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In this new text the author presents an ex-
position of the analytic geometry of three-
dimensional space. The material covers the
standard topics of space analytic geometry but
provides a treatment of the subject which per-
mits immediate generalization to n dimensions.
This treatment ties the subject to modern math-
ematics, and, in particular, to modern algebra.
The use of the theory of vector spaces and ma-
trices permits a major simplification in the
proofs and in the exposition in general. Thus
the aim of the book is to provide a modern and
simpler treatment of the subject matter which
permits easy generalization and fits the sub-
ject into its proper place in modern mathe-
matics.

The early part of the text is simplified by the
use of the concepts of inner and scalar prod-
uct. A brief but adequate chapter on the theory
of matrices provides a full, clear exposition
of the principal axis transformation in the
n-dimensional case. An additional feature is
provided by the chapter on spherical coordi-
nates where the mathematics of the approxima-
tions used in actual physical measurements of
direction and distance in rotated coordinate
systems is presented. This material is not usu-
ally found in texts on solid analytic geometry.

Chapters I and II contain a treatment of the
equations of lines and planes. After a prelimi-
nary study of the linear operations in n-dimen-
sional vectors and inner products are interpreted
geometrically, and from a consideration of
scalar products and axis translations, the para-
metric equations of a line are obtained. The
vector approach then yields a very simple
derivation of the normal form of an equation
of a plane, and the standard forms of plane and
line equations are rather immediate conse-
quences.

Chapter III presents classical elementary sur-
face and curve theory. Chapter IV contains the
usual treatment of spheres, and Chapter V the
classical descriptions of quadric surfaces in
standard position. This chapter ends with a
rather novel classification of quadrics accord-
ing to certain invariants.

Chapter VI is an exposition of that part of the
theory of matrices needed for a complete de-
velopment of the so-called principal axis trans-
formation. A full account of the orthogonal
reduction of a real quadratic form in n varia-
bles is given, and the theory is applied in
Chapter VII to the three-dimensionaﬁ case of
quadric surfaces. A discussion of the sym-
metries of  ~dric surfaces is included.

Chapter Vi spherical coordinates, contains
a discussion of some practical aspects of the
theory of rotations amf translations of axes in
space.

The final chapter offers a brief presentation of
the elements of projective geometry. The ef-
fect on the theory of linear transformations
of the use of homogeneous coordinates is given
and the chapter contains a rigorous. matrix
proof of the invariance of the cross ratio under
projective transformations. :
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PREFACE

In a recent text on college algebra the author gave a brief pre-
sentation of what seems to him to be the best basis for a modern
course on plane analytic geometry, that is, the algebraic vector
approach. The present text contains an extension of this
approach, yielding an exposition in full for the three-dimensional
case, and thereby ties up the study of space analytic geometry
with the theory of vectors and matrices.

Chapters 1 and 2 contain a treatment of the equations of lines
and planes. After a preliminary study of the linear operations
on n-dimensional vectors, rectangular coordinates are introduced,
three-dimensional vectors and inner products are interpreted
geometrically, and, from a consideration of scalar products and
axis translations, the parametric equations of a line are obtained.
The vector approach then yields a very simple derivation of the
normal form of an equation of a plane, and the standard forms of
plane and line equations arc rather immediate consequences.

Chapter 3 contains an exposition of classical elementary sur-
face and curve theory. Chapter 4 contains the usual treatment
of spheres, and Chapter 5 gives the classical descriptions of
quadric surfaces in standard position. The latter chapter ends
with a rather novel classification of quadrics according to certain
invariants.

Chapter 6 is an exposition of that part of the theory of matrices
which is nceded for a complete development of the so-called
principal axts transformation. A full account of the orthogonal
reduction of a real quadratic form in n variables is given, and the
theory is applied in Chapter 7 to the thrce-dimensional case of
quadric surfaces. This latter chapter ends with a discussion of
the symmetries of quadric surfaces.

The first seven chapters of this text provide an exposition of
the basic topics of solid analytic geometry, the material being
adequate for a one-quarter course on the subject. The remain-
ing chapters contain additional material for longer courses or out-
side reading. Chapter 8, on spherical coordinates. contains a dis-
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vi PREFACE

cussion of some practical aspects of the theory of rotations and
translations of axes in space. It is quite clear that rectangular
coordinates are not as practical for actual measurements as are
the coordinates of range, azimuth, and elevation, and in this
chapter methods are developed for actual computation of the
changes in these measurable coordinates after translations or
rotations of axes. The chapter ends with a discussion of gno-
monic charts. ’
Our final chapter contains a brief presentation of the elements
of projective geometry. The cffect on the theory of linear trans-
formations of the use of homogeneous coordinates is given, and
the chapter contains a rigorous matrix proof of the invariance of
the cross ratio under projective transformations. It is hoped that
the use of modern algebraic techniques in this and in the earlier
chapters of the present text will serve to make the subject of
solid analytic geometry fit better in the teaching of modern
mathematics than it has in the past.
ADRIAN ALBERT

Caicago, ILL.
March, 1949
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CHAPTER 1
COORDINATES AND LINES

1. Vectors. A sequenceP = (z1, . . . , z,) of n numbers x; is
called an n-dimensional vector. The elements z,, . . . , z, are
called the coordinates of P and z; is the 7th coordinate. We shall
limit our attention to real vectors, 1.e., to vectors whose coordinates
are real numbers.

The vector whose coordinates are all zero is called the zero
vector and will be designated by 0. A real vector may be inter-
preted as a representation, relative to a fixed coordinate system
with O as origin, of a point in n-dimensional real Euclidean space.

It may also be interpreted as the line segment OP directed from
O to P. These interpretations have little intuitive significance
except for the cases n = 3, and we shall carry out the details in
this text for the case n = 3.

The sum P 4+ Q of two vectors P = (x3, . . . ,z,) and Q
= (Y1, . . . ,Yn) 18 the vector (1 + ¥y, . . . , s + y.) Whose
7th coordinate is the sum 2; + . of the ith coordinate of P and
the 7th coordinate of Q. We leave the verification of the follow-
ing simple results to the reader:

Lemma 1. Addition of vectors is commulative, that is, P + Q
= Q + P for all vectors P and Q.

Lemma 2. Addition of vectors is associative, that is, (P + Q)
+ R =P 4+ (Q + R) for all vectors P, Q, R.

Lemma 3. The zero vector O has the property that P 4+ 0 = P
Sfor all vectors P.

Lemma 4. Let P = (x1, ... ,Xs). Then the vector —P
= (—X1, ..., —Xa) has the property that P + (—P) = 0.

Lemma b. If P and Q are any vectors the equation P + X = Q
has the solution X = Q + (—P). We call this vector the difference
of Q and P and write X = Q — P. Then the ith coordinate of
Q — P s the difference of the ith coordinate of Q and the ith coordinate
of P.

1



] SOLID ANALYTIC GEOMETRY (Chap. 1

EXERCISE
Verify the five lemmas.

2. Scalar multiplication. If a is a number and P = (z,,
., Ta) is a vector, we define the scalar product of P by a to be

aP = (azy, . . ., az,).

Evidently 1P = P, (—1)P = —P, OP = 0. The reader should
verify that

a(bP) = (ab)P, (a+ b)P =aP +bP, a(P + Q)

= aP + aQ
for all scalars a and b and all vectors P and Q.
A sum
P=aP,+ - + anPn,
of scalar products a;P; of vectors P; by scalars a;, is called a linear
combination of Py, . . . ,P,. We shall say that Py, . . . , P,
are linearly independent vectors if it is true that a linear combina-
tion a,P1 + + + * + anPn = 0if and only if ay, . . . , anareall
zero. If Py, ..., P, are not linearly independent, we shall

say that P,, . . . , P, are lincarly dependent.
Let E; be the vector whose 7th coordinate is 1 and whose other
coordinates are all zero. Then

P=(xy...,z,) =i+ - -+ + z,F,.
Thus every vector is a linear combination of £,, . . . , E,. If
o B+ -+ - 4z =P =0, then (1, . . . ,x,) = 0, that is,
Ty ==+ =x, =0. It follows that E,, ... 6 E, are
linearly independent.
EXERCISES
1. Show that if P = (24, . . . ,2,) and @ = (y1, . . . , ¥») are not

zero then P and @ are linearly dependent if and only if @ is a scalar
multiple of P.

2. Show that if Py, . . . , P, are linearly independent and P, is
another vector then P,, . . . , P,, P41 are linearly dependent if and
only if Py, is a linear combination of Py, . . . , Pp.

3. Compute the following linear combinations of P, = (1, —1, 2, 3),
P,=1(0,1, -1,2), P; = (—2,1, —1, 2).

(a) 2P, + P, + P, (b) Py + 3P; — 2P; (c) 3P, + 2P, — 4P;
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4. Use Exercises 1 and 2 in determining which of the following sets of
three vectors are linearly independent sets.

(a) (11 _19 2)1 (1) 17 0)1 (0! —1) 1)

(b) (27 1) 1)’ (1) —1) 1); (5: 4) 2)

(C) (110) _2)7 (2) —1) 2)) (4; _—37 10)

(d) (11 '—1; 1): (—'ly 21 1)1 (—19 27 2)

(6’) (1!01 _11 1)’ (O) '—1’ 11 ’—1); (4y _1; —3) 4)

(f) (57 1) '_2) -G)y (1y 1; 0; —2)7 (2y —'1: '—1)0)

(9 (1,0,0,0), (1, 1,1,1), (3,1, 1,1)

(h) (1) 1’ —1) 2)’ (2y 2; —'2, 3)) (37 3: ’—27 6)

b. Prove that any three two-dimensional vectors are linearly depend-
ent.

6. Prove that any four three-dimensional vectors are linearly de-
pendent,

3. Inner products. IfP = (z1, . . . ,z.)and Q = (yy, . . . ,
y») are any two vectors, we shall call the number

0 P-Q=xy1+ ** + Tl

the tnner product of P and Q. Ilvidently, P-Q = Q - P.
The norm of a vector P is defined to be the inner product

(2) P-P=zx?24+ - - 4 2.2

If P is any real vector, the number P - P = 0 and has a nonnega-
tive square root

3) t=P-P=+/224 - + 12

which we shall call the length of P.

A vector P is called a unit vector if P+ P = 1. Thus a real
unit vector is a vector whose length (and whose norm) is 1.

Lemma 6. [Lvery real nonzero vector is a scalar multiple of
exactly two unit vectors. These are the vectors U = t~'P and —U,
where t is the length of P.  Then tf P = tU, where t > 0 and U is
a unit vector, the number t s the length of P.

For proof we first let P = tU where U = (uy, . . . , us) is
a unit vector. Then P-P = (tu))?+ - - -+ + (tu,)? = 2(us?
+ - dud) = andt=+ VP -P;t=~P-P,ift 2 0.
Conversely, let U = t-P, where ¢t = A/P-P. Then U:U
= (224 -+ -+ ()2 = 2@+ - - - + 2.2 =1 and
U is a unit vector. The vector —U = —(~'P is clearly also a
unit vector.
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EXERCISES
1. Give the norms and lengths of the following vectors:

(a) (2; 27 —1) (d) (11 "1r 1: —1)

(b) (17 17 0) (e) (17 '—17 ) 1)

(C) (17 —4, 8) (f) (3) 2) _—1) 17 1)

2. Give the unit vector (/P - P)~'P for each vector of Exercise 1.

4. The angle between two vectors. If P = (z1, . .., z,)
and Q = (y1, . . . ,Ys) are any two real nonzero vectors, the
difference
(4) P-P)Q-Q) — (P-@)*=0.
For (P-P)Q-Q) = @+ -+~ + &)@+ - - + ) is
the sum of z:%y:2 + x2%y22 + - - + 4+ 2.%.? and all expressions
of the form (xiy;)? + (x:)% for 1 =7 <j = n. The square
P-Q?= (w1 + ** + +2x.y.)? is the sum of x,%y,2 4 z2%,*

+ -+ - 4+ z,%.2 and all products of the form 2xy.zyy; for
1 £17 < j = n Thedifference then is the sum of all expressions
of the form (z,)? + (x;y.)* — 2zyxy; = (xy; — xiy:)? for 1 < ¢
< j £ n, and must be nonnegative.

The numbers P - P, Q - Q, and (P - Q)? are all positive, and we
have shown that

It follows that there exists an angle 6 between 0 and 180° such
that

(5) cos 0 = ——-_w:_:___ .

We define this angle 6 to be the angle between the vectors P and Q.

Two vectors are said to be orthogonal (i.e., perpendicular) if
cos # = 0. Then P and Q are orthogonal if and only if their inner
product

(6) P‘Q=x1y1+"°+xnyn=0-

Thus, if P and @ are any vectors, we multiply corresponding
coordinates and add the products. The sum so obtained is zero
if and only if P and @ are orthogonal.
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EXERCISES
1. Compute P - Q for each of the following vector pairs P, Q:
(@ (1,1, -1), (1,0, 1) ¢ qQ-1,11),(@1,1,1,0)
(b) (17 2’ 3)7 (_17 1; '—1) (g) (2; 3’ —1) 6): (31 —2’ 6’ 1)
(C) (17 1) 2)y (0; '—1: 1) (h) (]7 2) 3r 4)1 (21 —17 ——11 1)
(d) (=1,0,1), (2,1, 1) (@) (4,-6,1,2), (1,2, —1,2)
((3) (—1) 3) 2)) (1) 1) —1) (.7) (3, 1, —1) 1)) (0: 17 1’ 0)

2. Which pairs are orthogonal?
3. Compute cos 6 for each nonorthogonal pair.

b. Directed lines. Directed lines are frequently used in the
geometry of three-dimensional Euclidean space, t.e., in ordinary
solid analytic geometry. Every pair of distinct points P and @
in space determines a line passing through P and Q. We shall
use the notation PQ for this line and shall prefix the word ray
when we mean the ray PQ, which is the half line from P through Q.

Let us assume that a unit of measurement has been prescribed
and that we have measured the length of the line segment joining
P to Q in terms of this unit. The result is a real number that is
positive if P and @ are different points and is zero only when P
and @Q coincide. We shall use the notation |PQ)| for this measure-
ment of length.

When P and @ are points on a directed line, we shall use the
symbol PQ for the signed length of the segment joining P to Q
and directed from P toward Q. Then PQ = |PQ| if the direction
from P to Q is the positive direction on the line, and FQ = — |PQ)|
if the direction from P to @ is opposite to the positive direction on
the line. See Iig. 1 in which PQ > 0 and RQ < 0, and note that
in all cases PQ = —QP.

5
4+

P 0 R
Fic. 1.

P R Q
Fic. 2.

If P, Q, R are on a directed line, it should be clear from Figs. 1
and 2 that PQ + QR = PR. This equation may be generalized
to the case of any finite number of points on a directed line and
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the generalized equation is

(7 PP, + P.P;+ - - - + P._\P, = PP,

6. Orthogonal projections. A theorem of solid geometry
states that through a given point P there exists precisely one
plane perpendicular to a given line .. This plane intersects L
in a point P’ such that the line PP’ is perpendicular to L. We
shall call P’ the orthogonal projection of P on L.

If P and @ are any two points, we shall designate by PQ the
line segment which joins P to Q and which is directed from P to Q.
Project P and Q orthogonally on a directed line L, and obtain
projections P’ and Q’. Then we define the orthogonal projection

of P—é on L to be the signed length I’Q’. Tt follows that the
orthogonal projection of QP is the negative Q'F’ of the orthogonal

projection of PQ.
A directed broken line joining two points P and @ is the
geometric configuration consisting of the directed line seg-

ments PP, I-);Pz, . . ., P,Q for any finite number n of points

Py, ... ,P, Let us use the notation j’l’l R IZ,Q for
such a configuration and define the orthogonal projection of

PP, - - - P,Q to be the sum PP/ + P/Py + - - - + IP,/Q".
By formula (7) this sum is equal to P’Q" and we have proved the
following:

Theorem 1. The orthogonal projection of any directed line
segment P—‘Q on a directed line L is equal to the orthogonal projection
on L of any directed broken line from P to Q.

As we have said, a ray PQ is a half line that begins at the point

P, passes through Q, and extends indefinitely. If PQ and PR
are two rays from the same point P, there is a unique angle 6

R
k 0
9
p . P 3

Fia. 3.
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between them such that 0 < 6 < 180°. We define this angle to
be the angle between the ray PQ and the ray PR.

Let P and @ be any points and P’ and Q' be their respective
projections on a directed line L, as in Fig. 4. Then @, P, P’ are
three of the vertices of a parallelogram, and we find the fourth
vertex R by drawing a line segment P’R such that |[P’R| = |PQ)|.

Fia. 4.

Define the angle 6 between the ray PQ and the line L to be the
angle between the ray P'R and the ray from P’ in the positive
direction on L. By the standard ratio definition of the cosine
of an angle we have
P _PY
cos 0 = 57 = St
[P'R| — |PQ]
We have proved the following:
Theorem 2. Let 6 be the angle between PQ and a directed line 1..

Then the projection of PQ on L s equal to |PQ] cos 6.

7. Rectangular coordinates in ordinary space. A rectangular
Cartesian coordinate system in ordinary three-dimensional real
Euclidean space is a certain one-to-one correspondence between
the points of space and three-dimensional real vectors (z, ¥, 2).
The construction of the correspondence begins with the construc-
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tion of three mutually perpendicular directed lines intersecting
at a point O called the origin of the coordinate system (see Fig. 5).

The three lines are called coordinate axes. The first of them
is a vertical line directed upward. It is called the z axis. The
second line is a horizontal line in the plane of the book and is
directed to the right. It is called the y axis. The remaining
line is the z axis. It should be thought of as a line perpendicular
to the plane of the book and directed toward the reader. The

z
E Q
s P
0 B Y
C A
T
Fia. 5.

specification of a coordinate system will be completed as soon as
a unit of measurement, which will be used for all measurements
of lengths of lines, is given. This is usually done by specifying
a unit point U on the z axis such that OU is the unit of length.

Let P be any point in space, z be the projection of 0?’ on the
z axis, y be the projection of OP on the y axis, and z be the pro-

jection of OP on the z axis. Then the vector (z, ¥, 2) is uniquely
determined by P and we write P = (z, y, 2).

Conversely, if (z, y, 2) is given, we can draw a plane perpendicu-
lar to the z axis and through a point C' on the z axis such that
OC = z. All points P on this plane have the property that the

projection of OP on the x axis is z. We may construct another
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plane perpendicular to the y axis through a point B on the y axis
such that OB = y, and finally a plane perpendicular to the z axis
and through a point R on the z axis such that OR = z. The
intersection of these three mutually perpendicular planes is the
unique point which is such that P = (x, y, 2).

This completes our description of a rectangular coordinate
system in ordinary space. Let us now observe some simple
properties of a coordinate system. It should be clear that each
pair of axes defines a plane. We call the three mutually perpen-
dicular planes that are so defined the coordinate planes. The
x, ¥y plane is that determined by the x and y axes and z is the
perpendicular distance from the z, y plane to P = (z, 9, 2). .
The y, z and z, x planes are defined similarly, and z and y are also
perpendicular distances from coordinate planes to P.

The coordinates z, y, z are any real numbers and therefore may
be positive, negative, or zero. The reader should verify the
following statements and answer the questions:

1. The z axis is the set of all points P such that y = z = 0.
What are the corresponding equations for the y axis? The z axis?

2. The z,y plane is the set of all points such that z = 0.
What is the corresponding equation for the y, z plane? The 2z,
plane? A plane parallel to the x, ¥ plane and three units above
it? A plane parallel to the y, z plane and three units behind it?

3. The coordinate planes divide all of space into octants.
The forward, right-hand, upper octant is that where =z = 0,
y=0,z2=0. We call this the first octant, label it I, and draw
most of our diagrams as if the points being studied are all in the
first octant. This will restrict only the generality of the diagrams
but not that of the mathematical arguments.

4. The octants labeled IT to VIII are those where the corre-
sponding sets of signs are given asfollows: (—, +, +), (—, —, +),
(+, —, +), (+) +, —)7 (—a +, —)) (_, ) —)) (+, - =)
Describe the octants in terms of the words forward and backward,
right and left, and upper and lower.

EXERCISES

1. Verify the statements, and answer the questions listed above.

2. How can an equation be used to describe the set of all points with
equal r and y coordinates? Give the equation and the nature of the
geometric configuration.
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— -
3. Let a given point P be such that the projection OP’ of OP on the
axis is equal to cos a, where « is the angle between the positive r axis

and OP. What is the projection of OP’ on OP?
8. The length of a vector in space. A directed line segment

OP is usually called a vector and this is the inspiration of the
name we have given to number sequences (z, y,2z). We shall
now show that if P = (z, y, 2), then the length of OP is given by

OP| = /2% + y* + 23,
that is, our formula for the length of a vector is an actual length
in the three-dimensional case.

Use Fig. 5 and observe that |0A] is the diagonal of a rectangle
whose sides are r and y. Then |[0A|? = 22 4 y2. Also, AP = ¢
and |OP| is the hypotenuse of a right triangle whose legs arc [OA|
and |[AP|. By the thcorem of Pythagoras |OP|? = |0A]|% + 22
= 2% + y% + 2% This yiclds the formula above.

ORAL EXERCISE

Give the lengths of the following vectors:

b 1,1,2) (e) (3,6,0) (h) (3,0, —4)
() (1, =2, —=2) (N (=1, 1,1 @) (5,7, —1)

9. Lines through the origin. Fvery line OP through the origin
is composed of two rays. One of them is the ray OP and the
other is the ray OQ, where Q = —P. TForif P = (z, y, z) is on
a line and —P = (—x, —y, —2), it should be evident geometri-
cally that —P is also on the line.

Every ray OP contains a point U such that |OU| = 1. Then
U = (\, u, v) is a unit vector and

8) N ui4 =1
There is exactly one other unit vector on the line OP and this is
the point —U = (=X, —u, —v).

Define « to be the angle between the positive x axis and the
ray OP, 8 to be the angle between the positive y axis and the ray

OP, and v to be the angle between the positive z axis and the
ray OP. By Theorem 2 and our definition of coordinates

(9) = = |OP]| cos a, y = |OP| cos B, z = |OP]| cos 7.
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We call a, 8, ¥ the direction angles of the ray OP, and it should
be clear that any two of them and the sign of the third uniquely
determine this ray. In fact, the set of all rays making an angle
with the positive x axis form a cone of lines, the set of all rays
making an angle 8 with the positive y axis form a cone of lines,
and the ray OP is one of the two intersections of these two cones.
The dependence of v on @« and B is expressed by formula (11)
below.

Since the point U is on the ray OP and |OU| = 1, we may apply
formula (9) to sece that

(]()) = COS «, uo= cOS 6’ y = COS 5.
By formula (8)
(1) cos? o + cos2 B + coszy = 1.

This relation expresses the dependence of the three angles «, 8, 7.
The numbers cos «, cos B, and cos v are called the direction
cosines of the ray OP, and we have seen that they satisfy formula
(11) and are the coordinates of the unique unit vector on this ray.

If Q= (x1,91,21) is on the ray OP, then z; = |0Q| cos «,
y1 = |0Q] cos B, z1 = |0Q| cos y. By formula (9) we have

_ 104l
0P|

If Q is on the line OP but not on the ray OP, then —@ is on the
ray OP and —Q = tP. We have proved the following geometric
interpretation of our algebraically defined operation of scalar
product:

Theorem 3. A point Q is on a linc through the origin and
another point P = (x,y, z) if and only if Q s a scalar multiple
t(x, v, z) of P. Then [t| = [0Q|-[OP|~'and t = 0 ort < 0 accord-
ing as Q is or is not on the ray from O through P.

(12) Q=tP, i

EXERCISES

1. Find the direction cosines of the ray OP for each of the following
vectors P:

(a) (—1’ _1’ 1) (d) (170’ —l)

(b) (1121 2) (6) (_1) 1)2)
(0 (=2,1,1) ) 2, -1,3)



12 SOLID ANALYTIC GEOMETRY [Chap. 1

2. What previous exercise is identical with Exercise 1 except for the
actual numbers involved?
3. What are the direction cosines of the coordinate axes?

10. The angle between two vectors in space. Let P and Q be
any two points distinct from the origin and 6 be the angle between
the ray OP and the ray OQ. Let U = (X, u, ») be the unit vector

/ /P
//
/
/
// U
/s 71 v
///’/
/7
24
0 & A y
A
C B
2
Fic. 6.

on the ray OP and V = (Ao, po, o) be the unit vector on the ray

0Q. Project O_’U orthogonally on the line OQ directed from O
toward Q. The projectionis |OU| cos § = cos 6. But this is the

same as the projection on OQ of the broken line OABU of Fig. 6.

The projection of AB is the same as the projection of OC and,
since the cosine of the angle between the ray OC and the ray 0Q

is \o, this projection is A\o. Similarly, the projection of 0—;1 on
0Q is puo and that of B—f] on 0Q is vvo. Then

(13) cos 60 = N\o + uuo + vvo.

If P = (z,y,2) and Q = (o, Yo, 20), then formula (13) becomes
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xxo + YYo + 220 .
Va2 4y + 22 Vae! + yo? + 2?

For |OP| = /22 4+ y* + 2%, |0Q| = Vzo® + yo® + 2%, and =
= |OP[\, y = |OP|u, z = |OP|y, 20 = |0Q[\o, yo = |0Q|uo, 2z,
= |0Q|v,. We also see that a line through O and P = (a, y, 2)
and a line through 0 and @ = (xo, yo, 20) are perpendlculal if and
only if zx¢ + yzo + 220 =
The exercises of Sec. 4 arc exercises on the material of this
section.

(14) cos 0 =

ORAL EXERCISE

Show that the triangles whose vertices are P, , and the origin are
right triangles in the following cases:

(@ P=(2 —1,4),Q = (3,2 —-1)
b r=(, 10)Q (1,1, 6)
() P = (2,1, -2),0Q = (3,4,5)
(@ P=(,1,-2,Q=(,11)

I

11. Translation of axes. The correspondence between points
P and vectors x, y, z depends on the use of a fixed coordinate sys-
tem. If the coordinate system is altered, so is the correspondence.

It is desirable to investigate the effect of a translation of axes
on this correspondence. Such a change is the result of setting
up an 2,3/, 2’ coordinate system in which the (new) 2’ axis is
parallel to the x axis, the 3’ axis is parallel to the y axis, and the
2’ axis is parallel to the z axis. Thus the 2/, %/, 2’ coordinate
system may be conceived of as having been obtained by a motion
called a translation in which axes are moved parallel to themselves
and the main effect is a change in origin.

Every point P in space will now have two sets of coordinates.
We will call the first set the z, y, 2z coordinates and the second set
the 2/, 3/, 2’ coordinates. The origin O’ of the second coordinate
system has a set of 2, y, 2 coordinates that we shall designate by
Zo, Yo, 20, as in Fig. 7.

Suppose now that P has coordinates , ¥, 2. This means that
P is z units above the z, y plane. Note that z units above means
—z units below if z is negative. The 2/, " plane is 2, units above
the z, y plane and it should be clear then that P is only z — 2
units above the z’, ¥’ plane, that is, 2/ = z — z,. By similar
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considerations we obtain the relations
(15) ¥ =x — 2, =y = Z=z-2
between the two sets of coordinates of P.
Conversely, if 2/, y’, 2 and xq, yo, 20 are given, we can use the
relations
(16) x =a 4+ xo vy =19y + yo, z =2 + 2,
between the two sets of coordinates.

zl
z
yl
P
z!
/
A11A
J/ // :
/—_____._ | )
' o Y
E AT
P b
| x! : |
| |
:.’to 0 Yy } // y
] _{//
X
Fic. 7.

Formula (16) is sometimes used in making a translation of
axes, which simplifies what we shall later call an equation of a

surface.
EXERCISES

1. What translation of axes will simplify the following equations of
surfaces?

-0 @+2° (-3°"_
®) 2 +2— -3+ @E+1)r=5
() 2 — 22 4+ 3y? — 6y + 422 — 122 = 0
(d) 222 +3y? — 224+ 6x — 12y +2 =9
(e) 322 — 3y? + 622 = 6 — 9y + 242
(f) 3z — 2y + 22 =6
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2. Find the 2’, ¥, 2’ coordinates of each of the following points P if
there is a translation of axes with origin at 0.

(a) P = (1; -1, l)r 0 = (27 2: '—1)

(% P =1(,00),0 = (1, -1,1)

() P=(-1,-1,1),0" = (-1, —1,2)

(d) P = (3y 1, 1)7 0" = (—27 2, 1)

(e) P = (1,2, =3), 0 = (1,0, —1)

(f) P=(2,4,0),0 = (0, —1,0)

3. Let the vectors P in Ixercise 2 be the 27, y’, 2’ coordinates of cor-
responding points. Give their x, y, 2 coordinates.

4. Find the 2’, y’, 2’ equation of the surfaces given by the equa-
tions of lxercise 1 after a translation of axes moving the origin to
0 =(1,-1,2).

12, Geometric addition of vectors. Let P, = (x1, y1, 21) and
Py = (x3, y2, 22) be two vectors. Then P,0OP; determines a plane

2!
z

4 y'

Fia. 8.

and, as in Fig. 8, we can determine a point P; in this plane such
that OP; is parallel to PiP2 and in a corresponding direction,
|OP3| = |P\Ps|. The coordinates of P,, relative to an 2/, y', 2’
coordinate system with origin at Py, will be (x2 — 21, y2 — ¥y,
2 — z1). But P; is located with respect to the x,y,z axes
exactly where P, is located with respect to the 2/, 3/, 2’ axes. It
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follows that
(17) P3=P2—P1=(172"‘5171,1/2_2/1,22—21).

This shows that to construct the vector difference P; = P, — P,
we construct OPj; parallel to PP, and having the same length.

Since P3; = P, — P, we have P, = P3; + P,. This shows that
if Py and Pj; are given, their sum, P, 4+ Pj, is the end point of the
diagonal of the plane parallelogram determined by the directed
line segments OP; and OP;.

13. The length of a line segment. If P, = (xi, ¥, 21) and
Py = (x2, Y2, 22) are points in space, the line segment PP, has the
same length |P,P.| as OP; where P; = P, — P, (or Py = P,
— P,). It follows that

(18)  |PiPy = V(x1 — 22)* + (h — y2)? + (21 — 29)2.
EXERCISES

1. Compute the lengths of the line segments joining the following
pairs of points:

((l) (0) 01 0)) (2) —'27 1) ((’) (17 2; 3), (_]y _ly l)
(b) (1y —ly 1)7 (37 _3; 2) (f) (—_1) ly l)y (0) 1: 2)

(C) (—17 —3) 4), ('—2) 17 —4) (g) (1’ 2) ])1 (—1) 0) ——2)
(@ (1, —1,1), (0, =1, 1) () (1,2, =3), 3, —=2,1)

2. Prove that the triangles formed by line segments joining the follow-
ing triples of points are isosceles:

(a) (_17 _3;4)7 (_2’ ]7 —4)7 (3) _11; 5)

(b) (27 _17 2)7 (17 27 O)y (4) 07 —1)

(C) (0, 07 O)y (1) —1’ 2)) (—1’ —2’ 1)

3. Show that P, @, R are collinear by using the distance formula in
the following cases:

("’) P = (1r _1) 2)7 Q = (03 1) 1)’ R = (21 —3y 3)

(b) P = (_1)3) 0)) Q= (31 -5, 4)’ R = (—2: 5, -1

() P=(1,1,-2),Q=(-10,—-4),R=(532)

14. Direction numbers. If L is any line in space, we may
construct a line L’ through O parallel to L. The direction in
space of L’ is determined by that of L, and conversely. But the
direction in space of L’ is determined by any nonzero vector
a,b,c on L’. We shall therefore call any such vector a set of
direction numbers of L.

If Py = (1, y1, 21) and Py = (xq, Y2, 22) are on L, then P, — P,
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= (1 — T, Y1 — Y2, 21 — 22) is on L’ and thus the vector
P, — P, is a set of direction numbers of L. Conversely, if
P, = (x1, ¥1, 21) ison L and q, b, ¢ is a set of direction numbers of
L, then we may take (a, b, ¢) = P, — P,, where P; = (21 + a,
Y1+ b, 21 + ¢) is a point on L.

Every line L in space may now be prescribed by a point P; on
L and either a second point P2 or a set of direction numbers
a,b,c. We form

a b

Ve tbte “ V@ F b+ et
C
T NVaF e

and A, u, v are the direction cosines of a ray from O parallel to L.
We shall call A\, u, v a set of direction cosines of L. Then —),
—u, —v are also a set of direction cosines of L.

Let L, and Ls be any two lines. Then the corresponding lines
L, and L.’ through O interscct at O and define a single acute
angle 6, which we shall define to be the angle between L, and L.
Let ai, by, ¢1 be a set of direction numbers of L, and as, bs, c2
direction numbers of L,. Then we may surely use the formula of
Sec. 10 and see that

Mt bbbt e
Va4 b+ e Va4 b ¢

cos 0 =

Moreover, two lines are perpendicular if and only if aias + bibs
*f- Ci1C2 = 0.
EXERCISES

1. Find a set of direction numbers for each of the lines defined by the
pairs of points of Iixercise 1 of Sec. 13, and give a set of direction cosines
in each case.

2. In each of the following cases the first vector is a point P; on a line
and the second vector is a set of direction numbers of the line. Give a
corresponding point P, on the line.

(a) (17 _17 2): (3y 27 _1) (C) (21 4) _1)) (—4’ '_27 1)
(b) (17 1) 2)a (—l, _17 3) (d) (1) —2; —])r (3) _"1: 2)

3. Show whether or not the line P,P, is perpendicular to the line P3P
in each of the following cases:
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(@ Pi=(1,—-1,2),P.= (3, -2,1),Ps = (2, —1,3),Ps = (1, 1,33)
(b) P, = (3)2: —1)vP2 = (172) _l)yP3 = (3;2: —1)7P4 = (11310)
(C) P, = (2147 "1)7P2= (2,3,1),P3= (4‘) —1,2),P4= (6;3)3)

(d Pi=(1,1,2),P,= (-1, -11),Ps= (1,1, -1),
P,=(2, —1,1)

() Pr=(3, -1, 1),P.= (1,1, =2), Py = (1,2, —3),
Py = (5,3, —1)

(f) P, = (2y —170), P, = (1; 1, 1), P = (110) 1)1 Py = (—]7 1, 1)

(@ Pv=(1,2,-1),P,=(-1,2,1), Ps = (0, -1, —2),
Py=(2 —1, -1)

4. Compute the cosine of the angle between PP, and P3P, in each of
the cases of Exercise 3 where P P, is not perpendicular to P;P4.

6. Show that the triangles whose vertices are P, @, I are right tri-
angles in the following cases, and compute the cosines of the acute angles.

(@ P=(1,-23),Q=@6,-3,7,R=(40,2)

(4 P=(1,-1,0),0Q=(435),E=(0,-2)

(C) P = (07 27 1): Q= (0) 0, 1)) R = (—1) 1 1)

(d) P = (1701 —'1)1 Q= (27 170)1 R = (37 -1, —2)

6. Show that the points P, Q, R, S are the vertices of parallelograms,
and determine which lines are the pairs of parallel sides.

