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PREFACE.

————
L]

A NEw EDITION of the present Work having been called
for, I have endeavoured to make this Treatise more de-
serving of the favourable reception it has met with.
Having myself used it for the last five years in teaching
Analytic Geometry to beginners, I have gained some ex-
perience as to the points where learners are likely to feel
difficulties. I have accordingly rewritten a considerable
part of the work, introducing in the early chapters co-
pious numerical illustrations, such as I have been in the
habit of using with my class. I have also endeavoured
to separate, more carefully than in the former editions,
between the elementary parts of the work and those in-
tended for more advanced readers. The learner will find
all essential parts of the theory of Analytic Geometry in-
cluded in Chapters 1., 11., v., VL, X., X1, XI1., omitting the
articles marked with asterisks. Should he require ex-
amples for exercise, in addition to those contained in
these chapters, he will find a sufficiently extensive col-
lection of examples in Chapters 1., vir, xm. The re-
maining chapters treat of the algebraic and geometrical
methods which have been introduced into use of late
years, but of which no systematic account had been given
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in any elementary work at the time that the first edition
of this Treatise was published. I have made several ad-
ditions to these chapters in this edition. In the altera-
tions which I have made throughout the book, I have

profited by the works on Analytic Geometry which have-

appeared since the first edition was published, among
which I may mention in particular Mr. Gaskin’s, and
Mr. Walton’s “ Examples on Analytic Geometry,” and
Mr. Puckle’s “ Treafise on Conic Sections.”

TriNrTY COLLEGE, DUBLIN,
July, 1855.
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ANALYTIC GEOMETRY.

CHAPTER 1.
THE POINT.

ARrT. 1. GROMETRICAL theorems may be divided into two classes:
theorems concerning the magnitude of lines, and concerning their
position ; for example, that ¢ the square of the hypotenuse is
equal to the sum of the squares of the sides,” is a theorem con-
cerning magnitude ; that ¢ the three perpendiculars of a triangle
meet in a point,” is a theorem concerning position.

Theorems of the former class can easily be expressed algebrai-
cally. To take the example already given, if the lengths of the
sides of a right-angled triangle be a, b, ¢, the proposition alluded
tois writtenc® = a? + 5. The learner is probably already familiar
with this application of algebra to geometry, as the propositions of
the Second Book of Euclid all relate merely to the magnitude of
lines, and the demonstration of them is much simplified by the use
of algebraical symbols. But it is by no means so easy to see how
to express algebraically theorems involving the position of lines.
Accordingly, although algebra was, soon after its introduction
into Europe, applied to the solution of the first class of questions,
its use was not extended to this latter class until the year 1637,
when Des Cartes, by the publication of his ¢ Géométrie,” 1aid the
foundation of the science on which we are about to enter.

2. The following method of determining the position of any
O A B
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point on a plane is that introduced by Des Cartes, and generally
used by succeeding geometers.

‘We are supposed to be given the position of two fixed right
lines, XX, YY', intersecting in the point O. Now, if through
any point P we draw PM, PN, parallel to YY' and XX, it is
plain that, if we knew the position of the point P, we should
know the lengths of the parallels PM, PN, or, vice versd, that
if we knew the lengths of PM,

PN, we should know the posi- : Y
tion of the point d

N P
Suppose, for example, that :
we were given PN = a, PM =,
we need only measure OM =a |
and ON = b, and draw the par- % 5 i X
allels PM, PN, which will in- /

parallel to OY by the letter y,

and PN parallel to OX by the

letter z, and the point P is sa.ld to be determined by the two equa-~
tions z=a, y =b.

3. The parallels PM, PN, are called the co-ordinates of the
point P; that parallel to YY" is often called the ordinate of the
point P; and that parallel to XX’ the abscissa.

The fixed lines XX’ and YY' are termed the azes of co-ordi-
nates, and the point O, in which they intersect, is called the
origin. 'The axes are said to be rectangular or oblique, according
as the angle at which they intersect is a right angle or oblique.

1t will readily be seen that the co-ordinates of the point M
on the preceding figure are z = a, y = 0; that those of the point
Nare =0, y = b; and that those of the origin itself are z = 0,
y=0.

4. In order that the equations z = a, y = b, should only be sa-
tisfied by ome point, it is necessary to pay attention, not only to the
magnitudes, but also to the signs of the co-ordinates.

If we paid no attention to the signs of the co-ordinates, we
might measure OM = a and ON = b, on either side of the origin,

tersect in the point required.
) It is usual to denote PM /
YI
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and any of the four points, P, P,, P,, P;, would satisfy the equa-~
tions # = @, y = b. It is possible, however, to distinguish alge-
braically between the lines OM, OM’ (which are equal in magni-
tude, but opposite in direction) by giving them different signs.
‘We lay down a rule, that if
lines measured in one direc- X
tion be considered as positive,
lines measured in the oppo-
site direction must be consi-
dered as negative. Itis, of
course, arbitrary in which
direction we measure positive x’
lines, but it is customary to
consider OM (measured to
the right hand)and ON (mea-
sured upwards) as positive,
and OM/, ON’ (measured in
the opposite directions) as ne-
gative lines.

Introducing these conventions, the four points, P, P,, P;, P,
are easily distinguished. Their co-ordinates are, respectively,

L.}
2
rd

z=+a) Z=-a\) ZT=+a) Z=-a
y=+b}’ y=+b}’ y=-bJ’ y=-5J"
These distinctions of sign can present no difficulty to the learner,
who is supposed to be already familiar with the principles of tri-
gonometry.
It appears from what has been said, that the points

Z2=+a,y=+b andz=-a, y=-2b,

lie on a right line passing through the origin; that they are
equidistant from the origin, and on opposite sides of it.
N. B.—The points whose co-ordinates are z = a, y = b, or

xz =2, y =y, are generally briefly demgnated as the point ab,
the point 2’y

5. Given the co-ordinates of two points a!y’, 2'y’, to express

the distance between them, the axes of co-ordinates being supposed
rectangular.
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By Euclid, 1. 47,
PQ*=PS* + SQ? but PS=PM - QM'=y - %,
and QS = OM - OM’' = 2’ - 2”;
hence F=PQ=@-2p+H -y
To express the distance of any point from the ofigin, we must
make 2°=0, y"=0, in the p
above, and we find Y 2y
& =a"+ y R S
6. In the following pages
we shall but seldom have oc-
casion to make use of oblique oM M X
co-ordinates, since formulz are,
in general, much simplified by
the use of rectangular axes; e
as, however, oblique co-ordi-
nates may sometimes be employed with advantage, we shall give
the principal formule in their most general form.
Suppose, in the last figure, the angle YOX oblique and = w,

then PSQ = 180° - w,
and PQ*=PS* + QS* - 2PS.QS . cos PSQ,
or, PQ*=W-y)+ (@ -2")+2y -y) (- 2")cosw.
Sumlarly, the square of the distance of a point, 'y, from the
origin = 2% + y* + 22y’ cos w.
In applying these formule, attention must be pa.ld to the mgns
of the co-ordinates. If the point Q, for example, were in the

angle XOY’, the sign of 3" would be changed, and the line PS
would be the swm and not the difference of y and y".

Ex. 1. To find the lengths of the sifles of a triangle the co-ordinates of whose vertices
arezr' =2, ¥y =8; 2" =4, y=~—5; 2" =~ 8, y" =— 6, the axes being rectangular.
Ans. V68, V50, V106.

Ex. 2. Find the lengths of the sides of a triangle the co-ordinates of whose vertices
are the same as in the last example, the axes being-inclined at an angle of 60°,
Ans. V52, V57, V151.
= 7. Given the co-ordinates of two points, x'y, z"y", to find the
co-ordinates of the point cutting the line joining them, in a given
ratio m:n.
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Let x, y be the co-ordinates ofthe point R which we seek to
determme,then

m:n:: PR:RQ:: MS: SN,
or - Pry
min::r-z:z-a" ‘ QY /

or mx - mz’ = nx — nzx,
hence /

mx” + nx
m+n o N 8 M
In like manner ’
my’ + ny

m+n

ya

If the line were to be cut externallyin the given ratio, we should
have

and therefore

m-n m-n
We can sufficiently distinguish the cases of internal and external
section, if we agree that to cut a line in the ratio m : + n shall
denote to cut it infernally in a certain ratio ; and that to cut in the
ratio m : — n shall denote to cut it externally in the same ratio:
for the formula for external section are obtained from those for
internal section by changing the sign of either m or .

Ex. 1. To find the co-ordinates of the middle point of the line joining the points
PR ., z'+z" +
Y, TY dns. z= = ’=y 2f.
Ex. 2. To find the co-ordinates of the middle points of the sides of the triangle the
co-ordinates of whose vertices are (2, 8), (4,—5), (-38,-6).

dnn (3’_1)'(1 1 (_;,_’3;)‘

Ex. 8. The line joining the points (2, 8), (4, — 5) is trisected: to find the co-ordi-

Moftthomtoftnsecﬁonnweattheformerpoint. Ans. z_g ,=1.

Ex. 4. The co-ordinates of the vertices of & triangle being z'y/, 2"y, "y, to find
the co-ordinates of the point of trisection (remote from the vertex) of the line joining any
vertex to the middle point of the opposite side.

Z+2"+2" y+y+y

Ans. z= 3 " Y 3
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Ex. 5. To find the co-ordinates of the intersection of the bisectors of sides of the
triangle, the co-ordinates of whose vertices are given in Ex. 2.

8

. Ans. x=l,y=‘—>§. )

Ex. 6. Any side of a triangle is cut in the ratio m : », and the line joining this to the .
oppomtevertaxu cut in the ratiom +n: I; to find the co-ordinates of the point of section.

Iz’ + mz" + nz" ly+my T+ ny”

Ams = Trmin

8. Transformation of Co-ordinates.— When we know the co-
ordinates of a point referred to one pair of axes, it is frequently
necessary to find its co-ordinates referred to another pair of axes.
This operation is called the transformation of co-ordinates.

‘We shall consider three cases separately : first, we shall sup-
pose the origin changed, but the new axes parallel to the old;

secondly, we shall sup-

pose the direction of

the axes changed, but o
the origin to remain

unaltered; and thirdly, 7 p.S
we shall examine the / /

case when both origin x
and direction of the
axes are altered.
First. Let the new
axes be parallel to the old.
Let Oz, Oy, be the old axes, O'X, OY, the new axes. Let
the co-ordinates of the new origin referred to the old be &/, ¥/, or

OS =2, OR=y. Let'the old oo-ordmates be z, y, the new
X, Y, then we have

OM = OR + RM, a.ndPM PN + NM,

tha.tis,-
z=2+X,andy=3y+Y.

These formule are, evidently, equa.lly true, whether the axes
be oblique or rectangular.

9. Next, let the direction of the axes be changed, while the
origin is unaltered.

(1.) We shall commence with the case where both systems are
rectangular, and we shall denote by 6 the angle 20X = _176Y.

R
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Then PM=PS+NR; OM=OR - SN.
But since the angle
SPN = 20X =0,

PS =PN cos0, NR = ON ¢in8;
OR =ON cosf, SN = PN sin#.
We have, therefore,

"y =7 cosf + X sin,

z = X cosf - Y sinf.

(2.) In general let the angles between the axes be any what-
ever. In the figure then PS, PN are drawn parallel to Oy, OY,
and N'S to Oz. Then, as before,

PM = PS + NR.
We have no longer PS = PN cos SPN, s¢ince PSN is not sup-
posed a right angle ; but

PS: PN :: sinPNS (= einYOxz) : sinPSN (= sinyOxz) ;

.. pg = IN sin YOz,
sin yOz
and
NR : ON :: sinzOX : sin NRO (= sinyOz),
- NR = O’N. sinwOX.
sinyOz
Hence

y einzOy = Y sinz0Y + X sin2OX.
From symmetry we can write down
z sinyOz = X sinyOX + Y sinyOY.

In using these formule, however, attention must be paid to
the signs of the angles concerned in them.

The sign + is to be used when the angles 20y, 20Y, 20X,
are all measured on the same side of Oz ; and yOz, yOX, yOY,
on the same side of Oy.

In the case represented in the figure, the angle OY lies on
the opposite side of Oy from the angles yOz and yOX, and the
formula would become

z sinyOz = X sinyOX - Y sinyOY.
It will often be convenient to write these formula as follows :
let the angle between the old axes yOz = w: let the angle that
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the new axis of X makes with the old, XOz = a3 let YOz = 3:
then the formul® become

y sinw = X sina + Y sinf3
z sinw = X sin(w - a) + Y sin(w - B).

10. Lastly, by combining the transformations of the two pre-
ceding articles, we can find the co-ordinates of a point referred to
two mew axes in any position whatever. We first find the co-
ordinates (by Art. 8) referred to a pair of axes through the new
origin parallel to the old axes, and then (by Art. 9) we can find
the co-ordinates referred to the required axes.

The general expressions are obviously obtained by adding '
and y’ to the values for # and y given in the last article.

Ex. 1. The co-ordinates of a point satisfy the relation z? + y*— 42 — 6y = 18;
what will this become if the origin be transformed to the point (2, 8)?
Ans. X3 4 Y2=381.

Ex: 2. The co-ordinates of a point to one set of rectangular axes satisfy the relation
y? - 29 = 6: what will this become if transformed to axes bisecting the angles between
the given axes ? Ans. XY =38.

Ex. 8. Transform the equation 222 — 5xy + 2y? = 4 from axes inclined to each other
at an angle of 60°, to the right lines which bisect the angles between the given axes.
Ans. X3 —-27Y24 12=0.

Ex. 4. Transform the same equation to rectangular axes, retaining the old axis of x.
' Ans. 8X2 4 10Y% — 7XYV8 = 6.
Ex. 5. It isevident that when we change from one set of rectangular axes to another,
22 + y2 must = X2 + Y?, since both express the square of the distance of a point from the
origin. Verify this by squaring and adding the expressions for X and Y in Art. 9.
Ex. 6. Verify in like manner in general that
22 + y3 + 27y cos 20y = X2 + Y2 + 2XY cos XOY.

11. The degree of any equation between the co-ordinates is not
altered by transformation of co-ordinates.

Transformation cannot increase the degree of the equation:
for if the highest terms in the given equation be 2™, y™, &c., those
in the transformed equation will be

{#'sinw + 2 sin(w-a) +y sin(w-3)}™, (¥ sinw + # sina + y sin B)™,
&ec., which evidently cannot contain powers of # or y above the

m™ degree. Neither can transformation diminish the degree of
an equation, since by transforming the transformed equation back
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again to the old axes, we must fall back on the original equation,
and if the first transformation had diminished the degree of the
equation, the second should increase it, contrary to what has been
just proved.

12. Polar Co-ordinates—Beside the method of expressing
the position of a point which we have hitherto made use of, there
is also another which is often em-
ployed. P

If we were given a fixed point
0, and a fixed line through it, OB,
it is evident that we should know 7]
the position of any point, P, if we o B
knew the length OP, and also the
angle POB. The line OP is called the radius vector ; the fixed
point is called the pole ; and this method is called the method of
polar co-ordinates.

It is very easy, being given the z and y co-ordinates of a
point, to find its polar ones, or

vice versd.
First, let the fixed line coin-
cide with the axis of z, then :
we have 3
OP:PM ::sin PMO: sin POM; >
denoting OP by p, POM by 0, | ~ :
and YOX by w; then o M X
PMory=2589 004 similarly, OM = 5 = £50(w — 0)
Sllw ; 81N w
For the more ordmary case of rectangular co-ordinates, w=90°,
and we have mmply v
x = pcosf and y = p sinf. p
. Secondly. Let the fixed line
OB not coincide with the axis of o x
z, but make with it an angle = a, M
then B

POB = 0 and POM = 0 - q,
and we have only to substitute -a for@ in the preceding formule.
¢
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For rectangular co-ordinates we have
z = pcos(f - a) and y = p sin(f - a).
Ex. 1, Change to polar co-ordinates, the following equations in rectangular co-

ordinates. 2% 4+ 3 = bmz, Ans. p = bm cosf.
HB—y2=ad Ans.  p? c08 20 = a®.
Ex. 2. Change to rectangular co-ordinates the following equations in polar co-ordi-
nates. p? 8in 20 = 2a8. Ans. zy =a
p* =t cos 26, Ans. (22 + ) = a¥(a2 — ).
pt oos}O—a Ans. 2% + y* = (2a — )8
pl=a cusiB. Ans. (222 + 23— az)t = a¥2? + ). .

13. To express the dzstancc between two pomts, in terms of their
polar co-ordinates.
Let P and Q be the two points,
OP=p, POB=0;
0Q=¢", QOB=6";

then . o B
PQ: = OP? + 0Q? - 20P - OQ - cos POQ,
or & = p + p" - 2p’p" cos (0 - 7).

CHAPTER II.

THE RIGHT LINE.

14. WE saw, in the last chapter, that we could determine the
position of a point, being given two equations regarding its co-
ordinates, of the form # = a, y = b. It is evident that we could
equally determine the point, had we been given any two equa-
tions of the first degree between its co-ordinates, such as

Az+By+C=0, Az+By+C=0,
for we have here two equations between two unknown quanti-
ties, which we can solve by eliminating y and x alternately between
them, and obtain two results of the form
z=a, y=2>

Ex. What point is denoted by the equations 8z +8y=18, 4z -y=27?
Ans. = 1' y= 2.
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15. Two equations of higher order between the co-ordinates
would represent, not one, but a determinate number of points.
For, eliminating y between the equations, we obtain an equation
containing z only ; let its roots be ay, as, a;, &c. Now, if we sub-
stitute any of these values (a,) for z in the original equations, we
get two equations in y, which must have a common root (since
the result of elimination between the equations is rendered = 0
by the supposition # = a,). Let this common root be y = 3,.
Then the point whose co-ordinates are z = a,, y = (3, will at once
satisfy both the given equations; and so, in like manner, will the
point whose co-ordinates are z = as, y = 3, &e.

If the given equations were of the m** and n** degrees respec-
tively, the equation in z would (by the theory of elimination, see
Lacroiz’s Algebra, § 196, p. 278 ; Young’s Algebra, § 124, p. 229)

« be of the mn®™ degree, and consequently there would be mn roots
a;, as, &c., and, therefore, mn points represented by the two
equations.

Ex. 1. What points are represented by the two equations 22 +y2=5, zy=2?
Eliminating y between the equations, we get ~ #4 — 52%+ 4=0.  The roots of this
equation are 23 = 1 and 23 = 4, and, therefore, the four values of = are

z=+1lz2==-1 =zxz=+2 2=-2.

Substituting any of these in the second equation, we obtain the corresponding values
oy, . y=+2,y=-2 y=+lLy=-1;

The two given equations, therefore, represent the four points
+1,+2),(-1,-2), +2+1),(2-1).
Ex. 2. What points are denoted by the equations
z-y=1, 28+ =257 Ans. (4,8), (- 8, - 4).

Ex. 8. What points are denoted by the equations

Pbr+y+8=0, d+y -bz—By+6=07 Ans (1,1),(28),(8,8),(41).

16. Having seen that any two equations between the co-ordi-
nates represent geometrically one or more points, we proceed to
inquire the geometrical signification of @ single equation between
the co-ordinates. 'We shall find the case to be similar to the so~
lution of a class of geometrical problems, with which the learner
is familiar. 'We can determine a triangle, being given the base
and any other two conditions, but had we been given only one
other condition, the vertex, though no longer determined in posi-
tion, would still be limited to a certain locus. So we shall find,
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that although one equation between the two co-ordinates is not
sufficient to determine a point, it is, however, sufficient to limit it
to a certain locus. In fact, the equation asserts, that a certain
relation subsists between the co-ordinates of every point repre-
sented by it. Now, although this relation will not in general
subsist between the co-ordinates of any point taken at random,
yet there will be more points than one for which this relation will
be true ; the assemblage of these points will form a locus of points
whose co-ordinates satisfy the equation, and this locus is consi-
dered the geometrical signification of the given equation.

That a single equation between the co-ordinates signifies a
locus, we shall first illustrate by the simplest example. Let us
recall the construction by which

(p. 2) we determined the posi- ‘ X K
tion of a point from the two . P’
equations z=a, y=b. We
took OM = a; we drew MK P
parallel to OY ; and then, mea-~ , b

M X

suring MP=5, we found P, the
point required. Had we been
given a different value of y,
z = a, y =¥, we should proceed
as before, and we should find a point P still situated on the line
MK, but at a different distance from M. Lastly, if the value of
y were left wholly indeterminate, and we were merely given the
single equation # = @, we should know that the point P was si-
tuated somewhere on the line MK, but its position in that line
would not be determined. Hence the line MK is the locus of all
the points represented by the equation z = a, since, whatever point
we take on the line MK, the 2 of that point will always = a.

17. In general, if we were given an equation of any degree
between the co-ordinates, let us assume for # any value we please
(z = a), and the equation will enable us to determine a finite
number of values of y answering to this particular value of z, and,
consequently, the equation will be satisfied for each of the points
(ps ¢ 7> &c.), whosez is the assumed value, and whose y is that
found from the equation. Again, assume for z any other value
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(z = a’), and we find, in like manner, another series of points,
7> ¢ 7, whose co-ordinates satisfy the equation. So again, if we
assume z = @’ or 2 = a”, &e. Now, if = take successively all pos-
sible values, the assem-

blage of points found [/]/] ~
as above will form a T
locus, every point of

which satisfies the con-

ditions of the equation, \[

and which is, therefore,

its geometrical signifi- -
cation. We see then / e

that every equation we

can write down between

the co-ordinates # and y must represent geometrically a locus of
some kind. It is on this consideration that the whole science of
Analytic Geometry is founded.

18. It is the business of Analytic Geometry to investigate
the nature of the different loci represented by different equations.
Then, having once ascertained the locus represented by a given
equation (for example, Az + By + C = 0), if we find this relation
subsisting between the co-ordinates of any point, we shall be sure
that this point lies on the locus so determined, and, vice versd, if
we take any point on the locus, we shall know that this relation
will exist between its co-ordinates.

These loci are classified according to the degrees of the equa-
tions representing them, being said to be of the mt, n®, or p',
&ec., degree, according as the equations representing them are of
the m*™, n*, or p* degree between z and y.

‘We commence with the equation of the first degree, and we
shall find that this always represents a right line, and, conversely,
that the equation of a right line is always of the first degree.

19. We have already (Art. 16) examined the simplest case of
an equation of the first degree, namely, the equation z = a, and
we found that an equation of this form represents a right line PM
parallel to the axis OY, and meeting the axis OX at a distance
from the origin OM = to a. Similarly, the equation y = b repre-
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sents a line PN parallel to the axis OX, and meeting the axis
OY at a distance from the origin ON = .

Let us now proceed to examine the case next in order of sim-
plicity, that of a right line passing through the origin, and let us
consider what relation subsists between the co-ordinates of points
situated on such a line.

. If we take any point P on Y

such a line, we see that both
the co-ordinates PM, OM,
will vary in length, but that
the ratio PM : OM will be
constant, being = to the ratio

sin POM : sin MPO.

Hence we see, that the equa-
tion

]
2
W

sm POM
= anMPO ®

will be satisfied for every -
. point of the line OP, and,
therefore, this equation is said to be the equation of the line OP,

Conversely, if we were asked what locus was represented by
the equation

Y = mz,
write the equation in the form g- = m, and the question is, * to

find the locus of a point P, such that, if we draw PM, PN parallel
to two fixed lines, the ratio PM : PN may be constant.” Now
this locus evidently is a right line OP, passing through O, the
point of intersection of the two fixed lines, and dividing the angle
between them in such a manner that .

gin POM = m sin PON.

If the axes be rectangular, sin PON = cos POM, therefore,
m = tan POM, and the equation y = mz represents a right line
passing through the origin, and making an angle with the axis of
2, whose tangent is m.

'20. An equation of the form _1/ + mz will denote a line OP
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situated in the angles YOX, Y'OX'. On the contrary, an equa-
tion of the form y = — mz will denote a line OF, situated in the
angles Y'OX, YOX.

For it appears, from the equation y = + mz, that whenever «
is positive y will be positive, and whenever z is negative y will be
negative. Points, therefore, represented by this equation, must
have their co-ordinates either both positive or both negative, and
such points we saw (Art.4) lie only in the angles YOX, Y'OX'
On the contrary, in order to satisfy the equation y = — mz, if z be
positive y must be negative, and if z be negative y must be posi-
tive. Points, therefore, satisfying this equation, will have their
co-ordinates of different signs, and must, therefore (Art. 4), liein
the angles Y'OX, YOX'.

21. Let us now exa-
mine how to represent a
right line PQ, situated in
any manner with regard to

Q
the axes. T
Draw OR through the
M X

origin parallel to PQ, and /o

Y
P

let the ordinate PM meet

OR in R. Now it is plain

(as in Art. 19), that the

ratio RM : OM will be always constant (RM always equal, sup-
pose, to m. OM); but the ordinate PM differs from RM by the
constant length PR = OQ, which we shall call 5. Hence we may
write down the equation

PM =RM + PR, or PM = m . OM + PR,
that is,
y=mz+b.

The equation, therefore, y = mz + b, being satisfied by every
point of the line PQ, is said to be the equation of that line.

It appears from the last Article, that m will be positive or
negative according as OR, parallel to the right line PQ, lies in
the angle YOX, or YYOX. And, again, b will be positive or
negative according as the pomt Q, in which the line meets OY,
lies above or below the origin.
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Conversely, the equation y = mz + b will always denote aright
line ; for the equation can be put into the form

y__—b=m.

x

Now, since if we draw the line QT parallel to OM, TM will be
= b, and PT therefore = y — b, the question becomes: ¢ To find
the locus of a point, such that, if we draw PT parallel to OY to
meet the fixed line QT, PT may be to QT in a constant ratio ;”
and this locus evidently is the right line PQ passing through Q.
The most general equation of the first degree, Az + By + C =0,
can obviously be reduced to the form y = mz + b, since it is equi-
valent to A C,
y=-g*- B’

this equation therefore always represents a right line.

22. From the last Articles we are able to ascertain the geo-
metrical meaning of the constants in the equation of a right line.
If the right line represented by the equation y = mz + b make an
angle = a with the axis of #, and = 3 with the axis of y, then
(Art. 19) sin a

m=——:;
sinf3
and if the axes be rectangular, m = tana.

We saw (Art. 21) that & is the intercept which the line cuts
off on the axis of y.

If the equation be given in the general form Az + By +C=0,
we can reduce it, as in the last Article, to the form y = ma + b,
and we find that A sinae

"B g
or if the axes be rectangular = tana ; and that - % is the length

of the intercept made by the line on the axis of y.

Cor.—The lines y = maz + b, y = m'z + & will be parallel to
each other if m = m', since then they will both make the same
angle with the axis. Similarly the lines Az + By + C = 0,

By + C’' = 0, will be parallel if
A A

B B
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Beside theforms Az + By + C = 0 and y = mz + 3, there are
two other forms in which the equation of a right line is frequently
used ; these we next proceed to lay before the reader.

23. To find the lengths of the intercepts which the line MN,
whose equation is Az + By + C = 0, cuts off on the azes.

‘We found in the last
Article the length of one
of these intercepts, by
comparing the present
equation with the equa-
tion y = mz + b. We pre-
fer, however, in the pre- o M
sent Article, to investi-
gate the same question
directly, by the help of
an important principle
already alluded to (Art.
18). The co-ordinates of every point of the line MN must of
course satisfy the given equation, therefore so must the co-ordi-
nates of the point M, where this line meets the axis of z. Now
for every point on the axis of z, ¥ = 0 (Art. 3), therefore, for the
point M, the equation gives Az + C =0, but the z of the point
M is the intercept OM, whose length is required ; therefore,

N

N,

C
| OM = - -A__.
Similarly, ON = - (_3

B
Hence it is easy to find the equation of a line which shall cut
off intercepts on the axes, OM = a and ON = 5.
The general equation of a right line is

Az+By+C=0, oréa:+]—3y+l=0;

‘ Cc C
but 'é.-.:.....l_g__ll and.§=-_l.a..1-
C OM ’ C ON ¥
therefore, the equation of the right line required is
LR ‘
a b'

D
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This is the equation of the right line in terms of the intercepts it
cuts off on the azes. It evidently holds whether the axes be ob-
lique or rectangular. .

It is plain that the position of the line w1ll vary with the
gigns of the quantities a and . For example, the given equation

g +% = 1, which cuts off positive intercepts on both axes, repre-

gsents the line MN on the preceding figure ;
; - %’ = 1, cutting off a positive intercept on the axis of #, and &
negative intercept on the axis of y, represents MN'.

‘Simila.rly, = 1 represents NM’;

and = — 1 represents M'N’.

&IS Q‘l*&
Qn|‘€ hl

The student will find no difficulty in examining for himself
how changes in the signs of A, B, or C affect the position of the
line represented by the general equation

Az +By+C=0.

" Ex. 1. Examine the position of the following lines, and find the intercepts they make
on the axes. 2x -8y =1T7; 8r+4y+9=0;
8z + 2y = 6; 4y — 5z = 20.
Ex. 2. The sides of a triangle being taken for axes, form the equation of the line
joining the points which cut off the mt» part of each, and show, by Art. 22, that it is

rallel to the base.
pa to the Ans. i+-—'v=]..
ma mb

24. If we suppose A = 0 in the general equation, the inter-

cept -.% made by the line on the axis of 2 becomes infinite.

Hence the line By + C = 0 cuts the axis of z at an infinite distance,
or, in other words, is parallel to it. This agrees with Art. 16.
The distance from the origin at which this parallel meets the
axis of y (Art. 22), is - % If, therefore, C = 0, this distance will
vanish, and the equation y = 0 represents the axis of z itself. ~
. Similarly, Az + C = 0 denotes a line parallel to the axis of y,
and « = 0 the axis of yitself.
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25. To express the equation of a right line in terms of the length
of the perpendicular on it from the origin, and of the angles which
this perpendicular makes with the azes.

Let the length of the perpendicular OP = p, the angle POM
which it makes with the axis of z = a,

PON=3,0M =¢, ON = b. N

We saw (Art. 23) that the equa- P
tion of the right line MN was ¢

f + 3_’ = l. <
b 0T M~

Multiply this equation by p, and we
have PP

. ;z‘ + E—y = pP.

But Il =cosa; 3 =cos B ; therefore the equation of the line is

Zcosa + ycos 3 = p.

In rectangular co-ordinates, which we shall most generally
use, we have (3 =90°-a. Hence, zcosa + ysina = p is the
equation, referred to rectangular co-ordinates, of a line, the per-
pendicular on which from the origin makes an angle = a with the
axis of 2, and is in length = p.

If we had been given the equation of a right line in the gene-
ral form Az + By + C = 0, it is easy to reduce it to the form
Zcosa + ysina = p ; for, divide the first by ¢ (A? + B*), and we
have A B C

VAT T YA BY T V(@A)

But we may take '

= 0.

A B .
m) = CO8 ay and m = 8ln a,
since the sum of squares of these two quantities = 1.

A B
Hence we learn, that AT BY and (A + B reTespec-

tively the cosine and sine of the angle which the perpendicular
from the origin on the line (Az + By + C = 0) makes with the

O isthelength of this perpendicular.

axis of.c, and that WB—’)
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The square root in these values is, of course, susceptible of a
double sign ; since the equation may be reduced to either of the
forms

zcosa+ycos(3—p=0, zcos(a+180°)+ycos(3+180°)+p=0.

* 26. To reduce the equation Az + By + C = 0 (referred to
oblique co-ordinates), to the form xcosa + y cos [3 = p.

Let us suppose that the given equation when multiplied by a
certain factor R is reduced to the required form, then RA = cos a,
RB =cos3. But it can easily be proved that, if a and 3 be any
two angles whose sum is w, we shall have

cos?a + cos? 3 — 2 cos a ¢os [3 cos w = sin® w.

Hence R*(A? + B* - 2AB cos w) = sin’ w,
and the equation reduced to the required form is
Asinw z+ Bsinw
V(@A +B-2ABcosw)” ' Y (A'+ B~ 2AB cosw)’
. Csinw 0
v(A*+ B -2ABcosw)
And we learn that
Asinw Bsinw

v (A*+B'-2ABcosw) ¢ (A’+B*-2ABcosw)’

are respectively the cosines of the angles that the perpendicular
from the origin on the line Az + By + C = 0, makes with the
Csine

axes of zand y ; and that V(A B -2ABcosw) is the length of

this perpendicular. This length may be more easily calculated
by dividing the double area of the triangle NOM, (ON.OM sinw)
by the length of MN, expressions for which are easily found.

27. To find the length of the perpendicular from any point z'y/,
on the line whose equation is z cosa + y cos 3 —p = 0.

‘We shall show that it is found by substituting the co-ordinates
&, i, for z and y in the given equation, and is equal to

+ (2" cosa + y' cos 3 - p).
For, from the given point Q draw QR parallel to the given line,
and QS perpendicular. Then
OK = 2, and OT will be = 2/ cos a.
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Again, since
SQK = B’ and QK = .'/" P, Q
RT =QS=ycosf3;
hence
& cosa+y cosf3=OR.

Subtract OP the perpendicular o K M
from the origin, and

#cosa + gy cosB - p=PR=the
perpendicular QV. Q.E.D.

But if in the figure the point Q had been taken on the side of
the line next the origin, we should have obtained for the perpen-
dicular the expression p — 2/ cosa — y'cos 3 ; and we see that the
perpendicular changes sign as we pass from one side of the line to
the other. It is arbitrary on which side of the line we shall re-
gard the perpendicular as positive. If we choose that form to
represent the perpendicular in which the absolute term is posi-
tive, then it is easy to see that the perpendiculars which fall on
the side of the line next the origin are to be regarded as positive,
and those on the other side as negative; and vice versd if we choose
the other form.

If the equation of the line had been given in the form
Az + By + C = 0, we have only to reduce it to the form

zcosa+ycosB-p=0,

and the length of the perpendicular from any point 7/,

Ac+By+C (A2 + By + C) sinw
v(A*+ By’ 1,/(Aa + B* - 2AB cos w)’

according as the axes are rectangular or oblique. By comparing
the expression for the perpendicular from #y with that for the
perpendicular from the origin, we see that 2y lies on the same
side of the line as the origin when Az + By +C has the same
sign as C, and vice versd.

The condition that any point w’y should be on the right line
Az + By + C = 0, is, of course, that the co-ordinates «’y should
tatisfy the given equation, or

. Ad+By+C=0.
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And the present Article shows that this condition is merely the
algebraical statement of the fact, that the perpendicular from the
point 2y’ on the given line is = 0.

Ex. 1. Find the length of the perpendicular from the origin on the line

8x +4y +20=0,
axes being rectangular. Ans, 4.

Ex. 2. Findthelc.sngth of the perpendicular from the point (2, 8) on2z +y — 4= 0.

Ans. %: and the given point is on the side remote from the origin.

Ex. 8. Find the length of the perpendicular from (8, — 4) on 4r + 2y ~ 7, the angle

0 o
between the axes being 60°. Ans. 2 : and the point is on the side next the origin.

Ex. 4. Find the length of the perpendicular from the origin on
a(z—a)+b(y~-b)=0. Ans. V(a?+ B2).

'28. To find the equation of a right line passing through a given
-point x'y. '

The general equation of a right line, we have seen, can be put
under the form y = mx + b, where m'and b are as yet unknown,
and are to be determined by any conditions we are given respect-
ing the line. Now suppose a point on the line given, the equa~
tion y = mz + b, which is true for every point on the line, must
be true for the point 2'y’. Hence we get the condition y' = mz + b.
As we are given no other condition, we are not able to determine
both the unknown quantities m and &, but by means of this con-
dition we can determine one of them, b = 3 — ma’. Substituting
this value in the general equation, we get

y=mz+y — ma,
or Y-y =mx-2),
for the equation of a right line passing through the point 'y
m remains indeterminate, as it cught, since an infinite number of
lines can be drawn through the point 27’

29. To find the equation of a right line passing through two
given points, ¥y, x'y".

The condition that the right line must pass through a second
point will now enable us to determine the constant m which was
left indeterminate in the last Article.

By the last Article the equation of a right line through «y is
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y-y =m-2),
or y-y _
z-2- ™

But since the line must also pass through the point 27y, this
equation must be satisfied when the co-ordinates z°, ', are substi-
tuted for z and y; hence

-y
Tz ™
Substituting this value of m, the equation of the line becomes
y-y_¥-9

z-o -2
In this form the equation can be easily remembered, but,
clearing it of fractions, we obtain it in a form which is sometimes
more convenient,

-yz-(@-2Ny+2y -y« =0,

Cor.—The equation of the line joining the point 2’y to the
origin is y'z = &y.

It will sometimes happen that we can write down, without
calculation, the equation of the line joining two points. If we
happen to know beforehand that the co-ordinates of both points
are connected by the relations

A7 + By + C=0and Az"+ By'+ C =0,
then it is evident that the equation of the line joining them is

Az + By + C =0, for it is the equation of a right line, and is
satisfied by the co-ordinates of both points.

Ex. 1. Form the equations of the sides of a triangle, the co-ordinates of whose vertices
are (2, 1), (8, — 2), (- 4,-1). Ans. 82+ y=7,2+Ty+11=0, 8y—z=1.
Ex. 2. Find the lengths of the perpendiculars from each vertex of this triangle on the
opposite side. Ans. 2V2, V10, 2V10, and the origin is within the triangle.
Ex. 8. Form the equations of the sides of the triangle formed by
(@ 8), (4, — 6), (— 8, — 6). Ans. dz+y=11,2-Ty=89, 92-by=8.
Ex. 4. Form the equation of the line joining the puints
mz +nz"  my +ny
min, ' min
Ans. (¥ ~-y)z-(F -2y + 2y -yz' =0.
Ex. 5. Form the equation of the line joining
£ +2" Y+
2’ 2
Ane. (V' +y -W)a-@+a" -2 )y + Y ~y7+ Y -y'Z=0.

2’y and

2y and
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Ex. 6. Form the equations of the bisectors of the sides of the triangle described in
Ex, 8. Ans. bz —6y=21; 170 -8y =25; T+ 9y +17=0.

Ex. 7. Form the equation of the line joining
—ma W —my I—as" ly—ny”
T=m ' I=m ©T=w  I=a
Ans. z{Um—n)y +m(n—Dy" + a(l—m)y"} —y{{m - )2 + m(n — D2’ + n(l—m)y"}
' =m(yz' — 2y") + ma(y's" — 2'y") + al(y"7 — yz").

30. T find the condition that three points shall lie on one right
line. .
We found (in Art. 29) the equation of the line joining two of
them, and we have only to see if the co-ordinates of the third will
satisfy this equation.

The condition, therefore, is-

1 = 92)%s = (1 = @) g5 + (219 - 21) = O,
which can be put into the more symmetrical form,
' (%2 = @) + 4 (23 - @) + ys (1 — 2,) = 0.% :

31. To find the-area of the triangle formed by three points.

If we multiply the length of the line joining two of the points,
by the perpendicular on that line from the third point, we shall
have double the area. Now the length of the perpendicular from

. Z;y3 on the line joining x,y,, .y, the axes being rectangular, is
(Art. 27)

(}/1 - yz) T3 — (-”1 - «'l’z)ys + &1Y2 — T
VI-g)+@-zmp)
and the denominator of this fraction is the length of the line join~
ing 21, #3 hence
K0 (-732 - 373) + Y (xa - ‘”1) + Y (xl - %)
represents double the area formed by the three points.

If the axes be oblique, it will be found on repeating the in-
vestigation with the formula for oblique axes, that the only change
that will occur is that the expression just given is to be multiplied
by sin w.

