrary element of Fq and z = y2. All in all we count q + 1
points.

5.1 Proposition. The quadric V (XZ − Y 2) ∩ PG(2, q) (also known as a
conic) has q + 1 points. These are P∞ = (0 : 0 : 1) (also known as point at
infinity) and the points Pα = (1 : α : α2), where α ∈ Fq.

We want to study the structure of this conic. It has as many points as
a projective line, so at first one may suspect that all points are on a line.
This is far from being true. Consider the lines joining pairs of points of the
conic. The lines through P∞ have the form [a : b : 0]. This line contains Pα

if a + bα = 0. It follows that b 6= 0. We choose b = 1 and obtain a = −α.
This line [−α : 1 : 0] contains Pβ if and only if β = α. This shows that the
line from P∞ to Pα contains only these two points of the conic.

Let now α, β be different field elements and [a : b : c] the line joining
them. As before it is clear that c 6= 0. Choose c = 1. The equations for
a, b are a + bα + α2 = 0, a + bβ + β2 = 0. Subtract, divide by β − α. This
yields b = −(α + β), a = αβ. The connecting line is [αβ : −(α + β) : 1].
This is easy to check (the dot product of (1, α, α2) and (αβ,−(α + β), 1) is
αβ − α2 − αβ + α2 = 0).
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Which points Pγ are on this connecting line? The condition is 0 = αβ −
γ(α + β) + γ2 = (γ − α)(γ − β). This is satisfied only if γ = α or γ = β. We
conclude that there are no further points of the conic on that line.

5.2 Definition. A k-arc of PG(2, q) is a set of k points such that no 3 are
on a line (collinear). An oval is a (q +1)-arc, a hyperoval is a (q +2)-arc.

Our calculation with coordinates has shown the following:

5.3 Theorem. The conic V (XZ − Y 2) ∩ PG(2, q) is an oval.

Let us do some combinatorial work. What is the maximum conceivable
size of an arc K ⊂ PG(2, q)? Fix a point P ∈ K. Every point is on q+1 lines.
Each such line contains at most one further point of K. It follows |K| ≤ q+2.
Conics give us ovals. This raises the question if hyperovals exist. Let K be
a hyperoval. The counting argument based on P ∈ K shows that each line
which intersects K nontrivially must contain precisely 2 points of K. Let now
X be a point, which is not in K. Each line through X meets K either in 0 or
in 2 points. This shows that |K| = q + 2 must be even, in other words this
can happen only in characteristic 2.

5.4 Theorem. When q is odd, then the maximum number of points of an arc
in PG(2, q) is q + 1. When q is a power of 2, then every oval is embedded in
precisely one hyperoval. In particular the maximum size of an arc in PG(2, q)
is q + 2 when q is even.

We have not proved yet the statement concerning the existence of hyper-
ovals in PG(2, q). In the problems section the reader is asked to complete the
proof. We start with some easy observations. Let K be an oval and P ∈ K.
With obvious terminology we call a line a tangent to K if it meets K in
precisely one point. On how many tangents is P ? There are q lines joining
P to the remaining points of the oval. This shows that P is on precisely
one tangent. We have seen that there are precisely q + 1 tangents to K, one
through each point of K.

Let N /∈ K. Which conditions will N have to meet such that K ∪ {N} is
a hyperoval? Clearly each line NP for P ∈ K must be a tangent to K. As
there are q +1 points in K all lines through N must be tangents. This yields
a very strong condition: in order for K to be embeddable in a hyperoval, all
tangents to K must meet in a common point N. If this is satisfied N is the
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only point such that K ∪ {N} is a hyperoval. Point N is also known as the
nucleus of K.

In order to check that our conic is an oval we could have proceeded in
a different way. Observe that three points are collinear if and only if they
satisfy a linear equation. This means that the (3, 3)-matrix whose columns
are representatives of the points has determinant 0. The statement that the
conic V (XZ−Y 2)∩PG(2, q) is an oval is therefore equivalent to the following:
whenever α, β, γ are different, the matrix which has Pα, Pβ, Pγ as columns
is non-singular (determinant 6= 0). If P∞ is involved this is clear, so we

can assume {α, β, γ} ⊂ Fq. The corresponding matrix is





1 1 1
α β γ
α2 β2 γ2



 .

Matrices of this type are known as Vandermonde matrices. It is easy to
see that the determinant is 6= 0.

Vandermonde determinants are an essential ingredient in the study of
Reed-Solomon codes and cyclic codes.
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1. A k-arc in PG(2, q) is a set of k points no 3 of which
are collinear (on a line).

2. An oval is a (q + 1)-arc, a hyperoval is a (q + 2)-arc
in PG(2, q).

3. The set of roots of XZ − Y 2 (a conic) is an oval in
PG(2, q).

4. Hyperovals exist only in characteristic 2.

Problems

1. Determine homogeneous coordinates of the tangents to the conic
V (XZ − Y 2) ∩ PG(2, q).

2. Let q be a power of 2. Find the nucleus of V (XZ − Y 2) ∩ PG(2, q).

3. Let q be a power of 2. Prove that each oval in PG(2, q) can be embedded
in a hyperoval. Hint: study at first the intersections of tangents and
external lines.

4. Find a generator matrix of a code [6, 3, 4]4.



Chapter 6

Symmetric bilinear forms

Let V = V (n, q) be an n-dimensional vector space over Fq. Consider map-
pings

(, ) : V × V −→ Fq.

We speak of a bilinear form (or scalar product) if it satisfies the following
conditions:

• Biadditivity: (x1 + x2, y) = (x1, y) + (x2, y) and (x, y1 + y2) = (x, y1) +
(x, y2) (everything in V, in particular (0, y) = (x, 0) = 0 always),

•

(λx, y) = (x, λy) = λ · (x, y) for all x, y ∈ V, λ ∈ Fq.

A bilinear form is non-degenerate if the only element x0 satisfying
(x0, y) = 0 for all y ∈ V is x0 = 0 and analogously the only y0 ∈ V sat-
isfying (x, y0) = 0 for all x ∈ V is y0 = 0. A vector v ∈ V is isotropic
if (v, v) = 0. A subspace U ⊂ V is totally isotropic if (u, u′) = 0 for all
u, u′ ∈ U. Given the scalar product (, ) and a basis {v1, v2, . . . , vn} of V we
can form the Gram matrix A = ((vi, vj))i,j. Clearly the bilinear form is
non-degenerate if and only if the Gram matrix is invertible.

We can represent bilinear forms in matrix notation. Let V = F
n
q and

e1, . . . , en the standard basis. Choose constants aij such that (ei, ej) = aij .
Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn). Then

(x, y) =
∑

i,j

xiyjaij .
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This means that an n-dimensional bilinear form is described by choosing
n2 coefficients aij . The bilinear form can then also be written in matrix
notation as follows: define the matrix A = (aij) whose entries are the chosen
coefficients. Then

(x, y) =

n
∑

i,j=0

aijxiyj = xAyt.

Then A is the Gram matrix with respect to the standard basis.
As an example consider the following 3-dimensional bilinear form over Fq

for odd q :

(x, y) =
1

2
x1y3 +

1

2
x3y1 − x2y2.

Its Gram matrix is A =





0 0 1/2
0 −1 0

1/2 0 0



 of determinant 1/4. In particular

it is non-degenerate.
As indicated earlier we are particularly interested in the scalar products

of vectors with themselves. These are the values (v, v). In our example we
have (x, x) = x1x3 − x2

2. This leads to a homogeneous quadratic polynomial.
It is precisely the polynomial considered in Chapter 5 (here only in odd
characteristic). The Gram matrix A of the example has another special
property: it is symmetric. This has the following effect on the bilinear form:
(x, y) = (y, x) for all x, y. Such bilinear forms are called symmetric.

6.1 Definition. A bilinear form on V is symmetric if (x, y) = (y, x) for
all x, y ∈ V. This is equivalent to the Gram matrix being a symmetric matrix.

6.2 Definition. Let (, ) be a symmetric bilinear form on V. The correspond-
ing quadratic form is Q(x) = (x, x). Here Q : V → Fq has the property
Q(λx) = λ2Q(x) for all x ∈ V.

It seems that the quadratic form Q carries less information than the
symmetric bilinear form it was derived from. However, this is not so. We
can recover the symmetric bilinear form from the quadratic form. Let us see
why:

Q(x + y) = (x + y, x + y) = Q(x) + Q(y) + 2(x, y)

Here we used that the bilinear form is symmetric. This shows

(x, y) =
1

2
(Q(x + y) − Q(x) − Q(y)) for all x, y ∈ V.
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However, this works only in odd characteristic (we divided by 2). Let us
collect all this, starting from the abstract definition of a quadratic form in
odd characteristic.

6.3 Definition. Let q be odd and V = V (n, q). A quadratic form on V is
a mapping Q : V → Fq such that Q(λx) = λ2Q(x) for all λ ∈ Fq, x ∈ V and
such that

(x, y) =
1

2
(Q(x + y) − Q(x) − Q(y))

is a bilinear form (by force symmetric). Call Q non-degenerate if the corre-
sponding bilinear form is.

Let us check this for our example. Starting from Q we obtain

2(x, y) = (x1 + y1)(x3 + y3) − (x2 + y2)
2 − x1x2 + x2

2 − y1y3 + y2
2 =

= x1y3 + x3y1 − 2x2y2

as predicted.
The quadratic form corresponding to a symmetric bilinear form is always

described by a homogeneous quadratic polynomial. We have seen that in odd
characteristic quadratic forms are equivalent with symmetric bilinear forms.

For the remainder of the chapter we concentrate on symmetric bilinear
forms in odd characteristic. So let V = V (n, q) for odd q and (, ) a non-
degenerate symmetric bilinear form defined on V. The structure we have in
mind is the quadric consisting of the isotropic points, that is the points in
PG(n − 1, q) generated by nonzero vectors x such that (x, x) = 0. One also
says that vectors x, y are orthogonal provided (x, y) = 0. In this terminology
a vector is isotropic if it is orthogonal to itself.

6.4 Definition. Let (, ) be a symmetric bilinear form on V. For every subset
W ⊆ V define W⊥ = {v|v ∈ V, (v, W ) = 0}. Here (v, W ) = 0 stands short
for (v, w) = 0 for all w ∈ W.

6.5 Proposition. Let (, ) be a symmetric bilinear form on V. For every
subset W ⊆ V we have that W⊥ is a subspace. If (, ) is non-degenerate and
W is a subspace, then dim(W ) + dim(W⊥) = dim(V ).

Proof. The first statement is obvious. Consider now the non-degenerate case.
By definition we have v⊥ 6= V for all v 6= 0. Let dim(V ) = n. We claim
dim(v⊥) = n − 1. It suffices to show that v⊥ intersects every 2-dimensional
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subspace of V in dimension ≥ 1. Let v1, v2 be a basis of a 2-dimensional
subspace, and (v, v1) = λ, (v, v2) = µ. Then (v, µv1 − λv2) = 0, hence µv1 −
λv2 ∈ v⊥.

We have shown that the orthogonal of a 1-dimensional subspace has di-
mension n − 1. Let now v1, v2, . . . , vn be a basis of V. We have

〈v1〉
⊥ ⊇ 〈v1, v2〉

⊥ ⊇ . . . 〈v1, v2, . . . , vn〉
⊥ = V ⊥ = 0.

As at each step the dimension decreases by at most one (intersection with a
hyperplane), and in the last step we reach the 0-space, the dimension must
decrease by precisely one at each step. In particular dim(〈v1, . . . , vm〉⊥) =
n − m for each m. As this is true for an arbitrary basis the statement is
proved.

The 1-dimensional case

It may sound silly, but we start with case n = 1. Let x 6= 0. Then (x, x) 6= 0
because of non-degeneracy. Recall (λx, λx) = λ2(x, x). This means that by
changing the ”basis” we can introduce an arbitrary quadratic factor in the
”Gram matrix”. This shows that there are two non-equivalent bilinear forms
in the case of dimension 1. Either we can find a ”basis” v such that (v, v) = 1
or we can find a basis such that (v, v) = ν is our favorite non-square in Fq.

The 2-dimensional case

Let V = V (2, q) with a non-degenerate form (, ). Assume there is a vector
v 6= 0 such that (v, v) = 0. Let w be linearly independent from v. We have
(v, w) 6= 0. Multiplying w by a suitable scalar we can assume (v, w) = 1.
Upon replacing w by w + sv for suitable s we can assume (w, w) = 0. This

shows that we can find a basis such that the Gram matrix is

(

0 1
1 0

)

in this

case. These 2-dimensional spaces are also known as hyperbolic planes.
Assume there is no nonzero isotropic vector. Can this happen? Such

spaces, where no nonzero vector is isotropic, are called anisotropic. Eu-
clidean (real) spaces are examples of anisotropic spaces. Assume at first
(v, v) is a square for all v 6= 0. Choose w 6= 0 such that (v, w) = 0. As
(sv + tw, sv + tw) = s2(v, v) + t2(w, w) must be a square unless s = t = 0
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we see in particular that the sum of two squares must be a square. This
leads to the contradiction that the squares together with 0 form a subfield
of Fq. Assume now (v, v) is a non-square for all v 6= 0. Replace the bilinear
form (, ) by ν(, ), where ν is a fixed non-square. This new form is still sym-
metric bilinear anisotropic, and each value ν(v, v) for v 6= 0 is a square, by
assumption. This case has just been excluded.

We have seen that we can choose (v, v) = 1 and (v, w) = 0. As (sv +
tw, sv + tw) = s2 + t2(w, w) 6= 0 unless s = t = 0 it must be that −(w, w)
is a non-square, without restriction (w, w) = −ν, where ν is our favorite

non-square. The Gram matrix is

(

1 0
0 −ν

)

As Q(sv + tw) = s2 − t2ν

we see that indeed this describes an anisotropic space. Observe also that
every field element is represented. In fact, we saw that it is the uniquely
determined anisotropic 2-dimensional space. Multiplying the Gram matrix
by a constant c yields another anisotropic space, where c is represented as
often as 1 is represented in the original space. As these spaces are equivalent
we see that every nonzero element is represented the same number of times.

It is also interesting to consider the degenerate 2-dimensional case. If the
radical is 2-dimensional, the bilinear form is identically 0. In particular all
points of the corresponding projective line are isotropic.

The remaining case is when Rad(, ) = 〈v〉 is 1-dimensional. Then V is
the orthogonal sum of the radical and a 1-dimensional non-degenerate space.
In particular the line contains precisely one isotropic point in this case.

6.6 Theorem. Let (, ) be a symmetric bilinear form on V = V (2, q), for odd
q. The number of isotropic points on the projective line PG(1, q) correspond-
ing to V is 0, 1, 2 or q + 1. It is q + 1 if the form is identically zero, it is 1 if
the radical has dimension 1.

There are up to equivalence only two non-degenerate bilinear forms, the

hyperbolic plane with Gram matrix

(

0 1
1 0

)

and the anisotropic space with

Gram matrix

(

1 0
0 −ν

)

If the Gram matrix is not given in one of the standard forms of Theo-
rem 6.6, how can we decide on the fly what the type is? For that purpose it
is good to know what happens to the Gram matrix under change of basis.
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6.7 Theorem. Let v1, . . . , vn be a basis of V and A = (aij) the Gram matrix
of a bilinear form with respect to the vi (aij = (vi, vj)). Let w1, . . . , wn be
another basis of V with Gram matrix B = (bij). Let wi =

∑n
k=1 tikvk. Let

T = (tij) be the matrix describing this change of basis. Then B = TAT t.

Proof. Simply compute

bij = (wi, wj) = (
∑

k

tikvk,
∑

l

tjlvj) =
∑

k,l

tikakltjl.

This is the (i, j)-entry of TAT t.

The most important point about the base change is what remains invari-
ant. Consider the determinants: det(B) = det(A)det(T )2. The determinant
certainly changes but squares are mapped to squares and non-squares are
mapped to non-squares.

6.8 Definition. Let A be an (n, n)-matrix with entries from Fq, where q is
odd. The discriminant of A is disc(A) = +1 if det(A) is a square, it is
disc(A) = −1 if det(A) is non-square, it is 0 if det(A) = 0. The discriminant
of a bilinear form is the discriminant of its Gram matrix.

In fact, Theorem 6.7 shows that the discriminant of the Gram matrix is
invariant under change of basis. It is therefore an invariant of the bilinear
form. This shows us how to distinguish hyperbolic planes from anisotropic
2-dimensional spaces. As the determinants of the Gram matrices in standard
form are −1 and −ν, respectively, they have different discriminant.

Our analysis of the anisotropic 2-dimensional case suggests that
anisotropic spaces of higher dimensions cannot exist.

6.9 Proposition. There is no anisotropic symmetric bilinear form in odd
characteristic on a vector space of dimension n > 2.

Proof. The proof in Section 6 shows that we can find v1 such that (v1, v1) = 1.
The space V is the orthogonal sum of 〈v1〉 and 〈v1〉⊥, and the latter space still
has dimension ≥ 2. We can find v2 such that (v1, v2) = 0 and (v2, v2) = −1.
However Q(v1 − v2) = 0, contradiction.

We can now complete the classification in arbitrary dimension. Let n ≥ 3.
By Proposition 6.9 we can find v1 6= 0 such that (v1, v1) = 0. Because of non-
degeneracy we can find w′

1 6= 0 such that (v1, w
′
1) 6= 0. After multiplying w′

1
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by a suitable constant we have (v1, w
′
1) = 1. Let w1 = w′

1 + sv1. We have
(v1, w1) = 1 independent of the value of s. As Q(w1) = Q(w′

1) + 2s we can
choose s such that Q(w1) = 0. It follows that H1 = 〈v1, w1〉 is a hyperbolic
plane. As H1 is itself non-degenerate we obtain V = H1 ⊥ H⊥

1 , and the
(n − 2)-dimensional space H⊥

1 is non-degenerate. Apply induction. We can
repeat this procedure until we are left with a space of dimension 1 (if n is odd)
or 2 (if n is even). As we have already done the classification in dimensions
1 and 2 we obtain the complete picture.

6.10 Theorem. Let V = V (n, q) be an n-dimensional vector space for odd q.
There are up to equivalence precisely two non-degenerate symmetric bilinear
forms (, ) on V. These have different discriminants.

Let n = 2m be even. Then either V = H1 ⊥ · · · ⊥ Hm is orthogonal
sum of m hyperbolic planes (a Gram matrix has determinant (−1)m), or
V = H1 ⊥ · · · ⊥ Hm−1 ⊥ A is orthogonal sum of m−1 hyperbolic planes and
a 2-dimensional anisotropic space (a Gram matrix has determinant (−1)mν,
where ν ∈ Fq is a non-square).

Let n = 2m + 1 be odd. Then V = H1 ⊥ · · · ⊥ Hm ⊥ 〈v〉, where either
(v, v) = 1 or (v, v) = ν (and ν ∈ Fq is a fixed non-square).

This yields interesting point sets in the corresponding projective spaces.
As we know these points sets are quadrics, sets of roots of homogeneous
polynomials of degree 2. When n = 2m + 1 we have two different bilinear
(quadratic) forms in Theorem 6.10. The set of isotropic points are identical
for these two cases. This is clear as multiplication of the bilinear form by a
non-square transforms one type in the other.

6.11 Definition. Let q be odd. Denote by Q(2m, q) ⊂ PG(2m, q) the set of
isotropic points of a non-degenerate symmetric bilinear (quadratic) form in
V (2m + 1, q).

Q+(2m − 1, q) ⊂ PG(2m − 1, q) (a hyperbolic quadric) is the set of
isotropic points of a non-degenerate symmetric bilinear (quadratic) form in
V (2m, q) such that V (2m, q) is orthogonal sum of m hyperbolic planes.

Q−(2m − 1, q) ⊂ PG(2m − 1, q) (an elliptic quadric) is the set of
isotropic points of a non-degenerate symmetric bilinear (quadratic) form in
V (2m, q) such that V (2m, q) is orthogonal sum of m − 1 hyperbolic planes
and an anisotropic space.

Let us illustrate with a specific example. Start from the quadratic form
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(homogeneous polynomial of degree 2)

Q(x1, x2, x3, x4) = x2
1 + x2

2 + x2
3 + x2

4.

What is the corresponding (equivalent) bilinear symmetric form? Just apply
the formula from Definition 6.3. With x = (x1, x2, x3, x4), y = (y1, y2, y3, y4)
we obtain

(x, y) =
1

2
(Q(x + y) − Q(x) − Q(y)) =

=
1

2
(
∑

i

(xi + yi)
2 −

∑

i

x2
i −

∑

i

y2
i ) =

∑

i

xiyi.

This is the standard dot product. The corresponding Gram matrix A is the
unit matrix. Its determinant is a square, so the discriminant is 1, just as for
the orthogonal sum of two hyperbolic planes. It follows that V = V (4, q)
with the dot product is hyperbolic. We can write V as orthogonal sum
of two hyperbolic planes. Really? Let v1, v2, v3, v4 be the basis which was
used implicitly (each Gram matrix is with respect to a basis). This means
(vi, vi) = 1 and (vi, vj) = 0 for all i 6= j. Can we find a basis w1, w2, w3, w4

such that w1, w2 is a standard basis (consisting of isotropic vectors) for the
hyperbolic plane H1 = 〈w1, w2〉, likewise w3, w4 for the hyperbolic plane
H2 = 〈w3, w4〉 and H1 ⊥ H2? The calculations depend on the field. Use the
field F5. The vector w1 = v1 + 2v2 is isotropic, just as w2 = v1 + 2v3. As
(w1, w2) = 1 we have a standard basis for H1 = 〈w1, w2〉. There is no choice
for H2 as H2 = H⊥

1 . A vector av1+bv2+cv3+dv4 is in H2 if a+2b = a+2c = 0,
equivalently b = c, a = 3b. This shows that we can use v4 (case a = b = c = 0)
and 3v1+v2+v3 as basis for H2. In order to find a standard basis, such that the

corresponding Gram matrix is

(

0 1
1 0

)

we need two linearly independent

isotropic vectors in H2. This is left as an exercise.
It is not hard to count the points on the quadrics from Definition 6.11.