(@) P=1(2,6,3),Q=(@,22),R=(,54),S=(»1,13)

(b) P = (2’ —2; 4); Q= (110; 2)7 R = (27 -1, 3)) S = (1) 1 1)

7. Compute the lengths of the sides of the parallelograms in Exercise 5.

8. Show that the points of Iixercise 3 of Sec. 13 are collinear by using
direction rather than distance.

16. Equations of a line. If two distinct points Py = (z1, y1, 21)
and P, = (x2, ¥s, 22) are given, we may translate our coordinate
axes to P;, and the 2/, 3/, 2’ coordinates of P, will be (z; — 1,
Y2 — Y1, 22 — 21). The 2/, y/, 2’ coordinates of P = (z, y, 2) arc
x — 21, Y — Y1, 2 — 21, and Theorem 3 implies that P is on PP,
if and only if

19) z — 1 = t(x2 — 1), Yy — 1= t(y: — yu),
z— 2z, = t(z0 — 21),

where if we direct the line PP, from P, toward P, then

|

(20) 1= Db
PP,

The three equations of formula (19) are called a set of parametric

equations of the line through P, and P,. They have the property

that if we prescribe the parameter { we obtain the coordinates
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z, Y, z of a point P on the line which actually has the property
(20). Conversely, if P is a point on the line, its coordinates will
satisfy these equations when ¢ is defined by formula (20).

Equations (19) also permit us to find the coordinates of points
on P,P, such that P divides the line segment P,P; in a prescribed
ratto. For the midpoint of PP, we have ¢ = 4 and thus z«
=1, + $(@2 — 71) = §(x2 + 21). Indeed the midpoint is given
by the formulas

_ it 2 _ Nty _atz

(21) T = ———2—-— ) Yy = 5 ’ 2 = —T

ILLUSTRATIVE EXAMPLES

I. Find the midpoint P of the line segment P,P, if P, = (6, 3, —4),
D — (—92 —
P, = (-2, —1,2).

Solution
The coordinates of I’ are

_6—-2 3—1 —44+2

T =" 2, y="5-=1 z=—g— =-L

11. Let the line PP, of Iixample I be directed from P, toward P., and
define t by formula (20). Tind the points P(t) corresponding to t = 3,
—1, —3%, and 2, and give a rough sketch showing the relative positions of
Py, Py, P(3), P(—1), P(—3), and P(2).

Solution
We use the formula P(t) = Py + t(P. — P;) = tP, + (1 — )P, and
$0 obtain
P(x) =3(-2 -1,2) + 36,3 —4) = (%, §,2),
P("l) = ”('—2y _1;2) + 2(Gy 3) —4) = (141 77 —10)9
])(——f‘?) = —%(—"2) —172) + %(Gs 3’ —4) = (10: 5: '—7)>
P2) =2(-2, —1,2) — (6,3, —4) = (—10, =5, 8).

The following is a sketch showing the relative positions of the six points.

P-1) Pch B PG B P@
Fia. 9.
EXERCISES
1. Give the midpoints of each of the following line segments P,P.:
(a) (1) —1) 1)’ (3’ —31 2) (6) (17 27 _3)7 (_3; _2; ])
(b) (1) —17 1)) (0’ 11 —1) (f) (47 ly 6); (21 —ly 4)
(C) (—27 1) 1)7 (31 —2) 2) (g) (1y 0, 2)7 (2; _17 1)

(d) (3y _ly 2)’ (11 —1) —2) (h) (1) 1; 1)) (2y 2) 5)
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2. Give a set of parametric equations of P1P; in each of the cases of
Exercise 1.

3. Work out the problem of Illustrative Example II in each of the
cases of Exercise 1 for the values

(@ t=2%3 -2 -2 ®t=-3%-2,%%

4. The origin and the points P,, P, of lixercise | form a triangle in
each case. Find the remaining midpoints of sides, and give sets of
equations in parametric form of the medians.

16. Equations in symmetric form. If q, b, ¢ is any set of direc-
tion numbers of a line through a point P, = (x4, y1, 21), then
Py = (x1+ a,y1 + b,2:+ ¢) is on the line and formula (19)
becomes

(22) xr — r = la, ¥y — y1 = tb, z — 2z = {c
When abe 5 0, we may write these equations as

T—x _ Y —Y1_2— 2
23) el Sl
the common value of the three ratios being ¢.  These new equa-
tions are called a set of equations of the given line in symmetric
form. A special case of this symmetric form is that of
51) Ton_y-n_zoa

A I v
where A\, u, » are a set of direction cosines of the given line. If
P, is given, the form given by (24) is unique apart from the
replacement when desired of A\, u, v by —\, —pu, —v.

Two lines are parallel if and only tf they have the same sets of
direction numbers. It is then a simple matter to use formula (23)
to find a set of equations of a line through a given point and
parallel to a glven line.

If one of a, b, ¢ is zero in formula (22), we can still use formula
(23), provided that we agree that whenever a denominator in
formula (23) is zero we shall delete the formal ratio and set the
numerator equal to zero; for example, the equations

T—T _Yy— Y% _2z2— 2

(25) e = ==
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for bc # 0 shall mean

. - Y=Y _z— 2
(2()) T Xy, b c ’

and the equations

T—Ti _Y—Yh _2— 2
(27) 0 0 p
shall mean
(28) =1z, Y=y

These results are derived from our original equations of formula
(22). We may then treat all problems by the use of formula (23)
and shall convert formula (25) into formula (26) and formula (27)
into formula (28) when the sets of equations assume these irregu-
lar forms.

ILLUSTRATIVE EXAMPLES
1. Give a set of equations of the line joining (3, —1, 2) to (4, 1, —1).

Solution
z—-3 y+1 2-—-2
-1 - -2 3

II. Give a set of equations of the line through (3, —1, 2) parallel to
the line joining (1, 2, —4) to (4, —1, —2).

Solution
-3 _yt+tl_2-2
3 =3 2

I11. Give a set of equations of the line joining (1, 2, 4) to (—1, 3, 4).

Solution

The formal set of equations is

z—1 y—2 z2-4
2 -1 0

and these equations must be replaced by

G

IV. Show that the four points P, = (1, —1,2), Py = (2,1, 3),
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Py = (4, —1, —=2), and P’y = (5,1, —1) are the vertices of a parallelo-
gram, and indicate which lines are the parallel sides.

REMARK: A translation of axes to I’ replaces our vectors by P, — P,
Pg—Pl, P;-Pl, P4 —Pl. Then Pz—Pl, P3—P1, P4"‘P1 must
be nonzero vectors, one of these vectors must be the sum of the remain-
ing two and these latter two vectors must not have proportional coordi-
nates. We have evidently used the parallelogram law for addition of
vectors.

Solution

Compute P, — P, =(1,2,1), P; — P, = (3,0, —4), and P; — P,
= (4,2, —=3) = (P — Py) + (s — P1). This shows that Py, Py, Ps,
P, are the vertices of a parallelogram in which PP, is parallel to P3P,
and Plp:; to P:r,P4.

EXERCISES

1. Write a set of equations in parametric form for each of the lines
joining the following pairs of points, using formula (23) with the first
point given as ;.

(a) (2, _1; 3): (37 1’ —2) (f) (l) —1’ _2); (2; _2) '—3)
(b) (2) 11 2): (27 '—17 _2) (g) (2) 1, 3)’ (2’ —bly 2)

(C) (31 —11 2)» ('-1? 19 1) (h) (4y 1y 0): ('—1) L, 2)

(d) (0, 1) —1)’ (17 17 —1) (1‘) (17 27 _3)) (2y 2: ——4)

(6) (1)2; 3)) (3: 2’ 1) (-7) (1r4: —2)) (—173: —1)

2. Write a set of equations of a line through the origin parallel to the
line PP, for each case of Iixercise 1.

3. Write a set of equations of a line through I, parallel to the line
joining the origin to P, for each casc of Iixercise 1.

4. Write a set of equations of a line through (—1, 1, 2) parallel to the
line PP, for each case of Exercise 1.

6. Show that the following sets of four points are sets of vertices of
parallelograms:

(a) (2’ _1, 3)1 (31 —21 5)) (4; 0; 2)1 (3) ]’ 0)

(b) 1, -1,2), (2,3, —4), (2, L -1, 4,1, -1)

(C) (1) 2) —'3)y (172: —1)1 (2; -1, 3)a (2; —lv 5)

@ 0,1, -2), (1,3, =3), 3,6,1), (2,4, 2)

(e) 3,2, _2), (4, 0, 9), (5,1,2),(21,5)

6. Write a sct of equations for each of the sides of the parallelograms
of Exercise 5.

7. Write a set of equations for each of the diagonals.

8. Write a set of equations for each of the lines parallel to a pair of
sides and bisecting the other pair of sides.
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9. Compute the lengths of the sides and diagonals of the parallelo-
grams of Exercise 5.

17. Distance between a line and a point. We require a pro-
cedure for computing the unsigned distance between a line and a
point not on the line. Let the line L be given by a set of equations

T—T1 _Y—Y1_2—21
b - )
A n v

and the point be Py = (x3, ¥2, 22). Then we require |PP,| where
P is the foot of the perpendicular from P, to L. If 6 is the angle
between P,P; and L, then |PP.| = |P:Py| - |sin 8] and thus

[PPy|? = |PyP1[*(sin? 6) = [(z1 — 22)* + (y1 — y2)® + (21 — 25)7]
(1 — cos? 9).
But

cos 0 = 1 (2 — 1) + p(y2 — y1) + v(z2 — 21)].

IP
It follows that |PP,| may be computed by the use of
(29) [PPo* = (21 — @2)* + (1 — y2)* + (21 — 22)°
— A1 = 22) + w(yr — y2) + v(z1 — 22)]%

If direction numbers are given rather than direction cosines, it is
necessary to compute direction cosines before formula. (29) can
be applied.

EXERCISES

Compute the distances between points and lines in the following cases:

-1 ' 2
(@ P2 = (0,0,0; 5~ = 2 =2

) Pr=(1,0,0;" ;=" " =

© Po= (1, 1,05 00 =15 =

(@) Py=(0,1,2); 3¢ = 2y = 62 + 12
(e) Py = (1,1, 1)2x~y—1—2z-—4
1 y+1 z—2

@In-m72xx+2—y"=z+2




CHAPTER 2
PLANES

1. The normal form. If we draw a ray from the origin O per-
pendicular to a given plane, the ray is called the ray normal to
the plane and the line of which it is a part the normal line. The
ray will have direction cosines A, p, », which are uniquely deter-
mined unless the plane passes through the origin. But in this
case the selection of A\, u, », rather than —X\, —u, —», will not
affect our results.

Let p be the distance from O to the given plane so that p = 0.
Then the normal will intersect the plane in the point P, =
(p\, pu, pv). A translation of axes, which moves the origin to
P,, replaces the coordinates z, ¥, z of the arbitrary point P by its
z’, y’, 2’ coordinates

(@—=p\,  y—ps z— py).

The ray through P, and the vector whose transformed coordinates
are (\, #, v) is normal to the given plane. Then P is on the plane
if and only if the vector just defined is orthogonal to PP, that is,
if and only if (\, i, ») - (x — P\, ¥y — pu, 2 — pv) = 0. We com-
pute this inner product and see that P is on the given plane if and
only if Az + py + vz — p(ZN2 4+ w2+ »?) = 0. Since A2+ u?
+ v? = 1, we have proved that P = (z, y, 2) is on the given plane
if and only if

(1) A + py + vz = p.

We shall call formula (1) the equation of a plane in normal form.
It is completely unique when p > 0. When p = 0, the equation
—\r — uy — vz = 01is equally valid and the selection of one set
of direction cosines rather than their negatives may be regarded
as implying that a positive direction on the line normal to the
plane has been selected. This is of little importance.

EXERCISE

Give the equation in normal form of the two planes p units from the
origin and normal to the line joining P, to P. in the following cases:
24
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(a)P=5:P1=( 1;273)1)2—(12 )
(b)p=2,P1=(—2,1,—-1)P2=(13 )
(0 p=1P =(0,0,0),P, = (2,21)
@ p=13P=(214),P,=(0,-1,2)
(e)p=731)1=(4) —1 6) I)2=(6) —3y8)

2. The general equation. Ivery linear equation
(2) ar + by +cz+d =0,

in which a, b, ¢, d are real numbers and a, b, ¢ are not all zero, is
an equation of a plane; for we can write this equation in an
equivalent form

3) eax + eby + ecz = |d|,

wheree = 1ifd £0ande = —1if d > 0. The number
(4) t=Va>+ 0"+ 2> 0,

and we may divide formula (3) by ¢ to obtain

(5) r + f’f ) + %CZ - I,'Z]_l

A point P = (z, y, 2) satisfies the equation of formula (2) if and
only if it satisfies the equation of formula (5). But then formula
(2) is an equation of the plane for which
(6) p=l—d—|; )\=—62) ;l.zéa V=e—cy
t ¢

i.e., the plane p units from the origin and having a normal ray
whose direction cosines are the numbers A, 4, » of formula (6).
It is important to observe that the original coeflicients a, b, ¢
are a set of direction numbers of the normal line.

If abed # 0, the general equation may be written in the form

x , Yy, 2
7 -+ Z+-=1
(M) e Tr Ty
This equation is called the equation of a plane in intercept form
and the numbers

—d ~d —d
(®) e=—" [=7 g=—=

a c

are called the inlercepts of the given plane. They are indeed the
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nonzero coordinates of the three intercept points

(0,0, (0,£,0), (0,0,9)

where the given plane cuts the coordinates axes.
If a plane defined by formula (2) passes through a point
P, = (x4, Y1, 21), then ax, + by, + cz;1 + d = 0 and

9 alx —x1) + by — y1) + c(z — 2z1) = 0.

This equation involves the coordinates of P; and a set of direction
numbers of the normal line. We shall call it the point, direction
number form of an equation of a plane.

EXERCISES

1. Use formula (9) to write an equation of a plane through P, per-
pendicular to the line joining P, to P; in each of the following cases:

(a) Pl:(_11213)’P2=(_3)1,2)11)3:(—5;476)

Ans. 2x — 3y — 4z + 20 = 0.

(b) P, = (1) '—2y —1)1P2 = (4, —1) 2);P3 = (—174; —1)

(C) P, = (2 1; 4)v P, = (_37 1) _2)) P; = (1) 2: '—4)

(d) Py =(-1,2,-3),P,=(—-1,4,3), Ps = (0, =3, —4)

(6) Pl (—2 17 3)1 P, = (47 _6) 7)7 P; = (3; —4r 5)

(f) P, = (1 4, —‘1)» P, = (Gy 7’ 8)) Py = (9: 10) 12)

(g) P, = (3 2 —2)71)2 = (—91 _87 0)) Py = (6’ -8, 7)

2. Find p, \, , v for each of the following planes:

(@) 2 — 2y +2=6 (e) 6y + 2x — 3z = 28
®) 3z — 6y + 72 = —1 (f) 12z + 4y + 62 = —49
() z+ 2y + 2= —6 @ z+y—22=6

(d) —3x 4+ 6y + 22 = 14 ) —z+y+22= -3

3. Find the intercepts of each of the planes in Exercise 2.
4. Find a set of values of \, p, v for each of the following planes
through the origin:

(@) 2+y=0 d) 2z +y =22
(b) 3z +4y =0 () —z+y+2=0
(c) 3z — 4y = 5z (f) 3z + 6y +22=0

B. Write an equation of each of two planes parallel to a corresponding
plane of Exercise 4 and one unit from the origin.

6. Write a set of equations in symmetric form of a line perpendicular
to the given plane and through the point (—1, 2, 3) in each of the cases
of Exercise 2.
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3. Planes through three points. Let P; = (1, y1, 21), P:
= (&g, Y2, 22), and P3 = (x3, y3, 25) be three distinct points. By
Sec. 9 of Chap. 1 the three points are collinear if and only if
(x3s — 21, Ys — Y1, 23 — 21) is a scalar multiple of (z; — z,
Y2 — Y1, 22 — 21).

If a plane passes through P, its equation is a(x — z,) +
bly — y1) + c(z — z1) = 0. If it also passes through P, and
P, we have the relations

a(xy — z1) + b(ys — y1) + ¢c(z2 — 21) =0,
a(xs — x1) + b(ys — y1) + c(zs — z1) = 0.

These two equations in a, b, ¢ do not have proportional coeffi-
cients when P;, Py, P; are not collinear, and they can be solved
to yield a set of direction numbers (a, b, ¢) = (0,0, 0) of the
normal to the given plane. Then formula (9) is an equation of
the required plane.

(10)

ILLUSTRATIVE EXAMPLE

Find an equation of the plane through (—1,2,3), (-3,1,2),
(—5,4,6).

Solution
Fquations (10) become
—2a—b—-—¢=0
4a — 20 — 3¢ =0
Then —4b = 5¢, 8a = ¢, so that —4b = 40a, b = —10a. Then

a(@+ 1) + by — 2) + c(z — 3)
=a(x+1) — 10a(y — 2) + 8a(z — 3) =0

and z—10y+8 +1+4+20—-24=2—10y+8 —3 =0 is an

equation of the plane. Ans. z — 10y + 82 = 3.

EXCRCISE

Find an equation of the plane through Py, P,, P; for each set of points
listed in Ixercise 1 of Sec. 2.

4, Parallel planes. Parallel planes have the same normal line.
Then every plane parallel to az 4+ by + cz + d = 0 is obtained
if we leave a, b, ¢ fixed and vary d.

If we put an equation of a plane in normal form Az + uy
+ vz = p, we obtain all planes parallel to the given plane and
on the same side of the origin by varying p = 0. The distance
between the given plane and a second plane Az + py + w2 = p:
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is then clearly |p — pi|. If, however, we consider all planes
parallel to the given plane and on the other side of the origin, we
see that their equations are —(A\z + uy + »2) = p1. Then the
distance between Ax + uy + vz = pand —(\z + py + ») = p
is p + pi.

ILLUSTRATIVE EXAMPLES

" L. Find an equation of a plane which is parallel to the plane 3z — 2y
+ 4z = 7 and which contains the point P = (-2, 3, 3).

Solutton

The equation may be taken to have the form 3z — 2y + 4z = &,
where k is to be determined so that P is on the plane. Then —6 — 6
+ 12 = 0 = k and the required equation is 3z — 2y + 4z = 0.

II. Find the distance between the plane 3z — 2y + 42z = 7 and the
plane 3r — 2y + 4z = 12.

Solution

The normal forms of these two planes are obtained by multiplying
the equations by (9 + 4 + 16)™% = (29)"}. The distance is then
(29)"112 — (29)7¥7 = 5(29)71.

III. Find the distance between the plane 3z — 2y + 4z = 7 and
the plane 6z — 4y 4+ 82 = —15.

Solution

The distance is 7(29-1) + 43(29)~} = 22(29)~} = } 1/29.
1V. Find the equations in normal form of the two planes that are
five units from the plane —z + 2y + 22 + 3 = 0 and parallel to it.

Solution
The normal form of an equation of the given plane is obtained by
multiplying the given equation by —(1 4 4 + 4)™* = —3% and thus is
r—2y —2 1
3 - .

The two planes are then 6 units and —4 units from the origin where we
interpret a negative distance as equivalent to the replacement of A\, u, »
by —\, —u, —v. The answers are then z — 2y — 22 = 18 for the
value 6 and z — 2y — 2z = —12 for the value —4.

EXERCISES

1. Find an equation f a plane parallel to the given plane and through
the given point in the following cases:
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(@) 3z —2y+2=1,(-1,-2,1)

®) 2t +2y —2=0,(—-1,11)

()z+y+3=4(-211)

d2c—-y—2:=17,3, —1,3)

(e) 3z + 4y — 62 = 183, (4, 5, 2)

(f) 18z — 14y + 172z = 987, (1, 1, 0)

(9) 10z — Ty + 6z = 111,968, (2, 3, 1)

2. Find an equation of a plane parallel to the given plane and having
z-intercept 3 in each of the cases of Exercise 1.

3. Find an equation of a plane parallel to the given plane and two
units further from the origin in each case of Iixercise 1 except (e), (f),
and (g).

4. Find the distances between the following pairs of planes:

(@) 2 +2y —2=3,2x+2y — 2z =18

) 2c—y—2:=6, 2z+y+ 2 =12

(¢) 3z + 2y + 62 = 14, 3z + 2y + 62 = 21

(d) 6x — 2y + 3z = 28, 12z — 4y + 6z = 35

(e) 18z — 6y — 9z = 35, —6z + 2y 4 32z = 21

6. Find equations of pairs of planes four units from the first of the
planes in Exercise 4.

([

b. Distance from a plane to a point. If an equation az + by
4+ ¢z + d = 0 of a plane is given and a point P = (x4, y1, 21) is
given, we require a formula for the distance é from the plane to P.
We first observe that we may divide the equation of the plane by
+ 4/a? + b% + ¢? to convert it to the normal form

Ax + py 4+ vz = p.

Then the equation of the plane parallel to tue given plane and 8
units further from the origin is Az + py + vz = p + 6. Since
P is on this plane, we have

(11) 6 = Ay + pyr + vz — p.

If 6 > 0, the point P and the origin O are on opposite sides of the
plane, and if 8§ < 0, the point P and the origin are on the same
side of the plane.

If the given plane passes through the origin, the meaning of the
sign of & is not clear, and we shall simply use the formula

6= l)\xl + py: + V21l-

ILLUSTRATIVE EXAMPLES

I. Find the distance from the plane 2z + 2y — z = 3 to the point
(2, -1, 5).
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Solutron

The distance is §[2(2) + 2(—=1) — (5) — 3] = —2.
II. Find the distance from 2z 4 2y — 2z = 0 to (2, —1, 5).

Solution
The distance is |5(4 — 2 — 5)| = 1.

EXERCISES

1. Find the distances from the following planes to the corresponding
points:

(a) 22 + 2y — 2 =3, (5,3, —2)

O —2z+y+2= -2 (21, -2

(c) 3z + 2y + 6z = 14, (1, —2, 1)

(d) 122 — 4y + 62z = 35, (—1, —1,1)

() 18z — 9y — 92 = 14, (1, 1, 3)

(f) —6x+2y+32=0,(-1,2, -3)

2. Find the 2z coordinate of a point P = (—3, 2, 2) if the distance from
the plane 3z + 2y + 6z = 7 to the point P is 2.

3. Solve Exercise 2 if the distance is —4.

I

6. Angle between two planes. The angle 6 between two planes
is defined to be the angle between the rays from O normal to the
two planes. It is not uniquely defined if either plane passes
through the origin. If the equations are Ax + upy + vz = p and
MZ + my + viz = py, thencos 6 = A\ + pur + vvi. When the
equations are given in general form, they must first be converted
into normal form.

EXERCISES

1. Compute the cosine of the angle between the following pairs of
planes:

(a) 22 +2y — 2= 3,3z — 2y + 62z = 14

BWet+y+z=14L2r—y—22=6

z—y+e=22c+y=4

dz+y=38,3x+4y =2

2. Show that the following pairs of planes are perpendicular.

(@) 22 +2y —2=3,z —2y —22=1

Oz+y+z=1z—-—2=6

(€) 3z —2y+4=12z4+y—2=1

7. The line of intersection of two planes. Two nonparallel
planes interseéct in a line. If the planes have as equations
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(12) ax + by + ¢z + dy =
a2z + bay + coz + d2 = 0,

then their line of intersection is orthogonal to both of their
normals and the direction cosines of the line satisfy the equations

a1)\+ b1ﬂ+ C1v = 0
(13) as\ + bau + cov = 0.

However, the simplest method of determining the line is to find
two points on it. The procedure is illustrated below.
ILLUSTRATIVE EXAMPLE

Give a set of equations in symmetric form of the line L of intersection
of the planes

22 +y—22=1, S5z + 4y — 6z = —2
and determine direction cosines of L.

Solutron

We solve for z and y by writing 8¢ + 4y — 8 = 4; therefore 3z — 22
= 6 and
22+ 6 2z — 9
=g y=2z2—-2z+1= 3
Put z = 0, and obtain P, = (2, —3,0) on L.
Put z = 3, and obtain P> = (4, —1, 3) on L. Then L has as its equation

t—2_y+3_z
2 - 2 3

and the corresponding direction cosines are
2 2 3
— ) 4
V1T V1T /1T
EXERCISE

Give a set of equations in symmetric form of the line intersection of
the following two planes, and determine its direction cosines.

(@) 3z —2yt+z=58z+y+z=1

b)) z—2y+2=6z—2z=2

(e)3x+4y+22=1,2—y+2=256

d) 6 +2y —32= -5,z —y+2=26

) de —y+2=22c+y—32=4

NHe—y—3=2,2r4+2y —2z2=—3

9 42+3y—22=1,2+2y —32=4
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8. Angle between a line and a plane. Let the plane ax + by
+ ¢z + d = 0 and the line

T—T_Y—Y1_z2—2n

(14) a b1_ Ci

be given. We require the angle ¢ between the line and the
plane. This angle is defined to be the complement of the angle
6 between the directed normal to the plane and the line and is not
unique unless the line is also directed. When both are directed,
we will have

=21 _ Y —Y1_ 22— 2

1
(15) A T 11

’ AN+ py 4+ vz = p,

where we have now made A\, 4, » and A\, g1, »1 unique. Then
cos 8 = sin ¢ and

(16) sin 4) = }\>\1 + J 1375} + V.
EXERCISE

Find the sine of the angle between the following lines and planes:
(@) 3x — 2y +42=1,3xz4+4=2y — 1 =62+47

o T _Y_7?
(b) x+2y—2z—2,2-—3——6

-1
(c) 3x+2y—6z=4,x2 =g=z—3

9. Pencils of planes. Let the equations f(z,y, R = ax
+ by + ciz+ di =0andg(x, y,2) = axx + boy + cz2 + ds =0
define two distinct planes. Then the equation
(17) sf(x, y,2) + tg(x,y,2) =0
is called the equation of the pencil of planes determined by the
two given planes. Indeed, formula (17) is an equation of a
plane for all real numbers s and ¢ which are such that the vector
s(ay, by, ¢1) + t(as, b, c2) 0. When the two given planes are
not parallel, they intersect in a line L; formula (17) represents a
plane Q(s, ) for all real numbers s and ¢ not both zero, and every
such plane Q(s, f) contains the line L. For a point P, = (xo,
Yo, 20) is on L if and only if both fo = f(z, %o, 20) = 0 and g, =
g(zo, Yo, 20) = 0; whence sfo + tgo = 0 and P, is on Q(s, ¢).

When the two given planes are parallel, there exists a nonzero
real number k such that (as, bs, c2) = k(as, by, ¢1) but da 5 kd,,
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since the planes defined by f(z, v, 2) = 0 and g(z, y, z2) = 0 have
been assumed to be distinct. In this case formula (17) becomes

(18) (8 + kt)(axx + bly + 612) + 8d1 + tdg = O,

and this equation represents a plane for all real numbers s and ¢
such that s % —k¢.  All such planes are evidently parallel to
the two given planes, and we call the pencil defined by the two
given planes a parallel pencil.

Conversely, let @ be any plane through the line of intersection
L in case the given planes intersect and parallel to f(z, y,2z) = 0
in the case of a parallel pencil. Then @ is uniquely determined
by the property just described and the assumption that @ con-
tains a point Py = (%o, ¥o, 20) not on both of the given planes.
The corresponding values fo = f(xo, Yo, 20) and go = ¢(x0, Yo, 20)
determine a member Q(go, —fo) of the pencil, and the given plane
Q@ actually coincides with Q(go, —fo). For sfo + tgo = 0, when
s =go and ¢t = —fo, and P, is on Q(go, —fo). It then remains
only to see that the given values of s and ¢ actually define a plane.
This is true in the case of intersecting planes, since in that case
we merely require that s and ¢ should not both be zero, and we
have already assumed that f, and g, are not both zero. In the
case of parallel planes, the hypothesis that s + k¢t = 0 implies
that go = kfo,. Then f, cannot be zero, and formula (18) for
(z,y,2) replaced by (zo, yo, 20) yields sdy + td2 = godi — fod2
= fo(kdy — d2) = 0, ds = kd, contrary to hypothesis. Thus
we have shown that the pencil of planes defined by two distinct
planes contains all planes through their line of intersection when
they intersect, and contains all planes parallel to them when they
are parallel.

When two. given planes intersect, their equations may be put
into normal form and thus written as

(19) Mz + py + viz — p =0, Ao + poy + vez — p2 = 0.

Then the pencil of planes defined in this case contains the two
planes whose defining equations are

(20) (M= No)x + (w1 — p2)y + (1 — v2)z — (p1 — p2) = 0,
@1) M\ F Nz A+ (w1 + p)y + (i ve)z — (pr+ p2) = 0.

Each of these planes consists of points P = (z, y, 2) whose dis-
tances di = Mr 4+ py + viz — p1 and da = NoT + poy + W2
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— p2 from the two given planes are equal in absolute value.
The planes are then the bisector planes of the dihedral angles
formed by the two given intersecting planes.

ILLUSTRATIVE EXAMPLES

I. Find an equation of the plane containing the line of intersection of
the planes 3z — 2y +42 —6 =0, 22 4+ 3y + 2 — 12 = 0 as well as
the point (—1, 2, 4).

Solution

We compute f(—1,2,4) = -3 — 4416 — 6 = 3, and g(—1, 2, 4)
= —2+4+6+4 — 12 = —4, This yields the valuess = 4, ¢ = 3, and
we compute 12z — 8y + 16z — 24 + 6z 4 9y + 32 — 36 to obtain
the solution 18z + y + 192 — 60 = 0.

II. Find an equation of the plane containing the line of intersection
of the planes of Example I and normal to a line whose direction numbers
(a, b, ¢) have the property a = 3b.

Solutron

The coefficients of the required plane area = 3 + 2, b = —2 + 3¢,
c=4+td=—6—12t. Thena=3+2t=3b= —6+ 9,7t =9,
t=7. Multiply by 7 and obtain 21z — 14y 4 282 — 42 = 18z + 27y
4+ 9z — 108 = 0, and the answer is 39z + 13y + 37z — 150 = 0.

III. Find the bisectors of the dihedral angles formed by the planes
22 +y —2:=4, 220 — 3y + 62 = =2,

Solution
The required equations are

20 +y —22— 4 2¢ — 3y + 62 + 2
3 == 7 ’

that is, 142 + 7y — 14z — 28 = +(6z — 9y + 18z + 6). Hence, the
solutions are 8z + 16y — 32z — 34 = 0 and 20z — 2y + 4z — 22 = 0.

EXERCISES

1. Find an equation of the plane containing the line of intersection of
the two given planes and the given point in the following cases:

(@ 2z —2y+2=3,c+2y+22=5P = (-1,2, —2)

) 3z +2y+62=1,2c —6y+32=—4,P = (2, -1, -3)

©x—2y—2:=3,3x —2y —6z2=4,P =(—1,0,1)

d3x+6y+22=-3,2zr4+2y—2=-2P=(,1,1)

€@z+y+z=-4,2x—-—y—2=-3,P=(-3,2 —1)

Nzrzt+z=-2,y—-2=4,P=(1,2, -3)
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@z+y+z+1=0,2t —3y—32—-3=0,P=(3, —1, —2)

B z=y+zy=x+2DP=4 —-1,2)

(@) 2c+4y —32="74c+2y —32=9,P = (-1, -1, -2)

(j) 3r —4y+62=1,50 —2y+2=8,P = (0,0,0)

2. Find an equation ax + by + ¢z + d = 0 of the pencils defined by
Exercise 1 in which 2a¢ = 3b, and find one in which 4d = 3c.

3. Find the bisectors of the dihedral angles formed by the pairs of
planes of parts (a), (b), (¢), (d), (e), (f), and (k) of Exercise 1.

FiG. 10.

10. Parametric equations of a plane. Three points P,
= (1, Y1, 21), P2 = (s, y2, 22), and P; = (z3, y3, 23) are not
collinear if the vectors

Py = Py — Py = (23 — 21, Y2 — Y1, 22 — 21), Py = P; — P,
’ = (3 — 21, Ys — Y1, 23 — 21)

do not have proportional coordinates. Then P, Py, P; determine
a plane S. Translate the origin to O’ = P, and thus write
P = (x — 11,y — y1,2 — 21) for the vector of the coordinates
of any points P = (z, y,2). If s and ¢ are any real numbers, the
line joining O’ to P;’ passes through tP;’. Hence, sP,’ and tP;’
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are in the plane S and their sum sP,’ + (P’ is the end of the
diagonal of a parallelogram whose vertices are in S; sPy’ + (Py’
is the vector (x — 1, ¥ — y1, 2 — 21) of a point of S.
Conversely, if P is a point of S, we draw a line L, in S through

P parallel to P,P; and a line L; in S through P parallel to PP;.
Then L; cuts P,P; in a point whose transformed vector is sP,’
and L, cuts P,P; in a point whose transformed vector is tPg’.
For a typical case, see Fig. 10. But then P’ = sPy’ + (P3’, and
we have

T — 1= 8(x2z — 1) + z3 — z1)
(22) Yy — yr=s(yz — y1) + t(ys — y1)

z—21=38( — 21) + l(zs — 21).

We have shown that the equations of formula (22) give the
coordinates z, y, z of points P on the plane S through P,, P;, P;
for all real numbers s and ¢ and that every point on the plane S
has coordinates which satisfy these equations for some real num-
bers s and {. We are then justified in calling the equations of
formula (21) a set of parametric equations of the plane S.

EXERCISE

Give a set of parametric equations for the plane through Py, P,, P; for
each set of points listed in Exercise 1 of Sec. 2.



CHAPTER 3
SURFACES AND CURVES

1. Equations of a surface. A real single-valued function
f(x, y, 2) of three real variables z, y, z is a correspondence wherein
every triple of real numbers 1, y1, 21 uniquely determines a real
number f(zi, ¥1, 21) called the value of the function at the point
where © = 21,y = y1,2 = 21. The functions commonly con-
sidered in analytic geometry are usually defined by algebraic or
trigonometric formulas.

If f(x,y,2) is a real single-valued function, a point P =
(1, ¥1, 21), defined by real coordinates 1, y1, 21, is said to be a
solution of the equation

(1) f(@,y,2) =0

if f(xi, y1, 21) is the real number zero. An equation (such as
z? 4+ y? 4+ 22 = 0) may have only a single point as a solution or
no real points as solutions. However, the solutions usually make
up a geometric locus (z.e., set) of points called a surface.

The equation f(z, ¥, 2) = 0 is said to be an equation of a sur-
face S if S is the set of all solutions of the equation. A surface,
such as a cone, a cylinder, or a sphere, may be defined geo-
metrically, and we shall give geometric definitions of certain
special types of surfaces. If we then give an equation f(z, ¥, 2)
= 0 and state that it is an equation of S, the proof of the result
requires that we verify the following two properties:

1. Every point P on S s a solution of {(x,y, z) = 0.

2. Every solution P of {(x, y, z) = 0 is a point on S.

We shall frequently define a surface S by prescribing an equa-
tion f(z, y, 2) = 0 and stating that S is the surface of all points
P which are solutions of the equation. As we have seen, the
solutions might consist of a single point or no real points and the
corresponding surface will then be called a point surface or an
imaginary surface. The general geometric definition of those
point sets which are true surfaces is beyond the scope of the

present text.
37



38 - SOLID ANALYTIC GEOMETRY (Chap. 3

If a is any nonzero real number and f(z, y, z2) = 0 is an equa-
tion of a surface, then af(z, y, z) = 0 is also an equation of the
same surface. Indeed, let g(z, y, 2) be any function such as
x2? 4+ 1 which has the property that g(zi, 1, 21) # 0 for all real
numbers x1, 1, 2. Then if f(z, y, 2) = 0 is an equation of S, so
18 g(xy Y, Z)f(il?, Y, Z) = 0. For any prOduCt g(xly Yy, zl)f(xb Yy, Z!)
is zero if and only if f(x1, y1, 21) is zero.

It will be convenient for us to speak of ‘“the surface f(z, y, 2)
= 0" when we mean the surface defined by the equation f(z, y, 2)
= 0. Thus we may speak of “the planear + by 4+ ¢z + d = 0,”
and we have already used this terminology in Chap. 1 and a
similar terminology for lines in Chap. 2.