* In using this and other similar formulse, which we shall afterwards
have occasion to employ, the learner must be careful to take the co-ordi- 2 z#
nates in a fixed order (see engraving). For instance, in the second mem- ,,
ber of the formula just given y; takes the place of y1, 23 of 5, and z; of 23. \ ‘} .
Then, in the third member, we advance from y; to y3, from 3 to 23, and &
from z; to #,, always proceeding in the order just indicated.
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Cor. 1.—Double the area of the triangle formed by the lines
joining the points 2y, Z,y, to the origin, is y:z; — y»%), a8 appears
by making #, = 0, y, = 0, in the preceding formula.

Comr. 2.—The condition that three points should be on one
right line, when interpreted geometrically, asserts that the area
of the triangle formed by the three points becomes = 0.

32. To express the area of a polygon in terms of the co-ordi-
nates gf its angular points.

Take any point 2y within the polygon, and connect it with all
. the vertices zy;, £y, . . . Zaya; then evidently the area of the
polygon is the sum of the areas of all the triangles into which the
figure is thus divided. But by the last Article double these areas
are respectively

3(]/1 -.'/s) -y (.‘lh - 3:) +T Y- B Y

Z(Ys-9s) ~Y (@~ @) + T2 Ys - 22y

z(h-y) -y (@~ w«).+ T3 Ys — T Yo

ﬁ(,’ln-x -,'/u) -y (z',..‘ - 3-) +Za1Yn = Tn Yn-1s

Z(Yn = 91) =Y (@n - ) + Tuys — T Y-
‘When we add these together, the parts which multiply = and y
vanish, as they evidently ought to do, since the value of the total
area must be independent of the manner in which we divide it
into triangles; and we have for double the area

(#1932 90) + (BmYys = Toys) + (T Ya = @) + -+ - (Tas ~ T Yn)-
This may be otherwise written,

T (Y—Yn) + B Ys—Y) + B Y- Y) + - - - T (Y1 = Yn)s
or else

V(@ —2:) + Y2 (B — @) + Y (T2 = 2) + - + - Y (Tn1 — T)-

Ex. 1. Find the area of the triangle (2, 1), (3, — 2), (— 4, — 1). Ana. 10.
Ex. 2. Find the area of the triangle (2, 8), (4, — 5), (— 8, - 6). Ans. 29.
Ex. 8. Find the area of the quadrilateral (1, 1), (2, 8), (3, 8), (4, 1). Ans. 4.

33. To find the co-ordinates of the point of i tntersectwn of two
right lines whose equations are given.
Each equation expresses a relation which must be satisfied by
the co-ordinates of the point required; we find its co-ordinates,
E
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therefore, by solving for the two unknown quantities # and y,
from the two given equations. Let the equations be given in the
most general form, ‘

Az+By+C=0," ‘z+By+C =0,
then z will be fou.nd = ig;%%, and y = gg,%ﬁg,

We said (Art. 14) that the position of a point was deter-
mined, being given two equations between its co-ordinates. The
reader will now perceive that each equation represents a locus on
which the point must lie, and that the point is the intersection of
the two loci represented by the equations. Even the simplest
equations to represent a point, viz., # = a, y = b, are the equations
of two parallels to the axes of co-ordinates, the intersection of
which is the required point. ¢

The reader will also now understand why two equations of
the first degree only represent one point, and why two equations
of higher degree represent #ore points than one (Art. 15). In the
first case each equation represents a right line, and two right lines
can only intersect in one point. In the more general case, the
loci represented by the equations are curves of higher dimensions,
which will intersect each other in more points than one.

34. To find the condition that three right lines shall meet in a
point.
Let their equations be
Az+By+C=0, A2+ By+C'=0, A2+ By +C"=0.
If they intersect, the co-ordinates of the intersection of two of
them must satisfy the third equation ; and using the values found
in the last article, we get, for the required condition,
A’(BC' - BC) + B"(CA’-C'A) + C"(AB' - BA) = 0,
which may be also written in either of the forms
A(BC'-BC)+B(CA"-C'A)+ C(AB"- A'B) =0,
A(BC"-BC)+ A’ (B'C-BC") + A¢BC' - BC) =0.
Ex. 1. To find the co-ordinates of the vertices of the triangle the equations of whose
sides are 2+y=2; 2-8y=4; 8z+6y+7=0.

dne, (B 1) (_L _19) (17 " 18
™\ ( w7 e
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Ex. 2. To find the co-ordinates of the intersections of
’ 32+y—-2=0; 2+2y=; 22-8y+ 7=0.

(-5 2} cun (-4 2)

Ex. 8. Find the co-ordinates of the intersections of
22+8y=18; bz —y=T7; 2—-4y+10=0.
Ans. They meet in the point (2, 8).

Ex. 4. Find the co-ordinates of the vertices, and the equations of the diagonals, of
the quadrilateral the equations of whose sides are

2y — 82 =10,2y + 2= 6, 16z — 10y = 88, 122 4+ 14y + 20 = 0.

Ana. (_1,21) (s, g} (;, —;). (-s,;); Gy—2=6 82+ +1=0

Ex. 5. Find the intersections of opposite sides of the same quadrilateral and the equa-
ton of theline joining them. | (sa, 259 (- ?, 11‘:)‘ ) 162y — 199 = 4462.
Ex. §. Find the diagonals of the parallelogram formed by =4, z=d', y=b, y =b.
Ans. (b—b)z—(a—a)y=ab-ab'; 0-b)z+ (a—a)y=adb-abd

Ex. 7. The axes of co-ordinates being the base of a triangle and the bisector of the
base, form the equations of the two bisectors of sides, and find the co-ordinates of their
intersection. Let the co-ordinates of the vertex be 0, y', those of the base angles 2/, 0;

d - .
ad -z, 0 Ans, 3z’y-y’z—z‘y’=0;My+y’z—t’y’=0;(0,{-).

Ex. 8. The equations of the sides of aqmdrih&enl are

Ty ¥, 2V ¥ i1=02-%

a+i-l'a b'—l' +b'+l o’b ¢:=l’
find the co-ordinates of the intersections of opposite sides and of the middle point of the
line joining them. X , ¥, Xa 2

am {52 R (N5 WS

ST =y (9 @ DO+ VP, W =B @+ e},

Ex, 9. Find the equation of the line jolning the middle points of the diagonals of the

fame q Ans. -—?—z-,+ i,:l.
a-a b-b
Ex. 10. Verify that the co-ordinates of the middle point found in Ex. 8 satisfy this

equation, .
// * 35. To find the area of the triangle formed by the three lines
Az+By+C=0, A2z+By+C =0, A2+ By+C"=0.
We find the co-ordinates of the vertices by Art. 33, and sub-

stituting in the formula of Art. 31, we obtain for the double area
the expression
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BC'-BC fAC'-CA* A'C-CA
AB -BA'\BA"-AB° B'A -A'B
. BC'-B'CfA'C-C'A AC -CA }
AB'-BA"\B’A-A"B BA' - AFB
B'C -BC" f AC' -CA’ AC' -CA”
AB-BA\BA'-AB BA" -AB/S
But if we reduce to a common denominator, and observe that the
numerator of the fraction between the first brackets is
{A"(BC' - BC) + A(BC"- B'C) + A(B'C - C'B)}
multiplied by A”; and that the numerators of the fractions between
the second and third brackets are the same quantity multiplied
respectively by A and A’, we get for the double area the ex- -~
pression
{A(BC"-B'C") + A(B"C - BC") + A"(BC' - BC)}*
(AB' - BA') (A'B"'-BA") (A'B-B’A) )
i If the three lines meet in a point, this expression for the area
'vanishes (Art. 34); if any two of them are parallel, it becomes /
infinite (Art. 22). “

36. Given the equations of two right lines, to find the equation
of a third through their point of intersection.

The method of solving this question, which will first occur to
the reader, is to obtain the co-ordinates of the point of intersec-
tion by Art. 33, and then to substitute these values for #’y’ in the
equation of Art. 28, viz., y — ' = m(z - «). The question, how-
-ever, admits of an easier solution by the help of the following
important principle : [f'S = 0, §' = 0, be the equations of any two
loci, then the locus represented by the equation S + kS’ = 0 (where
k is any constant) passes through every point common to the two
gien loci. For it is plain that any co-ordinates which satisfy the
equation S = 0, and also satisfy the equation S'= 0, must likewise
satisfy the equation S + £S' = 0.

Thus, then, the equation

(Az+By+C) +k(Az+By+C)=0,

which is obviously the equation of a right line, denotes one passing
through the intersection of the right lines -

Az+By+C=0, Az+By+C =0,

+
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for if the co-ordinates of the point common to them both be sub-
stitutedintheequation(Az+By+C)+l'(A'a+B’y+C') =0,
they will satisfy it, since they make each member of the equation
separately = 0. .
Ex. 1. To find the equation of the line jolning to the origin the intersection of
Az+By+C=0, A2+ By+C=0.

Multiply the first by C, the second by C, and subtract, and the equation of the required
line is (AC’'— A'C)z + (BC' —~ CB) y =0 ; for it passes through the origin (Art. 19),
and by the present article it passes through the intersection of the given lines.

Ex. 2. To find the equation of the line drawn through the intersection of the same
lines, parallel to the axis of 2. Ans. (BA'—AB)y+CA' - AC =0.

Ex. 3. To find the equation of the line joining the intersection of the same lines to

- the point 2/y. Writing down by this article the general equation of a line through the

N

intersection of the given lines, we determine & from the consideration that it must be
satisfied by the co~ordinates 2’y’, and find for the required equation
(Az +By + C)(A? + By + C)=(AZ + By + C) (A'z + By + C).

Ex. 4. Find the equation of the line joining the point (2, 8) to the intersection of
224+ 3y+1=0, 8z~4y=5.

- Ans. 11224 By + 1) + 14(8z — 4y — B) = 0; or 64z — 28y = 59.

37. The principle established in the last article gives us a test
for three lines intersecting in the same point, often more conve-~
nient in practice than that given in Art. 34. Three right lines will
pass through the same point if their equations being multiplied each
by any constant quantity, and added together, the sum is identically
= 0: that is to say, if the following relation be true, no matter
what z and y are—

I(Az+ By +C)+m(Az+By+C)+n(Az+By+C") =0

For then those values of the co-ordinates which make the first
two members severally = 0 must also make the third = 0.

Ex. 1. The three bisectors of the sides of a triangle meet in a point. Their equations
are (Art. 29, Ex, 5)—
G+y-2%)z- @ +23"-2)y+ (Y -2 )+ (Y ~y7)=0.
W+y -2 )z (@"+7 - 2"y + (@Y~ ) + (@Y —yZ)=0.
0 +9 -2 o—(E +4' =2y + (Y~ 9&) + (Y - /)= 0.
And since the three equations when added together vanish identically, the lines repre-
sented by them meet in a point. Its co-ordinates are found (Art. 88)
(z’+z"+z’" y+y"+y")
8 3 i
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Ex. 2. Prove the same thing, taking for axes two sides of the triangle whoselengths
aro ¢ and b. Ana. gf+’-£—1=o -+T-1=o,——%'=o
* 38. To find the co-ordinates of the intersection of the line
Joining the points xy', &'y", with the right line Az + By +C=0.
! P We might solve this question by forming the equation of
! the line joining the two points, and then determining, by Art.
~ 83, its intersection with the given line. There is, however,
* L another method (which we shall frequently employ) of deter-
mining the point in which the line joining two given points is
met by a given locus. 'We know (Art. 7) that the co-ordinates
of any point on the line joining the given points must be of the

form
z"+ nax my’:ﬂnz’ .

_~m¥'n’ T m+m

and we may take as our unknown qua.ntlty o the ratio, namely,

in which the line joining the points is cut by the given locus, and
we may determine this unknown quantity from the condition,
that the co-ordinates just written shall satisfy the equation of
the locus. Thus, in the present example we have

Am.z”+n:c’+Bmy +ny +C=0;
m+n m+n

hence
m Az +By+C

7" TAZ+By+C’
and consequently the co-ordinates of the required point are
(A7’ +By +C) 2" - (A2’ +By'+ C) = z’

(A7 +By +C)- (A7 +By"+C)
with a similar expression for y. This value for the ratio m:n
might also have been deduced geometrically from the considera-
tion that the ratio in which the line joining 2y, 2y is cut, is
equal to the ratio of the perpendiculars from these points upon
the given line; but (Art. 27) these perpendiculars are

Az +By +C dA "+By'+C
V_(ETF’_)— v(A*+ By °

~
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The negative sign in the preceding value arises from the fact
that in the case of internal section to which the positive sign of
m:n corresponds (Art. 7), the perpendiculars fall on opposite
sides of the glven line, and must, therefore, be understood as .
having different signs (Art. 27). o a.

s-

a right line cul the sides of a triangle BC, CA, AB in tke
g
points LMN, then A

BL.CM.AN 1 hd / ,
CL.AM.BN™ )
. ) 1,2’ oited
Let the co-ordinates of the vertices be z'y/, 2y", z"y", then iy
BL= A.E”fo”+C . M o
—CTJ _Ax"'+By'"+C’
CM Ax"+ By”'+C L

AM™ " AZ +By+C’

AN AY +By+C

BN~ A2+ By '+ C?

and the truth of the theo- N

rem is manifest. N A F B

' 39, To find the ratio in which the line joining two points
L)1y TY,, 18 cut by the line joining two other points xyy,, Ty,
The equation of this latter line is (Art. 29)
Ws—y)2— (Zs—T) Y + 2oys — 2y = 0.

Therefore by the last article

m_ (_ya y.) 2 — (25~ z.) B+ TY— Ty,

n (%= 9) B = (@ ~ &) Y2 + @ys — TYs’
It is plain (by Art. 31) that this is the ratio of the two triangles
whose vertices are

Y1, Bl TYss 8D ZoYay ToYss TiYss

a8 also is geometrically evident.

If the lines connecting any assumed point with the vertices of

a triangle meet the opposite sides BC, CA, AB, respectively, in
D,E, F,then ~ BD.CE:AF
¢ - CD-AE-BF

Let the assumed point be z,, and the vertices z,y,, z,y,, a:,y.,

=+ 1.
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then BD ) W=-y) + T —y) + 2 (- 3)
CD x, (ye — 3/3) + & (}/z - yl) + 25 (,'/x - y;)’
T (ys—y) + 2 (Y — 1) + @ (42 — 9s)
TE (M -yg) t @ Y-y T o (- )’
AF _ % (Y — Pa)+ 2, (ys Y1) + T (1/1 y¢)
BF ~ 2, (3 -y + zs (Y- 92) + 2 (Y - 95)°
and the truth of the theorem is evident.

40. To find the angle between two lines, whose equations with
regard to rectangular co-ordinates are given.

The angle between the lines is manifestly equal to the angle
between the perpendiculars on the lines from the origin ; if there-
fore these perpendiculars make with the axis of z the angles a o'y
we have (Art. 25)

A . 3 .
cosa = m,ﬁmaém,

, Al e B .
cosa= U@ BY M T V(A B
' BA' - AB
Hence Bm<d-a')=V(A3+B,) V(A/, B/,)Q
AA' + BB
cos (a - a’) = ‘/(Az Bz) V(A’2+B'z)
BA'-AB
and therefore tan (a - a) m

Cor. 1.—The two lines are parallel to each other when .
_AB'-0(Art.22), - /7
since then the angle between them vanishes.
Cor. 2.—The two lines are perpendicular to each other when
AA’'+BB =0, S -
since then the tangent of the angle between them becomes infinite.
If the equations of the lines had been given in the form
y=mz+b, y=mz+b;
since the angle between the lines is the difference of the angles
they make with the axis of z, and since (Art. 22) the tangents of®
these angles are m and m, it follows that the tangent of the re-
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qmredangle:s T m ,,thatthehneaarepamllellfm-m,m ol

14( o 4 =
) to each other if mm’ + 1 = 0. 4o ~ -
o find the angle between two lines, the co-ordinates being e

oblique.
‘We proceed as in the last article, using the expressions of
Art. 26.°

Asinw
v (A? + B* ~2AB cosw)’
A'sinw
cosa = V(A,“"B,z 2AIB'OOS )
Co! uentl
e v ‘B - Acosw .

sme=J(A + B - 2ABcosw)
B -A'cosw
V(A%+ B* - 2ABcosw)’

. , (BA’ - AB)sinw
sin(a — a) = v (A*+ B* - 2ABcosw) v (A% + B2 - 2A'B'cosw)’
, BB + AA' - (AB' + A'B) cosw
«)= v (A?+ B:— 2ABcosw) ¢y (A" + B* - 2AB'cosw)’
(BA' - AB)sinw

AA’'+ BB -(AB + BA')cosw’

Cor. 1.—The lines are parallel if BA’ = AB'.

Cor. 2.—The lines are perpendicular to each other if

AA’ + BB = (AB + BA') cos w.

42. To find the equation of a line passing through a given
point and making a given angle, ¢, with a given line y = mx + b
(the azes of co-ordinates being rectangular).

- Let the equation of the required line be
-y =m(z- )
and the formula of Art. 40,
tang =
enables us to determine
A m = —'E___m .
1+ mtang
¥

cosa=

sin o’

Hence

cos(a —

tan(a-a)=

m-m
1+ mm’
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To JSind the equation of a right line passing through a given
point, and perpendicular to a given line, y = mz + b.

The condition that two lines should be perpendlcular bemg
mm’ = — 1, we have at once for the equation of the required per-

di 1 ,
pendicular y—p/-—;'(w—z).

It is easy, from the above, to see that the equation of the per-
pendicular from the point #y’ on the line Az + By+ C =01is

A@“?/’)=B(z-z')’
that is to say, we interchange the coefficients of # and y, and
alter the sign of one of them. -4y
1

Ex. 1. To find the eqm!né of perpendlc from each vertex on the opposite

side, of the triangle (2, 1), (3, — 2), (— 4, — 1).
The equations of the sides are (Art. 29, Ex. 1)

i z+7y+11=0, 8y—2z=1, Bz+y=17;
and the equations of the perpendiculars

Tz—y=18, 8z+y=17 8y-z=1
The triangle is consequently right-angled.

Ex. 2. To find the equations of the perpendiculars at the middle points of the sides
of the same triangle. The co-ordinates of the middle points being

("’" “)’( 1,0),(5, "')
'Theperpendicuhmm
T2-y+2=0, 8z+y+8=0, 8y—-2+4=0, intarsscﬁngin(—%,—;)
Ex. 8. Find the equations of the perpendiculars from the vertices of the triangle
(2, 8), (4, — B), (— 8, — 6) (see Art. 29, Ex. 3). 8 180
Ans. Tz+y=17, bz +9y+25=0, z—4y=21: intarsecﬁngin(%, _’2_9-)‘
Ex. 4. Find the equations of the perpendiculars at the middle points of the sides of
the same triangle.

Ans. 12+y+2=0,52+9%+16=0,2—-4y=7; mtersecﬁngm( 219 :—;—).

Ex. 5. To find in general the equations of the perpendiculars from the vertices on the
opposite sides of a triangle the co-ordinates of whose vertices are given.
Ans. (" -2z + (@ -y Ny + @2+ yy") - (2" +yy' ) =0,
@ -)o ¢~ Y I+ @ V) - @YY =0,
& ~2)2+ @ ~ )+ @ T+YY) - @E+yY) =0

. By.A.rt. ' these lines intersect in a point, since the equations added together vanish
identically.
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Ex. 6. Find the equations of the perpendiculars at the middle polnts of the sides of
a triangle, and show that they meet in a point.

Am. @- )2k @ - WFHE - f107 -y =0, al
@ -2)z+ (=Y W HAGE-2) FAGT-9) =0,
@ -2+~ fiE - Fi -y =0/
Ex.7.T;hngforueatheb¢nofatrhnglendthnp¢pndiahronitMtb

vertex, find the equations of the other two perpendiculars, and the co-ordinates of their
intersection. The co-ordinates of the vertex are now (0, ), and of the base angles

@, 0), (=, 0). Ans. 2'(z-2)+yy=0, Z(z+2)~gy=0, (0, -‘7’:
Ex. 8. Using the same axes, find the equations of the perpendiculars at the middle
points of sides, and the co-ordinates of their intersection.
" , . . , ,[x-z" yt-z'="
Ans. 2(z"2+yy)=y2-2", 2(22-yy) =23~y x ="~ 2 ’(T' 2y
43. To find the equation of the bisector of the angle between
two lines, x cosa + y sina ~ p =0, z cos3 + y einf3 — p'= 0.
‘We find the equation of this line most simply by expressing
algebraically the property that the perpendiculars let fall from
. any point zy of the bisector on the two lines are equal. Thx;
immediately gives us the equation

zcosa + ysina — p = z cos3 + ysinf - p, ',/ ’
since each side of this equation denotes the length of one of those
perpendiculars (Art. 27).

The reader will remember (Art. 27) that the sign of the per-
pendicular changes as we pass from one side of a line to the
other ; consequently the equation

z cosa + y sina - p = - (zcosf3 + y sinf3 - p)
denotes the bisector of the supplemental angle between the two
lines.

If the equations had been given in the form Az + By +C =0,
A’z + By + C' = 0, the equation of the pair of bisectors would be

Aw+By+C A +By+C
V(A4 B’) V(A"+ By °

If we choose that sign which will make the two constant
terms of the same sign, it follows from Art. 27 that we shall
have the bisector of that angle in which the origin lies; and if
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we give the constant terms opposite signs, we shall have the
equation of the bisector of the supplemental angle.

Ex. 1. Reduce the equation of the bisectors of the angles between two lines, to the
form z cosa + y sina = p.
Ans. =z cos{} (a + a') + 90°} + ysin{} (a + a') + 90°} = ;'{ﬁ—h;
__ptp
2cos } (a — a)
Ex. 2. Prove that the three bisectors of the angles of a triangle meet in a point. The
origin being anywhere within the triangle, their equations are

zoos} (a + o) +ysind (a+a) +

(zcosa +ysina —p) — (xcosf + ysinB ~p') =0, \ b-u\ :'5 "
(zcosB + ysinB —p) — (zcosy + ysiny —p") =0, 'Lu- Vet -
(v cosy + ysiny —p7) — (v cosa + ysina—p ) =0. » a,ff.l’.

Kicu w—

Ex. 3. Find the equations of the bisectors of the angles between
8r+4y—-9=0, 122+ 5y—8=0.
Ans. Tx—9y+84=0, 9z + Ty=12.

44. To find the polar equation of a right line (see Art. 12).
Suppose we take, as our
fized axis, the perpendicular N
on the given line, then let OR R
be any radius vector drawn from P
the pole to the given line 7
OR = p, ROP =0, 6)
but, plainly, %
OR cosf = OP,
hence, the equation is
pcosf =p.
If the fixed axis make an angle a with the perpendicular the
equation is

pcos(() -a)=p.
-This equation may also be obtained by transforming the equa~
tion with regard to rectangular co-ordinates,
Zcosa +ysinc;=p.
Rectangular co-ordinates are transformed to polar by writing for

z, pcosf, and for y, psinf (see Art.12); hence the equation

becomes / ,
p(cos@ cosa + sinf sina) =p;
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or, a8 we got before, /
pcos (0 — a) =p.
An equation of the form .
p(Acos@+ Bsinf) =C
can be (as in Art. 25) reduced to the form p cos (0 - a) = p, by
dividing by /(A + IK) ; we shall then have
A . B C
T V@ABY T YA By PT (A BY
Ex. 1. Reduce to rectangular co-ordinates the equation R

Ccosa

p = 2a sec (0 + :6)'
Ex. 2. Find the polar co-ordinates of the intersection of the following lines, and also

thomglebetweenthem:pcoa(O—;)=2¢, peos(O—%):a.

Ans. p = 2a, 0=-;, angle =’8—r.
Ex. 3. Find the polar equation of the line passing through the points whose polar
co-ordinates are p', 6'; p", 6"
Ans. p'p”sin(0' — 0) + p"psin(6” — 6) + pp'sin(0 — 6) = 0.

CHAPTER III.

EXAMPLES ON THE RIGHT LINE.

45. Having in the last chapter laid down principles by which
we are able to express algebraically the position of any point or
right line, we proceed to give some further examples of the appli-
cation of this method to the solution of geometrical problems.
The learner should diligently exercise himself in working out
such questions, until he has acquired quickness and readiness in
the use of this method. The examples given in this chapter being
introduced, not so much for their own sake, as to show how such
questions may be solved algebraically, will often be such as admit
of simpler geometrical solutions. It must not be supposed, how-
ever, that because in these instances the geometrical method has
the advantage, it is in all cases to be preferred. Each method has

 its peculiar recommendations. If the geometrical solutions of some
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questions are clearer and more simple, the algebraical method
proceeds with more uniformity, and reaches its end with greater
* certainty. It should be the student’s aim to make himself master
of both instruments of investigation, so as to be able to apply
either, according as the nature of the subject demands. We shall
give examples of some of the classes of problems which are of most
frequent occurrence : the student who has mastered these will
find no difficulty in applying the same method to any others that
may presemt themselves.

46. Problems where it is required to prove that three lines meet
in a point. .

It seems unnecessary to add any illustrations to those given in
the last chapter, on this subject. The process we pursue is as fol-
lows: We form the equations of the three lines: it may then
happen that we observe at once that the three equations vanish
identically when added together (multiplied, it may be, by suitable
constants) : if this be the case, we know, by Art. 37, that the lines
represented by the equations meet in a point. Otherwise, we
find the co-ordinates of the intersection of twoe of them, and exa-
mine whether they satisfy the equation of the third; or else we
apply to the equations the test of Art. 34.

In the solution of this and every other class of geometrical
problems, our equations may generally be much simplified by a
judicious ehoice of axes of co-ordinates: since, by choosing for
axes two of the most remarkable lines on the figure, several of
out expressions will often be much shortened. On the other
hand, it will sometimes happen that by choosing axes uncon-
nected with the figure, the equations will gain in symmetry more
than an equivalent for what they lose in simplicity. The reader
may compare the two solutions of the same question, given Ex.
1 and 2, Art. 37, where, though the first solution is the longest,
it has the advantage that the equation of one bisector being
formed, those of the others can be written down without further
calculation.

Since expressions containing angles become more complicated
by the use of oblique co-ordinates, it will be generally advisable
to use rectangular axes in any question in which the considera~
tion of angles is involved.
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Problems where it is required to prove that three points lie in
one right line.
It may happen that we observe that, the co-ordinates of two
of them being z'y', 2 y", those of the third are of the form
mz" + n¥ my” + ny

m+n’ m+n '’

in which case it is obvious, Art. 7, that the three points are in
~ one right line. Otherwise we form the equation of the line
joining two of them, and examine whether it is satisfied by the
co-ordinates of the third.

47. Loci.— Analytic geometry adapts itself with peculiar
readiness to the investigation of loci. We have only to find
what relation the conditions of the question assign between the
co-ordinates of the point whose locus we seek, and then the state-
ment of this relation in algebraical language gives. us at once the
equation of the required locus.

Ex. 1. Given base and difference of squares of sides of a triangle, to find the locus of
vertex.

Take the base for axis of 2, and a perpendicu- C
lar through one extremity A for axis of y. Call Q
/thelmgthofbmc,mdlettheeo-ordimtod E D

vertex be z, y. Then )
BC1=CR3 + RBI=yg2 + (c —2)%
ACt=a2 4 A RM B
therefore BC? — ACt = 2 — 2¢z;
and, putting this equal to a constant,
€ — 2cz = m3
is the equation of the locus of vertex ; but this is (Art. 15) the equation of a line per-

c’ (]
pendicular to the base at a distance from the origin = ———. Subtracting this from

e’+m’, and we euilyvenfythat the locus will cut the

base 8o that the difference of the squares of segments = the difference of squares of sides
(Euc. I. 47, Cor. 4)

¢, the other segment will be

Ex. 2. leen base and sum of sides of a triangle, if the perpendicular be produced
beyond the vertex until its whole length is equal to one of the sides, to find the locus of
the extremity of the perpendicular.

Take the same axes, and let us inquire what relation exists between the co-ordmnm
of the point whose locus we are seeking. The z of this point plainly is AR, and the y is,
by hypothesis, = AC ; and if m be the given sum of sides,

"BC=m-y.
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Now (Euclid, II. 18),
BC3 = AB? 4+ AC* - 2AB. AR; or, denoting AB by ¢,
(m—yP=cl+y2— 2cx.
Reducing this equation, we get
2my — 2cx = m? — o3,
the equation of a right line.

Ex. 8. Given two fixed lines, OA and OB, if any line be drawn to intersect them
parallel to a third fixed line, OC, to find the locus of the point where AB is cut in a given
ratio. C

‘We may here employ oblique axes, since angles are not
concerned (Art. 46). Let us take the fixed line OA for
axis of z, and the fixed line OC for axis of y, then the
equation of OB must be of the form y = mz, and it is re-
quired to find the locus of the point P cutting AB, so that
AP may, for instance, = nAB. [0 A

Since the point B lies on the line whose equation is y = mz, we have

AB =mOA, ’
therefore AP = mnOA,

but AP is the y of the point P, and OA its z, therefore the locus of P is expressed by the
equation y = mnx,
and is, therefore, a right line through the point O.

Ex. 4. Given bases and sum of areas of any number of triangles having a common
vertex, to find its locus.

Let the equations of the bases be

zcosa + ysina—p=0, zcosB+ysin—p, =0,
zcosy + ysiny —py = 0, &c.

and their lengths, a, b, ¢, &c.; and let the given sum = m*; then, since (A.rt. 27)
zcosa + ysina — p denotes the perpendicular from the point zy on the first line,
a(zcosa + ysina — p) will be double the area of the first triangle, &c., and the equa-
tion of the locus will be :

a(zcosa+ysina—p)+b(zcosB+ysinB—p;)+c(zcosy +ysiny — p;) + &e. =2m?,
' which, since it contains z and y only in the first dexree, will represent a right line.

Ex. 5. Two vertices of a triangle ABC move on fixed right lines LM, LN, and the
three sides pass through three fixed points O, P, Q which lie on a ﬁght line; find the
locus of the third vertex.

Take for axis of z the right line OP,
containing the three fixed points, and for
axis of y the line OL joining the intersec-
tion of the two fixed lines to the point O
through which the base passes. Let the
co-ordinates of C be z'y’, and let

OL=b, OM =ga, ON =ad/,
OP=¢, OQ=c¢.
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’

Then obviously the equations of LM, LN are
z ¥ . ¥_
;+$=lmd;'+b 1.
The equation of CP through 'y’ and P(y =0, x =¢) is
F-c)y-yz+ey=0.
The co-ordinates of A, the intersection of this line with

z
at3=1
are n=ab§:-—c2+¢cy. b(a—-¢)y

b - +ay’ VPhr-otar
The co-ordinates of B are found by simply accentuating the letters in the preceding:
:z=a'b(z'—c')+a'c'y'. y= b(a—c)y .
b(2 - c)+ay ’ b(z' - ¢) + ay’
Now the condition that two points, z,y,, #2y;, shall lie on a right line passing through
. n_¥
theongm,is(A.rt.BO)a=;.
Applying this condition we have
ba-9y __d(a-o)y
ab(z —¢)+acy ab(s —c)+acy”
This being a relation then which must always be satisfied by the co-ordinates 'y, the
equation of the locus is obtained by simply removing the accents from #'y ; and clearing
of fractions, we have
(@ o) [ab (e - &) + a'y] = (@ - ) [ab (s - ) + aay],
(ac’ — ac)z
ec’(@—a) —ad'(c—¢)
the equation of:righs line through the point L.

Ex. 6. If in the last example the points P, Q lie on a right line passing not through
O but through L, find the locus of vertex.

Take for axis of  the line LP, and for axis of y the line
LO. Let LP =a, LQ = a, LO = b, and let the equations
of LM, LN be y = mz and y =m'z. The equation of CP
through z’y’ and (a, 0) is

¥ (z-a)=( - a)y.
The co-ordinates therefore of the point A where this line
meets y = mx aré , .

a; a
n= y’—-:;+m' h= y’—3+m'

or +%=1,

ay - amy’
y-mz+am’ ¥ y-mz+am®
We must now express that the line joining these points passes through O. Substitute
the co-ordinates x = 0, y = b, in the equation of the line joining two points &y, #aya
(Art. 29), and it becomes
@ -2)b=292— 9225 o1, 4 (2= b) =z (3 - B).
G

In like manner the co-ordinates of B are 3 =

™ - . . —
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Substitute in this the values just obtained for #,, y,, 2,, y2, and clear of fractions ; the equa-
tion becomes divisible by g, and we have for the relation to be satisfied by the point 2y,
a {(@m —B)y + Wb (2~ )} = ' {(am — B)y + mb(z - )},

the equation of a right line. It passes (Art. 86) through the intersection of the lines
found by equating each side of the equation separately to 0. It will be found that these
are the lines joining P and Q to the points where a parallel to LQ through O meets LM,
LN. .

48. It is often convenient, instead of expressing the condi-
tions of the problem directly in terms of the co-ordinates of the
point whose locus we are seeking, to express them in the first in-
stance in terms of some other lines of the figure; we must then
obtain as many relations as are necessary in order to eliminate
the indeterminate quantities thus introduced, so as to have re-
maining a relation between the co-ordinates of the point whose
locus is sought. The following Examples will sufficiently illus-
trate this method.

Ex. 1. To find the locus of the middle points of rectangles inscribed in a given
triangle.

Let us take for axes CR and AB; let CR = p, C
BR=s AR=24. The equations of AC and BC are

¥ _Z_1ama? +-_1.
p P

Now if we draw any line FS parallel to the base at a
distance FK = &, and whose equation, therefore, is o

y=4,
AKR L B
we can find the absciss® of the points F and 8, in
which the line F'S meets AC and BC, by substituting in the equations of AC and BC
_this value, ¥y =& Thus we get from the first equation
5—€=1.’.zorKR=-—a’(l-—£);
, p s P
and from the second equation
5+£r=l.'.a:orRL=:(l—'f)
) 4 p
Buvmgtheabecimoll?ands,wehave(byArtJ)t.haabsclmofthemiddlepomtof

Fs,m,z—:-z—'-(l— —) This is evidently the abscissa of the middle point of the

rectangle. But its ordinate is y = ; Now we want to find a relation which will

subsist between this ordinate and abscissa whatever & be. We have only then to elimi-

nate & between these equations, by substituting in the first the value of & (= 2y), derived

from the second, when we have 2y
22:(0—")(1— —) .
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!

2. )

or _+=
s—5 p

This is the equation of the locus which we seek. It obviously represents a right line,
and if we examine the intercepts which it cuts off on the axes we shall find it to be the
line joining the middle point of the perpendicular CR to the middle point of the base.

Ex. 2. A’paralle is drawn to the base of a triangle, and perpendiculars to the sides
erected at its extremities, find the locus of their intersection.
. Take the same axes as in Ex. 1. Then the line FQ, which is a perpendicular to the

lmeAC(——— —1), through the point F{ (1——)h}hufotitaequﬁon

slere(1- ) rio-meo

In like manner, the equation of 8Q is

_ ;{:—:(1—2)}——;0—&)=0.

Now since the point whose locus we are seeking lies on both the lines FQ, 8Q, each of the
equations just written expresses a relation which must be satisfied by its co-ordinates.
8til, since these equations involve &, they express relations which are only true for that
particalar point of the locus which corresponds to the case where the parallel FS is drawn
at a height % above the base. If, however, between the equations, we eliminate the inde-
terminate %, we shall obtain a relation involving only the co-ordinates and known quan-
tities, and which, since it must be satisfied whatever be the position of the parallel FS,
will be the required equation of the locus.
In order, then, to eliminate & between the equations, pnttheminﬁothnlom

Y G
+ +7-—h(.,+P’), and

C
4
8 1
“Sal=n(s42)s
P p s p*

and eliminating, we have for the equation of the locus,

Gei)Ge3+9)=Gp)C-549):

but thisis evidently the equation of a right line, since z and y are only in the first degree,
and it will be found that it passes through the vertex of the given triangle, for the co-ordi~
Dates of the vertex z =0, y = p, will satisfy the equation. It also passes (Art. 86) through
the intersection of the lines formed by equating each side of the equation separately to
0. It will be found that these are the lines drawn at the extremities of the base perpen-
dicular to the conterminous sides.

FQ

8Q

®e Wy

Ex. 8. A Iine is drawn parallel to the base of a triangle, and the points where it
Ieets the sides joined to any two fixed points on the base; to find the locus of the point
of intersection of the joining lines.

We shall preserve the same axes, &c., as in Ex. 2, and let the co-ordinates of the
" "fixed points, T and V, on the base, be for T (m, 0), and for V (n, 0).
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The ‘equation of FT will be found to be

g rmprrse-mae

and that of SV to be
{:(1—2) —n}y-—h+h=0.
Patting the equations into the form
FT E+m)y—& (sy—z+-) =0,
and Sy (c—n)y—k(’;y+z-—n)=0;

and, eliminating %, we get for the equation of the locus

(0-')(23—:+u) =(s'+m) Gy tz —.).

But this is the equation of a right line, since x and y are only in the first degree.

Ex. 4. A line is drawn parallel to the base of a triangle, and its extremities joined
transversely to those of the base; to find the locus of the point of intersection of the
joining lines.

. This is a particular case of the foregoing, but admits of a simple solution by choosing

for axes the sides of the triangle AC and CB. Let the lengths of those lines be a, b, and
letthelengthsofthepropomondintereeptsmadebythepuunelbem,pb Then the
equations of the transversals will be

y _ LA
a+pb—1“dpa+b 1.

Subtract one from the other ; divide by the constant 1 — %, and we get for the equation
of the locus z

2 32

a
which we have elsewhere found (see p. 80) to be the equation of the bisector of the base
of the triangle.

Ex. 5. If on the base of a triangle we take any portion AT, and on the other side of
the base another portion BS, in a fixed ratio to AT, and draw ET and FS parallel to a
fixed line CR, to find the locus of O, the point of intersection of EB and FA.

Take CR for axis of y;.let AT =%, BR = 3,

AR =4, CR=p, let the fixed ratio be m, then BS C
will = mk ; the co-ordinates of S will be (s — m#, 0), F
and of T{ —~ (¢’ - #), 0}. E

The ordinates of E and F will be found by sub-
stituting these values of # in the equations of AC and T R s B
BC. We get for

’

E z=-(-#) y==;
and for
F, z=3-mk y=’1f—".
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Now form the equations of the transverse lines, and the equation of EB is

(e+o'= k)y+?s-'—:-'-= o,

and the equation of AF is )
(c+:'-n&)y—1‘:-£=0.

To eliminate &, subtract one equation from the other, and the result, divided by &,
- ! PP 4 mps _ P
(m l)y+(' +,.):+( > ,,)=0,
which is the equation of a right line.
Ex. 6. PP'and QQ’are any two parallels to the sides of s parallelogram ; to find

the locus of the intersection of the lines PQ and P'Q’.
Let us take two of the sides for our axes, and let

Q D
the lengths of the sidesbe a and b, and let AQ’ =m,
AP ='n. Then the equation of PQ, joining P (0, n)
to Q(m, b) is P. ,
[/ /
B

(b—-n)z—my+mu=0,
and the equation of P’Q’ joining P’ (a, ») to Q' (m, 0) AQ
is nz—(a-m)y—mn=0. -’
There being fwo indeterminates, m and =, we should at first suppose that it would
not be possible to eliminate them from #wo equations. However, if we add the above
equations, it will be found that both vanish together, and we get for our locus
bz—ay=0,
the equation of the diagonal of the parallelogram.

Ex. 7. Given a point and two fixed lines: draw any two lines through the fixed
point, and join transversely the points where they meet the fixed lines, to find the locus
of intersection of the transverse lines.

Take the fixed lines for axes, and let the equations of the lines through the fixed
point be

£+g=1, mdf-,+l,=1.
m n m n
- The condition that these lines should pass through the fixed point zy’ gives us

, »

Zi¥o1, maZa¥oy;
m ” m ”

or, subtracting,

Ti¥oy, adfi¥ag
m ” m ”n

(-2)- (G-

or, subtracting,
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Now from this and the equation just found we can eliminate

(-5) = (t-2)

2y+yz=0,
the equation of a right line through the origin.