Recall the conic from Chapter 5. It is a quadric in PG(2, q) and has q + 1
points. This shows |Q(2, q)| = q + 1. When dealing with our quadratic form
in Chapter 5 there was no need to distinguish between the characteristic 2
and the odd characteristic case. This indicates that the mechanism of the
present chapter should generalize to cover the characteristic 2 case as well.

6.12 Definition. Let q be odd. Denote by hm(c) the number of vectors v ∈
V (2m, q) such that (v, v) = c for the hyperbolic quadratic form. Analogously
em(c) denotes the representation number of c for the elliptic quadratic form.
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Let pm(c) the number of vectors v ∈ V (2m + 1, q) such that (v, v) = c
when V (2m+1, q) is the orthogonal sum of m hyperbolic planes and 〈v0〉 = 1.
The corresponding representation numbers for the case when 〈v0〉 = ν is a
non-square are denoted by p′m(c).

Let us compute the representation numbers in Definition 6.12. Observe
at first that a scalar multiple of a symmetric bilinear form is a symmetric
bilinear form again. If the original form is elliptic, then all scalar multiples are
elliptic. The same holds for hyperbolic forms. This shows that hm(c) = hm(1)
and em(c) = em(1) for all c 6= 0. Also h1(0) = 2q − 1 (there are two isotropic
points in a hyperbolic plane) and h1(1) = q − 1, analogously e1(0) = 1 and
e1(1) = q + 1.

Consider the 4-dimensional hyperbolic case. The corresponding represen-
tation numbers are h2(c). Here the space can be written as orthogonal sum of
two hyperbolic planes H1 ⊥ H2. Consider vector u+v, where u ∈ H1, v ∈ H2.
How often will it happen that Q(u + v) = 0? As (u, v) = 0 this is equivalent
with Q(u) + Q(v) = 0. There are two different situations: if u is isotropic,
then also v is isotropic. The number of choices is h1(0)h1(0) = (2q−1)2. The
second situation occurs when u is not isotropic (there are q2−h1(0) = (q−1)2

such vectors). Then Q(v) must have a specific nonzero value. This occurs
h1(1) = q − 1 times. In the second situation we count (q − 1)3 possibilities,
all in all

h2(0) = (2q − 1)2 + (q − 1)3 = q3 + q2 − q.

The by now familiar argument shows that h2(c) = h2(1) for all c 6= 0. This
number is therefore

h2(1) = (q4 − h2(0))/(q − 1) = q3 − q.

In the elliptic 4-dimensional case the arguments are very similar. This time
the space is orthogonal sum of a hyperbolic plane and an anisotropic plane.
We use the numbers h1(c) and e1(c). The number of isotropic vectors is the
sum of h1(0)e1(0) = h1(0) = 2q− 1 (the first situation) and (q2 −h1(0))e1(1)
(the second situation). We obtain

e2(0) = (2q − 1) + (q − 1)2(q + 1) = q3 − q2 + q.

The general case is not harder. We have the following obvious recursive
relation for the hyperbolic case:

hm(0) = hm−1(0)h1(0)+(q2(m−1)−hm−1(0))h1(1) = qhm−1(0)+(q−1)q2(m−1).
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We saw h2(0) = q(q2 + q − 1), h3(0) = q2(q3 + q − 1), by induction hm(0) =
qm−1(qm + q − 1). The corresponding number of isotropic points is (hm(0)−
1)/(q−1). Fortunately hm(0)−1 = (qm−1)(qm−1 +1). For m = 1 we obtain
two isotropic points as it should be. The next case is h2(0) = q(q2 + q − 1),
leading to (q + 1)2 isotropic points.

6.13 Theorem. Let q be odd. We have hm(0) = qm−1(qm + q − 1), hm(1) =
qm−1(qm − 1) and

|Q+(2m − 1, q)| =
(qm − 1)(qm−1 + 1)

q − 1
.

For the elliptic type we can use this result:

em(0) = hm−1(0) · 1 + (q2(m−1) − hm−1(0))(q + 1) = q2m−1 − qm + qm−1.

As em(0) − 1 = (qm + 1)(qm−1 − 1) we obtain the following result:

6.14 Theorem. Let q be odd. We have em(0) = qm−1(qm − q + 1), em(1) =
qm−1(qm + 1) and

|Q−(2m − 1, q)| =
(qm + 1)(qm−1 − 1)

q − 1
.

By the same argument pm(0) = hm(0) · 1 +
q2m − hm(0)

2
· 2 = q2m and

pm(1) = hm(0) · 2 + hm(1)(q − 2) = qm(qm + 1).

6.15 Theorem. Let q be odd. We have pm(0) = p′m(0) = q2m, pm(1) =
p′m(ν) = qm(qm + 1) and pm(ν) = p′m(1) = qm(qm − 1). Further

|Q(2m, q)| =
q2m − 1

q − 1
.

It is a natural question to determine the maximum dimension of totally
isotropic subspaces.

6.16 Definition. The Witt index of a symmetric bilinear form in odd
characteristic is the largest dimension of a totally isotropic subspace.
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6.17 Proposition. Let q be odd and (, ) a non-degenerate symmetric bilinear
form. If W is an i-dimensional totally isotropic subspace, we can find i
hyperbolic planes such that

V = H1 ⊥ H2 ⊥ · · · ⊥ Hi ⊥ R,

where R is non-degenerate. The Witt index is the largest such i.

Proof. Let 0 6= v1 ∈ W. Find a hyperbolic plane H1 = 〈v1, w1〉. We have
V = H1 ⊥ H⊥

1 and H⊥
1 ∩ W = w⊥

1 ∩ W of dimension at least m − 1. The
first claim follows by induction. The second claim is immediate as we see
i-dimensional totally isotropic subspaces if we have a subspace of the form
H1 ⊥ H2 ⊥ · · · ⊥ Hi.

Proposition 6.17 shows that the hyperbolic and the elliptic quadric in
PG(2m−1, q) have different Witt indices. The hyperbolic quadric Q+(2m−
1, q) has Witt index m (the space is orthogonal sum of m hyperbolic planes),
whereas the elliptic quadric Q−(2m − 1, q) has Witt index m − 1 (we can
split off m − 1 hyperbolic planes).
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1. Let V be a vector space over Fq. A bilinear form is
a mapping : V × V → Fq, which is Fq-linear in both
arguments.

2. Choose a basis e1, . . . , en of V. A bilinear form is de-
termined by the values (ei, ej). The Gram matrix A
with entries aij = (ei, ej) determines the bilinear form
(because of bilinearity).

3. In matrix notation (x, y) = xAyt, where x =
(x1, . . . , xn), analogously for y, and yt is the transposed.

4. The bilinear form is symmetric ((x, y) = (y, x) for all
x, y) if and only if its Gram matrix is symmetric.

5. If (x, y) = (y, x) = 0 we call x, y orthogonal. x is
isotropic if (x, x) = 0 (x is orthogonal to itself).

6. The radical of the bilinear form consists of all vectors,
which are orthogonal to all vectors in V. The radical is
a subspace. The bilinear form is non-degenerate if
the radical is {0}.

7. The bilinear form is non-degenerate if and only if the
Gram matrix is regular (det(A) 6= 0).

8. A symmetric bilinear form (, ) determines
the quadratic form Q(x) = (x, x).

9. A quadratic form is described (with respect to a fixed
basis) by a homogeneous polynomial of degree 2 in n
variables: Q(x1, . . . , xn) =

∑

1≤i≤j≤n qijxixj .

10. Let q be odd, dim(V ) = n over Fq and (, ) a symmetric
bilinear form with Gram matrix A.

11. The quadratic form determines the equivalent symmet-
ric bilinear form via (x, y) = 1

2
(Q(x+y)−Q(x)−Q(y))

(this is also called the polarization of Q).
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• The polarization in coordinates: each qii yields entry
aii = qii, each qij, i < j, yields aij = aji = qij/2 in the
Gram matrix.

• If (, ) is non-degenerate and W ⊂ V is a subspace of
dimension m, then W⊥, the set of all vectors orthogonal
to all of W, has complementary dimension n − m.

• A 2-dimensional non-degenerate space either is a hy-
perbolic plane (2 isotropic points) or is anisotropic (no
isotropic point). In each case the space is uniquely de-
termined.

• The discriminant is 1 if det(A) is a square, it is −1
otherwise. It is an invariant of the space.

• The Witt index d is the largest dimension of a to-
tally isotropic subspace (meaning that Q vanishes on
the subspace).

• Let n = 2m. Then either V (non-degenerate) is or-
thogonal sum of m hyperbolic planes (the hyperbolic
case or + case, Witt index m) or it is orthogonal
sum of m − 1 hyperbolic planes and an anisotropic 2-
dimensional space (the elliptic case or (−)case , Witt
index m − 1). The discriminants are different.

• Let n = 2m+1. Then V is orthogonal sum of m hyper-
bolic planes and a 1-dimensional (the parabolic case,
Witt index m).

• The corresponding sets of isotropic points (quadrics) in
PG(n − 1, q) are denoted Q+(2m − 1, q) (hyperbolic),
Q−(2m − 1, q) (elliptic), Q(2m, q) (parabolic).

• We determine the representation numbers of the
quadratic forms (given c ∈ Fq, how many vectors have
Q(x) = c?) and the number of points of the quadrics.
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Problems

1. Consider the bilinear form with Gram matrix A =





1 0 2
µ 1 0
λ 0 1



 in

odd characteristic. For which values of λ, µ is (, ) degenerate?

2. Let Q(x1, x2, x3) = x2
1 − x2

3 + 2x1x3 + 3x2x3 over Fp, p 6= 2. Determine
the corresponding bilinear form. In which characteristic is this non-
degenerate?

3. Consider the preceding example in characteristic 5. Find a standard
basis.

4. Consider the bilinear form with Gram matrix A =









0 1 1 1
1 0 1 1
1 1 0 a
1 1 a 1









in

odd characteristic. When is it degenerate?

5. Consider the preceding problem with a = 1. Over which fields is the
bilinear form hyperbolic (respectively elliptic)?

6. Consider the preceding problem over F5. Find a totally isotropic line.

7. Let V = V (4, 5) with the standard dot product. Find a standard basis
such that the hyperbolic space V is written as orthogonal sum of two
hyperbolic planes.



Chapter 7

Symplectic bilinear forms

Before covering the characteristic 2 case of quadratic forms it is natural to
consider symplectic bilinear forms first. A bilinear form is symplectic if all
vectors are isotropic:

(x, x) = 0 for all x ∈ V.

As 0 = (x + y, x + y) = (x, x) + (y, y) + (x, y) + (y, x) = (x, y) + (y, x), a
symplectic form is also skew-symmetric:

(y, x) = −(x, y) for all x, y.

This shows that the radical of V is

Rad(V ) = {x|(x, V ) = 0} = {x|(V, x) = 0}.

A symplectic form is non-degenerate if Rad(V ) = {0}. Symplectic forms are
bilinear forms, which are described by skew-symmetric Gram matrices A.
The form is non-degenerate if and only if det(A) 6= 0. Also, the same proof
as in the symmetric case shows that the dual

W⊥ = {x|(x, W ) = 0} = {x|(W, x) = 0}

of a subspace W has complementary dimension if (, ) is non-degenerate.
Clearly there can be no non-degenerate symplectic form in dimension n =

1. Let n ≥ 2. Let v1 6= 0. Find w1 such that (v1, w1) = 1. The 2-dimensional
subspace 〈v1, w1〉 is non-degenerate. It follows V = 〈v1, w1〉 ⊥ 〈v1, w1〉⊥. Pro-
ceeding inductively we see that n = 2m must be even and V is the orthogonal
sum of 〈vi, wi〉, i = 1, 2, . . . , m such that the Gram matrix with respect to

51
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this basis has (2, 2)-submatrices

(

0 1
−1 0

)

along the main diagonal. All

other entries are 0. Such a basis {v1, v2, . . . , vm}∪{w1, w2, . . . , wm} is known
as a symplectic basis.

1. A bilinear form is symplectic if all vectors are
isotropic.

2. It is then skew-symmetric
((x, y) = −(y, x) for all x, y).

3. A non-degenerate symplectic form on V = V (n, q)
exists only if n = 2m is even.

4. V is then orthogonal sum of m 2-dimensional spaces,

each with Gram matrix

(

0 1
−1 0

)

5. A corresponding basis is a symplectic basis.

Problems

1. Find the number of totally isotropic lines in PG(3, q) of a
non-degenerate symplectic bilinear form on V (4, q).

2. Consider V (4, 2) with a non-degenerate symplectic form.
Count the symplectic bases.
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Quadratic forms in
characteristic 2

A quadratic form on V = V (n, q) is a homogeneous polynomial of degree 2
in n unknowns:

Q(x1, . . . , xn) =
n

∑

i=1

aiix
2
i +

∑

i<j

aijxixj .

We can describe it by a symmetric matrix A = (aij). In Chapter 6 we saw
that quadratic forms are equivalent to symmetric bilinear forms, provided
the underlying field has characteristic 6= 2. In the characteristic 2 case this
is not true. It can be expected that quadratic polynomials should behave
in a special way in characteristic 2. The reason is that squaring is a field

automorphism (see Lemma 1.5). In fact, let A =

(

a b
b d

)

be a symmetric

(2, 2)-matrix in characteristic 2 and (, ) the corresponding bilinear form. Let
x = (x1, x2). Then (x, x) = ax2

1 + dx2
2. The non-diagonal entry b does not

show up at all. This shows that (x, x) does not give us the general case
of a quadratic form. We should start from quadratic forms. In the case of
dimension 2 matrix A describes the quadratic form Q(x) = ax2

1+dx2
2+bx1x2.

We have Q(x+ y)+Q(x)+Q(y) = bx1y2 + bx2y1, a symmetric bilinear form,
which is also symplectic. This leads to a formal definition of quadratic forms
in characteristic 2.

8.1 Definition. Let V = V (n, q), where q is a power of 2. A quadratic
form on V is a mapping Q : V −→ Fq such that
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• Q(λx) = λ2Q(x) for all λ ∈ Fq, x ∈ V, and

• (x, y) = Q(x + y) + Q(x) + Q(y) is a bilinear form.

Observe that the bilinear form is by force symplectic. The quadratic
form carries more information. The underlying symplectic form is uniquely
determined by the quadratic form, but not the other way around. In fact, if
the quadratic form is described by the symmetric matrix A, then the Gram
matrix of the corresponding symplectic bilinear form is obtained by putting
zeroes in the main diagonal of A.

8.2 Definition. A vector v is singular with respect to the quadratic form Q
in characteristic 2, if Q(v) = 0. A subspace is totally singular if Q vanishes
on it. It is asingular if Q(x) = 0 only when x = 0. The dimension of the
radical V0 of the underlying symplectic bilinear form is the index i = i(Q) of
Q. The quadratic form Q is non-degenerate if Q is asingular on the radical
of the bilinear form.

The 1-dimensional case

In case n = 1 we have without restriction Q(v1) = 1. Observe that in contrast
to the odd characteristic case every field element is a square.

The 2-dimensional case

We know from Chapter 7 that (, ) is either identically 0 or non-degenerate.
Assume it is ≡ 0. Then Q(x + y) = Q(x) + Q(y) and Q(λx) = λ2Q(x) (Q
is semi-linear). It follows that Q is degenerate in this case. Either Q is
identically 0 on V or it has a radical of dimension 1 (and the projective line
corresponding to V = V (2, q) has one singular point).

So let (, ) be non-degenerate. Assume at first there is v 6= 0 such that
Q(v) = 0. Choose w′ such that (v, w′) = 1. Consider w = w′ + tv. We have
(v, w) = (v, w′) = 1 and (see Definition 8.1) Q(w) = Q(w′)+Q(tv)+(w′, tv) =
Q(w′) + t. Choosing t = Q(w′) we obtain Q(w) = 0. This shows that we
can find a symplectic basis v, w such that Q(v) = Q(w) = 0. Call 〈v, w〉 a
quadratic hyperbolic plane.

Now assume there is no singular nonzero vector. Choose v such that
Q(v) = 1 and w such that (v, w) = 1. Let Q(w) = a. An arbitrary vector
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sv+tw has Q(sv+tw) = s2+t2a+st. This expression has to be 6= 0 whenever
(s, t) 6= 0. When t = 0 this is satisfied. Let t 6= 0. Division by t shows that
we can assume without restriction t = 1. We must have s2 + s 6= a for all
s 6= 0.

8.3 Lemma. Let q = 2f and tr : Fq → F2 the trace. The elements of Fq,
which can be written in the form x + x2, are precisely the elements of trace
0.

Proof. Recall Definition 1.11. The trace is a nonzero F2-linear function :
Fq → F2. The kernel of tr is therefore an (f − 1)-dimensional subspace of Fq

(where we see Fq as an f -dimensional vectorspace over F2. Also tr(x) = tr(x2)
(squaring is a field automorphism), therefore tr(x2 + x) = tr(x) + tr(x) = 0.
On the other hand, the function f : Fq → Fq defined by f(x) = x + x2 is
linear over F2. Its kernel is {0, 1}. Its image is therefore a hyperplane. This
proves the claim.

Lemma 8.3 is known as the additive version of Hilbert’s theorem 90.
Observe that method for solving quadratic equations is very different from
the odd characteristic case (additive instead of multiplicative).

It follows from Lemma 8.3 that a satisfies the condition if and only if
tr(a) = 1. Replacing w by w′ = w+sv we obtain Q(w′) = a+s2 +s. When s
varies Q(w′) varies over all elements of trace 1. This shows that Q is uniquely
determined.

To sum up, we have seen that there are precisely two non-degenerate
quadratic forms in dimension 2, the quadratic hyperbolic space and the asin-
gular space. The general procedure is very similar to the odd characteristic
case, but the role played by the distinction between squares and non-squares
in the odd case is replaced by the distinction between field elements of traces
0 or 1. Next we show that asingular spaces have dimension ≤ 2 and use
induction to describe all non-degenerate quadratic forms in arbitrary char-
acteristic, just as in the odd characteristic case.

8.4 Proposition. There is no asingular quadratic form on a vector space of
dimension n > 2.

Proof. Choose 0 6= v ∈ V and w /∈ ∠v〉 such that (v, w) = 0. Then Q(v +
tw) = Q(v) + t2Q(w). Either Q(w) = 0 or we can choose t such that Q(v +
tw) = 0.
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The Witt index is defined and determined just as in the odd characteristic
case.

8.5 Definition. The Witt index of a quadratic form is the largest dimen-
sion of a totally singular subspace.

8.6 Proposition. Let Q be a non-degenerate quadratic form in characte-
riostic 2. If W is an i-dimensional totally singular subspace, we can find i
quadratic hyperbolic planes such that

V = H1 ⊥ H2 ⊥ · · · ⊥ Hi ⊥ R,

where R is non-degenerate.

The proof is just as the proof of Proposition 6.17. We are in the same posi-
tion as in the odd characteristic case. When n ≥ 3 we can split off a quadratic
hyperbolic plane. Let n = 2m. After splitting off m−1 quadratic hyperbolic
planes the remaining 2-dimensional space is either another quadratic hyper-
bolic plane (this is the hyperbolic case) or it is asingular (we have an elliptic
quadratic form in this case). If n = 2m + 1 we can split off m quadratic
hyperbolic planes and are left with a 1-dimensional space.

8.7 Definition. Let q be even. Denote by Q(2m, q) ⊂ PG(2m, q) the set of
singular points of a non-degenerate quadratic form in V (2m + 1, q).

Q+(2m − 1, q) ⊂ PG(2m − 1, q) (a hyperbolic quadric) is the set of
singular points of a non-degenerate quadratic form in V (2m, q) such that
V (2m, q) is orthogonal sum of m quadratic hyperbolic planes.

Q−(2m − 1, q) ⊂ PG(2m − 1, q) (an elliptic quadric) is the set of
singular points of a non-degenerate quadratic form in V (2m, q) such that
V (2m, q) is orthogonal sum of m − 1 hyperbolic planes and an asingular
space. The representation numbers hm(c), em(c), pm(c) are defined as the
number of vectors x such that Q(x) = c in the respective cases.

Observe that in characteristic 2 there is only one 1-dimensional quadratic
form and therefore only one non-degenerate quadratic form in odd dimension.
It follows from Proposition 8.6 that the two non-degenerate quadratic forms
in even dimension have different Witt indices.

With respect to the standard basis for the quadratic hyperbolic plane
we have Q(sv + tw) = st and it follows h1(0) = 2q − 1, h1(c) = q − 1 for
c 6= 0. The usual argument shows e1(c) = q + 1 for all c 6= 0. This shows



57

that the representation numbers hm(c), em(c) are the same as in the odd
case. For odd dimension things are easier yet. As the 1-dimensional non-
degenerate quadratic form represents each field element precisely once we
obtain pm(c) = q2m for all c in characteristic 2. In particular we conclude
that the formulas for the number of points on our quadrics are the same as
in odd characteristic.
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1. Let q = 2f and V = V (n, q).

2. In characteristic 2 quadratic forms (described by homo-
geneous quadratic polynomials) and symmetric bilinear
forms are not equivalent. The quadratic form carries
more information.

3. The bilinear form underlying the quadratic form Q is
(x, y) = Q(x + y) + Q(x) + Q(y).
It is symplectic (and symmetric).

4. In coordinates: if Q(x1, . . . , xn) =
∑

1≤i≤j≤n qijxixj ,
then each qij for i < j contributes aij = aji = qij in
symmetric positions of the Gram matrix of (, ). Terms
qii do not contribute to A at all. If A is given, then the
coefficients qij , i < j of the quadratic form are deter-
mined. The diagonal terms qii are arbitrary.

5. A vector x is singular if Q(x) = 0, a subspace is
totally singular if all its vectors are singular.
A space is asingular if Q(x) 6= 0 for all x 6= 0.