2. Space curves. The initersection of two surfaces S; and S, is
the locus of all points on both S; and S,. This locus may be a
surface; for example, the equation zy = 0 is an equation of a
surface S which consists of two planes, and the equation zz = 0
is the equation of a surface which also consists of two planes.
Their intersection is the plane x = 0.

In most of the cases commonly considered in analytic geometry
the intersection C of two surfaces S; and S: is a space curve.
This is a geometric manifold with one degree of freedom and the
precise definition is beyond the scope of the present text. We
shall assume that the equations

f(x’1’z)=07 g(x77}2)=0

are equations of two surfaces and shall call the pair of equations
a set of equations of the space curve which is their intersection.
The intersection may then turn out to be empty, a single point,
a genuine space curve, or a surface, and a revision of the geo-
metric term space curve, by means of which the intersection has
been described, may be necessary. Note that the curve of inter-
section of two planes is a straight line and that a straight line is
an instance of a space curve.

As in Sec. 1, we shall speak of ‘““the curve f(z,y,z2) =0,
g(z,y, z) = 0” when we wish to refer to the curve of intersection
of the surfaces defined by the equations f(z,y,2) =0 and
9(z,y,2) = 0.

3. Plane sections. The curve of intersection of a plane and a
surface is called a plane section of the surface. In general, it is
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an ordinary plane curve, but it may consist of a single point or
of no points.

The determination of a plane section may be carried out most
simply if an equation of the surface can be obtained relative to a
coordinate system in which the given plane is one of the coordi-
nate planes. For example, if the given plane is the z, y plane, and
a corresponding equation of the surface is f(z, y, 2) = 0, then the
plane section is the curve f(z, y, 0) = 0 in the z, y plane.

When a surface is given by means of an equation f(z, y,2) = 0
and a plane by an equation ax + by + ¢z + d = 0, it is always
possible to perform a transformation of coordinates so as to
obtain an 2/, 9/, 2’ coordinate system in which the given plane
becomes the planc 2/ = 0 and the surface is g'ven relative to the
transformed coordinate system by an equation ¢(2’, y’, 2’) = 0.
The plane section may then be analyzed by a study of the equa-
tion ¢(z’, ', 0) = 0. The equations that transform f(z, y, 2)
into ¢(2’, ¥/, 2’) will be developed in Chap. 7.

ILLUSTRATIVE EXAMPLE

Discuss the sections of the surface

2yt 2
6Tty =1!

made by planes parallel to the z, y plane.

Solutron

The required planes are the planes z = k, where k is a real number.

Then the sections are curves whose equations are

z2  y? 9 —k?

TR Sl
If k2 > 9, the corresponding plane does not intersect the surface.
When k£ = 3, the intersection is the single point (0, 0, 3) and the plane
is said to be tangent to the surface. Similarly, if ¥ = —3, the plane
z = —3 is tangent to the surface at the point (0,0, —3). If k2 <9,
the corresponding sections are ellipses having center at (0, 0, k), semi-
major axes § /9 — k?, semiminor axes §1/9 — k%, and a major axis,
which is a segment of the line z = k, y = 0, parallel to the z axis.

EXERCISE

Discuss the sections of the following surfaces made by planes
parallel to the z, y plane:
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xz 2 zz
(a)z+%+§-=l (¢) 222 —y? — 22 =1
2 yr 22
0 F+E—15=0 (f) 4a? + 2% + 422 = 1
(c) z? = 4y (9) 42z = y* + 2y
x? yz 22
@+g—7z=1 (h) 22+ 2¢ 4 49> — 22 + 22 = 0

4. Algebraic surfaces. A surface is called an algebraic surface
if it is defined by an equation f(z, y, z) = 0, where f(z, y, 2) is a
polynomial in z, y, z with real coefficients. The curve of inter-
section of two algebraic surfaces is called an algebraic curve.

Every polynomial f(z, y, ) is a sum of terms of the form

axryz,

where the coefficient a is a real number and r, s, ¢ are natural
numbers, 7.e., nonnegative integers. The degree of such a term
isr + s + ¢, and the degree n of f(z, y, 2) is the largest degree of
all of the terms of f(z, y, 2z) that have nonzero coefficients. We
call f(z, y,2) a constant polynomial if n = 0. If n =1, the
polynomial f(x,y,2) = ax + by + cz + d and the equation
f(z,y,2z) = 0 is an equation of a surface that we have called a
plane. If n = 2, we call f(z, ¥, 2) = 0 a quadric surface, and if
n = 3 we call f(z, y, 2) = 0 a cubic surface.

If f(z, y, 2) = g(x, y, 2)h(x, y, 2), where g(z, y, 2) and h(z, y, 2)
are polynomials with real coefficients and neither is a con-
stant, we call f(z, y, 2) a reducible polynomial. Otherwise, we
call f(z,y,2) an drreducible polynomial. In the former case
f(z, y,2) = 01is an equation of the surface consisting of all solu-
tions of either of the equations.

9(x,y,2) =0,  h(z,y,2) =0.

If either of these surfaces is an imaginary locus, such as z? + y?
+ 22 4+ 1 = 0, the factor is deleted and f(z, y, 2) is replaced by
the remaining factor. However, when both surfaces contain
real points, we call the surface defined by f(z, y, 2) = 0 a reducible
surface. Then every irreducible surface is defined by an equation
f(x,y,2) =0, where f(z, y, 2) is an irreducible polynomial.

b. Cones. A cone is a surface S containing a fixed point V
called the vertex of S such that all points of any line joining V to a
point of S are points of 8. We shall restrict our attention to
algebraic cones, 7.e., cones which are algebraic surfaces and shall
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assume that n > 1. Thus we do not include planes in the set of
surfaces called cones.

A polynomial f(z, y, 2) is said to be homogeneous if all terms of
f(z, y, 2) have the same degree n. A homogeneous polynomial of
degree n is called an nic form. We shall study quadratic forms,
i.e., forms of degree two, later. If f(z, y, 2) is homogeneous of
degree n, then f(iz, ty, tz) = t*f(z, y,2). Also f(0,0,0) = 0 if
n > 0.

Theorem 1. If f(x,y,z) has the property that g(x',y’, z)
= f(x’ + xo0, ¥ + Yo, 2’ + 20) s homogeneous of degree n > 1 in
x',y’, 2z’ then {(x,y, z) = 0 7s an equation of a cone with vertex at
(X0, Yo, 20)-

For a translation of axes, which moves the origin to V =
(xO; Yo, 20); replacesf(x, Y, Z) by g(x’a y,y zl)- SiDCG g(O; 0; 0) = Oy
the point V is on the surface S defined by f(z,y,2) = 0. If
Q = (x/,y/, 2/) is a point on S, then g(z\, y./,2/) = 0 and
gltzy, ty!, tz))) = trg(z/, y'', 2') = 0 for every ¢ But i(z/,
y',2/) = (@', ¥, 2") is the vector form of a set of parametric
equations of the line joining V to @, and we have proved that all
points of this line are on S, S is a cone.

The cones, which consist of all points on the lines joining the
vertex to the points of a fixed plane curve, are of particular
interest in geometry. Let us then derive the equations of such
surfaces in the case where the given curve is a curve in the z, y
plane and its equation is ¢(z,y) = 0. Suppose that P, =
(0, Yo, 20) 1s the vertex. Then a point P = (z, y, 2) is on the
cone if and only if P — Py = (P, — P,), where Py = (x1, 1, 0) is
a point on the curve. Consequently

(2) z — zo = l(x1 — Z0), Y — Yo = Y1 — o),
2 — 20 = —1{20.

We assume that P, is not a point of the x, ¥ plane and thus
2o # 0. Then we may eliminate ¢ and obtain

zo(x — z0) = (21 — Z0) (20 — 2), 20y — yo) = (Y1 — ¥o)
(2o — 2).
We solve for z; and y, to obtain

z2o(x — o) _ 20y — o)
Zo — 2 Vi =190+ z2o — 2z

(3) r) = Xy +
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and substitute these formulas in ¢(zi, 1) = 0. The resulting
equation in z, y, z is an equation of the given cone.

ILLUSTRATIVE EXAMPLES
I. Find an equation of the elliptic cone with vertex at (2, —1, 3), and
base the curve 422 4+ y2 = 1.
Solution

We use formula (3) and write

3(x — 2)

n=24+5—2 1+3(y+1)

2

Then (3 — 2)z, = 32z — 22, (3 — 2)y1 = 3y + 2, so that the required
equation is

43z — 22)2 4+ By + )2 = (3 — 2)™

The solution should be left in this form since the equation is not essen-
tially simplified when the indicated operations are carried out.

II. Find an equation of the hyperbolic cone through the point (3, 0, 0)
and the hyperbola whose equations are z = 0, (22/9) — (y%/4) =

Solution
We use the method of derivation of formula (3) to writexz — 3 = —3t,
y = ty,, 2 = tz;. Then —3y = (x — 3)y1, —32 = (z — 3)z), and

(x — 3)%,2 _ (x — 3)2y,2 22 9y
9 4

Hence 4(z — 3)? = 422 — 9y? is an equation of the cone.

EXERCISES

1. Find an equation of the cone with vertex at the given point P and
passing through the curve whose equations are z = 0, ¢(z, y) = 0in the
following cases:

(a) (09 0’ 3)’ z? +?/2 =9 (c) (ly -1, 2); 24yt =1
(®) (0,0, —2), 2* + y* = (@ (-1,1,=3),2? —y2 =1
(e) (_1) 2: _1), 32+ 2y =1

() (-1,2,3),22+22 4+ y2—4y+3=0

(9 (2,1, —4),22 -4+ 3y -6y +6=0

(h) (—17 21 3)- 2t = 8?/ (.7) (2» 1; 4)1 z? — 3:‘/2 =1
() 0, —1,2), 222 —y* =1 (k) (0,0,1), 2+ y* =1
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2. Interchange z and z in the equations of the plane curves of Exer-
cise 1, and leave the points P unaltered. Find equations of the corre-
sponding cones. The equations are then z = 0, ¢(z, y) = 0.

3. Find an equation of the cone with vertex at (—1, 1, 2) and passing
through the curve of intersection of the surface x2 4 4y2 = 1 and the
plane z = 3.

6. Cylinders. A cylinder is a surface consisting all of the
points on all the lines which are parallel to a given line and which
pass through a fixed plane curve in a plane not parallel to the
given line. It is a simple matter to obtain an equation of a
cylinder with respect to a coordinate system which is chosen so
that the plane curve lies in a coordinate plane.

Let us assume that the curve lies in the z, ¥ plane so that its
equations are z = 0, ¢(x, y) = 0. The fixed line will have direc-
tion numbers a, b, ¢, and a point P = (z,y, 2) will be on the
cylinder S if and only if

(4)

where (x1, y1, 0) is on the given curve. Then

r — 2 Yy — Z
= = -
a b c

(5) xl:x_g—z; yl=?/_gz,
and

a b
(6) ¢(x—Ez, y—zz)-O

is an equation of the surface. Note that our hypothesis that the
given line is not parallel to the given plane implies that the
number c is not zero.

If a = b = 0, the given line is parallel to the z axis and the
equation we have derived reduces to ¢(z,y) = 0. Thus an
equation in two of the three variables z, y, z represents a cylinder
generated by a line parallel to the coordinate axis corresponding
to the missing variable.

ILLUSTRATIVE EXAMPLES

I. Find an equation of the elliptic cylinder determined by the curve
z =0,4x? + y? = 1 and a line with direction numbers (2, —1, 3).

Solution

We use formula (6) to write the answer
4z —3)'+ (y + 39 = L.
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II. Find an equation of the hyperbolic cylinder determined by the
curve £ = 5, 922 — 4y2 = 1 and the line with direction numbers (1,
-2,3).

Solution

As in formula (4), the points on the cylinder satisfy

T—3 Y-y _z2—2n
T - =2 - 3

where (5, 41, 21) is on the curve. Then
h =y + 2(x — 5), z1=2—3(zx —5)
and thus the required equation is
9(z — 3z 4 15)2 — 4(y + 2z — 10)2 = 1
III. Find an equation of the cylinder determined by the curve of
intersection of the plane 2z 4 3y — 2z = 1 with the surface 3z2 — y*
+ 222 = | and the line with direction numbers (—1, 2, 3).
Solution
The points P = (z, ¥, z) satisfy

r—o Y- _ z— 2
-1 - 2 - 37

where z, %1, 21 are on the curve. Then 2y =2 — 3(x1 — ), 11 =
y — 2(x1 —x)and 22, + 3y1 — 21 = 221 + 3y — 6(x1 — ) — 2z +
3(x1i —z) = 1. Hence, 2, =32+3y —2z—1, 21 =2+ 3z — 33z
+3y—2~-1)= 6z —9y+4:+3,y1=y+2x —2Bx+ 3y — 2
— 1) = —4z — 5y + 22 + 2. Then our solution is 3(3z + 3y — z —
1)2— (e + 5y — 22 —2)2+ 26z +9y — 42— 3)2 =1

EXERCISES

1. Find an equation of a cylinder determined by the given plane
curve and set of direction numbers in each of the following cases:

(@) 22+ y*=9,2=0,(-1,2,3)

(b) 22 —yt=4,2=2,(2, —1,4)

(0) 2y — 2% = Lz = -3, (_1) -1,1)

d 32+ 22=1,y=3,(1,20)

(e) 2 — 8y,2=10,(0,1,2) +

(f) yr=4-2,2=0,(-13,2)

(g) 2t = 4a2? + Sx Yy = 0: ’4, )
(h) $3+7J3= =01( 11) )
(¥) t—yt=12=0,(-21, - )
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() #=2%y=3(-221)

k) y*—22= —1,2=2(-222)
(l) T+ 2= 1vy=0) (lxlxl)

(m) 2 — y* =2y,2 =0, (1,0, 1)
(n) sy = =2,z =1,(-21,1)

"~ 2. In the following cases, the plane curves are not in planes parallel
to coordinate planes. Find an equation of each of the corresponding
cylinders.

(@ z*+y*=1,z=12(-11,2)

(b) 22+ y*+22=1,2 =2y (1,2,3)

() 3x2 — 4y2 + 22 = 1,2 —y =2, (I, —1,1)
da?=y+zz=2-2y(-211)

7. Surfaces of revolution. If a plane curve (or a line) is
revolved about a line in the plane of the curve, the resulting sur-
face is called a surface of revolution. We shall obtain the equa-
tions of such surfaces relative to a coordinate system where the
given plane is the z, y plane and the given line is parallel to the
T axis.

Let ¢(z,y) = 0, 2 = 0 be equations of the curve and z = 0,
y = k be equations of the line. Then a point P = (z, y, 2) is on
the surface of revolution S if and only if P is on a circle whose
center is (z, k, 0) and whose radius is the distance |y; — k| from
(z, k, 0) to the point (x, y1, 0) on the given curve. Thus P =
(z, y, ) is at the same distance from (z, k, 0), and

=kl =VE -2+ -k +22 =V -k + =

It follows that (y1 — k)2 = (y — k)? + 2% and that the required
equation of the surface S is obtained by replacing (y, — k)2 by
(y — k) + 2%in ¢(x, y) = 0 or in a suitably modified equation.
For the modifications, see the examples below.

ILLUSTRATIVE EXAMPLES

1. Find an equation of the surface of revolution obtained by revolving
the curve z = 0, #2 = 4y about the z axis.

Solution

If (z, y, 0) is on the curve both (z, y, 0) and (z, —y, 0) are on the sur-
face, the surface is the surface of revolution of the double curve 24 = 16y2.
Hence, an equation of the required surface is 24 = 16(y? + 22).

II. Find an equation of the surface of revolution obtained by revolv-
ing the curve z = 0, 22 = 2y about the linez = 0, y = 3.
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Solution

The equations of curve are z = 0, 22 — 6 = 2(y — 3), and therefore
(x? — 6)? = 4(y — 3)* may be converted into the required equation
(x? — 6)% = 4[(y — 3)2 4 2?], that is, z* — 1222 4+ 36 = 4y? — 24y +
42?2 4 36. Hence, the answer required is 24 — 1222 = 492 — 24y + 422

EXERCISES

1. Find the equations of the surfaces of revolution obtained by revolv-
ing the following curves in the z, y plane about the z axis:

(@) 22+ 22 =1 (f) 22 — 42z 4+ 2y = 1
(b) z* —y* = (@) a*+ 2%y +y* =1
(¢) 2x2 — 3y? =2 (h) z* + 3y% = 2zy

d x2+2x+y2=1 @) z2*+yt=1

() 2 +ay+y* =1 (7) z* — y? = %>

2. Solve Exercise 1 for revolution about the y axis.
3. Solve Exercise 1 for revolution about the following lines in the z, y
plane:

(@) = —1 b y=2 () z =1

8. Symmetries of surfaces. ILet S be a surface and T be a
plane. Then 8 is said to be symmetric with respect to T if every
line perpendicular to 7" and cutting S in a point P not on 7' also
cuts S in a point @ such that P and Q are on opposite sides of T'
and the same distance from 7. If 7' is taken to be the z, y plane
and f(z, y, 2) = 0 is the equation of S, then S will be symmetric
with respect to 7' if and only if f(z, y, —z) = 0 for every point
P = (z, y, ) such that f(z, y, 2) = 0. This is evidently satisfied
when f(z, y, 2) is a polynomial in z, y, and 2%, rather than z.

A surface S is said to be symmetric with respect to a line L if
every line perpendicular to L which cuts S in a point P not on L
also cuts S in a second point @ not on L such that P and Q are on
opposite sides of L and the same distance from L. If L is taken
to be the x axis and f(z, y, 2) = 0 is an equation of S, then S will
by symmetric with respect to L if and only if f(zx, —y, —2) = 0
for every point P = (z, y, 2) such that f(z,y,2) = 0. This is
satisfied when f(z, y, 2) is a polynomial in z, y? 2%, yz.

A surface S is said to be symmetric with respect to a point O if
every line joining O to a point P on S also joins O to a point @ on

S such that Q—b = JP. If O is the origin, @ = —P and therefore
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we must have f(—z, —y, —2) = 0 for every point P = (z, y, 2)
such that f(z, y,2) = 0. In the exercises below only symmetries
with respect to planes parallel to coordinate planes and lines
parallel to coordinate axes are to be discussed.

ILLUSTRATIVE EXAMPLES

I. Discuss the symmetries of the surface 22 — 4x 4 3y2 + 222 — 122
= 1.

Solution

We translate the origin so as to simplify the equation. The equation
is (x — 2)2 4 3y? 4+ 2(z — 3)2 = 23, and thus the translation 2’ = =z
— 2,y = y,2’ =z — 3 converts the equation to z’2 4 3y’2 4+ 22’2 = 23.
This surface has symmetry with respect to the new origin, the 2/, 9/,
and 2’ planes, and the 2/, ', and 2’ axes. Thus the original surface is
symmetric with the planes z = 2, y = 0, and z = 3, the lines of inter-
section of these planes, and their point of intersection (2, 0, 3). -

II. Discuss the symmetries of the surface 222 4+ 4z + 3y23 + 1 = 0.

Solution

The equation is equivalent to 2(z + 1)2 4+ 3yz3 = 1, and thus to
202 4 3y'2’* = 1, where 2’ =z + 1, 9y = y, 2 = z. This equation is
unaltered when we replace «’ by —2’ and ¢/, 2’ by —y’, —2’. It is then
a surface symmetric with respect to the point (—1, 0, 0), the plane
z = —1,and theliney =2 = 0.

EXERCISES
Discuss the symmetries of the following surfaces:
(@) 32* +y* —2=0 (9) = + 22 = y%
(b) 2 — 2yz = 1 (h) x* — 2% = y* + yz + 2*
(c) ® +y* = 2° (@) 2* =y =2y +2(y — 1)
(d) z3 = y%? () «* = (y* — 2y)z + 2°
(e) z? — 2z = yz k) 234+ yt—2°=0
(f) 3z —x = yz () x* + y%=? = z¥%y

9. Intersections of a line and a surface. Every line L is
defined by a set of equations

(7) .’L‘=.’l}0+té, y=y0+t7’y Z=Zo+t§',

where (2o, yo, 20) is a point on L, (£, 9, {) is a set of direction num-
bers of L, and any real value of ¢ defines a corresponding point
(x,y,2) of L. If f(x, y, 2) = 0 is an equation of a surface S, the
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points of intersection of L and S are those points of L for which
(8) o) =fxo+t&§, yo+itn, 2o+ &) =

If f(z,y,2) = 0 is the equation defining an algebraic surface
of degree n, the corresponding function ¢(¢) is a polynomial in ¢
whose degree cannot exceed n. Then either ¢(¢) is identically
zero and all values of ¢ satisfy ¢(f) = 0 or ¢(¢) = 0 has at most
n real roots. In the former case, all points of L are points of S,
and the line L lies wholly on the surface S. We have proved the
following result:

Theorem 2. If a line is not wholly on an algebraic surface of
degree n, 1t cuts the surface in at most n points.

A line then cuts a quadric surface in no points, one point, or
two points or is a line all of whose points are on the surface.

ILLUSTRATIVE EXAMPLE

Find the points of intersection of the line joining (—1, 2, 3), (2, —1, 4),
and the surface z2 — y2 + 2.2 4+ 1 = 0.

Solution

We writex = —1 4+ 3t,y = 2 — 3t,2 = 3 + t and have (—1 + 3¢)2
—2-=-3)?2+2@3+0)*+1=92—6t+1 — (92 — 12t + 4) +
20246t +9) +1 =224+ 18+ 16 =0,2+ 9%+ 8 = (¢t + 8) (¢t + 1)
= 0. Hence, { = —8, —1, and the points are (—25, 26, —5), (—4,
5, 2).

EXERCISE

Find the points of intersection of the lines joining P; to P, and the
surface f = f(z, y, 2) = 0 in the following cases:

(a) Pl = (0,0’0),1)2 = (27 -—1,3),]'52:62-%—2/2—22-}- 1

() Pr=(0,0,0), Py = (2, —1,3),f =222+ y> — 2?

(0 Pr=1(1,1,2), P>=(3, 0 5, [=2-1)+2y—-1)?%-
z—22-1

(@) Pr=(—-1,2,3),P:=(1,1,2),f = 2% + y* — 522 + 21
(e) Py=1(—4,2,3),P,=(—-3,3,4), f=a+ y2 + 22 — 2
() Pr=(-1,2,3),P.= (1,1, 2), f =3x2 — 8y? — 422 + 41

(9) Pr=(-1,1,2),P, = (3, —4,1), f=2a2 + 292+ 322 — 7

10. Lines on a cylinder. The lines on a cylinder, consisting of
lines parallel to the z axis and passing through a curve in the z, y
plane, may be determined easily. We first prove the following:

Lemma 1. Let f(x, y) be a homogeneous polynomial and «, 8 be
real numbers not both zero. Then f(a,B) = 0 if and only if
Bx — ay s a factor of f(x, y).
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For if f(z,y) = (Bz — ay)g(z, y), then f(e, B) = (Ba — af).
g(a, B) = 0. Conversely, let f(a,8) = 0, and define ¢ = gz
— ay, n = ar + PBy. Since a® 4+ B2 # 0, we see by direct com-

putation that
o Bitan _ —at+pr
a? + B2 a® + B2

Then f(z,y) = ¢(& n), where ¢(§ 1) = at” + a1~ + - - -
+ a.n" is necessarily homogeneous in £ and . When z = « and
y =B, we have ¢ = fa —af =0, 1 = o+ (% and f(e, B) =
60, &* + B°) = an(a? + B*)" = 0. Then a, =0, ¢(¢n) =&
Y(& ) = flz,y) = Bz — ay)g(z, y), where g(z, y) = ¢(Br — ay,
ax + By). This proves the lemma.

We use the lemma in the proof of the following theorem:

Theorem 3. Let S be a cylinder defined by an irreducible poly-
nomial equation f(x,y) = 0, of degree n > 1. Then there is only
one line of S through each point of S.

For if P is any point of S, we may translate the origin to P
and therefore assume that f(0,0) = 0. Then f(z, v) = f.(z, y)
+ faoi(z,y) + - - - + fi(z, y) where each fi(z, y) is homogeneous
of degree k. Every line L through the origin P has equations
z =la,y =132 =1y, and
o(t) = f(ta, 18) = t"fula, B) + " fn-sle, B) + - -+ + tfile, B).
Then L is on S if and only if ¢(¢) = 0, that is, fo(a, 8) = fa_i(a, B)
= =file,B8) =0. If (a,B) # (0,0), Lemma 1 implies
that Bz — ay is a factor of every fi(x, y¥) and thus is a factor of
f(z, y) contrary to our hypothesis that n > 1 and that f(z, y) is
irreducible. Hence, « = 8 = 0 and the only line through P is
the z axis.

EXERCISE

Show that a surface f(z, y) = 0 determined by a homogeneous poly-
nomial f(x, y) of degree n consists of r = n planes through the 2z axis or
is a point surface.

11. Tangent lines and planes. A line z = 2o + £, ¥ = o
+ &y, 2 = 2o + t¢ will intersect a surface f(z, ¥, z2) = 0 in a point
P, = (z1, y1, z1) if and only if there exists a real number ¢; which
is a root of the equation ¢(t) = f(xo + t& yo + tn, 20 + 1) =0
such that z, = xo + 61§, ¥1 = Yo+ m, 21 = 20 + 6. We shall
say that the line is tangent to the surface at the point (of tan-
gency) P if ¢, is a root of multiplicity m 2 2 of ¢(f) = 0.
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Let us investigate the problem of determining whether or not
a given line through a point (zo, yo, 20) on a surface f(z, y,2z) = 0
is tangent to the surface at the point. The point corresponds to
the value ¢ = 0 and so we are assuming that ¢(0)= 0. We limit
our discussion to functions f(z, y, z) having partial derivatives of
all orders and see that ¢(f) has a Taylor series expansion

o) = 6(0) + 18/0) + 5 ¢70) + - -

which is an ordinary polynomial when f(z, y, 2) is a polynomial.
Then the given line is a tangent line if and only if ¢’(0) = 0.

The function ¢'(tf) may be computed most easily by partial
differentiation. Define f,(x, y, 2) to be the partial derivative of
f(z, y, 2) with respect to z, that is, the derivative of f(z, y, 2) as
a function of x alone, and define f,(z, ¥y, 2), f:(z, y, 2) similarly.
Then the derivative ¢'(¢) of ¢(¢) with respect to ¢ is shown in
elementary calculus to be given by the formula

9) ¢,(t) .fx di +fu +f dt fz$+f'y"7+fz§"

Since £ = %o, ¥ = Yo, 2 = 20 at £ = 0, and (§, 1, {) = (X2, Y2, 22)
— (o, Yo, 20), We sce that a line joining the point (x, ¥o, 20) to a
point Py = (x2, ¥, 22) is tangent to the surface at (xo, yo, 20) if
and only if P, is a solution of the equation

(10)  fa(mo, Yo, 20)(x — Z0) + Sy (2o, Yo, 20) (¥ — Yo)
+ f:(xo, Yo, 20) (2 — 20) = 0.

If the coefficients f, f,, f. are all zero at the point Py = (zo, yo,
20), we call Py a singular point of the surface. All other points
are called ordinary points. Since formula (10) is an equation of a
plane at an ordinary point P, we have proved the following result:

Theorem 3. A line passing through an ordinary point (Xo, Yo, Zo)
of a surface £(x, y, z) = 0 is tangent to the surface if and only +f it
s a line in the plane of formula (10). We call this plane the tangent
plane to the surface at the given point.

If Py is an ordinary point of two surfaces S; and S,, we define
the angle between S; and S, at PP, to be the angle 6 between the
two corresponding tangent planes at P’,. Then S; and S; are
said to be orthogonal at P, if 6 = 90°, i.e., the tangent planes are
perpendicular.
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The line perpendicular to the tangent plane of a surface S at
anordinary point P of Sis called the normaltoSat P,. Equations
of this line are

(11) X — Xo — Y — Yo - 22— 2
Jz(xo, Yo, 20) Ju(xo, Yo, 20) J=(xo, Yo, 20)

ILLUSTRATIVE EXAMPLES
I. Find an equation of the plane tangent to the surface 3z% — 2y? +
4z + 1 = 0 at the point (—1, 1, 1).
Solution

We compute f, = 920> = 9, f, = —4yo = —4, f. = 4 and the required
equation is 9z 4+ 1) —4(y — 1) +4(z—1) =92 —4y + 4+ 9+
4 —4=0. Ans. 9z + 4y — 42+ 9 = 0.

II. Find equations of the normal line to the surface 32® — 2y2 + 4z +
1 = 0 at the point (—1, 1, 1).

Solution
By our theory and the result of Iixample I the answer is

r+1 y—1 =z2-1

9 = -4 = 4
III. The point (—1,1,1) is a point of intersection of the surface
323 — 2y? + 42 + 1 = 0 and the surface 222 — 4ry 4+ 23 = 7. TFind
the cosine of the angle  between the two surfaces at this point.

Solution

The plane tangent to the second surface is (4dro — 4yo)(x — o) —
420(y — Yo) + 320%(2 — 20) = 0 and therefore a set of direction numbers
of the normal line is (—8, 4, 3). A set of direction numbers of the
first line is (9, —4, 4) and therefore

cos 6 = — |-72 —16+12 76
V(=82 + (=9 + 3V + (=9 + (9 V(89)(113)
EXERCISES

1. A homogeneous algebraic equation f(z, y, 2) = 0 of degree n = 2
defines a cone with vertex at the origin. Show that the vertex is a
singular point of the cone.

2. Find an equation of the tangent plane to each of the following sur-
faces at the given points:
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(a) =3 — 2y% 4 522 = 18, (0, —1, 2)

(b) 3z +4y*+ 22 =0, (0, —1,2)

() 2 — 2% +22 =3, (1, —1, —1)

@) 22y — 22 = —1, (1, —1, —1)

(e) 2y — 32 =3, (2,3,1)

(f) Yz = 6r (2) 31‘ 1)

(g) z%z + 4?/2 = 21 (—l: 07 2)

(h) xyz + Z/z2 + 222 = 2, (—1y 0) 2)

3. The problems in Exercise 2 may be grouped in pairs such that the
given point P, is a point on a pair of planes. Find the cosine of the
angle between the planes for each pair.

12. Tangents to quadrics. A quadric surface is defined by a
polynomial equation

12) f(z,y,2) = ax® + by? + c2? + 2(dxy + exz + gyz)
+ 2(hx + py + ¢2) + s =0,

where the coefficients a, b, . . . , s are real numbers and a, b, c,
d, e, g are not all zero. Then the tangent plane to this surface at
(%o, Yo, 20) is (azo + dyo + ezo + h)(x — x0) + (byo + dxo + g2o
+ p)(y — yo) + (czo + exo + gyo + @) (z — 20) = axox + byoy +
czez + d(zyo + zoy) + e(@z0 + xoz) + g(yzo + 2oy) + h(x + o)
+ oy + yo) + q(z + 20) + s — [azo® + byo® + c2zo® + 2(dzoyo +
exozo + gyozo) + 2(hxo + pyo + qz0) + s]. Since (xo, Yo, 20) s
on the quadric, this equation reduces to

(13) axxo + byyo + czzo + d(zyo + xoy) + e(xzo + xo2)
+ 9(yzo + yoz) + h(z + o) + (¥ + yo) + ¢z + 20) + s = 0.

This formula arises from the original formula (12) of a quadric
surface by the replacement of square terms such as 22 by corre-
sponding products such as zz,, terms 2xy by zyo + yzo, and terms
2z by x + xo. It may then be easily remembered.

ILLUSTRATIVE EXAMPLE
Find an equation of the tangent plane to the quadric surface 322 4 4y?
—22? 4+ 62y — 3xz + 62 — 32 — 7 = 0 at the point (—1, 3, 2).
Solution

The equation is —3z 4 12y — 4z + 33z — y) — 3(2z — 2) + 3(::: -1)
—3:z+2) —7T=6z+9 —4z—13=0.
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EXERCISE

Write an equation of the tangent plane to each of the following
quadrics at the given points:

(a) x? — 2y? + 52% = 18, (0, —1, 2)

(b) 3z2 +4y2+ 22 =0, (0,1, —2)

() x2—2zy+22=3,(, -1, —=1)

(d) 22y — 3zz + 52z = 2, (1, —1,2)

(e) 222 —y? + 22+ 22y + 422 +2 =0, (0, —1,1)



CHAPTER 4
SPHERES

1. Equations of spheres. lLet r be a positive real number and
Py = (xo, Yo, 20) be a fixed point. Then we define a sphere S
of radius r and center at P, to be the locus of all points P whose
distance from P, is . It follows that a point P is on S if and
only if v/ (z — x0)?2 + (¥ — %0)2 + (2 — 20)2 = r, that is, if and
only if P is a solution of the equation

(1) (=) + (¥ —yo)? + (2 — 20)° =

We have then succeeded in deriving an equation of an arbitrary
sphere. Evidently a sphere is a quadric surface.
Theorem 1. Let a, b, c, d, e be real numbers such that a # 0

and put 4
—c b2 + ¢%2 4+ d2? — ae
@ m= om0 w0 - .

Then the equation
B) fx,y,2) =ax*+y2+2?) + 2(bx+cy+dz)+e=0

has no real points as solutions if p < 0 and s called an equation of
an imaginary sphere. If p = 0, the only solution of f(x,y, z) = 0
1s the point Py = (Xo, Yo, 20) and the equation is said to be an equa-
tion of a point sphere. The only remaining case is the case p > 0
and f(x,y, z) = 0 is an equation of the sphere whose center is P,
and whose radius is \/p.

For a point is a solution of f(z, y, 2) = 0 if and only if it is a
solution of (1/a)f(zx, y, z) = 0, that is, of

Pyt Ry Dy M
a a

This equation is equivalent, in view of the definitions of formula
(2), to

(4) (x—z)?+ (y —yo)?+ (2 — 2002 = p

There are no real solutions (z, y, 2) of this equation if p < O,
54
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its only real solution is (xo, yo, 20) if p = 0, and it reduces to
formula (1) with 2 = pif p > 0.

EXERCISES

1. Write an equation of a sphere with center at Py and radius 7 in the
following cases:

(a) Po = (0,0,0),r =5 (d) Po=(1,6,2),r =6

(b)P')=(—172)0)1r=3 (e)P0=(172y2)7T=3

(¢) Po=(-1,-1,3),r=7 (f) Po=1(-2,6,3),r=17

2. Determine the center and radius of the following spheres:

(@ 2?+y*+22+6x+4y+8+4+256=0

®) 22+ y*+22+22 =6y +42+10=0

(€ 2@+ 9t +2) +2 —3y+2—1=0

d 2?2+ y*+22—3z+5y—72=0

(e) 3*+y*+2)+z+y+z=6

3. Show that the lines passing through the center of a sphere are
normal lines to the sphere.

2. Spheres satisfying given conditions. The equation of
formula (3) is a linear homogeneous function of the five param-
eters (variables not regarded as point coordinates) a, b, ¢, d, e.
It may then be made to satisfy four conditions such as passing
through four points.