Ex. 8. At any point of the base of a triangle is drawn a line of given length, parallel
to a given one, and 8o as to be bisected by the base: find the locus of the intersection of
the lines joining its extremities to those of the base.

Ex. 9. The base of a triangle is given, and the sides meet a‘fixed line AB parallel to
the base in points C, D, such that the ratio of AC: BD is given; find the locus of vertex.

Ex. 10. Given the vertical angle of a triangle and the sum of sides, find the locus of
the point where the base is cut in a given ratio.

. Ex. 11. Given two fixed points, A, B, one on each of the axes: if A’ and B’ be taken
on the axes, sothatOA’+OB' OA + OB, find the locus of the intersection of AB’,
A'B.

and we have

49. Problems where it is required to prove that a moveable
right line passes through a fized point.
‘We have seen (Art. 36) that the line
Az +By+C+k(Az+ By +C)=0;
or, what is the same thing,
" (A+kA)z+(B+EB)y+C+iC'=0,
where % is indeterminate, always passes through a fixed point,
namely, the intersection of the lines
Az+By+C=0, ‘a.nd"A'z+B’y+C'=
Hence, if the equation of a right line contain an indeterminate
quantity in the first degree, the right line will always pass through
a fized point.
Ex. 1. Given vertical angle of a triangle and the sum of the reciprocals of the sides;

the base will always pass through a fixed point.
z

Take the sides for axes; theequatlonofthebmis;+%=1, and we are given the
condition 1.1 1 1 1 1

therefore, equation of base is

where ¢ is constant andamdetermimfs, that is,
—(z y)+--1—0,
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wm;nmmmm. Hence the base must always pass through the intersection of
the two lines z-y=0, andy=ec.

Ex. 2. Given three fixed lines, OA, OB, OC, meeting in a point, if the three vertices
of a triangle move one’on each of these lines, and two sides of the triangle pass through
fixed points, to prove that the remaining side passes through a fixed point.

Take for axes the fixed lines OA, OB, on which ::,' c
the base angles move, then the line OC on which A
the vertex moves will have an equation of the form
y = mz, and Jet the fixed points be 2y, z"y". Now, -~
in any position of the vertex, let its co-ordinates be z%y"
z=a, and, consequently, y =ma; then the equa-
tion of AC is

(F—a)y—(y'—ma)z +a(y —mz)=0. o v B
Similarly, the equation of BC is (" —a)y—(y" —ma)z + a(y’ — mz") = 0.

Now, the length of the intercept OA is found by making » = 0 in equation AC, or

ay —mz)

y=""r"a
Similarly, OB is found by making y = 0 in BC, or
a(y m")
y —ma
Hence, from these intercepts, equation of AB is
y — ma 4 —a

y u—’ —mz

But since a is indeterminate, and only in the first degree, this line always pasees through
a fixed point. The particular point is found by arranging the equation in the form
e - = ,y-a( i X ,+1)=o.
y —mz y — mz ¥y — ms” 3 mx
Hence the line passes through the intersection of the two lines
.—y”-—g __3__’-0'
V—me Y —mT

and
mr ¥y
Y —ms y—md
Ex. 8. Ifint.heluteumplothellneonwhichtbavmx(}movudonotplu
through O, to determine whether in any case the base will pass through a fixed point.
‘We retain the same axes and notation as before, with the only difference that the
equation of the line on which C moves will be y = mz + =, and the co-ordinates of the
vertex in any position will be @, and ma + ». Then the equation of AC is

@ —-a)y-(y-ma—n)z+a(y —mz)—nz'=0.
The equation of BC is -
@ —-a)y-('-ma—n)z+a(y’—mz)—nz"=0.

OA=— a(y — mz) —nz’ OBaa!!"-u”)-u’f
R P | Y —ma—n .

Z-~a

+1=0.
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‘The equation of AB is therefore

_Yy -—ma—-n .. zZ—a -1

. 2 ey —mz)—na Y a(y — mz) — nt
Now when this is cleared of fractions, it will in general contain @ in the second degree,
and therefore, the base will in general not pass through a fixed point ; if; however, the
points 2y, 2"y", lie in a right line (y = kz) passing through O, we may substitute in the
denominators y” = k2", and y’ = A2/, and the equation becomes
Y —ma—n z—a
. d -y =alk—m)—

z o yr——=ak-m)—»
which only contains a in the first degree, and, therefore, denotes a right line passing
through a fixed point.

Ex. 4. If a line be such that the sum of the perpendiculars let fall on it from a
number of fixed points, each multiplied by a constant, may = 0, it will pass through a
fixed point.

Let the equation of the line be

Zcosa + ysina —p =0,
then the perpendicular on it from 'y’ is
' cosa+ysina —p,
and the conditions of the problem give us
m'(z' cosa + y' sina — p) + m"(z"cosa + y"sina — p) + m” (2" cosa + y” sina — p)
+ & =0,

or, using the abbreviations X (mz") for the sum* of the mz, that is,
mz' + m's" + m"2” + &e.,
and in like manner = (my’) for
my' +my" + m"y" + &,
and =(m) for the sum of the m’s or
m+m"+m”+ &
‘We may write the preceding equation
2(mz") cosa + E(my)sina — p=(m) = 0.
Substituting in the original equation the value of p, hence obtained, we get for the equa-
tion of the moveable line
22 (m) cosa + y=(m) sina — T(mz’) cosa — =(my ) sina = 0,
or 22 (m) — E(mz) + {y=(m) — E(my)} tanu = 0.
Now as this equation involves the indeterminate tana in the first degree, the line
passes through the fixed point determined by the equations
z2(m) — 2(mz) =0, and y=(m) — =(my) =0,
or, writing at full length,
e mz’ + m'z" + m"z" + &e. _my +my" +m"y" + &e.
m +m" + m” + & m +m” + m” + &ec.
This point has sometimes been called the centre of mean position of the given points.

* By sum we mean the algebraic sum, for any of the quantities m', m", &c., may be
negative.



EXAMPLES ON THE RIGHT LINE. 49

50. If the equation of any line involve the co-ordinates of a
certain point in the first degree, thus,

(A7+By+C)z+(A7+ By +C)y+(AZ+By +C")=0.

Then if the point #% move along a right line, the line whose
equation has just been written will always pass through a fixed
point. For, suppose the point always to lie on the line

L + My + N = 0,

then if, by the help of this relation, we eliminate «/ from the
given equation, the indeterminate y will remain in it of the first
degree, therefore the line will pass through a fixed point.

Or, again, tf the coefficients in the equation Az + By + C = 0,
be connected by the relation aA + bB + ¢C = 0 (where a, b, c are
constant and A, B, C may vary) the line represented by this equa-

 tion will always pass through a fized point.

For by the help of the given relation we can eliminate C and
‘write the equation

(cz-a)A+(cy-5)B=0,

a right line passing through the point (z -2, y= g)

51. Polar co-ordinates—1t is, in general, convenient to use
this method, if the question be to find the locus of the extremities
of lines drawn through a fixed point according to any given law.

Ex. 1. A and B are two fixed points; draw through B any line, and let fall on it &
perpendicular from A, AP ; produce AP go that the rectangle AP+ AQ may be constant :
to find the locus of the point Q.

Take A for the pole, and AB for the fixed axis, then AQ
is our radius vector, designated by p, and the angle QAB = 0,
and our object is to find the relation existing between p and
0. Let us call the constant length AB = ¢, and from the
right-angled triangle APB we have AP =¢ c0s6, but AP - AQ
= const = 43, therefore,

ks
pe cosd = &2, orp cos@ =2

but we have seen (Art. 44) that this is the equation of a right line perpendicular to AB,
]
and at a distance fromA=%.

Ex. 2. Given the angles of a triangle; one vertex A is fixed, anether B moves along
a fixed right line: to find the locus of the third.

H
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Take the fixed vertex A for pole, and AP perpendicular C
to the fixed line for axis, then AC = p, CAP =6. Now
since the angles of ABC are given, AB is in a fixed ratio to B
AC (=mAC) and BAP =0 — a; but AP = AB cos BAP;
therefore, if we call AP, a, we have
' mp cos(0 — a) = a, P
which (Art. 44) is the equation of a right line, making an
angle a with the given line, and at a distance from
A=2Z,
) m
Ex. 8. Given base and sum of sides of a triangle, if at either extremity of the base B
a perpendicular be erected to the conterminous side BC: to find the locus of P the point -
where it meets the external bisector of vertical angle CP.
Let us take the point B for our pole, then BP will be
our radivs vector p; and let us take the base produced

for our fixed axis, then PBD = 0, and our object is to C
express p in terms of 6. Let us designate the sides and P
opposite angles of the triangle g, b, ¢, A, B, C, then it is

easy to see, that the angle BCP = 90° — 1C, and from A B D

the triangle PCB, that a = p tan}C. Hence it is evident,
that if we could express a and tan}C in terms of 0, we couldexpteu p in terms of 6.
Now from the triangle ABC we have

b* = a? + ¢? — 2ac cosB,

baut if the given sum of sides be m, we may substitute for b, m — a; and cos B plainly
= gin0 ; hence
m? — 2am + a® = a? + ¢? — 2acsinf,

and .

m— c?
2(m —c sinf)
Thus we have expressed @ in terms of @ and constants, and it only remains to find an
expression for tan §C.

a=

bsinC
Now mic-m.
But bsinC =csinB=ccosf; and b cosC=a — ccosB=a — ¢ sind.
"Henoce tan3C = —9

m — csin@ -

‘We are now able to express p in terms of 6, for, substitute in the equationa = ptan} C
the values we have found for a and tan §C, and we get .
m? — c? pe cosd m? — ct
2(m — csme) (m —csin @) or poosf = 2¢
Heneetholocmm.hneperpend:cuhrtothebmofﬂmtﬁmgleatadistmcefrom
m? — ¥
2¢

The student may exercise himself with the corresponding locus, if CP had been the
internal bisector, and if the difference of sides had been given.

~

e

B=
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Ex. 4. Given » fixed right linesand a fixed point O ; if through this point any radius
vecmrbedmwnmeeﬁngthenghthnesmtbepoinu T1) 73 73+ - » . 7w, and on thisa point
1

21
R be taken such tha O_R_Orl+0"+0r; ..or.,wﬁndthalwnldk.
Let the equations of the right lines be
p 008 (0 — a)=p,; pcos(0 — B) = p, &

Hence it is easy to see that the equation of the locus is
:_coe(O—a)+ena(0—ﬂ)
[4 p 2] ) ]
the equation of a right line (Art. 44). This theorem is only a particular case of a-general
one which we shall prove afterwards.

+ &o.

* CHAPTER IV.

APPLICATION OF ABRIDGED NOTATION TO THE EQUATION OF THE
RIGHT LINE.

52. WE have seen (Art. 36) that the line
(z cosa+ysina-p)-k(xcosf +ysinB-p)=0
denotes a line passing through the intersection of the lines
zcosa+ysina-p=0, zcosf+ysinB-p=0.

‘We shall often find it convenient to use abbreviations for
these quantities. Let us call : -

Z cosa+ysina-p,a: zcosf+ysinf-p, M.
‘Then the theorem just stated may be more briefly expressed, the
equation a — &3 = 0, denotes a line passing through the intersec-
tion of the two lines denoted by a =0, 3 =0. We shall for
brevity call these the lines a, (3, and their point of intersection
the point a3. 'We shall, too, have occasion often to use abbre-
viations for the equations of lines in the form Az + By + C = 0.
‘We shall in these cases make use of Roman letters, reeerving the
letters of the Greek alphabet to intimate that the equation is in

theform
z cosa + y sina - p = 0.
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53. We proceed to examine the meaning of the coefficient %
in the equation a - #3 = 0. We saw (Art. 27)
. that the quantity a (that is, # cosa + y sina — p) P
denoted the length of the perpendicular let fall from
any point zy, on the line OA (which we suppose
represented by a). Similarly, that 3 is the length © B
of the perpendicular from the point zy, on the line OB, repre-
sented by 3. Hence the equation

a-k3=0, (org;k),

asgerts, that if from any point of the locus represented by it, per-
pendiculars be let fall on the lines OA, OB, the ratio of these

perpendiculars, that is, ]1:;—‘3, will be constant, and =k Hence the

locus represented by a — &3 = 0 is a right line through O, and
PA sin POA .
PB’ % “snPOB

It follows from the conventions concerning signs (Art. 27) that
a + kB = 0 denotes a right line dividing externally the.angle

AOB into parts such that ::E—gg—% = k. Itis of course as-

sumed in what we have said that the perpendiculars PA, PB
are those which we agree to consider positive; those on the op-
posite sides of a, 3 being regarded as negative.

54. The reader is probably already acquainted with the fol-
lowing fundamental geometrical theorem :— If'a pencil of four
right lines meeting in a point O be intersected by any transverse

k=

right line in the four points A, P, P, B, then B p

. AP.PB .
the ratio AP . PB Y constant, no matter how P.
the transverse line be drawn.” This ratio is A

called the ankarmonic ratio of the pencil. In 0

fact, let the perpendicular from O on the transverse line = p:
then p- AP = OA .OP.sin AOP ‘(both being double the area
of the triangle AOP); p.-P'B=O0F.OBsinPOB; p- AP
= OA .OP sin AOP'; p.PB = OP - OB - sin POB; hence
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p*-AP.PB=0A.OP.OP-OB.sin AOP.sin POB;
p* AP .PB = 0A.OP.OP-OB-sin AOP'-sin POB;
AP.PB snAOP. sinP’OB.
AP -PB  snAOP.snPOB’

but the latter is a constant quantity, independent of the position
of the transverse line.

55. If a — k3 = 0, a - 3 = 0, be the equations of two lines,
then‘l—; will be the ankarmonic ratio of the pencil formed by the
four lines a, B, a - %3, a - k3, for
_ gin AQP ¥a sin AOP

sin POB’ sin OB’

_ & _ sinAOP.sinPOB
%" s§inAOP .smnPOB’

but this is the anharmonic ratio of the pencil.

k

The pencil is a harmonic pencil when f—’, =~ 1, for then the

angle AOB is divided internally and externally into parts whose
sines are in the same ratio. Hence we have the important theo-
rem, two lines whose equations are a — k3 = 0, a + k3 = 0, form
with a, 3 a harmonic pencil.

56. In general the anharmonic ratio of four lines a - %3,
a-18, a-mB, a-nB, h%{%('(';—:’g. For let the pencil be
cut by any parallel to 3 in the four
points K, L, M, N, and the ratio
is NTE. But since B has the )\
same value for each of these four
points, the perpendicularsfrom these o [
points on q are (by virtue of the equations of the lines) propor-
tional to k, 4, m, n; and AK, AL, AM, AN, are evidently pro-
portional to these perpendiculars; hence NL is proportional to
n-l; MKtom-k; NMton-m; and LK to ! - £.
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Ex. 1. To express in this notation the proof that the three bisectors of the angles of
a triangle meet in a point.

The equations of three bisectors are obviously (see Arts. 48, 58) a—3=0, 3~ y=0,
y — @ = 0, which, added together, vanish identically.

Ex. 2. Any two of the external bisectors of the angles of a triangle meet on the third
internal bisector.

Attending to the convention about signs, it is easy to see that the equations of two
external bisectors are a + 8 = 0, @ + y = 0, and subtracting one from the other we get
B — 7 =0, the equation of the third internal bisector.

Ex. 8. The three perpendiculars of a triangle meet in a point.

Let the angles opposite to the sides a, 3, 7, be A, B, C, respectively. Then since the
perpendicular divides any angle of the triangle into parts, which are the complements of
the remaining two angles, therefore (by Art. 53) their equations are

acosA —3cosB=0, BcosB—.ycosC=0, ycosC—acosA=0,
which obviously meet in a point.
| Ex. 4. The three bisectors of the sides of a triangle meet in a point. .

The ratio of the perpendiculars on the sides from the point where the bisector meets
base plainly is sinA : sinB. Hence the equations of the three bisectors are

asinA -~ (3sinB=0, BsinB-ysnC=0, ysinC—asnA=0.

Ex. 5. To form the equation of a perpendicular to the base of a triangle at its ex-
tremity. Ans. a+ BcosC=0.

Ex. 6. If there be two triangles such that the perpendiculars from the vertices of one
on the sides of the other meet in a point, then, vice versd, the perpendiculars from the
vertices of the second on the sides of the first will meet in a point.

Let the sides be a, 8, y, ', 8, ¥, and let us denote by (af3) the angle between
a and 8.

Then the equation of the perpendicular

from of8 on y'is a cos(By) — B eos (ay) = 0,

from By on &' is 3 cos(ya’) — y cos(Ba’) = 0,

from ay on ' is y cos(af) — acos(yB8) =0.
The condition that these should meet in a point is found by eliminating 8 between the
first two, and examining whether the resulting equation coincides with the third. It is

cos(af3) cos(By) cos(ya’) = cos(a’B) cos(By) cos(y'a).

But the symmetry of this equation shows that this is also the condition that the perpen-
diculars from the vertices of the second triangle on the sides of the first should meet in a
point.
- 57. The lines a - k3 = 0, and ka — 3 = 0, are plainly such
- that one makes the same angle with the line « which the other
makes with the line 3, and are therefore equally inclined to the
bisector a - 3.
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Ex. Ifthrough the vertices of a triangle there be drawn any three lines meeting in a
point, the three lines drawn through the same angles, equally inclined to the bisectors of
the angles, will also meet in & point. .

Let the sides of the triangle be a, 3, 7, and let the equations of the first three lines

be
la—mB=0, mB-ny=0, my—la=0,

which, by the principle of Art. 36, are the equations of three lines meeting in a point, and
which obviously pass through the points a3, By, and ya. Now, from this Article, the
equations of the second three lines will be

a B B _y_

Imo'nno’ .ndnlo'

which (I;yArt. 36) must also meet in a point.

58. Given the equations of three right lines, forming a triangle,
L=0, M=0, N = 0, the equation of every right line can be
thrown into the form IL + mM + nN = 0.

LetL=Az+By+C, M=A'2+By+(, N=A"2+By+C’,
then in order to throw the equation of any fourth line

az+by+c=0

into the form /L + mM + nN = 0, we should have three equa-
tions to determine three unknown quantities, namely,

IA+mA'+nA"=a, IB+mB +2B"=5, IC + mC' +2C"=c;

a IC”_ BI!CI) + b (ClAII — A'CII) + c (A Il_ BIAII)
A (B/CII— BIIC’) + B (C’A’I — A’CII) + C (A’B"— BIAII)’

with corresponding values for m and ». It is plain (Art. 34)
that if the three right lines L, M, N meet in a point, the theorem
of this article would not be true, since the values of 7, m, n would
then become infinite. 'We have used in this article equations of
the form Az + By + C = 0, because it was with regard to equa-
tions in this form that the condition for three lines meeting in a
-point (Art. 34) was given; but had the equations been given in
the form # cosa + y sin@ = p, it would of course be equally true
that the equation of any fourth line can be thrown into the form

la+mﬁ+wy=0.

whence [ =

59. To write in the form la + m{3 + ny = 0 the equation of the
line joining two giveh points 2y, "y’
Let o’ denote the quantity 2/ cosa + ¥’ sina — p found by sub-
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stituting the co-ordinates 2y in the equation a = 0, &. Then
the condition that the co-ordinates 2y’ shall satisfy the equation
la + m{3 + ny = 0, may be written

ld+mf +ny'=0.
Similarly we have  la"+ mf3” + ny" = 0.

Solving for '%, 13, from these two equations, and substituting

in the given form, we obtain for the equation of the line joining
the two points

a(By' - 7B +B(Yd" - y'd) + v (aff" - dB)=0.
This article obviously proves, independently of the last ar-
ticle, that the equation of every nght line can be thrown into the
form la + m3 + ny = 0.

Ex. 1. To find the equation of the line joining two points given by the equations

(ka—B=0,la—~y=0), (Ra-B=0,Ta~y=0)
From the first set of equations, 3'= ka', y' =la’; from the second, 3" = ¥a”, y" =Tl'a";
substituting these values in the equntion of this a.rhcla, it becomes divisible by a'a”, and
we have

a (Al - hI)+B(l D+y®E—-K=0.

Qtherwise thus: The required equation must (Art. 86) be capable of being thrown into
either of thie forms

(ka—B)+ Afa~y) =0, (Ka=p)+A(a-7)=0.

These equations must be identical ; the coefficient ofﬁla the same in both ; and equa-
ting the coefficients of a and y we get

B A=A=—‘-k

-7
and substituting this value we get for the required line the same equation as before.
Ex. 2. To form the equation of the line joining the intersection of the perpendiculars
of a triangle to the intersection of the bisectors of sides.
We have (Art. 57, Ex. 8, 4)
‘cosA , a'cosA "gin A
B="B V=0 P ="mg
substituting these values, the equation becomes
a sin2A sin(B — C) + B sin2B sin(C — A) + ysin2C sin(A — B) = 0.

60.. The following examples will further illustrate the general
principle, that being given the equations of three lines, a = 0,

,_a’sinA
smB ' ¥ = amC °
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B =0, y = 0, it is possible to express the equation of any other
line in terms of these.
Ex. 1. To deduce analytically the harmonic properties of a complete quadrilateral.

Let the equation of ACbe a=0; of AB, 3=0; of BD, y=0; of AD, la—mB3=0;
and of BC, m3 — ny =0. Then we are able to

express in terms of these quantities the equations E
of all the other lines of the figure.

For instance, the equation of CD is

la—mB+ny=0, C

for it is the equation of a right line passing through D
the intersection of la — m3 and y, that is, the o
point D, and of a and m3 — my, that is, the point F
C. Again,la—uy=0isthzequﬂonof0E,A B

for it passes through ay or E, and it also passes
through the intersection of AD and BC, since it is = (la — mB3) + (m3 — ny).
EF joins the point ay to the point (la — mB + ny, 8), and its equation will be found

tobe la + ny = 0.
From Art. 55 it appears, that the four lines EA, EO, EB, and EF, form an harmonic

pencil, for their equations have been shown to be
a=0,y=0,andla +ny=0.

Again, the equation of FO, which joins the points (Ia + ny, 3) and (la — m3, mB8—ny),
is : la — 2mB + ny = 0.

Hence (Art. 55) the four lines FE, FC, FO, and FB, are an harmonic pencil, for their
equations are

la—-mB+ny=0,8=0, andla-mB+ny+mB=0.
Again, OC, OE, OD, OF, are an harmonic pencil, for their equations are
la—mB=0, mB-ny=0, andla—mB+(mB—-ny)=0.

‘Ex. 2. To discuss the properties of the system of lines formed by drawing through.the
angles of a triangle three lines meeting in a point. )
Let the equation of ABbe y=0; M
of AC B8=0; of BC a=0; then we
shall assume for OC la — m@; for L
OA mf3 — ny; and for OB ny — la
(as in Art. 57); these three lines
meet in a point, since these three
quantities added together are = 0.
Now we can form the equations
of all the other lines in the figure.
For example, the equation of EF N A F B-
1 mB+ny —la=0,

since it passes through the points (8, ny — la) or E, and (y, mB8 — la) or F.
I
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In like manner, the equation of DF s

la —mB3 +ay=0,
and of DE
la + m3 — ny = 0.
Now we cail prove, that the three points L, M, N are all in one right line, whose
equation is la + mB +ny =0,
for this line passes through the points (la + mB — ny, y) or N, (la — mf3 + ny, B)or M,
and (mB + ny — la, a) or L.
The equation of CN is la+mB=0,
for this is evidently & line through (a, 8) or C, and it also passes through N, since it
= (la + mB + ny) — ny.
Hence BN is cut harmonically, for the equations of the four lines CN, CA, CF, CB

are,
a=0, =0, la—mB=0, la+mB=0.

‘We shall often afterwards meet with equations of the form discussed in this example.

Ex, 8. If two triangles be such that the intersections of the corresponding sides lie
on the same right line, the lines joining the corresponding vertices meet in a point.

Let the sides of the first triangle be a, 3, y; and let the line on which the corre-
sponding sides meet be la + m3 + ny : then the equation of a line through the intersection
of this with a must be of the form Ja + m@ + ny =0, and similarly those of the other
two sides of the second triangle are

la+wB+ay=0, lat+mB+ny=0.

But subtracting successively each of the last three equations from another, we get for
the equations of the lines joining corresponding vertices

-DNa=m-m)B, m-m)B=@m-n)y, (r—-m)y=(0-Da
which obviously meet in a point.

61. We have seen that baving assumed any three right lines,

we can express the equation of any right line in the form
Aa+BB+Cy=0,

and so solve any problem by aset of equations expressed in terms
of a, 3, v, without any direct mention of z and y. "This-suggests
a new way of looking at the principle laid down in Art. 58, &e.
Instead of regarding a as a mere abbreviation for the quantity
z cosa + y sina — p, we may look upon it as simply denoting the
length of the perpendicular from a point on the line . We may
imagine a system of ¢rilinear co-ordinates in which the position
of a point is defined by its distances from three fixed lines, and
in which the position of any right line is defined by a homoge-
neous equation between these distances of the form

Aa+BfB+Cy=0.
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The advantage of trilinear co-ordinates is, that whereas in
Cartesian (or z and y) co-ordinates the utmost simplification we
can introduce is by choosing fwo of the most remarkable lines in
the figure for axes of co-ordinates, we can in trilinear co-ordinates
obtain still more simple expressions by choosing tAree of the most
remarkable lines for the lines of reference a, 3, y. The reader

will compare the brevity of the expressions in Art. 56 with those
corresponding in Chap. 1.

62. T'o reduce a non-homogeneous equation (for example, a = 3)
to the homogeneous form la + mf3 + ny = 0.

Let a, b, ¢ be the lengths of the sides of the triangle formed
by the three lines of reference ; then since a denotes the length
of the perpendicular from any point O on a, aa is double the area
of the triangle OBC; in like manner 58 is double OAC; and cy
double OAB; therefore, no matter where the point O be taken,
the quantity aa + 83 + cy is always constant, and equal double
the area of the triangle ABC. The reader may suppose that this
is only true if the point O be taken within the triangle; but he
is to remember that if the point O were on the other side of any
of the lines of reference (a), we must give a negative sign to that
perpendicular, and the quantity aa + 43 + cy would then

=2(0AC + OAB - OBC),
that is, still = twice the area of the triangle. If, then, we call
the double area M, the equation a = 3 may be written
Ma = 3(aa + b3 + cy),
which is the required form. If A, B, C be the angles (opposite

a, 3, v respectively) of the triangle formed by the lines of refe-

rence, it is plain that a sin A + 3 sinB + y8inC is also constant,
. Msin A

being = FE

63. To express in trilinear co-ordinates the equation of the pa-
rallel to a given line Aa + BB + Cy = 0.

In Cartesian co-ordinates two lines are parallel if their equa-
tions Az + By + C = 0, Az + By + C' = 0 differ only by a con-
stant. It follows, then, that the equation

Aa + BB + Cy + k(asinA + FsinB+ y#inC) =0
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denotes a line parallel to Aa + B3 + Cy = 0, since the two equa~
tions differ only by a constant.

Ex. 1. To find the equation of a parallel to the base of a triangle d.rawn through the
vertex. Ans. asinA 4+ 8sinB=0.
For this, obviously, is a line through a3, and writing the equation in the form
v8inC — (asinA + @8 sinB + y8inC) =0,
it appears that it differs only by a constant from y = 0.
‘We see, also, that the parallel asinA + 3 sinB, and the bisector of the base asinA
— B sinB form a harmonic pencil with a, 8 (Art. 55).

Ex. 2. The line joining the middle points of sides of a triangle is parallel to the base.
Form (Art. 69) the equation of the line joining (3sinB — y inC), a), (a sinA
— y 8inC, 3), when we get asinA + @sinB — ysinC = 0, which, by this article, is
parallel to y.
Ex. 8. To find the equation of a perpendicular to any side at its middle point.
This is to draw a parallel to the line @ cosA — S cosB = 0 through the point
(a sinA — BsinB, 7). Ans. asinA — 3sinB + ysin(A —B)=0.
Ex. 4. The three such per;;endiculars meet in a point. Their equations vanish when
maultiplied, respectively, by sin2C, sin2B, sin2A, and added together. The equations of
a 8
cosA cosB 8;:c.
Ex. 5. Verify that this point lies on the line whose equation is given Art. 59, Ex. 2.

the lines joining their intersection to the vertices will be found to be

Ex. 6. Find the length of the perpendicular from a point a’3'y’ on Az + B3+ Cy =0.
4 Ad' + BR +Cy’
™- V(AT Bi+ C?— 2AB c0sC — 2BC cosA — 2CA cos B)'

64. To examine what line is denoted by the equation

asinA + BsinB + ysinC=0.

This equation is included in the general form of an equation
of a right line, but we have seen that the co-ordinates of any finite
point render the quantity asin A + 3sinB + ysinC = a certain
constant, and never = 0. Let usreturn, however, to the general
equation of the right line, Az + By + C = 0. We saw that the

~N

intercepts which this line cuts off on the axes are — -(—’, - %; con-

sequently, the smaller A and B become, the greater will be the
intercepts on the axes, and, therefore, the more remote the line
represented by Az + By+ C =0. Let A and B be both = 0, then
the intercepts become infinite, and the line is altogether situated
at an infinite distance from the origin. Hence we arrive at the
conclusion, that the paradoxical equation C = 0, a constant = 0,
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(and therefore, likewise, a sin A + 3 gin B +  8in C = 0), repre-
sents a right line situated altogether at an infinite distance from
the origin.

65. Wesaw (Art. 63) that a line parallel to the line a = 0 has
an equation of the form a + C =0. Now the last Article shows that
this is only an additional illustration of the principle of Art. 36.
For, a parallel to a may be considered as intersecting it at an infi-
nite distance, but (Art.36) an equation of the form a + C = 0
represents a line through the intersection of the lines a=0,C =0,
or (Art.64) through the intersection of the line a with the lineat
infinity.

66. Wehave to add, in conclusion, that Cartesian co-ordinates
are only a particular case of trilinear. There appears, at first sight,
to be an essential difference between them, since trilinear equa-~
tions are always homogeneous, while we are accustomed to speak
of Cartesian equations as containing an absolute term, terms of
the first degree, terms of the second degree, &c. A little reflec-
tion, however, will show that this difference is only apparent,
and that Cartesian equations must be equally homogeneous in
reality, though not in form. The equation z = 3, for example,
must mean that the line z is equal to three feet or three inches,
or, in short, to three times some linear unit ; the equation xy =9
must mean that the rectangle zy is equal to nine square feet or
square inches, or to nine squares of some linear unit; and se on.

If we wish to have our equation homogeneous in form as well
as in reality, we may denote our linear unit by z, and write the
equation of the right line

Az +By+Cz=0.
Comparing this with the equation
Aa+BB+Cy=0;

and remembering (Art. 64) that when a line is at an infinite dis-
tance its equation takes the form 2z = 0, we learn that equations in
Cartesian co-ordinates are only the particular form assumed by
trilinear equations when two of the lines of reference are what are
called the co-ordinate axes, while the.third is at an infinite distance.
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CHAPTER V.

EQUATIONS ABOVE THE FIRST DEGREE REPRESENTING RIGHT
LINES.

67. BEFORE proceeding to speak of the curves represented by
equations above the first degree, we shall examine some cases
where these equations represent right lines.

If we take any number of equations, L =0, M =0, N =0,
&c., and multiply them together, the compound equation LMN,
&e. = 0 will represent the aggregate of all the lines represented by
its factors ; for it will be satisfied by the values of the co-ordinates
which make any of its factors = 0. Conversely, if an equation of
any degree can be resolved into others of lower degrees, it will repre-
sent the aggregate of all the loct represented by its different factors.
If, then, an equation of the n* degree can be resolved into n
factors of the first degree, it will represent = right lines.

68. A homogeneous equation, of the n* degree between the
variables, denotes n right lines passing through the origin.
Let the equation be
z" — p™ly + gyt - &e. - - -+ tyY* = 0.
Divide by 3", and we get

o tons

Let a, b, ¢, &c., be the n roots of this equation, then it is re-
solvable into the factors

GG G- oo

and the original equation is therefore resolvable into the factors
. (@-ay) (- by) @-cy) &0 =0. |
It accordingly represents the » right lines z - ay = 0, &c., all of
which pass through the origin. Thus, then, in particular, the
homogeneous equation
2 -pry+qyi=0



EQUATIONS REPRESENTING RIGHT LINES. 63

represents the two right lines z — ay = 0, z - by = 0, where @ and
b are the two roots of the quadratic

(o) a0

It is proved, in like manner, that the equation

(z-a)y-p(z-a)y (y-8)+g(z-a)*(y-8)y--- + t(y-)"=0
denotes 7 right lines passing through the point (a, 5).
- Ex. 1. What locus is represented by the equation zy = 0?
Ans. The two axes, since the equation is satisfied by either of the
suppositions z = 0, y = 0.
~ Ex. 2. What locus is represented by 22 —y2 = 0?
Ans. The bisectors of the angles between the axes, z + y = 0 (see Art. 43).
T Ex. 3. What locus is represented by 22 — 52y + 6y2 = 0?
Ans. 2-2y=0, x—8y=0.
~ Ex. 4. What locus is represented by 22 — 2zy secO + y2 = 0 ?
Ans. z=ytan(45° + §0).
~ Ex. 5. What lines are represented by z? — 2zy tanf — y3=0?
Ex. 6. What lines are represented by z° — 628y + 1128 ~ 6y =0? X

69. Let us examine more minutely the three cases of the solu-
tion of the equation 2* — pzy + q3* = 0, according as its roots are
real and unequal, real and equal, or both imaginary.

v The first case presents no difficulty : a and b are the tangents .
of the angles which the lines make with the axis of y (the axes
being supposed rectangular), p is therefore the sum of those tan-
gents, and ¢ their product.

In the second case, when a = b, it was once usual among geo- .
meters to say that the equation represented but one right line
(z - ay=0). Weshall find, however, many advantages in making
the language of geometry correspond exactly to that of algebra,
and as we do not say that the equation above has only one root,
but that it has two equal roots, so we shall not say that it repre-
sents only one line, but that it represents two coincident right lines.

Thirdly, let the roots be both imaginary. In this case no real
co-ordinates can be found to satisfy the equation, except the co-
ordinates of the origin z = 0, y = 0; hence it was usual to say
that in this case the equation did not represent right lines, but
was the equation of the origin. Now this language appears to
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us very objectionable, for we saw (Arts. 14, 15) that two equa-
tions are required to determine any point, hence we are unwilling
to acknowledge any single equation as the equation of a point.
Moreover, we have been hitherto accustomed to find that two
different equations always had different geometrical significations,
but here we should haye innumerable equations, all purporting to
be the equation of the same point ; for it is obviously immaterial
what the values of p and g are, provided only that they give ima-~
ginary values for the roots, thatis to say, provided that p* be less
than 4g. 'We think it, therefore, much preferable to make our
language correspond exactly to the language of algebra; and as
we do not say that the equation above has no roots when p? is less
than 44, but that it has two émaginary roots, so we shall not say.
that, in this case, it represents no right lines, but that it repre-
sents two ¢maginary right lines. In short the equation 2* — pzy
+ qy* = 0 being always reducible to the form (= - ay) (z - by) = 0,
we shall always say that it represents two right linesdrawn through
the origin ; but when @ and b are real, we shall say that these lines
are real; when a and b are equal, that the lines coincide ; and
when e and b are imaginary, that the lines are imaginary. Itmay
seem to the student a matter of indifference which mode of speak-
ing we adopt; we shall find, however, as we proceed, that we
should lose sight of many important analogies by refusing to adopt
the language here recommended.
Similar remarks apply to the equation
Az + Bey + Cyp2 =0,

which can be reduced to the form a* - pxy + g = 0, by dividing
by the coefficient of z°. This equation will always represent two
right lines through the origin; these lines will be realif B*~4AC
be positive, as at once appears from solving the equation ; they
will coincide if B* - 4AC = 0; and they will be imaginary if
B — 4AC be negative. So, again, the same language is used if
we meet with equal or imaginary roots in the solution of the
general homogeneous equation of the n* degree.

70. T find the angle contained by the lines represented by the

equation x* — pxy + qy* = 0.
Let this equation be equivalent to (x - ay) (z - by) = 0, then
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the tangent of the angle between the lines ia (Art. 40) -2 but
the product of the roots of the given equation = ¢, and their dif-

ference = ¢/ (p* ~ 4¢). Hence G-
y .
tang = ({"4-94?) ,
Iftheequationhadbeengivenmtheform] - P AR V2~
1, ' vy @
Az +Bzy+ Cyr =0, 7
it will be found that | oY H =0 /

tang - LEZAO. 7

Cor.—The lines will cut at right angles, or tan ¢ will become
infinite, if ¢ = — 1 in the first case, orif A + C = 0 in the second.

Ex. Find the angle between the lines
oty — 6yt =0. Ane. 45°.
o = 22y 0c0 + 1 = 0. Ans. 6.
. * If the axes be oblique, we should find, in like manner,
sinw ¢ (B* - 4AC)
A+C-Becosw *
11. To find the equation which will represent the lines bisecting
the angles between the lines represented by the equation
Ax? + Ba:y + Cy’ = 0.

Let these lines be z — ay = 0, # — by = 0; let the equation of
the bisector be z - uy = 0, and we seek to determine u. Now
“(Art. 22) u is the tangent of the angle made by this bisector with
the axis of y, and it is plain that this angle is half the sum of the
angles made with this axis by the lines themselves. Equating,
therefore, tangent of twice this angle to tangent of sum, we get
2u _a+ b,

1-y* 1-ab’
but, from the theory of equations,

tang =

a+b=—§, abapﬂ,
therefore
2u _ B
l—p’_-A-C ’
K
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or A-C
u -2 B u-1=0.

This gives us a quadratic to determine u, one of whose roots will
be the tangent of the angle made with the axis of y by the internal
bisector of the angle between the lines, and the other the tangent
_ of the angle made by the external bisector. We can find the com-
bined equation of both lines by substituting in the last quadratic

for u its value = s, and we get
A-C -

and the form of this equation shows tha.t the bisectors cut each

other at right angles (Art. 70). RIS ’
" * The student may also obtain thls equation by forming (Art

43) the equations of the internal and external bisectors of the

angle between the lines 2 — ay = 0, z — by = 0, and multiplying -

them together, when he will have

(z-ay) _(2-byy
1+ a? 1+5 ° .

and then cledring of fractions, and substituting for a + b, and ab

their values in terms of A, B, C, the equation already found is

obtained.

72. To find the condition that the general equation of the second
degree should represent two right lines.
Let the general equation be

Az + Bry + Cy* + Dz + Ey + F = 0:
write it in the form
Az’ + (By+D)z+Cy*+ Ey+ F=0,
and solving this quadratic for z, the roots are found to be

_By+Diy((B'-4AC)y+2(BD -2AE)y + D'~ 4AF)
2A

~

* It is remarkable that the roots of this last equation will always be real, even if the
roots of the equation Az* + Bay + Cy? = 0 be imaginary, which leads to the curious
result, that a pair of imaginary lines may have a pair of real lines bisecting the angle
between them. It is the existence of such relations between real and imaginary lines -.
which makes the consideration of the latter profitable.
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Now this value cannot be reduced to the form z = my -g_n,’(’ O
unless the quantity under the radical be a perfect square. The
condition that this should be the case is

(B* - 4AC) (D? - 4AF) = (BD - 2AE),
or expanding and dividing by 4A,
AE? + CD* + FB* - BDE - 4ACF =0;

which is the required condition that the equation of the second
degree should represent right lines.