6. Q is non-degenerate if it is asingular on the radical
of (, ).

7. A 2-dimensional non-degenerate space V is either a
quadratic hyperbolic plane (2 singular points) or
it is asingular (no singular point).

8. Let tr : Fq → F2 be the trace. In the analysis the
distinction between elements of trace 0 and of trace 1
takes the place of the distinction between squares and
non-squares in odd characteristic.

9. The general structure is the same as in odd character-
istic, the words singular, asingular replacing isotropic,
anisotropic.

10. The formulas for the number of singular points are the
same as in odd characteristic.



59

Problems

1. Let Q(x1, x2, x3) = x2
1 + x1x2 + ωx2x3, a quadratic form on V (3, 4).

Determine the Gram matrix of the underlying symplectic form and its
radical. Is Q degenerate?
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Chapter 9

Unitary bilinear forms

Fq2 | Fq has the involutory field automorphism α 7→ α = αq (meaning that
it has order 2 : applying the Frobenius twice is the identity). Clearly α = α
if and only if α ∈ Fq. The situation is analogous to complex conjugation in
the complex field. Observe that for x ∈ Fq2 we have x + x = tr(x), where
tr : Fq2 → Fq is the trace (see Chapter 1). The mapping N(x) = xx = xq+1

is known as the norm. As N(x)q−1 = xq2−1 = 1 whenever x 6= 0, we have
N(x) ∈ Fq. As the multiplicative group of Fq2 is cyclic of order q2 − 1 each
nonzero element of Fq is the norm of precisely q + 1 elements of Fq2 .

(, ) is called a unitary (or hermitian) scalar product if (, ) is biadditive,

(w, v) = (v, w)

and
(α · v, w) = α(v, w), (v, αw) = α(v, w)

always hold (one speaks of sesquilinearity with respect to the Frobenius,
semilinearity in the second component).

Observe that (v, v) = (v, v), hence (v, v) ∈ Fq for all v. The scalar product
is non-degenerate if no nonzero vector is orthogonal to the whole space. In
the sequel we consider the case that (, ) is non-degenerate and n ≥ 2. Assume
at first (x, x) = 0 for all x ∈ V. Choose x1, x2 such that (x1, x2) = 1. Then
(x1 + λx2, x1 + λx2) = λ + λ. For a suitable choice of λ this will be 6= 0,
leading to a contradiction. We have shown that we can find x1 such that
(x1, x1) 6= 0. As (x1, x1) ∈ Fq and (λx1, λx1) = λq+1(x1, x1) we can choose
(x1, x1) = 1. We get V = 〈x1〉 ⊥ x⊥

1 . By induction we obtain an orthonormal
basis, that is the Gram matrix can be chosen to be the identity matrix.
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9.1 Proposition. The number of v ∈ V = V (n, q2) such that (v, v) = 0 is
un(0) = qn−1(qn +(−1)n(q−1)). For every 0 6= α ∈ Fq the number of vectors
v ∈ V satisfying (v, v) = α is un(1) = qn−1(qn − (−1)n).

Proof. Denote by f(n, α) the number of v ∈ V such that (v, v) = α. Write
v =

∑n
i=1 aixi. Then (v, v) =

∑

i a
q+1
i . We see that each value α 6= 0 occurs

equally often, in other words f(n, α) = f(n, 1). Clearly q2n = f(n, 0) + (q −
1)f(n, 1). Distinguishing according to the value of an we obtain: f(n, 0) =
f(n − 1, 0) + (q2 − 1)f(n − 1, 1). The proposition follows by induction.

The totally isotropic points form the Hermitian variety. Clearly the num-
ber of these points is (f(n, 0)− 1)/(q2 − 1). Distinguishing cases n even and
n odd Proposition 9.1 yields the following:

9.2 Theorem. Denote by H(n − 1, q2) ⊂ PG(n − 1, q2) (the Hermitian
variety) the set of isotropic points of the non-degenerate unitary form on
V (n, q2). If n = 2d we have

|H(2d − 1, q2)| =
(q2d−1 + 1)(q2d − 1)

q2 − 1
.

In case n = 2d + 1

|H(2d, q2)| =
(q2d − 1)(q2d+1 + 1)

q2 − 1
.

Case n = 2

It follows from Theorem 9.2 that a line has exactly q + 1 isotropic points if
the restriction of the unitary form to the corresponding 2-dimensional vector
space W is non-degenerate. If the radical of W is 1-dimensional, the line has
exactly one isotropic point. The final case is that the unitary form vanishes
on the line. We see that the intersection of a Hermitian variety defined over
Fq2 with a line has either q + 1 or 1 or q2 + 1 points.

What is the Witt index (the dimension of the largest totally isotropic
subspace)? Let e1, . . . , en be an orthonormal basis and fix c ∈ Fq2 such that
N(c) = −1. Then

〈e1 + ce2, e3 + ce4, . . . 〉

is a totally isotropic subspace of dimension d, where n = 2d or n = 2d+1. We
claim that d is the Witt index. This is seen using a by now familiar argument.
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Let W = 〈v1, . . . , vm〉 be totally isotropic. Because of non-degeneracy we can
find w1 such that (v1, w1) = 1. Replacing w1 by w1 + sv1 for suitable s we see
that we can assume w1 is isotropic. Then H1 = 〈v1, w1〉 is non-degenerate.
It follows V = H1 ⊥ H⊥

1 , the orthogonal complement H⊥
1 is non-degenerate

and dim(W ∩H⊥
1 ) = m− 1. Proceeding inductively we see that we can split

off m such 2-dimensional subspaces. In particular n ≥ 2m. We have seen the
following:

9.3 Theorem. Let n = 2d or n = 2d + 1 and (, ) a non-degenerate unitary
form on V (n, q2). The Witt index (largest dimension of a totally isotropic
subspace) is d.

1. Let q be a prime-power, V = V (n, q2) and x = xq the
image of x under the Frobenius automorphism.

2. tr(x) = x+xq ∈ Fq (the trace), N(x) = xx = xq+1 (the
norm).

3. A biadditive scalar product is sesquilinear if

(w, v) = (v, w), (αv, w) = α(v, w), (v, αw) = α(v, w).

4. The unitary (non-degenerate sesquilinear) scalar prod-
uct is uniquely determined. There is an orthonormal
basis.

5. The isotropic points form the Hermitian variety.

6. We determined the number of points of the Hermitian
variety.

7. The Witt index is d, where n = 2d or n = 2d + 1.
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Chapter 10

Quadrics in PG(2, q) and in
PG(3, q)

Let us go back to the quadratic form Q(x) = x1x3 − x2
2 from Chapter 5. In

odd characteristic the corresponding symmetric bilinear form is

(x, y) =
1

2
x1y3 +

1

2
x3y1 − x2y2.

Its Gram matrix is A =





0 0 1/2
0 −1 0

1/2 0 0



 . We saw this example in the

opening stages of Chapter 6. As det(A) = 1/4, we have that Q is non-
degenerate. Its isotropic points form Q(2, q). We know that Q(2, q) has q +1
points (this is the special case m = 1 of Theorem 6.15). As Q has Witt index
1 there is no totally isotropic line. It follows that no more than 2 points of
Q(2, q) are collinear. Lines l containing just one point P of Q(2, q) (tangents)
correspond to degenerate 2-dimensional spaces. As P is in the radical of l
we must have l = P⊥. This shows that every point of Q(2, q) is on precisely
one tangent. All this confirms results obtained in Chapter 5 by calculations
with coordinates and by combinatorial counting.

This example also illustrates the bijection between symmetric bilinear
forms and quadratic forms in odd characteristic. Terms ciiX

2
i lead to entry

aii = cii in the Gram matrix, whereas each mixed term cijXiXj yields entries
aij = aji = cij/2 in the Gram matrix.
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Let now q be a power of 2. The Gram matrix is A =





0 0 1
0 0 0
1 0 0



 . Recall

that A describes the underlying symplectic bilinear form, not the quadratic
form. We have det(A) = 0, so (, ) is degenerate. Recall that this is always
so in odd dimension. Non-degenerate symplectic forms exist only in even
dimension. The radical of (, ) is V0 = 〈e2〉. We have Q(e2) = Q(0, 1, 0) = 1,
so Q is non-degenerate. As (e1, e3) = 1 and Q(e1) = Q(e3) = 0, the space
H1 = 〈v1, v3〉 is a quadratic hyperbolic plane.

Recall from Chapter 5 that each oval in PG(2, q) is embedded in a unique
hyperoval when q is a power of 2. The tangents of the oval meet in a unique
point, the nucleus N, which complements the oval to a hyperoval. Can we
confirm that from our quadratic point of view? Well, the nucleus corre-
sponds to the radical of the underlying symplectic form. This radical is 1-
dimensional, so we talk about a point in PG(2, q), and Q is non-degenerate
on it, so N /∈ Q(2, q). More importantly all tangent lines meet in N as the
tangent lines are the duals of the points of the quadric, and vectors from N
are orthogonal to everything.

We have recovered all the information that we gathered earlier concerning
Q(2, q). Let us go one dimension higher.

Consider Q(x1, x2, x3, x4) = x2
1 + x2

2 + x2
3 + x2

4. In characteristic 2 we
have Q(x) = (

∑

i xi)
2. As Q vanishes on a 3-dimensional subspace it clearly

is degenerate. Let q be odd. Recall that in dimension n = 4 and odd
characteristic the hyperbolic quadric has discriminant 1, the elliptic quadric
has discriminant −1, meaning that the determinant of the Gram matrix
is a square in the hyperbolic case, a non-square in the elliptic case. The
Gram matrix of our form is the unit matrix. It follows that the quadric is
hyperbolic. We know |Q(3, q)| = (q + 1)2. It is not all that easy to confirm
this by concrete calculations with coordinates.

Use the standard form corresponding to a decomposition in hyperbolic

planes, in odd characteristic. The Gram matrix is A =









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









.

The quadratic form is Q(x) = 2x1x2 + 2x3x4. We can use just as well
Q(x) = x1x2 + x3x4. There should be (q + 1)2 isotropic points.

There are 4q points such that x1x2 = x3x4 = 0. All remaining points
must have all coordinates 6= 0. We can choose x1 = 1. For arbitrary nonzero
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values of x2, x3 we can find precisely one value of x4 such that x4x3 = x2.
This gives us (q − 1)2 points all of whose coordinates are 6= 0. We count
|Q+(3, q)| = (q − 1)2 + 4q = (q + 1)2, as predicted.

The standard form for an elliptic 4-dimensional quadratic form in odd

characteristic corresponds to the Gram matrix A =









0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 −ν









. The

quadratic form is Q(x) = 2x1x2 +x2
3−νx2

4. We expect q2 +1 isotropic points.
This is in fact easy to count directly. Assume at first x3 = x4 = 0. As
either x1 = 0 or x2 = 0 this gives us the two points 〈e1〉, 〈e2〉. Let now
(x3, x4) 6= (0, 0). Then x2

3 − νx2
4 6= 0. We can choose x1 = 1 and obtain a

unique solution x2. This gives us q2 − 1 points. We have confirmed that
|Q−(3, q)| = q2 + 1.

As the Witt index is 1 there are no totally isotropic lines. It follows that
each line intersects Q−(3, q) in at most 2 points (see Section 6). Consider
planes and how they intersect the elliptic quadric. Let E be a plane. Let
P ∈ Q−(3, q) and E = P⊥. Then E intersects Q−(3, q) only in P. We see that
each point P ∈ Q−(3, q) is contained in precisely one such tangent plane. If
E is not one of the q2+1 tangent planes, then the restriction of the quadratic
form to E is non-degenerate. It follows that |E ∩ Q−(3, q)| = q + 1 in this
case, and the q + 1 points of intersection form an oval. Observe that all this
is true in any characteristic.

10.1 Proposition. Let Q−(3, q) ⊂ PG(3, q) be the elliptic quadric. Each
line contains at most 2 points of the quadric. Each point P ∈ Q−(3, q) is on
precisely one plane P⊥ meeting Q−(3, q) only in P. Any plane, which is not
one of the q2 + 1 tangent planes, meets Q−(3, q) in q + 1 points, which form
an oval.

Consider the hyperbolic quadric in PG(3, q) now. As the Witt index is
2, totally singular lines exist. Let us count them. Fix P ∈ Q+(3, q). Then
P⊥ is the orthogonal sum of P and a hyperbolic plane. It follows that P
is on precisely 2 totally singular lines (in odd characteristic we can speak
equivalently of isotropy instead of singularity). By double counting we see
that the total number of totally singular lines is 2(q +1)2/(q +1) = 2(q +1).

Can we determine the structure of this family of 2(q + 1) lines? Fix one
such line, l, let P1, . . . , Pq+1 be the points of l and gi, i = 1, . . . , q+1 the second
totally singular line through Pi (aside of l). Assume lines gi, gj intersect in



68 CHAPTER 10. QUADRICS IN PG(2, Q) AND IN PG(3, Q)

a point R. Then the plane E through the points Pi, Pj, R contains the lines
l, gi, gj. It is clear that E must be totally singular, which is impossible as
the Witt index is 2. We conclude that the lines gi are mutually disjoint (one
says: skew). It follows that the lines gi, i = 1, 2, . . . , q+1 partition the points
of Q+(3, q). Starting from one of the gi we see that l also is part of such a
parallel class.

10.2 Proposition. Let Q+(3, q) ⊂ PG(3, q) be the hyperbolic quadric. There
are 2(q +1) totally singular lines. These come in two parallel classes of q +1
each. Each parallel class partitions the points of the quadric, whereas two
lines from different parallel classes intersect in a point.

Observe that the real work has been done in the preceding chapters. In
the present chapter we are harvesting. As another example consider the
non-degenerate symplectic form in V (4, q). Again we would like to count the
totally isotropic lines. Fix a point P ∈ PG(3, q). We can choose P = 〈v1〉,
where v1 belongs to a symplectic basis. Then P⊥ = P ⊥ 〈v2, w2〉. It follows
that P is on precisely q+1 totally isotropic lines. Double counting shows that
the number of totally isotropic lines equals the number of points of PG(3, q),
which is (q4−1)/(q−1). What type of geometry do the q3 +q2 +q+1 totally
isotropic lines form? Clearly any two lines intersect in at most one point,
and any two points are on at most one line. We can prove another important
property: Let l be a totally isotropic line and P /∈ l. Then |P⊥ ∩ l| = 1. This
means that there is precisely one point Q ∈ l such that the line PQ is totally
isotropic.

10.3 Proposition. Consider the non-degenerate symplectic bilinear form on
V (4, q). The number of totally isotropic lines equals the number of points in
PG(3, q), and each point is on q + 1 totally isotropic lines. Given a totally
isotropic line l and a point P /∈ l there is precisely one point Q ∈ l such that
P and Q are collinear on a totally isotropic line.



Chapter 11

Designs, projective planes and
generalized quadrangles

In the previous chapter we drew some consequences from the properties of
quadrics and bilinear forms. In this chapter we want to put this in perspec-
tive.

11.1 Definition. A t-design, more precisely a design t − (v, k, λ), consists
of a set (the ground set) Ω of v points and a family B of k-subsets of Ω called
blocks. The defining property is:

• Each t-subset of Ω is contained in precisely λ blocks.

A Steiner t-design is a t-design with λ = 1. We denote it S(t, k, v).

Sometimes a more general notion of a design is used, where the blocks
form a multiset. In this terminology the designs of Definition 11.1 would be
called simple designs. Designs are a basic structure of modern combinato-
rial theory. We have encountered designs in several places already.

11.2 Theorem. Let q be a prime-power. The projective plane PG(2, q) is a
Steiner 2-design S(2, q + 1, q2 + q + 1).

Here we use the lines as blocks. More generally we can consider the
hyperplanes of PG(n, q) as blocks.

11.3 Theorem. Let q be a prime-power. Using the hyperplanes as blocks we
obtain a design

2 − (
qn+1 − 1

q − 1
,
qn − 1

q − 1
,
qn−1 − 1

q − 1
).
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Consider the elliptic quadric in PG(3, q). Any three points are in a unique
plane, and this plane is of course not a tangent plane. This proves the
following:

11.4 Theorem. Let q be a prime-power and Ω = Q−(3, q) ⊂ PG(3, q) the
elliptic quadric. Use as blocks the intersections of Ω with planes, which are
not tangent planes. This yields a Steiner 3-design S(3, q + 1, q2 + 1).

Although design theory has a rather long history by now, some of its
basic problems remain unsolved. For example, no Steiner t-design is known
for t > 5 and no infinite family of Steiner t-designs is known for t > 3. This
indicates that the circle geometries of Theorem 11.4 are rather interesting.

Projective planes have found more interest than any other type of designs.
Here is a definition.

11.5 Definition. A projective plane of order n is a Steiner system
S(2, n + 1, n2 + n + 1).

11.6 Proposition. A projective plane of order n has n2 + n + 1 lines (just
as many as points). Any two lines intersect in precisely one point.

Proof. This is a combinatorial triviality. The number of lines through a point
is (n2 + n)/n = n + 1 (fix a point P ; the points on the lines through P must
partition the n2+n points 6= P.) By double counting the point-line incidences
we see that the number of lines equals the number of points.

Fix a line l. Each of the n+1 points on l is on n lines 6= l. We count n2+n
lines, each of which intersects l in one point. These are all lines 6= l.

Proposition 11.6 justifies to call these designs projective planes. They
have the same combinatorial properties as a 2-dimensional projective geome-
try. In particular the notion of a projective plane is self-dual in the following
sense: if we start from a projective plane of order n and interpret the lines as
points and the points as lines, then this dual structure is a projective plane
of order n again.

In general 2-designs with equally many blocks as points are known as
symmetric designs. Symmetric designs with λ = 1 are projective planes
(see the Problems section).

The only examples of projective planes we know are the planes PG(2, q)
whose points are the 1-dimensional and whose lines are the 2-dimensional
subspaces of a 3-dimensional vector space over Fq. The terminology has been
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chosen such that the number of elements q of the underlying field is the order
of the projective plane. Many constructions are known for projective planes
whose order is a prime-power but not a prime. Not a single projective plane
is known whose order n is composite. The existence of such projective planes
constitutes a famous open problem.

Consider the Hermitian variety H(2, q2). By Theorem 9.2 it has q3 + 1
points. As the Witt index is 1 there is no totally isotropic line. It follows
that each line of PG(2, q2) intersects H(2, q2) either in 1 or in q + 1 points.
It is clear how to obtain a design on the points of H(2, q2) (also called the
unital). Let the intersections with lines containing q +1 points of the unital
be the blocks. This yields a Steiner 2-design S(2, q + 1, q3 + 1) embedded
in the projective plane PG(2, q2). As an example, in case q = 3 we obtain a
design S(2, 4, 28) embedded in PG(2, 9).

We have encountered examples of another famous type of combinatorial
structure as well.

11.7 Definition. A generalized quadrangle of order (s, t) consists of a
ground set Ω and a family of subsets (lines) of Ω such that the following
hold:

• Each line has s + 1 points.

• Each point is on t + 1 lines.

• Any two points are on at most one common line.

• Given a line l and a point P /∈ l there is exactly one point R ∈ l such
that p and R are on a common line (collinear).

11.8 Proposition. A GQ(s, t) has (s + 1)(st + 1) points and (t + 1)(st + 1)
lines. The dual of a GQ(s, t) is a GQ(t, s).

Proof. At first note that, just as in the case of projective planes, the notion
of a generalized quadrangle is self-dual, and the dual of a GQ(s, t) has order
(t, s). Fix a line l of a GQ(s, t). Each of its s+1 points is on t lines 6= l. Each
of these lines contains s points not on l. All in all we count (s+1)+(s+1)ts
points. The axioms make sure that in this way we count each point precisely
once. Because of duality the number of lines is obtained by substituting
s 7→ t 7→ s in this expression.
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A GQ is called thick is both s and t are > 1, thin otherwise. Thick
GQ are more interesting than thin ones. The thinnest of all GQ is GQ(1, 1),
which is nothing but a quadrangle. This helps to explain the term generalized
quadrangle. Going back to projective planes, a projective plane of order 1
simply is a triangle. It makes sense therefore to consider projective planes
as generalized triangles.

We saw that the (q + 1)2 points of the hyperbolic quadric in PG(3, q)
and the totally singular lines form a grid. This is a (trivial) example of
a GQ(q, 1). More interesting examples can be derived from quadrics and
bilinear or sesquilinear forms. The basic observation is the following:

whenever the Witt index is 2, the totally isotropic or totally singular
lines will define a generalized quadrangle. This is completely obvious for us.
Checking all the cases when the Witt index is 2 we arrive at the following
five families of examples.

The thick finite classical GQ

The symplectic case

The points of PG(3, q) and the totally isotropic lines with respect to the
symplectic bilinear form define a GQ, which is known as W (q). Clearly each
line has q + 1 points, so s = q. Fix a point P. Then P⊥ = P ⊥ l, where l is
a line. It follows that P is on q + 1 totally isotropic lines, hence t = q. The
GQ W (q) has order (q, q).

In order to gain confidence, let us work out the case W (2). As we know

the Gram matrix can be chosen as A =









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









. Denote the cor-

responding basis of V (4, 2) by e1, e2, e3, e4. The points of PG(3, 2) can be
identified with the nonzero vectors. As every vector is orthogonal to itself
(this defines the symplectic form) a line 〈v, w〉 is totally isotropic if and only
if (v, w) = 0. An example of such a line would be 〈e1, e3〉, containing the
points e1, e3, e1 + e3. These totally isotropic lines are precisely the lines of
W (2). We know that there are 15 lines. Start from l1 = {e1, e3, e1 + e3}. The
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lines intersecting l1 are

l2 = {e1, e4, e1 + e4}
l3 = {e1, e3 + e4, e1 + e3 + e4}
l4 = {e3, e2, e3 + e2}
l5 = {e3, e1 + e2, e1 + e2 + e3}
l6 = {e1 + e3, e2 + e4, e1 + e2 + e3 + e4}
l7 = {e1 + e3, e1 + e2 + e4, e2 + e3 + e4}

This completes the list of lines intersecting l1. As we saw in the general
counting argument all the points off l1 appear, each exactly once. As t = 2,
each of those 12 points must appear twice on the remaining 8 lines (fortu-
nately 12 × 2 = 8 × 3). Start from e4. We have e⊥4 = 〈e4, e1, e2〉. Aside of l2
this yields the following lines through e4 :

l8 = {e4, e2, e2 + e4}
l9 = {e4, e1 + e2, e1 + e2 + e4}

It is clear how to continue.