ILLUSTRATIVE EXAMPLES

I. Find an equation of the sphere with center at (—1, 2, 3) and pass-
ing through the point (1, —1, 2).

Solution

The restriction on the center is a set of three conditions. We use
the formula (1) and write (zx + 1)2 4+ (y — 2)2 4+ (z — 3)2 = r2. Then

A+1)2+(1—-22+2—-3)2=4+90+1=14=r2
Ans. (x+ 124+ (y — 2)2+4+ (2 — 3)2 = 14.
II. Find an equation of the sphere through the points (1, —1, 0),
(2) 19 l); (37 —1) 4)) (—11 :—11 2)°
Solution
We substitute the coordinates of the four given points to obtain the
equations
20 +2(b—~c)+e=0
6a +22b+c+d)+e=0
26a + 280 —c+4d) +e=0
6a+2(—b—c+2d) +e=0
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Then e = —2(e + b — ¢), and we subtract the first of our equations

from the remaining equations and divide by 2 to obtain

20+ b4+2c+ d=0
12a + 2b +4d =0
2a — 2b +2d=0

This gives 2c = —(2a + b + d), and we need to solve

6a +b=—2d
a—b=-—d
The solution is 7a = —3d, and we avoid fractions by selectingd = —14,

a=6, b=a+d=—8, 2c=—(12—-8—-14) =10, ¢=5, e =
—2(6 — 8 — 5) = 14. Thus an equation is 6(z2 + y? 4 22) + 2(—8=z
+ 5y — 142) + 14 = 0.

Ans. 3(x2+ y*+22) — 8 + 5y — 142+ 7 = 0.

EXERCISES

1. Find an equation of a sphere with center at Py and passing through
P, in the following cases:

(@ Po = (0,0,0), Py = (—1,2,3)

(b) Po=(—-1,10), Py = (1, —1,2)

() Py (l: -1, 3):P1 = (2; 3, —4)

(d) Po= (-1, —=3,2),P1= (2,1, —4)

(e) PO = (0) —1) 0)7 Pl = (47 07 _3)

(f) Po = (1: 2, 3)7 P, = (_1) 0, 2)

2. Find an equation of a sphere passing through the points P,, P, of
Exercise 1 and the points P., P; as follows:

(@) P2 = (1, —2,1),P; = (1, 1,2)

(b) P'-’ (11 27 —1)7 P3 = (01 0) 1)

(c) P (2,1,1),P;= (1,0, —3)

(d) P.= (1, —1,2), Py = (2,3, —4)

(e) P2 = (-2, —1,1), Py = (—1, 1, 1)

() Py=(3,2,1),P1= (2,2, —1)

3. Linear families of spheres. Consider the two spheres S,
and S, defined by the equations
(6) flx,y,2)=ai(x®+ y* + 2°) + 20wz + ciy + di2) + &1 = 0,
(6) 9(z,y,2) =as(z® + y* + 2°) + 2(box + coy + doz) + €2 = 0.
Then the equation
@ sf(z,y,2) + t9(z,y,2) =0
is an equation of the form of formula (3) in which
(8) a = sar+ ta;, b= sby+ by, ¢ = 81 + ico,

d = sdy + tds, e = se; + ftes.

ol

o
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It follows that if
9) a = sa, + tas # 0

the equation of formula (7) is an equation of a (point, imaginary
or ordinary) sphere. We shall therefore call the family of sur-
faces defined by formula (7), as s and ¢ range over all real numbers,
a family of spheres generated by the two given spheres.

If Py = (xo, ¥o, 20) is any point on both f(x,y,2) = 0 and
g(z, y,2z) = 0, then P, is also on the surface sf + &g = 0. Thus
all spheres of the family generated by the two given spheres con-
tain all of points of intersection of these two spheres. Conversely,
if S is a sphere through the curve C of intersection of two spheres
S1and S,, and S contains a point P not on C, then 8 is the sphere
S(s, t) of the family defined by formula (7) when we take s =
g(xo, Yo, 20) and ¢ = —f(xo, Yo, 20). For there is at most one
sphere through the curve C and a point not on C. The solution
may, of course, be an imaginary sphere or a point sphere.

The values of s and ¢ for which a = sa; + tas = 0 yield the
member of the family of spheres whose equation is

(10)  2a2(bix + c1y + di2) — 2a1(bex + coy + do2)
+ (aze1 — aiez) = 0.

This is the equation of a plane except when aa(by, c1, d1) =
ai(by, ¢y d2). The plane is called the radical plane of the two
spheres. It contains the curve C of intersection of the two
spheres and C is then the curve of intersection of the radical
plane with either sphere. It follows that if two spheres intersect
in at least two distinct points they intersect in a circle in their
radical plane.
EXERCISES

1. Show that the line joining the centers of two intersecting spheres
cuts their radical plane in the center of the circle of intersection.

2. Find the center and radius of the circle of intersection of the sphere
22 4+ y? 4 22 = 4 and the sphere (z — 1)2 + y2 + 22 = 9.

3. Find an equation of the sphere through the circle of intersection
of the spheres of Exercise 2 and the following points determining the
center and radius of the solution sphere in all cases where it is not a
point or an imaginary sphere.

(@) (-1,2,3) (e (1,1, —3)
(b) (4,0,0) H 1,11
(C) (_3)0) 0) (g) (_1’ _190)

@ (1, -1,2) (h) (2, -1,3)
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4. Angles between spheres. The tangent planes to the
spheres of formulas (5) and (6)-at a point of intersection (o, ¥o, 20)
are given by

(11)  ai(zxo + yyo + 220) + bi(x + o) + c1(y + o)

+ dl(z + 20) + e = 0,
(12)  as(@zo + yyo + 220) + ba(x + o) + c2(y + ¥o)

+ dg(z + Zo) + €y = 0.

Then the corresponding sets of direction numbers are (aixo + b,
a1 + ¢1, @120 + d1) and (a2xo + be, a2y + c2, @220 + d2). The
square of the length of the first of these vectors is

(@10 + b1)% + (aryo + c1)? + (arz0 + d1)? = a12(x0® + yo?
+ 20%) + 2a1(bixo + c1yo + dizo) + bi2 + 12 + di?
= b2 4+ ¢ + di? — asey,

since (o, Yo, 20) is a point of fi(x, y, 2) = 0. Similarly the square
of the length of the second vector is bs? + ¢ + d2? — ase,.
The inner product of the two vectors is

g = (airo + b1)(asro + b2) + (@10 + c1)(azyo + c2)
+ (0120 + dl)(azzo + di2) = ai1a2(xe® + yo2 + 202)
+ (aibz 4+ asb1)zo + (arc2 + asc1)yo + (a1dz + axdi)zo
+ bibe + cica + dida = Fas[ai(xe® + yo? + 20%)
+ 2(bixo + c1yo + di120)] + a1[as(ze® + Yo? + 20?)
+ 2(bsxo + cayo + d2z0)] + bibe + cica + dids.

Then g = —4(aze1 + aiez2) + bibs + cic2 + dide and the cosine
of the angle between two planes at any point of their circle of
intersection is given by the formula
(13)

[2(b1be + c1c2 + dids) — (aszer + aies)]
2 \/(b12 + ¢ + di? — aie1)(b2? + c2? + d2? — azes)

Since this formula does not involve the coordinates xo, ¥o, 20, We
have proved the following result:

Theorem 2. Two spheres intersect at the same angle at all points
of thewr circle of intersection.

cos 0 =




CHAPTER 5
QUADRIC SURFACES

1. Ellipsoids. In this chapter we shall discuss the geometric
properties of the quadric surfaces given by a special set of equa-
tions. This discussion will yield the properties of all quadrics,
since we shall prove in Chap. 7 that any equation of a quadric can
be carried into one of the equations we shall discuss, by a suitable
choice of coordinate axes.

If a, b, ¢ are any positive real numbers, the equation
2 2 2
u> S
is an equation of a surface called an ellipsoid. Such a surface;
is symmetrical with respect to the origin, the coordinate planes,
and the coordinate axes, since it is a function of x?, y?, and 22.

The six points (+a, 0, 0), (0, b, 0), (0,0, +c¢) are called the
vertices of the ellipsoid. They are the points of intersection of
the coordinate axes and the surface. The three line segments
joining the pairs of vertices on each coordinate axis are called
the axes of the ellipsoid. The axes intersect at the origin of
coordinates, and we call this point the center of the ellipsoid. The
line segments joining the center to the vertices have lengths
a, b, c and these lengths are called the semiazes of the ellipsoid. If
we order these three positive real numbers 2a, 2b, 2¢, the largest
of the corresponding segments is called the major axis of the
ellipsoid, the next largest the mean axis, and the smallest the
minor axis.

We shall show in Chap. 7 that every plane section of a quadric:
1s @ conic. In particular we shall show that the plane sections
of an ellipsoid are ellipses. The plane sections by the planes
z = k are ellipses

g =1 -2 =

(2) a® ' b? c? c?

provided that c¢? > k2. If c¢? = k?, the corresponding planes
59

x2 y2 _ k2 c2 — kZ
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z = +c are tangent to the ellipsoid, and there are no real points
of intersection if ¥ > ¢. The student should make a similar
analysis of the plane sections by planes # = k and y = k and
should examine Fig. 11 carefully.

2

2 2 2
Ellipsoid Z—z + g'é + 5_2 =1
Fic. 11.

If two of the numbers a, b, ¢ are equal, the ellipsoid is a surface
of revolution about that axis which corresponds to the remaining
letter; for example, the ellipsoid

$2+ y? 22
a® c?

3) =1

is an ellipsoid obtained by revolving the ellipse

x2 22
about the z axis. If a > ¢, this ellipsoid of revolution is the
result of a revolution of an ellipse about its minor axis and is
called an oblate spheroid. 1If a < ¢, the ellipsoid is the result of a
revolution about its major axis and is called a prolate spheroid.
If a = ¢, the ellipsoid of revolution is a sphere.
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If a 0,80,y #0,d, e, g, hare real numbers, the equation
(5 flx,y,2) =cx’+ By +v2*+ (dx+ ey +92) + h=0

is equivalent to

, d\? e\’ 7Y\ _
(6) a<x+%)+5(y+’2—6)+7(z+§;>

where

g2
() — —h
Suppose that «a, 8, v all have the same sign. Then if p = 0, the
only real point satisfying f(x, y,2) = 0 is the point (zo, yo, 20)
defined by

- _ 4 - - _ 4
(8) Ty = 2a’ Yo = %' 20 = 271

and the equation is called an equation of a point ellipsoid. 1If p
and « have opposite signs, there are no real solutions of f(z, y, 2)
= 0 and this is an equation of what is called an ‘maginary
ellipsoid. If a and p have the same signs, the equation f(z, y, 2)
= 0 is clearly an equation of the ellipsoid whose semiaxes are

p p p
(9) \[‘; \[B’ \f;

- whose axes are on the lines of intersection of the planes z = z,,
Y = Yo, 2 = 2o, and whose center is the point (x, ¥, 20).

EXERCISES

1. Give the coordinate of the center, the lengths of the semiaxes, and
the equations of the lines on which the axes lie for the following ellipsoids:

(a) 9x% + 36y% + 422 — 18z + 144y + 117 =0

) 2+ 292+ 322 — 2z + 8y — 62 + 11 =

(c) 3z + 4y? + 522 4 6z — 16y + 102 + 23 =0

(d) 3x2 + 3y + 222 — 6z — 12y — 122 +29 =0

2. Give an equation of an ellipsoid with axes parallel to the coordinate
axes, major axis 2a parallel to the y axis, minor axis 2¢ parallel to the
z axis, and center at P in the following cases:

(@ P=(-1,2,3),a=4b=3,c=1

®) P=(, 20),a—5,b—\/_c—2

(¢) P=(—1,-3,1),a=2,b=+3,¢c=1+2

(@) P = (4 12),a—3,b=2 =12
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3. Give the equations of Exercise 2 if the major axis is parallel to the
z axis and the minor axis to the z axis.

2. Quadric cones. Every set of positive real numbers a, b, ¢

defines an equation
x2 2 22

which is homogeneous in z, y, z and thus is an equation of a
quadric cone with vertex at the origin. It is evidently a surface
symmetric with respect to the origin, the coordinate axes, and the
coordinate planes. '

The nature of such a surface is indicated by its sections with
planes z = k # 0. These sections are the curves

k?
=5

(11) =k Sy y

and thus are ellipses with semiaxes

ah bh
(12) — <’
where h = |k|. The student should analyze the sections made
by the planes x = k and y = k.

Every plane through the origin and not parallel to the x axis
is a plane x = ay + Bz, where a and 8 are real. The intersection
of such a plane with the cone consists of points satisfying the
equation z = ay + Bz and the equation

(ay + Bz)?

a2

2 2
+4 -5 =0

CZ

(13)

The coefficient of y2 is a positive real number, and we may desig-
nate it by
oz2 1

(14) V=gt

The coefficient of yz may then be designated by 2vé and that of
2?2 by 62 — p. Then formula (13) becomes

(15) (vy + 82)® — p2? = 0.

If p < 0, the only points on the given plane and cone are the
points 2 = yy + 6z = 0, x = ay + Bz, and thus yy = 0, y = 0,
z = 0. Hence, when p < 0, the only point of intersection of the
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plane and the cone is the origin. When p = 0, the intersection
consists of the line

(16) =ay+B8z, v+ G+ Vpz=0
and the line
(17) t=ay+Bz, v+ (- Vhz=0.

These lines coincide if p = 0.

Every plane through the origin is either the plane z = 0 which
cuts the cone of formula (10) in the origin or is a plane which is
surely not parallel either to the x axis or to the y axis. Since z
and y have symmetric roles in formula (10) if a plane is parallel
to the x axis and therefore not parallel to the y axis, we may
repeat the argument above with the roles of  and y interchanged.
We have therefore proved the following theorem:

Theorem 1. The intersection of the quadric cone of formula (10)
with a plane through its vertex consists either of the vertex or of two
lines that may be coincident.

3. Hyperboloids. If the numbers «, 8, v of formula (5) are not
zero but do not all have the same sign, we may multiply by —1
if necessary and hence assume that

(18) a>0, B>0, ~v<O0.

We may then convert formula (5) into formula (6) and see that.
if p = 0 formula (6) becomes the equation

(19) (z —a2$t))2 T (y —1)2?/0)2 _ (2 ‘6220)2 —0
of a quadric cone with
1 1 1
a = ’(;é} ﬂ = -i)_é, -y = 'Eé

and vertex (Zo, %o, 20) given by formula (8). Assume then that
p # 0.
If p > 0, formula (6) becomes the equation

— 2 — 2 — 2
(20) (CC azxu) + (.7/ bzyO) _ (Z 62z0) — 1,
where

2 = P 2 = P 2= _ P
(21) a - b 8 c 5
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This is an equation of a surface called a hyperboloid of one sheet.
The point zo, %o, 20 is called the center of this surface, and the
surface is symmetric with respect to the translated origin, the
translated coordinate axes, and the translated coordinate planes

n

_—t s

e —
- ~
S

o

3 y? 22
at bt 2
F1a. 12. Hyperboloid of one sheet.

after a translation of axes that carries the origin to the center.
Let us assume then that the origin is the center and therefore

study the equation
(22)

a? ' b ¢
The sections of this hyperboloid by the plane z = k are ellipses

y? kZ%_CZ _
Eé = 62 ) 2 —-k

2 2 2
z2 |y 22 _

x2
(23) pria

with center at the origin for all real values of k. The semiaxes of
these ellipses are

(24) SvEFe, CVELS

QIo

and increase as |k| increases. _
The sections of the hyperboloid of formula (22) by planes
y = k are hyperbolas
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2 2 2 2
/(25) 2 22 b—k

a7 T
for all values of k except k¥ = +b, and the semiaxes of these
hyperbolas are

(26) CVIE=E, VIR

When k£ = +b, the corresponding sections are pairs of straight
lines

27) z=+-(;—x, y = k.

A similar analysis of the plane sections by planes £ = k should be

carried out by the student.
When p < 0, formula (6) becomes

— 2 _ 2 —_ 2
(28) G ol Lo,
where

2 = o _I_)’ 2 = B, 2 = B-
(29) a - b 5 c Y

(0,0~¢)

F1a. 13. Hyperboloid of two sheets.
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(@0, Yo, 20) is called the center of the hyperboloid, and we may
translate the axes to the center and thus simplify the equation.
Let us assume then that the origin is the center and therefore
study the equation

@ 2T Y =1

We shall call the numbers a, b, ¢ of formulas (19), (20), and (28)
the semiaxes of the three types of surfaces we are considering.

The sections of a hyperboloid of two sheets by the planes
z = k are given by

2 2 2 _ o2
31) 22 yr kP —c¢

a® ' b2 c?
and therefore are ellipses with semiaxes

aVk?— c? b\Vk? — ¢?
c ’ c

provided that |k| > ¢. If, however, —c¢ < k < ¢, the plane
z = k does not intersect the hyperboloid and thus there are no
points on the hyperboloid of formula (30) between the plane
z = c and the plane z = —¢. The points (0, 0, ¢) and (0,0, —¢)
are the respective intersections of the planes z = ¢ and z = —¢
with the hyperboloid and are called its vertices. It should be
noted that a hyperboloid of two sheets actually consists of two
separated surfaces such. that z = ¢ on one of the parts and
z £ —c on the other.

The sections of a hyperboloid of two sheets by planes z = k
are all hyperbolas

)

(32)

(33) e bt a?

with semiaxes

(34) cVk*+ a® bVE + a®
a a

Similarly the sections by planes y = k are all hyperbolas.
We have now completely classified all surfaces given by equa-
tions of formula (5) for aBy # 0.

EXERCISES

1. Give a necessary and sufficient condition that the surfaces of
formulas (19), (20), and (28) shall be surfaces of revolution.
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2. Classify the following surfaces and give the center, the axes of
symmetry, and the semiaxes in each case:

(@) 22 +2y? — 22+ 6z — 4y + 11 =0

b) 22 —2y? — 322+ 40 — 6y + 122+ 11 =0

(¢) 222 — 3y + 422+ 62 — 9y + 122 =0

(d) 222 — 2y? — 322 + 16y + 12z = 44

() 4r? 4+ 92 — 922+ 8x+ 2y — 18+ 11 =0

(f) 42 — 4y? — 922 — 8x + 8y — 36z = 0

4. Lines on a hyperboloid. We shall begin our discussion of
lines on a hyperboloid by proving the following:

Theorem 2. A hyperboloid of two sheets contains no lines.

For the line x = z¢ + t§, y = yo + tn, 2 = 2o + ¢ will lie on
the hyperboloid

PR S A
if and only if
2 2 2

for all values of . This equation is then an identity in ¢ and the
coefficients of 1, ¢, and ¢* in the two members must be equal, 7.e.,

Zo® _ Yo? | Zo? o _ Yon | 2o £ 9
B) -ftatl TRt apte
Then
2ot\' [y | 26\ _ [, 2\ [yo? | 20
and
7% % m%20® 4 Py’ — 2ymzel

However, this expression is a sum of three real squares and can
vanish only when the squares vanish separately. Thus n = ¢
= 0, and the last equation of formula (36) implies that £ = 0,
¢ = 0. Then our line degenerates tox = xo, ¥ = Yo, 2 = 2o, that
is, no line lies wholly on the surface.

We next pass on to the case of a hyperboloid of one sheet.

The lines
2 _ v), T _2\_,_9
(39) +E—>‘(1+b> )\(a c> b

ely



68 SOLID ANALYTIC GEOMETRY [Chap. 5

defined for all real numbers A, consist of points wholly on the sur-
face defined by formula (22). For if Py = (o, Yo, 20) is & point
on a line of formula (39), then

o _ ot _ wo) (20 _ 20\ _ (1 L w0\ (1 _ ¥
40 cz‘“(”b)(a c) (”b)( b)

= Yo’
=1-3p
and P, is on the hyperboloid. Conversely, if P, is on the surface,
then

To 4 Zo)(Zo _ Zo) _ Yo _ Yo,
@ @@ -0+50-%)
If the denominator of

_ 1 — yo/b
(42) N G = God)

is not zero, the point P, lies on the unique line of the family of
formula (39) determined by this value of \. If both numerator
and denominator are zero in formula (42) P, is on the line uniquely
determined by A = zo/a. Finally, if the numerator of formula
(42) is not zero and the denominator is zero, then P, is on the line

Yy _ T_%2_
(43) 1+¥=0, Z-Z2=o.

This line is regarded as being that member of the family of lines
of formula (39) defined for the infinite value of A.

The family of lines defined by formula (39) is called a regulus
of the corresponding surface, and we have proved that through
every point of the surface there passes one and only one line of
the regulus. The family of lines defined by

z_z_ ¥), oAy -Y
(44) a ¢ “(1+b) “(a+c) 1 b

is a second regulus of the surface of formula (22), and it should
be evident that it can be similarly proved that one and only one
line of this second regulus passes through a point on the surface.

The two reguli of a hyperboloid have no lines in common; for
let us suppose that a particular value of A and a particular value
of u give the same line. The point y = b, x = a\, z = ¢\ is on
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the line of formula (39) and when substituted in formula (44)
gives g = 0. Then the point y = b, z = z = 0 is on this second
line and substitution in formula (39) yields A = 0. However,
the two resulting lines

z 2 z
(45) a_ T y =0b; P

) y‘=b

(SRR

have only the point (0, b, 0) in common and cannot coincide.

If P is a point on a hyperboloid of one sheet, there are exactly
two lines on the surface that pass through P. For the line
through zo, yo, 20 and having direction numbers &, 5, ¢ will lie on
the surface S of formula (22) if and only if

(To + t£)2 (Yo + tn)? _ (20 + 1)
a? b? c?
is identically zero in ¢. This requires that (xo, ¥, 20) shall be a
point of S and that

2 1,2 {2 xs
atp—a=0 o

+

Then (&, 9, ¢) is a point not the origin and on the plane
g,

and the cone

2y 2y

a® " b* c? )
By Theorem 1 this plane through the origin cuts the cone in
exactly two lines through the origin. Let the coordinate of two
nonzero vectors on these two lines be (&, 13, ¢1) and (&2, 19, £2),
respectively, so that every point on the first line is a vector
(&, m, ¢) = p(§1, m, &1) and every point on the second line is a
vector (&, 0, §) = q(&s, n2, {2). Since all nonzero scalar multiples
of a vector (&, », {) define a set of direction numbers of the same
line as (§,9,¢), we have shown that there are not more than
two lines through a point on the surface of a hyperboloid. We
have also proved the existence of two lines lying in two reguli and

the proof is complete.

EXERCISES

1. Substitute the value y = b in formulas (39) and (44), and thus
determine a point on a corresponding line of the reguli. Determine a
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second point with ¥y = —b, when X\ % 0 and when u # 0. However,
when A = 0, show that (a, b, —c) is a point of the line and that, when
p =0, (a, b, ¢) is a point of the line. Use these values and the infinite
case to determine a set of direction numbers for any line of the two reguli.

2. By symmetry we see that a hyperboloid of formula (22) has the

regulus
SERI S TR RE

!
|
RYES
It

(OHEN R

By substituting the points of Exercise 1 show that the first of these two
reguli is precisely the regulus of formula (44) and that the second is the
regulus of formula (39).

3. Show that every plane through a line of the regulus of formula (39)
also contains a line of the regulus of formula (44). HinT: The planes
through a line of formula (39) are all of the form

x oz Yy - Y z oz
ate 2 (rg) =kt 2 (G -9) )

4. Show that every plane of Exercise 3 is tangent to the surface at the
point of intersection of the two generators.

5. Write out the equations of the reguli of the following hyperboloids,
and determine which pair of lines of the reguli pass through the corre-
sponding point.

yr 2

(a) 4 + 9 1—6=11 (2) _1,§)

2
%+ -5 =164 -1

() x2+y —22=1,(372,0,1)

6. Show that there are no lines on the surface of an ellipsoid by using
the method of the proof of Theorem 2.

b. Paraboloids. By consideration of symmetry we see that a
discussion of formula (5) in the case where two of the numbers
a, B8, v are not zero and the remaining number is zero need only
be carried out for the case where o8 % 0, ¥ = 0. We may also
assume that « > 0, since we may multiply formula (5) by —1 if
necessary. Let us also assume in this section that g % 0. We
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may then convert formula (5) into

(46) a(x — 20)® + B(y — yo)® + 29(z — z0) = 0,
where

d e h d? e?
@) o= —go  m=—gp =gt

We translate the axes to (2o, ¥o, 2) and divide the equation of
formula (46) by — |2¢| to convert it to the form

2 2
(48) T +Y e,
if a8 > 0, and to
2
(49) LA

if a8 < 0, wheree = 1 or —1.

-

e m—————w

zz g2
@t
Fia. 14. Elliptic paraboloid.

=2

Equation (48) is an equation of a surface called an elliptic
paraboloid. Its plane sections, by planes z = k, are ellipses

x? 2
(50) S
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if ek > 0. The plane z = 0 cuts this parabola at the origin and
this point is called the vertex of the paraboloid. The plane sec-
tions z = k and y = k of the paraboloid are parabolas.

z? k?

(51) C—a—ry u=k
and
2 2
(52) L —a-% o=k
z

zr oyt

at bt

Fic. 15. Hyperbolic paraboloid.

Equation (49) is an equation of a surface called a hyperbolic
paraboloid. Its sections, by planes z = k, are all hyperbolas

xZ y2

@ ek

(53)

except for the section ’

X y :l?ﬁ:l_/_= =
Q+QQ Q 0, =2=0

by the plane z = 0. This section consists of the line

2—51 z2=0

and the line
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The hyperbolic paraboloid of formula (49) has two reguli.
They are given by the equations

LY _ T _Y)y 2
(54) S+ =), x(a b)
and

z _ T, Y\ _
(55) PR Sl m (& + B) = 1.
The student should show, as an exercise, that the lines of the first
regulus are parallel to the plane bx = ay and that those of the
second regulus are parallel to the plane bx = —ay. These are
then two distinct lines through each point of the surface. The
hyperboloid of one sheet and the hyperbolic paraboloid are some-
times called ruled surfaces.

It is easy to show that there are no lines on an elliptic parabo-
loid; for a line is defined by direction numbers (£, », {) # (0,0,0)
and a point (xo, Yo, 20) such that

_ (o + 1) | (yo + tn)?
b2

R

o) = +

a?

- E(Zo + tf) = 0)

and thus

g2 £ om
(;2"*“1?:0, 2a—2+5—2 —€§=0.
Then § = n = ¢ = 0, a contradiction.

We have already found two distinct lines through each point
(o, Yo, 20) of the surface (49), and they are the line of formula
(54) determined by

\ _ @o/a) + (o/b) _ 1
€29 (xo/a) — (yo/b)
and the line of formula (55) determined by
_ (@/a) — (u/b) _ 1 )
# ez (@o/a) + (Wo/b)

To prove that these are the only two lines, we examine the
equation

o(t) = —e(z0+ ¢t) =0

(o + £)*  (yo + nt)?
a? b?
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and thus see that

£ 7 Eo _ MYo .
@~ e €T
Then
_ . b = (% - Yo
n= E a & ¢ = (ea" ;ab> &

i.e., all sets of direction numbers £, 9, ¢ are scalar multiples of the

two sets
b Yo b Yo
Qaaéar L=2@tw)
This proves that there are exactly two lines on the surface through
each point of a hyperbolic paraboloid.

EXERCISES

1. Determine a set of direction numbers for the lines of formulas (54)
and (55) by using the value z = 0 and the value y = kb.

2. Write out the equations of the reguli of the following paraboloids
and of the particular lines of the reguli through the corresponding
points:

x2 2

@5 —%=2,431
x2

(b) 'Z - y2 = _221 (2) 1:0)
PLIT

(C) —6 - '—4— =z, (6) 6) —5)

6. Cylinders. The equation of formula (5) reduces to

d\* d\*
(56) a x+§?¥ + B ?/+% =p

ifaB #0andg =0. If a > 0,8 > 0, this equation is an equa-
tion of what is called an elliptic cylinder. Its sections by planes
z = k are evidently ellipses, and we have already proved that
there is one line on the surface through each point of it.

If« > 0,8 > 0,and p = 0, the surface defined by formula (56)
consists only of the point

__ d _ _4d
T = QZ’ Yy = -2—3"

and if a8 > 0, p < 0, there are no real points on the surface.
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If « > 0 and 8 < 0, formula (56) is an equation of a hyper-
bolic cylinder when p = 0 and of two planes through the z axis
when p = 0. This completes the case of surfaces defined by
formula (56).

There remains the case where two of the numbers «, 8, v of
formula (5) are zero. We may then assume that a« = 1, since
we can always divide the equation by o % 0. Then formula (5)
becomes

(57) 224 2(dx + ey + g2) + h = 0.

In Chap. 7, we shall show how to select a coordinate system
such that a surface defined by formula (57) has the form of (57)
with ¢ = 0. Then the equation reduces to
(58) (x + d)? = —2ey + d? — h.

This is an equation of a parabolic cylinder when e 5 0; it is an
equation of two distinct parallel planes when e = 0, d? # h; it
is an equation x = —d of two coincident planes when e = 0,
d? = h; and is a surface with no real points when e = 0, d < h.

7. Classification of quadric surfaces. A quadric surface is
defined by an equation f(z, y, 2) = 0, where f(z, y, 2) is a poly-
nomial of degree two. We shall prove in Chap. 7 that it is
always possible to select a coordinate system such that the sur-
face is defined by an equation of formula (5) where the numbers
a, B, v are independent of the choice of the coordinate system.
Let us call these numbers a set of characteristic roots of the sur-
face. They are unique apart from a proportionality factor ¢,
which may be introduced by multiplying f(x, v, 2) = 0 by ¢ # 0.

Quadric surfaces may be classified according to the properties
of their sets of characteristic roots and the number of lines of the
surface through each point of the surface. The classification
follows:

1. CHARACTERISTIC ROOTS ALL OF THE SAME SIGN. Such
surfaces are either ellipsoids, point ellipsoids, or imaginary ellip-
soids. There are no lines on such surfaces.

2. THREE NONZERO CHARACTERISTIC ROOTS NOT ALL OF THE
SAME SIGN.

a. The quadric cone. This is a surface containing a point (its
vertex) through which pass infinitely many lines of the surface.

b. The hyperboloid of one sheet. There are precisely two lines
of the surface through every point of it.
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c. The hyperboloid of two sheets. There are no lines on this
surface.

3. A ZERO ROOT AND TWO NONZERO ROOTS HAVING THE SAME
SIGN.

a. The elliptic paraboloid. There are no lines on this surface.

b. The elliptic cylinder. There is exactly one line of the surface
through each point of it. This surface may reduce to a point or
it may be imaginary.

4. A ZERO ROOT AND TWO NONZERO ROOTS HAVING OPPOSITE
SIGNS.

a. The hyperbolic paraboloid. There are two distinct lines of
the surface S through each point of S.

b. The hyperbolic cylinder. One and only one line of S passes
through each point of S.

c. Two distinct planes through a line. There are infinitely
many lines of S through each point of S.

5. THERE IS ONLY ONE NONZERO CHARACTERISTIC ROOT.

a. The parabolic cylinder. One and only one line of S passes
through each point of S. -

b. Two distinct parallel planes. There are infinitely many
lines on S through each point of S.

¢. Two coincident planes. This is the only place in the classi-
fication where lines and sets of characteristic roots are not
adequate to separate cases. It is evident that the line criterion
separates (¢) and (a) into distinct types. The separation of (b)
and (c) requires a count of planes rather than of lines.



CHAPTER 6
THEORY OF MATRICES

1. Matrices. A rectangular array is called a matriz. An m
by n matrix is an array

aii . e . Ain
1) A =

Am1 .« o o Amn,

The horizontal lines in this array are called its rows. They are
n-dimensional vectors and the ¢th row is (a;1, . . . ,ain). FEvery
(row) vector is thus a one by n matrix.

The vertical lines in A are called its columns. The jth column
of A is

ay;
(2) S B
Amj

and A has n columns. Each column may be thought of as being
an m-dimensional column (7.e., vertically written) vector, and
is an m by one matrix.

The scalar in the 7th row and jth column of A has been desig-
nated, by implication, as a;;, where the first subscript always will
indicate the label of the row and the second subscript the label
of the column in which ay; appears. It will be convenient to use
the notation

(3) A=(aii) (1’.=1:'--7m;j=17"')n)y

instead of the more cumbersome notation of formula (1).

A matrix A is called a square matrix if it has as many rows as
columns, that is, 4 is an n by n matrix. A square matrix having
n rows and columns is called an n-rowed square matrix or a square

matrix of order n.
77
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ORAL EXERCISES

1. Read off the elements a;3, @24, @51, @26, @36, @42, ass in the following
five by six matrix:

2 -1 3 1 4 5
0 -2 -4 6 7 8
1 0 -2 4 3 -5
-1 2 1 -2 1 1
0 0 2 0 -1 0

2. Read off the third row and the fourth column of this matrix.

2. Addition and scalar multiplication. The sum A + B of
two rectangular matrices A and B is defined only when A and
B have the same size. If
(4) A = (ay), B = (b

z=1,...,m3=1,...,n)

then the sum of the m by n matrix A and the m by n matrix B
is the m by n matrix
(5) C=A+B=/(c), ¢ =a;+by

=1 ...,myjy=1 ... n).

In words, matrices are added by adding corresponding elements.

Lemmas 1 to 5 of Chap. 1 are special cases of the corresponding
properties of matrix addition. The student should formulate and

“verify the matrix properties. Note that the zero m by n matrix
is the matrix whose elements are all zero. We shall use
the symbol 0 for such a matrix no matter what its size is, and the
size will always be given by the context. The matrix —A4 is the
matrix whose elements are the negatives of the elements of A;
B — A is obtained by subtracting the elements of 4 from those
of B. _

If @ is a number and A is an m by n matrix, the scalar product
is the m by n matrix obtained by multiplying every element of
A by a. Thus if A = (a;), the element in the ¢th row and jth
column of aA is aa;;. Clearly 14 = A, (—1)A = —4,a4 =0
if a = 0. We also have the properties
(6) a(bA) = (ab)A4, (@ + b)A = ad + b4,

a(A + B) = aA + aB
for all numbers a, b and all m by n matrices A, B. The verifica-
tion of these properties is very simple and will not be given here.
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ORAL EXERCISES

1. Form the matrix sums A + B in the following cases:

3 -1 2 4 1 2 -3 —4
@ A={(2 1 o0 -3} B=(-1 -2 1 3)
4 -2 1 0 —2 2 -1 0

2 1 3 3 -1 -2
[ 4 1 2 (-3 1 -1

(®) 4=z 1 of * 2 -1 0)
0 -1 3 11 -3

2. Give —A and — B for the matrices A and B of Oral Exercise 1.
3. Give 24 and —3B for the matrices A and B of Oral Exercise 1.
4. Give —2A + B for the matrices A and B of Oral Exercise 1.

3. Matrix multiplication. The product A B of two rectangular
matrices A and B is defined only if the number of columns of A
is equal to the number of rows of B.

Let us then assume that A is an m by n matrix and that B is
an n by ¢ matrix. Then the 7th row of A is an n-dimensional
vector

(7) A; = (an, Qiz, . . . ,ain)-

The kth column of B is also an n-dimensional (column) vector,
which we may write horizontally as

(8) * B® = (b, bk, . . ., bu).
The inner product
9) gir = A;» B® = anbu + © + © + Ginbur
of the 7th row of A and the kth column of B is defined for 7 = 1,
.,mandk =1, ... ,¢ and therefore the m by ¢ matrix
G= () @G=1,... mk=1 ...
is also defined. We call G the product of A and B and write
G = AB.

It is a matrix whose element in the 7th row and kth cclumn is the
inner product of the 7th row of A and the kth column of B.

Lemma 1. Mairiz multiplication is associative, that is, (AB)C
= A(BC) for all m by n matrices A, n by t matrices B, and t by s
matrices C.
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For we may write A = (a;;), B = (bjx), C = (¢xp), wherei = 1,
oo ymyi=1 ... k=1 ... ,p=1...,s The

n

general element of AB is z aiibir and that of (AB)C is dip =

J=1
t n t
z (Z aibir ) ckp. The general element of BC is z b;xckp and
k=1 i=1 k=1

n t

that of A(BC) is gip = z a,-,»(z b,-kck,,). The two finite double

i=1 k=1
sums d;, and g:p are sums of exactly the same products a:;b;kck, and
are equal for all valuesof 7 = 1, . . . ,m,andofp =1, . . . |s.