Ex. 1. Verify that the following equation represents right lines, and find the lines.
B-bzy+ 43+ 2+29—-2=0.
Ans.  Solving for z as in the text, the lines are found to be
. z-y-1=0,2-4y+2=0.
. Ex. 2. Verify that the following equation represents right lines :
(az + By - ) = (a¥ 4 B2 — 72) (22 + 2 — 79).
. Ex. 8. What lines are represented by the equation
’ By +yPp-z-y+3}=0?
Amns. The imaginary lines z + fy+ 8% = 0, z + 3%y + 0 = 0, where 0 is one
of the imaginary cube roots of 1. .
Ex. 4. Determine B, 80 that the following equation may represent right lines:
B4+ Bry+y2—bz—Ty+6=0.

Ans.  Substituting these values of the coefficients in the general condition, we

get for B the quadratic, 63’—853+50=0,whonmotam%0 dg.

® 73. The method used in the preceding Article, though the
most simple in the case of the equation of the second degree, is |
not applicable to equations of higher degrees: we therefore give
another solution of the same problem. It is required to ascertain
whether the given equation of the second degree can be identical
with the product of the equations of two right lines

(az+LBy-1)(dz+LBy-1)=0;
multiply out this product, and equate the coefficient of each term
to the corresponding coefficient in the general equation of the
second degree, having previously divided the latter by F, so as
. to make the absolute term in each equation = 1. 'We thus obtain
five equations: four of them enable us to determine the four un-
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known quantities, a, o', 3, (3, in terms of the coefficients of the
general equation ; and then these values being substituted in the
fifth give the condition required. The five equations actually
are

aa =%, a+a=— , BE' =F’ B+p =——, afd +a =]—3
From the first four we can at once form two quadratic equa-
tions for determining a, o', 3, [3’, asindeed we might have other-
wise inferred from the consideration that these quantities are the
reciprocals of the intercepts made by the lines on the axes; and
that the intercepts made by the locus on the axes are found (by

making alternately # = 0, y = 0, in the general equation) from the

equations
Az +Dz+F=0, Cy+Ey+F=0. _

Now if the locus meet the axes in the points L, L'; M, M'; it is
plain that if it represent right lines at all, these must be either
the pair LM, I'M, or else LM', L'M, whose equations are

(az + By-1) (az+LBy-1)=0, or (ax + By -1) (az+ Ly =1)=0.
Multiplying out, we see that g might not only have the value

given before a3’ + (3«’, but also rmght be af3 + d'3. The sum of
those quantities

=(a+a)(B+P =—-

and their product AE 2CF) @ - 2AF)
~ad(B+ B+ BB+ =g S + g &
hence%ls given by the quadratic
- B DE"B .AE’+CD’-4ACF=o
T " ’
which, cleared of fractions, is the condition already obtained.
Ex.TodmrmineBsot.hAtw‘+'Bo:y+y'—5¢—7y+6=omyrepresentright
lines.
The intercepts on the axes are given by the equations
D-bs+6=0, ¢P-Ty+6=0,
whose roots are * =2, 2 =8; y=1, 9 = 6. Forming, then, the equation of the lines
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Join!ngﬂmpdnuntond,wemthtiﬂbquﬁanmdmmu.kmhol
one or other of the forms

(+29-2)(22+y—-6)=0, (s+81—8)(88+y—6)-0,
‘whence, multiplying out, B is determined.

* 14. To find how many conditions must be satisfied in order
that the general equation of the n* degree may represent right
lines.

‘We proceed as in the last Article; we compare the general
equation, having first by division made the absolute term = 1,
with the product of the n right lines

(az+Py-1)(az+LBy-1(a"z+pPy-1) &c.=0.

Let the number of terms in the general equation be N; then
from a comparison of coefficients we obtain N — 1 equations (the

. absolute term being already the same in both) ; 2n of these equa-~

tions are employed in determining the 27 unknown quantities
a, a’y &c., whose values being substituted in the remaining equa-~
tions afford N - 1 - 2a conditions. Now if we write the general

equation A
+ Bz + Cy
+ Da* + Ezy + Fy?
+ G2* + He'y + Koy + Ly
+ &e.,
it is plain that the number of terms is the sum of the arithmetic
series '
N=l+2+3+---(n+l)=£ﬂ—:¥;+-—2);
hence

N-1 =n5n+3); N-1 ..2,.="(”" l).
1.2 1.2
* 15. To find how many conditions must be fulfilled in order
that the general equation of the n degree should represent n right
lines, each passing through a given point.
‘We should now compare the general equation with the equa-

tion
(y-y ~m@-2) y-y - m(a-)) &= 0.
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There are now but the » unknown quantities, m, m', &c., to be
determined ; hence the number of conditions is
n(n+ 1)
1-2°

* 76. To find the number of conditions which must be fulfilled
in order that the general equation may represent n right lines, all
passing through the same point.

‘We now compare the general equation with

, y-y-m@-2)) y-y -m'(z-2)} &.=0.

Beside the n unknowns m, m', &c., there are also the two 'y to
be determined ; hence the number of conditions

n(n+1)
) -2

‘N—l.—n=

=N—1—(n+2)=

CHAPTER VI.
THE CIRCLE.

77. BEFORE we proceed to the general investigation of the
curves represented by the general equation of the second degree,
it seems desirable that we should examine the equation of the
circle, which ranks next to that of the right line in simplicity.

To find the equation of the circle whose centre is the point (ab)
and radius is r. '

Expressing (Art. 5) that the distance of any point from the
centre is equal to the radius, we at once obtain the equation

(-a)y+@y-0by=r.
If the axes be oblique; we have (Art. 6)
@-a)+(@y-5)+¥2(x-a)(y-Dd)cosw=r*;
" but we shall seldom use oblique axes in questions relating to
circles. J
Cor.1.—The equation to rectangular axes of the circle whose

centre is the origin is R



THE CIRCLE. 71

Cor. 2.—Let the axis of  be a diameter, and the axis of y &
perpendicular at its extremity, then the co-ordinates of the centre
are obviously (7, 0), and on substituting these values for a and 5,
the equation of the circle becomes

2 + Y = 2ra.
The two forms just mentioned are the simplest which the

equation of the circle can be made to assume by a particular choice
of axes; and are those which most frequently occur in practice.

78. By comparing the equations found in the last Article
. with the general equation of the second degree,

Az + Bey +Cy»+ Dz + Ey+ F =0,

we can ascertain the conditions that this latter equation should
represent a circle.

If the axes be rectangular, it is evident that B must = 0 and
A = C, in order that when we divide by A the equation may be
capable of being put into the form.

(x-a)y+(y-dy=r% ora*+y* — 20z - 2by + a* + b - ¥ = 0.

. If the axes be oblique, we must compare the general equation
with the equation
(z-a)+ (y-b)+2(z-a)(y-bd)cosw =13
and we find that in this case the general equation will represent
a circle, if A = C, and XB = 2cosw.

If the general equation of the second degree, referred to rect-
angular axes, fulfil the conditions B = 0, A = C, we can find the
radius of the circle represented byit, and also the co-ordinates of its
centre, thus fully determining the circle, both in magnitude and
position ; for, comparing the equations,

" D E F
\ ) 3 4 = [l
2 +y txe+ gy x=0
and 2+ 3~ 2ax - 2by + @* + B - 12 =0,
Weget %=—2a, %:—%’ _F‘A_.=a2+b2_r2;

———
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and, therefore,
D b E ” D+ E2 - 4AF
Y RS 7\ SV Ul
and the general equation is equivalent to
D\ E\ D+ E*-4AF
¢ (orgm) + (e gm) =
The rule, then, for bringing the equation of any circle to the
form (z — a)* + (y — b)* = 7*, may be expressed as follows : ¢ By
division make the coefficients of 2* and y* = 1, transpose F, and

then complete the squares by adding to both eides the sum of the
squares of half the coefficients of  and y.”

Ex. 1. Find the co-ordinates of the centre and the radius of

Atyt-br—dy=17. Ans. (-:-,2),1(—2—92
Ex. 2. Reduce to the form of Art. 77,
2432~ 22 — 4y = 20.
Ans, (x- 1P+ (y—2)2=5"
Ex. 8. Find the line joining the centres of the circles
B+yi=2; B+y=22s.
Adns. z+y=1.
Since F does not occur in the values just found for the co-
ordinates of the centre, we learn that two circles will be concentric
if their equations only differ in their constant term. \

79. We consider in this Article the effect of two or three
particular suppositions on the general equation.

(1.) If F = 0 the origin is on the curve. For then the equa- h
tion is satisfied by the values z = 0, y = 0; thatis, by the co-ordi-
nates of the origin. The same argument proves that if an equa-
tion of any degree want the absolute term, the curve represented by
it passes through the origin.

(2.) If D* + E* = 4AF; it appears from Art. 78 that the ra-
dius of the circle vanishes, and that the equatlon may be reduced

to the form
(x-a)y+(@y-0r=0.

It is plain, that this equation can be satisfied by the co-ordi-
nates of no point save those of the point'(z = a, y = ) ; hence it
has been common to say, that the equation just written is the
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equation of this point. 'We object to this mode of expression
for the reasons given, Art. 69, and prefer to call it the equation
of an infinitely small circle, having for centre the point (ad). We
have seen (Art. 69) that it may also be considered as the equation
of two imaginary right lines passing through the point (ab), since
it can be resolved into the factors
z-a)+(y-8)yv(-1)=0, and (x-a) - (y-d)v(-1)=0.
These remarks, of course, apply, in like manner, to the equation
z’ + yz = 0,

which is a particular case of the above.

(3.) If D* + E* be less than 4AF, the radius of the circle
becomes imaginary, and the equation, being equivalent to one of

the form
(z-a)y+(@y-br+r=0,

cannot be satisfied by any real values of the co-ordinates z and y.

80. T find the co-ordinates of the points in which a given right
line meets a given circle.

Let the equation of the circle be #* + y* = 73, and that of the
right line 2 cosa + y sina = p. These two equations are sufficient
(Art. 15) to determine the x and y of the intersection. For ex-
ample, finding the values of y from both, and equating them to
each other, we get for determining z, the equation

= ¢ (* - 2%,

or, reducing 2* - 2px cosa + p* — r*sin’a = 0;

p — x cosa
sina

hence, x = p cosa + sina v/ (r* - p?),
and, in like manner,
y =psina F cosa v/ (r* - p?).

(The reader may satisfy himself, by substituting these values
in the given equations, that the - in the value of y corresponds
to the + in the value of z, and vice versd.)

Since we obtained a quadratic to determine z, and since every
quadratic has two roots, we must, in order to make our language
conform to the language of algebra, assert that every line meets a
circle in two points.

L
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81. Let us, however, examine separately the three cases of
this solution :

First. If p, which is the distance of the line from the centre,
be less than the radius, we get two real values for # and y, and
the line meets the circle in two real points.

Secondly. Let p = r, or the distance of the line from the cen-
tre = the radius. In this case it is evident geometrically that
the line is a tangent to the circle, and our analysis points to the
same conclusion, since the two values of z in this case become
equal, as do likewise the two values of y. Consequently, the
points answering to these two values, which are in general diffe-
rent, will in this case coincide. We shall, therefore, not say that
the ta.ngent meets the circle in only one point, but rather that it
meets it in two coincident points; just as we do not say that the
equation for this case

- 2rz cosa + r* cos’a = 0,

has only one root, but rather that it has two equal roots. And, in
general, we define the tangent to any curve as the line joining
two indefinitely near points on it.

Thirdly. Let p be greater than 7. In this case it is usnal to
say, that the line does not meet the circle at all. Analysis, how-
ever, though it fails to furnish us with real values for # and y, yet
supplies us with imaginary values. We shall, therefore, find it
more consistent to say that in this case the line meets the circle -
in two imaginary points. By an imaginary point we mean nothing
more than a point, one or both of whose co-ordinates are imagi-
nary. It is a purely analytical conception. We do not attempt
to represent it geometrically. But the neglect of those imaginary
points would lead to as great a want of generalityin our reasonings,
and to as much inconvenience in our language, as if, only paying
attention to the real roots of equations, we were to deny that every
equation has as many roots as it has dimensions, or to assert that
the equation

z* — 2pr cosa = r?sin’a — p*
has no root at all when p is greater than . We shall presently
meet with many cases in which the line joining two imaginary
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points is real, and enjoys all the geometrical properties of the cor-
responding line in the case where the points are real.

82. We should proceed as in Art. 80, if it were required to
find the points where the line ax + by + ¢ = 0 meets the circle

Az + Ay + Dz + Ey + F = 0.
Eliminating either variable between the equations, we have a qua-
dratic to determine the other; and if this quadratic have equal
roots, the line touches the circle. We only think it necessary to
notice particularly the case where the given line is one of the axes
of co-ordinates. By making alternately y = 0, z = 0 in the equa-
tion of the circle, we find that the points in which it is met by the
axes are determined by the quadratics
A +Dz+F=0, Ay +Ey+F=0.

The axis of # will be a tangent when the first quadratic has equal

roots, that is, when _
D = 4AF, g

and the axis of y when ~ E* = 4AF.
‘When seeking to determine the position ofa circle represented

" by a given equation, it is often as convenient to do so by finding

the intercepts which it makes on the axes, as by finding its centre
and radius. For a circle is known when three points on it are
known ; the determination, therefore, of the four points where the

" circle meets the axes serves completely to fix its position.

Ex. 1. Find the co-ordinates of intersection of 22 4 y2 = 65; 8z + y = 25.
Ans. (7, 4) and (8, 1).
Ex. 2. Find intersections of (z — ¢)* + (y — 2¢)? = 26¢*; 4z + 8y = 8be.
Ans. The line touches at the point (6, b¢).
Ex. 3. Find the points where the axes are cut by z3+ y2 — bz — 7y + 6=0.
Ans. z=38, z=2; y=6, y=1.
Ex. 4. What is the equation of the circle which touches the axes at distances from
the origin = a ? Ans. 2%+ y3 — 2az — 2ay + a3 = 0.
Ex. 5. When willy =mz + b touch #2 4+ y2 =r3?  Ans. When b3 = r(1 4 m3).
Ex. 6. Find the tangent from the origin to A (#* + y?) + Dz + Ey + F = 0. The
points where any line through the origin (y = mz) meets the circle ase given by the
equation A(m? + 1)23 + (D + Em)z + F= 0.




76 THE CIRCLE.

If the line touches, this quadratic will have equal roots,
or (D + Em)? = 4AF (m? + 1),
which gives a quadratic for determining m.

Ex. 7. Find the tangents from the origin to 22 + y2 - 62z — 2y + 8 = 0.

Ans. z-y= 07z+y 0?

A+ V=
83. To find the equation of the tangent at the point 2y to a"'

given circle.

The tangent having been defined (Art. 81) asthe line joining
two indefinitely near points on the curve, its equation will be
found by first forming the equation of the line joining any two
pomts («'y, 2"y") onthe curve; and then making 2’ =2"and y = y"
in that equation. .

To apply this to the circle : first, let the centre be the origin,
and, therefore, the equation of the circle 2? + y* = 7. -

The equation of the line joining any two points (.z y) and
(&'y") is (Art. 29),

z-o - x” d
now if we were to make in this equation 3 = 3" and & = 2", the
right-hand member would assume the indeterminate form of g

* The cause of this is, that we have not yet introduced the condi- °
tion, that the two points 2y, 2"y") are on the circle. By the help
of this condition we shall be able to write the equation in a form
which will not become indeterminate when the two pomts are
made to coincide. For, since

P =2%+y%=2"+y", wehave 2% - 2" =y -y,

and, therefore, ¥-y a4+
w;_wn = yr+y/r‘

Hence the equation of the chord becomes
y-y . @+
z-2  y+y”

" And if we now make &' =2" and y = 3", we find for the equation -

of the tangent, y-y o
bt

T~
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or, reducing, and remembering that 2 + y* = %, we get finally
xx +yy =1

If we were now to transform the equations to a new origin, so

that the co-ordinates of the centre should become a, b, we must

substitute (Art.8) z-a, 2’ -a, y- b,y - b forz, 2, y, ¥/, re-

* spectively : the equation of the circle would become

(-0 + (v -ty =1
_ and that of the tangent

@- )& - a) + (y - B - B) = 3
_ a form easily remembered, from its similarity to the equation of
the circle.’

We mlght have obtained the equation of the tangent

xr' + yy =r?

in another way, by forming the equation of a line through the
point 2y, perpendicular to the radius, whose equation is easily
seen to be yz.= 2'y. We have preferred however, the method
actually adopted, both because it is the same as that which we
shall employ in the case of other curves, and also because we wish
- the learner to perceive that all the properties of the circle can be
deduced from its equation without a previous acquaintance with
the geometrical theory of the curve; as in the present instance,
where the equation just found may be used to prove that the tan-
gent to a circle is perpendicular to the radius.

84. To find the equation of the tangent to the circle whose
equation referred to any axes is
. A®*+Bay+ Ay +Dz+ Ey+ F =0,
where B = 2A cosw. We form, asin Art. 83, the equation of the
line joining two points, and then by the help of the conditions
that 2y, 2"y" are points on the circle, we can get an expression for

3/"‘ ”
X

T which will not become indeterminate when the two points
coincide. We have the two conditions
Az + Bry + Ay*+ Do’ + Ey + F =0,
A"+ Ba'y'+ Ay*+ Dz"+ Ey"+ F = 0.
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Subtracting one from the other
A(z* -27)+ By -2"y")+ A(y* -y + D(@ -2")+ E(y-y")=0.

Now Wy -2 =2y -y)+y (-2
Hence, dividing by 2’ - 2", and solving for i :‘Z -, we find

y’—y"__A(w'+w")+ By + D
-2 AW+y)+ Bd+E’

The equation of the chord is, therefore,

y-y _A@+a)+ By'+D
z-2 A@WY+y)+ Bd + E -
If the points 'y, 2"y coincide, we have the equation of the tangent
y-y __2A7+By+D
z-o 2Ay+Bd+ B
o, reducing, and remembering that 2y’ satisfies the equation of
the curve,
(2A7 + By + D)z + (2Ay + B2’ + E)y + D2’ + Ey + 2F = 0.
Ex. 1. Find the tangent at the point (5, 4) to (z — 2)* + (y — 8)* = 10.
Ans. 3z +y =19,
Ex. 2. What is the equation of the chord joining the points z'y’, 2"y” on the circle
A yp=ra? Ans. (Z+20z+ W +y)y=r+22"+yy"
Ex. 8. Find the condition that Az + By + C=0 should touch (z— @)+ (y—b)t =12,

Aa +Bb+C . .
w_r, since the perpendicnlar on the line from ab is equal tor.

85. To find the points of contact of tangents drawn to a circle
Jrom a given point.

Let the given point be 2y, and let the co-ordinates of the
point of contact which we are seeking be 2", 3. Then (Art. 83)
the equation of the tangent will be

xx’ +yy’ =1
but by hypothesis this line passes through the point 2y, hence
we get the condition

Ans.

mlzll + yyll = rz;

and since the point z"y" is on the circle, we have also the condi-
tion : xuz + y//, =72



THE CIRCLE. 79
"~These two conditions are sufficient to determine the co-ordinates
2’ y'. Solving the equations, we get
2 2 + vy (27 + Y — 1) Y ry Fray/ (2% + y? - 1Y)
= 9 = .

z* + y‘z x4+ y'z

Hence, from every point may be drawn two tangents to a circle.
These tangents will be real when z” + y* is > r% or the point
outside the circle; they will be imaginary when 2 + y* is < 72,
or the point inside the circle; and they will coincide when
@ + y* = % or the point on the circle.

86. To find the equation of the line joining the points of contact
of tangents from any point. That is, to form the equation of the
line joining the two points whose co-ordinates were found in the
last article. It will not, however, be necessary to set about this
in the usual manner, if we attend to the remark at the end of
Art. 29. We saw in the last article that the co-ordinates of each
point of contact were connected with these of the given point by
the relation Jo 4 gy =1

The equation, therefore, of the line joining the points of contact,
_must be Tz + gy =1, Uy"j §29)
for this is the equation of a right line, and is satisfied for each
point of eontact. In fact, since the co-ordinates of the points of
contact were found by solving for # and y from the equations

o +yy =1t T +YP=1;

the geometrical meaning of these equations is, that these points
are the intersections of the circle #* + g = r* with the right line
zx + yy =12

‘We see, then, that whether the tangents from #y be real or
imaginary, the line joining their points of contact will be the real
line zz’ + yy’ = 7%, which we shall call the polar of 2y’ with regard
to the circle. This line is evidently perpendicular to the line
(#'y — ¥z = 0), which joins 2y to the centre; and its distance

from the centre (Art. 25) is 7@%;/—2_) Hence, the polar of

any point P is constructed geometrically by joining it to the centre
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C, taking on the joining line a point M, such that CM.CP =72,
and erecting a perpendicular to CP at M. 'We see, also, that
the equation of the polar is similar in form to that of the tangent,
only that in the former case the point 2’y is not supposed to be
necessarily on the circle: if, however, 2% be on the circle, then
its polar is the tangent at that point.

87. To find the equation of the polar of x'y’ with regard to the
cirele Az* + Bay + Ay? + Dz + Ey + F.

‘We adopt the same process as in Art.86. The equation of
the tangent at any point z"y” may be written (Art. 84)

(2Az + By + D)2" + (2Ay + Bz + E)y” + Dz + Ey + 2F = 0.

This expresses a relation between the co-ordinates of any point
xy on the tangent, and those of the point of contact 2”y". Let us
then suppose the former to be known, and the latter to be un~
known; let us denote the known co-ordinates by the accented
letters 2y, and the unknown co-ordinates by the unaccented let-
ters zy, and the relation just written becomes

(2A% + By + D)z + (2Ay + Bz + E)y + Do’ + Ey'+ 2F = 0, -

the equation of a line on which both points of contact must lie,
and therefore the equation of the line joining them. It is still
similar in form to the equation of the tangent.

Cor.—The polar of the origin is

Dz + Ey + 2F = 0.

Ex. 1. Find the polar of (4, 4) with regard to (z — 1)? + (y — 2)*=13.
Ans. 8z + 2y = 20.
Ex. 2. Find the polar of (4, 5) with regard to 22 + 42 — 82 — 4y = 8.
Ans. bz + 6y =48,
Ex. 8. Find the pole of Az + By + C = 0 with regard to 23 + y2 =%
Ans. (— %r’, - B—c'f ). as appears from comparing the given equation with
2z’ + yy =
Ex. 4. Find the pole of 8z + 4y = 7 with regard to 2% + y3 = 14. Ans. (6, 8).
Ex. 5. Find the pole of 2z + 8y = 6 with regard to (z — 1)3 + (y — 2)% = 12.
Ans. (- 11, — 16).
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88. To find the length of the tangent drawn from any point to
the circle, whose equation is
(z-a)y+(y-0-r=0.
The square of the distance of any point from the centre
=(x - a)'+ (y - b)*;
and since this square exceeds the square of the tangent by the
square of the radius, the square of the tangent from any point is
found by substituting the co-ordinates of that point for z and y
in the first member of the equation of the circle
(z-a)y+(@y-dp-r=0
Since the general equation to rectangular co-ordinates
A+ Ay +Dz+Ey+ F =0,
when divided by A, is (Art. 78) equivalent to one of the form
(@-ay+@-5bp-r=0
we learn that the square of the tangent to a circle whose equa-~
tion is given in its most general form is found by dividing by
the coefficient of 27, and then substituting in the equation the co-
ordinates of the given point.
The square of the tangent from the origin is found by making
z and y = 0, and is, therefore, = the absolute term in the equation

of the circle, divided by A.
The same reasoning is applicable if the axes be oblique.

* 89. To find the ratio in which the line joining two given
points, &y, 2"y, is cut by a given circle.
‘We proceed precisely'as in Art. 38. The co-ordinates of any
point on the line must (Art. 7) be of the form
) ' + mx ly + my
l+m’ l+m
Substituting these values in the equation of the circle

2 +y-r=0,
and arranging, we have to determine the ratio / : m, the qua-
dratic
B(a™ + y* - 1) + 2Im (2" + yy" - 1*) + m* (2" + y? - 1) = 0.
M
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The values of 7 : m being determined from this equation, we have
at once the co-ordinates of the points where the right line meets
the circle. The symmetry of the equation makes this method
sometimes more convenient than that used Art. 80.

If 2"y" lie on the polar of #y, we have 22" + ¥y - r* =0
(Art. 86) and the factors of the preceding equation must be of the
form ! + ym, 1 - uym; the line joining z'y, 2”y" is therefore cut
internally and externally in the same ratio, and we deduce the
well-known theorem, any line drawn through a point is cut har-
monically by the point, the circle, and the polar of the point.

*90. To find the equation of the tangents from a given point
to a given circle.

‘We have already (Art. 85) found the co-ordinates of the points
of contact ; substituting, therefore, these values in the equation
zz" + yy” - r* = 0, we have for the equation of one tangent

, r(zr +yy - -y)+ (@Y -yr) V(@ +y* - ) =0, .
and for that of the other, '
r(zx + yy' - 2% - y*) - (2 - y2') v (2% +3y* - 1) = 0.

These two equations multiplied together give the equation of the
pair of tangents in a form free from radicals. The preceding
article enables us, however, to obtain this equation in a still more
simple form. For the equation which determines /: m will have
equal roots if the line joining 2, ”y” touch the given circle; if
then 2"y” be any point on either of the tangents through 2y, its
co-ordinates must satisfy the condition

@ +y"-r) (@ + y* - r?) = (22" + yy — )%
This, therefore, is the equation of the pair of tangents through

the point 2y'. It is not difficult to prove that this equation is
identical with that obtained by the method first indicated.

91. To find the equation of a circle passing 'tkrough three
given points.
We have only to write down the general equation
2+y'+Dr+Ey+F=0,

and then substituting in it, successively, the co-ordinates of each
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of the given points, we have three equations to determine the
three unknown quantities D, E, F.

Ex. 1. Find the circle through the origin, and through (2, 3) and (8, 4).
““) Here F = 0, and we have

13+ 2D +3E=0, 25+ 8D+4E=0, whence D=—28, E= 1L

Ex. 2. Find the circle through (1, 2), (1, 8), (2, 5).

Wehave 6+ D+ 2E+F=0, 10+ D+3E+F=0, 20+2D+5E+F=0,
whence D=-9, E=-5, F=14.

Ex. 8. Find the circle through (2, — 8), (3, — 4), (- 2, — 1).

Ans. D=8, B=20, C =3L

Ex. 4. Find the circle making intercepts a and b on the axis of 2.
Ans. D =-—(a+b), F=ab, E indeterminate.

Ex. 5. Taking the same axes as in Art. 48, Ex. 1, find the equation of the circle
"thmugh the origin and through the middle points of sides.
Ane. 2p(a2+ 90— p(a— o)z — (pP+ )y =0.
The circle, therefore, also passes through the middle point of base.
*92. To express the equation of the circle through three points
xy, &'y, &"y" in terms of the co-ordinates of those points.
‘We have to substitute in

2+y+Dr+Ey+F=0
the values of D, E, F derived from
(#*+y*)+ Dz +Ey + F=0,
(z*+y?)+Dz" + Ey'+ F =0,
(@*+y?)+ Dx"+ Ey"+ F = 0.
The result of thus eliminating D, E, F between these four equa-
tions will be found to be
(@ +y ) @' -y)+a" -y )+ 2" - "))

- (w” + y'z ){w"(ylll-_ y ) + wll'(y - y’l) + w (yll_ylll)}

+(@* +y ") (Y -y )+ (Y -y)+a@ Y-y )
@y -y ) (7 -y) 42y -y ))=0,
. a8 may be seen by multiplying each of the four equations by the
quantities which multiply (2* + ) &c. in the last-written equa-
tion, and adding them together, when D, E, F will be found to
vanish identically.

If it were required to find the condition that four points
should lie on a circle, we have only to write a,, y, for # and y
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in the last equation. It is easy to see that the following is the
geometrical interpretation of the resulting condition. If A, B,
C, D be any four points on a circle, and O any fifth point taken
arbitrarily, and if we denote by BCD the area of the triangle
BCD, &c., then

OA:.BCD + OC*- ABD = OB*- ACD + OD?. ABC.

93. We shall conclude this chapter by showing how to find
the polar equation of a circle: '

‘We may either obtain it by substituting for z, pcos 8, and
for y, psin@ (Art. 12), in either of the equations of the circle
already given, ‘ .

Azr*+ Ay +Dz+Ey+F =0, or (#-a)*+ (y - b) =1,

or else we may find it independently, from the definition of the
circle, as follows:

Let O be the pole, C the centre of
the circle, and OC the fixed axis; let
the distance OC = d, and let OP be any
radius vector, and, therefore, = p, and ©
the angle POC = 0, then we have

PC? = OP? + OC? - 20P - OC cos POC,
that is, 7 = p? + d* - 2pd cosl,
or p* - 2dp cosf + d*-r* = 0.

This, therefore, is the polar equation of the circle.
If the fixed axis did not coincide with OC, but made with it
any angle a, the equation would be, as in Art. 44,

p*—2dpcos (B -a) +d* -1 =0.
If we suppose the pole on the circle, the equation will take a sim-
pler form, for then r = d, and the equation will be reduced to
p = 2rcosf,

a result whxch we might have also obtained at once geometrically
from the property that the angle in a semicircle is right; or else
by substituting for # and y their polar values in the equation
(Art. 77, Cor. 2), x4+ 3/’ = 2rzx.
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CHAPTER VII.

THEOREMS AND EXAMPLES ON THE CIRCLE.

94. Having in the last chapter shown how to form the
equations of the circle and of the most remarkable lines related
to it, we proceed in this chapter to illustrate these equations by
Examples, and to apply them to the establishment of some of the
principal properties of the circle. Having sufficiently shown, in
Chapter 11., how in general to apply the analytical method to
the solution of problems, we do not think it necessary to enter
into the subject here with equal minuteness, and shall feel our-
selves at liberty to suppress many details which can easily be
supplied by the reader who has worked out the examples there
given.

‘We commence with some Examples of circular loci, which
will serve as examples of the method of determining the position
of a circle from its equation, if the learner will in each case, by
Art. 78, determine the co-ordinates of the centre and the radius;
or else find, by Art. 82, the points where the circle meets the
axes.

Ex. 1. Given base and vertical angle of a triangle, to find the locus of vertex.

Let us take the base for axis of z, and a perpendicular through its middle point for
axis of y ; let the co-ordinates of the vertex be z, y, and
let the base = 2¢. 'Then the tangent of the base angle C
CAB will beg—;:, or%x, and of CBR =§-§, or ;%;

Hence we can find the tangent of the sum of the base
angles, and make it = — the tangent of C, the given ver- A M R B
tical angle, or .

Y y
c+z+ c—-x
¥
1 c— 23
and, reducing this equation, the equation of the locus will be found to be
23+ y8 — 2cycotC — 3= 0,

which represents a circle which passes through the extremities of the base, whose radius

=—tanC,
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is s—ﬁ, and centre (0, cotC). The centre will therefore be above, on, or below the
base, according as C is acute, right, or obtuse.

Ex. 2. To solve the last example, the axes having any position.

Let the co-ordinates of the extremities of base be z'y’, 2”y". Let the equation of
. one side be ,
y-y=m ("" - ”)v

then the equation of the other side, making with this the angle C, will be (Art. 42)
(1+mtanC) (y — ") = (m — tanC) (z — z").
Eliminating m, the equation of the locus is
tan C{(y~¢) W-y)+(@-2)(z—20} +2 (¥ -y") —y (¢ -2") + &'y~ y'=" =0,

which reduces to the equation of the last example if y'=y"=0; 2'=+¢, 2"=-c.
If C be a right angle, the equations of the sides are

y-y=m@E-2)im@y-y)+@=-2)=0,
and that of the locus , , , ,
G-~y +G@-2)(z-2)=0.
Ex. 8. Given base and vertical angle, to find the locus of the intersection of perpen-

dicalars of the tﬁangle.
The equations of the perpendiculars to the sides are

my-y)+@-)=0, (m—tanC)(y~y)+ (1 +mtanC) (& —2)=0.
Eliminating m, the equation of the locus is
tanC{(y-9) -9+ -2) (z- )} =2 -y) -y (£~ &) +2y"-yo";
an equation which only differs from that of the last article by the sign of tan C, and

which is therefore the locus we should have found for the vertex had we been given the
same base and a vertical angle equal to the supplement of the given one.

Ex. 4. Given base and ratio of sides of a triangle, find locus of vertex.
With the same axes as in Ex. 1, if ratio be m : n, we find, for equation of locus,

m{y + (c — 2} = nt {42 + (¢ + 2}.

Hence the locus is a circle, whose centre is on the axis of z, at a distance from origin

2 4 n2 2 :
e ¢; whose radius = — i ¢; and which meets the base at the points
m? — n? m: — n?
m+n m-—n
x= ¢, and r = e.
m—n m+n

Since the co-ordinates of the extremities of the base are = + ¢, these (Art. 7) are
the two points where the base is cut in the ratio m: n.

Ex. 6. Given base of a triangle, and m times square of one side, + n times square of
i f f F \
other; find the locus of vertex. Ans. A circle whosecentreis(m+”c,0).
m+n
Ex. 6. Find the locus of a point the square of whose distance from a given point is
proportional to its distance from a given right line.
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Ex. 7. A line of constant length moves between two fixed right lines, and perpendi-
culars to the lines are raised at its extremities ; find the locus of their intersection.

Ex. 8. In general, given any number of points, to find locus of a point such that m’
times square of its distance from the first + m” times square of its distance from the se-
cond + &c., = a constant : or (adopting the notation used in p. 48) such that = (mr?) may
be constant. '

The square of the distance of any point zy from z'y’ is

(z-2P+ -2
Multiply this by m’, and add it to the corresponding terms found by expressing the dis-
tance of the point zy from the other points 2"y", &. If we adopt the notation of p. 48
we may write, for the equation of the locus,

E(m)a?+ E(m)ys - 22 (m2) 2z — 22 (my) y + = (mz?) + £ (my?)=C.
Hence the locus will be a circle, the co-ordinates of whose centre will be
2= I (mz’) y= =(my")
E(m)’ E(m)’ *

that is to say, the centre will be the point which, in p. 48, was called the centre of mean
position of the given points.
If we investigate the value of the radins of this circle, we shall find

R? E(m) = (mr2) — T(mp?),

where X (mr)? = C = sum of m times square of distance of each of the given points from
any point on the circle, and X (mp?) = sum of m times square of distance of each point
from the centre of mean position. ) )

95. We shall next give one or two examples involving the
problem of Art. 80, to find the co-ordinates of the points where
a given line meets a given circle.

Ex. 1. To find the locus of the middle points of chords of & given circle, drawn pa-

rallel to a given line.
Let the equation of any of the parallel chords be

x cosa + ysina—p =0,

where a is, by hypothesis, given, and p is indeterminate; the abacisse of the points
where this line meets the circle are (Art. 80) found from the equation

2% — 2pz cosa + p? — risinta = 0.
Now, if the roots of this equation be 2’ and 2", the z of the middle point of the chord
will (Art. 7) be

pltd , or, from the theory of equations, will= p cosa. In like manner,

2
the y of the middle point will equal p sina. Hence the equation of the locus is £= tana,

that is, a right line’ drawn through the centre perpendicular to the system of parallel
chords ; since a is the angle made with the axis of z by a perpendicular to the chord

zcosa + ysina —p = 0.
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Ex. 2. To find the condition that the intercept made by the circle on the line
zcosa + ysina=p )

should subtend a right angle at the point zy".

We found (Art. 94, Ex. 2) the condition that the lines joining the points z"y", 'y"
to zy should be at right angles to each other; viz.:

(@-2)(z-2D)+(y-y)(y-y)=0.

Let z"y", z""y" be the points where the line meets the circle, then, by the last example,
2’ + 2" =2cosa, z'z"=pd—riginta, y'+y"=2psina, y'y"=pi-ricosa.

Patting in these values, the required condition is

43+ y'3 - 2pz’ cosa — 2py’sina + 2p3 — 13 = 0.
Ex. 8. To find the locus of the middle point of a chord which subtends a right angle

at a given point.
If # and y be the co-ordinates of the middle point, we have, by Ex. 1,

pcosa=x, psina=y, pi=a8+9A
and, substituting these values, the condition found in the last example becomes
(@—-2PB+@Y-yP+a3tyi=n

- Ex. 4, To find the locus of the foot of a perpendicular from 2y’ on a chord which
subtends a right angle at that point.
The co-ordinates of the foot of perpendicular are determined by the equations

zcosa +ysina=p; (¢—2)sina— (y—y)cosa=0;

whence, if we write for shortness, )

’ B=(@-22+@-s"
we have Rsina=y -y, Resa=2~42, Rp=R+yt—22' -yy';
but the condition in Ex. 2 may be written
‘0 =23+ y"2—r84 2p(p—2'cosa—y'sina)= 2+ y1- 24 2p {(x—2") cosa+(y-y)sina};
but (2 —2)cosa + (y—y) sina = R;
hence VL y8—r14 2(2 +y8 — 22’ —yy) = 0;
or, the 'locus is the same as that found in the last ut'lmple.

Ex. 5. Given a line and a circle, to find a point such that if any chord be drawn
through it, and perpendiculars let fall from its extremities on the given line, the rectangle
under these perpendiculars may be constant.

Take the given line for axis of y, and let the axis of z be the perpendicular on it
from the centre of the given circle, whose length we shall call p. Then the equation of
the circle is (Art. 77)

v+ @—pr=n.

Again, if the co-ordinates of the sought point be 2/, ¥, the equation of any line through
it will be
W-9)=m(=-2) ory=mz +y —ma\



THEOREMS AND EXAMPLES ON THE CIRCLE. 89

Substitute this value of y in the equation of the circle, and we shall get, to determine the
x of the points where the line meets the circle,

(A+m)a2+ {2m(y —mz’) —2p} 2+ (¥ —ma)3 + p2—r*=0.

But z is the perpendicular on the given line, and the product of the two perpendiculars
(by the theory of equations)
Y -—mPipr-n
1+ m? :

This will not be independent of m, unless the numerator be divisible by 1 4+ m?, and
it will be found that this cannot be the case unless y' = 0 and 23 =>p? — r%. Hence
there are two such points situated on the axis of z, and at a distance from the origin
= the tangent drawn from it to the given circle.

Ex. 6. If anychord be drawn through a fixed point on a diameter of a circle, and its
extremities joined to either end of the diameter, the joining lines will cut off on the tan-
gent, at the other end of the diameter, portions whose rectangle is constant. ‘

Let us take the diameter for axis of #, and either extremity of it for origin, then
(Art. 77, Cor. 2) the equation of the circle will be 22 + g® = 2rz, and that of any chord

" through a fixed point on the diameter will be y = m(z — #”). By combining these equa-

tions we can determine the co-ordinates of the extremities of the chord. We can, how-
ever, without solving for these co-ordinates, obtain directly from the equations the equa-
tion of the lines joining these extremities to the origin. For if, by combining the equations,
we can obtain a homogeneous function of the second degree, it will be, by Art. 68, the
equation of two right lines drawn through the origin, and it evidently must be satisfied
by the co-ordinates of the points which satisfy the two given equations.

Write these equations thus,

22 + 2 = 2rz, and mz' = mz — y,
and, multiplying them together, we get
mz' (23 + 98) = 2rz(ma — y).

This being homogeneous in z and y, is the required equation of the joining lines. Itmay
be written thus,
mx'.yf+ 2r.zy + m(a' ~ 2r) 22 =0. [ J
' This equation enablesus to find the values of y correspouding to any value of x, and
p ; 2’::“, and, therefore, independent of m.

The intercepts made on a perpendicular at the extremity of the diameter are found by

we see that the product of these values will be

! —2
making x = 2r in the preceding equation, and their product is 472 ix,—r, which will be

eonstant as long as #’ is constant. ‘

96. We shall next obtain one or two of the properties of the
polar of a point from its equation (Art. 86).
If any chord be drawn through a fized point and tangents at
its extremities : to find the locus of their intersection.
N



90 THEOREMS AND EXAMPLES ON THE CIRCLE.

Let any point on the locus be XY, then the chord joining
points of contact of tangents passing through XY is

Xz + Yy.=r;
but by hypothesis, this line passes through the point «’y/, there-
fore, Xo + Yy =1

this is the relation connecting the co-ordinates of the point XY,
its locus, therefore, is the line

ax’ + yy = r?

or the polar of the point z'y’
The proposition just proved may be stated otherwise, thus:

If one point lie on the polar of a second point, the second point

will lie on the polar of the first point.
For the condition that 2’y should lie on the polar of 2"y" is

w'z" + yl.yrl = rz.
But this is also the condition that the point &"y" should lie on the
polar of 2.