The parabolic case

The non-degenerate quadric in PG(4, q) has Witt index 2. This generalized
quadrangle Q(4, q) has of course s = q. Let P be a singular point. The
orthogonal complement of P in P⊥ is a conic in PG(2, q) (with q +1 points).
This shows t = q. The order of Q(4, q) is (q, q). By Proposition 11.8 the
number of its points and lines is (q + 1)(q2 + 1). This is in agreement with
Theorem 6.15 in case m = 2 (it was noted earlier that this formula is true in
any characteristic).

The elliptic case

Generalized quadrangle Q(5, q) arises from the elliptic quadric in PG(5, q).
Clearly we have s = q. As P⊥ = P ⊥ H1 ⊥ A, where A is anisotropic, and
H1 ⊥ A is elliptic, we have t = q2 (recall that an elliptic quadric in PG(3, q)
has q2 + 1 points). The order of Q(5, q) is (q, q2).
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The first Hermitian case

The non-degenerate Hermitian form in PG(3, q2) has Witt index 2, and there-
fore defines H(3, q2), a GQ with s = q2. As a non-degenerate Hermitian form
on a line has q + 1 points, we have t = q. The order of H(3, q2) is (q2, q).

The second Hermitian case

The non-degenerate Hermitian form in PG(4, q2) has Witt index 2 as well.
The corresponding GQ is known as H(4, q2). Clearly s = q2. As a non-
degenerate Hermitian variety in PG(2, q2) (in other words: a unital) has
q3 + 1 points, the order of H(4, q2) is (q2, q3).

The S6-GQ

We give an elementary description of a GQ of order (2, 2). By Proposition 11.8
it must have 15 points and 15 lines.

Start from a set S = {1, 2, 3, 4, 5, 6} of 6 elements. The points of our GQ
are the unordered pairs from S. There are

(

6
2

)

= 15 such pairs (points). Write
a typical point as (12), for example. This is a shorter expression than {1, 2}.
The lines are the fixed-point-free involutions in S6, or, expressed differently,
the partitions of S into three pairs. A typical line would be (12|34|56),
containing the points (12), (34) and (56).

Basic combinatorial counting shows that there are 15 lines. Any two
points are on at most one line. In fact, two points are not collinear if the cor-
responding pairs intersect. They are on precisely one line otherwise. For ex-
ample, (12) and (13) are of course not on a common line (partition), whereas
(12) and (35) are on the line (12|35|46). The main axiom of GQ is also eas-
ily verified. For example, consider the line l = (12|34|56) and the point
P = (13) /∈ l. The unique point on l, which is collinear with P, is (56). It
follows that we have indeed a GQ of order (2, 2). Clearly every permutation
of the underlying set S yields a symmetry of the GQ. This shows that the
symmetric group S6 is a subgroup of the automorphism group. It is in fact
the complete automorphism group.
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Figure 11.1: Towards GQ(2, 2)

The uniqueness of GQ(2, 2)

We have seen two constructions of a GQ of order (2, 2), the symplectic W (2)
and the S6-GQ. However, it is an elementary combinatorial fact that there is
essentially only one GQ of order (2, 2). Let us check on this. The points are
1, 2, . . . , 15. Denote the lines by l1, . . . , l15. Choose l1 = {1, 2, 3}. The main
axiom implies that each of 1, 2, 3 is on 2 further lines, and that the points on
those lines partition all points outside l1. Up to renumbering the points we
can choose notation such that the first 7 lines (l1 and those that intersect it)
are as follows:

l1 = {1, 2, 3}
l2 = {1, 4, 5}
l3 = {1, 6, 7}
l4 = {2, 8, 9}
l5 = {2, 10, 11}
l6 = {2, 12, 13}
l7 = {2, 14, 15}
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Each of the remaining lines must pick exactly one point collinear with 1,
one collinear with 2 and one collinear with 3, see Figure 11.1. In fact, assume
l picks up two points collinear with 1, for example 4, 6. Then point 1 and
line l violate the basic axiom (absence of triangles of collinear points). The
general picture is: there are 2 more lines through each of the points off l1,
each such line picks up one point from each of the boxes of Figure 11.1. Up
to renumbering the points we can assume that the points collinear with 4
are 8, 10 (from the second box) and 12, 14 (from the third box). The points
collinear with 5 are then 9, 11, 13, 15. Again up to renumbering we can choose

l8 = {4, 8, 12}, l9 = {4, 10, 14}.

We can choose the numbering of lines such that l10 ⊃ {5, 9} and l11 ⊃ {5, 11}.
The remaining points on these two lines are 13, 15. The situation is tight
already. Assume

l10 = {5, 9, 15}, l11 = {5, 11, 13}.

As 6, 7 can be interchanged we can choose notation such that

l12 = {6, 8, x}

where x is from the last box. However, there is no suitable choice for x. 12
is excluded as the pair 8, 12 is on l8 already, x = 13 produces the triangle
8, 12, 13 of collinear points, x = 14 is impossible as l12 would form a triangle
with l8, l9 and x = 15 would produce the triangle 15, 8, 9. It follows that we
have reached a dead end. The only possibility is

l10 = {5, 9, 13}, l11 = {5, 11, 15}.

As before we can choose l12 = {6, 8, x}. All but one point of the last box is
excluded: 12 is obviously impossible, x = 13 gives the triangle 8, 9, 13 and
x = 14 would lead to the triangle 4, 8, 14. It follows l12 = {6, 8, 15}. The
third line through 6 cannot contain 8 or 9, and 11 is excluded as well as this
would produce the triangle 6, 11, 15. It follows that l13 = {6, 10, y}, and as
before we can exclude all but one possibilities for y : points 14, 15 are out for
obvious reasons and y = 12 would produce the triangle 4, 10, 12. We have

l12 = {6, 8, 15}, l13 = {6, 10, 13}.

The completion is uniquely determined:

l14 = {7, 9, 14}, l15 = {7, 11, 12}.
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11.9 Theorem. There is up to equivalence only one GQ of order (2, 2).

1. A t-design is described by a family of k-element subsets
(blocks) from a fixed v-element set. The main axiom
is: every t-element subset is contained in precisely λ
blocks.

2. The special case of λ = 1 are the Steiner designs
S(t, k, v).

3. When λ = 1, t = 2 blocks are often called lines.

4. S(2, n + 1, n2 + n + 1) are called projective planes of
order n. Our PG(2, q) is a projective plane of order q.

5. The main axiom of a generalized quadrangle is: for
every line l and point P /∈ l there is precisely one point
Q ∈ l, which is collinear (on a common line) with P.

6. Each quadric, bilinear forms or sesquilinear form of
Witt index 2 defines a GQ. These are the classical GQ.

7. The S6-GQ has 15 points and 15 lines.

8. It is the uniquely determined GQ of order (2, 2).
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Problems

1. Complete the list of lines of W (2).

2. Determine the number of blocks of an S(3, q + 1, q2 + 1) (equivalently:
the number of planes in PG(3, q), which are not tangent planes of the
elliptic quadric).

3. Let P be a point of the unital in PG(2, q2). Determine the number of
blocks and the number of tangent lines to the unital that pass through
P.

4. Prove the following: a symmetric Steiner 2-design is a projective plane.

5. Identify the S6-GQ with one of the classical GQ.



Chapter 12

The small Witt designs

We have seen some Steiner 2-designs and 3-designs, see Theorem 11.4. In
fact, it is very hard to construct Steiner designs with higher values of t. No
Steiner t-design with t > 5 is known and only the following Steiner designs
with t > 3 are known:

S(4, 5, 11), S(5, 6, 12), S(4, 7, 23), S(5, 8, 24).

These are the famous Witt designs. In the present chapter we want to
construct the two smaller of those. This also serves as an application of the
basic correspondence between codes and projective geometry.

Start from the elliptic quadric Q−(3, 3). The 3-dimensional elliptic quadric
Q−(3, q) has q2 + 1 points, so we have 10 points in PG(3, 3) (see Theo-
rem 6.14 and Chapter 10). We saw that these 10 points form a Steiner
design S(3, 4, 10) (this is the special case q = 3 of Theorem 11.4).

Now use the basic relationship with codes, Theorem 3.5. Write repre-
sentatives for the 10 points of Q−(3, 3) as columns of a generator matrix.
In order to determine the minimum distance of this ternary code we have
to check the hyperplane intersections of Q−(3, 3). Hyperplanes in PG(3, 3)
are PG(2, 3), so hyperplanes are planes. They correspond to 3-dimensional
vector subspaces. The symmetric bilinear form defining our Q−(3, 3) gives a
symmetric bilinear form on this subspace (subplane). As the Witt index is
1 no line is contained in Q−(3, 3). The restriction to a plane either is itself
non-degenerate (intersection q + 1 = 4) or it has a radical of vector space
dimension 1 (intersection size 1, the tangent planes). We used these facts
in the proof of Theorem 11.4 already. As the hyperplane intersection size is
≤ 4, the minimum distance is ≥ 10 − 4 = 6. This shows the following:

79
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12.1 Proposition. The points of the elliptic quadric Q−(3, 3)
define a [10, 4, 6]3-code.

Let us make this concrete. What we need is the Gram matrix A, a ternary
(4, 4)-matrix, which is symmetric (so as to define a symmetric bilinear form),
invertible (this makes the form non-degenerate) and whose determinant is a
non-square (this makes it elliptic). The only non-square in F3 is 2 = −1. One
obvious choice is A = diag(1, 1, 1, 2), a diagonal matrix of determinant 2. As
we want to continue working with this code we prefer a generator matrix
in a standard form, containing the unit matrix. We want the elementary
vectors e1 = (1, 0, 0, 0), . . . , e4 to be isotropic. This means A should have
zeroes along the diagonal. After testing a couple of possibilities we see that
the following choice can be made:

A =









0 1 1 2
1 0 1 1
1 1 0 1
2 1 1 0









The corresponding quadratic form is

(x, x) = x1x4 − (x1x2 + x1x3 + x2x3 + x2x4 + x3x4)

The elementary vectors are on the corresponding Q−(3, 3), and these are the
only isotropic points with more than one coordinate = 0. If x1 = 0, then
x2 = x3 = x4, which we can choose to be = 1. The mapping x1 ↔ x4 is a
symmetry. This gives us the point (1 : 1 : 1 : 0). Similarly we obtain one
more point with x2 = 0 and by symmetry also a point with x3 = 0. So far
we have 8 of the expected 10 points. The two remaining points have all their
coordinates 6= 0. Write the quadratic form as

x1x4 − x2x3 − (x1 + x4)(x2 + x3)

If x1 +x4 = 0 then x2 +x3 = 0 and vice versa. These are the only remaining
solutions. This yields the following matrix generating a [10, 4, 6]3-code:

G =









1 0 0 0 0 1 1 1 1 1
0 1 0 0 1 1 0 2 1 2
0 0 1 0 1 1 2 0 2 1
0 0 0 1 1 0 1 1 2 2








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We ask now if this code can be extended to a [12, 6, 6]3-code. This means
that we are looking for a generator matrix of such a code, which has the
following form:

















0 0 1 0 0 0 0 1 1 1 1 1
0 0 0 1 0 0 1 1 0 2 1 2
0 0 0 0 1 0 1 1 2 0 2 1
0 0 0 0 0 1 1 0 1 1 2 2
0 1 0 0 0 0 x1 x2 x3 x4 x5 x6

1 0 0 0 0 0 y1 y2 y3 y4 y5 y6

















where we recognize G in the Northeast corner. Number the rows of this
matrix v1, . . . , v6. Observe that the code is not changed if we add a linear
combination of the first 4 rows to v5 or v6. This is why we can choose v5, v6

to have zeroes in columns 3, 4, 5, 6. It remains to determine the vectors x =
(x1, . . . , x6), y = (y1, . . . , y6). Let us collect information about these vectors.
As v5, v6 should have weight at least 6 we have that x and y have weight ≥ 5.
Assume x2, . . . , x6 are all nonzero. Then we can find a linear combination of
v1 and v5 with 3 zeroes in the last 5 columns. This word has then weight < 6,
contradiction. It follows wt(x) = wt(y) = 5 (the same discourse is valid for
v6) and x1, y1 6= 0. In which coordinate does x, y have entry 0? Coordinates
2, 3, 4 are impossible as linear combinations with v2, v3, v4 show. The same
is true of y. It follows that x and y have their 0 in one of the coordinates
5 or 6. Linear combinations of v5, v6 show that those zeroes do not occur in
the same coordinate. It follows that either x5 = y6 = 0 or x6 = y5 = 0. We
claim that these choices are equivalent. In fact, if the second version is true
interchange the role of v5 and v6, then flip the first and second column.

We can assume x5 = y6 = 0 and, eventually after replacing v5 or v6 by
their negatives and doing the same to the first or send columns, x6 = y5 = 1.
As wt(v1 − v5) ≥ 6 it follows that at most one of x2, x3, x4 can be = 1.
Likewise v4 + v5 shows that at most one of x1, x3, x4 can be = 2. These two
facts together show x1 = 1, x2 = 2 and by symmetry then also y1 = 1, y2 = 2.
It is clear now that everything is uniquely determined. As an example, v2+v5

shows x4 = 2. We arrive at the generator matrix given in the following
theorem:

12.2 Theorem. The following is a generator matrix of a self-dual [12, 6, 6]3-
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code:
















0 0 1 0 0 0 0 1 1 1 1 1
0 0 0 1 0 0 1 1 0 2 1 2
0 0 0 0 1 0 1 1 2 0 2 1
0 0 0 0 0 1 1 0 1 1 2 2
0 1 0 0 0 0 1 2 1 2 0 1
1 0 0 0 0 0 1 2 2 1 1 0

















In fact, it is easy to check that any two of the vi have dot product 0. For
example, vi ·vi = 0 follows from the fact that the vi have weight 6. Let G12 be
the code generated by G. As it is contained in its dual and because the dual
space has complementary dimension it follows G⊥

12 = G12. This makes it much
easier to verify that the minimum weight is indeed 6. In fact, because of self-
duality each codeword must have weight divisible by 3. It suffices therefore
to show that the minimum weight is > 3. This is easy to do.

Let us come back to the geometric description. The columns of the gener-
ator matrix of G12 form a set P of points in PG(5, 3) with the property that at
least 6 are outside any given hyperplane, equivalently at most 12−6 = 6 are
in any given hyperplane. The hyperplanes of PG(5, 3) are spaces PG(4, 3),
and the hyperplanes of hyperplanes (such a subspace of codimension 2 is
also known as a secundum) are PG(3, 3). Let S be a secundum. How many
points from our set can be contained in a secundum? Observe that S is
contained in precisely q + 1 = 4 hyperplanes. If 5 points of P are in S, we
count |P| ≤ 5 + 1 + 1 + 1 + 1 = 9, contradiction. Is |S ∩ P| = 4 possible?
The same counting argument shows

12 = |P| ≤ 4 + 2 + 2 + 2 + 2 = 12.

This is possible, but every hyperplane containing S must intersect P in pre-
cisely the maximum number of 6 points. On the other hand, this situation
occurs all the time: two points determine a line, together with a third point
outside this line they determine a plane, together with a fourth point outside
this plane they determine a secundum. This shows that any 3 points must
determine a plane (they cannot be on a line), any 4 points must determine
a secundum (they cannot be on a plane) and any 5 points of P determine a
hyperplane (they are not on a secundum). But hold, we have here a Steiner
system: any 5 points of P are on a hyperplane, and this hyperplane contains
6 points of P. It follows that the points of P and the hyperplanes meeting
P in 6 points form the points and blocks of a S(5, 6, 12). If we omit a point
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and use only the blocks containing that point we obtain S(4, 5, 11). These
are the Steiner designs promised in the introduction to this chapter.

All these structures are important and have exceptional properties. The
self-dual code G12 with parameters [12, 6, 6]3 and a code [11, 6, 5]3 that can be
derived from it are the ternary Golay codes. The S(4, 5, 11) and S(5, 6, 12)
are the small Witt designs and their groups of automorphisms are the small
Mathieu groups M11 and M12.
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Chapter 13

Symmetry groups

13.1 Definition. Let Ω be a finite set and B a family of subsets of Ω (the
blocks). An automorphism (or symmetry) of the incidence structure
(Ω,B) is a permutation π of Ω which respects the block structure, in other
words: for every block B the image π(B) is a block as well.

All the finite geometries we considered thus far are special cases of inci-
dence structures. Examples are designs, generalized quadrangles, projective
geometries and totally singular subspaces on quadrics. It is always important
to study the group of symmetries of a given incidence structure. We start
from projective geometries.

Let V = V (n, q) be an n-dimensional vector space over Fq. Each bijective
linear mapping : V → V is a symmetry of the incidence structure whose
blocks consist of the subspaces of V. The corresponding automorphism group
is the general linear group.

13.2 Definition. The general linear group GL(n, q) is the group of all
bijective linear mappings from V to V.

Using a fixed basis (e1, e2, . . . , en say), linear mappings : V → V are
described by (n, n)-matrices. A matrix A describes an element of GL(n, q)
if A is invertible, equivalently if det(A) 6= 0. Recall from basic linear algebra
that a linear mapping is uniquely determined by the images of a basis. The
linear mapping f : V → V is bijective if and only if the image of a basis is
a basis again. The order (number of elements) of GL(n, q) is therefore the
number of order bases of our vector space V.
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13.3 Proposition. The order (number of elements) of GL(n, q) is

|GL(n, q)| = (qn − 1)(qn − q) . . . (qn − qn−1).

This is clear, by basic counting principles: there are qn−1 choices for the
first element v1 of a basis v1, v2, . . . , vn. Once v1 has been chosen there are
qn−q choices for v2 (all vectors not belonging to the subspace 〈v1〉 generated
by v1). Continuing in this fashion the formula in Proposition 13.3 is obtained.

As an example, |GL(3, 2)| = (8 − 1)(8 − 2)(8 − 4) = 168 : there are 168
invertible (3, 3)-matrices with entries in F2.

The points of PG(n−1, q) are the 1-dimensional subspaces of V. It is clear
that each element of GL(n, q) gives us an automorphism of PG(n− 1, q). In
the language of basic group theory we have a permutation representation
of GL(n, q) ob the points of PG(n− 1, q). In order to determine the order of
the corresponding symmetry group we have to determine the kernel Z of the
permutation representation. It consists of the elements z ∈ GL(n, q) which
map every point P ∈ PG(n − 1, q) to itself. Fix a basis and represent z by
a matrix Z. Choosing P = 〈ei〉 we see that Z must be a diagonal matrix.
Points 〈ei−ej〉 show that all diagonal entries of Z must be the same, in other
words Z must be a scalar matrix diag(λ, λ, . . . , λ) for some 0 6= λ ∈ Fq.
Each such diagonal matrix does indeed map each point to itself. Clearly Z is
a normal subgroup of GL(n, q). It is isomorphic to the multiplicative group
of the field, and therefore is cyclic (see Theorem 1.8). We have seen the
following:

13.4 Theorem. The group Z of invertible scalar matrices is a normal sub-
group of GL(n, q). It is cyclic of order q − 1 and is the kernel of the permu-
tation representation of GL(n, q) on the points of PG(n − 1, q). The factor
group PGL(n, q) = GL(n, q)/Z (the projective general linear group) is
a symmetry group of PG(n − 1, q). We have

|PGL(n, q)| =
|GL(n, q)|

q − 1
.

When q = 2 we have PGL(n, 2) = GL(n, 2). In particular PGL(3, 2) has
order 168.

Recall from basic group theory the important operation of conjugation:
the conjugate of g under h is

gx = x−1gx.
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A subgroup H ⊆ G is a normal subgroup if Hg = g−1Hg = H for all
g ∈ G (the conjugates of elements of H are in H again). In the case of
GL(n, q) we see that det(AB) = det(A) for all A, B ∈ GL(n, q). This implies
in particular that the matrices of determinant 1 form a normal subgroup,
the special linear group. Also, det is a group homomorphism from GL(n, q)
onto the multiplicative group of Fq. It follows from the first homomorphism
theorem of basic group theory that the order of the special linear group is

1
q−1

times the order of the general linear group.

13.5 Proposition. The special linear group SL(n, q) consists of all
(n, n)-matrices of determinant 1 and is a normal subgroup of GL(n, q).
Its order is the same as that of PGL(n, q).

The kernel of the permutation representation of SL(n, q) on the projec-
tive points is SL(n, q) ∩ Z. When does a scalar matrix diag(λ, . . . , λ) have
determinant 1? When is λn = 1? Observe that λ is from a cyclic group of
order q − 1. It follows that SL(n, q) ∩ Z has order gcd(n, q − 1).

13.6 Theorem. The intersection SL(n, q) ∩ Z has order gcd(n, q − 1). The
factor group PSL(n, q) = SL(n, q)/(SL(n, q) ∩ Z) (the projective special
linear group) is the symmetry group of PG(n − 1, q) induced by SL(n, q).
Its order is

|PSL(n, q)| =
|SL(n, q)|

gcd(n, q − 1)
.