This proves that A(BC) = (AB)C.
Lemma 2. Matrixz multiplication s distributive with addition,
r.e.,

(10) A(B+C) = AB+ AC, (B+ C)D = BD + CD

for all m by n matrices A, n by t matrices B and C, and t by s
matrices D.

For let A = (ai), B = (bjx), C = (cjx), wherez =1, . . . , m;
i=1...,nk=1,...,t Then the element in the 7th

row and kth column of A(B + C) is z a:j(bjr + cixr) and the
i=1

matrix equality A(B + C) = AB 4+ AC is equivalent to the

formula

(11) 2 aii(bix + cix) = Z aibir + z QiiCik.
=1 =1 i=h

This formula is evidently correct. The proof that (B + C)D =
BD + CD is carried out similarly.

EXERCISES

1. Form the matrix product AB in the following cases:

2 -1 3 2 1 3 4

1 2 -1} B=(-1 2 o o0

@ A=l3 2> <3-1 2—3)
0 -3

O LR (i

0 2
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-1 2 1 0 _; __‘11 0

¢ A= 2 -1 1 3) B=
-1 1 -1 1 -3 2 2
1 0 -1

2. Form the matrix product BA in those cases of Exercise 1 where it
exists.

3. Form the matrix products A(BC) and (AB)C if A and B are given
by part (b) of Exercise 1 and

1 -1
2 0

C=\-1 2/
3 -1

4. Form A(B + C) and AB, AC, AB + AC if A and B are given by
part (c) of Exercise 1 and

1 -3 0

-2 0 -1

C=\ 2 -1 —1f
-1 1 9

4. Transposition. If the rows and columns of an m by n
matrix A are interchanged, the result is an n by m matrix A*
(read A transpose) called the transpose of A. The operation of
transposition thus consists of writing the column vectors of A as
row vectors of A*. If a;; is the element in the 7th row and jth
column of A, then a;; is the element in the jth row and 7th column
of A*,

If P=(xy,...,%,) and Q = (¥, . . . ,yn), the matrix
product PQ* of the one by n matrix P and the n by one matrix
Q* is given by

Y1
(.’121,...,I,.) . =x1y1+"'+xnyn.

Yn

Hence, the inner product P - Q of two n-dimensional vectors P
and Q coincides with the matrix product PQ*.

Theorem 1. The transpose of a product of matrices s the
product of the transposes of the factors in reverse order, that is,

(12) (AB)* = B*A*.
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For let A = (a¢;) and B = (bi), where ¢ =1, ... ,6 m;
j=1...,n;k=1,...,t Then the element in the kth

n
row and 7th column of (AB)* is ¢ = z a;ibjx. The element in
i=
the kth row and jth column of B* is bjx, the element in the jth
row and 7th column of A* is a;;, and therefore the element in the

kth row and 7th column of B*A* is E bjra; = Cig Hence,
=1
(AB)* = B*A*.

J

ORAL EXERCISE
Show that if A is an m by n matrix then C = AA* = C*,

b. Special matrices. The elements a;; of any matrix A = (a;))
are called the diagonal elements of A and the line of these ele-
ments is called the diagonal of A. The elements a;; with j > ¢
(column label greater than row label) are said tq lie above the
diagonal of A and those with j < 7 are said to lie below the diagonal
of A.

A matrix is called a {riangular matrix if A is a square matrix
such that either all of the elements above the diagonal in A are
zero or all of the elements below the diagonal in A are zero.
Examples are

1 0 0 0 0
2 -1 4 3
2 6 0 0 0
0 2 -1 5
0 0 6 2
0 0 0 1 4 1 2 3 0
5 —1 6 7 -8

If A = (a;) is a square matrix such that a; = 0 for every
1 # j, we call A a diagonal matrix. The notation

(13) A = diag {a,, as, . . ., an}
will be used for an n-rowed diagonal matrix whose 7th diagonal
element a;; is the number a;.

A diagonal matrix whose diagonal elements are all equal is
called a scalar matrix. The scalar matrix whose diagonal ele-
ments are all unity is called the identity matrix and will usually
be designated simply by I. Then we may verify by direct
multiplication

(14) I.A = Al
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for any m by n matrix A where we have used subscripts on I to

indicate the sizes of the identity matrices involved. Observe

that a scalar matrix whose diagonal elements are all a is the

scalar product al and that the matrix product (al)4 is equal to
the scalar product a4 for any matrix A.

6. Products in terms of rows and columns. Let A = (ayj)

and B = (by), where et =1, ... m;j=1 ... ,n; k=1,
., . Designate the jth row of B by

B; = (bj1r, by, . . . , b)) (G=1,...,n)
and form
Ci = auB1 4+ @B+ -+ © + ainBa.
Then the element in the kth column of the vector C; is a;bix
+ aibar + - -+ + ainbnr.  This is the element in the 7th row

and kth column of A B, and we have proved the result about rows
in the following theorem. The result about columns is proved
similarly.

Theorem 2. The ith row of AB s that linear combination of the
rows of B whose coefficients make up the ith row of A. Thekth
column of AB is that linear combination of the columns of A whose
coefficients make up the kth column of B.

We apply Theorem 2 in the case where A is a diagonal matrix
so that each row of A has only one nonzero element and this
element is in the 7th column of A. This yields the following
result:

Theorem 3. Let A = diag {a1, . . . , a.} and B be an n by
n matriz. Then the ith row of AB s a; tymes the ith row of B. If
D = diag {d,, . . . , du} the jth column of BD s d; times the jth

column of B.
The result given in formula (14) is clearly a special case of
Theorem 3.

EXERCISES

1. Show that if A is a square matrix such that AD = DA, where Disa
diagonal matrix having distinct diagonal elements, then A is a diagonal
matrix.

2. Use the property of Exercise 1 to prove that if A is an n-rowed
square matrix commutative with all n-rowed square matrices (i.e,
having the property that AB = BA for every B) then A is a scalar
matrix. HiNT: Form the products AC; and C;A where C; has 1 in the
first row and jth column and zeros elsewhere.
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7. Partitioning of a matrix. The elements which appear in r
of the rows and s of the columns of an m by n matrix A form an
r by s matrix which is called a submatriz of A. The r rows need
not be adjacent. When all r rows and all s columns of a sub-
matrix of A are adjacent, then we shall refer to the submatrix as
being a block of elements of A.

Every matrix A may be partitioned into four blocks, and we
may write

(15) 4= (A:; A4)
Here A = (aij)) fori =1, ... mandj=1, ... ,n andthe
partitioning is completely determined when we write
(16) Av=(aij) (@ =1,...,r;5=1,...,8).
Then we are assuming that
A, = (ai) =1 ...,7=8+1,...,n),
Az = (ay) @G=r4+1,...,mji=1,...,9),
Ai=(ay) GG=r+1,... mji=s+1 ..., n).

Let A be partitioned as in formula (15). This partitioning is
determined by the fact that A; is an r by s block in the first r
rows and first s columns of A. Then we shall say that an n by
! matrix B is partitioned similarly to 4 if

_(B: B:
(17) B = (Bs B4>
where B, has s rows. The number ¢ of columns in B, is com-

pletely arbitrary and so is the number of rows in A;. We then
multiply A by B and have

AB = (AlBl + A:B; A.B: + AzB4>
A3B, + AiBs A;By, + AuBy)’

Formula (18) states that if two matrices are partitioned simi-
larly we may multiply them as if they were two-rowed square
matrices whose elements are, of course, not numbers but blocks.
The formula is very easy to derive. We first note that formula
(18) states that the block of AB which makes up its first r rows
and first ¢ columns is A1By + A2B;. The first r rows of A make
up a block of elements that may be designated by (A:4:) and

(18)
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the first ¢ columns of B may be designated by

The element in the 7th row and kth column of AB is z aiibjr =

i=1
8 n
Z a.-,-b,-k+ z (lijbjk. Ifs = 1, e e ,randk = 1, Ce ,qthe
j=1 j=s4+1
A
sum z aibix is the element in the 7th row and kth column of
j=1

n

AB, and 2 ai;bix 18 the element in the 7th row and kth column

j=s+1
of A2Bs. This proves that,

(4, A») (g;) = AB; + A.Bs;.

The remaining relations in formula (18) are proved similarly.
It should be observed that formula (18) is the result of focusing
attention on certain rows of A and certain columns of B and of

breaking up the general sum Z aiibix into the sum of two partial

i=1
8 n
sums zaijbjk and E ai;bjr. The formula is of particular use
i=1 J=s+1

in cases where a block is a zero matrix or an identity matrix.
For example, let A and B be n-rowed square matrices, and write

(I ¢ (B B
(19) A“(o 1)’ B‘(m 134)

In this formula we are using the same symbol / for an r-rowed
identity matrix and for an (n — r)-rowed identity matrix, the
matrix C is an r by » — r matrix, and the matrix O is an n — r
by r zero matrix. Then

_ (Bi+ CBy B,+ CB,
AB‘( B B, )

It follows that in this case the last n — r rows of AB coincide
with the corresponding rows of B. However, each of the first »

(20)
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rows of AB is the sum of the corresponding row of B and a
linear combination of the last » rows of B.

EXERCISES

A1 Az 1 0 =0
As Ay \C I

then A; and A4 are zero matrices.

2. Show that if
A1 0 Bl 0 =1
Az A4 0 B2

then A,B; and A,4B, are identity matrices. This will be shown later to
imply that A,B, = B;A,. Use this property to prove that A, = 0.

8. Determinants. Every n-rowed squaré matrix A = (a;)
has a determinant that is a certain function of the clements of A.
We designate the determinant of A by |A|, by |asj|, or by

1. Show that if

a1y Q2 ° U1

Ao Qo2 a2
ey "

Any 2% ot Ann

We shall refer to the determinant of an n-rowed square matrix
as an n-rowed determinant or a determinant of order n. Rec-
tangular matrices with m # n do not have determinants, but
every r-rowed square submatrix of any matrix A has a determi-
nant that is called an r-rowed minor of A.

We shall define |A| by an induction on n. If n =1, the
matrix A = (au), and we define |A| = a;1. Assume then that
we have a definition of all (n — 1)-rowed determinants.

Each element a;; of an n-rowed square matrix A defines a row
and a column of A. Delete this row and column of 4, and obtain
a submatrix A;; of A. This submatrix 4;; has n — | rows and
columns and thus has a determinant |A;] that is an (n — 1)-
rowed minor of A defined for every 7 and j. Designate by b
(not by bi;) the number

(22) (=144

and call this signed minor the cofactor of a;; in A. Then bj; is the
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element in the jth row and 7th column of a matrix
(23) adj 4 = (bi) G,i=1,...,n),

which is called the adjoint of A.
Let us now form A(adj A) = C = (ci), where

(24) e = aibux + -+ + + Qb

is obtained by multiplying the elements of the 7th row of A by
the cofactors of the elements of the kth row of A and adding the
resulting products. We similarly form (adj A)A = D = (dw),
where

(25) dii = bragii + © + + + brnQni

is obtained by multiplying the elements in the 7th column of A
by the cofactors of the elements in the kth column and adding
the resulting products. In particular ¢; is the sum of the prod-
ucts of elements in the 7th row of A by their cofactors and dj is
the sum of the products of the elements in the kth column of A
by their cofactors.

It can be shown that the » numbers ¢;; and the n numbers dix
are all equal. We define the common value of these 2n numbers to
be the determinant of A. We have thus given not only a definition
of a determinant but what are called the expansions of it accord-
ing to any row and any column.

EXERCISES
1. Expand the following determinants according to the first row:
1 -1 2 2 1 =2 2 -1 1 1
(a) 3 1 -2 @4 0 -1 1 (c) |1 1 0 1
1 2 3 -2 1 0 2 2 0 -
1 -3 -2
2 -1 =2 1 3 -1 2 -1
-1 2 1 1 -1 1 0 1
@l 1 -3 -1 -2 @11 2 3 2
2 1 -2 3 2 -3 -1 1

2. Expand each of the determinants of Exercise 1 according to the
second row.
3. Compute the adjoint of each of the following matrices:

-1 2 1 1 -1 1 0 -1 2
(a)< 2 -1 3) (b)( 2 2 —1) (c)( 2 -1 3)
1 2 -1 -1 1 3 -4 2 1
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9. Properties of determinants. We shall assume the following
properties of determinants.

Lemma 3. A square matriz and its transpose have the same
determinant.

Lemma 4. Let B be the result of interchanging two rows (col-
umns) of a square matriz A. Then |B| = —|A|.

Lemma b. Let B be the result of multiplying a row (column) of
A by a number a. Then |B| = alA]|.

Note that this result implies that |a4d| = a*|A].

Lemma 6. Let B be the result of adding a scalar multiple of a
row (column) of A to another row (column). Then |B| = |A]|.

Lemma 7. Let a row (column) of A be a scalar multiple of
another row (column). Then |A] = 0.

If we multiply the elements of the 7th row (column) of A by
the cofactors of the elements in its kth row (column), the result
is the expansion according to the kth row of the determinant of a
matrix B obtained by replacing the kth row (column) of 4 by
its 7th row (column). Then two rows (columns) of B are equal
and |B| = 0. But |B| is the number c¢;;, of formula (24) in the
row case and is the number di; of formula (25) in the column
case. Hence, cix = ¢xi = 0 for 7 ## k and ¢i; = di; = |A|. This
yields the following result:

Theorem 4. Let A be an n-rowed square matrixz. Then

Aladj A) = (adj A)A = |A|I

1s the scalar product of the n-rowed identity matriz 1 by the deter-
minant of A.

Any square matrix A can be converted into a diagonal matrix
by a finite sequence of transformations of the types given in
LLemmas 4 and 6. Indeed if A # 0, we can carry any nonzero
element a, of A into its first row and column. We can then sub-
tract multiples of the first row from the remaining rows and
multiples of the first column from the remaining columns and
convert our matrix into

_ [ 0
m- (5 %)

where A; has n — 1 rows and columns. The same procedure
may be applied to A, by applying transformations to the last
n — 1 rows and columns of B;, and we ultimately convert 4 into
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a diagonal matrix D. If A has been converted into D by trans-
formations involving an even number of row and column inter-
changes, then |4| = |D|. Otherwise, we change the sign of a
row before obtaining the final diagonal matrix D and will have
|A| = |D|. Then |4]| may be computed by the use of

Lemma 8. The determinant of a triangular matrix T is the
product of the diagonal elements of T.

1t is clearly sufficient to consider the case where the elements
above the diagonal in T are all zero. Then

a 0

T=1s 1

where T, is a triangular matrix of n — 1 rows. Expand T
according to its first row, and see that |7'| = a:|T:|. Apply the
same procedure to 75, and ultimately obtain the result of the
theorem.

We should observe that if the transformations used to convert
A to a diagonal matrix D such that |A| = |D| are applied to any
square matrix B of any size the resulting matrix C' will have the
property that |B| = |C|. For C results from B by a finite number
of transformations of the kind in Lemmas 4, 5, and 6 and there
are only either an even number of those in Lemma 4 and none of
those in Lemma 5 or there are an odd number of those in Lemma
4 and one of those in Lemma 5 with a = —1. We use this
result to prove

Lemma 9. Let

A O A H
(26) C=h Bp D_k J

where A and B are square matrices. Then
(27) ICl = |D| = |A] - [B].

To prove this result, we apply a sequence of transformations
to C and to D which convert A to a diagonal matrix A, and Btoa
diagonal matrix B, such that |A| = |40 and |B] = |By|. These
transformations convert C and D, respectively, to

_ 0 0 _ Ao Ilo
Co = (Go BO)’ Do = (0 BO)'

Then |Cy| = |C|, |Do| = |D|. But the new matrices Co and D,
are triangular matrices and their diagonal elements are the
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diagonal elements of Ao and B,. Then |Cy| = |4l * |Bo| = | Dol
and |C| = |D| = |A]| - |B| as desired.

We use Lemma 9 in the proof of the very important result that
we state as follows:

Theorem 6. The determinant of a product of n-rowed square
matrices s the product of the determinants of its factors, i.e.,
|AB| = |A] - |BJ.

To prove this result, we consider the 2n-rowed square matrix

A 0
- o (4 0)
Form the product
I A 0 AB
(20) p=(! He=(9 ")

as in formula (19). Only the first n rows of C have been altered
and each of these rows is a corresponding row of C plus a linear
combination of the last n rows of C. By Lemma 6, we have

|ID| = |C|. Tt requires n interchanges of rows and n changes of
signs of rows to replace D by

I -B
(30) G = (0 1 B)'

Then |G| = (—=1)*|D| = |C]|. By Lemma 9 we have |G| =
|[I| - |AB| = |AB| and by this same lemma |C| = |4]|"|B|.
Hence, |AB| = |A| - |B| and our theorem is proved.

EXERCISES

1. Use the properties of determinants to reduce each determinant of
Exercise 1 of Sect. 8 to triangular form and compute its value by the
use of Lemma 8.

2. What are the determinants of the following matrices?

2 1 3 8 9 -3

-2 1 0 0 0o 2 1 6 1 2

3 —4 0 0 0O 4 3 9 8 7
(“)< 5 16 8 2>’ @l o o 4 o of

9 11 5 3 0 0 0 -1 5 0

0 0 0 9 6 2

10. The inverse of a matrix. A matrix 4 is said to be non-
singular if A is a square matrix and |4A| % 0. A square matrix
A whose determinant is zero is called a stngular matrix.
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If A is a nonsingular n-rowed matrix, we define a matrix

1 .
-1 = -
(31) A 4] adj A
which we call the inverse of A. By Theorem 4
(32) AA7 = A7A =1

is the n-rowed identity matrix. A singular matrix does not have
an inverse. For if AA-!' =1, then |[AA7'| = |A] |4~} =1
and |[A| # 0. Note that
(33) |4~ = 4]~

If A is nonsingular, the matrix equations
(34) AX = B, YA =2C
have unique solutions X and Y for any given matrices B and C.
Indeed if AX = B, then A71(4X) = A~'B = (A7'A)X = IX
= X. Similarlyif YA = C,then CA—! = (YA)A~! = Y(44™)

= Y. We have proved that the equations of formula (34) have
the unique solutions

(35) X = A-1B, Y = CA-\

In particular the equations AX = Iand YA = I have the unique
solution X = Y = A~ It follows that AX = I if and only if
XA =1, thatis, X = A~

The following results are almost trivial.

Theorem 6. The inverse of a product is the product of the
inverses of the factors in reverse order.

For if C = A1As - -+ - A,, then CA,7'A,y7' - - - Ay = I,
that is, C-' = A,7'A,_;7! - - - A,"L. In the simple case of two
factors, we are stating that ABB—'A~! =] and therefore
(AB)"' = B—1A-\

Theorem 7. The inverse of A* is the transpose of A=,
For AA~' =1, I* =1 = (A~1)*A* and therefore (4*)~! =
(A~1)*,
EXERCISE

Compute A~! by using formula (31) in each of the following cases:

2 -1 1 1 2 0 1 1 2
(@) {0 4 1), @) (4 7 0). (€) (1 2 3>.
0 3 1 6 -3 1 3 -2 2
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11. Linear systems of equations. A system of m linear equa-
tions

an®y + GieT2 + ¢ 0 0+ Q1T = Y
(36) A21%1 + Q222 + 0+ A2nTn = Y
121 + Am2T2 + v + OAmnTn = Ym
in n unknowns x,, . . . , &, is called a linear system. If A is the
m by n matrix, A = (a;;) of the coefficients, and P = (x;, . . . |
Zn), @ = (Y1, . . ., Ymn), We may write any linear system as an
equivalent vector matrix equation
(37) AP* = Q%,
where
T Y1
P* — Q* —
Tn Ym

Any system of n equations in n unknowns with |4| ¢ 0 may
be solved by determinants or by elimination. Whatever pro-
cedure is used, the solution must be

P* = A-1Q*.

It follows that to find the inverse of a given nonsingular matrix
A we form the equations

an®i+ - 0 T Gat. = U
(38) anZi+ 0+ GeaTn = Y2

Ay 121 + ot + Annlp = Ya
and solve these equations for z;, . . . , 2. in terms of y,, . . . ,
Y», thereby obtaining solutions of the form

Ty =buyr + * -+ + binyn

= .o bani/n

(39) T2 bay1 + + b2y

Ty = bnlyi + v + bnnyn-

Then, if B = (b;;), we see that B = A~! is the required inverse
matrix.
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ILLUSTRATIVE EXAMPLE

Compute the inverse of

0 3 2 3
1 21 2
A=\_; 2 3 5]
-1 3 4 7
Solution

We require the solution of the system of equations
312 + 225 + 324 = 1

T+ 2x: + 23+ 224 = Yo
- + 222 + 3%3 + 514 = Y3
—, + 322 + 4x3 + 714 = Y.

We first eliminate z, and obtain

4x, + 4333 + 72y = Yo + Ys
5y + 5x3 + Oz4 = ?/z;{' Y.

Then 36xs — 3524 = x4 = 4(y2 4+ ys) — 52+ y3) = —y2 — S5ys +
4y,. We also compute z, + z3 + 224 = y4 — y3 and have 3(ys — ¥3)
— Yy = 3x2 + 313 + 624 — (3x2 + 223 + 314) = 3 — 314, 50 that 23 =
31]4 - 3y3 — % + 3:1]2 + 15]]3 - 12"1]4 = —U + 3y2 + 12y3 - 9:[/4. We
now obtain ¢, = y4s — y3 — (—y1 + 3y + 12y; — 9ys) — 2(—y: — 5ys
+ 4ys) = y1 — Y2 — 3Ys + 2y4, 1 = —2(y1 — Y2 — 3ys + 2ys) —
(—=y1 + 3y2 + 12ys — 9ys) — 2(—y2 — Sys + 4y4) = —y1 + Y2 + 4ys
— 3ys. It follows that
—1 1 4 -3
1 -1 -3 2
-1 3 12 -9f
0 -1 -5 4

The result should be checked by computing AA-! = I,
EXERCISES

A =

1. Compute A~! by the method above for the exercise of Sec. 11.
2. Compute A-! for each of the following matrices:
-1 0 0 -1 -1 2 -2
1 1 2 0 0 -1 1 1
@l 0 1 1 -1 ®\-3 1 -4 3
1 1 4 -2 0 2 -1 -1
-1 0 -2 2 -1 1 0 1
-3 1 -1 -1 1 0 o0 1
@\ 1 o0 2 -1 @W\_s 3 -3 3
-2 1 0 1 0 -1 2 1
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12. Homogeneous systems. A linear system

anry + -+ ara =0
(40) ant; + ¢+ Qs =0
Gni@s+ © * * F G = 0
is called a homogeneous system. It requires that
(41) AP* =0
and therefore that P = (x1, . . . , x.) be a vector such that
(42) A;-P =0 (z =1, ., n),

where A; is the 7th row of@ Thus we see that a homogeneou%
system of equations proposes the problem of finding an n-dimen-
stonal vector P which s orthogonal to m given n-dimensional
vectors. The zero vector is a trivial solution of the problem but
we are usually interested in finding a nontrivial solution, 7.e., a
nonzero vector P.

Theorem 8. A homogeneous system of m equalions in n
unknowns has a nontrivial solution if m < n.

A single equation aixi + + -+ + a2z, = 0 in at least two
unknowns has a nontrivial solution. For we put z3 = - - - =
z, = 0 and see that if a; = as = 0 the vector (1,1,0,0, . . . ,0)
is a nontrivial solution. But if one of a; and as is not zero the
vector (—aq, a1,0, . . . ,0) is a nontrivial solution. We now
make an induction on m and assume that the theorem is true for
m — 1 equations in more than m — 1 unknowns. y

The theorem is surely trivial if all coefficients are zero. Hence,
we may assume that at least one coefficient is not zero. There
is surely no loss of generality if we assume that this coefficient
is ai;. This amounts to a relabeling of equations and variables
if necessary. We may then subtract multiples ai;7'a;; of the
first equation from all the other equations and obtain our equiva-
lent system. The first equation may be written as

(43) Z1 = —an"Yawr: + ¢+ a1aza),

and the remaining equations are free of z;, We then havem — 1
equations in » — 1 unknowns. These equations are homogene-
ous and have a nontrivial solution (zs, ... ,2,). If z;, is
defined by formula (43), the vector (z;, . . . , Z») is a nontrivial
solution of our original system,

/
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Theorem 9. A homogeneous system AP* = 0 of n equations in
n unknowns has a nontrivial solution P # 0 if and only if |A| = 0.

For if |A| £ 0, the equation AP* = 0 implies that A~1(AP*)
=P*=0, P=0. Let us then suppose that |A| =0. If
n = 1, the system becomes a;z; = 0, where |A| = a, = 0 and
z, # 0 defines a nontrivial solution. Assume then that the
theorem is true for the case of n — 1 equationsinn — 1 unknowns.
As in the proof of Theorem 8, we may assume that a:; # 0 and
pass to an equivalent system with matrix

_f{an B,
B=(00 )

where B; is an (n — 1)-dimensional vector, the zero represents a
column of n — 1 zeros, and B:is (n — 1)-rowed square matrix.
By Lemma 6 |[A| = |B] =0, and by Lemma 9 |B| = a.1|B,|.
Since ai; # 0, the number |By] = 0. We may then solve the
homogeneous system of m — 1 equations in » — 1 unknowns
with B, as matrix and obtain a nontrivial solution (xs, . . . , Z,).
Determine z; by formula (43), and obtain a nontrivial solution
(1, . . ., z,) of the original system.

13. The characteristic equation. If A = (a;;) is any n-rowed
square matrix, we may subtract « from the diagonal elements of
A and thus form the matrix

a1y — T Q12 MR Q1n
a Qg2 — X a
(A — .’EI) — 21 22 2n
an1 An2 e Qpn — X

Compute the determinant of this matrix. It is a polynomial
in x whose leading coefficient is (—1)». It follows that the
polynomial

f@) = (=D"Ad —zI| =2"+ ax™ '+ - - - + a,

has leading coefficient unity. We call f(x) the characteristic
determinant of A. It is actually equal to |z] — A|.

The principal minors of 4 are the determinants of those square
submatrices of A whose diagonal elements are all diagonal ele-
ments of A. It can be shown that the coefficient a; of f(x) is
actually equal to (—1)? times the sum of all i-rowed principal
minors of A. We shall not prove this result, but it is important
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to observe that
—a1=0au+ ** " + Gn
is the sum of the diagonal elements of A and that
f0) = a» = |=4] = (=1)"4].

The equation f(z) = 0 is called the characteristic equation of A
and its roots are called the characteristic roots of A.

EXERCISE

Compute the characteristic determinants and characteristic roots of

the following matrices:
4 0
®) {o 1
0o - 2

0 0
(a) <0 1>
2 -2
0 0 0 0
o0 05 Y el
1 -6 4 0 1
0 0 6 -1 -3
(e) (3 3) f) (—1 0 —3>
0 0 -3 -3 -2

14. Similar matrices. Two n-rowed square matrices A and B
are said to be simzlar if there exists a nonsingular matrix L such
that

WWWHRhOO O
O OO OO
OO
S Ot O W
N——

B = L'AL.

Theorem 10. Similar matrices have the same characteristic
determinants and consequently the same characteristic roots.

For |B — zI| = |[L7'AL — zl| = |[L7Y(A — zI)L| = |[L7| - |A
—zI||L| = |A — zI|. Then if A and B are similar, their
characteristic determinants are the same, and we have proved
the theorem.

We also can prove the following:

Theorem 11. Let A be similar to a diagonal matriz D. Then
the diagonal elements of D are the characteristic roots of A.

For if D = diag {d1, . . . ,d,}, the matrix D — zI = diag
{di —z, ... ,d, — z} and, by Lemma 8, |D — zI| = (d; — z)
e+ v (dp=x). But |[D—2zI|=|A —2I| and dy, ... ,dn
must be the characteristic roots of A.

Theorem 11 states that, while it is actually not true that all
square matrices are similar to diagonal matrices, if a matrix A
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is similar to a diagonal matrix D the matrix D is uniquely deter-
mined up to an arbitrary permutation of its diagonal elements.
Suppose then that A is given and that we determine the charac-
teristic roots of A and so prescribe D. We propose to try to find
a nonsingular matrix L such that

AL = LD.

The jth column of AL is found by our row by column rule of
matrix multiplication to be the product AQY, where Q@ is the
Jth column of L. The jth column of LD is the product Q®d; of
the jth column of L by the jth diagonal element d, of D. Then
AL = LD if and only if AQ® = d;Q®. But this latter equation
is equivalent to the equation

(A — d;1)Q® = 0.

We are thus led to the determination of each column of L as
a vector that is a solution of a linear homogeneous system with
matrix A — dI, where d is a corresponding characteristic root.
Since |A — dI| = 0 for each d, a corresponding nonzero vector
Q can always be determined. A set of solutionsQ®, . . . , Q™
which are the columns of a nonsingular matrix, can be found only
when A is similar to a diagonal matrix.

EXERCISE

Find a nonsingular matrix L such that L-'AL is a diagonal matrix in
each of the following cases where L exists:

0 1 0 1 0
(a) <o 0 g) . (b)( 0 0 1)
2 1 - -1 -3 3
o 0 1 o 8
Olo o o 1 @) (1 1 1>
’ 0 1 0
0 5

16. Real symmetric matrices. A matrix is called a symmetric
matrix if it is equal to its transpose. Then a symmetric matrix is
necessarily a square matrix A = (a;;) such that a;; = a;; for every
7 and j.

Theorem 12. The characteristic roots of a real symmetric
matrixz are all real.
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For let a + b7 be a characteristic root of A where a and b are
real and 1> = —1. Then A — (a + b7)! is singular and so is the
product

=[A — (a + b)I])[A — (a — bi)I]
= A? — 2a4 + (a®> 4+ )] = (A — al)? + b2I.

The matrix B is a singular matrix with real elements and, by
Theorem 9, there exists a real nonzero vector P such that PB = 0.
Then
PBP* = P(A — al)*P* + b?PP* = QQ* + b*PP* = (),

where Q = P(A — al) and Q* = (A — a)*P* = (A — aI)P?
since A is symmetric. Since @ is a real vector, QQ* = Q - Q = 0.
But PP* = PP > 0 and QQ* + b*PP* = Oisimpossibleif b 5 0.
Hence, b = 0, and we have proved that all characteristic roots
a + bi of A are real.

16. Orthogonal matrices. A matrix L is called an orthogonal
matrix if L is an n-rowed square matrix such that LL* = [ is the
n-rowed identity matrix. Then

LL* = L*L = 1, L= = L*.

A set of m distinct vectors Py, . . . , P, is said to consist of
pairwise orthogonal vectors if P; - P; = 0 for ¢ # 7, that is, any
two distinct vectors in the set are orthogonal. Let Py, . . . , P,

be the rows of an orthogonal matrix L. Then the element in the
1th row and jth column of LL* is P; - P;. Since LL* = I, we see
that

P,"P.'=1, P;,-P; =0 (z#y;z,y=1,,n)
Thus the rows of an orthogonal matriz are pairwise orthogonal unit
vectors. Conversely if the rows of L are n pairwise orthogonal
n~-dimensional unit vectors, L is an orthogonal matrix.

The columns of L are the rows of L*. Since L*L = I, we see
that the columns of an orthogonal matrix are also n pairwise
orthogonal unit vectors. Conversely, if the columns of a square
matrix L are pairwise orthogonal unit vectors, L is an orthogonal
matrix. i Sqmone )

Theorem 13. Let L and M be n-rowed orthogonal matrices.
Then LM s an orthogonal matrizx.

For LL* =1, MM* =1, (LM)(LM)* = LMM*L* = LIL*
= LL* = I.
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Theorem 14. Let L and M be orthogonal matrices. Then

L 0
0 M
18 an orthogonal matrix.

For proof we merely compute

L oL o\ _(L o\/L*x o \_[LL* 0 _y
o M\o M) ~\o M)\o M*)"\o Mm*)" "

Note that in Theorem|3 the matrices L and M must have the
same size but that this is not necessary in Theorem 14.

Theorem 15. Let Py, . . . ,Pu be m pairwise orthogonal
n-dimensional nonzero vectors. Then m = n and there exists an
orthogonal matriz whose first m rows (columns) are scalar multiples
OfP1, PN ,Pm.

For the equations P,-P=0,...,P,-P =0 form a
homog eneous system of m linear equations in the coordinates
Zy . ..,%, of P. If m < n, there exists a solution P # 0 of
this system. It follows that if m < n we can find a vector
P41 # 0 such that Py, . . . , P,y are pairwise orthogonal. If
m + 1 < n, we can extend the set of vectors again and thus
ultimately obtain vectors P41, . . . , Posuch that Py, . . . | P,
are n pairwise orthogonal nonzero vectors. Define the scalar

multiples
1

U.-—\/P P Z=1,...,n).

Then U,, . . ., U. are n pairwise orthogonal unit vectors and

are the rows of an orthogonal matrix L as well as the columns of

the orthogonal matrix L*. If m = n, we form L as above and

P;-P; =0fort =1, ... ,nandj > nimpliesthat U;- P; = 0

fori=1,...,nandj>nBut then LP;* = 0. However,

L is nonsingular and necessarily P;* = 0, contrary to hypothesis.
[t follows that m < n.

EXERCISE
Find an orthogonal matrix whose first two rows are scalar multiples

of P, and P, in the following cases:
(@) Py =(1,2, —2),P, = (2,1,2)

(®) P,=(1,0,1), P, = (1,0, —1)
(C) P, = (1 2 '3)7 Py, = (17 —5: 3)
(e) Py = (6 2), Py = (1,0, -3)
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17. Orthogonal reduction of a symmetric matrix. A real
symmetric matrix A is said to be orthogonally equivalent to a real
symmetric matrix B if there exists an orthogonal matrix L with
real elements such that

B = L*AL.

Then B = L7'AL is similar to A and has the same characteristic
roots as A.

Theorem 16. Every real symmetric matrix A 1is orthogonally
equivalent to the diagonal matrix D = diag {di, . . . , da}, where
dy, . . . ,dn are the characteristic roots of A arranged in any
prescribed order.

For the equation (A4 — d./)P = 0 has a nonzero solution P.
Then P may be taken to be a unit vector and, by Theorem 15,
we may determine an orthogonal matrix L, whose first column
is P = U,. Designate the jth column of Lo, by Uj;, and see that

U,'*A U1 = dlU.'*Ul.

Then U;*AU, = b;, is zero for 7 % 1, and by;; = d;. It follows
that the element b;; in the ¢th row and first column of B = L,*AL,
is zero if 7 % 1 and by; = d,. Since B* = Ly*A*L, = L,*AL,
= B is a symmetric matrix, we have

_(d, 0
B=(0 %)

where A, is an (n — 1)-rowed real symmetric matrix. Also

- 0

_.dl
IB—all = "o " 4 _ .1

= (dy — x)|A, — zI| = |A — ]|,

and ds, . . . ,d. are the characteristic roots of A,. By the
proof above applied to A, there exists an (n — 1)-rowed orthog-
onal matrix L, such that

Ll*AxLl = (d2 O );

0 A,
where A: is an (n — 2)-rowed real symmetric matrix whose
characteristic roots must beds, . . . ,d,. Then

10
N = Ln<0 Ll>
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is the product of two orthogonal matrices and is an orthogonal
matrix having the property that

. di 0 0
vav= (5 D) 8- (0 o
! ! 0 0 A,

A repetition of this process yields the result desired.