97. Given any point O, and any two lines through it ; join
both directly and transversely the points in which these lines meet a
circle ; then, if the direct lines intersect each other in P and the
transverse in Q, the line PQ will be the polar of the point O, with
regard to the circle.

’£ake the two fixed lines for axes, and let the mtercepts made
on them by the circle be @ and a’, b and ¥. Then ‘

T Y _ 12 rT. Y -
a+b o, a'+b' 1=0,

will be the equations of the direct, lines ; and

ﬂ+%—1=m +%—1_m
the equations of the transverse lines. Now, the equation of the
line PQ will be

0‘1'2

% 20,

RIR

&
+ =+
a
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for (see Art. 36) this line passes through the intersection of
2+¥oy, 248,

2t Ty
and also of f_‘_.'_/_l_ ’,i'.,.-’l_l,
b a b

If the equation of the circle be
Az*+Bxy+ Ay + Dz +Ey+F=0,

a and o' are determined from the equation Az*+ Dz + F=0
(Art. 82), therefore,

1,1_ D .11 E

a d F PTETTE
Hence, equation of PQ is

Dz +Ey+2F =0;

but we saw (Art. 87) that this was the equation of the polar of
the origin O. Hence it appears, that if the point O were given,
and the two lines through it were not fixed, the locus of the points
P and Q would be the polar of the point O.

98. Given any two points A and B, and their polars, with
respect to a circle whose centre is O : let fall a perpendicular AP
Jrom A on the polar of B, and a perpendicular BQ from B on the

OA OB
. polar of A ; then AP =B—Q..
~ The equation of the polar of A («y) is z2 + yy -7 =0;and
BQ, the perpendicular on this line from B(2"y"), is (Art 27)

’n

2z’ + y'y - r
CEYON
Hence, since ¢/ (2 +y*?) = OA, we find
OA.BQ==22"+yy" -
and, for the same reason,
OB AP = 22" + yy' - r.

Hence ) OA _ OB
AP BQ
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99. Given a circle and a triangle ABC, if we take the polars
with respect to the circle of the three vertices of the triangle, we
shall form a new triangle A’B'C’ (where A’ is the pole of BC, B’
the pole of AC, and C' the pole of AB), then the lines AA', BB,
CC', will all pass through the same point.

The equation of the line j Jommg the point 2y’ to the intersec-
tion of the two lines 2z” + yy" - r* = 0 and a” + yy” -2 = 0 is
(Art. 36)

AAI (wlwlﬂ + y yll/_ rs) (lel + yyll_ rz)

- (@2 + Yy - ) (@2 +yy" - %) = 0.
In like manner,
BB (22" + vy’ - r?) (a2" + yy" - 1)
- @ Y- 1) (@ g - 1) = 03
and CC’' (2"2" + y'y" - ) (za’ + yy - r*)

- (@2 + Yy - 1) (22" + yy" - r’) =0;

and by Art. 37 these lines must pass through the same point.

The.following is a particular case of the theorem just proved.
Ifa circle be inscribed in a triangle, and each vertex of the triangle
Joined to the point of contact of the circle with the opposite side,
the three joining lines will meet in a point.

Ex. Prove, by Art. 38, that the three points of intersection of AB and A’B’, of AC
and A’C’, and of BC and B’C, lie in one right line.

100. In working out questions on the circle it is often con-
venient, instead of denoting the position of a point on the curve
by its two co-ordinates z'y’, to express both these in terms of a
single independent variable. Thus, let & be the angle which the
radius to 2y makes with the axis of z, then 2’ = r cos @', y’ =7 sin @,
and on subgtituting these values our formule will generally be-
come simplified.

The equation of the tangent at the point z’y" will by this
substitution become

zcos + ysinh = r; .
and the equation of the chord joining 2y, #"y", which (Art. 83) is
z(@+2)+y(y' +y) =r+ 22" + ¥y,



THEOREMS AND EXAMPLES ON THE CIRCLE. . 93

will, by a similar substitution, become

zcos}(0'+ 0) + ysing (0" + @) = rcos} (0 - 6"),
0’ and 6" being the angles which radii drawn to the extremities
of the chord make with the axis of .

This equation might also have been obtained directly from the
general equation of a right line (Art. 25),

zcosa + ysina = p,

for the angle which the perpendicular on the chord makes with
the axis is plainly half the sum of the angles made with the axis
by radii to its extremities ; and the perpendicular on the chord

=rcos (0 - 6").
Ex. 1. To find the co-ordinates of the intersection of tangents at two given points on
the circle. The tangents being
zco80 +ysin@ =7, zcosd’ +ysinf’ =r,
the co-ordinates of their intersection are
_rcosg(0‘+ 6") __&in}(6'+6")
Tt @-0) Y mp@@—o)

Ex. 2. To find the locus of the intersection of tangents at the extremities of a chord
whose length is constant.
Making the substitution of this article in

(@' — ")+ (¥ — ¥ )3 = constant,

it reduces to cos (6'— 6")= const., or 6’ — 6" = const. If the given length of the chord
be 2r sind, then @ — 6" = 20. The co-ordinates then found in the last example fulfil
the condition
(2% + y?) cos®d = r2,

- Ex. 8. What is the locus of a point where a chord of a constant length is cutin a

given ratio ? )
Writing down (Art. 7) the co-ordinates of the point where the chord is cut in agiven

ratio, it will be found that they satisfy the condition 2% + y® = const.

Ex. 4. The diagonals of a hexagon circumsecribing a circle meet in a point.
Let the angles made with the axis by radii to the points of contact be 2a, 23, 2y,
20, 2¢, 2¢; then the equation of the line joining the intersection of the tangents at 2a,

2[3, to that of the tangents at 20, 2¢, will be e 6){1 cos (a+ J) + y sin(a + &)

_1-cos(a—¢‘))}+mn(l3 ){xm(ﬁ+s)+ysm(/3+e)—rcos(ﬁ—¢)} = 0; which,

when added to the other two equations of like form, vanishes xdentxcally.
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101. We have seen that the tangent to any circle 2* + y’ r
has an equation of the form

zcos + ysinh =r;
and it would appear, in like manner, that the equation to the tan-
gent to (z - a)’ + (y — b)* = r* may be written
(% — a) cosf + (y-b) sinf =7r:
conversely, then, if the equation of any right line contain an in-
determinate @ in the form
(- a)cos@+(y—>5)sinf =r,
that right line will touch the circle
(x-a)+(y-0)?*=r.
Ex. 1. If a chord of a constant length be inscribed in a circle, it will always touch
- another circle. For; in the equation of the chord
zcos}(0+6)+ysin} (0 +67)=rcos}(6'-6)

by the last article, 8’ — 6" is known, and @ + 6” indeterminate ; the chord, therefore,
always touches the circle
a? + y? = 9 cos?.

Ex. 2. Given any number of points, if a right line be such thatm’ times the perpen-
dicular on it from the first point, + m" times the perpendicular from the second, + &o.,
be constant, the line will always touch a circle.

This only differs from the question, p. 48, in that the sum, in place of being = 0, is
constant. Adopting then the notation of that Article, instead of the equation there found,
{23 (m) — £(me)} cosa + {y=(m) — E(my)} sina = 0,

we have only to write
{#=m — =(mz")} cosa + {y=(m) — (my)} sina = const.
Hence this line must always touch the circle
= (mz’) \3 3 (my) )l _
(=~ 56 )+ (-5 ) o
whose centre is the centre of mean position of the given points.

102. We shall conclude this Chapter with some examples of
the use of polar co-ordinates.

Ex. 1. If through a fixed point any chord of a circle be drawn, the rectangle nndnr
its segments will be constant (Euclid, IIL 35, 36).
Take the fixed point for the pole, and the polar equation is (Art. 98)

~2pdcos@ + dd—r2=0
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the roots of which are evidently OP, OF, the values of the radius vector answering to
any given value of 6 or POC.

Now, by the theory of equations, OP . OP, the product of these roots will = d? — 72,
& quantity independent of 6, and therefore constant, whatever be the direction in which
the line OP is drawn. If the point O« outside the circle, it is plain that d3 — 2 must
be = the square of the tangent.

Ex. 2. If through a fixed point O any chord of a circle be drawn, and OQ taken an
arithmetic mean between the aegmelits OP, OP'; to find the locus of Q.

We have OP + OP, or the sum of the roots of the quadratic in the last example
= 2dcosf ; but OP + OP’ = 20Q, therefore,

0Q = dcosb. P
Hence the polar equation of the locus is %P@
=d cosb.
| NG
e

Now it appears from the final equation in Art.
93, that this is the equation of a circle described on
the line OC as diameter.

The question in this example might have been otherwise stated : * To find the locus
of the middle points of chords which all pass through a fixed point.”

Ex. 8. If the line OQ had been taken an Aarmonic mean between OP and OF', to
find the locus of Q. :

. 20P. OP' , ,
That is to say, 0Q = oP 1 0P’ but Ol,). OP'=d?— 3, and OP + OP' = ?dcosO,
therefore, the polar equation of the locus is
_a-n 086 = di— 2
P=Gcmp OFPC®Y="g—

This is the equation of a right line (Art. 44) perpendicular to OC, and at a distance
2 2
from O =d — %, and, therefore, at a distance from C = -;— Hence (Art. 86) the locus
is the polar of the point O.
‘We can, in like manner, solve this and similar questions when the equation is given

in the form
Azt + Ayt + Dz + Ey + F =0,

for, transforming to polar co-ordinates, the equation becomes

D E F
3 —_— — 8i —_——
[4 +(Acoso +Asm9)p + i 0,
and, proceeding precisely as in this example, we find, for the locus of harmonic means,

_ —9F
P = Dcosd + Ean 6’

and, returning to rectangular co-ordinates, the equation of the locus is
Dz + Ey+2F =0,
the same as the equation of the polar obtained already (Art. 87).
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Ex. 4. Given a point and a right line; if OQ be taken inversely as OP, the radius
vector to the right line, find the locus of Q.

Ex. 5. Given vertex and vertical angle of a triangle and rectangle under sides; if
one base angle describe a right line or a circle, find locus described by the other base
angle.

Take the vertex for pole; let the lengths of the sides be p and p’, and the angles they
make with the axis 6 and ', then we have pp’ =42 and 6 — 6'=C.

The student must write down the polar equation of the locus which one base angle
is said to describe; this will give him a relation between p and 0; then, writing for

2 .
Py %, and for 6, C + @, he will find a relation between p’ and &', which will be the

polar equation of the locus described by the other base angle.
This example might be solved in like manner, if the ratio of the sides, instead of their
rectangle, had been given.

Ex. 6. Through the intersection of two circles a right line is drawn ; find the locus
of the middle point of the portion intercepted between the circles.
The equations of the circles will be of the form,

p=2rcos(0—~a); p=2r'cos(6-a);
and the equation of the locus will be
p=rcos(0 —a)+r cos(6—a’);
which also represents a circle.

Ex. 7. If through any point O, on the circumference of a circle, any three chords be
drawn, and on each, as diameter, a circle be described, these three circles (which, of
course, all pass through O) will intersect in three other points, which lie in one right
line. (See Cambr. Math. Jour., 1. 169.)

Take the fixed point O for pole, then if d be the diameter of the original circle, its

polar equation will be (Art. 93)
p =dcosb.

Tn like manner, if the diameter of one of the other circles make an angle a with the fixed
axis, its length will be = d cosa, and the equation of this circle will be

"p=dcosa.cos(d — a).
The equation of another circle, will, in like manner, be
p=dcosf3.cos(8 — ).

To find the polar co-ordinates of the point of intersection of these two, we should seek
what value of 6 would render

cosa . cos(f — a) = cosf3.cos(8 — B),

and it is easy to find that @ must = a + 3, and the corresponding value of p = d cosa cos 8.
Similarly, the polar co-ordinates of the intersection of the first and third circles are

O=a+y, andp=dcosacosy.
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Now, to find the polar equation of the line joining these two points, take the general
equation of a right line, p cos(k — ) = p (Art. 44), and substitute in it successively
these values of 6 and p, and we shall get two equations to determine p and 2. We shall
get

- p=doosa§osﬁcos(k—a+/3)=deoeacosycos(k—a+7).
ence

k=a+B+y, andp=dcosucosBcosy.

The symmetry of these values shows that it is the same right line which joins the
intersections of the first and second, and of the second and third circles, and, therefore,
that the three points are in a right line,

*CHAPTER VIII.

APPLICATION OF ABRIDGED NOTATION TO THE EQUATION OF THE
CIRCLE.

103. Ir we have an equation of the second degree expressed
in the abridged notation explained in Chap. 1v., and if we desire
to know whether it represents a circle, we have only to transform
to z and y co-ordinates, by substituting for each abbreviation (a)
its equivalent (z cosa + ysina - p) ; and then to examine whether
the coefficient of xy in the transformed equation vanishes, and
whether the coefficients of 2* and of y* are equal. ' This is suffi-
ciently illustrated in the examples which follow.

When will the locus of a point be a circle if the product of per-
pendiculars from it on two opposite sides of a quadrilateral be in a
given ratio to the product of perpendiculars from it on the other
two stdes ? ,

Leta=0, 3=0, y =0, & =0 be the equations of the four
gides of the quadrilateral, then the equation of the locus is at
once written down ay = k38, which represents a curve of the
second degree passing through the angles of the quadrilateral;
smce it is satisfied by any of the four suppositions,

a=0,8=0; a=0,8=0; B=0,y=0;" f=0,35=0.

Now, in order to ascertain whether this equatlon represents a
circle, write it at full length
(o}
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(#cosa+ysina-p)(zcosy+ysiny -p,)
= k(z cos3 + ysinf3 —p) (x cosd + ysind - p,).

Multiplying out, equating the coefficient of 2* to that of 3*, and
putting that of zy = 0, we obtain the conditions

cos(a+y)=kcos(3 +9); Bin(a+'y)=ksin(ﬁ+3).

Squaring these equations, and adding them, we find 2=+ 1; and
if this condition be fulfilled, we must have

a+y=B+0, orelse=180°+p+3;
whence a-B=8-y, orl80+3-7.

Recollecting that a — (3 is the angle between the perpendicu-
lars from the origin on the lines a and (3, and is, therefore, the
supplement of that angle between a and 3, in which the origin
lies, we see that this condition will be fulfilled if the quadrilateral
formed by af3yd be inscribable in a circle (Euclid, 1. 22). And
it will be seen on examination that when the origin is within the
quadrilateral we are to take & = -~ 1, and the angle (in which the .
origin lies) between a and (3 is supplemental to that between
and & ; but that we are to take % =+ 1, when the origin is without
the quadrilateral, and the opposite angles are equal.

104. When will the locus of a point be a circle, if the square of
its distance from the base of a triangle be in a constant ratio to the
product of its distances from the sides?

Let the sides of the triangle be a, (3, v, and the equation of
the locus is a3 = Ay*. If now we look for the points where the
line a meets this locus, by making in it a = 0, we obtain the per-
fect square 42 =0. Hence a meets the locus in two coincident
points, that is to say (Art.83), it touches the locus at the point
ay. Similarly, (3 touches the locus at the point 3y. Hence a and
{3 are both tangents, and « their chord of contact. Now, to ascer-
tain whether the locus is a circle, writing at full length as in the
last article, and applying the tests of Art. 78, we obtain the con-
ditions )

cos (a + (3) = kcos2y; &in(a + [3) = & sin 2y,
whence (as in the last article) we get 2 = 1, a — y =y - 3, or the
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triangle is isosceles.. Hence we may infer that if from any point
of a circle perpendiculars be.let fall on any two tangents and on their
chord of contact, the square of the last will be equal to the rectangle
under the other two.

Ex. When will the locus of a point be a circle if the sum of the squares of the per-
pendiculars from it on the sides of any triangle be constant.
The locus is a% + 3% + y3 = c%: and the conditions that this should represent.a circle

are
cos 2a + co8 23 + cos 2y = 0; gin2a + 8in 283 + gin 2y = 0.

cos2a=—2cos(B+ y)cos(B—y); sin2a=—2sin(B + y)cos(B - 7).
Squaring and adding, 1=4co®(B—17y); PB—y=60"
And 8o, in like manner, each of the other two angles of the triangle are proved to be
60°, or the triangle must be equilateral.

105. To obtain the equation of the circle circumscrilbing the
triangle formed by the lines a = 0, 3 =0, y = 0.

Any equation of the form

13y + mya + naf3 = 0,
denotes a curve of the second degree circumscribing the given
triangle, since it is satisfied by any of the suppositions
a-o,B=0§ ﬁ=0,7=0; ‘y=0,a=0.

The conditions that it should represent a circle are found, by the
same process as in Art. 103, to be

lcos(B+y)+mcos(y +a) +ncos(a+f3)=0,
Isin(B+y)+mein(y +a)+nsin(a+@)=0.
Eliminating successively m and n between the equations, we get

m sin(y-a) n_sin(a-f)
I"sa@-y)’ T sm@B-y)

Now, if C be the angle contained by the sides a, 3, then

gin C = gin(a - 3), &e.

(since a - 3 is the angle between the perpendiculars on those
sides), hence the equation of the circle circumscribing a triangle
“’ BysinA + yasinB + afsinC = 0.
106. The geometrical interpretation of the equation just found
deserves attentiorf. If from any point O we let fall perpendicu-



100 THE CIRCLE—ABRIDGED NOTATION.

lars OP, OQ, on the lines a, (3, then (Art.53) a, 3 are the lengths

of these perpendiculars; and since the C

angle between them is the supplement

of C, the quantity af3 sinC is double the

area of the triangle OPQ. In like man- A

ner, ya sin B and 3y sin A are double the U7
triangles OPR, OQR. Hence the quan- ‘

" BysinA +yasinB + ofsinC /A K B

is double the area of the triangle PQR, and the equation found
in the last article asserts, that if the point O be taken on the cir-
cumference of the circumscribing circle, the area PQR will va-
nish, that is to say (Art. 31, Cor. 2), the three points P, Q, R
will lie on one right line.

If it were required to find the locus of a point from which, if
we let fall perpendiculars on the sides of a triangle, and join their
feet, the triangle PQR so formed should have a constant magni-
tude, the equation of the locus would be .

ByeinA + yasinB + af3 sin C = const.,

and, since this only differs from the equation of the circumscrib-
ing circle in the constant part, it is (Art. 78) the equation of a
circle concentric with the circumscribing circle.

107. From the equation
Bysin A + yasinB + a3 sin C = 0,

we can find the equations of the tangents to the circle at the ver-
tices of the triangle. Put the equation into the form

y(BsinA + asinB) + aBsinC = 0,

and we saw (in Art. 105) that y meets the circle in the two points
where it meets the lines a and (3, since, if we make y = 0 in the
equation of the circle, that equation will be reduced to a3 = 0.
Now, for the very same reason, the two points in which the line
Bsin A + a sin B meets the circle, are the two points where it
meets the lines « and 3. But these two points coincide, since

B sin A + asin B passes through the point a3. Hence, since the
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line 3 sin A + a sin B meets the circle in two coincident points, it
is (Art. 83) a tangent at the point af3.

- We saw (Art. 63) that asin A + (3 sin B is the equation of a
parallel to the base (y) drawn through the vertex af3. Hence,
by Art. 57, the tangent a sin B + (3 sin A makes the same angle
with one side that the base makes with the other (Euclid, 111. 32).

From the forms of the equations of the three tangents,
a B B Y o a_ _
A TsmB~ " @B @mC~" @mctmAa~"
it appears, that the three points in which they intersect each the
opposite side are in one right line, whose equation is
a B, v
oA * B " #inC "¢
It will be found that the equations of the lines joining the ver-
tices of the inscribed triangle to those of the circumscribed are
a B _o B _ v _o Y __2 _,
sinA sinB 7’ sinB snC 7’ sinC sinA
and these meet in a point (Art. 36).

108. We shall next show how to obtain the equation of the
circle inscribed in the triangle a, (3, y. The equation

Pa® + m*3? + ny® — 2mnBy - 2nlya - 2lmaf3 = 0,

represents a curve of the second degree, touching each of the lines
ay 3 v; for if we seek the point where any side (y) cuts the
figure, making y = 0, we obtain the perfect square,
Pa® + m*3* ~ 2lmaf3 = 0;

the roots of this equation being equal, we infer that the two points
~ coincide in which « cuts the figure, and therefore (Art. 83) that
is a tangent.

In the same manner it can be proved that the sides a and 3
touch the curve represented by the preceding equation.

This equation may also be written in a convenient form,

Bat + miBt + ntyt = 0;
for if we clear this equation of radicals, we shall find it to beiden-
_tical with that just written.



102 THE CIRCLE—ABRIDGED NOTATION.

For the simplest method of obtaining the particular values of
1, m, n, for which the preceding equation represents a circle, I am
indebted to Dr. Hart, who derives the equation of the inscribed
circle from that of the circumscribed, as follows: Join the points
of contact of the circle inscribed in a triangle; let the equations
of the sides of the triangle so formed be o' =0, 3'=0, v =0,
and its angles A’, B, C'; then (Art. 105) the equation of the
circle must be

By sin A’ + yd' sin B’ + d3'sin C' = 0.

Now we have proved (Art. 104) that for any point on the circle

a*=Py; B*=vya; y*=db,
and it is easy to see that
A'=90°-}%A; B =90°-4B; C =90°-}C.

Substituting these values, the equation of the circle becomes

atcos A + Btcos 4B + ytcos §C = 0.
The general equation will, therefore, represent a circle if , m, n,
be proportional to

cos’$A, cos?iB, cos®§C.

It can be proved, in like manner, that the equation of the circle
touching the side a, and the sides b and ¢ produced, is

atcos A + Bisin 4B + y¥sin C = 0.

109. Since the general equation given in the last article may

be written in the form

ny (ny - 2la - 2m3) + (la — mf3)* = 0,

it follows that the line (la - mf3), which obviously passes through
the point a3, passes also through the point where y meets the -
curve. The three lines, then, which join the points of contact of
the sides with the opposite angles of the circumscribing triangle
are la-mB3=0, mB-ny=0, ny-la=0, ’
and these obviously meet in a point.

The very same proof which showed that y touches the curve
shows also that ny ~ 2la —~ 2m[3 touches the curve, for when this
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quantity is put = 0, we have the perfect square (la - mf3)* = 0;
hence this line meets the curve in two coincident points, that is,
touches the curve, and la — m(3 passes through the point of con-
tact. Hence, if the vertices of the triangle be joined to the points
of contact of opposite sides, and at the points where the joining
lines meet the circle again, tangents be drawn, their equations are

2la + 2mB3 - ny =0, 2mB3 + 2ny — la =0, 2ny + 2la — mf3 = 0.
Hence we infer that the three points, where each of these tan-
gents meets the opposite side, lie in one right line,

la + m3 + ny =0,

for this line passes through the intersection of the first line with
v, of the second with a, and of the third with 3.

CHAPTER IX.
PROPERTIES OF A SYSTEM OF TWO OR MORE CIRCLES.

110. T find the equation of the chord of intersection of two
circles. o

If S=0, S'=0, be the equations of two circles, then any
equation of the form S — S’ = 0 will be the equation of a figure
passing through their points of intersection (Art. 36).

Let us write down the equations

S=@-a)y+@y-5byp-r=0,
S=@-ay+@y-b)P-r*=0,
and it is evident that the equation S - A4S’ = 0 will in general
represent a circle, since the coefficient of zy = 0, and that of
a* = that of y*. THere is one case, however, where it will repre-
sent a right line, namely, when % = 1. The terms of the second
degree then vanish, and the equation becomes

S-8=2@@-a)z+200'-b)y+r*-r+a*-d*+ P -6=0.

This is, therefore, the equation of the right line passing through
the points of intersection of the two circles.
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111. The points of intersection of the two circles are found
by seeking, as in Art. 80, the points in which the line S - §
meets either of the given circles. These points will be real, co-
incident, or imaginary, according to the nature of the roots of the
resulting equation ; but it is remarkable that, whether the circles
meet in real or imaginary points, the equation of the chord of in-
tersection, S — S’ =0, always represents a real line, having impor-
tant geometrical properties in relation to the two circles. This
is in conformity with our assertion (Art. 81), that the line join-
ing two points may preserve its existence and its properties when
those points have become imaginary.

In order to avoid the harshness of calling the line S - §' =0
the chord of intersection in the case where the circles do not geo-
metrically appear to intersect, it has been called* the radical axis
of the two circles.

112. One of the most remarkable properties of this line is
found by examining the geometric meaning of the equation
S-S =0. We saw (Art. 88) that if the co-ordinates of any
point zy be substituted in S, it represents the square of the tan-
gent drawn to the circle S, from the point zy. So also S’ is the
square of the tangent drawn to the circle §', and the equation
S - S’ = 0 asserts, that ¢f from any point ohe radical azis tan-
gents be drawn to the two circles, these tangents will be equal.

The line (S - ') possesses this property whether the circles
meet in real points or not. When the circles do not meet in real
points, the position of the radical axis is determined geometri-
cally' by cutting the line joining their centres, so that the differ-
ence of the squares of the parts may = the difference of the squares
of the radii, and erecting a perpendicular at this point; as is evi-
dent, since the tangents from this point must be equal to each
other. oo,

If it were required to find the locus ofa point whence tangents
to two circles have a given ratio, it appears, from Art. 88, that
the equation of the locus will be '

S - ]G’S' = 0,

* By M. Gaultier of Tours (Journal de I' Ecole Polytechnique, Cahier xvi. ; 1818).
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which (Art. 110) represents a circle passing through the real or
imaginary points of intersection of S and §'. When the circles
S and S'do not intersect in real points, we may express the rela~
tion which they bear to the circle S — A28’ by saying that the
three circles have a common radical axis.

113. From the form of the equation of the radical axis of two
circles, we at once derive the following theorem :

Given any three circles, if we take the radical axis of each pair
of circles, these three lines will meet in a point, and this point is
called the radical centre gf'the three circles.

For the equations of the three radical axes are

S-§=0, §-8=0, §'-S=0,

which, by Art. 37, meet in a point.

From this theorem we immediately derive the following :

If several circles pass through two fixed points, their chord of
intersection with a fized circle will pass through a fized point.

For, imagine one circle through the two given points to be
fixed, then its chord of intersection with the given circle will be
fixed ; and its chord of intersection with any variable circle drawn
through the given points will plainly be the fixed line joining the
two given points. These two lines determine, by their intersec-
tion, a fixed point through which the chord of intersection of the
variable circle with the first given circle must pass.

‘Ex. 1. Find the radical axis of

2 +yt—4x-by+7=0; 23+y?'+ 6+ 8y—-9=0.
Ans. 10z + 13y =186.
Ex. 2. Find the radical centre of

E=1+@-20=T7; -8 +y'=b; (a+ '+ +1p=0
Ans. (—i _gg)
16 16/
114. A system of circles having a common radical axis pos-
sesses many remarkable properties whichare more easily investi-

gated by taking the radical axis for the axis of y, and the line
. Joining the centres for the axis of 2. Then the equation of any -

circle will be 24y 2%+ =0,

where & is the same for all the circles of the system, and the
: P
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‘

equations of the different circles are obtained by giving different
values to &.

For it is evident (Art. 78) that the centre is on the axis of z,
at the variable distance %, and if we take any two circles,

e +y -2z + =0,

2+ Yy -2+ =0,
and subtract one equation from the other, their chord of intersec~
tion will be 2 = 0, or the axis of y.

‘When we give to & the sign +, the radical axis will meet the
circles in imaginary points, and when we give the sign —, in real
points.

115. If several circles pass through two fixed points, the polar
of a given point, with regard to any of them, will always pass
through a fized point.

The equation of the polar of z'y’ with regard to

P+y -2kz+ =0
is (Art.87) 2z’ +yy -kh(x+2)+ &=0;

therefore, since this line involves the indeterminate % in the first
degree, this line will always pass through the intersection of
2z +yy +F=0,and z + &' = 0.

116. There can always be found two points, however, such that
their polars, with regard to any of the circles, will not only pass
through a fized point, but will be altogether fized.

This will happen when 22’ + yy + & = 0, and 2 + 2’ = 0, re-
present the same right line, for this right line would then be the
polar whatever the value of .. But that this should be the case

we must have y=0and 2" =, ora =+ &

The two points whose co-ordinates have been just found have
many remarkable properties in the theory of these circles, and
are such that the polar of either of them, with regard to any of
the circles, is a line drawn through the other perpendicular to the
line of centres.

The equation of the circle may be written in the form

y+(@-kyp=~k-8&
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which evidently cannot represent a real circle if k* be less than
&%; and if &* = &, then the equation will be of Class II. (Art.79),
and will represent a circle of infinitely small radius, the co-ordi-
nates of whose centre are y = 0, z = + 8. Hence the points just
found may themselves be considered as circles of the system, and
have, accordingly, been termed by Poncelet* the limiting points
of the system of circles.

117. If from any point on the radical axis we draw tangents
to all these circles, the locus of the points of contact must be a
circle, since we proved (Art. 112) that all these tangents were
equal. It is evident, also, that this circle cuts any of the given
system at right angles, since its radii are tangents to the given
system. The equation of this circle can be readily found.

The square of the tangent from any point (z= 0, y = &) to the

circle 2+ Yy~ 2kz + & =0,

being found by substituting these co-ordinates in this equation,
is k* + &; and the circle whose centre is the point (z = 0, y = &),
and whose radius squared = A2 + &% must have for its equation

w""(y_k)’:h""s’,
or ¥t y? - 2hy = &

Hence, whatever be the point taken on the radical axis (i. e.
whatever the value of & may be), still this circle will always pass
through the fixed points (y =0, z =+ &) found in the last Article.
And we infer that all circles which cut the given system at right
angles pass through the limiting points of the system.

Ex. 1. If the polar of A with respect to the system pass through the fixed point B,
prove that the semicircle described on AB passes through the limiting points.

Ex. 2. The square of the tangent from any point of one circle to another is in a
constant ratio to the perpendicular from that point upon their radical axis.

Ex. 8. To find the angle (a) at which two circles intersect.
Let the radii of the circles be R, 7, and let D be the distance between their centres,

then D? = R? 4 r3 — 2Rr cos .
Since the angle at which the circles intersect is equal to that between the radii to the
point of intersection.

* Tvaité des Propriétés Projectives, p. 41.
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Ex. 4. If a moveable circle cut two fixed circles at constant angles, it will cut all cir-
cles having the same radical axis at constant angles.

Let the equations of the two fixed circles be 8 = 0, 8'= 0, and their radii r,»*; then
the co-ordinates of the centre of the moveable circle fulfil the relations,

R2— 2Rr cosa =8, R2 — 2R+ cosf3 = §',
since D? — »* = the square of the tangent to the first fixed circle = S (Art. 88). Then,
we have krcosa + I’ cos@ kS +18
B - 2R A+ =T+l

which is precisely the condition that the moveable circle should cut the circle &8 + IS’ at
the constant angle y ; where (k + )" cosy = Ar cosa + Ir’ cos 3, " being the radius of
the circle 8 + IS’

Ex. 5. A circle which cuts two fixed circles at constant angles will also touch two
fixed circles.

For we can determine the ratio &: 1, so that y shall = 0, or cosy = 1. It will easily
be found that if D be the distance between the centres of S and §’,

R+ Dpr"v=(k +0) (Ar2 + Ir's) — RID3,

Substituting this value for r” in the equation of the last example, we get a quadratic to
determine &: L

118. To draw a common tangent to two circles.
Let their equations be

(@-ay+@-by=r ),
and (@-ay+@y-by=r* (S).
We saw (Art. 83) that the equation of a tangent to (S) was
(z-a)(@-a)+ (- Y-b)=r"; @
or, as in Art. 100, writing

d_a=cosa, y-b

=gin a,
(- a)cosa +(y ~b)sina=r.

In like manner, any tangent to (S) is
(x-a)cosB+(y-d)sinB=r.

Now, if we seek the conditions necessary that these two equa-~
tions should represent the same right line ; first, from comparing -
the ratio of the coefficients of = and y, we get tana = tan g,
whence (3 either = a, or=180° + a. If either of these conditions
be fulfilled, we must equate the absolute terms, and we find, in

the first case,
(a-a)cosa+(b-b)sina+r-7=0,
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- and in the second case,

(@a-a)cosa+(b-b)sina+r+7 =0,
Either of these equations would give us a quadratic to deter-
mine a. The two roots of the first equation would correspond

to the direct or exterior common tangents, Aae, A'a’; the roots

- of the second equation would correspond to the transverse or in-
terior tangents, Bb, B'b.

If we wished to find the co-ordinates of the point of contact

of the common tangent with the circle (S), we must substitute,

xr -

in the equation just found, for cosa, its value, 2, and for

’

sin a,

; b, and we find

(@-a)(@-a)+(B-0)W-b)+r(r-7)=0;
or else,
(@a-a)@-a)+(b-8)(y -b)+r(r+7)=0.

~ The first of these equations, combined with the equation (S)
of the circle, will give a quadratic, whose roots will be the co-
ordinates of the points A and A’, in which the direct common tan-
gents touch the circle (S); and it will appear, as in Art. 86, that

@-a)@z-a)+B-b)(y-b)=r(r-7)
is the equation of AA’, the chord of contact of direct common
tangents. So, likewise,

@-a)y(x-a)+ (W -d)(y-b)=r(r+7)
is the equation of the chord of contact of transverse common tan-
gents. Ifthe origin be the centre of the circle($S),then @ and b = 0;
and we find, for the equation of the chord of contact,

az+by=r(r3r).
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Ex. 1. Find the common tangents to the circles ]
P+yPp—-42—-29+4=0, 2+y'+42+29—-4=0.

The chords of contact of common tangents with the first circle are
2z2+y=6, 2x+y=3.

The first chord meets the circle in the points (2, 2),(%, —i—) the tangents at which are
¥y =2, 4z — 8y = 10,

and the second chord meets the circle in the points (1, 1), (— —),thetmgenuatwhch

are rz=1 8z+4y=0.

119. The points O and O, in which the direct or transverse
tangents intersect, are (for a reason explained in the next Ar-
ticle) called the centres of similitude of the two circles.

Their co-ordinates are easily found, for O is the pole, with
regard to circle (S), of the chord A A’, whose equation is

/— b-b
A LA FRLSL LN S
Comparing this equation with the equation of the polar of the
point 2'y/, .
@-a)(z-a)+(¥-b) (- =7,
we get d_a=(a—a’)r, of = ar—ar”
r-r r—-r
N (XL _br-b
y-b=7 ory =
So, likewise, the co-ordinates of O are found to be
_dr+ar d br+ o
2=y Y=o

~ These values of the co-ordinates indicate (see Art. 7) that
the centres of similitude are the points where the line joining the
centres is cut externally and internally in the ratio of the radii.
Ex. Find the common tangents to the circles
Bty —-62—-8y=0, A+y'—42—-6y=8,
The equation of the pair of tangents through z°y’ to

isfo“d(Art.Qo)wbe ‘ (”"ﬂ)"l'(y—b)’:rs
{(#—aP+(y-b)-r} {(z—a)t+(y-8)s—1) = {(z-a) (+'a) + (y- B) ('-B)- P}
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Now, the co-ordinates of the exterior centre of similitude are found to be (~ 2, — 1), and
hence the pair of tangents through it is

25 (234 y*— 62 — 8y) = (bx + by — 10)3; or 2y + 2+ 2y +2=0; or (z + 2) (y+1)=0.
As the given circles intersect in real points, the other pair of common tangents become
imaginary ; but their equation is found, by calculating the pair of tangents through the

1
other e‘ent.re of similitude (-2-92, ?9—), to be

4023 + xy + 40y~ 1992 — 278y + 722 = 0.

120. Every right line drawn through the intersection of com-
mon tangents is cut similarly by the two circles.

It is evident that if on the radius vector to any point P there
be taken a point Q, such that OP = m times OQ, then the z and
y of the point P will be respectively m times the z and y of the
point Q; and that, therefore, if P describe any curve, the locus
of Q is found by substituting mz, my for # and y in the equation
of the curve described by P.

Now, if the common tangents be taken for axes, and if we
" denote Oa by a, OA by o/, the equations of the two circles
are (Art. 82, Ex. 4)

a* + y* + 2xy co8 w — 2ax — 2ay + a* =0,

2+ y* + 2zy cos w - 2a'z — 2a’y + a?= 0.
But the second equation is what we should have found if we
had substituted ‘Z—f, %,‘11’, for 2, y, in the first equation; and it

therefore represents the locus formed by producing each radius
vector to the first circle in the ratio a: a’.

Cor.—Since the rectangle Op - Op’ is constant (see fig. next
page), and since we have proved OR to be in a constant ratio to
Op, it follows that the rectangle OR . Op’ = OR’: Op is constant,
however the line be drawn through O. '

121. If through a centre of similitude we draw any two lines
" meeting the first circle in the points R, R, S, S, and the second in
the points p, p', a, o', thenthe chords RS, pa; R'S',p'a’; will be pa-
rallel, and the chords RS, p's’s R'S, pa; will meet on the radical
axis of the two circles.
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Take OR, OS for axes, then P
we saw (Art.120)that OR=mOp,
OS = mQOo, and that if the equa-
tion of the circle pop's’ be

Az* + Bzy + Ay* + Dz + Ey
+F =0,

that of the other will be ,
Az* + Bxy + Ay* + m (Dz + Ey)
+m*F = 0,
and, therefore, the equation of the Q

radical axis will be (Art. 111)
Dz+Ey+(m+1)F =0.

Now let the equations of go and of p's’ be

T,y rL Y
atp=h rE=b
then the equations of RS and of R'S’ must be
ZiY¥ oy, Z.¥ .
ma m ma’  mb

It is evident, from the form of the equations, that RS is pa-
rallel to po; and RS and p'o’ must intersect on the line

x l+l + l+l =1+m
a d y(b v ’

or, a8 in Art. 97, on .
Dz+Ey+(1+m)F =0,
the radical axis of the two circles.

A particular case of this theorem is, that the tangents at R
and p are parallel, and that those at R and p’ meet on the radical
axis. i

122. Given three circles ; the line joining a centre of similitude
of the first and second to a centre of similitude of the first and
third will pass through a centre of similitude of the second and -
third.

Form the equation of the line joining the points

(ra’ —ar rb - br') (ra" -ar’ rb' - br")
k] b

r—-r’ r-r r-v" "’ r-1"
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(Art. 119), and we get (see Ex. 7, p. 24),
(rB-B)+ 7@ -B) + 7 (b-8)) x
- {r(@-a")+7(a"-a) +7"(a-ad)}y
+r(a"-b"d) + ¥ (V'a-ba") + r* (ba' - ba) = 0.
Now the symmetry of this equation sufficiently shows, that the
line it represents must pass through the third centre of similitude,

. rr au rll a’ rlbll - rl/b'
r= £ ep——e
r - T H y rl - T"

This line is called an azis of similitude of the three clrcles.

Since for each pair of
circles there are two cen-
tres of similitude, there
will be in all siz for the
three circles, and these
will be distributed along
Jour axes of similitude,
as represented in the
figure. The equations
of the other three will
be found by changing
the signs of either », or
7', or 7’y in the equation
Jjust given.

123. If a circle (=) touch two others (S and S') the line join-
ing the points of contact will pass through a centre of similitude of
Sand S.