Nothing happens in the binary case: GL(n, 2) = SL(n, 2) = PGL(n, 2) =
PSL(n, 2). As another example consider n = 2, q = 7. We have |GL(2, 7)| =
(72−1)(72 −7), |SL(2, 7)| = (7+1)7(7−1) and |PSL(2, 7)| = 1

2
(7+1)7(7−

1) = 168, strangely the same order as GL(3, 2).
We note without proof that the groups PSLn(q) are in general simple

groups. A group is simple if it has no normal subgroups (and therefore no
factor groups) aside of the unit subgroup and the group itself. The only ex-
ceptions, PSLn(q) which are not simple, are PSL2(2) of order 6 and PSL2(3)
of order 24. The smallest non-abelian simple group is A5 of order 60. Both
PSL2(5) and PSL2(4) = SL2(4) are isomorphic to A5.

We are not going to study the structure of these groups in detail. Just
a hint that certain structural features are not that hard to see: consider the
upper triangular matrices with entries 1 in the diagonal. These matrices are
in SLn(q) and they form a subgroup P (the product of two such triangular
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matrices has this form again, as has the inverse of such a matrix). The order
of P is the power of q with exponent the number of cells under the main
diagonal. This number of cells is 1+2+ · · ·+(n−1) = n(n−1)/2. It follows
|P | = qn(n−1)/2. Comparison with the order of GLn(q) (Proposition 13.3)
shows that this is the full power of q dividing the order. It follows that P
is a Sylow-p-subgroup of GLn(q) and of SLn(q), where q is a power of
the prime p. Clearly we could have worked with upper triangular matrices
instead.

We know in principle that PGL(n, q) is not in general the complete sym-
metry group of PG(n − 1, q). In fact, let q = pf for f > 1. The Frobenius
automorphism σ is a field automorphism (see Lemma 1.5). It induces a
mapping : V → V and a mapping : PG(n − 1, q) → PG(n − 1, q), which
clearly is an automorphism. The corresponding groups

PΓL(n, q) = PGL(n, q)〈σ〉, PΣL(n, q) = PSL(n, q)〈σ〉

have orders f times the order of the underlying linear group (which is a
normal subgroup).

Each quadratic form, bilinear form or sesquilinear form defines a sub-
group of PGL(n, q), the subgroup consisting of those elements which respect
the corresponding structure. This is a general principle, which describes an
important family of finite groups.

Start with the symplectic case. We have V = V (2m, q) equipped with a
non-degenerate symplectic bilinear form, see Chapter 7.

13.7 Definition. The symplectic group Sp(2m, q) consists of the elements
A ∈ GL(2m, q), which satisfy (Ax, Ay) = (x, y) for all x, y ∈ V.

This expresses the idea that A should respect the symplectic structure.
We can express this in a different way, as follows: fix a symplectic basis
{v1, . . . , vm} ∪ {w1, . . . , wm}. Then A ∈ Sp(2m, q) if and only if the image of
our symplectic basis is a symplectic basis again. This shows that the order
|Sp(2m, q)| equals the number of ordered symplectic bases. This leads to the
same kind of counting argument that allowed us to determine the order of
GL(n, q). The number of (isotropic) nonzero vectors is q2m−1. These are the
candidates for v1. Once v1 is chosen, its partner w1 must satisfy (v1, w1) = 1.
As v⊥

1 is a hyperplane and all nonzero values of (v1, x) occur equally often,
the number of candidates for w1 is (q2m − q2m−1)/(q − 1) = q2m−1. The
number of choices for the first pair v1, w1 of elements of a symplectic basis
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is q2m−1(q2m − 1). In case m = 1 we are done, and therefore |Sp(2, q)| =
(q − 1)q(q + 1). If m > 1 we can use induction (〈v1, w1〉⊥ is a 2(m − 1)-
dimensional space with a non-degenerate symplectic bilinear form). As the
sum of all odd natural numbers up to 2m − 1 is m2 we obtain

13.8 Theorem.

|Sp(2m, q)| = qm2

(q2m − 1)(q2(m−1) − 1) · · · · (q2 − 1).

The S6-GQ again

We have |Sp(4, 2)| = 24 · 15 · 3 = 6!, the same order as S6. In fact, we
saw in Theorem 11.9 of Chapter 11 that there is up to isomorphy only one
GQ of order (2, 2). In particular the S6-GQ is identical to the generalized
quadrangle W (2) derived from the symplectic 4-dimensional geometry on
V (4, 2). As S6 is an automorphism group of the S6-GQ, Sp(4, 2) is a group
of automorphisms of W (2) and these groups happen to have the same order
it is natural to expect that they are the same group (isomorphic). In order
to prove this it suffices to show that S6 is the full automorphism group of
the S6-GQ. Let us do this. Let G ⊇ S6 be the automorphism group of the
S6-GQ. We know that S6 is transitive on lines and the stabilizer of a line
induces the symmetric group S3 on its 3 points. The same is therefore true
of the potentially larger group G. We can use the combinatorial work done in
the previous chapter, where we now use the setup of the S6-GQ, identifying
points 1, 2, 3 on line l1 with 12, 34, 56 and so on. As the stabilizer in S6 of
these three points is transitive on the 4 points off l1, which are collinear with
12 (the points in the first box in the terminology of Chapter 11) the same is
true of G. A symmetry fixing two points of a line must of course fix also the
third point. Let H be the stabilizer in G of the points of l1 and l2. We need
to show that H has order 2 (the order of G is then 15 × 6 × 4 × |H| = 6!).
We can identify 4 with 35 and 5 with 46. The group H ∩ S6 does of course
have order 2. It is generated by the permutation (12). On the other hand
each element of H must permute the elements of a given box (the second
or third), which are collinear with 35, among themselves, the same with 46
replacing 35. This shows that the following sets of points are respected by
the action of H :

{16, 26}, {15, 25}, {14, 24}, {13, 23}
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Also, the transposition (12) maps 16 ↔ 26. Consider the stabilizer L of point
16 in H. We have to show that L is the identity group. This is clear now:
each element g ∈ L fixes 16 and 26, and therefore also 15 and 25 (being
third points of lines two of whose points are fixed already). All points of the
second box are fixed by g. Each point in the third box is the third point of a
line whose remaining two points (from boxes one and two) are known to be
fixed already. It follows that g is the identity.

13.9 Theorem. The full automorphism group of the S6-GQ is S6. The
groups S6 and Sp4(2) are isomorphic.

The unitary case

This is just as easy as the symplectic case..

13.10 Definition. The general unitary group GU(n, q) consists of the
elements A ∈ GL(2m, q), which satisfy (Ax, Ay) = (x, y) for all x, y ∈ V.

We have seen in Chapter 9 that we can find an orthonormal basis. The
order of GU(n, q2) is the number of ordered orthonormal bases. In Proposi-
tion 9.1 we determined the numbers un(c) of vectors satisfying (v, v) = c. In
particular un(1) = qn−1(qn − (−1)n). We have
|GU(n, q2)| = un(1)un−1(1) . . . u1(1). As the sum of all natural numbers up
to n − 1 equals

(

n
2

)

the following formula is obtained:

13.11 Theorem.

|GU(n, q2)| = qn(n−1)/2(q + 1)(q2 − 1) . . . (qn − (−1)n).

The groups respecting non-degenerate quadratic forms are the orthog-
onal groups. We can derive formulas for their orders in much the same
way as we did in the symplectic and in the unitary case. These groups, to-
gether with the alternating groups, form the family of finite simple groups
which were known as the classical groups before the link to Lie algebras
was discovered. We will briefly come back to this in the last chapter.



Chapter 14

Generators and Spreads

Totally singular (totally isotropic) subspaces of maximal dimension (= Witt
index) are also known as generators in the geometric literature. It is an easy
counting exercise to determine the number of generators in our geometries
(although it is easy to go wrong).

14.1 Theorem. The number of totally isotropic subspaces in the symplectic
non-degenerate geometry on V (2m, q) is

(qm + 1)(qm−1 + 1) . . . (q + 1).

Proof. As usual we count bases of totally isotropic subspaces 〈v1, . . . , vm〉.
The number of choices for v1 is q2m − 1. Once v1 is fixed v2 must be chosen
from v⊥

1 but outside 〈v1〉. Counting in that way we obtain (q2m − 1)(q2m−1 −
q)(q2m−2 − q2) . . . (qm+1 − qm−1) as the number of ordered bases of totally
isotropic subspaces. Each such space has (qm − 1)(qm − q) . . . (qm − qm−1) =
|GL(m, q)| ordered bases.

As an application we can count the self-dual binary codes.

14.2 Theorem. The number of self-dual subspaces (self-dual binary codes) of
F

2m
2 with respect to the ordinary dot product equals the number of generators

in the symplectic geometry on V (2(m − 1), 2), see Theorem 14.1.

Proof. Clearly self-dual codes can exist only when the length is even. Let
V = F

2m
2 with the dot product and C = C⊥ ⊂ V. Then dim(C) = m. The

dot product is a non-degenerate symmetric bilinear form on V (it has the
unit matrix as a Gram matrix). A vector is isotropic with respect to the dot
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product if and only if it has even weight. The even weight vectors form a
hyperplane V0 ⊂ V, known as the all-even code or as the augmentation ideal.
In fact V0 = 1⊥, and 1 ⊂ V0. We have 1 ⊂ C ⊂ V0. Consider the factor
space W = V0/〈1〉. By definition V0 is symplectic. As 1 is the radical of V0

we have that W is a non-degenerate symplectic space of dimension 2(m−1).
The self-dual codes in V are in bijection with the generators of W.

14.3 Theorem. The number of totally singular subspaces in the hyperbolic
geometry on V (2m, q) is

2(q + 1)(q2 + 1) . . . (qm−1 + 1).

Proof. The Witt index is m. At first count ordered bases: There are hm(0)−1
choices for v1. For fixed v1 there are qhm−1(0)− q choices for v2 and so forth.
Here we use the notation from Chapter 6. We observed already that in
characteristic 2 the numbers are the same. When a basis v1, . . . , vi for a
totally singular subspace has been chosen we have that 〈v1, . . . , vi〉⊥ is the
orthogonal sum of 〈v1, . . . , vi〉 and an 2(m− i)-dimensional hyperbolic space.
The number of choices for vi+1 is then q2m−ihm−i(0) − q2m−i. We obtain
qm(m−1)/2(hm(0) − 1)(hm−1(0) − 1) . . . (h1(0) − 1) as the number of ordered
bases of totally singular subspaces. In order to count the subspaces we have to
divide by |GL(m, q)| again. This kills the factor qm(m−1)/2. Also, in Chapter 6
we found hm(0)−1 = (qm−1)(qm−1 +1). The first factor cancels against the
denominator. This yields the formula.

The factor 2 in the formula of Theorem 14.3 is (h1(0)−1)/(q−1) = q0+1.
Proposition 10.2 is the special case m = 2 of Theorem 14.3. We observed
the curious factor 2 there already: there are 2(q +1) totally isotropic lines in
the 4-dimensional hyperbolic geometry. These come in two parallel classes.
It may be expected that there is a similar phenomenon in all dimensions.
This is indeed the case. The generators in hyperbolic space come in two
equivalence classes. Two generators belong to the same equivalence if they
intersect in a space whose dimension has the same parity as the Witt index
itself. The proof is not that easy. The algebraic proof involves the spinorial
norm and the Clifford algebra. A geometric proof is in [8]. We will not do
this here.

It is a natural question to ask if the isotropic (singular) points of our
geometries can be partitioned into generators. Naturally this is conceivable
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only if the number of points on a generator divides the number of singu-
lar points. Looking back at the formulas for the numbers of points on our
quadrics we see that this condition is always satisfied.

14.4 Definition. A spread of one of the classical geometries is a family of
generators (maximal totally isotropic respectively totally singular subspaces),
which partition the set of isotropic (singular) points.

We will speak of symplectic, hyperbolic, . . . spreads. The construction is
easiest in the symplectic case.

14.5 Theorem. Each non-degenerate symplectic geometry has a spread.

Proof. As all points of PG(2m− 1, q) are isotropic, a spread must consist of
(q2m−1 − 1)/(qm − 1) = qm + 1 generators. Use the extension field L = Fqm

and the trace tr : L → Fq. Let V = V (2, qm) be a 2-dimensional vector space
over L with symplectic bilinear form (, ).

We can view V as a 2m-dimensional vector space over Fq. The idea is to
equip it with a symplectic bilinear form using (, ) and the trace. We define

B(x, y) = tr(x, y)

As (, ) is bilinear and symplectic (over L), also B(, ) is bilinear and sym-
plectic over Fq (for example B(x, x) = tr(x, x) = tr(0) = 0). It is also
non-degenerate, for assume x 6= 0 is in the radical. As there is some y such
that (x, y) 6= 0 ((, ) is non-degenerate) and (, ) is L-linear it follows that (x, y)
takes on all values in L when y varies. As tr is not the 0-mapping we obtain
a contradiction.

This means that we can work with this model of symplectic geometry
whenever this is advantageous. In our situation it is. V (2, qm) trivially is
partitioned into its qm + 1 points. Each point is a 1-dimensional L-vector
space, hence an m-dimensional Fq-vector space. It is also totally isotropic
with respect to B. It follows that these points form a spread of the 2m-
dimensional vector space.

Symplectic V (4, 2)

As an example consider V (4, 2). The extension field is L = F4 = {0, 1, ω, ω}
which the reader certainly remembers. The trace is tr : F4 −→ F2 and we
recall that the elements of F2 have trace 0, whereas ω, ω have trace 1. The
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first step is to consider a 2-dimensional space V = V (2, 4) over L and equip
it with the symplectic form (, ). Let e1 = (1, 0), e2 = (0, 1) be a symplectic
basis. Now we see V as a 4-dimensional space V (4, 2) over F2. A basis is

v1 = e1, v2 = ωe1, v3 = e2, v4 = ωe2.

The symplectic form B is defined as B(x, y) = tr(x, y). The Gram matrix

with respect to basis v1, v2, v3, v4 is A =









0 0 0 1
0 0 1 1
0 1 0 0
1 1 0 0









. For example,

(e1, e1) = (e1, ωe1) = 0, which shows that in the top left corner of A we
have a 0-matrix. The same is true of the Southeast corner, and in general of
any 1-dimensional L-space. As another example, the Northeast entry of A
is tr(v1, v4) = tr(e1, ωe2) = tr(ω) = 1. Our spread consists of the 4 + 1 = 5
1-dimensional F4-subspaces of V (2, 4). These are the points of the projective
line PG(1, 4). As vectors generating them over F4 we can choose

e2, e1, e1 + e2, e1 + ωe2, e1 + ωe2.

The first of those contains the nonzero vectors e2 = v3, ωe2 = v4, v3 +v4. The
last of those contains e1 + ωe2 = v1 + v3 + v4, ωe1 + e2 = v2 + v3 and the sum
v1 + v2 + v4. It is left to the reader to write out a complete list.

We know that the symplectic 4-dimensional geometry and its generators
simply form the points and lines of the symplectic GQ W (q). Theorem 14.5
states that we can find q2+1 lines which partition the (q+1)(q2+1) points of
W (q). What does that mean in the binary case, the by now familiar S6-GQ?
Start from the underlying 6-set S. Each point of the GQ is a pair of elements
from S. A graph-theoretic way of expressing this is: the points of the S6-GQ
are the edges of the complete graph on 6 vertices. The lines are then the 1-
factors of this complete graph (three edges which partition the vertices) and
a spread is a family of 1-factors partitioning the edges of the complete graph.
Such a structure is known as 1-factorization in graph theory. The special
case q = 2 of Theorem 14.5 states that the complete graph on 6 vertices has
a 1-factorization, and we constructed it.

The hyperbolic case

This is harder than the symplectic case, but it is particularly interesting, as
we will see later.
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14.6 Theorem. Let q be a power of 2. Each non-degenerate hyperbolic ge-
ometry on V (4m, q) possesses a spread.

Proof. Let Q be the corresponding hyperbolic quadric. A spread would have
q2m−1 + 1 elements (see Theorem 6.13), just as many as a symplectic spread
on V (4m − 2, q). This makes us suspect that we could use the existence of
symplectic spreads to construct our hyperbolic spreads.

Let x such that Q(x) 6= 0. Consider the hyperplane x⊥ and the space W =
x⊥/〈x〉 of dimension 4m−2. It carries a non-degenerate symplectic structure
(as 〈x〉 is of course the radical of the restriction of the symplectic form to
x⊥), but it does not have an orthogonal structure as different elements of the
same coset y + 〈x〉 have different values under Q. It is therefore natural to
start from a symplectic spread on W. Let X be an element of this symplectic
spread. Then dim(X) = 2m−1. Its preimage X in x⊥ has dimension 2m and
is totally isotropic but is of course not totally singular (as Q(x) 6= 0). The
restriction of Q to X is semi-linear. The kernel is an (2m − 1)-dimensional
totally singular subspace Y. We have Y ⊥ = Y ⊥ H, where H is a quadratic
hyperbolic plane. It follows that Y is contained in precisely two generators.

Now we need some of the structure mentioned earlier (we were too lazy
to prove that). The generators in hyperbolic space fall into two equivalence
classes, say type 1 and type 2. In our case (dimension 4m) two generators
have same type if and only if their intersection has even dimension. In
particular each (2m − 1)-dimensional totally singular subspace is contained
in one generator of each type.

We define a mapping φ from generators on symplectic space W to gen-
erators of our hyperbolic geometry by letting φ(X) = Z be the generator
of type 1 containing Y. The claim is that φ maps symplectic spreads to hy-
perbolic spreads. As observed in the beginning the numbers are right. It
suffices to show that if X1 ∩ X2 = {0} (we see these as vector spaces), then
Z1 ∩ Z2 = {0}. We have Zi ∩ x⊥ = Yi and Y1 ∩ Y2 = {0}. As Z1, Z2 have the
same type their intersection dimension is even. As Yi is a hyperplane in Zi

this forces Z1 ∩ Z2 = {0}.
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Chapter 15

Reed-Muller codes and
Kerdock codes

There are close links between finite geometry and coding theory. We saw
an important one in Chapter 3. In the present chapter we want to study
another way how to obtain binary codes from finite geometries.

15.1 Definition. Let V = V (m, 2) the space of binary m-tuples. The set
Fm of all mappings f : V → F2 is a binary vector space of dimension 2m.
Here addition is defined by (f + g)(x) = f(x) + g(x). A basis consists of the
characteristic functions χa for a ∈ V defined by χa(a) = 1, χa(b) = 0 for
b 6= a.

Each polynomial in m variables x1, x2, . . . , xm with coefficients in F2 de-
scribes an element of Fm. This presupposes the choice of a fixed basis for
V, so we see V as F

m
2 . In each monomial exponents higher than 1 of xi are

not needed as xi and x2
i describe the same mapping on F2. So we can re-

strict to monomials, which are products of different xi. Such a monomial is
described by a subset of the index set {1, 2, . . . , m}. For example, the subset
{1, 2, 4} describes the monomial x1x2x4. As simple as that. How many dif-
ferent such polynomials are there? The set {1, 2, . . . , m} has 2m subsets, so
this is the number of different monomials of that type. In order to show that
these monomials form a basis of Fm it suffices to show that the characteristic
functions χa can be represented by polynomials. This is easy to see. In fact,

χa =

m
∏

i=1

(1 + xi + ai).

97
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We have proved the following:

15.2 Theorem. Let V = F
m
2 . Each mapping f : V → F2 can be written in a

unique way as a polynomial in m variables x1, x2, . . . , xm with coefficients in
F2 such that in each monomial each variable occurs with exponent ≤ 1. This
representation of f is known as the algebraic normal form (ANF).

For example, the ANF of the mapping 00 7→ 0, 10 7→ 0, 01 7→ 1, 11 7→ 1
simply is x2, and the ANF of 00 7→ 1, 10 7→ 0, 01 7→ 1, 11 7→ 0 is x1 +1. The
algebraic normal form plays an important role in information transmission
and cryptology.

If we want to study the behaviour of functions f ∈ Fm it is natural to
construct a list of all function values. That is we order the elements of V in
some way and consider the 2m-tuple (f(a))a∈V . A way to think of this is that
f defines a word in a binary code of length 2m.

15.3 Definition. Let V = F
m
2 and f : V → F2. Order the elements of V in

some way: V = {a1, . . . , an}, where n = 2m. Then

Lf = (f(a1), f(a2), . . . , f(an)).

Observe that Lf is a binary 2m-tuple.

Here is an example for m = 3. Let f ∈ F3 be as follows:

000 −→ 1
001 −→ 0
010 −→ 1
011 −→ 0
100 −→ 1
101 −→ 1
110 −→ 1
111 −→ 0

If we order the tuples from left to right in the same way that they appear
vertically from 000 to 111 in the table, then clearly

Lf = (1, 0, 1, 0, 1, 1, 1, 0).
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What is the ANF of f? Evaluate at 000. If we do this for the ANF, the result
is the constant term. On the other hand f(000) = 1. It follows that the
constant term is 1. Now write

f = 1 + ax1 + bx2 + cx3 + dx1x2 + ex1x3 + fx2x3 + gx1x2x3.

We can determine the coefficients a, b, . . . , g one by one, starting from the
terms of low degree. Evaluating at 100 yields 1 = f(100) = 1 + a, so a = 0.
In the same way, evaluating at triples of weight 1, we obtain b = 0, c = 1 :

f = 1 + x3 + dx1x2 + ex1x3 + fx2x3 + gx1x2x3.

Now evaluate at 110. This shows 1 = f(110) = 1 + d, so d = 0. Using all
weight 2 triples we obtain

f = 1 + x3 + x1x3 + gx1x2x3.

Finally 0 = f(111) = 1 + 1 + 1 + g, so g = 1. The ANF of f is

f = 1 + x3 + x1x3 + x1x2x3.

Each f ∈ Fm has an algebraic normal form. We consider the degree of this
ANF (in the example above we had degree 3). For low degrees this leads
us to familiar objects. If f is homogeneous of degree 2, then f is a binary
quadratic form. This motivates the definition of a famous class of codes:

15.4 Definition. The Reed-Muller code R(r, m) has as codewords the
Lf , where f ∈ Fm varies over the mappings whose algebraic normal form
has degree ≤ r.