The proof above is not intended to provide a procedure for

finding an orthogonal matrix L such that L*AL = diag {d,

. ,d,}. The procedure that is indicated by the proof is not
recommended, because it is certainly too clumsy for use. The
best procedure to employ is that of Sec. 14 where we keep in
mind at every stage that the columns of the matrix L which we
are determining are pairwise orthogonal nonzero vectors (see
Sec. 4 of Chap. 7 for examples of this procedure).

18. Uniqueness of characteristic unit vectors. If d; is a
characteristic root of a symmetric matrix A and P; is a solution
of the equation (A — d;I)P;* = 0, we call P; a characteristic
vector of A corresponding to the root d;, We now prove the
following:

Theorem 17. Let d; be a stmple root of the characteristic equa-
tion of A. Then the corresponding characteristic unit vector 1is
unique apart from sign.

For we know that there exists an orthogonal matrix L such

that L*AL = diag {d,, . . . ,d.}. Then AP;* = d;IP;*is equiv-
alent to L*AL L*P;* = d;L*P;* and therefore to
(diag {dy, . . ., d}Q* = diQi*,
where Q;* = L*P;*, P;* = LQ;*. But then
(diag {dy — d;, de — dj, . . . ,d. — d;})Q;* = 0.
This means that if @; = (A\y, . . . ,\,), then Xic; = 0, where

¢; = d; — dj. Then \; = 0, for 7 ## j, Q;* is a vector with }A; in
the jth row and zeros elsewhere, and P;* = \;U;* where U;* is
the jth column of L. If P; is a unit vector, it follows that
P,' ’Pi = )\j2U,' : U,‘ = )\,'2 = 1, \o= il, P,‘ = i"U, as desired.
We note that if d; is a double root and thus is equal to di for
some value of k, then Q; is a vector with A\; in the jth row, A\
in the kth row and zeros elsewhere, and P; = \;U; + NUx.
Thus P; is not unique. Indeed we may show similarly that
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Py = w;U; + urUr. Then
Pi-Pi=N+N =1 Qi Q=p*+wm’=1
since U; - U = U,-U; = 0. Ifalso P;-P; =0, we have
Nisi + Mg = 0.

It follows that the matrix
(N #i)
Ak Mk :

is an orthogonal matrix and therefore P; and P, are expressible
in terms of U; and Uy by means of a two-rowed orthogonal matrix
in the case where d; is a double root. We shall not consider
further cases of this study but pass on to its application to three-
dimensional geometry.



CHAPTER 7
ROTATIONS OF AXES AND APPLICATIONS

1. Orthogonal transformations. If four points in space are
not coplanar, they determine a tetrahedron, 7.e., a pyramid with
a triangular base. In particular, the origin and the three unit
points

U= (]) O) O)) V= (0! 1, O)’ W = (Oy Oy 1)’
on the positive rays of the coordinate axes, determine a tetra-
hedron the vertex of which is the origin and which is called the
tetrahedron of reference. Conversely, if a tetrahedron of reference
is given, the coordinate system is completely determined. For
the tetrahedron determines the origin, the unit distance, and the
positive rays on the coordinate axes.

Let a coordinate system called the initial system be given so
that every point P has initial coordinates x, ¥, z and P is the linear
combination

€)) P =(x,y,2) =zU 4+ yV + W,

with coefficients the coordinates of P. We propose the study of
all other rectangular Cartesian coordinate systems with the same
origin O as the initial system. Kvery such transformed system
is determined by three new unit vectors U’, V', W’ and every
point P has transformed coordinates ', y’, 2’.  Then

2) P=22U + 4V + W

where the coefficients xz’, 3/, 2’ are the transformed coordinates of
P. Let the initial coordinates of U’, V', W’ be given by

@) U = ()‘ly M1,y Vl)y V' = ()\2) M2, va), W' = ()‘3) K3, ¥3).
Then P = x'()n, M1, Vx) + y’()\z, M2, Vz) + 2'()\3, M3, v3) = (xa Y, 2)
and the relations between the initial and transformed coordinates
of all points are given completely by the set of equations

= N2 4+ Ny + N2’
4) y = mx’ + pey’ + pa?’

z2 = ¥’ + voy + vs2.
103
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These equations may be written in matrix form as

x x AoAe As\ [7
(%) yl=L{y)=\m p2 ws]l|¥
2 2’ Vi 12 V3 2’

Then the columns of L are the pairwise orthogonal unit vectors
U’, V', W, and L is an orthogonal matrix.

A system of equations of the form given in formula (5) with L
an orthogonal matrix is called an orthogonal transformation of
coordinates. We have proved that any two rectangular coordi-
nate systems with the same origin are related by an orthogonal
transformation. Conversely, an orthogonal transformation may
be interpreted as relating two coordinate systems in which the
columns of the matrix L give the initial coordinates of the unit
vectors on the transformed coordinate axes.

If L is orthogonal, L= = I* Then the solved form of formula
(5) is

z z Mow o\ [z
(6) y)=L*{y]=(N n »]ly]
2 2 Ns uz v Z

These equations may be written in full as

=M+ my + vz
(7 Y = Nz + poy + voz
2= Nz + usy + vaz.

In our applications of this theory to quadric surfaces we will
determine vectors of integers which are scalar multiples of
U’, V', W. The scalar multipliers are square roots of rational
numbers and appear as common denominators of each equation
in formula (7); this is not true of formula (4). Then it will be
more convenient for us to express our final answers in the form
given by formula (7). It should be noted that

U= (1’ 0) 0) - ()‘1) Az, )‘3)

V = (0,1, 0) = (u1, p2, us)

W = (0) 0, 1) = (v1, v, vs)
where the set of coordinates of each of our points given after the
arrow is the set of 2, ¢/, 2’ coordinates. These coordinates are
obtained by substitution of the set of coordinates before the arrow
for z, y, z in formula (7).
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We have now shown that the columns of L are the =z, y, 2
coordinates of the unit vectors on the 2/, 3/, 2’ axes and that the
rows of L are the 2’. ¥/, 2’ coordinates of the unit vectors on the
z, Y, 2 axes.

EXERCISES

1. Convert the matrices

2 -2 1 6 3 2
A=11 2 2>, B={-3 2 6)
2 1 -2 2 -6 3

into orthogonal matrices that are scalar multiples a4, BB of the given
matrices.

2. Let L in (5) be the orthogonal matrix a4 of Exercise 1. Give
the «’, y’, 2’ coordinates of the points whose z, ¥, z coordinates are

(@) (—1,2,2) (d) (—1,1,0)
(b) (07 ]; 1) (C) (—11 11 _2)
(C) (1y 1; 1) (f) ((Sy _3, 2)

3. Let the coordinates given in Exercise 2 be the z’, ¥/, 2’ coordinates
of points. What are their z, y, z coordinates?

4. Give an «’, y’, 2’ equation of each of the following planes using the
transformation of Exercise 2:

(@) 22 +y+2=1 ¢y2xr—y=1
b) 2¢c — 2y +2=3 dz+y+2=0

6. Give the z’, ¥/, 2’ equations in parametric form of the lines joining
the following pairs of points where the transformation of Exercise 2 is
used and the coordinates given are z, y, z coordinates:

(a) (—1) 2} 2): (2’ 1’ 3) (d) (3; 4; 1); (—3y —4; —1)
(b) (1) 2) —2); (0) 01 0) (C) (1) 0) —1)y (0) 1’ 0)
(C) (2; 1; 2); (_2y 2: 1) (f) (2) 3; —4); (1: 2; 3)

6. Let L be the orthogonal matrix 8B of Exercise 1. Give the follow-
ing equations:

(a@) The a’, 9, 2’ equation of the planc z = 0.

(b) The 2/, y', 2’ equation of the planc y = —7.

(¢) The 2/, ¥/, 2’ equation of the planc z = 1.

(d) The z, y, 2z equation of the plane ¥’ = 0.

(e) The z, y, z equation of the plane 2’ = 7.

(f) The =, y, z equation of the plane z’ = —1.

(9) The z, y, 2z equations of the line 2’ =y’ = 1.

I
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2. Products of orthogonal transformations. The result of
applying two successive orthogonal transformations of coordi-
nates is an orthogonal transformation of coordinates called their
product. Thus the product of the orthogonal transformation

xr
(8) y|=L{Yy
¥4

with matrix L and the orthogonal transformation

X Xz
(9) y' | = M|y’
2 2!

with matrix M is the product orthogonal transformation

x x//
(10) y| =Ny’

whose matrix N is obtained by substitution in formula (8) of the
values of 2/, ¥/, 2’ in terms of 2/, y”’, 2’’ as given by formula (9).

But then
x xl’ xl/
y | = LI M y// = (L][[) yll
2 2 2!

and we have proved that LM = N, that is, the matriz of a product
of two orthogonal transformations vs the product of the matrices of
the transformations.

EXERCISE

Give the equations of the orthogonal transformation with matrix
(aA)(BB) of Exercise 1 of Sec. 1.

3. Reflections and rotations. If the direction on a coordinate
axis is changed, the resulting transformation is an orthogonal
transformation of coordinates defined by one of the matrices

-1 0 o\ /1t o o /1 o0 o0
0 1 0] 0 —1 0} 0 1 o0}

o o 1/ \No o 1/ \No o -1

Such a transformation is called a reflection of axes.
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Suppose now that the vertex O of the tetrahedron of reference
is held fixed in space and that the tetrahedron is rotated about
this vertex to some new position. The resulting orthogonal
transformation is called a rotation of axes. It should be evident
that every product of a finite number of rotations of axes is a
rotation of axes.

A rotation of axes about the z axis may be conceived of as an
ordinary rotation of axes of plane analytic geometry. Its equa-
tions are

z =ur' — vy
(11) y = vz’ + uy’
z =2

where u = cos 6, v = sin 0, and the angle of rotation 6 is measured
in a counterclockwise direction from the unit point U to the unit
point U’. The matrix form of this rotation is given by formula
(5) where

u  —v 0
(12) L=1v u 0
0 0 1

and the determinant of L is 1. Similarly the rotations about the
x and y axes are space rotations whose matrices

1 0 0 u 0 v
(13) 0 u  —vlj, 0 1 0
0 v U —v 0 U

are orthogonal matrices having determinant 1. We shall call
any rotation of axes about a coordinate axis a planar rotation of
axes and shall discuss such rotations further in Chap. 8.

The product of two reflections of axes is a rotation of axes;
for example,

1 0 0\ /1 0 0 1 0 0
0 1 0j{o -1 0}]=10 -1 0
0 0 -1/ \0 0 1 0 0 -1

is the matrix of a rotation of axes. Indeed the product of two
reflections of distinct axes may be seen geometrically to be the
planar rotation about the remaining axis through 180°. In the
example above, the result of replacing ¥y by —y and z by —z is
the same as the rotation about the z axis through 180°,
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A reflection of axes is not a rotation of axes. For a rotation of
axes that carries two of the points U, V, W into a corresponding
pair of the set U’, V', W’ is a rigid motion of the tetrahedron
and must carry the remaining point of U, V, W into the remaining
point of U’, V’, W/. We shall use this result in the derivation of
the following basic theorem.

Theorem 1. An orthogonal transformation s a rotation of ares
if and only if the determinant of its matriz is 1. Every rotation
of axes can be expressed as a product of three planar rotations and
every orthogonal transformation mnot a rotation of axes can be
expressed as the product of a rotation of axes and a reflection of axes.

For consider an orthogonal transformation in which U, V, W
are the unit vectors on the positive rays of the z, y, z axes and
U, V', W are the unit vectors on the positive rays of the
2’,y’, 2/ axes. Apply a planar rotation about the z axis which
carries the z axis into the line of intersection of the 2/, ¥’ planc
with the z, y plane. This rotation determines an zi, y,, 2; coor-
dinate system in which the 2, axis coincides with the z axis.
Rotate about the x; axis, which is in the 2/, ¥’ plane, so that the
2y axis is carried into the z’y’ plane. The result is an xs, ys, 22
coordinate system in which the x., y» plane coincides with the
2’, y’ plane. If the angle from the corresponding unit vector U,
on the z; axis to the unit vector ¥, on the y, axis is not measured
in the same direction as the angle from U’ to V', we increase the
planar rotation just described by 180° and replace Vy by —V,
and thus restore the angular orientation of the z’y’ plane. Thus
we may assume that the angle from U, to V, is measured in the
same direction as that from U’ to V’. A rotation about the z,
axis that carries U, into U’ also carries V, into V’.

We have now proved the existence of three planar rotations
with corresponding matrices Ly, Ls, L3 such that the product of
these rotations is a rotation of axes

x x T
(14) Y| =LiLLs|\ y' ) = N | y”
2 zl’ zll

with matrix N = LL;L; and U"” = U’, V" = V'. Then W” is
a point on a line through 0 perpendicular to the z’, 4’ plané and
W' = W', where

(15) e = +1,
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The transformation defined by

x’ T z”
(16) y)=L*ly])=L*N\|y”
zl z 2"

is an orthogonal transformation such that 2’ = 2", ¢ = y”,
2 = e'’. Then

1 0 0
an R=L*N={0 1 0)=N*L=N"L,
0 0 e
and
1 0 0
(18) L = NR = L,L,L;{0 1 0>.
0 0 e

Since |N| = 1, we see that |L| = |R|,
(19) e = |L|.

The matrix R is the matrix of a rotation of axes only when
e =1, R = 1. Since N is the matrix of a rotation of axes and
R = L*N, we see that R is the matrix of a rotation of axes if and
only if L is the matrix of a rotation of axes. Then L is the
matrix of a rotation of axes if and only if e = |[L| = 1. When
|[L| = —1, we see that L = NR is the product of the matrix of a
rotation of axes and the matrix R of a reflection of axes. This
proves the theorem.

EXERCISES

Determine whether or not the following matrices are the matrices of
rotations of axes:

1/~2 1 2 1 (2 3 6
(@) 3 2 2 1> ®) 7 6 2 -3
1 =2 2 3 —6 2

1 =1 1

_ V3 V3 3

1(72 21 Lo
(c)g( 2 1 2) @ |Vz V&

1 2 -2 1 1 2

v6 V6 V6
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4. Orthogonal reduction of a real quadratic form. A rea)
quadratic form in z, y, z is a polynomial

(20) f(x,y,2) = ax® + by? + cz* + 2dzy + 2exz + 2gyez,
where a, b, ¢, d, e, g are real numbers. Then
(21) f(z, y, z2) = PAP*

where P = (x, y, 2) and A is the real symmetric matrix

a d e
(22) d b g)
e g ¢

A rotation of axes is a linear transformation
(23) P* = LQ*
where L is an orthogonal matrix of determinant 1 and Q =
(@', y',2"). Then
(24) P = QL*
and a rotation of axes replaces f(z, y, z) by
(25) ¢(xl’ y’, zl) pa— alxlz + blylz + c'zlz + 2dlxlyl
+ 2’2’2’ + 2glylzl
where
(26) g, y', 2') = f(z,y,2) = QL*ALQ* = QBQ*.
Hence

o d ¢
(27) B=[d Vv ¢)|=L*AL

el gl cl

Theorem 2. Every real quadratic form PAP* may be reduced to
a real diagonal form

(28) ax’? + By’ + yz'?

by a rotation of axes where a, 8, v are the characteristic roots of A.
For, by Theorem 16 of Chap. 6, there exists an orthogonal
matrix L such that

a 0 O
Lo*ALo = 0 B 0 .
0 0 «
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If |Lo] = 1, we take L = Lo and the orthogonal transformation

with matrix L is a rotation of axes. If |Lo = —1, we may

change the sign of one column of Ly and replace Lo by an ortho-

gonal matrix L such that |L| = —|Lo = 1. Evidently L*AL

= L¢*AL,. Then the rotation of axes with matrix L replaces

fx, y,2) by ¢(z', ¥, 2') = QIL*AL)Q* = oz’ + By'* + v2'%
ILLUSTRATIVE EXAMPLES

I. Reduce the quadratic form 4x2? 4 3y% — 22 — 12zy + 42z — 8yz to
diagonal form d,x'? + d.y'? + d32’? by a rotation of axes such that
d, 2 d» 2 d;. Give the diagonal form and the equations of rotation.

Solution

The matrix of the given form is

4 -6 2
A=1—-6 3 —4),
2 -4 -1

and
4 —zx —6 2
|4 =zl =] =6 3 —= —4
2 —4 —-1-zx
4 — 2 6 2
= —21 —z) 94« 0 = —f(z).
2 4 -1 -1z

Then f(z) = 2[8(1 — z) — 2(z + 9)] — (1 + )[4 — ) + 9) —
120 —2)]=—-20c+ 1) —(z+1) — 224+ 4 -9+ 12)z + 36 — 12
=(x+1)(x?— 72 —44) = (x + 1)(z + 4)(x — 11). This yields the
diagonal form 11z'? — y'2 — 42'2,

We now solve the system of equations

Tz —06y+ 2:=0
—6x — 8y — 42 =0
22 —4y — 122 =0

with matrix A — (11)I. Then 6z — 12y — 362z = 0, —20y — 40z = 0,
y= —222¢ =4y + 122 = —82 + 12z = 4z, £ = 2z. The remain-
ing equation merely yields the check —14z 4 12z 4 22 = 0. We have
shown that (2, —2, 1) is a characteristic vector of 4 — (11)I.

We next determine a characteristic vector of A 4+ I and thus solve

52 — 6y +22 =0

—6z + 4y —42=0
2z — 4y = 0.
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Then z = 2y, —12y + 4y = 42 = —8y, z = —2y. This yields the
vector (2, 1, —2). The final vector is a characteristic vector of A + 41
but may be obtained as a vector orthogonal to the vectors already
determined. Then we have 2 — 2y +2=0, 22 4+y —22=0,
3y =32,y =2 2x =2y — z = 2, and we have shown that the columns

of the matrix
2 2 1
<_2 1 2)
1 =2 2

are the required characteristic vectors. We compute

2 2 1 0 0 1
-2 1 2l =1—-6 =3 2/ =36 -9 =27
1 -2 2 -3 =6 2

and see that

2 2 1
L=x3|-2 1 2
1 -2 2

is the matrix of a rotation of axes. The equations of this rotation in
solved form are (z/, ¥/, 2’) = (z, v, 2)L,

3 =22 — 2y + 2
3y =2r 4+ y— 2
32 = x+ 2y + 22.

II. Reduce the quadratic form —z? — y? — 722 + 162y + 82z + 8yz
to diagonal form by a rotation of axes.

Solution

The matrix of the form is

-1 8 4
8 -1 4
4 4 -7

and the characteristic determinant is

—1-z 8 4 1 -z 0 4
8 -1 -z 4 = 8 -9 -z 4
4 4 -7 —x 4 2¢ +18 -7 —=x
-1 -z 0 4
=(x+4+9 8 -1 4
4 2 77—z
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Then f(x) = —|A —zl| = —(z + 9416 +4) — (1 +2). = +7
—-8)] =@ +9E*~1-280) =(=+9+9(x—9). The diago-
nal form is 9(z'? — y’? — 2'?).

We first solve the system

—10c 4+ 8y + 42=0
& — 10y + 42=0
4r + 4y — 162 = 0

with matrix A — 9/ and obtain 18y = 36z, y = 22, x = 42 — y = 22.
This yields a characteristic vector (2, 2, 1). However, the system with
matrix A + 91 consists of the three equations

8 + 8y +42 =0
8 + 8y +42=0
4r + 4y + 22 = 0.

Moreover, the condition that this vector be orthogonal to (2,2, 1) is
2x + 2y + 2z = 0. Hence, any choice such as (—1, 1, 0) is a character-
istic vector. The remaining characteristic vector satisfies 2z + 2y + 2
=0andz —y = 0,sothatx = y,z = —4yand (1, 1, —4) is a charac-
teristic vector,

2 -1 1
3 V2 /18
2 1 U
L'=13 5 Ui
1 —4
O VR

is the matrix of an orthogonal transformation carrying the given
quadratic form into the diagonal form above. But

2 -1 1 0 -2 0
2 1 I =2 1 | =2(—8—-1) = —18
1 0 —4 1 0 -4

and thus L is not the matrix of a rotation of axes. We therefore change
the sign of the second column and obtain the following equations of
rotation:

I

§x’ 2z 4+ 2y + 2
V2= z-y
3\/2z'= z+ y— 4z

EXERCISES

1. Show that (2, —1, —2) is a characteristic vector of the matrix of
Illustrative Example II corresponding to the root —9, and obtain the
corresponding equations of rotation.
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2. Reduce each of the following quadratic forms to diagonal form
dix'? + duy'? + ds2’? with d, = d; = di by a rotation of axes. Give
the diagonal form and the equations of rotation solved for 2/, ', 2’ as
your answer,

(a) 2x% 4+ y* — 4zy — 4yz

Ans, x'2 — 2y’ + 42", 32’ =2x+y — 22, 3y ==z + 2y + 2z
32 =2 — 2y + 2.

(b) 3x? — 3y? — 522 — 2xy — 6xz — Oyz

(c) 322 + y* + 22 — 2zxy + 22z — 2yz

Ans. 422+ 225 V6r =22 —y 42, V2% =y +2; V32 = —=z
-y +a

(d) —2x* + 4y* 4 62% + 22y + Gxz + 6yz

(e) 4z + y? — 82° + 4y — 4xz + 8yz

Ans. 5zt + 2yt — 102’2 \/Bx' =22+ y; VOy = —z + 2y + 2;
V302 =z — 2y + 5z

(f) 3c? 4+ 322 + 4xy + Sxz + 4yz

6. Quadric surfaces. Suppose that p, ¢, 7, s are real numbers
and that fo(z, y, 2) is a real quadratic form. Then the equation

(29) S, y,2) = fo(z,y,2) + 2(pz +qy +12) + s =0

is the general form of an equation defining a quadric surface.
By Theorem 2 there exists a rotation of axes which replaces this
equation by

(30) (@, ,2) = ez + Byt + 72t + 2000’ + oy’ + 72)
+5=0

for real numbers «, 8, v, p, o, 7, & such that «, 8, v are not all zero.
The vector (a, 8, v) of the characteristic roots of the matrix of
fo(x, y, 2) is unique up to a nonzero real factor ¢ that enters when
we multiply f(z, y,2) = 0 by t. Thus we may always take

(31) a>0, 820, azpf .

In Chap. 5 we studied all the quadric surfaces defined by the
equation of formula (30) except that where 8 =+ = 0 and
p# 0,7 0. Then

2
¢, y,7) =« (x’ + %) + 20y’ + 72') + 5 - %z =0

and we may perform a second rotation of axes defined by



Sec. 5] ROTATIONS OF AXES AND APPLICATIONS 115

xll — x/
’ + 2
32 " o— oy
32) V'= e
o = -1y + a2’
Vit + 7

This planar rotation of axes replaces ¢(2', y', 2') = 0 by

2
(33) Fa",y",2") = (+ ':l) PN

2
+5-2=o.
a
The translation of axes whose equations are
6 — p?
34) /" =2 + F_’, Yy =y + o , P
(34) a O/

replaces F (2, y”, 2’') = 0 by
(b(x”’, y///, zr/r) = axl//z + 2@2 yu/ = 0.

This is an equation of a parabolic cylinder with vertex at the
origin. Then we have proved that every quadric surface is one
of the surfaces discussed in Chap. 5.

Let us close this section with a summary of the allowable
operations on a quadratic equation f(x, v, z) = 0 defining a quad-
ric surface, and of their effect on the quadratic form fo(z, y, 2).

The first operation is that of a translation of axes. It should
be evident that only the linear and constant terms of f(z, y, 2)
are affected by this operation and that fo(z, ¥, 2) is unaltered.

The second operation is that of a rotation of axes. This
replaces fo(z, ¥, 2) by an orthogonally equivalent quadratic form
having the same characteristic roots. If A is the matrix of
fo(z, y, 2) and L*AL is the matrix of the equivalent form, then
P(A —dI) =0 if and only if PLL*(4 — dI)L =0, (PL)
(L*AL — dI) = 0. Thus the vector P is a characteristic vector
of A corresponding to a root d if and only if PL is a characteristic
vector of L*AL corresponding to the same root.

The final operation is that of multiplying f(z, ¥, z) by a nonzero
constant k. This multiplies fo(z, ¥, 2) by k and the matrix A of
fo(x,y,2) by k. The corresponding characteristic roots are
multiplied by k and indeed if L*AL = diag{e, 8, v} then L*(kA)L
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= diaglke, kB, ky}. Also P(A — dI) = 0 if and only if P(kA
— kdI) = 0 and therefore the characteristic vectors correspond-
ing to the given quadratic form are unaltered by this change.

EXERCISE

Reduce the following equations to simplified form by a rotation of
axes. Give the center or vertex of the quadric, the type of quadric, the
semiaxes, and the equations of rotation.

(a) 22% + 2y% — 22 + 8xy — 42z — 4yz = 2

b) 202 4+ y2 4+ 222 + 22y — 2z = 1

(c) 422+ 6y2 + 422 — 422+ 1 =0

(d) 2224 y* — 4xy — dyz + 122 4+ 6y 4+ 62 = 1

() 2+ y2+ 22 —4yz — 4oz — 4oy =7

(f) b2+ 5y? + 322 — 22y + 222 +2yz + 2z —y =0
@r+22—ayt+aztyz—2r+2y—224+1=0

(h) x2 4+ 4y? + 922 — 4ry + 622 — 12yz + 42 — Sy + 122 + 4
(1) 1622 4+ 9y + 422 + 24xy — 16xz — 12y2 + T2 + 2y — 122
() 2r2 +3y +424+4=0

(k) 222 4 5x + 12y + 122 4+ 18 =0

) 22+ y*+ 422 — 20y — 4oz + 4yz + 62 + 12y + 182 = 0
(m) 222 + 2y — 422 — by — 222 — 2yz — 22 — 2y + 2 =0
n) 3x2 +y2+224+4yz+ 120 +2y — 22+ 9 =0

(0) 4z 4 4y + 922 + 8xy + 1222 + 12yz2 + 10z +y+42+1 =0
(p) 222 +4yz +624+2y —4x+5=0

() Bx2 + 3y + 22 —2zy + 62 — 2y —22+3 =0

]
o o

6. Plane sections of quadrics. If f(z, y, z) = 0 is an equation
of a quadric surface and ax + by 4+ ¢z + d = 0 is an equation of
a plane, we may rotate axes so that the z’, ¥’ plane is parallel to
the given plane. We may then translate axes so that the given
plane becomes the plane 2/ = 0. It follows that the plane sec-
tions of any quadric are the sections by the plane z = 0 of the
general quadric of formula (29) for a properly selected coordinate
system.

As a consequence every plane section of a quadric is a conic

35) z =0, azx? + by? + 2dxy + 2hx + 2py + r = 0,

as studied in plane analytic geometry. Such a conic may be
carried by a rotation of axes leaving z unaltered into a conic

36) z=2 =0, ax'? + By’ + 2vx’ + 28y + € = 0.
Apply this rotation to the original quadric and thus carry the
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quadratic form fo(z, y, 2) = ax? + by? + c2? 4 2dzy + 2exz +
2¢yz into

(B7) (@, ¥, 2) = az’? + By'? + v2'? 4 2a2'2’ 4 2uy’7.

If the given quadric is an ellipsoid, then ¢o(z’, ¥/, 2’) > 0 for all
real values of z/,y’, 2’ not all zero and this must be true of
o', y',0). Hence, formula (37) is our equation of an ellipse
and we have proved the following:

Theorem 3. The plane sections of a quadric are conic sections.
In particular, all plane sections of an ellipsoid are ellipses.

7. Points of symmetry. We shall close this chapter by apply-
ing notations of axes to obtain a discussion of the symmetries of
nondegenerate quadrics, 7.e., quadrics that are not planes, pairs
of distinct planes, point loci, or imaginary loci. It 7s recom-
mended that the details of the proofs be omitted in the classroom and
that only the results be presented.

We first observe that the nondegenerate quadrics defined by
equations of the form ’

ar?+ By?+ 4224+ 6 =0
are symmetric with respect to the origin. We shall call such
quadrics central quadrics and shall say that the origin is a center.
If aBy # 0, the corresponding surfaces are ellipsoids, hyperbo-
loids, or quadric cones. Then the origin is the only point of
symmetry. Indeed, we shall prove the following result:

Theorem 4. A nondegenerate quadric S s symmetric with
respect to a point P if and only if S is a central quadric with P as a
center. If S is an ellipsoid, hyperboloid, or gquadric cone, the
point P is the only point of symmetry. However, if S vs a cylinder,
the line through P parallel to a generating line of S is a line of
centers of S.

For we select a coordinate system with a given point of sym-
metry P as origin. Then if f(z, y, 2) = 0 is an equation of S
relative to this coordinate system, it must be true that f(z, y, 2)
= f(—z, —y, —z). Hence f(z, y, 2z) hasnolinear terms. A rota-
tion of axes about P reduces f(z, 7, 2) to the form ax?+ By?
+ v22 4+ 6 = 0 and S is a central quadric, P is a center of S.
Let (£ 1,¢) be a second point of symmetry, and carry out a
translation of axes x =2’ + ¢ y =9 + 9, 2 =2 + ¢, which
moves the origin to (¢ 9,¢). Then f(x,y,2) = a(z’ + £ +
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B + i+ @ + ) = o, ¥, 2), ¢(—2', ¥, ) = é(x,9,2),
and af =By = =0. If ofy #0, then (§19,¢) = (0,0,0)
and P is the only point of symmetry. Since S is nondegenerate,
only one of the numbers «, 8, ¥ can be zero, and we can assume
the coordinate system chosen so that o8 # 0, ¥ = 0. Then
¢ =9 = 0 and the surface S is symmetric with respect to all
points (0, 0, ¢), that is, all points on the z axis. But the z axis is
the line through P parallel to the generating line x = y = 0 of
the cylinder ax? + By?+ 6 = 0. This proves the theorem.

8. Planes of symmetry. Definc a quadric surface S by a
quadratic equation f(x, y,2) = 0, and define a plane I/ by an
equation Az + uy + vz = p, where p = 0and N2 + p? 4 »? = 1.
Then a line L normal to H and through a point (xo, ¥, 20) of H
isalinex=2x0+ M, y=1yo+ ut, 2=2 + ». We find the
points of intersection of L and S by finding the roots of the
equation

(38) o(t) = flxo + M, yo + ut, 20 + vt) = 0.

The distance from H to any point of L is N(xo 4+ M) + u(yo + ut)
+v@o+ ) —p=NF+pr+ )+ Avo+ pyo+ v2o —p) =t
and thus the solutions of ¢(t) = 0 define not only the points of
intersection of the normal lines with S but also their distances
from H.

A plane H is a plane of symmetry of a quadric surface S if
every normal to I either does not cut S or cuts S in two points
on opposite sides of H and at the same distance from H. While
this definition formally includes a plane having the property that
all normals either do not cut the surface or lie wholly on it, we
shall exclude such planes. Thus the planes z = k are not
regarded as planes of symmetry of the cylinders f(z,y) = 0. A
plane of symmetry then defines a set of normal lines and corre-
sponding pairs of points of intersection P, and P, whose corre-
sponding distances ¢, and {, from I/ must have the property
t1 + t2 = 0. Then necessarily the coefficient of ¢ in ¢(¢) is zero
for all (xo, Yo, 20) in H.

If f., f,, f. are the partial derivatives of f(z, y, 2) with respect
to z, y, 2, the coefficient of ¢ in formula (38) is

2¢1(x0, Yo, 20) = Ma(Zo, Yo, 20) + ufu(To, Yo, 20) + ¥f2(2o, Yo, 2).
We thus seek to determine all values of p, \, u, » such that
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#1(xo, Yo, 20) = 0 for (xo, Yo, 20) on the plane H defined by
N+ py + vz —p = 0.
The central quadric

39) ar® 4+ By + vz + 6 =0,

defined for real e, 8, v, & such that a8y = 0, has the corresponding
function

(40) 1(0, Yo, 20) = azo + Buyo + Yvzo.

If X 5 0, then (pA~—%, 0, 0) is in I and therefore oAz — ap = 0.
Thenp = 0. Similarlyp = 0ifu £ Oorv £ 0. Since A2+ p2+
»?2 = 1, we have proved that H is a plane through the center of S.

If N\=pu=0, then v 0 and H is the plane z = 0. If
N =0and pg # 0, then yo = —u~wzo and (y — B)vzo = 0 for all
values of zp and zo. Then (y — 8)» = 0. If S is a sphere, any
plane through the center of S is a plane of symmetry. If S is
not a sphere, we may take v # 8 and see that v = 0; H is the
plane y = 0.

There remains the case X % 0, xo = —N"(uyo + v20)(B — @)
wo+ (v — a)yzo =0 for all y, and 2. Then (B — a)u =
(v — a)yr = 0. When S is not a surface of revolution, 8 # «,
v # a so that p = » = 0 and H is the plane x = 0. If Sisa
surface of revolution defined by @ = 8 # v, we have v = 0; H
is a plane Az + wpy = O through the axis of revolution z = y = 0.
But all such planes are planes of symmetry. We have proved the
following:

Theorem 6. A plane is a plane of symmetry of a sphere if and
only if it s a plane through the center of the sphere. If S is a central
quadric of revolution, its planes of symmetry are the planes through
the axvs of revolution and the plane through the center perpendicular
to the axis of recvolution. The only planes of symmetry of a central
quadric ax?® 4+ By* + vz* + 6 = 0, which s not a surface of
revolution, are the planes x = 0,y = 0, and z = 0.

The equation

(41) ax? + By? = 26z
defines a paraboloid for all nonzero real numbers «, 8, 8. Then
(42) $1(20, Yo, 20) = aAxo + Buyo — év.

If v # 0, then (0, 0, pr~) is on H and ¢,(0, 0, pr~) = —é» = 0.
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But & = 0, » £ 0, which is a contradiction. Hence, u = 0 and
AT + py = p is an equation of H, ¢1 = adzo + Buye. If A £ 0,
then (\~!p,0,0) is on H and ¢:(\"'p,0,0) = ap =0, p =0.
If \=0, then 0 and (0, p~!p,0) is on H, ¢:(0, u~'p, 0)
=Bp =0, and p = 0. We have thus shown that every plane
of symmetry of S is a plane Az + py = 0. If @ = 8, so that S
is a surface of revolution, all such planes are planes of symmetry.
But if o B, we have Axo = —uyo, 1 = (8 — @)uye. When
A= 0, ¢ = (B — a)uyo = 0 for all values of yo and u = 0, H is
the plane z = 0. Otherwise, A = 0 and H is the plane y = 0.
We have proved the following:

Theorem 6. A paraboloid ox? + By? = 26z has the planes
x = 0,y = 0 as planes of symmetry. These are its only planes of
symmetry unless the paraboloid is a surface of revolution. In this
latter case, the planes of symmetry are all the planes through the
axis of revolution.

The only remaining nondegenerate quadrics are the cylinders.
The first case to be studied is that of a cylinder

(43) ax? + By = &

where o8 % 0. We have already seen that a plane z = k is
not a plane of symmetry and therefore all planes of symmetry
are planes Ar 4 uy + vz = p, where A # 0 or u # 0. Now
¢1(x0y Yo, 20) = alro + Buyo and (A—lp) 0; 0) or (0) ’-‘_lpy 0) is
on H, ¢1(xo, Yo, 20) = ap or Bp at these points and therefore
p=0 1If N\=0, then u 0, yo = —p~v2o, aAxo — Brzo = 0
for all values of xo, 2o, A\ = v = 0 and H is the plane y = 0. If
N5 0, then zo = —N"'(uyo + v20), ¢1(Zo, Yo, 20) = (B — @)uyo
— avzo = 0 for all o and 2o, (8 — a)u = v =0. When 8 = q,
the surface S is a circular cylinder and all planes through its axis
z =1y =0 are planes of symmetry. In cases 8 # «, then
p = v = 0 and H is the plane x = 0. We have proved the fol-
lowing result:

Theorem 7. The planes of symmetry of a circular cylinder are
the planes through its axis. If a noncomposite cylinder ax? +
By? = & is not a circular cylinder, the only planes of symmetry are
the planes x = 0 and y = 0.