For when two circles touch, one of their centres of similitude
will coincide with the point of contact, and, by the theorem
proved in the last article, the line joining a centre of similitude of
Siand =, to a centre of similitude of S'and £ must pass through
" a centre of similitude of 8 and S

If = touch S and S, either both externally or both internally,
the line joining the points of contact will pass through the external
centre of similitude of S and §'. If = touch one externally and
the other internally, the line joining the points of contact will
pass through the internal centre of similitude.

Q
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*124. We shall conclude this chapter by investigating the
problem : To describe a circle to touch three given circles.
Let the equations of the three circles be

(@-a)+(y-bp -r»=0,0r S=0,
-a)y+(y-0Y-r=0, or S'=0,
(z-a)y+(y-0)»-r1=0, or S"=0.
We can determine the position of the centre of the touching
circle from the condition, that the distance between the centres of

any two touching circles must equal the sum of their radii.
Now-the square of the distance of any point from the centre

of (8) c(@-a)+(y-b)p=S+m

Hence we get the condition

S+r=(R+r);
and, in like manner,

S+ =(R+7r)
and 8"+ 7= (R +r")

[These equations, evidently, apply to the case of external con-
tact. If the contact with any of the cireles be internal, the dis-
tance between the centres will then = the difference of the radii,
and we must change the sign of r or 7 or #” in the preceding for-
mule. As this gives rise to the following different possible
combinations of signs,

Ty ++++--———,
¥y ++-—++--,
Yy t-+-+-+-,
there may be eight circles touching the three given circles.]
If now we eliminate R from the preceding formulz, we shall
get two equations which will enable us to determine the co-ordi-
nates of the centre of the touching circle.

Subtract the equations, and we get
S-8=2R(r-r), and S - 8" =2R(r - 1),
or S-§8 S-¥§

r—-r r-1"
This is the equation of the line joiniﬂg the centre of the touching
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circle to the radical centre (Art. 113). It may be written in the
more symmetrical form
F-MS+(-r)S+(r-r)8=0.
If we now write for S, &c., their values, the coefficient of z
in this equation is found to be
-2{a(r-r)+a'(" ~-r)+a'(r-7)),
and of y to be
—2(b(r =)+ V(" =)+ b (r-7)).

Now if we compare these coefficients with the coefficients in
the equation of the axis of similitude (Art. 122), we arrive at the
conclusion (see Art. 40) that the centre of the circle touching three
others lies on the perpendicular let fall from their radical centre on
the azis of similitude.

‘We saw that eight circles can be drawn to touch three given
circles, and as the three circles have four axes of similitude, the
centres of the touching circles will lie, & pair on each of the per-
pendiculars let fall from the radical centre on the four axes of
similitude.

Two circles answer to each axis of similitude ; for the equa-
tion of an axis of similitude (Art. 122) remains unaltered, if we
change in it the signs of all the radii. Hence the axis answering
to the case of external contact (or + » + '+ ") must also answer
to the case of internal contact (or - r -+ ~7"); and similarly for
the other axes of similitude. '

125. From the three equations found in the last article we can
obtain another relation between the co-ordinates of the centre of
the touching circle. This relation, however, will be of the second
degree, and, though sufficient for the algebraical solution of the
problem, does not enable us to represent the results in an elemen-
tary geometrical manner. To remove this inconvenience M. Ger-
gonne proposed to seek the co-ordinates not of the centre of the
touching circle, but of its point of contact with one of the given
circles. 'We have already one relation connecting these co-ordi-
nates, since the point lies-on a given circle ; therefore, if we can
find another relation between them, it will suffice completely to
determine the point.*

T Gergonne, Annales des Mathématiques, vol. vii. p. 289.
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Let us for simplicity take for origin the centre of the circle,
the point of contact with which we are seeking, that is to say, let -
us take a = 0, b = 0, then if A and B be the co-ordinates of the
centre of =, the sought circle, we have seen in the last article,
that they fulfil the relations

S-8=2R(r-7), S-8"=2R(r-7").
But if zand y be the co-ordinates of the point of contact of = with
S, we have from similar triangles
AR+ g y(B+r)
r r

Now if in the equation of any right line we substitute mz, my for
z and y, the result will evidently be the same as if we multiplied
the whole equation by m and subtract (m - 1) times the absolute
term. Hence, remembering that the absolute term in S — §' is
(Art. 110) 72 — 7* — a - b7, the result of making the above substi-
tutions for A-and B in (S -S)=2R(r-r)is

R—”(S S) + (a" + 8%+ 12— 1) = 2R (r -7,

or (R+r)(s-s')=R{('r-r')=-a'z-b'=;.
Similarly (R+7)(S-8")=R{(r-r")*-a"-05"}.
Eliminating R, the point of contact is determined as one of
the intersections of the circle S with the right line
S-§ - S-8
AP+ - (r-ry @+ - (r-o)

126. To complete the geometrical solution of the problem it -
is necessary to show how to construct the line whose equation has
been just found. It obviously passes through the radical centre
of the circles ; and a second point on it is found as follows. Write
at full length for S - S’ (Art. 110), and the equation is

2a/m + 2b/y + r/z__ rz - a12 — b'z _ 2a”w + 2b”y + 7‘”2 - rz _ a,,z _ b,,z
a,z + b’z - (1' - r’)ﬁ = a"g + b//, _ (1‘ _ 1‘”)2
Add 1 to both sides of the equation, and we have
az+by+(X-ryr adz+by+ (- - 7)r
a? + b2~ (r-») S an +5 = (r -7y
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showing that the above line passes through the intersection of
az+by+ (¥ -r)r=0, a’z+b"y+(r"-r)r=0.

But the first of these lines (Art. 118) is the chord;of common
tangents of the circles Sand S'; or, in other words (Art. 119), is
the polar with regard to S of the centre of similitude of these
circles. "And in like manner the second line is the polar of the
centre of similitude of Sand S”; therefore (since the intersection
of any two lines is the pole of the line joining their poles) the in-
tersection of the lines
dz+by+(r-r)r=0, a'z+by+(" -r)r=0

is the pole of the axis of similitude of the three circles, with re-
gard to the circle S.

Hence we obtain the following construction :

Drawing any of the four '
axes of similitude of the three §|
circles, take its pole with re-
spect to each circle, and join
~ the points so found (P, P, P)

with the radical centre; then,
if the joining lines meet the
circles in the points

(a, b5 d, b5 a", ),

the circle through a, @', a” will
be one of the touching circles,
and that through b, &, & will
be another. Repeating this process with the other three axes of
similitude, we can determine the other six touching circles.

127. It is useful to show how the preceding results may be
derived without algebraical calculations.

(1.) By Art. 123 the lines ab, a’¥, a"}" meet in a point, viz.,
the centre of similitude of the circles aa'a”, bbd".

(2.) Inlike manner a'a”, 43" intersect in S, the centre of simi-
litude of C', C".

(3.) Hence (Art. 121) the transverse lines a'¥, a0 intersect
on the radical axis of C', C". So again a'}", ab, intersect on the
radical axis of C", C. Therefore the point R (the centre of simi-
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litude of aa'a”, 6'b") must be the radical centre of the circles
G C,C".

(4.) In like manner, since a'¥, a'd" pass through a centre of
similitude of ad'a’, bb%"; therefore (Art. l2l) da”", bb" meet on
the radical axis of these two circles. So again the points § and
8§” must lie on the same radical axis; therefore SS'S", the azxis of
similitude of the circles C, C', C", is the radical axis of the circles
ad'a’, bbb,

(5.) Since a'b” passes through the centre of similitude of

aa'a’, bb'l', therefore (Art. 121) the tangents to these circles where
it meets them intersect on the radical axis S§'S". But this point
of intersection must plainly be the pole of a"5” with regard to the '
circle C". Now since the pole of a'd” lies on SS'S”, therefore
(Art. 96) the pole of SS'S” with regard to C" lies on a"d". Hence
a'b’ is constructed by joining the radical centre to the pole of
SS'S” with regard to C”. : '

(6 ) Since the centre of similitude of two circles is on the line
joining their centres, and the radical axis is perpendlcular to that
line, we learn (as in Art. 124) that the line joining the centres of

ada’, bbb passes through R, and is perpendicular to S8'S".
Ex. To describe a circle cutting three given circles at given angles,

By the help of (Ex. 5, Art. 117) this is reduced to the problem of the present article ;
or else the three equations

Ri—2Rrcosa=8, RI—-2Rr cosB=8, R?-2Rr"cosy="§"
may be discussed directly as in Art. 124,

CHAPTER X.

PROPERTIES COMMON TO ALL CURVES OF THE SECOND DEGREE,
DEDUCED FROM THE GENERAL EQUATION.

128. THE most general form of the equation of the second
degreeis Az + Bay+ Cy*+ Dz + Ey+ F =0,
where A, B, C, D, E, F are all constants.

The nature of the curve represented by this equation will vary
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according to the particular values of these constants. Thus we
saw (Chap. v.), that in some cases this equation might represent
two right lines, and (Chap. v1.) that for other values of the con-
stants it might represent a circle. It is our object in this chapter
to classify the different curves which can be represented by equa~
tions of the general form just written, and to obtain some of the
properties which are common to them all.*

Five relations between the coefficients are sufficient to deter-
mine a curve of the second degree. It is true that the general
equation contains séz constants, but it is plain that the nature of
the curve does not depend on the-absolute magnitude of these co-
efficients, since, if we multiply or divide the equation by any
constant, it will still represent the same curve. 'We may, there-
fore, divide the equation by F, so as to make the absolute term
=1, and there will then remain but five constants to be deter-
mined. .

Thus, for example, a conic section can be described through
Jive points. Substituting in the equation the co-ordinates of each
point (xy") through which the curve must pass, we obtain five
relations between the coefficients, viz.,

which will enable us to determine the five quantities, %, &e.

129. We shall in this chapter often have occasion to use the
method of transformation of co-ordinates ; and it will be useful to
find what the general equation becomes when transformed to
parallel axes through a new origin (#y'). We form the new equa-
tion by substituting z + 2’ for #, and y + ¥ for y (Art.8), and
we get
A(z+2)y+B(z+2)(y+y)+Cy +¥)*+ D(z+2)+ E(y+y)+ F = 0.

* We shall prove hereafter, that the section made by any plane in a cone standing on
a eircular base is a curve of the second degree, and, conversely, that there is no curve of
the second degree which may not be considered as a conic section. It was in this point of
view that these curves were first examined by geometers. We mention the property here,
because we shall often find it convenient to use the terms “conic section” or *eonic,”
instead of the longer appellation, * curve of the second degree.”



120 GENERAL EQUATION OF THE SECOND DEGREE.

Arranging this equation according to the powers of the va-
riables, we find that the coefficients of 2%, 2y, and 3?, will be, as
before, A, B, C; that

the new D, D'=2A2'+ By + D3
the new E, E'=2Cy + B2’ + E;
the new F, F'= As® + Bay'+Cy* + D/ + Ey + F.

Hence, if'the equation of a curve of the second degree be trans-
Jormed to parallel axes through a new origin, the coefficients of the
highest powers of the variables will remain unchanged, while the new
absolute term will be the result of substituting in the original equa-
tion the co-ordinates of the new origin.*

130. Every right line must meet a curve of the second degree
in two real, coincident, or imaginary points.

Let us first consider the case of lines which pass through the

* origin. The truth of the proposition will then easily appear by
transformation to polar co-ordinates. If the angle between the
axes be w, then for a line making angles a, (3, with the axes, we
saw (Art. 12) that z sin w = p sina, y sin w = p sin 3, or, as we shall
write for shortness, z = mp, y =np. Making these substitutions in
the general equation, we have, to determine the length of the ra-
dius vector to either of the points where the line (whose equation
obviously is my = nz) meets the curve, the quadratic,

(Am?* + Bmn + Cn?) p* + (Dm + En)p + F = 0.
Since this equation always gives two values for p, wd see, as in
Art. 81, that every line through the origin will meet the curve
in two real, coincident, or imaginary points.

The case of a line not passing through the origin is reduced
to the former, by transferring the origin to any point on the line.
The equation will then become ‘

Az +Bay + Cy» + Dz + Ey + F' = 0;
where D', E, F' have the values found in the last article, and the
distances from the new origin of the points where any line through
it meets the curve, are the two roots of a quadratic equation, pre-
cisely similar in form to that already given.

* This is equally true for equations of any degree, as‘can be proved in like manner.
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131. The next articles will be occupied with a discussion of
the different forms assumed by the quadratic just found for p,
according to the different values we may give the ratio m:n.
The reader will better understand the method we pursue if he
bear in mind the following elementary principles. Suppose that
we have to discuss any quadratic,

ap® +bp + ¢ =0,
its solution may be written in either of the following equivalent

forms,
_=b+y (¥ -4dac) 2¢ .
p= 2 TCbF ¥ (B - dac)’

the latter being the form in which the solution would have pre-
sented itself had we divided the given equation by p? and solved
it for the reciprocal of p.

1. If we have ¢ = 0, the quadratic is divisible by p, and one of

its roots is p = 0, the other being = — g. If we had not only ¢ = 0,

but also b = 0, then the quadratic would be divisible by p? and
both its roots would = 0.

11. If we have a =0, then one of the roots of the equation is
p=o. For if we had written the equation

({3 ene

it appears from the last case that when a =0 the two roots are

! =0, 1 =~ {), to which values correspond p =, p = - . The

P p : b
same thing may be seen by making a = 0 in the general form of
the solution. If not only a =0, but also 4 = 0, both the roots
= o0,

1. If b = 0, the roots of the quadratic are equal with oppo-
site signs.

1v. If we have b = 4ac, the two roots are equal, and we may
write either p = - §b; or=-— 2{ If 5 be greater than 4ac, the
roots of the quadratic are real ; if 4 be less than 4ac, the roots are
imaginary.

R
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132. Let us now apply these principles to the equation which
determines the points where the line (my = nz) meets the curve,
viz. (Am* + Bmn + Cn*)p* + (Dm + En)p + F = 0.

‘1. Let'F = 0. In this case one of the values of p is = 0, or
the origin is one of the points where the line meets the curve
(see also Art. 79). The other value is

Dm + En
.. P =" Am* + Bmn + Cn*
If, however, we have not only F' = 0, but also the line be drawn
in such a direction that D + En = 0, then the second value of p
is also = 0: the line (my = nz) meets the curve in two coincident
points at the origin, or, in other words, is a tangent at the origin.
Multiplying by p the equation Dm + Er = 0, and remembering
that mp = x, np = y, we find the equation of the tangent at the
Ol'igin’ viz. Dz + Ey = 0.
Ex. 1. Find the tangent at the origin to
522+ Tzy+ W~z + 29 =0. Ans. x=12y.
Ex, 2. The point (1, 1) is on the curve
8r3—4zy 4+ 2+ Tx oy ~ 8 =0; °
transform the equation to parallel axes through this point, and find the tangent at it.

Ans. 9z — by = 0 referred to the new axes, or 9 (z—1)~56(y —1)=0
referred to the old.

133. To find the equation of the tangent at any point 'y’ on
the curve. . .

Transform to parallel axes through zy/, and (Art.129) F'
will vanish, since z'y is on the curve. The equation of the tan-
gent will then be D'z + E'y = 0 referred to the new axes, or
D'(z-2) + E (y - y) = 0 referred to the old. Write for D’ and
E' the values found in Art. 129, and the equation of the tangent
is (2A2'+ By + D) (z-a)+ (B2 +2Cy +E)(y-y) =0,
which may be written in a simpler form by adding to both sides
the identity

2Az" + 2Bzy + 2Cy”? + 2Dz’ + 2Ey + 2F = 0,

when the equation of the tangent becomes
(2A7 + By + D)z + (Ba'+2Cy +E)y + D'+ Ey + 2F = 0.

‘ om *
.
.
£
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This equation might also have been found by the method pur-
sued in Art. 84.
Ex. Find the tangent at (2, 1) to
' 8a% + 42y + by*~ 72— 8y -8=0.
Ans. 9x + 10y = 28.

134. 1. Let us next consider the case in which one value of
p may become infinite. 'We have seen (Art. 131) that this will
be the case when the coefficient of p? vanishes in the quadratxc
which determines p; or, in other words, when ’

Am? +Bmnr + Cn?=0.

If then m:n be taken so as to satisfy this relation, the line
(my = nz) will meet the curve in one infinitely distant point:
the other value of p will in general remain finite, and will
F
. " Dm + En’

Since two values of m : n can in general be found, which will
render Am* + Bmn + Cn* = 0, there can be drawn through the
origin two real, coincident, or imaginary lines, which will meet the
curve at an infinite distance,’and each of these lines will only meet
the curve in one other point. If we multiply by p? the equation
Am? + Bmn + Cn? = 0, and substitute for mp and np-their values
zand y, we obtain for the equation of these two lines,

Az + Bay + Cy* =

‘We may prove, by the transformation of co-ordinates, as in
Art. 130, that there are two directions in which lines can be drawn
through any point to meet the curve at infinity ; and, since it was
proved, in Art. 129, that the coeﬁicientg A, B, C were unaltered
by transformation, we obtain for every point the very same
quadratic, Am?* + Bmn + Cn® = 0, to determine those directions.
Hence, if'through any point two real lines can be drawn to meet
the curve at infinity, parallel lines through any other point will
meet the curve at infinity.* .

* This, indeed, is evident geometrically, since parallel lines may be considered as
passing through the same point at infinity.

[ ) L]
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135. The most important question we can ask, concerning the
form of the curve represented by any equation, is, whether it be
limited in every direction, or whether it extend in any direction
to infinity. We have seen, in the case of the circle, that an equa-
tion of the second degree may represent a limited curve, while
the case where it represents right lines shows us that it may also
represent loci extending to infinity. It is necessary, therefore,
to find a test whereby we may distinguish which class of locus is
represented by any particular equation of the second degree.

‘With such a test we are at once furnished by the last article.
For if the curve be limited in every direction, no radius vector
drawn from the origin to the curve can have an infinite value;
but we found in the last Article, that, in order that the radius vec-
tor should become infinite, we must have Am?+ Bmn + Cn?= 0.

(1.) If now we suppose B? - 4AC
to be negative, the roots of this equa-
tion will be imaginary, and no real
value of m : » can be found which will
render Am?+ Bmn + Cn* = 0. In this
case, therefore, no real line can be /
drawn to meet the curve at infinity,
and the curve will be limited in every direction. "We shall show,
in the next chapter, that its form is that represented in the figure.
A curve of this class is called an Ellipse.

(2.) If B* - 4AC be positive,
the roots of the equation

Am? + Bmn + Cn?* = 0
will be real; consequently, there \
are two real values of m:n which \

o X

will render infinite the radius vector
to one of the points where the line
(my = nx) meets the curve. Hence, = //f\. \

two real lines (Aa? + Bay + Cy?=0) _

can, in this case, be drawn through the origin to meet the
curve at infinity. A curve of this class is called an Hyperbola,
and we shall show, in the next chapter, that its form is that re-
presented in the figure.
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(3.) If B2 - 4AC = 0, the roots
of the equation.Am*+ Bmn + Cn*= 0
will then be equal, and, therefore,
the two directions in which a right
line can be drawn to meet the curve .
at infinity will in this case coincide.
A curve of this class is called a —&
Parabola, and we shall (Chap.xi1.) =~ /
show that its form is that here represented.

136. In applying to Examples the principles just laid down,
the following are some of the particular cases which most fre-
quently present themselves :—

(1.) The circle is a particular form of the ellipse, for, since

“in the most general form of the equation of the circle C = A,
B =2A cosw (Art. 78), we have

B - 4AC = - 4A%sin*w,

and, therefore, always negative.

(2.) If B =0, the curve will be an ellipse if A and C have
the same sign ; but an hyperbola if they have different signs.

(3.) Ifeither A or C =0, and B not =0, the quantity B:~4AC
will reduce to B?, which being essentially positive, the curve is
an hyperbola. '

In the case where A = 0 the axis of z is itself one of the lines
which meet the curve at infinity; and where C =0, the axis of y;
these lines being in general given by the equation

Aa? + Bay + Cy* = 0.
‘ (4.) If either A or C be = 0, and at the same time B = 0,
then B? - 4AC = 0, and the curve is a parabola.

(5.) In general the curve will be a parabola, if the three first
terms form a perfect square.

Ex. Determine the species-of each of the following curves:

83+ 4ry+ b6y —22-Ty—-4=0. Ans.  Ellipse.
222+ 2y —y?+ 8x+y=0. . Ans. Hyperbola.
-22y+yt—2-y-1=0. Ans. Parabola.
x 22y y* 22 2

dT e a5 =" ns Parabola.

-~



126 GENERAL EQUATION OF THE SECOND DEGREE.

137. 1. Let us next examine the case where the value of
m:n is such that the quadratic (Art. 130) which determines p

has its roots equal with opposite signs. This will be the case - '

(Art. 131) when Dm + En = 0.
The points answering to the equal and opposite values of p. -
are equidistant from the origin, and on opposite sides of it;
therefore, the chord represented by the equation Dz + Ey = 0 is
bisected at the origin. '
Hence, through any given point can in general be drawn one
chord, which will be bisected at that point.

138. There is one case, however, where more chords than one
can be drawn, so as to be bisected, through a given point.

If, in the general equation, we had D = 0, E = 0, then the
quantity Dm + En would be = 0, whatever were the value of m : n ;
and we see, as in the last Article, that in this case every chord
drawn through the origin would be bisected. The origin would
then be called the centre of the curve. Now, although for any
origin, taken arbitrarily, the quantities D and E are not = 0, yet
we see, that if the curve have a centre, by taking this point-for
our origin, the quantities D and E will vanish; or, conversely,
that if the axes be transformed to any new origin, so that the co-
efficients of z and y may vanish, then will the new origin be a
‘centre of the curve. :

In order to determine whether it be possible, by transforma-
tion of co-ordinates, to make the new D and E = 0, we have only
to refer to the formule® given in Art. 129, whence we.find, that
the co-ordinates of the new origin must fulfil the conditions

2Az' + By + D=0, 2Cy' + B2’ + E =0.

These two equations are sufficient to determine 2’ and y/, and,
. being linear, can be satisfied by only one value of z and y; hence,
Conic sections have in general one, and only one centre.

Its co-ordinates are found, by solving the above equations, to

be BE - 2CD BD - 2AE

- T B - 4AC "B -4AC "

In the ellipse and hyperbola B? - 4AC is always finite (Art.-
135); but in the parabola B2 - 4AC = 0, and the co-ordinates of
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the centre become infinite. The ellipse and hyperbola are hence
often classed together as central curves, while the parabola is
called a non-central curve. The student must be careful, how-
-ever, to remember that, strictly speaking, every curve of the se-
cond degree has a centre, although in the case of the parabola
“this centre is situated at an infinite distance.

. 139. Tofind the locus of the middle points of chords, parallel
to a given line, of a curve of the second degree.

We saw (Art. 137) that a chord through the origin my = nz
is bisected if Dm + En = 0. Now, transforming the origin to any
point, it appears, in like manner, that a parallel chord will be
bisected at the new origin if m times the new D + n times the
new E = 0, or (Art. 129) '

. m(2A7 + By + D)+ 2(Ba’ + 2Cy + E)=0.
This, therefore, is a relation which must be satisfied by the co-
ordinates of the new origin, if it be the middle point of a chord

parallel to my = nz. Hence the middle point of any parallel chord
must lie on the right line

m(2Az + By + D)+ n(Bz + 2Cy + E) = 0,

which is, therefore, the required locus.
Every right line bisecting a system of parallel chords is called
a diameter, and the lines which it bisects are called its ordinates.
The form of the equation shows (Art. 36) that every diameter
must pass through the intersection of the two lines

2Az+By + D=0, and 2Cy + B2+ E = 0;

but, these being the equations by which we determined the co-
ordinates of the centre (Art. 138), we

infer, that every diameter  passes through M
the centre of the curve.
Since N
X

m(2Az +By+D) + n(Bz+2Cy +E)=0
is the equation of the diameter bisect~ /

ing chords parallel to my = nz, it appears, by making m and n_
altermately = 0, that 92Az +By+ D=0 -

It



128 GENERAL EQUATION OF THE SECOND DEGREE.

is the equation of the diameter bisecting chords parallel to the
axis of z, and that

2Cy+Ba;+E=0.

is the equation of the diameter
bisecting chords pafallel to the
axis of y.

In the parabola B?=4AC,
or “"TA = %,and hence the line ~
2Az + By + D = 0 is parallel to the line 2Cy+ Bz + E = 0; con-
sequently, all diameters of a pa-
rabola are parallel tv each other.
This, indeed, is evident, since we
have proved that all diameters
of any conic section must pass
through the centre, which, in the
case of the parabola, is at an in-
finite distance ; and since parallel
right lines may be considered as /
meeting in a point at infinity.*

The familiar example of the circle will sufficiently illustrate
to the beginner the nature of the diameters of curves of the second
degree. He must observe, however, that diameters do not in
general, as in the case of the circle, cut their ordinates at right
angles. In the parabola, for instance, the direction of the dia-
meter being invariable, while that of the ordinates may be any
whatever, the angle between them may take any possible vilue.

140. The direction of the diameters of a parabola is the same
as that of the line through the origin which meets the curve at an
tnfinite distance. \

For the lines through the origin which meet the curve at in-

ﬁnity are (Art. 134) Ax® + Bzy + Cy’ =0,

* Hence, given any conic section, we can find its centre geometrically. For if we
draw any two parallel chords, and join their middle points, we bave one diameter. In
like manner we can find another diameter. Then, if these two diameters be parallel, the
curve is a parabola, but if not, the point of intersection is the centre.
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or, writing for B its value, ¢ (4AC),
(vAz + yCy)=0.
But the diameters are parallel to 2Az + By = 0 (by the last Ar-
" ticle), which, if we write for B the same value, v/ (4AC), will also
reduce to VAz + yCy=0.

Hence every diameter of the parabola meets the curve once at
infinity, and, therefore, can only meet it in qne finite point.

141. Iftwo diameters of a conic section be such, that one of
them bisects all chords parallel to the other, then, conversely, the
second will bisect all chords parallel to the first.

The equation of the diameter which bisects chords parallel to
my = nx is (Art. 139) ‘

(2Am + Ba)z + (Bm + 2Cn) y + Dm + En < 0.

If then this be parallel to m’y = n'z, we must have
'm_ Bm+2Cna
7 2Am + Bn’
or 2Amm’ + B(m'n + mn’) + 2Cnn’ = 0.

But the symmetry of the equation shows that it is also the con-
dition that the line my = nz should be parallel to the diameter
bisecting the chord m'y = #'z.

Diameters so related, that each bisects every chord parallel to
the other, are called conjugate diameters.*

If in the general equation B = 0, the axes will be parallel to

" a pair of conjugate diameters.

For the diameter bisecting chords parallel to the axis of z will,.
in this case, become 2Az + D = 0, and will, therefore, be parallel
to the axis of y. In like manner, the diameter bisecting chords
parallel te the axis of y will, in this case, be 2Cy + E = 0, and
will, therefore, be parallel to the axis of .

142. 1v. Lastly, let us discuss the case, when the equation
which determines p has equal roots. When this is the case, the

* It is evident that none but central curves can have conjugate diameters, since in’
the parabola the direction of all diameters is the same.

s
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line my = nz will meet the curve in two coincident points, and
will therefore touch it. Now (Art. 131) the equation

(Am* + Bmn + Cn*)p* + (Dm + En)p + F =0
will have equal roots if
(Dm + En)? = 4F (Am* + Bmn + Cn?).

Since this gives us a quadratic to determine m : n, we see that
through the origin can always be drawn two real, coincident, or
imaginary tangents. Multiplying by p*, the equation just found,
and substituting » and y for mp, np, We obtain the equation of the
pair of tangents through the origin, viz.,

(D* - 4AF)a* + 2(DE - 2BF) zy + (E* - 4CF) »* = 0.

It is only necessary to notice particularly the case where these
two tangents coincide. If we apply the condition that the equa-
tion just obtained should have equal roots, we get

(D* - 4AF) (B - 4CF) = (DE - 2BFY,
or  4F(AE:+CD*+ FB - BDE - 4ACF) = 0.

This will be satisfied, if F = 0, that is, if the origin be on the
curve. Hence, any point on the curve may be considered as the
intersection of two coincident tangents, just as any tangent may be
considered as the line joining two coincident points.

The equation will also have equal roots if

AE? + CD* + FB: - BDE - 4ACF = 0.

Now we obtained this equation (p.67) as the condition that the
equation of the second degree should represent two right lines.
" To explain why we should here meet with this equation again,
it must be remarked that by a tangent we mean in general a line
which meets the curve in two coincident points ; if them the curve
reduce to two right lines, the only line which can meet the locus
in two coincident points is the line drawn to the point of inter-
section of these right lines, and since two tangents can always be
drawn to a curve of the second degree, both tangents must in
.this case coincide with the line to the point of intersection.

143. To find the equation of the line j jommg the points of con-
tact of tangents through the origin.
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‘We have seen in the last article that if m' : #' be either of the
roots of

(D? - 4AF) m* + 2 (DE - 2BF) mn + (E* - 4CF) »* = 0,
the line m'y = n'z will touch the curve, and the quadratic
(Am”* + Bm'n' + Cn?) p* + (Dm' + En)p+ F =0
wil{ have equal roots. But (Art. 131) when ap®+ bp + ¢ = 0 has

equal roots, the common value of the equal roots is — 2—c The

b
value, therefore, of the radius vector to the point of contact is
P=—Dm-+FEn" orDm’p+En’p+2F=0.

The co-ordinates, then, of either point of contact satisfy the
relation Dz + Ey + 2F =0,

which is the equation of the line required. This is the equation
of a real line, whether the tangents through the origin be real or
imaginary. We shall call it, as in the case of the circle, the polar
of the origin, and, conversely, we shall call the origin the pole of
this line. -

144. To find the equation of the polar of any point 'y

If we transform the equation to parallel axes through 'y, the
polar of the new origin is D'z + E'y + 2F' = 0, or, transforming
back to the old origin by writing z — 2’ for 2, and y - y' for y,

D@E-2)+E@W-y)+2F =0.

Writing for D', E, F' their values (Art. 129), and reducing

as in Art. 133, we find for the equation of the polar

(2A7' + By + D)z + (B« + 2Cy’' + E)y + Dz’ + Ey' + 2F = 0.

Comparing this with the equation found in Art. 133, we see that
the polar of any point on the curve is the tangent at that point.

145. The polar of the origin (Dz + Ey + 2F =0) is parallel to
the chord (Dz + Ey = 0) drawn through the origin so as to be*
bisected, which evidently is an ordinate to the diameter passing
through the origin. Hence, the polar of any point is parallel to
the ordinates of the diameter passing through that point. This in-
cludes, as a particular case: The tangent at the extremity of any
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diameter is parallel to the ordinates of that diameter. Or, again,

in the case of central curves, since the ordinates of any diameter

are parallel to the conjugate diameter, we infer that, The polar

of any point on a diameter of a central curve is parallel to the con-
! Jugate diameter.

. 146. If any point (x"y") be taken on the polar of (z'y ), its polar
must pass through (z'y').

For, the condition that (#"y") should lie on the polar of (.z 'y
is (Art. 144),

(2Az + By + D)2" + (2Cy' + B2’ + E)y’ + Dz’ + Ey + 2F = 0.
But this may be arranged

(2Az" + By"+ D)&' + (2Cy"+ Ba" + E)y + Da” + Ey"+ 2F =0,
and is, therefore, also the condition that (z'y") should lie on the
polar of (2"y")

The form of the equation of the polar indicates (see Art. 50)
that, ifany point move along a fizxed right line, its polar must always
pass through a fized point, namely, as appears from this article, the
pole of the fixed line.

The theorem of this article may also be stated thus: Tke in-
tersection of any two lines ts the pole of the line joining their poles ;
or, conversely : The line joining any two points is the polar of the
intersection of the polars of these points. For the polars of any
two points on the polar of #’y intersect in 2'y'.

147. If on any radius vector through the origin, OR be taken
an harmonic mean between OR' and OR” to prove that R lies on
the polar of O. '

‘We found (Art. 130) that OR’, OR” / R”
were determined by the quadratic
(Am? + Bmn + Cn?) p? : ;/

+(Dm + En)p + F = 0.

; %
Hence, by the theory of equations,
2 1 1 Dm+En d
OR"OR*OR ™" F \

In order to find the locus of R we
must write # and y for m- OR and
n- OR, and the equation of the locus is
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Dz + Ey + 2F = 0,
that is, the equation of the polar of the origin.
Hence, any line drawn through a point is cut harmonically by
the point, the curve, and the polar of the point.*

148. If two lines be drawn through any point, and the points
- joined where they meet a curve of the second degree, the joining
lines will intersect on the polar of that point.

The proof given (p. 90) of this property in the case of the
circle will apply, word for word, to conics in general, since no
use was made of the equality of the coefficients of #* and y.

If through a point O any line OR be drawn, the tangents at
R’ and R” will meet on the polar of O.

This is a particular case of the preceding theorem, namely,
where the two lines are supposed to coincide; or else it follows
immediately from Art. 146, since the pole of any chord through °r V Pk
O must lie on TT'; and by the pole of the line we mean the in- R'F",
tersection of tangents at the points where it meets the curve.t

149. Ifany line (OR) be drawn through a point (O), and (P)
the pole of that line, be joined to O, then the lines OP, OR will
Jorm an harmonic pencil with the tangents from O.

For, since OR is the polar of P, PTRT' is cut harmonically,
therefore OP, OT, OR, OT’, form an harmonic pencil.

Ex. 1. If a quadrilateral, ABCD, be inscribed
in a conic section, any of the points E, F, O, is the E
pole of the line joining’the other two.

Since EC, ED, are two lines drawn through
the point E, and CD, AB, one pair of lines joining c
the points where they meet the conic, these lines |D

maust intersect on the polar of E; so must also AD -
and CB; therefore, the line OF is the polar of E. I
In like manner it can be proved that EF is the F

polar of O, and EO the polar of F. A 'B

Ex. 2. To draw a tangent to a given conic section from a point outside, with the
help of the ruler only.

# For an enumeration of some of the particular cases included in this theorem, the
reader is referred to the section (Chap. xv.) on the anharmonic properties of conics.

¥ From this property the polar of a point might have been defined as the locus of the
intersection of tangents at the extremities of any chord passing through the point. This
definition applies, whether the point be within or without the conic.
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Draw any two lines through the given point E, and complete the quadrilateral as in
the figure, then the line OF will meet the conic in two points, which, being joined to E,
will give the two tangents required.

Ex. 8. If a quadrilateral be circumscribed about a conic section, any diagonal is the
polar of the intersection of the other two.

‘We shall prove this Example, as we might have proved Ex. 1, by means of the har-
monic properties of a quadrilateral. It was proved (p. 57) that EA, EO, EB, EF, are
an harmonic pencil. Hence, since EA, EB, are, by hypothesis, two tangents to a conic

. section, and EF a line through their point of intersection, by Art. 149, EO must pass
through the pole of EF ; for the same reason, FO must pass through the pole of EF: this
pole must therefore be O.

*150. The theorem of Art. 147 may also be proved by a pro-
cess precisely similar to that employed (Art.89). We may seek
the ratio in which the line joining two points is cut by the curve.

"+mx ly'+m
Substxtutmg T ] Tom my

termined by the quadmtic
: I’(Az" + Bz"y" + Cy”? + Da" + Ey’ + F)
+ Im{(2A2" + By"+ D)2’ + (B2"+2Cy"+ E) ¥ + D2" + Ey” + 2F)
+m? (Az"+Ba'y' + Cy?+ Do’ + Ey' + F) = 0.
Now if 2y" be on the polar of z'y’ the coefficient of im vanishes,
the roots of the equation are of the form / =+ um, and the line
joining the points is cut harmonically.
The same equation enables us to form the equation of the
pair of tangents drawn from any point to the curve. For if
z'y" lie on either of the tangents through zy, the equation for
l m must have equal roots, and 2"y must therefore satisfy the
equation
4(Az*+Bzy+Cy*+ Dz+ Ey + F) (A2?+Bzy'+Cy*+ Dz'+Ey + F)
= {(2A7' + By'+ D) 2 + (B2’ + 2Cy' + E) y + Dz’ + Ey + 2F )2,
1561. If through any point O two chords be drawn, meeting the
curve in the points R, R’, S, S, then the ratio of the rectangles
(0)2, gg,, will be constant, whatever be the position of the point O,
provided that the directions of the lines OR, OS be constant.

For, from the equation given to determine p in Art. 130, it
appears that

, for z and y, the ratio /: m is de-

’ ’ F
OR-OR’ - Am* + Bmn + Cn?’
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In like manner

0S.08’ = F

Am*® + Bm'n’ + Cn?’

OR-OR"  Am* + Bm'n' + Cn*
OS.0S" ~ Aw* + Bmn + Cr*’

But this is a constant ratio: for A, B, C remain unaltered
when the axes are transformed to any new origin (Art. 129),
and m, n, ', n’ depend only on the angles which the radius vec-
tor makes with the axes, and are therefore constant while the
direction of this radius vector is constant.

The theorem of this Article may be otherwise stated thus:
If through two fized points O and O’ any two parallel lines OR and

’ "

, . . OR' .
be d e -
o be drawn, then the ratio of the rectangles 070y will be con

hence

stant, whatever be the digection of these lines.
For, these rectangles are
F ¥
Am? + Bmn + Cn®  Am*+ Bmn + Cn?

(¥ being the new absolute term when the equation is transferred

to O as origin); the ratio of these rectangles = %,,‘and is, t'here-

fore, independent of m and n.
This theorem is the generalization of Euclid, 1. 35, 36.

152. The theorem of the last Article includes under it seve-
ral particular cases, which it is useful to notice separately.

I. Let O’ be the centre of the curve, then O’p’ = O'p" and the
quantity O'p’-O'p" becomes the square of the semldxameter parallel
to OR'. Hence, The rectangles under the segments of two chords
which intersect are to each other as the squares of the diameters
parallel to those chords.

IL. Let the line OR be a tangent, then OR’ = OR”, and the
quantity OR-OR" becomes the square of the tangent ; and, since
two tangents can be drawn through the point O, we may extract
the square roots of the ratio found in the last paragraph, and in-
fer that T'wo tangents drawn through any point are to each other
as the diameters to which they are parallel.
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III. Let the line OO’ be a diameter, and OR, O'p, parallel to
its ordinates, then OR'= OR" and O’ = Op". Let the diame-
OR? O'pz
A0-OB "AO-0B’
Hence, The squares of the ordinates of any diameter are propor-
tional to the rectangles under the segments which they make on the

diameter.

153. There is one case in which the theorem of Article 151
becomes no longer applicable, namely, when the line OS is pa~
rallel to one of the lines which meet the curve at infinity; the
segment OS” is then infinite, and OS only meets the curve in
one finite point. We propose, in the present Article, to inquire

’

ter meet the curve in the points A, B, then

whether, in this case, the ratio OR(,)SOR,, will be constant.

Let us, for simplicity, take the line OS for,our axis of z, and
OR for the axis of y. Since the axis @ # is parallel to one of

the lines which meet the curve at infinity, the term A will =

(Art. 136(3)), and the equation of the curve will be of the form
Bzy+ Cy*+ Dz + Ey + F = 0.
Making y = 0, the intercept on the axis of 2 is found to be

OS'=- % ; and making « = 0, the rectangle under the intercepts

~

on the axis of y is =E.

C
Hence oS C
OR'OR" "D . ‘
Now, if we transform the axes to any parallel axes (Art. 129),
C will remain unaltered, and the new D = By + D.
Hence the new ratio will be

.
By +D’

% Now, if the curve be a parabola, B =0, and this ratio is constant;
-hence, if a line parallel to a given one meet any diameter (Art.140)

of a parabola, the rectangle under its segments is in a constant .
ratio to the intercept on the diameter.
If the curve be a hyperbola, the ratio will only be constant
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while y' is constant ; hence the intercepts made by two parallel
chords of a hyperbola, on a parallel to an asymptote, are propor-
tional to the rectangles under the segments of the chords.