As addition of polynomials does not increase the degree we see that
R(r, m) is a linear code. Its length is by definition n = 2m. The number
of monomials of degree i is

(

m
i

)

. This shows that R(r, m) has dimension
∑r

i=0

(

m
i

)

. Clearly R(0, m) consists only of the 0-tuple and of the 1-tuple
1. It has dimension 1 and minimum distance n = 2m. Let us concentrate
on small r. We have dim(R(1, m)) = m + 1, and this code consists of Lf ,
where f is a linear mapping : V → F2 (these are the 2m linear combinations
of x1, x2, . . . , xm) and the complementary tuples. Each non-trivial linear
function f has 2m−1 zeroes. This shows wt(Lf ) = 2m − 2m−1 = 2m−1. As
wt(Lf + 1) = n−wt(Lf), we see that each element of R(1, m) \R(0, m) has
weight 2m−1. This is the beginning of an inductive argument, which can be
used to determine the minimum distance.
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15.5 Theorem. R(r, m) is a binary linear code of length 2m, dimension
∑r

i=0

(

m
i

)

and minimum distance 2m−r.

Proof. Only the minimum distance is still in doubt. Let f ∈ Fm with ANF of
degree ≤ r. We can assume by induction that the degree is precisely r. Choose
a variable which occurs in the ANF, without restriction x1. We can write
f(x1, . . . , xm) = x1g(x2, . . . , xm) + h(x2, . . . , xm), where g is not identically
zero. We can view g, h as elements of Fm−1, mappings W = F

m−1
2 → F2.

The elements of V are (0, b) and (1, b), where b ∈ W. We have f(0, b) = h(b)
and f(1, b) = g(b) + h(b). Observe that g has degree ≤ r − 1. By induction
there are at least 2(m−1)−(r−1) = 2m−r points b ∈ W such that g(b) = 1. For
each such b we have that either f(0, b) = 1 or f(1, b) = 1.

Consider R(2, m). Let f ∈ Fm of degree 2. If the constant term is 0, then
f is a sum of terms of the form xixj for i 6= j and of linear terms xi. We
can write x2

i instead of xi and obtain the same mapping f. This shows that
f simply is a binary quadratic form in dimension m. We studied quadratic
forms in Chapter 8. The weight wt(Lf) equals the number of vectors v
where f(v) = 1. These representation numbers have been determined in
earlier chapters.

As we know, the underlying symplectic form is determined by the terms
xixj for i 6= j. Different choices of quadratic terms x2

i lead to different
quadratic forms belonging to the same symplectic bilinear form. Consider the
case when the symplectic form is non-degenerate. Then the quadratic form
will automatically be non-degenerate, for every choice of the diagonal terms.
This can happen only when m = 2l is even. We know the representation
numbers of these quadratic forms. They are

el(0) = 22l−1 − 2l−1, el(1) = 22l−1 + 2l−1

hl(0) = 22l−1 + 2l−1, hl(1) = 22l−1 − 2l−1.

Whenever f is elliptic we have wt(Lf)) = el(0), wt(Lf + 1 = el(1). If f is
hyperbolic, then wt(Lf)) = hl(0), wt(Lf + 1 = hl(1). We see that only two
different weights occur. Fixing the symplectic form means fixing a coset of
R(1, 2l) in R(2, 2l). Whenever that coset is described by a non-degenerate
symplectic form, all code-words for f in that coset will have weights 22l−1 ±
2l−1.
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In order to construct good linear codes we would have to find a large
family of symplectic forms all of whose nonzero linear combinations are non-
degenerate. It turns out that such families are hard come by. It is in fact prof-
itable to abandon the aim of constructing linear codes. Let us be content with
nonlinear codes. The following general definition of a binary error-correcting
code generalizes the definition of a linear code as given in Chapter 3.

15.6 Definition. An (n, M, d)2-code is a family of M binary tuples of length
n whose pairwise Hamming distance is at least d.

The reason why we considered linear codes exclusively so far is that lin-
earity helps a great deal in constructing and applying codes. The geometrical
description given in Chapter 3 is available only for linear codes. Our con-
siderations of binary quadratic forms and Reed-Muller codes finally lead to
a situation where highly structured nonlinear codes come into play. Observe
that each (linear) [n, k, d]2-code also is an (n, 2k, d)2-code.

We use the following strategy to construct good binary codes: find a fam-
ily of symplectic bilinear forms on V (2l, 2) such that for any two different of
these forms their difference is non-degenerate. The union of the correspond-
ing cosets of R(1, 2l) in R(2, 2l) will then be a code of minimum distance
22l−1 −2l−1. How many cosets can we expect in such a set? As we know each
symplectic form on V (2l, 2) is determined by a symmetric (2l, 2l)-matrix with
zeroes on the diagonal. How many of those matrices can we find such that
the difference between any two is non-degenerate? Certainly the first rows
of these matrices must be different (if they are equal, the difference starts
with the 0-row and therefore is degenerate). As the first row starts with a 0
there are only 22l−1 possible first rows. So this is a bound on the size of such
a family of matrices.

15.7 Definition. A Kerdock set of (2l, 2l)-matrices is a family of 22l−1

binary symmetric matrices with zeroes on the main diagonal (symplectic ma-
trices), such that the difference (=sum) of any two different of those matrices
is non-degenerate (equivalently: has nonzero determinant).

15.8 Theorem. If a Kerdock set of binary symplectic forms exist, we can
construct a binary code (the corresponding Kerdock code) of length 22l with
24l codewords and minimum distance 22l−1 − 2l−1.

By construction the Kerdock code is a union of cosets of R(1, 2l) in
R(2, 2l).
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Kerdock sets can be constructed using spreads. This provides an appli-
cation of the construction of spreads and also gives us the opportunity to
review the relevant facts. Start from a hyperbolic space on V (4l, 2). Why
we work in double the dimension we are interested in? Just wait for a short
while.

Choose a standard basis v1, . . . , v2l, w1, . . . , w2l such that Q(
∑

i xivi +
∑

i yiwi) =
∑2l

i=1 xiyi (we called 〈vi, wi〉 a quadratic hyperbolic plane in
Chapter 8). It was proved in Chapter 14 that the hyperbolic quadric Q+(4l−
1, 2) has a spread. We can choose notation such that the generators E =
〈v1, . . . , v2l〉 and F = 〈w1, . . . , w2l〉 belong to this spread. Let

Σ = {E} ∪ {F1, . . . , F22l−1}

be a spread of Q+(4l − 1, 2), where F1 = F.
We did not study the orthogonal groups (symmetry groups of quadratic

forms) in detail. The definition is clear from the discussion in Chapter 13.
The orthogonal group O+(4l, 2) consists of the binary (4l, 4l)-matrices map-
ping our standard basis v1, . . . , v2l, w1, . . . , w2l to a standard basis (and there-
fore leaving the quadratic form invariant). Restrict attention to the matri-
ces in O+(4l, 2) which act trivially on E, that is which map vi 7→ vi for
all i. These matrices form a subgroup H of O+(4l, 2). The scalar products

show that elements of H have the form A(M) =

(

I 0
M I

)

. We have

(x|y)A(M) = (x + yM |y). It follows that A(M) ∈ O+(4l, 2) if and only
if

∑

i xiyi =
∑

i(xi + (yM)i)yi, equivalently yMyT = 0 for every y. This
means that the bilinear form mapping the pair x, y to xMyT is symplectic,
in other words M is a binary symplectic matrix: symmetric with zeroes on
the diagonal. These symplectic matrices form an additive group (with the
0-matrix as neutral element), clearly of order 2l(2l−1). Let P be this group of
symplectic binary (2l, 2l)-matrices. The mapping M 7→ A(M) is an isomor-
phism : P → H ⊂ O+(4l, 2). Observe that for every generator L with zero
intersection with E there is precisely one matrix M such that A(M) : E → L.

15.9 Definition. K(Σ) consists of the symplectic (2l, 2l)-matrices M such
that A(M) maps F1 to some Fj ∈ Σ.

As any two generators in the spread Σ have 0 intersection, we have that
for every j = 1, . . . , 22l−1 there is precisely one matrix Mj such that A(Mj) :
F → Fj . In particular K(Σ) consists of 22l−1 symplectic (2l, 2l)-matrices.
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We claim that K(Σ) is a Kerdock set. Assume Mj −Mk is singular for some
j 6= k. There is some vector y 6= 0 such that yMj = yMk. Consider the
nonzero vector (0|y) ∈ F. We have

(0|y)A(Mj) = (yMj|y) = (yMk|y) = (0|y)A(Mk) ∈ Fj ∩ Fk,

a contradiction as Fj , Fk are different generators from a spread. We have
seen that Kerdock sets exist. This also establishes the existence of Kerdock
codes.

The Nordstrom-Robinson code

The Kerdock code of length 16 is known as the Nordstrom-Robinson code
NR. We are in case l = 2. The number of codewords is 28 = 256, the
minimum distance is 6. Observe that there is no reason why NR should be
linear. In fact it is non-linear. What is more, it can be shown that linear
codes with parameters [16, 8, 6]2 cannot exist.

The construction starts with a (trivial) spread in the symplectic V (2, 8).
Let a, b be a symplectic basis of this space. The spread simply consists of
the points of the projective line. Let A(s) = 〈sa+ b〉 for s ∈ F8, A(∞) = 〈a〉.
A V (2, 8) is also a V (6, 2). We obtain a spread in the symplectic V (6, 2)
(Theorem 14.5). Its elements are A(s) and A(∞) as 3-dimensional binary
spaces. We use the representation F8 = F2(ǫ), where ǫ3 + ǫ2 + 1 = 0 and
1, ǫ, ǫ2 as basis over F2. A symplectic basis of V (2, 8) over F2 is

v1 = a, v2 = ǫa, v3 = ǫ2a, w1 = ǫ4b, w2 = ǫ3b, w3 = ǫ5b.

Observe that 1, ǫ, ǫ2, ǫ4 have trace = 1, the remaining elements of F8 have
trace = 0. For example, (v1, w1) = tr(ǫ4) = 1, (v1, w2) = tr(ǫ3) = 0. In terms
of the symplectic basis we have

A(∞) : 〈v1〉
A(0) 〈w1〉 A(ǫ3) : 〈v1 + v3 + w1 + w2 + w3〉
A(1) : 〈v1 + w1 + w2 + w3〉 A(ǫ4) : 〈v1 + v2 + v3 + w1 + w2 + w3〉
A(ǫ) : 〈v2 + w1 + w2 + w3〉 A(ǫ5) : 〈v1 + v2 + w1 + w2 + w3〉
A(ǫ2) : 〈v3 + w1 + w2 + w3〉 A(ǫ6) : 〈v2 + v3 + w1 + w2 + w3〉

Here 〈〉 denotes the 1-dimensional space generated over F8. Next we apply
the procedure in the proof of Theorem 14.6 to obtain a spread in the hyper-
bolic geometry on V (8, 2). We use a standard basis v0, v1, v2, v3, w0, w1, w2, w3
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and Q(x0, x1, x2, x3, y0, y1, y2, y3) =
∑3

i=0 xiyi. As point outside the quadric
we choose x = v0 + w0 = 10001000. Identify
x⊥/〈x〉 = 〈x, v1, v2, v3, w1, w2, w3〉/〈x〉 with our symplectic V (6, 2).

Start from the A(∞) = X(∞) = 〈v1, v2, v3〉, where 〈〉 now refers to the
space generated over F2. Its preimage is the 4-dimensional space X(∞), the
intersection with x⊥ is Y (∞) = 〈v1, v2, v3〉. One of the two totally singular
4-dimensional spaces containing Y (∞) is E = 〈v0, v1, v2, v3〉, which we choose
as the first element in our hyperbolic spread.

Next X(0) = 〈v0+w0, w1, w2, w3〉, Y (0) = 〈w1, w2, w3〉. The 4-dimensional
totally singular space, which contains Y (0) and intersects E trivially is
F (0) = 〈w0, w1, w2, w3〉. The first matrix M(0) of our Kerdock set is the
0-matrix

A(1) yields X(1) = 〈v0 +w0, v1 +w1 +w2 +w3, v2 +w1 +w2, v3 +w1 +w3〉,
Y (1) = X(1)∩x⊥ = 〈v0 +v1 +w0 +w1 +w2 +w3, v0 +v2 +w0 +w1 +w2, v0 +
v3 + w0 + w1 + w3〉. We know from the theory that Y (1) is contained in two
totally singular 4-dimensional subspaces. One of them will intersect E (and
then also F (0)) in dimension 0. This is our generator F (1), the next element
in the spread. v0 + w1 + w2 + w3 can be chosen as fourth generator:

F (1) = 〈11001111, 10101110, 10011101, 10000111〉

After reorganization we obtain

F (1) = 〈1000|0111, 0100|1000, 0010|1001, 0001|1010〉

The second element of the Kerdock set is M(1) =









0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0









.

The same procedure yields X(ǫ) = 〈v0 + w0, v2 + w1 + w2 + w3, v3 + w1 +
w2, v1 + v3 +w1 +w3〉, Y (ǫ) = 〈v0 + v2 +w0 +w1 +w2 +w3, v3 +w1 +w2, v1 +
v3 + w1 + w3〉. The unique vector with E-coordinate v0, which extends Y (ǫ)
to a generator F (ǫ) meeting E in the 0-space is v0 +w2. After change of basis
we obtain

F (ǫ) = 〈1000|0010, 0100|0011, 0010|1101, 0001|0110〉 and

M(ǫ) =









0 0 1 0
0 0 1 1
1 1 0 1
0 1 1 0









.
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We understand the procedure now. X(ǫ2) = 〈v0 +w0, v3 +w1 +w2 +w3, v1 +
v3 + w1 + w2, v1 + v2 + v3 + w1 + w3〉, Y (ǫ2) = 〈v0 + v3 + w0 + w1 + w2 +
w3, v0 + v1 + v3 + w0 + w1 + w2, v1 + v2 + v3 + w1 + w3〉,

F (ǫ2) = 〈1000|0011, 0100|0001, 0010|1000, 0001|1100〉

M(ǫ2) =









0 0 1 1
0 0 0 1
1 0 0 0
1 1 0 0









.

X(ǫ3) = 〈v0+w0, v1+v3+w1+w2+w3, v1+v2+v3+w1+w2, v1+v2+w1+w3〉,
Y (ǫ3) = 〈v1+v3+w1+w2+w3, v1+v2+v3+w1+w2, v0+v1+v2+w0+w1+w3〉,

F (ǫ3) = 〈1000|0101, 0100|1001, 0010|0001, 0001|1110〉

M(ǫ3) =









0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0









.

X(ǫ4) = 〈v0+w0, v1+v2+v3+w1+w2+w3, v1+v2+w1+w2, v2+v3+w1+w3〉,
Y (ǫ4) = 〈v0 + v1 + v2 + v3 + w0 + w1 + w2 + w3, v1 + v2 + w1 + w2, v0 + v2 +
v3 + w0 + w1 + w3〉,

F (ǫ4) = 〈1000|0001, 0100|0010, 0010|0100, 0001|1000〉

M(ǫ4) =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









.

X(ǫ5) = 〈v0 + w0, v1 + v2 + w1 + w2 + w3, v2 + v3 + w1 + w2, v1 + w1 + w3〉,
Y (ǫ5) = 〈v1+v2+w1+w2+w3, v0+v2+v3+w0+w1+w2, v0+v1+w0+w1+w3〉,

F (ǫ5) = 〈1000|0110, 0100|1011, 0010|1100, 0001|0100〉

M(ǫ5) =









0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0









.
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X(ǫ6) = 〈v0 + w0, v2 + v3 + w1 + w2 + w3, v1 + w1 + w2, v2 + w1 + w3〉,
Y (ǫ6) = 〈v2 + v3 + w1 + w2 + w3, v0 + v1 + w0 + w1 + w2, v2 + w1 + w3〉,

F (ǫ6) = 〈1000|0100, 0100|1010, 0010|0101, 0001|0010〉

M(ǫ6) =









0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0









.

15.10 Theorem. The symplectic matrices M(α), α ∈ F8, form a Kerdock
set. The Nordstrom-Robinson code NR consists of the cosets R(1, 4) + Lf ,
where f = fα varies over the quadratic forms described by the matrices M(α).

Here f0 = 0, so R(1, 4) + L0 = R(1, 4). We have f1 = x0x1 + x0x2 +
x0x3 + x2x3, fǫ = x0x2 + x1x2 + x1x3 + x2x3, . . . We could have saved some
energy by using symmetries. For example, the 2-dimensional symplectic form
is unchanged if we multiply by ǫ in the first coordinate and by 1/ǫ = ǫ6 in
the second coordinate. This yields an automorphism σ of order 7 which fixes
v0, w0 and maps

σ = (v1, v2, v3, v1 + v3, v1 + v2 + v3, v1 + v2, v2 + v3)

(w1, w2, w1 + w3, w1 + w2, w1 + w2 + w3, w2 + w3, w3).

This automorphism maps M(α) 7→ M(ǫ2α). It suffices therefore to know
M(1). The remaining nonzero matrices of the Kerdock set can be obtained
by applying σ. We leave the details to the reader.

Problems

1. Describe the automorphism σ of the Nordstrom-Robinson code
in matrix form.



Chapter 16

Projective planes

We defined a projective plane of order n as a Steiner 2-design S(2, n+1, n2 +
n + 1), see Definition 11.5. The most important open problem in this area
is the question of the existence of projective planes of composite order. No
projective plane of composite (non prime-power) order is known. We want
to prove a famous non-existence theorem, the Bruck-Ryser theorem.

16.1 Theorem. If n ≡ 1 (mod 4) or ≡ 2 (mod 4) is the order of a projective
plane, then n is sum of two integer squares.

Proof. The proof can be reduced to the Hasse-Minkowski theorem. We
present the proof from [9], which does not make explicit use of the Hasse-
Minkowski theorem. Some facts from number theorem are used:

16.2 Lemma. Every positive integer is sum of four integer squares.

16.3 Lemma. If a positive integer is sum of two rational squares, then it is
sum of two integer squares.

Let n as above be the order of a projective plane. Then v = n2+n+1 ≡ 3
(mod 4). Number the points P1, . . . , Pv and the lines l1, . . . , lv. We work in
the polynomial ring with indeterminates x1, . . . , xv and real (or rational)
coefficients. Observe that there is one indeterminate xi for each point Pi. Let
Lk =

∑

i xi, where the sum is over all i such that Pi ∈ lk.
Consider the quadratic form (homogeneous quadratic polynomial)

v
∑

k=1

L2
k = 2

∑

i6=j

xixj + (n + 1)

v
∑

j=1

x2
j .

107
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This identity follows from the basic properties of a projective plane. The
term xixj can occur only in L2

k, where lk is the uniquely determined line
containing Pi and Pj . The last term follows from the fact that each point
is on precisely n + 1 lines. We can rewrite this basic equation in the more
convenient form

v
∑

k=1

L2
k = n

v
∑

i=1

x2
i + (

v
∑

i=1

xi)
2.

Introduce an additional indeterminate xv+1 and abbreviate S =
∑v

i=1 xi.

v
∑

k=1

L2
k + nx2

v+1 = n
v+1
∑

i=1

x2
i + S2.

The following important identity is easy to check directly:

(a2 + b2 + c2 + d2)(x2 + y2 + z2 + w2) =

(ax − by − cz − dw)2 + (bx + ay − dz + cw)2+

+(cx + dy + az − bw)2 + (dx − cy + bz + aw)2.

By Lemma 16.2 we can find integers a, b, c, d such that n = a2 + b2 + c2 + d2.
We can interpret the identity using the matrix

A =









a b c d
−b a d −c
−c −d a b
−d c −b a









.

The identity says

n(x2
1 + x2

2 + x2
3 + x2

4) = y2
1 + y2

2 + y2
3 + y2

4,

where (y1, y2, y3, y4) = (x1, x2, x3, x4)A. Also, det(A) = n2. Applying A−1 (a
matrix with rational entries) we see that we can express each of x1, x2, x3, x4

as a linear combination of the y1, y2, y3, y4 with rational coefficients. Use this
to eleminate x1, x2, x3, x4 from the basis equation. The right side is then
y2

1 + y2
2 + y2

3 + y2
4 + n

∑v+1
i=5 x2

i + S2. The new basic equation is an identity in
the polynomial ring with indeterminates y1, y2, y3, y4, x5, . . . , xv+1. As v + 1
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is a multiple of 4 we can continue this process, using 4 of the xi each time,
and end up with an identity

v
∑

k=1

L2
k + nx2

v+1 =
v+1
∑

i=1

y2
i + S2

in the indeterminates y1, . . . , yv+1.
Consider point P1 and line l1. We have L1 =

∑

i αiyi. We aim at substi-
tuting for y1 a linear combination of the remaining indeterminates such that
L2

1 = y2
1. Assume at first α1 6= 1. Use the substitution y1 = 1

1−α1

∑

i6=1 αiyi.
Then L1 = y1. If α1 = 1 we find a similar substitution such that L1 = −y1.
In both cases L2

1 = y2
1. It follows that we can substitute for y1 a linear com-

bination of the yi, i > 1 such that

v
∑

k=2

L2
k + nx2

v+1 =

v+1
∑

i=2

y2
i + S2

and this is a homogeneous quadratic identity in the polynomial ring with
indeterminates y2, . . . , yv+1. Continuing in this fashion we will finally arrive
at an identity

nx2
v+1 = y2

v+1 + S2

in the polynomial ring with indeterminate yv+1 where xv+1 = ayv+1 and S =
byv+1. Comparing coefficients we obtain a2n = 1+ b2. If a = 0, then y2

v+1(1+
b2) = 0, contradiction. It follows n = 1

a2 + (b/a)2, a sum of two rational
squares. Lemma 16.3 implies that n is sum of two integer squares.