The only remaining case is that of the parabolic cylinder
z? = 8y, where 6 # 0. As before, every plane of symmetry is a
plane Az + uy + vz = p, where X 0 or u % 0. Now ¢:1(2o,
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Yo, 20) = Nzo — du. If u 5 0, then (0, u~'p,0)ison H, —éu = 0
contrary to hypothesis. Hence, p = 0, A # 0. Then (A\~!p, 0,
0) is on H, ¢ = Nzo = p = 0. It follows that H is a plane
N = —uz, (—N"1v20, Yo, 20) is on H for all yo, 20, 1 = 0, and H is
the plane £ = 0. We have proved the following:

Theorem 8. The only plane of symmetry of a parabolic cylinder
x? = 0y s the plane x = 0.

9. Lines of symmetry. If L is a line of symmetry of a quadric
surface S, we may select a coordinate system such that L is the
z axis. Let an equation of S relative to this coordinate system
be f(xy y,2) = 0. Then f(z,y,2) = f(—x) Yy, 2) = f((l?, -Y Z),
so that f(z, y, z) involves only even powers of z and y. Then

(44) fx,y,2) = ax®+ By + y2z* + 26z + ¢ = 0.

Suppose first that S is a central quadric with three nonzero
characteristic roots. Then «By 0, and we may select the
coordinate system so that § = 0. The given line is then a line
of intersection of two distinct planecs of symmetry, 7.e., the planes
z=0and y =0. When ¢, 3, v are distinct, the surface S has
only three planes of symmetry and thus the only possible lines
of symmetry are the three intersections of pairs of such planes.
These lines are called the principal axes of the quadric. When
S is a sphere, all lines through the center are lines of symmetry.
However, if S is a quadric of revolution, the intersection of two
distinct planes through the axis of revolution is the axis of revolu-
tion and the intersection of a plane through the axis of revolution
and the unique plane perpendicular to the axis of revolution is a
line through the center perpendicular to the axis of revolution.
These lines are all lines of symmetry. We have proved the
following:

Theorem 9. The lines of symmetry of a sphere are all the lines
through its center. If S 1s a moncylindrical central quadric of
revolution, its lines of symmetry are the axis of revolution and all
lines through the center of S and perpendicular to the axts of revolu-
tion. The lines of symmetry of a noncylindrical central quadric,
not a surface of revolution, are its three principal axes.

We next assume that S is a paraboloid. Then necessarily
v =0,a 0,8 # 0 in formula (44), and the line L of symmetry
is the intersection of two planes of symmetry of the surface. By
Theorem 6, if S is not a surface of revolution, L is the unique line
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of intersection of its two planes of symmetry. If S is a surface
of revolution, all planes of symmetry intersect on the axis of
revolution and L is this axis.

Theorem 10. A paraboloid has a single line of symmetry.

If S is a cylinder, then o8y = 0. If ¥ = 8 = 0, the cquation
i1s az? 4+ 26z + ¢ = 0, and the line L lies on the plane of sym-
metry £ = 0. But this is the case of a parabolic cylinder and
there is only one such plane. Hence, all lines of symmetry are
lines of the plane x = 0. If the line L is defined by equations
x = 0, \y + pz = p, then the rotation of axes defined by

2 =z, Yy =Ny + pez, Z = —uy + N2
has as solved form

z =2, y =N — u?, z =y + N\
and replaces the given equation by

ar’? 4+ 26(uy’ + M) + € = 0.
This rotation replaces the equation of L by 2’ = 0, ¢/ = p. A
translation of axes 2/ = 2/, ¥y =y’ + p, 2"’ = 2/ yields
az’’? + 20[u(y”’ + p) + "] + €= 0.

This must be unaltered by the replacement of ¥’ by —y”.
Then p = 0, and the line is given by y = k = +p. However,
every line x = 0,y = k is a line of symmetry of az? + 26z + €
= 0, since £ = y = 0 is such a line, and the translation of axes
2 =ux,y =y -+ p does not alter the given equation. Inter-
changing the roles of y and 2z, we have the following results:

Theorem 11. The lines of symmetry of the parabolic cylinder
x? = 8y are all the lines of intersection of the plane x = 0 with
planes z = k perpendicular to the lines on the cylinder.

If y =a =0 and g # 0, we also obtain a parabolic cylinder.
Thus the only remaining cases are v = 6 = 0, f(z, y, 2) = azx®
+ By + ¢ and v #0, f(z,y,2) = ax?+ v22+ 262+ ¢ or
flx,y,2) = By? + v2* + 26z + . In any case we may reduce
the equation to ax? + By? + ¢ = 0 by a translation and rotation
of axes and the line of symmetry becomes the line of intersection
of two planes of symmetry. But, by Theorem 7, all planes of
symmetry of a nonparabolic quadric cylinder intersect in a smglo
line and we have proved the following:

Theorem 12. A nonparabolic cylinder has a single line of
symmetry.



CHAPTER 8
SPHERICAL COORDINATES

1. Azimuth and elevation. It is sometimes convenient to
locate points in space by three-dimensional vectors of coordinates
called spherical coordinates. These coordinates have a position
in space gecometry like that of polar coordinates in plane geometry.
They have the advantage over rectangular coordinates of being
optically measureable from a fixed origin O of coordinates.

The first spherical coordinate is the range r. This is the
distance

(1) r = |OP] = Vz? + y? + 2

from the origin O to the arbitrary point P in space, and we have
given a formula expressing r in terms of the rectangular coordi-
nates of P. 'We note that » = 0 and that r = 0 only if P is at O.
There are several physicogeometrical methods for the approxi-
mate measurement of r and, in particular, the measurement of
the distance of a physical object from an origin of measurement
is possible by radar devices.

The remaining two coordinates are angles «, ¢ measured (in
radians) as in IYig. 16. The set of numbers (r, @, €¢) is then a
coordinate vector of three real numbers. If the angles are
measured in degrees, they must be converted into radians.
Actual measurement of « and e may be achieved by a very simple
and accurate instrument called a surveyor’s transit.

The spherical coordinate angles «, ¢ may be defined most
easily relative to a given rectangular coordinate system. We
assume that P = (z, y, 2) is an arbitrary point in space and con-
struct a half plane which contains P and has the z axis as its
edge. In Fig. 16, this half plane intersects the x, ¥ plane in a
ray OA. Look down from the positive z direction on the z, y
plane and so define a clockwise direction for angular measurement
in the z, y plane. The angle « is then measured in a clockwise
direction from the positive y axis to the ray OA. Evidently «

123
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may be restricted to lie in the interval

2 0La<2r
radians. The angle « is called the azimuth of P.
z
P
0 Y
| € T
N
| ¢ a
| B~
| i
| /
I/
|
| /I
o/
x ‘ ;
| e
P
[
}/
Fic. 16.

The angle € is measured from the ray OA to the ray OP, and
we may assume that

3) -

IIA
IIA

T

€

[ M|

Here ¢ > O for points with z > 0 and ¢ = 0 otherwise. We call
e the elevation of P. Note that the z, ¥ plane is the plane whose
spherical coordinate equation is e = 0.

It is sometimes convenient to use an angle ¢ called the zenith
of P rather than the elevation angle e. This angle is measured
from the positive z axis to the ray OP and { = 7/2 — e. Then

0=s¢t=sm
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Rectangular and spherical coordinates are related by the
formulas

(4) x = rsin a cos e, Y = T COS o COS ¢, z=rsine
The last of these formulas comes from the fact that in Fig. 16
the distance B} =z and |OP| = r, so that z = rsine. Then
|OB| = r cose and y = cC = |OB| cos @, and z = CB = |OB|
sin . This verifies formula (4).

ORAL EXERCISES

1. The following vectors are the rectangular coordinates of points. -
Give their spherical coordinates.

(a) (0,1,0) (d) (0,0, 5) @ (V2,V6,2V2)
(C) (0; 01 1) (f) (1) 11 0) (7’) ('— \/37 11 2 \/3)

2. The following vectors are the spherical coordinates (r, a,€) of
corresponding points. Give their rectangular coordinates.

@ (0,9 @ (257 @ (LT -7
®) (1,0, € ©) (3, . 1;) *) (1,(1;1r, _77;)
() (1’2 1 2 (3’”’ Z) ® (4’227” 77;)

3. What geometrical object is described by the equation a = 0?
By the equation a(a — ) = 0?

2. The angle between two vectors. If P and P, are two points
in space distinet from the origin O, we have already given a
formula for the cosine of the angle § = ZPOP, in terms of the
direction cosines of the rays OP and OP,. We shall now derive
a formula in terms of the spherical coordinates of P and P,.

If P=(r,a,¢) and P, = (7o, ao, €), the unit vector on the
ray OPis U = (1, a, €) and that on the ray OP,is Uy = (1, a, €).
The rectangular coordinates of U are (sin a cos ¢, cos a cos ¢,
sin €) and those of U, are (sin ao coS €, COS ap COS €, Sin €), SO
that cos 6 = (sin a sin ag + €0s @ cos ag) COS € COS € + sin € sin ea.
Then the required formula is

(5) cos 6 = cos € cos ¢ cos (@ — ap) + sin e sin eo.
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If 6 is'an angle so small that its sine is approximately equal to
0 (measured in radians), we may replace formula (5) by a much
simpler approximation formula. We shall use the notation

a=>b

(read a is approximately equal to b) throughout this chapter and
the degree of accuracy of the approximation will of course depend
on the actual approximations made and needs to be investigated
in all specific cases.

Formula (5) implies that

1 — cos 6 = cos € cos el — cos (@ — ag)] + 1
(6) — COS € COS € — Sin € sin ¢
= c0S € c0S €[l — cos (@ — ap)] + 1 — cos (¢ — €).

If ¢ is any angle, the formula 1 — cos ¢ = 2 sin? ¢/2 is a well-
known formula of elementary trigonometry. We apply it to
formula (6) to obtain

. .8 . a — o . € — €
s1n2-2— = sin? 5 COS € COS € + sin? —24’ )

and therefore have the exact formula

(7) sing = \/sin2 (a _2 ao) COS € COS € + sin? (636—0)

for acute angles . When 6 is small, the angles @ — ay and
e — ¢ are small and cos € = cos €, sin 3(a@ — ay) = 3(a — ),
sin $(e — €) = (e — €). Then formula (7) becomes

(8) 0 = \V[(a — ag) cos €]+ (¢ — €)%
EXERCISES

1. Compute 0 in milliradians (thousands of radians) in the following
cases by the use of the exact formula (7) and five-place tables of loga-
rithms. Give your answer correct to the nearest tenth of a milliradian.

@) a = 17°27', ao = 18°42, € = 15°, € = 16°

) a = 24°32', ap = 24°, € = 72°, ¢ = 69°40’

(€) a = 192°17", ap = 191°, ¢ = —18°% ¢y = —19°

2. Compute 8 in milliradians correct to the nearest tenth of a milli-
radian by the use of formula (8), and compare the results with those of
Exercise 1.
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3. Parallax. The changes in spherical coordinates that are
the results of a translation of axes are called parallax corrections.
There are many physical situations where measurements of
range, azimuth, and elevation are made by instruments located
at a point O, but are required relative to a parallel coordinate
system with origin at a nearby point O’. 1In such cases, formulas
for parallax corrections are needed.

Let us suppose that the z, y, 2 coordinates of O’ are (a, b, ¢)
and that the corresponding spherical coordinates are d, ao, .

Thus

9 d=+VaFbF¢, sine = f—l

tan oy =

0“!@

Suppose then that P = (r, «, ¢) has rectangular coordinates
x, Y, 2, and define

(10) § = L—i, cos § = & + by F ez

dr

)

so that 6 is the angle between the ray OO’ and the ray OP. Then
(11) d cos 8 = (asin a + b cos a) cos € + ¢ sin e,

and d cos § may be computed when « and e are given. The
numbers a, b, ¢ may be regarded as fixed, and it is possible to
construct a table of corresponding values of d cos 8 in which the
table is entercd with « and € and d cos 6 is rcad from the table.
We may, of course, apply formula (7) to compute 6 and then com-
pute d cos 6.

When many parallax corrections to the same point O’ must be
made, it is worth while to construct a table as described above
and to translate it into a contour graph. This graph will consist
of a number of curves. Each curve will consist of points whose
x coordinates are « radians and y coordinates are e radians, and
d cos 0 will be the same for all points on the same curve. If
enough curves are drawn, it is possible to read off d cos 6 directly
from the graph by finding the curve on which a point with pre-
scribed coordinates lies. Linear interpolation between curves
is sufficiently accurate, of course, when many curves are drawn.
It is usually possible to draw the curves by plotting a relatively
small number of points on each curve.

Let us suppose now that d cos @ can be quickly determined by
a table or a contour graph whenever @ and e are given. We
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require the range 7/, the azimuth o', and the elevation ¢ of the
point P relative to the coordinate system obtained by a transla-
tion of axes carrying the origin to O’. Then the parallax correc-
tions are defined to be

(12) A(r) =71 —r, Ale) = — q, Ae) = € — ¢,

and we propose to find formulas for the computation of A(r),
Ala), A(e).

We use the translation formulas 2’ =z —a,y =y — b,
2 =2z — ¢, and compute 7’2 = 2’2 4 y'? 4 2/ = x2 4 y? 4 2?2
— 2(ax + by + ¢c2) + a* + b2 + ¢ = r? — 2dr cos 8 + d*® by
formula (10). Then

(13) 72 = r2(1 — 28 cos 6 + &%) = r}(1 — & cos 6)?2
+ (3 sin 0)?].

The assumption that d is small compared with r implies that
1> écosé,

' = (1 — _Osinf6 \*
(14) v =rQ 60050)\/1-%-(1_60080

Expand this expression by the binomial theorem which states that

by =14m+ 20Dy

and which yields a convergent series if IbI < landn = 3. Then
62 sin? 9
T 2(1 — 6 cos 6)2
62 sin* 0
801 — Bcose)4+ S ]

(15)  =r(1 — & cos 0) [1

and therefore ér = d yields
d? sin? 0

(16) r —dcos 04 57— 3G = d cos 6) 0)

The parallax correction

17) A(r) = —d cos 0

is usually quite adequate and may be computed as was indicated
above. The more accurate correction

d? — d? cos? 6

(18) A(T) = —d cos 6 + mﬂ
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may also be computed easily from given values of d cos 6, but the
difficulty in making exceedingly accurate measurements of r
usually make this more refined correction meaningless.

We next observe that »' sine =2 =z —c¢=rsine — c.
This gives )
(19) sin ¢ = T—SIPT—M,G_C,
and

(r—1')sine —c
/

(20) gin ¢ — sin € = "

Then we use a well-known formula of trigonometry to replace
formula (20) by

. Ae e+¢e _(r—1)sine—c
(21) 2sm—2—cos 5 = 7

If a, b, ¢ are small compared with r; the values of A(e) will be
small, and we may use the approximations

Ale) . Ale)
D5 =g
(22) ,
cose_;E = COS(e—i—é;—e)-) = COS ¢,
and thus obtain
CAG = A0 c_.
(23) Ae) = 7 tan ¢ 4 e

This correction is proportional to 7’ and there is little loss of
accuracy if the approximation

(24) A(e)ildcosflsme——c

r COS €

is used. The answer is the number of radians in A(e) and is
converted to milliradians by multiplication by 1,000.

As in the case of the computation of A(r), the computation of
many values of A(r) for fixed a, b, ¢ may be achieved best by a
graph of curves giving equal values of A(e) for r = 1 and « and e
as variables. The computation of A(r) is then a matter of reading
a result from a graph and dividing the result by r.

To derive a formula for A(a), we note that
_rsinacose —a

tan o’ = 5 =
¥ rcosacose —b
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Then

tan o’ — tan a =
(r sin & cos € — a) cos a — (r cos a cos ¢ — b) sin a
cos a(r cos a cos € — b)

This formula reduces to

sin (@ —a)  acosa-+ bsina
cos a cos o cos a(r cos a cos € — b)

It follows that

,acos a+ bsina
T COS acose— b

(25) sin (o/ — @) = cos «

We make the approximations sin (¢ — a) = o’ — a = A(w),
cos @’ = cos a, to obtain

acos a+ bsina

(26) A(a)iTCOSe—bSeCa
But then
A(a)iacosoz—{—bsmoz
7 COS €
4+ (a cos @ + b sin «) 1 _ 1
cos «a *\rcose — bsoca T cose

iacosa+b81nal+( b sec a )

T COS € r ¢cos € — b sec a

=acosa+bsina<1+ b )

7 COS € rcosecosa — b

If b/r is small, we may use the approximation

27) Ale) = a cos ,«ac;:l: sin «

and may compute A(a) by a process similar to that used in the
computation of A(e). Otherwise, it will be necessary to multiply
the result by the factor

(28) 8

cosacose — f3
where 8 = b/r.
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EXERCISES

1. Let a = 2 yards, b = —3 yards, and ¢ = 6 yards. Construct a
table of values of d cos 6 to tenths of a yard for « = 70°, 71°, 72°, 73°,
74° and € = 15°, 16°, 17°, 18°, 19°.

2. Compute the values of A(r) by the use of formula (17) for the fol-
lowing values of (r, «, €), where we are giving « and € in degrees and 7 in
yards.

(a) (1,000, 70°, 18°) (d) (300, 73°, 15°)
(b) (972, 71°,17°) (¢) (100, 72°, 19°)
(c) (500, 74°, 15°%) (N (75,71°, 18°%)

3. Compute A(r) to tenths of a yard by the use of formula (18), and
compare results.

4. Compute A(e) in milliradians by the use of formula (24) and com-
pare the result with that obtained by replacing r by 7’.

6. Compare A(a) by the use of formula (27) for parts («) and (b) of
Exercise 2. Compute the correction factor of formula (28), and com-
pare results.

4. Other spherical coordinates. The spherical coordinates
a, € described in See. 1 are defined for every point P in terms of a
half plane through P and the z axis. It should seem natural then
to define scts of corresponding angles relative to the remaining
coordinate axes.

Fic. 17.

We first construct a half plane through P and the y axis as in
Fig. 17. Let this half plane cut the 2, z plane in a ray OB and
define the clockwise direction on the z, z plane as viewed from
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the positive y direction. Then we measure the y azimuth angle
B in this clockwise direction from the positive x axis to the ray
OB and

(29) 0=28<2r

radians. It follows that 0 < 8 < = for points having positive
or zero elevation and = < 8 < 2r for points having negative
elevation.

An angle 6 may also be measured from the positive y axis to
the ray OP. Then

(30) 0<0<m,

and the angle 6 is a zenith angle rather than an elevation angle.
We shall call 0 the y zenith of P. 1t is called the angle off the nose
in aerial navigation.

The set of spherical coordinates just defined is determined by
the relations

(31) x = rsin 6 cos B, y = rcosé, z = rsin 6 sin 8.

We leave the verification of this formula to the reader. It may
be combined with formula (4) to yield

tan e
sin «

(32) cos § = cos a COs ¢, tan 8 =

These last expressions may be used to determine § when o« and e
are given and will also determine 8 up to a quadrant determina-
tion that may be made by a consideration of signs.

A third set of spherical coordinates may be obtained by passing
a half plane through P and the z axis as in Fig. 18. Let the ray
OD be the intersection of this half plane and the ¥, z plane, and
define the clockwise direction on the y, z plane when it is viewed
from the positive z direction. Then we measure the x azimuth
angle v from the positive z axis to the ray OD. We similarly
measure the x zenith angle ¢ from the positive z axis to 0Q. The
angles just defined satisfy the inequalities

(33) 0=+v < 2nm, O=sy¢y=m
They also satisfy the relations

(34) z = rcosy, y = rsiny cos v, z = rsiny sin vy,
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and v and ¥ may be determined when o« and ¢ are given by the
formulas

. tan e
(35) cOoS ¥ = sin a CoS ¢, tany = —
) ) cos «
and a consideration of signs.
z /
Vd
¥ -~
D f"'/’
< e
v
P
v
v
Ve
7
7/
//
v .
Y
x
Fia. 18.

6. The matrices of planar rotations. We have called a rota-
tion of axes in which one coordinate axis remains unaltered a
planar rotation. If the unaltered axis is the z axis, we call the

F1c. 19.

rotation a yaw. We call the rotation a pitch if the unaltered
axis is the x axis and a roll if the unaltered axis is the y axis.
We shall measure all three of these angles in a clockwise positive
direction as viewed from the positive direction on the unaltered
axis on the coordinate plane perpendicular to this axis.
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In Fig. 19 a yaw through an angle ¢ has been performed that
carries z, y, zto 2/, y’, 2. It should be evident that e is unaltered
and that

a=d +¢ € =¢€.

We will normally be given o', ¢ and will desire @, e. Then we
have

RuLk I. To remove the cffect of a yaw through ¢ increase the
azimuth o' by ¢ and leave € unaltered.

The result above is evident geometrically from Fig. 19. It
should also be noted that the equations of rotation are

x x cos¢{ sin¢ O
(36) yl=Y\y ]} Y=|—-sin{ cos¢ 0]
2z 2 0 0 1
where we apply this result to the unit vector to see that
sin « cos € cos¢ sin¢ O\ /sin o cos €
(B7) |cosacose]=|—sin¢ cos¢ 0] cosa cosée )
sin e 0 0 1 sin ¢

This formula implies that sin e = sin ¢ and so € = €, cos e =
cos €. Hence, sin @ = sin &’ cos { 4 cos &’ sin ¢ = sin (o’ +¢),
cos a = — sin { sin o’ 4 cos { cos &’ = cos (o + {),andsoa =

o + ¢

x

x!

F1a. 20.

In a similar fashion we use Fig. 20 to measure a roll angle 7
about the y axis. Then 8 = 8 + 7, = 6, and we have the fol-
lowing rule:
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RuLe II. To remove the cffect of a roll through our angle n
increase the y azimuth 8’ by 7, and leave the y zenith 6’ unaltered.
As before, the equations of rotation are

x x’ cosn 0 —sing
(38) y|=R,|¥y | R, 0 1 0
z

2 sinq O cos

where we use

sin 6 cos B cosn 0 —sin g\ /sin ¢ cos B’
(39) cos 6 = 0 1 0 cos ¢
sin 0 sin 8 sinm O cos n/ \sin & sin B’

to verify that 6 = 6’,cos B = cos 7 cos B/ — sin 7 sin g/ =
cos (n + B'), sin B’ = sin 5 cos B’ + cos 9 sin B/ = sin (n + B'),
B=n+4p.

We finally use Fig. 21 to measure a pitch angle # such that

z
z!

Fic. 21.

y=1v" 4+ &t ¢ =¢. Then we have the following rule:
RuLk III. To remove the effect of a pitch through an angle &
increase the x azimuth v' by & and leave the x zenith  unaltered.
The equations of rotation in this case are

x x’ 1 0 0
(40) y]=P:ly ) P;={0 cos¢ —sin ¢},
z 4 0 sin ¢ cos £
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where we verify the correctness of our formulas by the computa-
tion

cos Y 1 0 0 cos ¢
(41) |sinycosy)={0 cosé —sin{]|siny cosy ).
sin ¢ sin vy 0 sin ¢ cos ¢/ \sin ¢/ sin v’

This formula yields ¢ = ¢/, cos v = cos £ cos v/ — sin £ sin v/
= cos (¢ + ¥'), siny = sin { cos v’ + cos £sin v’ = sin (¢ + 7).

6. Rotations as products of planar rotations. In Sec. 3 of
Chap. 7 we gave a geometrical argument showing that every
rotation of axes may be expressed as a product of three planar
rotations. There are many expressions of a rotation of axes in
terms of three planar rotations, and in particular we may write

X z’ A N A3
(42) y|=L|y ) L={m wp p)=Y PR,
4 2 V1 Va Vs

Then we have expressed the rotation matrix I, as a product of a
yaw matrix, a pitch matrix, and a roll matrix. There actually
exist physical instruments for the measurement of ¢, £ 9. We
shall be interested herc primarily in observing how the elements
of the matrix L are related to the angles £ 1, ¢.

We first form the product

cos 7 0 — sin g
(43) PR, =| —sin £siny cos & — sin £cosn .
cos £sin g sin § cos £ cos
The definition of formula (42) implies that
(44) L =
cos¢{ sin{ O cos 7 0 — sin 9
—sin¢ cos¢ Ol —sin ésinn cos & — sin £cos 1,
0 0 1 cos £sinn sin ¢ cos £ cos 1

and it follows that
A1 = cos { cos 7 — sin ¢ sin £ sin 7,
Ao = sin { cos &,
—\z = cos ¢ sin 7 + sin ¢ sin £ cos 7,
(45) wy = — sin ¢ cos 7 — cos { sin £ sin 7,
e = €08 ¢ cos &,
w3 = sin 7 sin § — cos ¢ sin & cos 7,
v; = cos £ sin 7, v = sin §, vz = cos £ cos 1.
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When L is given, the angles ¢, 5, { may be determined, apart
from quadrant, by the use of the formulas

(46) sin & = y,, tan g = 2, tan ¢ = Ay

: Vs K2
In the case where all rotation angles lie between —#/2 and 7/2,
formula (46) completely determines £, 1, ¢.

It should be clear that if we write L as a product of three
planar rotations in a different order, then the yaw pitch and roll
angles are different; for example, if L = Y PR, = P,R,Y,, then,
in general, it will not be true that ¢ = ».

7. Stabilization of coordinates. The problem of stabilizing
coordinates arises in physical situations where it is required to
find the azimuths o and elevations e of many points P relative to a
fixed coordinate system under conditions where the azimuth o’
and elevation € of each point P relative to a rotated coordinate
system, as well as the corresponding rotation, are measurable.
It is customary to call o/, ¢ the unstabilized coordinates of P and
a, € the stabilized coordinates of P and we are thinking of a case
where the rotation varies as P changes.

Let us assume that the rotation of axes is given by an equation

sin « cos € sin o’ cos €
47) cos a cos € | = Y P:R,| cos o’ cos € |,
sin e sin ¢

where we have written the effect on the general unit vector of a
rotation which is the product of a yaw, a pitch, and a roll. Since

cos{ —sin¢ O
(48) Yi'=Y_ =[sin¢ cos ¢ 0]},
0 0 1
we see that
sin (¢ — ¢) cos e sin o’ cos ¢
(49) cos (@ — ¢)cose ] = P:R,| cosa’cose )
sin e sin ¢

The required coordinates may then be obtained by the following
procedure:

a. Convert o/, ¢ to §/, 8 by the use of formula (32).

b. Compute 8" =3+ 19,0 = 0.
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¢. Convert 8", 6" to v/, ¢/’ by the use of the formulas
cos ¥ = sin 4 cos G, tan ¥ = tan 0 sin .

d. Compute 'Yl/, = ’Y” + E’ ¢//I — ¢II'
e. Convert v"", ¢’ to a’"’, €’ by the use of the formulas

sin € = sin ¢ sin 7, tan o = cot ¥ scc «.

f. Thena = ¢ + o', e = €.

The formulas given in (¢) and (d) are obtained by combining
formulas (4), (31), and (35). The procedure above evidently
requires a considerable amount of computation.

A more direct formula is obtained by the use of formula (42)
and matrix multiplication. It yields

(50) sin (a¢ — ) cos € = cos nsin @’ cos € — sin 7 sin €
(61) cos (¢ — ) cos e = —sin £ sin 7 sin o’ cos €
+ cos £ cos o cos € — sin ¢ cos 7 sin €
(52) sin e = cos £ sin 7 sin o’ cos € + sin £ cos o’ cos €
+ cos £ cos 7 sin €.

The computation of « and e by the use of these formulas should
require less computation than the procedure outlined above.
However, there is a graphical (gnomonic chart) method for using
the procedure above that makes it a very rapid one.

If the rotation angles £ 7, { are very small, we can use the
approximations

sin g = 7, sin £ = § cosn =cos £ =1,
sin £sin n = 0.
Then formulas (50), (51), and (52) yield

(sin o — 7 cos ') cos €
53 tan (a — = :
(53) ( £) cos a’ cos € — ¢ sin €

(54) sin e = (9 sin &’ + £ cos &) cos € + sin €.
— ¢ e+ ¢
2

. . . . €
We may then write sine — sin ¢ = 2 sin 5 008

(e — €) cos ¢ and thus obtain the further approximation
(55) e=¢ + npsin o 4+ £ cos o

for a rapid computation of . However, even these approxima-
tions are not so rapid as the graphical method we have referred
to above.
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8. Gnomonic projections. The gnomonic projection of a point
P on the plane G whose rectangular coordinate equation is
y = a > 0 is the point @ of G whose azimuth and elevation are
those of P. The plane @ is tangent to the sphere of radius a at
the point of zero azimuth and elevation, and @ is the point of
intersection of the line z = ¢sin a cose, y = £ cos @ cos ¢, 2 =
t sin € with ¢. Then the coordinates of Q are

(56) x = atan o Yy =a, z = a tan e sec a.

The gnomonic projection of any surface S on G is the locus of
all the points of G that are the gnomonic projections of the
points of S. Consider in particular the cone consisting of all
points in space having a fixed elevation e. The projections of
these points are given by formula (56) for e fixed, and they
satisfy 22 = a® tan? e sec? a = tan? e(a® tan? @ + a?) = tan? e(x?
+ a?). Then the gnomonic projection of the cone of points
having elevation ¢ = 0 is the hyperbola

2* .2 2
(57) e ¥ =4 Yy = a.
The points of zero elevation project into the linez = 0, y = a.

The points having a fixed azimuth « lie on a half plane that is
a part of the plane x = y tan . Then the locus of the gnomonic
projections of these points is the vertical line

(58) x = a tan q, Yy = a.

To obtain the gnomonic projections of those points which have
a constant y zenith angle 0, we use formula (31) and put y = a.
Then
(69) x = atan 0 cos 8, Yy =a, z = a tan 6 sin B,
so that
(60) 2?2 4+ 2* = a* tan? 0, Yy = a.

Hence, the projection of the cone of all points having y zenith
equal to 6 lie on a circle of G with center at (0, a, 0) and radius
a tan . The points having y azimuth g all lie on the plane
z = zx tan B, and this plane cuts the plane G in the line

(61) z = z tan (3, Y =a.
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Here B is the angle from the coordinate axis 2 =0, y = a in G
to this line as measured in the usual counterclockwise direction.
Note that G is parallel to the zx plane and that we are viewing
G from the negative y direction.

Let us finally consider the z zenith and azimuth. We use
formula (34) to write

(62) z = a cot ¥ sec v, Yy = a, z = a tan 7.

Then the gnomonic projections of all points whose x zenith is ¢
satisfy the equation z? = a2 cot® ¢ sec? v = cot? Y(a® tan? y
+ a?) = cot? Y(2? + a*). Thus if ¢ # 7/2, the locus of the
gnomonic projections of the points having z zenith ¢ is the
hyperbola

x2
(63) cot? ¢

— 2 = a? Yy = a.

The points with ¢ = 7/2 are the points whose projections from
the line = 0, y = a, and these are the points with « = 0.
Finally, the points having fixed xr azimuth v lie on the horizontal
line
2z = a tan v, Yy = a.

We have shown how we may determine curves on G that, when
properly labeled, yield the six spherical coordinates of all points
in space.

Gnomonic projections may be made on other planes than the
one we have selected, but are always made on planes perpendicu-
lar to a radius of a sphere with center at the origin. The pro-
jections on planes parallel to the z axis are all called equatorial
projections, and those on planes perpendicular to the z axis are
called polar projections.

EXERCISES

1. Derive the curves of gnomonic projection for points having a
constant spherical coordinate a, ¢, 8, 0, v, ory on the following planes
@G, where a > 0:

@ y = —a ) == —a
(b) z=a d) z=a

2. Derive the equations of the curve of gnomonic projection of all
points of elevation e on the plane perpendicular to the linez = y,2z = 0.
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9. Gnomonic charts. A gnomonic chart is a map of a portion
of a plane that is tangent to a sphere of radius a inches. The
value of the constant a depends on the reading accuracy desired.

We take the origin of a rectangular coordinate system on the
chart to be the point C = (0, a, 0) and the chart to be the plane
y = a. Then C may also be taken to be the origin of a translated
(@', ¥', ') coordinate system in which the tangent plane at C is
the 2’, 2’ plane, i.e., the plane ¥’ = 0. The 2’ axis is then the
gnomonic projection of all points having elevation zero and is
represented on the chart by a horizontal line. The 2’ axis is the
gnomonic projection of all points having azimuth zero and is
represented on the chart by a vertical line. All points having
azimuth « = A° project into a vertical line and thus the azimuth
of the projection P’ on the chart of a point P in space is the same
as the azimuth of P and may be read by the use of a scale on the
' axis in which the point marked A° is at the distance 2’ =
a tan A from C. The reading of the coordinate A may be facili-
tated by the printing on the chart of a vertical grid. It is neces-
sary for the finite portion of the tangent plane represented by
the chart to include the portion where —i° < o < k°, where &
is somewhat more than 45. Then the chart extends to a point
where z’ is greater than a inches. Since very large charts are
difficult to handle, there are definite physical limitations on the
use of gnomonic charts as accurate devices for the reading of
spherical coordinates.

All points having a fixed value of the coordinate v project into
a horizontal line and therefore may be read by the use of a scale
on the 2’ axis in which the point marked E° is at a distance of
2 = a tan I° from C. The spherical coordinate 8 could be read
by the use of a circular protractor scale on the chart and a rotating
arm pivoted at C to read the coordinate 8 = B°. The arm could
contain a scale like the A scale or it could have a slider that would
be used to locate the point P’ accurately. The arm could then
be rotated to either the A scale or the E scale for the reading of
the coordinate .

All points having the same elevation e lie on a cone intersecting
the tangent plane in a hyperbola. A gnomonic chart then con-
tains a quasihorizontal family of hyperbolas. The hyperbola
that cuts the 2’ axis in the point labeled E° has the rectangular
coordinate equation z = tan E° \/z? + a? y = @, and all points
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whose gnomonic projections lie on this hyperbola have elevation
e = E°. The number of such curves which are actually drawn
depends partly on the reading accuracy desired and partly on
the physical limitations which the drawing of accurate curves
and readability will impose. The chart must also contain a
family of quasivertical hyperbolas whose equations are z =
tan A° v/2* 4+ a?, ¥y = a, and all the points whose projections
lie on the hyperbola cutting the ' axis in the point labeled A°
have the same z zenith y = 90° — A°.

We have now seen how a gnomonic chart may be used as a
direct reading device for the six spherical coordinates «, 8, ¢,
¢, 0, v of any point on the chart. Thus, if any two of these
coordinates are given for any point P in space, a corresponding
chart projection P’ may be plotted and the remaining coordinates
of P may be read. The chart may be used also as a device for
computing the effect on o, € of a rotation of axes when the rota-
tion has been expressed as a product of planar rotations. For the
rules given in Sec. 5 may be applied and the operations of that
section become chart motions.

In using gnomonic charts, the limitation of a chart to a finite
portion of the tangent plane requires that the charts be inter-
preted also as tangent planes whose point of tangency is one of
the pOintS (a; O) O), (—(l, 0) 0): (0: —a, 0)7 (0) 0) a): (O; Oy _a)
as well as the point (0, a,0) used in the description above.
The symmetry of our definitions of the three pairs of spherical
coordinates implies that the six spherical coordinates may be
obtained by making the same readings as before. However, the
correspondence between readings and coordinates will be dif-
ferent for each case.