*154. To find the condition that the line ax + by +c =0
should touch the conic represented by the general equation.

Solving for y from az + by + ¢ = 0, and substituting in the
general equation, the abscissz of the points where this line meets
the conic are determined by the quadratic

(Ab*-Bab+Ca?)z*—(Bbec—-2Cac- Db* + Eab) z + Cc* - Ebc + Fb*= 0.

Ifthe line touch the conic, this quadratic will have equal roots, or

(Bbc - 2Cac - Db*+ Eab)*= 4 (Ab* - Bab + Ca?) (Cc* - Ebe + Fb?).

Multiplying out, this equation becomes divisible by 4, and may

be arranged

(E*-4CF)a*+ (D*~ 4AF) b+ (B*- 4AC) c*+ 2(2AE - BD) bc
+2(2CD - BE) ca + 2 (2BF - DE) ab = 0.

MiscELLANEOUS EXAMPLES.

Ex. 1. To find the equation of the conic which makes intercepts a, a’, b, b’ en
the axes.

The intercepts on the axes are given by the quadratics

#—(a+a)z+aa’=0, y*—(b+d)y+b'=0,
but these must be what the general equation becomes when in it we make y = 0,2=0;
hence the equation is
bb'a3 + Bzy + ad’yd — b’ (a + @)z — aa’ (b + b') y + ad’bb' = 0,
where B is still indeterminate.

Ex. 2. To find the equation of the parabola which touches the axes at points
rx=a y= b.

In the preceding make a = a’, b = ¥, and determine B by the condition B2 = 4AC,
and we find

b22% — 2abzy + a?y? — 2b2azr — 2a2by + a?b? = 0.
We give the sign — to the coefficient of zy, since if we gave the sign + it would not re-
present a parabola, but the square of the line bz -+ ay — ab = 0.

Ex. 3. Given four points on a conic, the polar of any fixed point passes thr‘o;xgh a
fixed point.

Take for axes two opposite sides of the quadrilateral formed by the points ; then form
by Art. 144 the polar of =y’ with regard to the conic found in Ex. 1, and it will contain
the indeterminate B in the first degree, and therefore passes through a fixed point.

Ex. 4. Find the locus of the centre of a conic passing through four given points.

The centre of the conic in Ex. 1 is given by the equations

2bb'z + By — bb'(a + a)=0, 2aa’y+ Bz — aa’'(d+ b)) =0.
T
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Eliminate the indeterminate B, and the locus is

2bb'z3 — 2aa’y? — bb'(a + @)z — aa’ (b + ¥)y = 0,
a conic passing through the intersections of each of the three pair of lines which can be
drawn through the four points, and through the middle points of those lines.

CHAPTER XI.

EQUATIONS OF THE SECOND DEGREE REFERRED TO THE CENTRE
“* AS ORIGIN.
*1565. In investigating the properties of the ellipse and hyper-
bola, we shall find our equations much simplified by choosing the
“centre for the origin of co-ordinates. If we transform the gene-
ral equation of the second degree to the centre as origin, we saw -
(Art. 138) that the coefficients of z and y will = 0 in the trans-
formed equation, which will be of the form

Az + Bay + Cy*+ F' = 0.
It is sometimes useful to know the value of F' in terms of the co-
efficients of the first given equation. We saw (Art. 129) that
. F' = Aaz” + B2’y + Cy?+ D2’ + Ey + F,
whege 7/, y', are the co-ordinates of the centre. The calculation
« of thgamay be facilitated by putting ¥ into the form

o 5{ (2A2 + By + D)@ + (2Cy + B« + E) y + Daf + Ey/ + 2F).

The first two terms must be rendered = 0 by the co-ordinates
of the centre, and the last (Art. 138)

2CD - BE 2AE -BD

=D-g—gac B morac
Hence
o AB4 CD: + FB - BDE - 4ACF
T4AC

156. If the numerator of this fraction were = 0, the trans-
formed equation would be reduced to the form

Az + Bzy + Cy? = 0,
and would, therefore (Art. 69), represent two real or imaginary
right lines, according as B? — 4 AC is positive or negative. Hence,
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as we have already seen, p. 67, the condition that the general
equation of the second degree should represent two right lines, is

AE: + CD? + FB* - BDE - 4ACF = 0.
For it must plainly be fulfilled, in order that when we transfer
the origin to the point of intersection of the right lines, the abso-
lute term may vanish. '

Ex. 1. Transform 82°+ 4ay + ¥y — bz — 6y — 8 = 0 to the eentre(;, - 4).

Ans. 1229+ 162y + 4y + 1= 0.
Ex. 2. Transform 23+ 2zy — 32 + 82 + 4y — 8 = 0 to the centre (— 8, — 1).
Ans. 2% + 22y — y? = 22.

157. We have seen (Art. 134) that the equation
Az + Bay + Cy2 =0
represents the real or imaginary lines drawn through the origin
to meet the curve at infinity ; and that each of these lines will
meet the curve in one other point, at a distance from the origin,
. -F
P~ Dm + En’

But if the origin be the centre, we have D=0, E=0, and this
distance will also become infinite. Hence two lines can be drawn
through the centre, which will meet the curve in two coincident
points at infinity, and which therefore may be considered as tan-
gents to the curve whose points of contact are at infinity. These
lines are called the asymptotes of the curve; they are imaginary
in the case of the ellipse, but real in that of the hyperbola. We
shall show hereafter that though the asymptotes do not meet the
curve at any finite distance, yet that the further they are pro-
duced the more nearly they approach the curve.

Since the points of contact of the two real or imaginary tan-
gents drawn through the centre are at an infinite distance, the
line joining these points of contact is altogether at an infinite dis-
tance. Hence, from our definition of poles and polars (Art. 143)
the centre may be considered as the pole of a line situated altogether
at an infinite distance. 'This inference may be confirmed from
the equation of the polar of the origin, Dz + Ey + 2F = 0, which,
if the centre be the origin, reduces to F = 0, an equation which
(Art. 64) represents a line at infinity.
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158. We have seen that by taking the centre for origin the
coefficients D and E in the general equation can be made to va-
nish; but the equation can be further simplified by taking a pair
of conjugate diameters for axes, since then (Art.141) B will
vanish, and the equation be reduced to the form

Az + Cy? = F.

It is evident, now, that any line parallel to either axis is bisected
by the other, for if we give to # any value, we obtain equal and
opposite values for y. Now the angle between conjugate diame-
ters is not in general right; but we shall show that there is
always one pair of conjugate diameters which cut each other at
right angles. These diameters are called the azes of the curve,
and the points where they meet it are called its vertices.

The equation of the diameter conjugate to my = nx is

m(2Az+ By + D) + n(2Cy + Bz + E) = 0,
(Art. 141) ; and this will be perpendicular to my = na (Art. 40)
if (2Am + Br)n - (Bm + 2Cn) m = 0,
or Bm? - 2(A-C)mn - Br? = 0;
or, multiplying by p? and writing z, y for mp, np,

: Bz~ 2(A-C)ay - By*= 0.

This is the equation of two real lines at right angles to each other
(Art. 70); we perceive, therefore, that central curves have two,
and only two, conjugate diameters at right angles to each other.

On referring to Art. 71 it will be found, that the equation
which we have just obtained for the azes of the curveis the same
as that of the lines bisecting the internal and external angles be-
tween the real or imaginary lines represented by the equation

Az? + Bay + Cy* = 0.
The axes of the curve, therefore, are the diameters which bisect
the angles between the asymptotes; and (note, p. 66) they will
be real whether the asymptotes be real or imaginary: that is to
say, whether the curve be an ellipse or an hyperbola.

150. We might have obtained the results of the last Article
by the method of transformation of co-ordinates, since we can
thus prove directly that it is always possible to transform the
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equation to a pair of rectangular axes, such that the coefficient
of zy in the transformed equation may vanish. Let the original
axes be rectangular; then, if we turn them round through any
angle 0, we have (Art. 9) to substitute for z, zcos - y sin0,
and for y, #sin@ + y cos@; the equation will therefore become

A(zcos-ysinh)* + B (zcosf - ysin0) (x&inb + y cos )
+C(zsinf + ycosh)*= F;
or, arranging the terms, we shall have
the new A = A cos?0 + B cos@sinf + Csin?0;

the new B = 2Csin0 cos + B(cos?0 - sin*f) — 2A sinf cos 0 ;
the new C = A sin*60 - B cos sin@ + C cos?0.

Now, if we put the new B =0, we get the very same equation to
determine tanf, which we had, in Art. 158, to determine m: n.
This equation gives us a simple expression for the angle made
with the given axes by the axes of the curve, namely,
B
tan 20 = ..A_-(j‘

160. When it is required to transform a given equation to the
form Az* + Cy* = F, and to calculate numerically the value of
the new coefficients, our work will be much facilitated. by the
following theorem : [f'we transform an equation of the second de-
gree from one set of rectangular axes to another, the quantities
A + C, and B* - 4AC, will remain unaltered.

The first part is proved immediately by adding the values of
the new A and C (Art. 159), when we have

A+C=A+C.
To prove the second part, write the values in the last article,

2A’= A + C + Bsin20 + (A - C) cos 20,
2C' = A +C-Bsin20 - (A - C) cos 20.

Hence

4A'C = (A + C)* - {Bsin 20 + (A - C) cos 20}
But B2 = {B cos 20 - (A - C) ¢in 20}?;
therefore,

B*- 4AC' =B+ (A - C)* - (A + C)* = Bt - 4AC.
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When, therefore, we want to form the equation transformed to
the azes, we have the new B = 0,

A'+C=A+C, 4A'C'=4AC - B

Having, therefore, the sum and the product of A’and C’, we can
form the quadratic which determines these quantities.

Ex. 1. Find the axes of the ellipse 14z% — 4y + 1148 = 60, and transform the
equation to them.
The axes are (Art. 158) 442 + 62y — 4yt=0, or (22 — y) (z + 2y) = 0.
Wehave A’ + C'=25; 4A'C’' = 600; A’ = 10; C'=15; and the transformed equa-
tion is 243 + 8% = 12.
" Ex. 2. Transform the hyperbola 1122 + 84zy — 24y =156 to the axes.
A'+C=-13, AC=-2028; A'=39, C'=- 52
Transformed equation is 842 — 4y3 = 12,
Ex. 8. Transform Az? + Bxy + Cy3 =TF to the axes.
dns. (A+C-R)a2+ (A+ C+ R)y?=2F: where R*=B2+ (A-C).

*161. Having proved that the quantities A + C, and B>~ 4AC
remain unaltered when we transform from one rectangular sys-
tem to another, let us now inquire what these quantities become
if we transform to an oblique system. We may retain the old
axis of z, and if we take an axis of y inclined to it at an angle w,
then (Art.9) we are to substitute 2 + y cos w for 2, and y sin w
fory. We shall then have

A'=A, B=2Acosw+ Bsinw,
C' = A cos’w + B cos w sin w + C sin?w.
Hence, it easily follows

A'+C' -Bcosw
sin’w

g - Tall
A+c, 240 5 uac
- ginw
11, then, we tfansfbrm the equation from one pair of axes to any
A+ C—BOOSdeB’—4AC

- remain un-
8ln’w s1n%w

other, the quantities

altered.

We may, by the help of this theorem, transform to the axes
an equation given in oblique co-ordinates, for we can still express
the sum and product of the new A and C in terms of the old co- -
efficients. :
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Ex. 1. lt‘cosw=§ transform to the axes, 1022 + 62y + 5y = 10.

b
285 10256 205
A+C—-1T, AC=—i§—, A.=5, C='E.

) Ans. 1628 + 41y3 = 32.
Ex. 2. Transform to the axes, 28 — 32y + y3 + 1 = 0, where w = 60°.

Ans. 2% — 15y3 =38.
Ex. 8. Transform A22 + Bzry + Cy? = F to the axes.

Ans., (A+T-Beosw—R)22+(A 4+ C— Beosw + R) y?= 2F sin%w,
where R2= {B — (A + C) cosw}? + (A — C)?sin%w.

*162. We add the demonstration of the theorems of the last -
two articles given by Professor Boole (Cambridge Math. Jour.,
iii. 1, 106, and New Series, vi. 87).

Let us suppose that we are transforming an equation from
axes inclined at an angle w, to any other axes inclined at an an-
gle ©; and that, on making the substitutions of Art. 9, the
quantity Az? + By + Cy?® becomes A’X?+ BXY + CY? Now
we know that the effect of the same substitution will be to make
the quantity 2 + 2zy cos w + y* become X* + 2XY cosQ + Y?,
~since either is the expression for the square of the distance of any
point from the origin. It follows, then, that

Az» +Bay +Cy® +h(2® + 22y cosw +¥*)
= A'X? + BXY + CY? + & (X*+ 2XY cosQ + Y2).
And if we determine % so that the first side of the equation may
be a perfect square, the second must be a perfect square also.
But the condition that the first side may be a perfect square is

(B +2hcosw)?=4(A + k) (C+h),
or A must be one of the roots of the equation
4h*sin’w + 4 (A + C - Beosw) h + 4AC - B = 0.

We get a quadratic of like form to determine the value of 4,
which will make the second side of the equation a perfect square;
but since both sides become perfect squares for the same values
of &, these two quadratics must be identical. Equating, then,
the coefficients of the corresponding terms, we have, as before,
A+C-Beosw A'+C-BeceosQ B*-4AC _B-4A'C

8in%w #in?Q ’  sinw sin?Q

Ex. 1. The sum of the squares of the reciprocals of two semidiameters at right angles
to each other is constant. -
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Let their lengths be @ and b ; then making alternately z = 0, y = 0, in the equation
of the curve, we have Ag? = F, Cb3 = F, and the theorem just stated is only the geome-
trical interpretation of the fact that A + C is constant.

Ex. 2. The area of the triangle formed by joining the extremities of two conjugate

semidiameters is constant.

~Bs
The equation referred to two conjugate dmmeteuis z+ £ =1, and sinc 4—%:1’—3—
W

is constant, we have a'd’ sinw constant.

Ex. 8. The sum of the squares of two conjugate semidiameters is constant.
A+C-Bcosw,
sin%w
is constant, so must @' + b,

1 1 1
Since is constant, —— oo ( b'ﬂ) is constant ; and since a'd' sinw

THE EQUATION REFERRED TO THE AXES.

163. We saw that the equation referred to the axes was of
the form ) Az + Cy*=F,
C being positive in the case of the ellipse, and negative in that
of the hyperbola (Art. 136, 11.)

The equation of the ellipse may be written in the following
more convenient form :—

Let the intercepts made by the ellipse on the axes be z = a,
y = b, then a is found by making y = 0 and z = e in the equation

of the curve, or Aa®>=F, and A = E In like manner, C = g

aB
Substituting these values, the equation of the ellipse may be
written 2
£+£=L
a* b

Since we may choose whichever axis we please for the axis of
z, we shall suppose that we have chosen the axes so that a may
be greater than b.

The equation of the hyperbola, which, we saw, only differs
from that of the ellipse in the sign of the coefficient of y*, may be
written in the corresponding form,

@ _¢_

a2 B
The intercept on the axis of z is evidently = + a, but that
on the axis of y, being found from the equation y*=-* is ima-
ginary ; the axis of y, therefore, does not meet the curve in real

points.
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Since we have chosen for our axis of # the axis which meets
the curve in real points, we are not in this case entitled to as-
sume that a is greater than b.

164. To find the polar equation of the ellipse, the centre being
the pole.
Write p cos@ for z, and p sin 6 for y, in the preceding equa-
tion, and we get 1  cos?f sin?0 -
e TR
an equation which we may write in any of the equivalent forms,
. a*b? a* b _ a* b?
P = 260’0 + BPoosd b + (a*— ) sin’d  a*— (@*- b7) cos0’
1t is customary to use the following abbreviations,
a*- b .
ar ¢

a* - b = ¢*;

and the quantity e is called the eccentricity of the curve.

Dividing by a® the numerator and denominator of the frac-

tion last found, we obtain the form most commonly used, viz.,
b ‘
P = T gcord _

165. To investigate the figure of the ellipse.

The least value that b+ (a® - %) sin®@ can have, is when
0 =0; therefore, since

- a* b
P By (@ B)ein’0’
the greatest value of p is the intercept on the axis of #, andis = a. .

Again, the greatest value of b + (a® - b?%) sin®@, is, when
gin @ = 1, or = 90°; hence the least value of p is the intercept
on the axis of y, and is = . The greatest line, therefore, that can
be drawn through the centre is the axis
of x, and the least line, the axis of y.
From this property these lines are
called the axis major and the axis mi-
nor of the curve.

It is plain that the smaller  is, the =
greater p will be; hence, the nearer
any diameter is to the axis major, the greater it will be, The form
of the curve will, therefore, be that here represented.

U

vy
N
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‘We obtain the same value of p whether we suppose 0 = a, or
0 = — a. Hence, Two diameters which make equal angles with
the axis will be equal. And it is easy to show that the converse of
this theorem is also true.

This property enables us, being given the centre of a conic,
to determine its axes geometrically. For, describe any concentric
circle intersecting the conic, then the semidiameters drawn to the
points of intersection will be equal; and by the theorem just
proved, the axes of the conic will be the lines internally and ex-
ternally bisecting the angle between them.

166. The equation of the ellipse can be put into another form,
which will make the figure of the curve still more apparent. If
we solve for y we get

y=%¢(a’—w9). ’

Now, if we describe a concentric circle with the radius a, its
equation will be y= v (a*-2).

Hence we derive the following construction :

¢¢ Describe a circle on the axis major, and take on each ordinate
LQ a point P, such that LP may be to LQ in the constant ratio
b: a, then the locus of P will be the required ellipse.”

Hence the circle described on the
axis major lies wholly without the curve.
We might, in like manner, construct
the ellipse, by describing a circle on the ,,
axis minor, and ¢ncreasing each ordinate
in the constant ratio a:b.

Hence the circle described on the .
axis minor lies wholly within the curve. D

The equation of the circle is the particular form which the
equation of the ellipse assumes when we suppose b= a.

167. To find the polar equation of the hyperbola.
Transforming to polar co-ordinates, as in Art. 164, we get
. a*b? _ a*b? _ a*b?
P = b.cosd - a*sin’d B - (a*+ b%) sin®0  (a® + ) cos?l — a*

Since formule concerning the ellipse are altered to the corres-
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ponding formule for the hyperbola by changing.the sign of &,
we must, m this case, use the abbreviation ¢* for a® + 5, and

e’ for

, the quantity e being called the eccentricity of the

hyperbola. D1v1d1ng then by a* the numerator and denominator
of the last found fraction, we obtain the polar equation of the
hyperbola, which only differs from that of the ellipse in the sign
of &, viz., , b

P = ecosh— I

168. T0 tnvestigate the figure of the hyperbola.

The terms axis major and axis minor not being applicable to
the hyperbola (Art 163), we shall call the axis of z the transverse
axis, and the axis of y the conjugate axis.

Now 82 - (a? + 8%) sin?0, the denominator in the value of p?,
will plainly be greatest when 0 = 0, therefore, in the same case,
p will beleast; or the transverse axis is the shortest line which
can be drawn from the centre to the curve.

As 0 increases, p continually increases, until

. b b
Sm0=m), (0rtan0=;),
when the denominator of the value of p becomes = 0, and p be-

comes infinite. After this value of 0, p? becomes negative, and
the diameters cease to meet the curve in real points until

sinf = - —\-/—(Tl.éb-l-—bg), (01' tan0 = -?l-)’
when p again becomes infinite. It then decreases regularly as 6
increases, until @ becomes = 180°, when it again receives its mini-
mum value = a.

The form of the hyperbola, therefore, is that represented by

the dark curve on the figure.

169. We found
that the axis of y
does not meet the
hyperbola in real
points, since we ob-
tained the equation K
y* = - b* to determine its point of intersection with the curve.
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We shall, however, still mark off on the axis of y portions, CB,
"CB' = + b, and we shall find that the length CB has an important
connexion with the curve, and may be conveniently called an
axis of the curve. In like manner, if we obtained an equation to
determine the length of any other diameter, of the form p* = - R3,
although this diameter cannot meet the curve, yet if we measure
on it from the centre lengths = + R, these lines may be conve-
niently spoken of as diameters of the hyperbola.
The locus of the extremities of these diameters which do not
meet the curve is, by changing the sign of p? in the equation of
the curve, at once found to be

il
or ‘ y
b a? .
This is the equation of a hyperbola having the axis of y for its
axis meeting it in real points, and the axis of z for the axis meet-
ing it in imaginary points. It is represented by the dotted curve

on the figure, and is called the hyperbola conjugate to the given
hyperbola.

170. We proved (Art. 168) that the diameters answering to
tan 0 = i% meet the curve at infinity ; they are, therefore, the

same a8 the lines called, in Art. 157, the asymptotes of the curve.
They are the lines CK, CL on the figure, and evidently separate
those diameters which meet the curve in real points from those
which meet it in imaginary points. It is evident also, that two
conjugate hyperbole have the same asymptotes.

The expression tan @ = :t% enables us, being given the axes

in magnitude and position, to find the asymptotes, for, if we form
a rectangle by drawing parallels to the axes through B and A,
then the asymptote CK must be the diagonal of this rectangle.

Again, _ a 1
V@ e

But, since the asymptotes make equal angles with the axis of z,

cos 0

If
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the angle which they make with each other must be = 2. Hence,
being given the eccentricity of a hyperbola, we are given the angle
between the asymptotes, which is double the angle whose secant is
the eccentricity.

Ex. To find the eccentricity of a conic given by the general equation.

‘We can (Art. 70) write down the tangent of the angle between the lines.denoted by
Az3 + Bzy + Cy? = 0, and thence form the expression for the secant of its half; or we
may proceed by the help of Art. 160, Ex. 3.

‘We have 1_A+C-R 1 _A+C+R
e 2F ' B  2F

where Ri=B14+(A-C)3, =BI-4AC+(A+Cp

Hence 1 1 R a%-0 2R ’

THE TANGENT.

171. We now proceed to investigate some of the properties
of the ellipse and hyperbola. We shall find it convenient to con-
sider both curves together, for, since their equations only differ
in the sign of 4%, they have many properties in common which
can be proved at the same time, by considering the sign of 4* as
indeterminate. We shall, in the following Articles, use the signs
which apply to the ellipse. The reader may then obtain the cor-
responding formulze for the hyperbola by changing the sign of 2.

‘We might deduce several of the results which follow, as par-
ticular cases of those obtained in the last chapter from the general
equation, but we have thought it worth while to establish the

more important equations independently.
2

To find the equation of the tangent to the curve z:_: + ‘%;= 1.

The method we pursue is identical with that used Art. 83.
The co-ordinates of two points on the curve satisfy the relations

/4 /e 1/
.‘2.2 +y._2= 1 —f: +:.'/:’-
a b e B’
hence 22 -2" @ Y-y  br+a’

Vi-y: B d-a  ay+y
The equation of the line joining the two points is, therefore,
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That of the tangent is found by making &' = 2", ¥ = ¥’;

y-v__bd
z-o ay’
or, reducing, and remembering that 'y satisdfies the equation of
the curve, m’ W -
P 1.

172. To find the equation of the line joining the points of con-
tact of tangents through any point (z'y).

Let the co-ordinates of the point of contact of one of the tan-
gents through (2'y) be X, Y; then forming (Art. 171) the
equation of the tangent at XY, and substituting in it the co-ordi-
nates z'y’ which must satisfy it, we have

Xy Yy
We see, therefore, that the co-ordinates of either point of con-
tact must satisfy the equation

.m:’ yyl
bg ’

and, since this is the equation of a right line, it must represent
the line joining them.

Ex. 1. To find the condition that any line -'—E + % =1 should touch the conic section

»
w*ﬁ‘
Comparing the equations
z.y LA
m +==1 ) + i = 11
we find z 1 1
ERERUS S5
and, substituting for 2'y’ in the equation of the curve, we have, for the required condition,
a b
wtu=l

. Ex. 2. To find the equation of the pair of tangents through 2y’ to the conic.
Proceeding, as in Art. 150, we find

23 y” x? y’ _ xx’ yy' 2
(E+F—l)(;+ﬁ—l>—(?+-ﬁ—l .
1]
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Ex. 3. To find the angle ¢ between the pair of tangents from z'y’ to the curve.

‘When an equation of the second degree represents two right lines, the three highest
terms being put = 0, denote two parallel lines through the origin; hence, the angle included
by the first pair of right lines depends solely on the three highest terms of the general equa-
tion. Arranging, then, the equation found in the last Example, we find, by Art. 70,

2yt
2abs/ ( +¥ w1 )
Ity —aa b
Ex. 4. Find the locus of a point the tangents through which intersect at right angles.
Equating to 0, the denominator in the value of tan¢, we find 22 + y3 = a2 4 B2,

the equation of a circle concentric with the ellipse. The locus of the intersection of tan-
gents which cut at a given angle is, in general, a curve of the fourth degree.

tan¢ =

N CONJUGATE DIAMETERS.

173. When the equation of the curve is referred to any pair
of conjugate diameters, the coefficient of zy vanishes (Art. 158);
and if @, b, be the lengths of these diameters, the equation may
be written (as in Art. 163)
xR
;1'_2 + ﬁ =1.
Now it can be proved, precisely as in Art. 171, that the equation
of any tangent, referred to these axes, is
WY
tpeb
and, as in Art. 172, that the equation of the polar of any point
(#'y) is of the same form. The polar of any point on the axis
of z is, therefore, -

— =L

a .
Hence, the polar of any point P is found by drawing a diameter
through the point, taking CP - CP' = to the square of the semi-
diameter, and then drawing through P’ a parallel to the conjugate
diameter. This includes, a8 a particular case, the theorem proved

already (Art. 145), viz
The tangent at the ewtremzty of any diameter is parallel to the
conjugate diameter.

174. The theorem just stated enables us easily to ﬁnd the

equation, referred to the rectangular axes, of the diameter conju-
gate to that passing through any point (2y) on the curve.
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For we have only to form the equation of a line drawn through
the origin parallel to the tangent, whose equation we found
(Art. 171); and we have for the equation of the conjugate
diameter zx yy

? + —5; =0.

Let 0 be the angle made with the axis of z by the original

diameter, then tan  plainly = , and if @ be the angle made by

the conjugate diameter, this equatxon shows (Art. 22) that
b

Hence

This relation, connecting the angles made with the axis major
by a pair of conjugate diameters, enables us at once to determine
whether any given pair of diameters be conjugate or not.

The corresponding relation for the hyperbola is (see Art. 171)

tan0 tan@ = Ifz
a

175. Since, in the ellipse, tan 0 tan @' is negative, if one of
the angles 0, &, be acute (and, therefore, its tangent positive),
the other must be obtuse (and, therefore, its tangent negative).
Hence, conjugate diameters in the ellipse lie on different sides of
the axis minor (which answers to 0 = 90°).

In the hyperbola, on the contrary, tan @ tan @ is positive,
therefore, @ and 6 must be either both acute or both obtuse.
Hence, in the hyperbola, conjugate diameters lie on the same side
of the conjugate axis.

In the hyperbola, if tan 0 be less, tan@ must be grea.ter than

%, but (Art. 170) the diameter answering to the angle whose

tangent is Z—, is the asymptote which (by the same Article) sepa-~

rates those diameters which meet the curve from those which do ’

not intersect it. Hence, i{f'one of two conjugate diameters meet
a hyperbola in real points, the other will not. Hence also it may
be seen that each asymptote is its own conjugate.

T U ey ara
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176. To find the co-ordinates 'y’ of the extremity of the dia-
meter conjugate to that passing through zy.

These co-ordinates are obviously found by solving for # and
y between the equation of the conjugate diameter, and that of

the curve, viz., ] , :
v ’ Y 7‘
-;;+—=0, —+% 1. ’.*b Qj"

Substituting in the second the values of z and y, found from the
first equation, and remiembering that #,y’ satisfy the equation of

the curve, we find without difficulty o _/' L x

oY Yo Z iy
P L ¥ a - & - ;.\ ' ?
177. To express the lengths of a diameter (a'),. and its conju-
gate (b), in terms of the abscissa of the extremity of the diameter.
(1.) We have a® = 2 + Y.
But ' 0 b ’
y* = (@ -2

Hence

a?=b+ a'? = b7+ e*x”,

(2.) Again, we have ;
3 2
b = w/rz + y//z - % y;, + ‘; w!z,

or =(a’-w”)+§'a:’,
hence b* = a? - e*a%.

From these values we have
a%+ 8% = a® + b .
or, The sum of the squares of any pair of conjugate diameters of
an ellipse is constant (see Ex. 3, Art. 162).

178. In the hyperbola we must change the signs of 5 and 57,
and we get . —br=ar - B3,
or, The dgﬂ‘%fencé qf the squares qf any pair of conjugate diame-

ters of a hyperbola is constant.
X
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If in the hyperbola we have a = b, its equation becomes
22 — o = a?,
and it is called an equilateral hyperbola.
The theorem just proved shows that every diameter of an
- equilateral hyperbola is equal to its conjugate.
The asymptotes of the equilateral hyperbola being given by the
equation 2 -y =0,

are af right angles to each other. Hence this hyperbola is often
called a rectangular hyperbola.

The condition that the general equation of the second degree
should represent an equilateral hyperbola is A =- C; for (Art.70)
this is the condition that the asymptotes (Az* + Bzy + Cy* = 0)
should be at right angles to each other; but if the hyperbola be -
rectangular it must be equilateral, since (Art. 170) the tangent

of half the angle between the asymptotes = %; therefore, if this
angle = 45°, we have b=a.
179. To find the length of the perpendicular from the centre

on the tangent.
The length of the perpendicular from the origin on the line

oLy

a b
is (Art. 27) 1 - ab )
z?  y? b ay? ?
1/(;‘*17‘5 vV (E %)
but we proved (Art. 177) that
b x'? azy’z .
P
hence _ab
bl
180. To find the angle between any pair of conjugate diameters.

The angle between the diameters is , T
equal to the angle between either, and the

tangent parallel to the other. Now ' C
. _ cT P ' ' \__/
sin CPT = ‘(TP == .

b =
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Hence sing (or PCP) = 22
a’b
The equation a4’ sin ¢ = ab proves, that the triangle formed
by joining the extremities of conjugate diameters of an ellipse or
hyperbola has a constant area (see Art. 162, Ex. 2).

181. The sum of the squares of any two conjugate diameters
of an ellipse being constant, their rectangle is a maximum when
they are equal, and, therefore, in this case, sin ¢ is a minimum ;
hence the acute angle between the two equal conjugate diameters
is less (and, consequently, the obtuse angle greater) than the
angle between any other pair of conjugate diameters.

The Iength of the equal conjugabe diameters is found by
making &' = %’ in the equation a® + b? = a® + b’ whence a? is half
the sum of @® and 4? and in this case

2ab
@+ b

The angle which either of the equiconjugate diameters makes

with the axis of « is found from the equation

b’l
tan 0 tan@ = — —
a?

sin ¢ =

by making tan 0 = - tan @, for any two equal diameters make
equal angles with the axis of = on opposite sides of it (Art. 165).
Hence : tan 0 = b
a
It follows, therefore, from Art. 170, that if an ellipse and hyper-
bola have the same axes in magnitude and position, then the
asymptotes of the hyperbola will coincide with the equiconjugate
diameters of the ellipse.

The general equation of an ellipse, referred to two conjugate
diameters (Art. 173), becomes 2° + y* = o”?, when o' =¥8. We
see, therefore, that, by taking the equiconjugate diameters for
axes, the equation of any ellipse may be put into the same form
as the equation of the circle, 2° + y* = 7%, but that in the case of
the ellipse the angle between these axes will be oblique.

182. To- express the perpendicular from the centre on the tan-
gent in terms of the angles which it makes with the axes.
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If we proceed to throw the equation of the tangent
(";—": + % = l) into the form zcosa +ysina = p (Art. 25), we
find immediately, by comparing these equations,

¥ _o8a Y _sina

@@ p’ ¥ p
Substituting in the equation of the curve the values of 2, y,
hence obtained, we find

P’ = a’cos’a + b*sin’a.*
The equation of the tangent may, therefore, be written
zcosa + ysina — 4 (a?cos’a + b*sin’a) = 0. -
Hence, by Art. 27, the perpendicular from any point (z'y’) on
the tangent is
¥ cosa + ¥ sina — ¢/ (a®cos’a + b?sin’a).

-

Ex. To find the locus of the intersection of tangents which cut at right angles.
- Let p, p’ be the perpendiculars on those tangents, then

p?=adcosta + b2sinta, p? = a?sinla + B2cosla, p?+ pI=ad+ b3, '

But the square of the distance from the centre of the intersection of two lines, which cut
at right angles, is equal to the sum of the squares of its distances from the lines them-
selves. This distance, therefore, is constant, and the required locus is a circle (see p. 151).

183. The chords which join the extremities of any diameter
to any point on the curve are called supplemental chords.

Diameters parallel to any pair of supplemental chords are
conjugate. ¢

For if we consider the triangle formed by joining the extre-
mities of any diameter AB to any point on the curve D ; since,
by elementary geometry, the line joining the middle points of two
sides must be parallel to the third, the diameter bisecting AD
will be parallel to BD, and the diameter bisecting BD will be
parallel to AD. The same thing may be proved analytically,
by forming the equations of AD and BD, and showing that the
product of the tangents of the angles made by these lines with the

2

axis is = - —:
a

# In like manner, p? = 4’3 cos?a + 52 cosif3, a and 3 being the angles the perpendi-
cular makes with any pair of conjugate diameters.
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This property enables us to draw geometrically a pair of con-
jugate diameters making any angle with each other. For if we
describe on any diameter a segment of a circle containing the
given angle, and join the points where it meets the curve to the
extremities of the assumed diameter, we obtain a pair of supple-
mental chords inclined at the given angle, the diameters f)arallel'
to which will be conjugate to each other.

Ex. 1. Tangents at the extremities of any diameter are parallel.
Their equations are Z':i+£"i=i-l.
a b2
This also follows from the theorem of Art, 148, and from considering that the centre is
the pole of the line at infinity (Art. 157).

Ex. 2. If any variable tangent to a central conic section meet two fixed parallel tan-
gents, it will intercept portions on them, whose rectangle is constant, and equal to the
square of the semidiameter parallel to them.

Let us take for axes the diameter parallel to the tangents and its conjugate, then the
-equations of the curve and of the variable tangent will be

L z=' Yy
Py + i 1, - + = 1.
The intercepts on the fixed tangents are found by making z alternately =+ ¢’ in the
latter equation, and we get

and, therefore, their product is

bt '
w5 )
which, substituting for y'2 from the equation of the curve, reduces to 4.

Ex. 8. The same construction remaining, the rectangle under the segments of the
variable tangent is equal to the square of the semidiameter parallel to it.

For, the intercept on either of the parallel tangents is to the adjacent segment of the
variable tangent as the parallel semidiameters (Art. 162) ; therefore, the rectangle under
the intercepts of the fixed tangents is to the rectangle under the segments of the variable
tangent as the squares of these semidiameters; and, since the first rectangle is equal to
the square df the semidiameter parallel to it, the second rectangle must be equal to the
square of the semidiameter parallel to it

Ex. 4. If any tangent meet any two conjugate diameters; the rectangle under its
segments is equal to the square of the parallel semidiameter.

Take for axes the semidiameter parallel to the tangent and its conjugate ; then the
equations of any two conjugate diameters being (Art. 174)

’

y =y
y=zn w@rteE=o
the intercepts made by them on the tangent are found by making & = a’ to be

v . bz
== d y=— — —
Yy z:av and y ey

whose rectangle is evidently = 2.
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We might, in like manner, have given a purely algebraical proof of Ex. 8.
Hence, also, if the points be joined to the centre where two parallel tangents meet
any tangent, the jo_ining lines will be conjugate diameters.

Ex. 5. Given, in magnitude and position, two eonjugv;te semidiameters, Oa, OB,
of a central conic, to determine the axes. \w *
The following construction is founded on the theorem

proved in the last Example :—Through a, the extremity of ‘ 3
either diameter, draw a parallel to the other; it must of
course be a tangent to the curve. Now, on Qg take a point A
P, such that the rectangle Oa . aP = 052 (on the side remote A U/ B
from O for the ellipse, on the same side for the hyperbola), ©

and describe a circle through O, P, having its centre on aC,

then the lines OA, OB, are the axes of the curve ; for, since

the rectangle Aa. aB = Oa. aP = Ob3, the lines OA, OB are conjugate diameters, and
since AB is a diameter of the circle, the angle AOB is right.

Ex. 6. Given any two semidiameters, if from the extremity of each an ordinate be
drawn to the other, the triangles so formed will be equal in area.

Ex. 7. Or if tangents be drawn at the extremity of each, the triangles so formed will
be equal in area.

THE NORMAL.

184. A line drawn through any point of a curve perpendi-
cular to the tangent at that point is called the Normal.
Forming, by Art. 40, the equation of a line drawn through

(«'y)) perpendicular to (?; + ‘%y; = l), we find for the equation
of the normal to a conic
wl ’ ,
-1 -3 (a-2),
or a
- ¢® being used, as in Art. 164, to denote a* - 2.
Hence we can find the portion

CN intercepted by the normal on /’B
either axis ; for, making y = 0 in the A c / IM A
N

equation just given, we find

x ¢ x', or ez’
= — X = . g
a”’ B

We can thus draw a normal to an ellipse from any point on
the axis, for given CN we can find #, the abscissa of the point
through which the normal is drawn.
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The circle may be considered as an ellipse whose eccentricity
= 0, since ¢* = @* - * = 0. The intercept CN, therefore, is con-
stantly = 0 in the case of the circle, or every normal to a circle
passes through its centre.

185. The portion MN intercepted on the axis between the
normal and ordinate is called the Subnormal. Its length is, by
the last Article, PO X

& -—2==2a.
a? a’
The normal, therefore, cuts the abscissa into parts which are in
a constant ratio. '

If a tangent drawn at the point P cut the axis in T, the in-

tercept MT is, in like manner, called the Subtangent.

Since the whole length CT - 9;:, (Art. 173), the subtangent

a? , az_w'z
=— -0 =
o o

The length of the normal can also be easily found. For
. b Bfa? b
‘ .a

a*\ b a?
But if ¥ be the semidiameter conjugate to CP, the quantity
within the parentheses b% (Art. 177). Hence the length of the

normal PN = —
a’

If the normal be produced to meet the axis minor it can be
proved, in like manner, that its length = a_b_ 'Hence, the rectangle

_under the segments of the normal is equal to the square of the semi-
conjugate diameter, .
Again, we found (Art. 181) that the perpendicular from the

centre on the tangent = 7 Hence, the rectangle under the normal

and the perpendicular from the centre on the tangent, is constant
and equal to the square of the semiaxis.
Thus, too, we can express the normal in terms of the angles
it makes with the axis, for
b a(l - ¢)

b
PN “p v (a*costa + b sin‘a) (Art.182); = v (1 - é*sin‘a)’
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Ex. 1. To draw-a normal to an-ellipse or hyperbola passing through a given point.
Let the point on the curve at which the normal is drawn be XY, then its equation
is (Art. 184) a’z by

Hence the poin}.s on the curve, whose normals will pass through (zy’) are the points of
intersection of the given curve with the hyperbola
ctry = alr'y — bty

Ex. 2. If through a given point on a conic any two lines at right angles to each
other be drawn to meet the curve, the line joining their extremities will pass through
a fixed point on the normal.

Let us take for axes the tangent and normal at the given point, then the equation of
the curve must be of the form )

Az* + Bzy + C2 + Ey =0

(for F = 0, because the origin is on the curve, and D= 0 (Art. 1382),- because the tan-
gent is supposed to be the axis of 2, whose equation is ¥ = 0).

Now, let the equation of any two lines through the origin be

z* + pay + qy? = 0.
Multiply this equation by A, and subtract it from that of the curve,.and we get
(B-Ap)zy+(C-Ag)y* + Ey=0.