It is an important theme of number theory to study which values are
attained by quadratic forms and how often. We studied this question over
finite fields. The question which integers can be written as sums of a given
number of squares is of this type. It is a classical result that n can be written
as a sum of two squares if and only if the square-free part of n is not divisible
by primes ≡ 3 (mod 4). This is a computationally more convenient form of
the Bruck-Ryser theorem. The smallest orders excluded by the Bruck-Ryser
theorem are n = 6, 14, 21, 22, 30. The only order which has been excluded
by different means is n = 10. This was done by exhaustive computer search,
based on a coding-theoretic approach.

16.4 Definition. Let V = V (2m, q). A spread of V is a family of qm + 1
subspaces of dimension m, which partition the nonzero vectors of V.
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We encountered the concept of a spread in Chapter 14, where we parti-
tioned the isotropic or singular points of a bilinear, sesquilinear or quadratic
form into totally isotropic (totally singular) subspaces. Definition 16.4 is
therefore a natural concept. Symplectic spreads are special cases. In partic-
ular we know that each even-dimensional vector space does have a spread.
Next we want to see how spreads can be used to construct projective planes.

16.5 Lemma. Let W1, W2 be different m-dimensional subspaces of
V = V (2m, q) such that W1 ∩ W2 = {0} and x, y ∈ V.
Then |(W1 + x) ∩ (W2 + y)| = 1.

Proof. Assume w1 +x = w2 + y and w′
1 +x = w′

2 + y, with obvious notation.
By subtraction w1 − w′

1 = w2 − w′
2 ∈ W1 ∩ W2. It follows w1 = w′

1, w2 = w′
2.

The intersection cardinality is therefore at most 1. As the qm cosets of W2

partition the vectors of V the intersection cardinality must be = 1.

16.6 Definition. Let S = {W1, . . . , Wqm+1} be a spread of V = V (2m, q).
Define an incidence structure Π(S) as follows: The points are P1, . . . , Pqm+1

(one point for each element of the spread) and the vectors of V.
The lines are l∞ = {P1, . . . , Pqm+1} (the line at infinity) and for every

coset Wi + x of some Wi a line containing the points of Wi + x and Pi.

16.7 Theorem. Let S = {W1, . . . , Wqm+1} be a spread of V = V (2m, q).
Then Π(S) is a projective plane of order qm.

Proof. Let n = qm. We have q2m + qm + 1 = n2 + n + 1 points and 1 + (qm +
1)qm = n2 + n + 1 lines. Each line has qm + 1 points, each point is on qm + 1
lines. It follows from Lemma 16.5 that any two lines intersect in precisely
one point. It follows that any two points are on precisely one line.

The discussion in Chapter 13 shows what an automorphism of a projec-
tive plane is and when two planes are isomorphic (have the same structure).
A bijective mapping between the point sets is an isomorphism if the image
of each line in the first plane is a line in the second plane. Two planes are
isomorphic if such an isomorphism exists. An isomorphism from a plane onto
itself is an automorphism. The automorphisms form a group, the automor-
phism group or symmetry group of the plane. The classical plane PG(2, q),
where q = pf , admits PΓL(3, q) of order fq3(q3 − 1)(q2 − 1) as a symmetry
group. It is a theorem that PΓL(3, q) is indeed the full automorphism group
of PG(2, q). Recall the case of the Fano plane PG(2, 2) whose automorphism
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group has order 237 · 3 = 168. Next we observe that the projective planes
Π(S) have rich automorphism groups as well.

16.8 Theorem. Let S = {W1, . . . , Wqm+1} be a spread of V = V (2m, q).
For each x ∈ V let τx be the permutation of the points of Π(S), which maps
y 7→ y + x for y ∈ V and fixes all Pi. Then τx is an automorphism of Π(S).
The τx for x ∈ V form an abelian group of automorphisms, which is transitive
on the points outside l∞ (the affine points).

Proof. By definition τx fixes the line at infinity. The image of the line defined
by Wi + y is the line given by Wi + x + y. Clearly the composition of τx and
τy is τx+y. If x, y are affine points, then y = τy−x(x).

Problems

1. Show that prime-powers pf do satisfy the conditions of the Bruck-Ryser
theorem.

2. Show that numbers n ≡ 6 (mod 8) cannot be orders of projective
planes.
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Chapter 17

Generalized polygons

Geometric concepts can also be expressed in terms of graphs. We assume
a certain familiarity with this concept and will therefore be brief in our
description of basic terminology. A graph consists of a ground set V (the
vertices) and a family E of unordered pairs (edges) from V. In particular we
exclude here more general concepts involving directed edges and edges with
more or less than 2 vertices. A path from vertex x to vertex y is a tuple
(x = x0, x1, . . . , xn = y), where {xi, xi+1} is an edge for all i. The length of
this path is n. A graph is connected if for any two vertices there is a path
connecting them. A connected graph defines a metric on the vertices, where
n = d(x, y) is the length of a shortest path from x to y.

17.1 Definition. The diameter d = d(Γ) of a connected graph is the
maximum distance between two vertices.
The girth of a connected graph Γ is the length of the shortest cycle in Γ.
Here a cycle of length n is a closed path (x0, x1, . . . , xn−1, x0) where the
xi, i = 0, . . . , n − 1 are different.

A graph is bipartite if the vertices can be partitioned into two non-empty
subsets V = L∪R such that all edges are from L to R. It is easy to see that
Γ is bipartite if and only if it does not contain cycles of odd length.

Assume Γ is connected. If it does not contain any cycles it is called
an acyclic graph or a tree. In particular the girth is not even defined for
trees. Trees should be excluded from the present discussion. Let us study the
relationship between diameter and girth. Fix g and consider a cycle of length
g. The distance of any two points of the cycle in our graph Γ is the same as
the distance in the cycle: if there was a shorter path we could combine it

113



114 CHAPTER 17. GENERALIZED POLYGONS

with a path along the cycle to obtain a cycle of length < g. This shows that
d ≤ g/2 if g is even and d ≤ (g − 1)/2 if g is odd.

17.2 Proposition. Let Γ be a connected graph, which is not a tree. The
diameter d and girth g satisfy d ≥ ⌊g/2⌋.

If we restrict attention to bipartite graphs, then g is even and d is therefore
at least g/2. In the case of equality an interesting situation arises:

17.3 Definition. Let Γ be a connected bipartite graph with vertex classes L
and R (recall V = L ∪ R and there are no edges inside L or R).
We call Γ a generalized n-gon if

d(Γ) = n and g(Γ) = 2n.

Call Γ non-degenerate if for each x ∈ V there is a vertex y
such that d(x, y) = n.

We have seen that generalized n-gons have extremal graph-theoretic prop-
erties. The concept could have been expressed just as well in geometric ter-
minology. In fact, define vertices from L to be points and vertices from R to
be lines. Point P is a point of line l if {P, l} is an edge of Γ (in this termi-
nology it can happen that different lines have all their points in common).
We will use both graph-theoretic and geometric terminology. For example,
the number of points on line l is the degree of vertex l. Dually, the number
of lines through point P is the degree of vertex P.

17.4 Definition. A generalized n-gon has order (s, t) if each line has s + 1
points and each point is on t + 1 lines. It is thick if s > 1 and t > 1.

A generalized n-gon of order (1, 1) simply is an ordinary n-gon (a cycle
of length n). In case n = 2 we obtain a complete bipartite graph: each
pair (P, l) is an edge.

17.5 Proposition. Let Γ be a non-degenerate generalized triangle (3-gon)
of order (s, t). Then s = t. If s > 1, then Γ is a projective plane of order s.

Proof. Compare Definition 11.5 and our earlier discussion of projective
planes. As d = 3 any two points are on a line, as g = 6 this line is uniquely
determined. The dual statements also holds. By non-degeneracy for each
line l there is a point P /∈ l and the dual statement. Considering the lines
through P and the points on l, where P /∈ l, shows s = t.
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A generalized 4-gon of order (s, t) is equivalent to a generalized quadrangle
of order (s, t), compare Chapter 11. The absence of 4-cycles implies that any
two points have at most one line in common and the dual. Let P /∈ l. As
d(P, l) = 3 in Γ there is a line l′ such that P ∈ l′ and l′ intersects l in a point
P. The absence of cycles of length ≤ 6 shows that (P, l′, Q, l) is the only path
of length 3 from P to l, thus verifying the main axiom of Definition 11.7.

We see that the notion of a generalized polygon is a generalization of
the notions of projective planes and generalized quadrangles. The natural
question arises for which n there exist (non-degenerate, thick) generalized
n-gons. The basic theorem on this subject is the Feit-Higman theorem [5].

17.6 Theorem (Feit-Higman). Let Γ be a non-degenerate generalized n-
gon of order (s, t), where st > 1. Then

n ∈ {2, 3, 4, 6, 8, 12}

If Γ is thick, then n 6= 12. If Γ is thick and n = 6, then st is a square. If Γ
is thick and n = 8, then 2st is a square.

Most of the examples are related to classical groups. We want to de-
scribe the family of generalized hexagons related to the groups G2(q). These
hexagons exist for every prime-power q and have order (q, q). They can be
derived from the 7-dimensional orthogonal geometry.

The G2(q)-hexagons and orthogonal geometry

Consider V = V (7, q) with the quadratic form

Q(x1, . . . , x7) = x1x2 + x3x4 + x5x6 + x2
7

(three quadratic hyperbolic planes and an anisotropic 1-dimensional space).
We have V = H1 ⊥ H2 ⊥ H3 ⊥ 〈v0〉, where the Hi are (quadratic) hy-
perbolic planes with basis vi, wi, and Q(svi + twi) = st, Q(v0) = 1. Let
L = 〈v1, v2, v3〉, R = 〈w1, w2, w3〉. Observe that L and R are totally singular
subspaces (planes).

The singular (isotropic) points of Q will be the points of the hexagon. We
know that |Q(6, q)| = (q6−1)/(q−1) (see Chapter 6 for the odd characteristic
case. In characteristic 2 the formulas were the same).

construction idea: for each singular point P find a totally singular
plane W (P ) containing P. We may call these the tangent planes. The
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lines of the hexagon through P will be all the lines t through P contained in
W (P ).

Let H be the hyperplane generated by L and R. Observe that the restric-
tion of Q to H is a hyperbolic space, with (q2 + q + 1)(q2 + 1) points (see
Theorem 6.13). We imagine Q(6, q) partitioned into four parts, the q2 +q+1
points of 〈L〉, the q2 + q + 1 points of 〈R〉, the remaining (q2 + q + 1)(q2 − 1)
singular points in H (inner points) and the q2(q3 − 1) singular points out-
side H (the outer points, in fact, (q2 + q + 1)(q2 + 1) + q2(q3 − 1) =
(q2 + q + 1)(q3 + 1) = |Q(6, q)|).

Call the lines 〈x, y〉, where x ∈ L, y ∈ R, (x, y) = 0 LR-lines. There are
(q2 +q+1)(q+1) LR-lines. They partition the inner points: each inner point
is on precisely one LR-line (simply count: each LR-line contains q − 1 inner
points, and the number of LR-lines multiplied by q − 1 equals the number of
inner points).

We need to define the planes W (P ) in an appropriate way. If P = 〈v〉 ∈ L,
define W (P ) = 〈v, v⊥ ∩ R〉. Analogously for P = 〈w〉 ∈ R define W (P ) =
〈w, w⊥ ∩ L〉. In order to define the tangent planes to inner points we use a
subgroup of the orthogonal group.

17.7 Lemma. Let K be the group consisting of the matrices

K(A) =





A 0 0
0 (A−1)t 0
0 0 1





(with respect to our standard basis), where A ∈ SL(3, q). Then K ⊂ O(7, q)
is transitive on the LR-lines and on inner points.

Proof. K(A) maps vi 7→ viA, wj 7→ wj(A
−1)t. The scalar product of the

images is viAA−1wt
j = viw

t
j = (vi, wj). As the vi, wj are singular vectors we

conclude that K ⊂ O(7, q).
It is easy to see that K is transitive on inner points. In fact, in order for

K(A) to stabilize the inner point 〈v1 + w2〉 matrix A must have the form

A =





λ 0 0
a21 1/λ a23

a31 0 1





where a21, a23, a31 are arbitrary and λ 6= 0. It follows that the stabilizer
has order (q − 1)q3. As |K| = q3(q2 − 1)(q3 − 1) the length of the orbit of
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〈v1 + w2〉 under K is (q + 1)(q3 − 1) = (q2 − 1)(q2 + q + 1). This is precisely
the number of inner points. Transitivity on inner points implies transitivity
on LR-lines.

Observe that the stabilizer of 〈v1, w2〉 consists of the K(A) where

A =





λ 0 0
a21 µ a23

a31 0 1
λµ





For the inner point P = 〈v1 + w2〉 we want W (P ) to contain the LR-line
〈v1, w2〉 containing P. As

〈v1, w2〉
⊥ = 〈v1, v3, w2, w3, v0〉

we see that W (〈v1〉) and W (〈w2〉) are the only candidates contained in H.
As we want tangential planes to different points to be different we must have
W (P ) /∈ H.

Define W (P ) to be a totally singular plane containing 〈v1, w2〉, which is
different from W (〈v1〉) and from W (〈w2〉). We choose W (P ) = 〈v1, w2, v3 −
w3 + v0〉. The stabilizer of W (P ) equals the stabilizer of P. We can therefore
choose W (P )K(A) to be the tangential plane of PK(A). The tangential
planes to inner points therefore form an orbit under K.

Let x = v3 − w3 + v0. Then Q = 〈x〉 is an outer point. The stabilizer of
Q consists of the K(A), where

A =

(

X 0
0 1

)

.

The index of SL(2, q) in SL(3, q) is q2(q3 − 1), the number of singular points
outside H. It follows that K is transitive on these points. Let T denote the set
of lines through inner points P contained in W (P ), which are not contained
in H. Call T the set of outer tangents. As W (P ) ∩ H is an LR-line, each
inner point is on q outer tangents. Count the incidences of outer tangents
and outer points in two ways:

(q2 + q + 1)(q2 − 1)q2 = q2(q3 − 1)α,

where α is the number of outer tangents through a given outer point. We
conclude α = q + 1 : each outer point is on q + 1 outer tangents. One of
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the outer tangents through the outer point Q is 〈x, v1 + w2〉. The images
of P = 〈v1 + w2〉 under the stabilizer of Q are the points on the line m =
〈v1 + w2, v2 −w1〉. It follows that the q + 1 outer tangents through Q are on
a plane, the plane generated by Q and the line m. Define W (Q) = 〈Q, m〉,
analogously for the remaining outer points. Observe that m = W (Q) ∩ H.
We have defined a tangent plane W (P ), a totally singular plane containing
P, for every point P ∈ Q(6, q).

17.8 Definition. We define an incidence structure G(q) as follows:

• The points of G(q) are the points P ∈ Q(6, q).

• For each point P, the lines of G(q) through P are the lines of the plane
W (P ) through P. Call such a line a tangent to P .

The number of points clearly is (q6 − 1)/(q − 1). Lines are the LR-lines
and the outer tangents. The total number of lines is

(q2 + q + 1)(q + 1) + (q2 + q + 1)(q2 − 1)q = (q6 − 1)/(q − 1).

Each line has q+1 points, each point is on q+1 lines. The tangents to points
from L or R are precisely the LR-lines. Each inner point is on one LR-line
and on q outer tangents. Each inner point is on q + 1 outer tangents.

In order to prove that G(q) is a generalized hexagon it is convenient to
use the graph-theoretic terminology of Definition 17.3. We view points and
lines as vertices of a graph Γ where P, l form an edge if P ∈ l, and we need
to show d(Γ) = 6, g(Γ) = 12.

As Γ is bipartite cycles have even length. Assume there is a cycle of
length 10. It consists of 5 points and 5 tangents:

(P1, l1, P2, l2, P3, l3, P4, l4, P5, l5, P1).

We have that P2, P3 ∈ P⊥
1 . As P1, P3 ∈ W (P2) we also have P3 ∈ P⊥

1 , by
symmetry P4 ∈ P⊥

1 . It follows that the Pi are pairwise orthogonal. Each
three contiguous Pi generate a totally singular plane. As our quadratic form
has Witt index 3, 〈P1, P2, P3, P4, P5〉 = E is a plane. By definition of the
tangents we have E = W (P1) = W (P2) = · · · = W (P5), contradiction.

Clearly cycles of even shorter length are impossible. We have shown
g(Γ) ≥ 12. It remains to show d(Γ) ≤ 6. Let d be the distance in Γ. Fix
a point P. There are (q + 1)q points at distance 2 and (q + 1)q3 points at
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distance 4 from P. All these points are contained in P⊥. On the other hand
the number of singular vectors in P⊥ is q5, so the number of points in P⊥

different from P is (q5 − 1)/(q − 1) − 1 = q4 + q4 + q2 + q. This equals
(q + 1)q + (q + 1)q3 = (q + 1)q(q2 + 1), the number of points at distance 2 or
4 from P.

17.9 Lemma. For every singular point P the points at distance 2 or 4 from
P in Γ are precisely the points in P⊥.

Fix a point P again. Consider paths (P, l1, Q, l2, R) to one of the points
at distance 4. Continue this path by (l3, S), where l3 6= l2, S ∈ l3, s 6= R.
The absence of cycles of length ≤ 10 implies that d(P, S) = 6. As there are
(q +1)q3 points at distance 4 from P we count (q +1)q5 such paths of length
6. Each endpoint can be obtained at most q + 1 times, so the number of
points /∈ P⊥ at distance 6 from P is ≥ q5. As this is the total number of
points /∈ P⊥ we have shown d(Γ) = 6. This proves that G(q) is indeed a
generalized hexagon.
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Chapter 18

Diagram geometries

A very general notion of a finite geometry would be based on objects of several
types (points, lines, planes, . . . ) and their incidences. The rank of a finite
geometry is the number of different types of objects it is composed of. For
example, a projective plane is defined by points, lines and their incidences.
The rank is 2. Of course, the names assigned to the different types of objects
are a matter of convention. In PG(3, q) we have points, lines and planes.
This is a rank 3 geometry. Clearly PG(r, q) has rank r.

We encountered several important types of rank 2 geometries. Let us
assign diagrams to these geometries.

Projective planes

The diagram assigned to projective planes consists of two nodes and a sim-
ple line joining them. Here the left node, say, represents points, the right
node represents lines and we use a single straight connecting line to denote
projective planes. Observe that the diagram has two nodes because we have
a rank 2 geometry. In general the number of nodes will equal the rank of the
geometry.

Generalized quadrangles

The diagram consists of a double line joining the two nodes.
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N N N
1 2 3

(points) (lines) (planes)

Figure 18.1: The diagram of PG(3)

Generalized hexagons

The nodes are joined by a triple line.

Complete bipartite graphs

This geometry is so trivial that it is easy to miss. Every point is incident with
every line. The geometry looks less artificial if written in graph-theoretic
notation. The left vertices represent the points of the geometry, the right
vertices represent the lines. A point and a line form an edge of the graph if
the point is incident with the line. In the complete bipartite graph all such
pairs form edges. The corresponding diagram consists of two nodes, which
are not joined at all. Complete bipartite graphs can also be considered as
generalized 2-gons, see Chapter 17.

In order to illustrate the idea behind diagram geometries consider the
rank 3 geometry PG(3, q). The diagram has 3 nodes: N1 representing points,
N2 representing lines and N3 representing planes. In order to decide which
connection to draw between N1 and N2 fix an arbitrary plane E and consider
the rank 2 geometry (a residual geometry) consisting of the point and lines
incident with E. This residual geometry is of course always a projective plane,
so we draw a single line from N1 ↔ N2. Next fix a point P and consider the
corresponding residual geometry consisting of the lines and planes through
P. Again, this is a projective plane and so we draw a line N2 ↔ N3. Finally,
fix a line l. All points on l will be incident with all planes through l, so the
residual geometry is a complete bipartite graph. Consequently we draw no
line from N1 to N3. The diagram of PG(3, q) is a path, where each line is a
single line.
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N N N
1 2 3

(points) (lines) (planes)

Figure 18.2: The diagram of 7-dim orthogonal geometry

Proceeding in an analogous fashion we see that the diagram of PG(r) is
a path, where each line is a single line.

As another example consider the 7-dimensional orthogonal geometry (we
used it in Chapter 17 to construct a generalized hexagon). The objects of the
geometry are the totally singular points, lines and planes (recall that the Witt
index is 3, so there are no higher-dimensional totally singular subspaces).
We have a rank 3 geometry. As before denote the nodes of the diagram by
N1, N2, N3, corresponding to points, lines, planes, respectively. It is clear
that the residual geometry of a plane is a projective plane and that the
residual geometry of a line is a complete bipartite graph. Fix a singular
point. The geometry defined by the totally singular lines through P and
the totally singular planes through P is the geometry formed by the singular
points and totally singular lines in 5-dimensional orthogonal geometry. As
the Witt index is 2 this is a generalized quadrangle.

The origins of this business are in group theory. The classical finite sim-
ple groups can be derived from the simple complex Lie algebras (see [3]).
These Lie algebras have been completely classified. They can be described
by certain highly symmetric finite sets of vectors in Euclidean r-space, the
root systems. The description of the root systems can be reduced to cer-
tain diagram on r nodes, the Dynkin diagrams. It turns out that the
corresponding classical simple groups are groups of automorphisms of rank r
diagram geometries, whose diagram is exactly the Dynkin diagram. These ge-
ometries associated with classical groups are known as buildings. Diagram
geometries generalize this notion. The objective behind the generalization
is to obtain geometric descriptions not only for the classical finite simple
groups but also for the sporadic groups. There are only 26 such sporadic
groups, but they cause as much trouble as all the infinite series of classical
groups taken together.
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Chapter 19

The sporadic A7-geometry

Let Ω be a 7-element set, Ω = {x, 1, 2, 3, 4, 5, 6}. We start from the following
elementary question: How many different Fano planes exist on Ω?
One way to approach this is to use a basic fact from group theory, the orbit
formula: the length of an orbit under the action of a permutation group
equals the index of the stabilizer group.
As all Fano planes are isomorphic, they form one orbit under the action of the
symmetric group S7. The stabilizer of a Fano plane E in S7 is by definition
the automorphism group of E. This is the linear group GL(3, 2), the simple
group of order 168, see the Problems section. It follows that the number of
different Fano planes is 7!/168 = 30. It is easy to confirm this result by a
purely combinatorial argument. Now restrict to the alternating group A7.
As GL(3, 2) is a simple group, it is contained in A7 (the commutator group
of GL(3, 2) is contained in the commutator group of S7, which is A7, and the
commutator group of the simple group GL(3, 2) is GL(3, 2) itself).