The interested student should construct a chart with a = 10
inches and curves drawn for every three degrees of A and E so as
to get a better idea of the use of such a chart.

EXERCISES

1. Derive the interpretations of the six angles measured on a gnomonic
chart for each of the positions of C.

2. Interpret planar rotations as chart motions in the case where
C = (0,a,0). Give the interpretations also for C = (0, —a, 0),
C =1(a00),and C = (0,0, a).



CHAPTER 9
ELEMENTS OF PROJECTIVE GEOMETRY

1. Homogeneous coordinates. A point P of real n-dimen-
sional Euclidean geometry was represented in Chap. 1 by a real
n-dimensional vector, and we are accustomed to writing P =
(1, . . . ,2s). The numbers =z, ... ,z, are unique if a
coordinate system is specified, and we shall call them the non-
homogeneous coordinates of P.

It is sometimes convcnient to represent P by an (n + 1)-
dimensional vector

P=(yy ..., ¥ns1),
where .41 1s any real nonzero number and y; = z,,1.. We then
call the vector P a sct of homogencous coordinates of P.  Evidently
Q= (21, . . ., 2n4) is also a set of homogeneous coordinates of
the same point P if and only if Q = tP where t = 0. It follows
that P = Q if and only if P and Q are linearly dependent.

We are thus led to the study of the geometry of points P
represented by corresponding nonzero (n + 1)-dimensional vec-
tors P such that two points P and Q coincide if and only if P and
Q are linearly dependent. This is a first postulate of the subject
called projective geometry. The restriction .43 0 will be
omitted, and we only assume that all (» + 1)-dimensional vec-
tors considered are nonzero vectors. The points corresponding
to vectors with y.,1 = 0 are usually interpreted as points at
infinity.

In the case n = 3, we study all nonzero vectors (z, y, 2, t).
Then the nonhomogeneous coordinates of the points correspond-
ing to those vectors with ¢ £ 0 are the ratios

r y z,
Tt
2. Lines and planes. Let P,, . . . , P, be any m distinct
points whose nonhomogeneous coordinates are given by
(1) P; = (131,', e, X)) G=1,..., 6 m).

143
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Then the vectors

(2) PJ'=(xli)'~'yxﬂi;l> (J=11’n)
are m corresponding sets of homogeneous coordinates. Define
P = (2, . . .,x,) by a set of parametric equations

(3) P=P1+$2(P2—P1)++Em(Pm_Pl)

for m — 1 independent real parameters ¢, . . . , £». The case
m = 2is the case of lines, and the case m = 3 is the case of planes.
Then if P = (xy, . . . , 2 1) and N, . . . , \n are defined by
(4) >‘1=1—(£1+"'+£m)’ )‘J'=£)' (j=17"')m)>
we see that

(5) P=X\NP+ - + NP

For Pj - P1 = (131,' — T, . - . ,Tnj — Tny 0) and formula (5)
is equivalent to

(6) 13—P1=52(P2—P1)+"'+£m(l—)m"Pl)-

The (n + 1)st coordinates of the two sides of this vector equation
are both zero, and the statement of the equality of the first n
coordinates is precisely formula (3).

Conversely, let P be defined by formula (5) where the param-

eters \;, . . . , \,range independently over all rcal numbers. If
t=M+ - + M
is zero, P represents a point at infinity. Define
LN
(M j=- G=2...,m

for all finite points, and see that

® G-=( ... ,xm,1)=;15=-*71131+s21>2
S

Then '\ — &) = 7' e+ - - - + ) = —(B2+ - - - + &)

and

O A R T

=Py — P+ - -+ + tu(Pn — Py).
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Hence, formula (3) holds with ¥ = (z;, . . . ,2.). Note that
if R; = t,P,, then formula (5) is equivalent to P = p,R; + - - -
+ pmRm, where wR; = NP; = uit. P, Then \; = pud; with £; £ 0,
and the parameters u; range over all real numbers when the
parameters \; do. Hence, formula (3) is equivalent to formula
(5) where P; is any vector of homogeneous coordinates of P.

We have now shown that the geometric configuration defined
by the parametric equations of formula (3) is also defined by the
equations of formula (5). However, formula (5) is homogeneous
in its parameters and is a much more convenient form for the
parametric equations of what are called linear spaces in geometry.

In case m = 2 and P, and P, are distinct points, the correspond-
ing vectors P, and P, are linearly independent. Then the line
through P; and P, is the set of points (including points at infinity)
whose homogeneous coordinates are all linear combinations of
P, and P,. In the case n = 3, the homogeneous coordinate
equations of a line become

(10) (.’II, Y, 2, t) = a(xly W, %, tl) + ﬁ(x% Yo, 22, t2)

for independent parameters « and 8.

Three noncollinear points P,, P, P; determine a plane. Then
P, and P, must be linearly independent and P; must not be a
linear combination of P; and P, It follows that P, P, P,
determine a plane if and only if P, P,, P;are a set of three linearly
independent vectors. Then the equations

P = aP, + P, + vP;
are a set of parametric equations of the plane. In the case
n = 3, these equations become
(x, 9,2, 1) = alry, yy, 21, ) + B(xs, Y2, 29, t2) + (T3, Y3, 25, t3).
We shall limit all further study to the case n = 3.
EXERCISES

1. Give a set of parametric equations in homogeneous coordinates of
the lines defined by following pairs of points:

(a) (1) —1) 1)) (3) —3; 2) (6) (1, 2, —3); (—3) —2) l)
(b) (11 29 3)) (O; 2: 3) (f) (4; 1) 6); (2y —1: 4)
(C) (—2’ 1’ 1)) (37 —2’ 2) (g) (ly Ov 2)’ (2) —ly 1)

(d) (3' —1’ 2)) (17 —1) _2) (h) (1; 1; 1)’ (27 2’ 5)
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2. Give a set of parametric equations in homogeneous coordinates of
the planes defined by the following triples of points:

(a) (17 —11 1)) (3} _3; 2), (2; 1, 0)

(b) (ly 27 3)) (O’ 2; 3)7 (—1) 1) 2)

(6) (—'2) 1; 1); (3, —'2’ 2)) (0) 1: O)

(d) (3y _11 —2); (17 —1) _5)» (_2y —6: 3)

3. Projective transformations. Il.et C be any nonsingular
4 X 4 matrix

Ci1 Ci2 Ci3 Cis
C21 C22 C23 C24
(11) C

C31 C32 C33 C34
Cs1 Ca2 Cs3 Cuay

and define
(12) Q=(@,vy,2,t)=PC

for every point P with corresponding homogeneous coordinate
vector P = (x,y,2,t). Then every point P is mapped on
(z.e., determines) a unique point @, which we shall call the image
of P under a projective transformation with matrix ¢. Con-
versely, if the image @ is given, P is uniquely determined; for
P = QCc-.

It should be noted that a projective transformation may map
finite points on points at infinity. For example,

01 0 O
0 01 0

(13) L0,0, (s o o 1]= 1100
1 0 00

It is natural to ask when two matrices B and C define the same
projective transformation. This occurs when and only when
Q = PB and R = PC define the same point Q for every P.
This means that

(14) PC = ¢(PB)

for every P where ¢ is a nonzero real number which may con-

ceivably depend on P. We shall prove the following theorem.
Theorem 1. Two matrices B and C define the same projective

transformation if and only if C is a nonzero scalar multiple of B.
For if C = tB, it is evident that PC = {(PB). Conversely,
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suppose that PC is a nonzero scalar multiple of PB for every
P. Take P = (1,0,0,0) and see that PB is the first row B,
of B. Then the first row of C must be a scalar multiple ¢,B; of
the first row of B. We have a similar result for the other rows
and see that C = DB, where D = diag{t,, t», t3, 4} is a diagonal
matrix. We next take P = (1, 1, 1, 1) and see that

(15) PO = tlBl + t2B2 + t3Ba + t4B4 = fPB
= t(By + B; + B; + By)

where B; is the 7th row of 4. Then
(16) (tl - t, tz - t, t;; - t, t4 - t)B = 0

Since B is nonsingular, ¢; = ¢, = t; = t, = t, and we have proved
that C = (B.

4. Tetrahedral coordinates. If P, is any point, the corre-
sponding vector P, is a nonzero vector with the property that all
nonzero scalar multiples of P, define the same point P;. Let
P, be a point distinct from P;. Then P; and P; are linearly
independent, and the set of all linear combinations of P; and P,
is the set of all vectors P defining points on the line joining P,
to Pz.

We next let P; be a point not on the line joining P; and P,.
Then P, P,, P; are linearly independent, and the set of all linear
combinations of P, Ps, P; is the set of all vectors P defining
points P on the plane determined by P,, P, Ps.

Suppose, finally, that P, is a point not on the plane determined
by P, Ps, P;. Then P, is not a linear combination of P;, P, P;.
But then Py, P,, P;, P, are linearly independent. It follows that
the matrix

(17) B =%

whose rows are the vectors Py, Py, P;, P,, is a nonsingular matrix.
For |B| = 0 if and only if there exist numbers A, N2, X3, A4 not
all zero such that Py + NoPs + NP3 + NP, = 0.

Let Py, P, P3, P4 be four fixed points which are not coplanar
and let C be the nonsingular matrix formed by the corresponding
vectors Py, Py, P, Pi. Then every vector P = (z, y, 2, t) defines
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a unique set of numbers (2, ¥/, #, ¢’) such that

(18) P = x’f’l + y'Pz + Z’Pa + t,P4.

We shall call these numbers a set of tetrahedral coordinates of P
and shall say that P,, P,, P;, P4 are the vertices of a tetrahedron

of reference. The existence of such coordinates is due to the
fact that formula (18) is equivalent to

(19) (z, 9,2 t) = (,y,2,)B,
and therefore to
(20) @, y,2,¢) = (z, 9,2 1)C,
where C = B

We have been using the points whose homogeneous coordinates
are (1,0,0, 1), (0,1,0,1), (0,0,1,1) and (0,0, 0, 1) as a tetra-
hedron of reference and we see that (z,y,2,¢) = 2(1,0,0, 1) +
y(O) 1, 0) 1) + 2(0, 0; 1, 1) + (t - =Y - Z)(O, 0) 0) 1)‘ How-
ever, x, ¥, 2, t are actually the tetrahedral coordinates of a point
relative to the tetrahedron defined by the vectors (1,0, 0, 0),
0, 1,0,0), (0,0,1,0), (0, 0,0, 1).

The equations of formula (20) have been interpreted in this
section as the relations connecting two sets of coordinates of a
fixed point. They were given in formula (12) of Sec. 3 as defining
a point-to-point correspondence called a projective transformation.
It is important to observe that these two interpretations are two
geometric interpretations of the same algebraic phenomenon.

We should also note that if L is a three-rowed orthogonal
matrix and

. L 0
(21) C = (O 1),
then the equations
’ ’ ! ‘L 0
(22) (x,y,z, 1) = (x)y:zyl) (0 1)

define a projective transformation of coordinates with orthogonal
matrix C. But these equations are clearly equivalent to the
orthogonal transformation

(23) (z,y,2) = (2,9, 2)L

on nonhomogeneous coordinates.
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5. The unit point. As we have seen, any set of four points
Py, P, P; P, that are not coplanar defines a corresponding
matrix B of formula (17) and hence a set of tetrahedral coordi-
nates. However, the same points also define a matrix

tp 0 0 O tiPy

0 ¢& 0 0 _ | toP
(24) 0 0 « 0]2=\up,

0 0 0 ¢ taP
for any set of nonzcro real numbers ¢, . . . , ¢, It follows that
Py, ... ,Py do not completely specify B. The specifcation

may be completed however by prescribing a fixed point (o, yo, 2o,
to) as a point called a unit point and which is such that zo’ = yo’
=2/ =t = 1. For then we have

6P
) toaPy
25 x,y,2 ¢t =t1,1,1,1 -
(25) (,9,2,t) =« " e.p,
t4P4
which is equivalent to
(26) t(tly t2y t37 t4)B = (CE(\, Yo, 2o, tﬂ)

and therefore to
(27) t(tly t2y t37 t4) = (1'0, Yo, %o, tO)C'

But this uniquely determines the numbers (¢, ts, ¢3, £4) apart from
a proportionality factor ¢.

Note that the unit point is not arbitrary since we must have
t1, ts, t3, ts all not zero. But the equation (¢, £, &5 £4)B =
(%o, Yo, 2o, to), With one of ¢, ts, t3, t4 zero, implies that (xs, yo, 2o, to)
is a linear combination of three of the vectors P,, Py, P; P, and
therefore P, is a point on a plane through three of the vertices of
the tetrahedron of reference. The four planes determined by
selecting three of the four vertices are called the faces of the
tetrahedron of reference, and we have shown that a point may be
selected as unit point if and only if it is not a point of a face of the
tetrahedron.

EXERCISES

1. Let the vertices of a tetrahedron of reference be P, = (}, —4%, %),
P2 = (%y g) —%)y P3 = (-%, %, %)) P4 = (—%1 %1 %) and the unit pOint
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be (2,1,1). Find the tetrahedral coordinates of the points whose
homogeneous coordinates are given by the following vectors:

(a) (1; 0; 0; 1) (6) (1, _1) 2’ 0)
(b) (17 1; 1’ 1) (f) (41 1) —1) 1)
(C) (1) 0’ 0’ O) (g) (_1; 27 —ly 1)
(@ (0,0,0,1) (h) (1,2,2,1)

2. Let the vectors of Exercise 1 be the tetrahedral coordinates of a set
of points. Find the (nonhomogeneous) rectangular coordinates of the
finite points of the set.

6. Invariant points. A projective transformation with matrix
C maps every point P on a unique image Q where Q = PC.
Then we call P an invariant point if Q = P, that is, P is its own
image. But this occurs if and only if PC = tP, that is,

(28) Pt - C) =o.
Since P must be a nonzero vector, the determinant
(29) |tI — C|] = 0.

Thus ¢ must be a characteristic root of the matrix C, and we have
shown that P s an snvariant point if and only if P is a characteristic
vector of C.

If ¢ is a simple root of xI — C = 0, an argument like that used
in the proof of Theorem 17 of Chap. 6 may be used to prove that
there is only a single invariant point. When ¢ is a double root of
xl — C = 0, there are two corresponding linearly independent
vectors and all linear combinations of them are characteristic
vectors. Then there is a line of tnvariant points corresponding
to the root £. The root ¢ may be a triple root of zI — C = 0 and
then there are three linearly independent characteristic vectors
and a corresponding plane of tnvariant points. In the final case
of a root of multiplicity four, C = ¢I and all points are invariant
points.

T. Quadric surfaces. An algebraic surface of degree n is
defined by a polynomial equation f(z, y, 2) = 0 where f(z, y, 2)
is a polynomial of degree n. Then the equation

¢

is an equation in homogeneous coordinates of the same surface.

(30) F(z,y, z2t) = t*f tf, iy_, f) =0
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Moreover, the polynomial F(x, y, 2, t) is a homogeneous poly-
nomial in z, y, 2, t and this is the source of the ‘“homogeneous”
coordinate terminology.

A projective transformation (z,y,z2,t) = (&', y’,2,t')B re-
places F(z, y, 2, t) by another homogeneous polynomial and the
corresponding equation ¢(z/,y’,2,t') = 0 is an equation in
tetrahedral coordinates of the given surface. In particular a
quadric surface is defined by a polynomial equation F(z, y, z, t)
= 0 where
Q11 QG122 Q13 Q14
Q12 Q22 Q23 Qa4
Q13 (23 (33 (34
A1y Q24 Q34 (44

Bl) Fz,y,z2t) =(r,9,21)

a8

Thus F(z,vy, 2 t) = PAP* where A is a symmetric matrix.
Then

(32) o', y, 2, t') = QBAB*Q*

and the matrix of this quadratic form is the matrix BAB*.
It can be shown that the matrix B may be selected so that

i 0 0 0
0 d 0 0

— *
(33) Ao = BAB 0 0 d 0
0 0 0 d,

where d; = 1, —1, or zero. The corresponding quadratic form
is then dx'? + day'? + d2’? 4+ dit’®. We shall not prove this
result here but refer the reader to the author’s ‘ Introduction to
Algebraic Theories” for proof. The number of nonzero diagonal
terms is the rank of the quadratic form F(z, y, 2, ¢) and the
number of positive diagonal elements d; is its index. Both
integers are invariants of the form. Note that |4,| = |B|?A|.
The determinant of the matrix A of the quadratic form
F(z, y, 2, t) is called a discriminant A of the corresponding quadric
surface, and we have seen that a projective transformation of
coordinates replaces A by |B|?A, where B is the matrix of the
transformation. We call the surface nonsingular if A 0 and
see that then |B|?A = did:dsds # 0 and each d; = 1 or —1. By
permuting variables and multiplying by —1 if necessary, we see
that every nonsingular quadric surface is defined with respect
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to a properly chosen tetrahedral coordinate system by one and
only one of the equations
2+ Yt + 22+t =0,
(34) 2?2+ yt+22 -t =0,
2yt — 2 — 2= 0.

8. Cross ratios of points. If the rows of the matrix

_ al a2 « o o an
U - <b1 b2 A bn>

are not proportional, then it must be possible to select two col-
umns of U such that the rows of

@) (& )

are not proportional. Then these rows are linearly independent
and the only solution of

(21, 72) (,‘jf ‘;’j) = z1(a;, ) + 2a(byy b) = 0

i j

Bz, =1z, =0. Itfollows that the determinant

a; a;

b b =0

(36) A=

Let us now consider a matrix

Ty Y1 21 4L
(37) A = T2 Yz 22 U2
Ty Yz 23 i3
Ty Y4 24 Uy

whose rows are the homogeneous coordinates of four distinct
collinear points. Then we have the following result:

Lemma 1. The two-rowed determinants defined by two columns
of A are all not zero or all zero.

For let U, = (al, bl, Ci, d1) and U, = (az, bz, Ca, dz) be the
coordinates of any two distinct points on the line joining the four
given points and so have '

(38) (-’13;', Yi, 24, t,') = )\.'Ul + [L.'Uz.
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Then

Mo
N pelfar a: az ay
39 A=
(39) A3 w3 (bl by b ba)
Ay M

and the two-rowed matrices in the jth and kth columns of 4 are
the two-rowed square submatrices of

Mo

N pa a; ak)
(40) A3 M3 (bi b

A4 My

If we let D,, be the determinant formed by the pth and gth rows
of this matrix, we have

Ap Ko
Ne B

a; Qg
b; b

(41) ’ D)"l =

If (\p, up) and (N, u,) are proportional, then so are (x,, ¥, 2zp, t»)
and (x,, ¥4 24 t,) contrary to the hypothesis that the four given
points are distinct. It follows that the determinants

)\p Mp

42
(42) Nk,

are all not zero and therefore D,, = 0 if and only if the deter-

minant

a; Qg

b, b

which is independent of p and ¢, is zero. This proves the lemma.
The cross ratio of four distinct collinear points P, Py, Py, P, is

the ratio

‘,. P D P - =2
(44) (Pl’ 2’ I b 4) <D 14) (D23>

of the corresponding two-rowed minors D,, obtained from a
corresponding matrix

(43)

)

P,
P,
P
P,
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of homogeneous coordinates by selecting two columns of A in
which the minors D,, are not zero. Then if U, and U, are the
vectors of homogeneous coordinates of any two points on the
given line through P, P,, P;, P4, we see that

Mo })\2 M2
LT I ) VR TH
45 k(Py, Py, Py, P)) = : :
(45) (Ps, Py, Py, Po) Moo e e
N pal N3 ops

Then k(Py, Pa, Ps, P.) is independent of the particular columns of
A selected in its computation. It is independent of the base
vectors U; and U, since it is not defined in terms of these vectors
but rather in terms of homogeneous coordinates of the given
points. Finally, it should be noted that the replacement of
Pl, Pz, Ps, P4 by tlpl, tzpz, tsp:;, t4p4 Will not alter A‘(Pl, Pz, Ps, P4).

Theorem 2. The cross ratio of four points is unallered by a
projective transformation.

For let Q; = P,C, Q; = P.C, Qs = P;C, Q. = P,C. Then we
have

Ql Ay A1
Nopio U A U,C
46 Qz) _ AC = | MM ( 1) O = [ MeHe ( 1 )
(46) Qa Naus | \ U2 Naus | \U:C
Q4 Nipts )\4#4

Since k(Pi, Ps, P3, Ps) is independent of the selection of base
points, the cross ratio obtained with the use of the vectors
U.C, U,C will have the same value as that obtained by the use of
U1, Uz. Then ](‘(Q1, Qz, Qa, Q4) = ]{'(Pl, Pz, Pa, P4) as desired.

The converse of Theorem 2 is true, and we shall prove it. We
state the result as the following

Theorem 3. Let Pl, Pg, Ps, Py and Ql, Qz, Qs, Q4 be two sets
each of four dustinct collinear points, and let

]{' = k(Pl, Pg, 1)3, P4) = ]f(Ql, Q2y Q3, Q4)

Then there exists a projective transformation carrying Qi into P,
fori=1,2 3 4.

To prove this result, we first notice that P, and P, may be
used as base points and therefore P; = #,P; + t,P,, where neces-
sarily tits # 0. Then the vector ¢.P; is a homogeneous coordinate
representation of P; and may be taken to be P;, for i = 1, 2.
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Hence, we may take P; = P, + P;. Now P, = s,P;, + s,P,,
and we see as before that s;s; # 0. Then we may replace P4 by
83~ 1P, and thus obtain Py = kP; + P,, where k is a nonzero real
number. This yields the relation

1 0\
(47) A= ‘1) } (g:)
k1
and we use formula (45) to see that
Ll I
(48) k(Py, Py, Py, Py) = ‘ (O 1 = k.
k

By the argument of Sec. 4, there exists a nonsingular matrix G
whose first two rows are P, and P, and then

(49) A=

In a similar fashion the vectors Qi, Qs, Qs, @ may be chosen so
that the corresponding matrix

H,

— - O

Q 1
Q; 0
B=5]=1}
Q. ko1
where H is a nonsingular matrix whose first two rows are Q; and
Q.. The value of k is the same and B = AC, where C = G—'H
is a matrix defining the desired projective transformation. This
proves the theorem.
The form of the matrix 4 given by formula (47) may be used
to determine the effect of permuting the points Py, P, P3, Ps.
There are 4! = 24 possible permutations and thus possibly 24

distinct values. However, there are actually only six formally
distinct values. These are the values

1 1 k—1 k
A 1—k, ) 1-—

1
1—k kT k k—1

SO OO

0
0
0
0

(50) K,
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obtained from k by the two operations of inverting k& and sub-
tracting k from 1. That these are values follows from the fact
that

0 1] |1 O
) 1 1] (1 1
(51) k(P2, P1, P3, P4) =‘T)—T—1—_O—‘ %
k1] |1 1
and
' 1 0' 1 ‘ll
1 |k 1
(52) k(Pl’ P3’ 1)2, P4) = (]).“"O . -——~1 1\ = 1 — k’
k1] 0 1
s0 that
k(P3y I)la P?, P4> = 'i-—i—)
(53) k(P2’ ])3, 1)1, 1)4) = ]_ —_ —;—‘)
: k
> P = .
k(P3)P2)11;14) k—“—l

But from each of these six values we obtain three other equal

values by permutation, since it should be evident from formula
(45) that

(54) k(Py, Py, Ps, Py) = k(Py, Py, Py, P3) = k(Ps, Py, Py, Ps)
:I\”(P,;, P:;, Pz, Pl)

li

ILLUSTRATIVE EXAMPLE
Compute the cross ratio of P; = (1,1,2), Py = (=3,1,1), P; =
(=% 1,%), Pi=(—%1,% and the cross ratio of Q, = (—3,%, %),
Q:=(—1,1,0), @ = (0,2,1), Qs = (-3, 3, 3), and show that the
first four points can be carried into a proper arrangement of the second
set of four points by a projective transformation.

Solution
We form the matrices

1

-3
(-
—1

QY Uu = =
v
[+
]

P S
| (.
—_—O = W
[ B R |

wU\i—‘h—‘
(SN B V)
N - O N
QO = = O
N—
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Then we use the first and second columns to compute

1 1]-3 1
-7 5/|-1 3] 12(—
,IC(P1,P2,P3,P4)= 1 'i) 31 = 4E_§;=3
-1 3/{—-7 5
and
-3 7/|-1 1
0 2/|—1 5 (—6)(—4) 3
k(Q, @2 Qs Q) = /=57 17 1'=(—8)(—2§=§'
~1 5] o 2

Then k(Q,, @, Qs Q1) = 3, and there exists a projective transformation
that will carry P, into @3, P, into Q., P; into Q, and P4 into Q,.

EXERCISES

1. Compute k(Pi, Ps, P;, Py) and k(Q,, Q2 @3, Q4) in the following
cases, and find an arrangement of the second set of points into which the
first set can be carried by a projective transformation.

(d) P, = (2; 1; ""3>1 P, = (—17 2’ 0)» Py = (—1: —5: —3)r Py =

(4y _37 —3)
Q= (1y _2) '—1)7 Q2 = (—1; 0) 1)) Q3 = (—1: 1; 1); Q4 = ('—47
3, 4)

(b) Pl = (1y 1,0))I)2 = (_ly 1) 1)’1)3 = (—1y37 2)}P4 = (2y Oy _1)
Ql = (2; -1) ])1 Q‘Z = (1; 1; —1)’ Q3 = (5y '—1y ])y Q4 = (—17

2, —2)
(© Pi=(,-1,1,1), P.=(1,0,-1,2), Py = (0, -1,2, —1), P,
_ = (5) _]y —3y_9) _ _
Ql = (27 1) —ly 0); Q? = (61 5, 3, 4)) Q3 = (ly 1: 17 1)7 Q4 = (ly
0) —27 _1)
(d) Pi=(0,1,0,1), P, = (1,1,1,1), Py = (2,5,2,5), Py = (1,3,
1,3)
Ql = (1) l; 0) 0): Ql = (27 3) 1’ 0), Q3 = (0; 1; 17 0), Q‘i = (7,
9,2,0)
(e) 131 = (0) 1)0) 4): I—jﬁ = (2»3) —2y 2)) F-’* = (17 ly —ly '—1)’ I-)-"
= (17 2) “1: 3)
Ql = (O) 1) 01 4); QZ = (2’ 3) _2’ 2); 63 = (2, 4’ —27 6)7 Q4 =
(—2’ _27 27 2)
() Pr=1(200,1), P,=(1,2,3,4), P, =(-1,2,3,3), P, = (5
_ 236) _ _ _
Q= (2) 0,0, 1); Q2 = (51 2, 3, 6)y Qs = (_3y 2,3, 5), Q= (9,
2,3,8)

2. Use the method of proof of Theorem 3 to show that a projective
transformation can be found which will carry any five points Py, . . . ,
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Ps, no four of which are coplanar, into any other five noncoplanar points.
HinT: Show that Py, . . . , Pgcan be carried into (1, 0, 0, 0), (0, 1, 0, 0),
(0’ 0) 17 0)7 (0’ 0, 0’ 1)7 (11 1, 1) 1)'

9. Plane coordinates and duality. The coefficients of the
homogeneous coordinate equation ax + by + ¢z 4+ dt = 0 form
a nonzero vector (a, b, ¢, d) that may be regarded as a set of
coordinates of the corresponding plane. Clearly two nonzero
vectors define the same plane if and only if each is a nonzero real
scalar multiple of the other, and thus we have a new coordinate
system for our projective geometry. We may then express all
our projective geometric properties in terms of plane coordinate
vectors, rather than point coordinate vectors. The reader
should carry this out for the material of Sec. 2.

A point, represented in point coordinates by (z, y, 2, t), is said
to be tncident with a plane, represented in plane coordinates by
(a, b, ¢, d), when the point lies on the plane (the plane contains
the point). This occurs if and only if the inner product of the
two corresponding vectors vanishes, i.e., if and only if

(z,y,2,t) - (a,b,¢,d) =ax + by + cz + dt =0.

Since the incidence relation is unaltered by the interchange of the
point and plane vectors, we have a property of our geometry that
we may state as the following principle:

Duavriry PrincipLE. If the words point and plane are inter-
changed in any true statement about the tncidence of points and
planes, the result s a true statement.

We may also formulate this property by saying that if a geo-
metric configuration formed out of points and planes has certain
incidences the configuration obtained by the interchange of
points and planes will have the same incidences.

The Duality Principle may be extended to linear subspaces of
an n-dimensional space. The precise results may be found in
more advanced texts on projective geometry.

EXERCISES

1. State the dual of the theorem that three points not on a line deter-
mine a plane.
2. Find some other incidence relation, and state its dual.
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A

Addition, of matrices, 78
of vectors, 15
Adjoint matrix, 87
Algebraic curve and surface, 40
Angle, between line and plane, 32
between lines, 17
off nose, 132
between planes, 30
between rays, 7
between spheres, 58
between vectors, 4, 13, 125
Axes, coordinate, 8
of ellipsoid, 59
rotation of, 107, 136
translation of, 13
Azimuth, 124

B
Broken line, 6
C

Cartesian coordinates, 7
Center, 59, 64, 66
Characteristic determinant, 95
Characteristic equation, 96
Characteristic roots, 75, 96
Characteristic vectors, 101
Charts, gnomonic, 141
Classification of quadrics, 75, 151
Cofactor, 86
Columns of a matrix, 77
Cone, 40

quadric, 62
Conic section, 59
Contour graph, 127
Coordinate axes, 8

Coordinate planes, 9
Coordinates, plane, 156
homogeneous, 143-145
rectangular, 7
spherical, 123, 131-133
stabilization of, 137
tetrahedral, 147
of veetor, 1
Cosines, direction, 11
Cross ratio, 152-157
Curve, 38
algebraic, 40
Cylinder, 43
elliptic, 74
hyperbolic, 75
lincs on, 48

D

Dependence, linear, 2
Determinants, 87-90
Diagonal matrix, 82
Difference of vectors, 1
Direction angles, 11
Direction cosines, 11
Direction numbers, 16

Distance, between line and point, 23

between plane and point, 29
between points, 16

Division of line segment in given

ratio, 19
Duality Principle, 158

B

Elevation, 124
Ellipsoid, 59
imaginary, 61
Elliptic cylinder, 74
Elliptic paraboloid, 71
159
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Equation, of a plane, 25
intercept form, 25
. normal form, 24
characteristic, 96
Equations of a line, 18
in symmetric form, 20
Iquivalence, orthogonal, 100

1

F
Families of spheres, 56
G

Gnomonic charts, 141
Gnomonic projections, 139

H

Homogeneous coordinates, 143-145
Homogencous polynomials, 41
Homogeneous systems of equations,
94

Hyperbolic cylinder, 75
Hyperbolic paraboloid, 72
Hyperboloid, 63-65

center of, 64, 66

lines on, 67

I

Identity matrix, 82

Imaginary ellipsoid, 61

Imaginary sphere, 54

Imaginary surface, 37

Independence, lincar, 2

Inner product, 3

Intersection, of lines and surfaces, 47
of two surfaces, 38

Intercept form of planc equation, 25

Intercepts, 25

Irreducible surface, 40

L

Laws for vectors, 1
Length, of line scgment, 16
signed, 5
of vector, 3, 11

INDEX

Linear combination, 2
Linear systems, 92
Line, broken, 6
equations of, 18, 20
of intersection, 31
normal, 51
and plane, angle between, 32
and point, angle between, 23
Lines, angle between, 17
on cylinder, 48
in homogeneous coordinates, 144
on hyperboloid, 67
through origin, 10
on paraboloid, 73
and surfaces, intersection of, 47
of symmetry, 121-122
tangent, 49

M

Major, minor, mean semiaxes, 59
Matrices of planar rotations, 133-
136
Matrix, 77
addition, 78
adjoint, 87
determinant of, 87
identity, 82
inverse of, 91
multiplication, 79, 83
nonsingular, 90
orthogonal, 98
partitioning of, 84
of product of lincar transforma-
tions, 106
scalar, 82
scalar product for, 78
similar to a diagonal matrix, 96
symmetric, 97

N

n-dimensional vector, 1
Nonsingular matrix, 90

Norm of vector, 3

Normal form of equation of plane, 24
Normal line, 51

Numbers, direction, 16
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0

Oblate spheroid, 60
Octants, 9
Ordinary point, 50
Origin, 7

lines through, 10
Orthogonal equivalence, 100
Orthogonal matrices, 98
Orthogonal projection, 6
Orthogonal reduction of quadratic

form, 110

Orthogonal transformations, 104
Orthogonal vectors, 4

p

Paraboloids, 71-72
Parallax, 127
Parallel pencil, 33
Parallel plancs, 27
Parametric equations, 18, 36
Partitioning of matriccs, 84
Pencils of planes, 32
Pitch, 133
Planar rotations, 107
matrices of, 133-136
Plane, 24-36
radical, 57
tangent, 50
through three points, 27
Plane coordinates, 156
Plane section, 38, 117
Planes, coordinate, 9
in homogencous coordinates, 144
line of intersection of, 31
parallel, 27
parametric equations of, 35
pencils of, 32
of symmetry, 118-121
Point, and line, distance between, 23
ordinary, 50
and planc, distance between, 29
singular, 50
Point ellipsoid, 61
Point sphere, 54
Point surface, 37

Polynomials, reducible, 40
homogeneous, 41
Principal axis theorem, 100
Principle of Duality, 158
Products of matrices, 79, 83
of transformations, 106
Projection, gnomonic, 139
orthogonal, 7
Projective transformations, 146
Prolate spheroid, 60

Q

Quadratic form, orthogonal reduc-
tion of, 110

Quadric cone, 62

Quadric surface, 40
classifications of, 75, 151
in projective space, 150
orthogonal reduction of, 114
plane sections of, 117
points of symmetry of, 117

R

Ray, 5
Radical plane, 57
Range, 120
Real vector, 1
Rectangular coordinates, 7
Reducible polynomial and surface,
40
Reflection of axes, 106
Reguli, 68, 73
Roll, 133
Roots, characteristic, 75, 96
Rotation of axes, 107
as product of planar rotations, 136

S

Scalar matrix, 82
Scalar product, 2, 79
Scctions, of cone, 62
of ellipsoid, 59
of hyperboloid, 64, 66
of paraboloid, 71-72
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Semiaxes of an ellipsoid, 59 Transformations, orthogonal, 104
Signed length, 5 projective, 146

Similar matrices, 96 Transpose, 81

Singular point, 50 Translation of axes, 13

Space curve, 38

Sphere, 54 U

Spheres, families of, 57

Spherical coordinates, 123, 131-133 Unit, vector, 3, 101

Spheroid, oblate, 60 \%
prolate, 60
Square matrix, 77 Vectors, 1-4
Stabilization of coordinates, 137 addition, 15
Sum, of matrices, 78 angle between, 4, 13, 125
of vectors, 1 inner product, 3
Surface, 37 length, 3, 10
algebraic, 40 linear independence of, 2
of revolution, 45, 60 norm, 3
symmetries of, 46 orthogonal, 4
Symmetric equations, 20 unit, 3, 101
Symmetric matrix, 97 Vertices of hyperboloid, 66
Symmetries, 46, 117-122 Vertex of cone, 40
of paraboloid, 72
T
Y
Tangent to quadrics, 52
Tangent lines, 49 Yaw, 133
Tangent plane, 50 7
Tetrahedral coordinates, 147
unit point of, 149 Zenith, 124

Tetrahedron of reference, 103 Zero vector, 1





