As GL(3, 2) has index 15 in A7, the group A7 has two orbits E1 and E2 of
Fano planes, each of length 15.

19.1 Lemma. There are 30 different Fano planes on a given 7-element set.
They form one orbit under S7, two orbits of length 15 each under A7.

Upon counting incident pairs of triples (3-subsets of Ω) and Fano planes,
we see that every triple is a line of exactly 6 Fano planes, 3 from each
A7−orbit. Let E ∈ E1 be a Fano plane and H ∼= GL(3, 2) its stabilizer.
How does H act on the remaining 14 elements (Fano planes) of E1? The ele-
ment of order 7 shows that H either is transitive or has two orbits of length
7. As

(

15
2

)

= 105 is odd, A7 certainly is transitive on the unordered pairs from
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E1 (A7 is 2-homogeneous). By counting triples (E, E ′, T ), where E and E ′

are different Fano planes from E1 and T a triple, which is a line in both, we
see that different Fano planes from the same A7−orbit have exactly one line
in common. This shows in particular that no more than two linewise disjoint
Fano planes can be found.

Consider the action of H on E2. An element of order 7 has orbits of lengths
1, 7, 7. Assume H stabilizes a (unique) Fano plane E ′ ∈ E2. This yields an
orbit of length 7 under the action A7 of pairs (E1, E2) such that Ei ∈ Ei and
E1, E2 have the same stabilizer. Let E1 and E2 have x lines in common. and
y the number of pairs (E1, E2) from the orbit having a given line in common.
The usual counting argument shows 7 × x = 35y, hence x = 5. This is a
contradiction as no two Fano planes have as many as 5 lines in common. We
conclude that the stabilizer H of E ∈ E1 has two orbits of lengths 7 and 8,
respectively, on E2. It follows that we have two orbits of pairs (E1, E2), where
Ei ∈ Ei under the action of A7, one of length 15×7 = 105, the other of length
15×8 = 120. Let pairs in the shorter orbit have x lines in common and y the
number of lines which pairs in the longer orbit have in common. Count triples
(E1, E2, T ), where T is a common line. This yields 105x + 120y = 35 × 9. It
follows that 7 divides y, consequently y = 0 and x = 3.

19.2 Theorem. Let E1, E2 be the orbits of Fano planes under the action of
A7. Then A7 is doubly transitive on E1 and on E2. There are two orbits of
pairs (E1, E2) where Ei ∈ Ei, of lengths 105 and 120. The number of common
lines is 3 for the shorter, it is 0 for the longer orbit.

Proof. It remains to prove the 2-transitivity of A7 on E1. Choose

E = {x12, x34, x56, 135, 146, 236, 245}

E ′ = {x12, x35, x46, 136, 145, 234, 256}

E ′′ = {x12, x36, x45, 235, 246, 134, 156}

Then E, E ′, E ′′ are Fano planes. They belong to the same A7-orbit as
they pairwise have exactly one line 012 in common. The permutation σ =
(1, 2)(3, 4) ∈ A7 fixes E and maps E ′ → E ′′.

It follows from Theorem 19.2 that the maximum number of linewise dis-
joint Fano planes which can be constructed on a given 7-set is 2. This result
is attributed to Cayley [4].

Next we show how the action of A7 on the orbit E1 (analogously on E2)
can be used to obtain an embedding of A7 in GL(4, 2).



127

19.3 Definition. Let V = {0} ∪ E1. Define an addition on V with 0 as
neutral element such that v + v = 0 for all v ∈ V and the sum of any two
different Fano planes from E1 is the third plane containing the line which the
first two have in common.

Observe that Definition 19.3 makes sense as we know that two Fano planes
from the same A7-orbit have precisely one common line and there is exactly
one further such Fano plane containing that line. As an example, the Fano
planes E, E ′, E ′′ from the proof of Theorem 19.2 sum to 0.

19.4 Lemma. A7 is regular on the triples (E, F, G) of Fano planes from E1

where E, F, G are different and G 6= E + F. For each such triple the lines of
pairwise intersection form a triangle. There is a uniquely determined point
of Ω which is outside this triangle.

Proof. The number of these triples is 15× 14× 12 = |A7|. It suffices to show
that no nontrivial element of A7 fixes such a triple. The stabilizer of E and
F has order 12 and clearly is isomorphic to A4. Let 1 6= σ in the stabilizer of
E, F and G. Consider the three triples, which are the lines that two of our
Fano planes have in common. As any two of them belong to a common Fano
plane, they pairwise intersect in one point. Assume they form a triangle.
Then σ is the identity, contradiction. On the other hand these triples cannot
form a concurrent bundle as in this case E, F, G would have three lines in
common.

19.5 Proposition. V is an elementary abelian group of order 16.

Proof. Addition is certainly commutative, and each element has order 2, by
definition. Only associativity needs to be shown:

(E + F ) + G = E + (F + G).

It can be assumed that E, F, G are different and nonzero, G 6= E + F. By
Lemma 19.4 it suffices to check associativity for one special triple E, F, G of
Fano planes. We are without restriction in the following situation:

E = {x12, x34, x56, 135, 146, 236, 245},

F = {x12, x35, x46, 136, 145, 234, 256},

G = {x34, x15, x26, 136, 124, 235, 456}.
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The triangle of pairwise intersection is {x12, x34, 136} and 5 is the unique
element of Ω not on this triangle. The Fano plane
E + F = {x12, x36, x45, 235, 246, 134, 156} shares 136 with G. It follows

(E + F ) + G = {235, 2x4, 216, x56, x13, 346, 145}.

On the other hand F and G share 136,
F + G = {136, 1x4, 125, x23, x56, 246, 345} and finally

E + (F + G) = {x56, x13, x24, 145, 126, 235, 346}

which happens to coincide with (E + F ) + G.

As the addition of V is respected by the action of A7 we conclude that
we have an embedding of A7 in the linear group GL(4, 2), the group of au-
tomorphisms of an elementary abelian group of order 16, equivalently of a
4-dimensional vector space over F2.

19.6 Theorem. A7 possesses a 2-transitive permutation representation on
the 15 nonzero vectors of a 4-dimensional vector space over F2. The stabilizer
of a vector is ∼= GL(3, 2). Moreover A7 is regular (sharply transitive) on
ordered triples (a, b, c) of linearly independent vectors.

It follows from Theorem 19.6 that A7 is a subgroup of GL(4, 2). The
simple group GL(4, 2) acts on the 8 cosets of A7. This yields an embedding
of GL(4, 2) in S8. As GL(4, 2) is simple it is embedded in A8. These groups
have the same order. It follows that these simple groups are isomorphic.

19.7 Theorem. The simple groups GL(4, 2) and A8 are isomorphic.

How do we compute with the embedding of A7 in GL(4, 2)? It is com-
binatorially obvious that each bundle of 3 concurrent lines is contained in
precisely 2 Fano planes, one from each A7-orbit. Let E, F be Fano planes
from the same orbit and x12 their common line. Assume E contains the
bundle {x12, x34, x56} and F contains {x12, x35, x46}. Then E +F contains
{x12, x36, x45} and E + F is the uniquely determined Fano plane from the
same orbit that contains this bundle.

Let x be an element which is not on the line that E and F have in common.
The bundle of lines of E through x defines a 1-factor of Ω \ {0}, likewise for
F. These two 1-factors together form a cycle of length 6 on Ω \ {x}. The
1-factor determined by E +F consists of the diagonals of this cycle. We have
seen the following:
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19.8 Proposition. Let E, F be two Fano planes in the same A7-orbit,
defined on the ground set Ω. Let l be the line that E and F have in common
and a ∈ Ω.

If a ∈ l and {a, b, c}, {a, d, e} are the lines 6= l of E containing a, and
{a, b, d}, {a, c, e} the corresponding lines of F, then E +F contains the lines
l, {a, b, e} and {a, c, d}.

If a /∈ l, then the pairs collinear with a on a line of E+F are the diagonals
of the 6-cycle which the bundles of lines through a in E and in F define on
Ω \ {a}.

As an example consider the Fano planes E, F from the proof of Proposi-
tion 19.5. The first rule when applied to x shows {x12, x36, x45} ⊂ E+F. Ap-
ply the second rule to the element 6. The 1-factors on Ω\{6} are {x5, 14, 23}
and {x4, 13, 25}. Together they define the cycle (x, 5, 2, 3, 1, 4) whose diago-
nals are x3, 15, 24. This shows that E + F contains {x36, 156, 246}. Proposi-
tion 19.8 also suggests how the pairs and the 1-factors on a 6-set can be given
an algebraic structure. Let X = {1, 2, 3, 4, 5, 6}. Let W consist of 0 and of
the unordered pairs from X. Here we write ij for {i, j}. Define an addition
on W by 0 + w = w, w + w = 0 and

12 + 13 = 23, 12 + 34 = 56

(the sum of two intersecting pairs is the third pair contained in the union, the
sum of two disjoint pairs is the pair which is disjoint from the union). Then
W is an elementary abelian group of order 16. This defines an embedding of
S6 in GL(4, 2). Moreover a symplectic bilinear form is defined by (w1, w2) = 1
if and only if the wi are different pairs which intersect in a point of X. This
symplectic form is respected by the action of S6, defining an embedding of
S6 in the symplectic group Sp(4, 2). As these groups have the same order one
obtains a second exceptional isomorphism: S6

∼= Sp(4, 2).
Alternatively we can use the 15 1-factors on X to define an elementary

abelian group W ′, where

(12)(34)(56) + (12)(35)(46) = (12)(36)(45),

(12)(34)(56) + (13)(25)(46) = (16)(24)(35)

and a symplectic form where two 1-factors have symplectic product = 1 if
and only if they do not have a pair in common. This of course leads us back
to our old friend, the S6-GQ.

We can define the famous A7-geometry:
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(lines)(points) (planes)

Figure 19.1: The A7-geometry

19.9 Definition. The points of our geometry are the 7 elements of the ground
set Ω, the lines are the

(

7
3

)

= 35 triples from Ω, the 15 planes are the Fano
planes from one A7-orbit E1. Incidence is defined in the natural way.

19.10 Theorem. The A7-geometry is a diagram geometry, with diagram as
given in Figure 19.1.

Proof. Fix a plane E. This really is a Fano plane. The residual geometry
consists of the points and lines of E. We conclude that the residual geometry
of each plane is a projective plane. This is represented by drawing a single
line between the nodes representing points and lines.

Fix a line of our geometry. This is a triple T of Ω. The corresponding
residual geometry consists of the three elements of Ω on T and of the Fano
planes from our orbit having T as a line. All of those objects are incident. The
residual geometry of T is a complete bipartite graphs. These are represented
by not joining the corresponding nodes of the diagram. In our diagram the
nodes representing points and planes are not joined.

Most interesting is the residual geometry corresponding to a fixed element
a ∈ Ω. The points of the residual geometry are the 15 triples containing a,
its lines are the 15 Fano planes from orbit E1. This is our S6-generalized
quadrangle. The graphical representation of a generalized quadrangle is a
double line connecting the corresponding nodes.

The diagram of the A7-geometry is the same as that for the 7-dimensional
orthogonal geometry given in Chapter 18.

Another famous structure is related to the A7-geometry, the Hoffman-
Singleton graph which we denote by Γ. Recall that we constructed a model
of PG(3, 2) whose 35 lines are the triples from the ground set Ω of size 7.
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There are at least 3 types of pairs of lines, according to the size of intersection
of the triples (0, 1 or 2) in Ω. Under the full GL(4, 2) there are of course only
two types of pairs of lines.

The 50 vertices of Γ are the 15 points and the 35 lines of PG(3, 2). Two
points are never neighbours. A point and a line form an edge if in PG(3, 2)
the point is on the line. Two lines are neighbours if the corresponding triples
are disjoint. Observe that this is not equivalent with the corresponding lines
of PG(3, 2) being parallel.

Each vertex of point type has valency 7 as a point of PG(3, 2) is on 7 lines.
A vertex of line type has 3 neighbours of point type and

(

4
3

)

= 4 neighbours
of line type. It follows that Γ is regular of valency 7.

19.11 Theorem. The Hoffman-Singleton graph Γ is a Moore graph. This
means

• Γ is regular (of valency 7).

• There are no triangles in Γ

• Any two non-adjacent vertices have precisely one common neighbour.

Proof. We know the valency, and the absence of triangles is obvious: two
disjoint triples cannot be on a common Fano plane. In order to check the
final axiom several cases have to be distinguished. Two vertices of point
type are on precisely 1 line of PG(3, 2). Let T1, T2 be triples intersecting in
cardinality 1. Then there is precisely one point of PG(3, 2) (Fano plane from
E1) containing both as lines. If T1, T2 intersect in cardinality 2 there is no
such point (Fano plane), but there is exactly one triple disjoint from T1 and
T2. Finally, let a triple T and a point P ∈ PG(3, 2) be given, where P /∈ T.
In our A7-language this means we are given a Fano plane E (the projective
point) and three points of X forming a triangle in E. The complementary
set of 4 points from X contains exactly one line of E.

We remark that the Moore graphs have more or less been classified. Each
Moore graph either is the Petersen graph or the Hoffman-Singleton graph or
possibly a certain graph on 3250 vertices, of valency 56 whose existence is in
doubt.



132 CHAPTER 19. THE SPORADIC A7-GEOMETRY

From the A7-geometry to NR.

In the preceding section we constructed a semidirect product G = V A, where
V is elementary abelian of order 16 and A ∼= A7 in its 2-transitive action on
V. We write V additively, as a 4-dimensional vector space over F2, with basis
v1, v2, v3, v4. In terms of Fano planes we can make the following choice:

v1 = x12, x34, x56, 135, 146, 236, 245.

v2 = x12, x35, x46, 136, 145, 234, 256.

v3 = x34, x15, x26, 124, 136, 235, 456.

v4 = 135, 1x4, 126, x25, x36, 234, 456.

The normal subgroup V acts by translation on the vectors from V. The
action of V is transitive. Let τ(v) denote translation by v ∈ V. The stabilizer
of vector 0 ∈ V is A ∼= A7, which is 2-transitive on the 15 nonzero vectors (see
Theorem 19.6). It follows that G acts 3-transitively. In particular each orbit
of G in its action on subsets of V defines a 3-design. Define the dimension
of a subset S ⊆ V as the dimension of the affine subspace generated by S.
One point has dimension 0, two points have dimension 2 and a 3-point set
has dimension 3. A k-set is in general position if it has dimension k − 1.

19.12 Lemma. G is regular on the ordered 4-tuples in general position.

Proof. This follows from Theorem 19.6.

A 4-set in general position is V1 = {0, v1, v2, v3}). This defines the orbit
V1 of length 16 × 15 × 14 × 12/24 = 16 × 15 × 7. As G is 3-transitive and
each triple is contained in precisely one 4-set of dimension 2 (its elements
sum to 0), the 4-sets of dimension 2 form an orbit V2 of length 140, with
representative V2 = {0, v1, v2, v1 + v2}. As |V1| + |V2| =

(

16
3

)

these are all
the orbits on 4-sets. The elements of V2 form a Steiner quadruple system
S(3, 4, 16). It follows from Lemma 19.12 that the stabilizer G(V1) of V1 under
the action of G is the symmetric group S4. We have

G(V1) = 〈r, z, τ(v1)h〉

where r = (x, 1, 3)(2, 6, 4), z = (x, 1)(4, 6), h = (1, 2)(3, 4). The action of
these linear operations on V is described by

r : v1 7→ v2 7→ v3 7→ v1, v4 7→ v2 + v3 + v4,
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z : v1 ↔ v2, v3 7→ v3, v4 ↔ v3 + v4,

h : v1 7→ v1, v2 ↔ v1 + v2, v3 ↔ v1 + v3, v4 ↔
∑

vi.

The group G(V1) has two orbits on the set of 8 points complementing V1 to
a 5-set in general position. These orbits are {v2 + v4, v1 + v3 + v4} and the
remaining 6 points. Let

H = {0, v1, v2, v3, v2 + v4, v1 + v3 + v4}

and denote by H the orbit containing H. The 6-sets of this orbit are the
hexads. Observe that G(V1) is contained in the stabilizer of H. Another
element of G(H) is τ(v2 + v4)l, where l = (x, 6, 1, 2, 4). The action of l on V
is described by

l : v1 7→ v1 + v2, v2 7→ v1 + v3, v3 7→ v1 + v2 + v4, v4 7→ v3

and τ(v2+v4)l acts on H as a 5-cycle, with fixed point v1+v3+v4. The group
generated by G(V1) and τ(v2 + v4)l clearly is A6. It follows |H| ≤ |G|/|A6| =
16 × 7. All 4-sets contained in H are from V1. By double counting it follows
that we have equality and V1 is contained in precisely one hexad.

19.13 Proposition. Let H be the G-orbit of 6-sets containing
H = {0, v1, v2, v3, v2 + v4, v1 + v3 + v4} (the hexads). There are 112 = 16× 7
hexads, and each 4-set in general position is contained in precisely one hexad.

Let us describe the completion of a 4-set in general position to its uniquely
determined hexad in a combinatorial way. Start from V1. By Lemma 19.4 the
lines of pairwise intersection of v1, v2, v3 form a triangle. This is the triangle
{x12, x34, 136}. Let v be one of the two elements of V (Fano planes) that
complement V1 to a hexad. The vertices of the intersection triangle form a
line x13 of v. The line through x and 6 contains either 2 or 4, similarly for the
other pairs of opposite points in the triangle. Choose x62 as a line of v. The
same rule shows that 324 and 146 are lines of v, which by now is uniquely
determined:

v = v2 + v4 = {x13, x62, 324, 146, x45, 356, 125}.

The choice of x64 as a line leads to

v = v1 + v3 + v4 = {x13, x64, 142, 326, x25, 156, 345}
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These two completion points are the Fano planes 6= v1 + v2 + v3 from orbit
E1 containing x13 as a line.

Another orbit we are going to need are the affine hyperplanes. These
are the subgroups of order 8 of V and their complements. There are 30 affine
hyperplanes and clearly they form an orbit. We obtain another representation
of one of our favorite objects, the Nordstrom-Robinson code NR :

19.14 Definition. Use the elements of V as coordinates of the vector space
F

16
2 . Identify each vector from F

16
2 with its support, a subset of V. The code

NR is the union of the following words:

• The 0-word and the 1-word,

• The affine hyperplanes,

• the hexads and their complements.

The number of codewords of NR is 2+30+112+112 = 28. By definition
NR admits G as a group of automorphisms. The constant words and the
affine hyperplanes together form a linear subcode. As any two different affine
hyperplanes have either 0 or 4 points in common, this is a [16, 5, 8]2-code,
the Reed-Muller code R.

19.15 Lemma. The hexads define a design 3 − (16, 6, 4). A hexad and an
affine hyperplane intersect either in 4 or in 2 points. For each hexad there
are 15 affine hyperplanes meeting it in 4 points.

Proof. The parameters of the design follow from double counting. Let H be
a hexad. Each of the 15 4-subsets of H is in exactly one affine hyperplane
E, and E meets H in precisely those 4 points. The complements of those 15
affine hyperplanes intersect H in 2 points.

19.16 Proposition. NR is the union of 8 cosets of R. If H is a hexad, then
the coset H + R consists of the images of H under the translation subgroup
V and their complements.

In order to prove Proposition 19.16 it suffices to prove the last claim,
which itself is a consequence of the following lemma.

19.17 Lemma. Let H be a hexad and E an affine hyperplane.
If |E ∩ H| = 4, then H + E = H + a + b, where a, b are the points of H

which are not in E.
If |E ∩ H| = 2, then H + E is the complement of H + a + b, where

E ∩ H = {a, b}.
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Proof. Considering complements it suffices to prove the first rule. Let h + a
or h = b. Then h+a+b ∈ H \E ⊂ H+E. If h ∈ H \{a, b}, then h+a+b ∈ E
but h + a + b /∈ H as H does not contain a 4-set of dimension 2. It follows
h + a + b ∈ H + E also in this case. As the cardinalities are the same we are
done.

19.18 Definition. Let x ∈ F
16
2 . Denote by Ai(x) the number of codewords

of NR at distance i from x.

19.19 Theorem. For each x ∈ NR we have

A0(x) = A16(x) = 1, A6(x) = A10(x) = 112, A8(x) = 30.

In particular NR is a (16, 28, 6)-code.

Proof. By definition this is true for x = 0. Proposition 19.16 shows that it
holds for all x ∈ R and it suffices to prove the statement for a hexad of our
choice. Let H be a hexad. It follows from Lemma 19.15 that the distances
from H to the elements of R are 6 and 10, each occurring 16 times. We need
to know how hexads intersect. As each 4-set in general position is in precisely
one hexad, the intersection sizes are ≤ 3. As the hexads form a 3− (16, 6, 4),
there are precisely

(

6
3

)

×3 = 60 hexads intersecting H in 3 points. The usual
counting arguments show that 15 hexads meet H in 2 points and 36 meet it
in precisely one point. As 1+60+15+36 = 112 this exhausts all hexads. We
conclude that precisely 15 hexads are at distance 8 from H, while all other
hexads 6= H are at distance 6 or 10. The presence of the all-1-word shows
that our claim is true.

Problems

1. Use the orbit formula from the theory of permutation groups to show
that the group of automorphisms of the Fano plane is precisely the
group GL(3, 2) of order 168.
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