This (Art. 36) is the equation of a figure passing through the points of intersection of
the lings and conic; but it may evidently be resolved into y = 0 (the equation of the
tangent at the given point), and
. (B-Ap)z+(C-Agq)y+E=0,
which must be the equation of the chord joining the extremities of the given lines.

The point where this chord meets the normal (the axis of y)is y =

E .
] -¢ but if the
lines are at right angles ¢ = — 1 (Art. 70), and the intercept on the normal has the con-

stant length
-E

= A_—+ C-
This theorem will be equally true if the lines be drawn so as to make with the nor-
mal angles, the product of whose tangents is constant, for, in this case, g is constant :

and, therefore, the intercept AqE— C is constant.
Ex. 8. To find the co-ordinates of the intersection of the tangents at the points
=Y, &Y '
The co-ordinates of the intersection of the lines
zz ¥y 2’z ¥y
Ftp=b FtH =1
are 2= LACESE®) _b’(x’—z")

R ) o

Ve -y Cay g7
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" These results may Be written in another form, since
2 -y =E+2) @ ) -+ @ -,
and (Art. 171) y-y _ W+
. z: _ 27" - a.y, + yu
on making which substitutions, the preceding values become
Z + 2" y= "+
e ECY i
o Wit
Ex. 4. To find the co-ordinates of the intersection of the nmormals at the points
£y, " CL
Proceeding as in the last Example, we find
(@ =) a2"X @ -a"yy'Y
e YR T
where X, Y are th? co-ordinates of the intersection of tangents, found in the last Example.

1+-—-

THE FOCI.

186. If on the axis major of an ellipse
we take two points equidistant from the
centre, whose common distance

=+ ¢y(a*-b),or=+ec,
thesepoints are called the foci of the curve.

The foci of an hyperbola are two points on the transverse axis,

" at a distance from the centre still = + ¢, ¢ being in the hyperbola

= y/ (@ + b).
To express the distance of any point on an ellipse from thejbcus
Since the co-ordinates of one focus are (z = + ¢, y = 0), the
square of the distance of any point from it
=(x -c)+y?=a"+y* - 2 + c.
But (Art. 177)
a4yt =B+ ea? and B + & = av.

Hence FP*=a? - 2cz + &2
and recollecting that ¢ = ae, we have
FP=a - ex.

[We reject the value (ez ~ a) obtained l;y giving the other
sign to the square root. Kor, since  is less than a, and e less
than 1, the quantity ez - « is constantly negative, and, therefore,
does not coneern us, as we are now considering, not the direction,
but the absolute magnitude of the radiue vector FP.]

Y
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We have, similarly, the distance from the other focus

FP=a+ ez,
since we have only to write — ¢ for + ¢ in the preceding formulz.
Hence FP + FP = 2q,

or, The sum of the distances of any point on an ellipse ﬁ'om the
Joci is constant and equal to the axis major.

187. In applying the preceding proposition to the hyperbola,
we obtain the same value for FP?; but in extracting the square
root we must change the sign in the value of FP, for in the hy-
perbola # is greater than a, and e is greater than 1.

Hence, a - ex is constantly negative; the absolute magni-
tude, therefore, of the radius vector is

FP =ex - a.
In like manner, FP=ez+a.
Hence ‘ FP - FP = 2a.

Therefore, in the hyperbola, the difference of'the focal radii is con-
stant, and equal to the transverse axis.

For both curves the rectangle under the focal radii = a® - e*x?,
that is (Art. 177), is equal to the square of the semiconjugate dia-
meter.

188. The reader may prove the converse of the above results
by seeking the locus of the vertex of a triangle, if the base and
elther sum or difference of sides be given.

Ta.kmg the middle point of the base (= 2¢) for origin, the
equation is

VI{g+ (c+2)) £ V{9 + (c - 2)") = 20,
which, when cleared of radicals, becomes
x2 y2
; + P =1].

Now, if the sum of the sides be given, since the sum must
always be greater than the base, a is greater than ¢, therefore the
coefficient of y? is positive, and the locus an ellipse.

If the difference be given, a is less than c; the coefficient of y*

is negative, and the locus an hyperbola.
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189. By the help of the preceding theorems, we can describe
an ellipse or hyperbola mechanically.

If the extremities of a thread be fastened at two fixed points
F and F, it is plain that a pencil moved about so as to keep the
thread always stretched will describe an ellipse whose foci are F
and I, and whose axis major is equal to the length of the thread.

In order to describe an hyperbola, let a
ruler be fastened at one extremity (F'), and / R
capable of moving round it, then if a thread, P
fastened to a fixed point F', and also to @
a fixed point on the ruler (R), be kept F
stretched by a ring at P, as the ruler is moved round, the point,
P will describe an hyperbola ; for, since the sum of F'P and PR
is constant, the difference of FP and }'P will be constant.

190. The polar of either focus is called the directriz of the
conic section. The directrix must, therefore
(Art. 173), be a line perpendicular to the axis

pl

2
major at a distance from the centre = + a? .

Knowing the distance of the directrix from
the centre, we can find its distance from any point
on the curve. It must be equal to

a? a 1 ,
?—m’,or =E(a-—e.z’)=;(a—ew).

But the distance of any point on the curve from the focus = a - ez’

Hence we obtain the important property, that the distance of
any potnt on the curve from the focus is in a constant ratio to its
distance from the directriz, viz., as e to 1. ~

Conversely, a conic section may be defined as the locus of a
point whose distance from a fixed point (the focus) isin a constant
ratio to its distance from a fixed line (the directrix). On this de-
finition several writers have based the theory of conic sections.

Taking the fixed line for the axis of z, the equation of the locus

is at once written down

(z-2)+@y-y) =y,
which it is easy to see will represent an ellipse, hyperbola, or pa-
rabola, according as e is less, greater than, or equal to 1.

®
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Ex. If a curvebe such that the distance of any poimt of it from a fixed point can he
expressed as a rational function of the first degree of its co-ordinates, then the curve must
be a conic section, and the fixed point its focus (see O'Brien’s Co-ordinate Geometry,

p. 85).
For, if the distance can be expressed

p=Az+By+C,
since Az + By + C is proportional to the perpendicular let fall on the right line whose
equation is (Az + By + C = 0), the equation signifies that the distance of any point of
the curve from the fixed point is in a constant ratio to its distance from this lie.
191. Tofind the length of the perpendwularﬁ-om the focus on
the tangent.
The length of the perpendicular from the focus (+ ¢, 0) on

the line (——+‘Z‘Z= l)ié, by Art. 27,

but, Art. 179, ‘//(ff zf)=_E,

at b ab
Hgnce . FT=2(a—ew)=gFP
b b
Likewise,

F'T'= 7 (a+ex)= 7 F’P

Hence FT.FT = b2 (since a? - e’w’ = b?),
or, The rectangle under the focal perpendiculars on the tangent is
constant, and equal to the square of the semiaxis minor.

This property applies equally to the ellipse and the hyperbola.

192. Some important consequences may be drawn from the
value of the perpend.lcular just found.

For we had - FT b».
FT=?FR P~
but gg = gin FPT.

Hence the sine of the angle which the focal radius vector

makes with the tangent = g—
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- 'We find, in like manner, the same value for sin F'PT', the
sine of the angle which the other focal radius vector makes with
the tangent. Hence the focal radii make equal angles with the
tangent.

This property is true both for the ellipse and hyperbola, and,
on looking at the figures, it is evident
that the tangent to the ellipse is the
external bisector of the angle between
the focal radii, and the tangent to the
hyperbola the internal bisector.

Hence, if an ellipse and hyperbola,
having the same jfoci, pass through the
same point, they will cut each other at right angles, that is to say,
the tangent to the ellipse at that point will be at right angles to
the tangent to the hyperbola.

Ex. 1. Prove Mﬁuﬂy that confocal conics cut at right angles.
The co-ordinates of the intersection of the conics

» ¥ 2z oy
+63 1, a—"+ﬁ=l’

satisfy the relation obtained by subtracting the two equations
@—aDar | @By

ata’? b1b2
But if the conics be confocal 4* — @’ = b2 — b"%, and this relation becomes
P y?

Zas Tt o

But this is the condition (Art. 40) that the two tangents

v 2 yy
ateE=h Tty
should be perpendicular to each other.

Ex. 2. Find the length of a line drawn through the centre parallel to either focal ra-
dius vector, and terminated by the tangent.
This length is found by dividing the perpendxcular from the centre on the tangent

(-—b) by the sine of the angle between the radius vector and tangent (%), and is

=1,

b
therefore = 4. )

193. The normal, being perpendicular to the tangent, is the
internal bisector of the angle between the focal radii in the case of
the ellipse, and the ezternal bisector in the case of the hyperbola.

We can give an independent proof of this, by showing that
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it cuts the distance between the foci into parts which are in the
ratio of the focal radii (Euc. vi. 3), for the distance of the foot
of the normal from the centre is (Art. 184) = ¢2z". Hence its dis-
tances from the foci are ¢ + ez’ and ¢ — €*2/, quantities which are
evidently e times @ + ez’ and a - ex'.
Ex. To draw a normal to the ellipse from any point on the axis minor.
Ans. The circle through the given point, and the two foci, will. meet the
curve at the point whence the normal is to be drawn.

194. Another important consequence may be deduced from
the theorem (of Art. 191), that the rectangle under the focal per-
pendiculars on the tangent is constant.

For, if we take any two tangents, we have

FT.FT = Ft- Ft, or 1 = o3
but 7 e the ratio of the sines of the parts into which the line

FP divides the angle at P, and ]f,,—,;;, is the ratio of the sines of
the parts into which F'P divides the same angle ; we have, there-
fore, the angle TPF = ¢PF".

If we conceive a conic section to pass
through P, having F and F for foci, it
was proved in Art. 191, that the tangent
to it must be equally inclined to the lines
FP, F'P; it follows, therefore, from
the present Article, that it must be also
equally inclined to PT, P¢; hence we derive a useful theorem,
that if through any point (P) of a conic section we draw tangents
(PT, Pt) to a confocal conic section, these tangents will be equally
inclined to the tangent at P.

195." To find the locus of the foot of the perpendicular let fall
Jrom either focus on the tangent.

The perpendicular from the focus is expressed in terms of
the angles it makes with the axis by putting #'=¢, ' = 0 in the
formula of Art. 182, viz.,

p = 2 cosa + ¥ sina ~ ¢/ (a%cos’a + b’sin’a).
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Hence the polar equation of the locus is

p = ccosa — ¢/ (a?cos’a + b sin’a),
or p® - 2¢p cosa + ¢ cos’a = a® cos’a + H* sin’a,
or p? — 2cp cosa = b

This (Art. 93) is the polar equation of a circle whose centre
is on the axis of z, at a distance from the focus = ¢; the circle is,
therefore, concentric with the curve. The radius of the circle
is, by the same Article, = a.

Hence, if we describe a circle having for diameter the transverse
axis of an ellipse or hyperbola, the perpendicular from the focus
will meet the tangent on the circumference of this circle.

Or, conversely, if from any point F (see figure, p. 166) we
draw a radius vector F'T to a given circle, and draw TP perpen-
dicular to F'T, the line TP will always touch a conic section having
F for its focus, which will be an ellipse or hyperbola, according .as
F is within or without the circle.

It may be inferred from Art. 192, Ex. 2, that the line CT,
whose length = a, is parallel to the focal radius vector F'P.

196. To find the angle subtended at the focus by the tangent
drawn to a central conic from any point (zy).

Let the point of contact be (2'y'), the centre being the origin,
then, if the focal radii to the points (zy), (#'y), be p, p’, and make
angles 0, @, with the axis, it is evident that
‘ y

cos =2 +c, sin0=Y; cosf = a—v:i,-c, si;10’ =%
P P p
Hence cos (6 - 0) = (% +c) (a:’:L ) + yy';
but from the equation of the tangentpv’:e must have
i -"b-'f -1

Substituting this value of yy/, we get
2
pp' cos(f — 0) =2z’ + cx + cx' + ¢* g—wx’+ b,
or =e’za’ + cx + ca'+ a® = (a + ex) (a + ex);
or since p’ = a + ez’ we have (see O’Brien’s ¢ Co-ordinate Geo-
metry, p. 156)

a-+ex

cos(0-0)=
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Since this value depends solely on the co-ordinates zy, and does
not involve the co-ordinates of the point of contact, either tan-
gent drawn from zy subtends the same angle at the focus.
Hence, The angle subtended at the focus by any chord is bisected
by the line joining the focus to its pole.

197. The line joining the focus to the pole of any chord pass-
ing through it is perpendicular to that chord. .

This may be deduced as a particular case of the last Article,
the angle subtended at the focus being in this case 180°; or di-
rectly as follows :—The equation of the perpendicular through

I

any point 'y’ to the polar of that point (w_a:’ + -‘%7 =1 > is, a8 in
Art. 184, az By

’

T y
2
But if #'y’ be anywhere on the directrix, we have 2’ =\%, and it

will then be found that both the equation of the polar and that
of the perpendicular are satisfied by the co-ordinates of the focus
(@=¢ y=0)

‘When in any curve we use polar co-ordinates, the portion in-
tercepted by the tangent on a perpendicular to the radius vector
drawn through the pole is called the polar subtangent. Hence
the theorem of this Article may be stated thus: The focus being
the pole, the locus of the extremity of the polar subtangent is the
directriz.

It will be proved (Chap. x11.) that the theorems of this and
the last Article are true also for the parabola.

Ex. 1. The angle is constant which is subtended at the focus, by the portion inter-
cepted on a variable tangent between two fixed tangents.

By Art. 196, it is half the angle subtended hy the chord of contact of the fixed
tangents.

Ex. 2. If any chord PP’ cut the direc- P’
trix in D, then FD is the external bisector
of the angle PFP’." For FT is the internal
bisector (Art. 196); but D is the polar of
FT (since it is the intersection of PP’, the
polar of T, with the directrix, the polar of
F); therefore, DF is perpendicular to FT,
and is therefore the external bisector.
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[The following theorems (communicated to me by the Rev. W. D. Sadleir) are
founded on the analogy between the equations of the polar and the tangent.]

Ex. 8. If a point be taken anywhere on a fixed perpendicular to the axis,. the per-
pendicular from it on its polar will pass through a fixed point on the axis. For the
intercept made by the perpendicular will (as in Art. 184) be &? 2, and will therefore be
constant when 2’ is constant. o

Ex. 4. Find the lengths of the perpendicular from the centre and from the foci on
the polar of 2y,

Ex. 5. Prove CM.PN’'=5% This is analogous to P
the theorem that the rectangle under the normal and G 7

the central perpendicular on tangent is constant. g
2 N @
Ex. 6. Prove PN'. NN'= :—’ (a® —¢*23). When P

is on the curve this equation gives us the known ex- F C N F
pression for the normal = _b_} (Art. 185).

Ex. 7. Prove FG.F'G'= CM.NN'. When P is on the curve this theorem becomes
FG.FG = b,
198. To find the polar equation of the ellipse or hyperbola, the
Jocus being the pole.
The length of the focal radius vector (Art.186) = a — ez';
but 2’ (being measured from the centre) = p cos 6 + c.

Hence p=a-—epcosh - ec,
or Ca(l-¢) B 1
P=1+ecosf a 1+ecosl

The double ordinate at the focus is called the parameter ; its
half is found by making 0 =90° in the equation just given, to be
2

= % =a(l -'¢®). The parameter is commonly dencted by the

letter p. Hence the equation is often written
1

P
P=9 1+ e¢cosh

The parameter is also called the Latus Rectum.

Ex. 1. The harmonic mean between the segments of a focal chord is constant, and
equal to the semiparameter.
For, if the radius vector FP, when produced backwards through the focus, meet the

1 . .
curve again in P, then FP being’z-’ - T vesep: TP which answers to (9 + 180°), will
_p 1 -
T2 1—ecosf”
Hence l_ + 1_ = f
P,

Z
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Ex. 2. The rectangle under the segments of a focal chord is to the whole chord in a
constant ratio.

This is merely another way of stating the result of the last Example; but it may be
proved directly by calculating the quantities FP. FP’, FP + FP', which are easily seen
to be, respectively,

1 25 1
Py precy Lyl e pe

Ex. 3. Any focal chord is a third proportional to the transverse axis and the parallel
diameter.

For it will be remembered that the length of a semidiameter making an angle 8 with
the transverse axis is (Art. 164)

R = L

1 — €3 08?0’

Hence the length of the chord FP + FP’ found in the last Example = 2?—.

Ex. 4. The sum of two focal chords drawn parallel to two conjugate diameters is
constant. ‘

For the sum of the squares of two conjugate diameters is constant (Art. 177).

Ex. 5. The sum of the reciprocals of two focal chords at right angles to each other
is constant.

199. The equation of the ellipse, referred to the vertex, is
(z-a) ¥
a tp= 1,

or 2 b b
y= —;l—w— Ew’=pz -Za-a:’.
Hence, in the ellipse, the square of the ordinate is less than the
rectangle under the parameter and abscissa.
The equation of the hyperbola is found in like manner,

2
A = — z?
'y’—px+a2;.

Hence, in the hyperbola, the square of the ordinate exceeds the
rectangle under the parameter and abscissa.

‘We shall show, in the next chapter, that in the parabola these
quantities are equal.

It was from this property that the names parabola, hyperbola,
and ellipse, were first given (see Pappus, Math. Coll., Book vii.).

THE ASYMPTOTES.

200. We have hitherto discussed properties common to the
ellipse and the hyperbola. There is, however, one class of pro-

¢
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perties of the hyperbola which have none corresponding to them
in the ellipse, those, namely, depending on the asymptotes, which
in the ellipse are imaginary.

We saw that the equations of the asymptotes were always
obtained by putting the highest powers of the variables = 0, the
centre being the origin. Thus the equation of the curve, referred
to any pair of conjugate diameters, being

T
PO T
that of the asymptotes is . .
z* oy
&—,"—I—’,-z=0, ora—"'ﬂ—'o a'nd br

Hence the asymptotes are parallel to the dlagonals of the paral-
lelogram, whose adjacent sides are any pair of conjugate semi-
diameters. For, the equationr of CT

is“% = %,, and must, therefore, coin-
cide with one asymptote, while the
equation of AB( + 5, =1 ) is pa-
rallel to the other (see Art. 170).

+ Hence, given any two conjugate diameters, we can find the
asymptotes; or, given the asymptotes, we can find the diameter
conjugate to any given one; for if we draw AO parallel to one
asymptote, to meet the other, and produce it equal to itself, we
find B, the extremity of the conjugate diameter.

201. The portion of any tangent intercepted by the asymptotes
is bisected at the curve, and is equal to the conjugate diameter.

This appears at once from the last Article, where we have
proved AT == AT'; or, directly, taking for axes the diameter
through the point and its conjugate, the equation of the asymp-
totes is R 3 2
Hence, if we take 2 = «’, we have y =+ &'; but the tangent at A
" being parallel to the conjugate diameter, this value of the ordi-
nate is the intercept on the tangent.

-
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202. If any line cut an hyperbola, the portions DE, FQ, in-
tercepted between the curve and its asymptotes, are equal.

For, if we take for axes a
diameter parallel to DG and its
conjugate, it appears from the
last Article, that the portion
DG is bisected by the diame-
ter; so is also the portion EF;
hence DE = FG.

The lengths of these lmes can lmmedmtely be found, for, from
2

‘L = 0) we have

the equatlon of the asymptotes (;”7‘ -5

y(-DM=-MG)=+2 ¢

: 2
Again, from the equation of the curve (g—, - ‘Z—: =1 ),

we have y(= EM=FM)=’—’I”1/(Z:’§_1)'
Hence DE (_ FG)= b'{" - 1/(__ l)}
and DF (= EG) = ¥ 7+ 1/<—‘ ‘>}

203. From these equations it at once follows, that ¢ke rectangle
DE . DF is constant, and = b*. Hence, the greater DF is, the
smaller will DE be. Now it is evident, that the further from
the centre we draw DF the greater will it be, and that b y taking

z sufficiently large, we can make DF [- b’{ 27 1/ -1 }]

greater than any assigned quantity. Hence, the ﬁzrtlzer Jrom the
centre we draw any line, the less will be the intercept between the
curve and its asymptote, and by increasing the distance from the
centre, we can make this intercept less than any assigned quantity.

204. If the asymptotes be taken for axes, the coefficients I
and E of the general equation vanish, since the origin is.the
centre ; and the coefficients A and C vanish since the axes meet

the curve at infinity (Art. 136, 111.): hence the equation reduces
to the form xy = k.
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The geometrical meaning of this equation evidently is, that
the area of the parallelogram formed by the co-ordinates is constant.

205. The equation being given in the form xy = &, to form the
equation of any chord or of any tangent.

We have B k2
' e and .'/ = z H
therefore ., k@ -2
’ : y—y=——£;;r);

the equation of a chord is, therefore,
y-y__®
z-a  xz”’
which may be written (since &* = 2y = 2y")
Yy + 2’y =k + ya'.
Making 2'= 2" and'y = 3", we find the equation of the tangent,
2y + y'z = 2k,
or (writing 2y’ for £?)
Ty
#+y-2
From this form it appears that the intercepts made on the
asymptotes by any tangent = 22/ and 2y'; their rectangle is,
therefore, 44*. Hence, the triangle which any tangent forms with
the asymptotes has a constant area, and is equal to double the area
of the parallelogram formed by the co-ordinates.
Ex. 1. If two fixed points (2'y, z"y") on a hyperbola be joined to any variable point

(="y™), the portion which the joining lines intercept on either asymptote is constant.
The equation of one of the joining lines being
Yy +yr=y2" + A3,
the intercept made by it from the origin on the axis of « is found by making y = 0 to
be 2 + 2". Similarly the intercept from the origin made by the other joining line is
z" + 2", and the difference between these two (2" — z”) is independent of the position of

. wr

the point 2"y".
Ex. 2. Find the co-ordinates of the intersection of the tangents at z'y’, 2"y".
Solve for # and y from
2’y + Yy =2k, 2"y+y'z=2",
and we find o 282 (2 —2") 2" 2y

’

I.y,. — !/'2‘” + 2 = .’/“l’ y,,-
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206. To express the quantity k* in terms of the lengths of the
- axes of the curve. :

Since the axis bisects the angle between the asymptotes, the
co-ordinates of its vertex are found, by putting # = y in the equa-
tion 2y = k%, to be z = y =k.

Hence, if f be the angle between the axis and the asymptote,

a = 2k cos@

(since a is the base of an isosceles triangle whose sides = & and
base angle = 0), but (Art. 170)

0080 = ————;
- Y (a+ )’
hence b v (a*+ b%)
~ 2 )
And the equation of the curve, referred to its asymptotes, is
a*+ b
zy 1 .

207. The perpendicular from the focus on the asymptote is
equal to the conjugate axis b.
b

For it is CF sin 0, but CF =4/ (a?+ 4*), and sinf = W'

This might also have been deduced as a particular case of the
property, that the product of the perpendiculars from the focus
. on any tangent is constant, and = §*. For the asymptote may be
considered as a tangent, whose point of contact is at an infinite
distance (Art.157), and the perpendiculars from the foci on it
are evidently equal to each other.

208. The distance of the focus from uny point on the curve is
equal to the length of a line drawn through the point parallel to an
asymptote to meet the directriz.

For the distance from the focus is e times the distance from

“ the directrix (Art. 190), and the distance from the directrix is to

the length of the parallel line as 0050(= L A, 170) is to 1.
Hence has been derived a method of describing the hyperbola
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by continued motion. A ruler ABR, bent
at B, slides along the fixed line DD’; a
thread of a length = RB is fastened at the
two points R and F, while a ring at P keeps
the thread always stretched; then as the
ruler is moved along, the point P will de-
scribe an hyperbola, of which F is a focus,
DD’ a directrix, and BR parallel to an
asymptote, since PF must always = PB. D’

CHAPTER XII.

THE PARABOLA.

209. THE equation of the second degree, we saw (Art. 136),
will represent a parabola, when the first three terms form a per-
fect square, or when the equation is of the form

(az +by)*+ Dz + Ey + F = 0.

We saw that we could not transform this equation to any
finite point 80 as to make the coefficients of 2 and y both vanish.
The form of the equation, however, points at once to another
method of simplifying it.

We know (Art. 27) that the quantity Dz + Ey + F is propor-
tional to the length of the perpendicular frem the point (zy) on
the right line whose equation is Dz + Ey + F = 0; and, in like

_manner, the quantity az + by is proportional to the perpendicular -
on the line ax + by = 0.
Hence if we construct the two lines whose equations are
az + by = 0, Dz +Ey+F =0,
the equation of the curve asserts that the square of the perpen-
dicular from any point of the curve on the first line is in a con-
stant ratio to the perpendicular on the second line.

Now if we transform our axes, and make the line az + by our
new axis of #, and Dz+ Ey + F = 0 our new axis of y, then our new
y will, of course, be proportional to the perpendicular on the line
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az + by, and our new z to the perpendicular on Dz + Ey + F =0,
and the transformed equation must be of the form
y* = pa.

It is evident that our new origin is a point on the curve, and
since for every value of z we have two equal and opposite values
of y, our new axis of z will be a diameter, and our new axis of y
parallel to its ordinates. But the ordinate drawn at the extremity
of any diameter is (Art. 145) a tangent to the curve, therefore,
the new axis of y is the tangent at the origin. Hence, if we are
given the equation of the parabola in the form

(az + by)? + Dz + Ey + F = 0,
the equation ax + by = 0 represents the diameter passing through
the origin, and the equation Dz + Ey + F' = 0 represents the tan-
gent at the point where this diameter meets the curve. And the
equation of the curve, referred to a diameter and tangent at its
extremity as axes, is of the form
y® = pe.

210. Though we have transformed the equation of the para-
bola into a very simple form, yet our new axes have the incon-
venience of not being in general rectangular. 'We shall prove,
however, that it is possible to transform the equation into this
form, still retaining the axes rectangular.

If we introduce an arbitrary constant %, the equation

(az + by + Dz +Ey + F=0
will be found to be équivalent to the equation

(az + by + k)2 + (D - 2ak)zx + (E - 2bk)y + F - k* = 0.
Hence, as in the last Article,

az+by+k=0
is the equation of a diameter, and
(D-2ak)z+ (E-20k)y + F-Ak2=0
of the tangent at its extremity. (This confirms our proof (Art.
139) that all the diameters of the parabola are parallel.)

Now, the condition that these two lines should be perpen-
dicular is (Art. 40)

a(D - 2ak) + b (E - 2bk) = 0.
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"Hence P aD +E
2(a®+0?)

Since we get a simple equation to determine the particular
value of &, which would make the new axes rectangular, there is
one diameter whose ordinates cut it perpendicularly, and this dia-
meter is called the axis of the curve. And we see, as in the last
Article, that if we take for axes, this diameter ar + by + £, and
the perpendicular tangent (D - 2a%) z + (E - 2b6k) y + F - k* = 0,
the transformed equation must be of the form

¥ =pa. .

211. From the equation y* = px we can at once perceive the

figure of the curve. It mustbe symmetrical on both sides of the
axis of z, since every value for z gives two P

equal and opposite for y. None of it can
lie on the negative side of the origin, since
if we make z negative y will be imagi- —v\F M
nary, and as we give increasing positive \
values to #, we obtain increasing values for
y. Hence the figure of the curve is that here represented.
Although the parabola resembles the hyperbola in having in-
finite branches, yet there is an important difference between the
nature of the infinite branches of the two curves. Those of the
hyperbola, we saw, tend ultimately to coincide with two diverging
right lines ; but this is not true for the parabola, since, if we seek
the points where any right line (2 = £y + ) meets the parabola
(3* = pz), we obtain the quadratic
Y- phy - pl =0,
whose roots can never be infinite as long as £ and [ are finite.
There is no finite right line which meets the parabola in two
coincident points at infinity; for any diameter (y =m) which
meets the curve once at infinity (Art. 140) meets it once also in

. ,

the point 2 = 'l; and although this value increases as m increases,
) g

yet it will never become infinite as long as m is finite.

212. The figure of the parabola may be more clearly con-
ceived from the following theorem :
2 A



178 ) THE PARABOLA.

If we suppose one vertex and focus of an ellipse given, while
its axis major-increases without limit, the curve will ultimately
become a parabola.

The equation of the el- P__—
hpse, referred to its vertex, 4/ ‘
is (Art. 199)
W B
== —%
a a

We wish to express b in terms of the distance VF (= m),
which we suppose fixed. Wehavem=a- ¢ (a® - 8) (Art. 186),
whence & = 2am - m? and the equation becomes

2m? 2m m?
y’=(4'?"‘;)”'(7'?)”’-
Now, if we suppose a to become infinite, all but the first term of
the right-hand side of the equation will vanish, and the equation
becomes y? = 4ma,

the equation of a parabola.
Hence we see that the focus and vertex of an ellipse being
given, while the axis major is indefinitely increased, the parame-

2
ter (= 22, Art. 198) will zemain finite, and = 4m.

Hence if the equation of the parabola be given in the form
¥* = pz, the quantity p is called the principal parameter.
A parabola may also be considered as an ellipse whose eccen-
2 Y]
tricityisequal to1. Fore?=1- %5. Now we saw that %,, which
is the coefficient of 2? jn the preceding equation, vanished as we
supposed a increased according to the prescribed couditions ;
hence ¢* becomes finally = 1.

*213. To find the parameter of the parabola
(az + by)*+ Dz + Ey + F=0.
We have seen (Art. 210) that the equation may be written
in the form

(az + by + k)* + (D - 2ak)z + (E - 20k)y + F - k2= 0
which, when % has the value found in that article, is

i
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(ax+by+k)’+bD il ~ (bz - ay+F’) 0,

where we have written for shortness,

(a2 + B) (F - &)
-y

Now, let Y and X denote the perpendiculars from any point on
the lines az + by + k = 0, and bz — ay + F' = 0, and this equation

becomes aE - 8D
(a' + b’) Y= m-)-
and aE D
T@r oy

Ex. 1. Change to the form y3 = pz the equation
923 4 24zy + 18y% 4 222 + 46y + 9 = 0.
Here & = § and the equation may be written
(Bz+4y +6)3=2(42 -8y + 8); .
or if the distances of any point from 82 + 4y + 6 and 4z — 8y + 8 be Y and X,
Y2 =3X.
Ex. 2. Find the parameter of the parabola

z2 22y Yy 22 2 _
FRr R R i
. Ans. .
(a? + b)Y
This value may also be deduced directly by the help of the following theorems, which
will be proved afterwards :—¢ The foeus of a parabola is the foot of & perpendicalar let
. fall from the intersection of two tangents which cut at right angles on their chord of con-
tact ;” and ¢ The parameter of a conic is found by dividing four times the rectangle under
the segments of a focal chord, by the length of that chord” (Art. 138).

Ex. 8. If a and b be the lengths of two tangents to a parabola which mtarsect at
right angles, and m one quarter of the parameter, prove

L
A S

*214. To find the parameter of (az + by)* + Dz +Ey+F =0,
the axes being oblique.

‘We proceed as in Art. 210, but the axes being oblique, we
must use the condition (Art.41) that two lines should cut at
right angles, and the equation which determines £ becomes -

a(D - 2ak) + b (E - 2bk) = {a (E - 2bk) + b (D - 2ak)} cosw
aD + BE - (aE + bD) cosw
2(a?+ ¥ - 2abcosw)

ke
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The transformed equation then is
D - aE

(b + k) s (b-acosu)a—(a-boosw)y + ) =0,
where Fe (F - £*) (a® + b — 2ab cos w)
(8D -aE) )
Now, let
_ (az+by+k)sine X- (b-acosw)z—(a-bcosw)y+F
¥ (@® + 57— 2ab cosw)’ v (a® + 8~ 2ab cos w) ?
and we get __(aE - bD) sin’w

(@® + b* - 2ab cosw)?
Ex. Find the parameter of the parabola

4a2b? sindw
(a% + b* + 2ab cos u)‘!

THE TANGENT.

215. The equation of any chord of the parabols can be easily
obtained. For, since y? = pa’ and y"? = pa’, we have

y*-y?=p(z - '), and ‘g,—:%: = !/_I:y,o
and the equation of the chord is
y-y__»p
z-o y+y’ ‘
or @ +y)y~pz-yy' =0

The equation of the tangent is found from this, by supposing
Y =Y, or (remembering that y? = pz’) is 2y'y = p (z + ).

If we seek the point where the tangent meets the axis, we
obtain z = - o/, or TM (which is called the subtangent) is bisected
at the vertex.

. We saw that if the oblique axes were any diameter and a

tangent through its vertex, the equation of the parabola was still
_ y'=pa. A

The equations of the chord and tangent remain the same, and it

will be equally true that the subtangent is = twice the abscissa.
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This Article enables us, there- P~
fore, to draw a tangent at any .
point on the parabola, since we = N
have only to take TV = VM and - /V i

join PT; or again, having found
this tangent, to draw an ordinate
from P to any other diameter,
since we have only to take V'M’' = T'V’, and join PM’.

216. It follows from Art. 144 (or may be proved as in Art.
172) that the equation of the polar of any point 2’y is similar in
form to that of the tangent, and is, therefore,

2y = p(z +2). ,
If we seek the point where this polar meets the axis of z, we get
) z=-a.

Hence we derive a theorem, which will be useful hereafter,
that the intercept which the polars of any two points cut off on the
axis is equal to the intercept between perpendiculars from those
points on that axis ; each of these quantities being equal to (z'-z").

DIAMETERS.

217. We have said, that if we take for axes any diameter and
the tangent at its extremity, the equation will be of the form

¥ =pz.

‘We shall prove this again by actual transformation of the
equation referred to rectangular axes (y* = px), because it is de-
sirable to express the new p’ in terms of the old p.

If we transform the equation 3* = pz to parallel axes through
any point (2y) on the curve, writing  + 2’ and y + ' for z and -
y, the equation becomes

: ¥+ 29y = pa.

Now if, preserving our axis of z, we take a new axis of y, in-
clined to = at an angle 6, then our old y = PN = PM’ sin 6, and
our old z = VM' + PM cosf. (See figure, above.)

‘We, therefore, substitute y sin 0 for y, and z + y cos 0 for z,
and our equation becomes

y*sin?0 + 2y'ysin@ = pzx + py cos 6.
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In order that this should reduce to the form y* = pa:, we must

have
2y sin@ = p cosf, or tan0=7

Now this is the very angle which the tangent makes with the
angle of z, as we see from the equation

2y = p(z + ).
This equation, therefore, referred to a diameter and tangent, will
take the form
y= -——om, or y'=pa.

The quantity p'is called the parameter corresponding to the
diameter V'M/, and we see that the parameter of any diameter is
to the principal parameter (p), inversely as the square of'the sine of
the angle which its ordinates make with the axis, since p' = 8'%9'

We can express the parameter of any diameter in terms of the

co-ordinates of its vertex, from the equation tan § = 2—!/, ; hence,

: p P_\.
R R D) V(P * 4x'> ’
hence P=p+da
THE NORMAL.

218. The equation of a line through (#%y) perpendicular to
the tangent 2yy = p (z + &) is

P
r@-y)+2(z-2)=0. R
If we seek the intercept on the _

axis of 2 we have T VN\F M N
z(=VN) = w’+g;
and, since VM = z, we must have
MN (the subnormal, Art.185) =2

Hence in the parabola the subnormal is constant, and equal to
the semiparameter. 'The normal itself

- v(PM? + MN?) = 1/(y'= +';_2) - \/{,,(x s §>}
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THE FOCUS.

219. A point situated on the axis of a parabola, at a distance
from the vertex equal to one-fourth of the principal parameter, is
called the focus of the curve. This is the point which, Art. 214,
has led us to expect to find analogous to the focus of an ellipse;

-." and we shall show, in the present section, that a parabola may in

every respect be considered as an ellipse, having one of its foci

at this distance, and the other at infinity. To avoid fractions

we shall often, in the following Articles, use the abbreviation
14

m =Z.

To find the distance of any point on the curve from the focus.

The co-ordinates of the focus being (m, 0), the square of its
distance from any point is

(@ -m)* + y*= 2% - 2m2’ + m* + 4mz’ = (2’ + m)*

Hence the distance of any point from the focus = 2’ + m.

This enables us to express more simply the result of Art. 217,
and to say that the parameter of any diameter is four times the
distance of its extremity from the focus.

220. The polar of the focus of a parabola is called the direc-
triz, a8 in the ellipse and hyperbola.

Since the distance of the focus from the vertex = m, its polar
is (Art. 216) a line perpendicular to the axis at the same distance
on the other side of the vertex. The distance of any point from
the directrix must, therefore, = 2"+ m.

Hence, by the last Article, the distance of any point on the
curve from the directriz is equal to its distance from the focus.

‘We saw (Art. 190) that in the ellipse and hyperbola, the dis-
tance from the focus is to the distance from the directrix in the
constant ratio ¢ to 1. 'We see, now, that this is true for the pa~
rabola also, since in the parabola ¢ = 1 (Art. 212).

The method given for mechanically describing an hyperbola,
Art. 208, can be adapted to the mechanical description. of the
parabola, by simply making the angle ABR a right angle.

221. The point where any tangent cuts the axis, and its point
of contact, are equally distant from the focus.
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For, the distance from the vertex of the point where the tan-
gent cuts the axis = 2/ (Art. 215), its distance from the focus is,
therefore, 2’ + m.

222. Any tangent makes equal angles with the axis and with
the focal radius vector.

This is evident from inspection of the isosceles triangle, which,
_ in the last Article, we proved was formed by the axis, the focal
radius vector, and the tangent.

This is only an extension of the property of the ellipse
(Art. 192), that the angle TPF = T'PF’; for, if we suppose the
focus F' to go off to infinity, the line PF" will become parallel to
the axis, and TPF = PTF. (See figure, p. 178.)-

Hence the tangent at the extremity of the focal ordinate cuts
the axis at an angle of 45°.

223. To find the length of the perpendicular Jrom the focus on
the tangent. )

The perpendicular from the point (m, 0) on the tangent
{yy = 2m(x + &)} is

_ 2m(x'+m) 2m (2 + m)

T V@ T amd) T Y (dmaz + 4m)
Hence (see fig. p. 182) FR is a mean proportional between FV
and FP. )

It appears,; also, from this expression, and from Art. 218, that
FR is half the normal, as we might have inferred geometrically
from the fact that TF = FN. :

224. To express the perpendicular from the focus in terms of
the angles which it makes with the axis.

‘We have

cosa = sin FTR = (Art. 217) 4/ (a%’;)
Therefore (Art. 223),
' FR = ¢/ (m(2'+ m)) =T

cosa .
The equation of the tangent, the focus being the origin, can,
therefore, be expressed

v {m(z + m)}.

=0,

m
xcosa + ysina +
cosa
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and hence we can express the perpendicular from any other point
in terms of the angle it makes.

225. The locus of the extremity of the perpendicular from the
Jocus on the tangent is a right line.

For, taking the focus for pole, we have at once the pplar
equation

m
= — cosSa=m;
P cosa’ P ’

which obviously represents the tangent at the vertex.

Conversely, if from any point F' we draw FR a radius vector
to a right line VR, and draw PR perpendicular to it, the line
PR will always touch a parabola having F for its focus.

‘We shall show hereafter how to solve generally questions of
this class, where one condition less than is sufficient to determine
a line is given, and it is required to find its envelope, that is to
say, the ‘curve which it always touches.

We leave, as a useful exercise to the reader, the investigation
of the locus of the foot of the perpendicular by ordinary rectan-
gular co-ordinates.

226. To find the locus of the intersection of tangents which cut
at right angles to each other.
The equation of any tangent being (Art. 224)
xcos’a + ysina cosa + m = 0;
the equation of a tangent perpendicular to this (that is, whose
perpendicular makes an angle = 90° + a with the axis) is found
by substituting cos a for sina, and - sin a for cosa, or
zsin’a — y sina cosa + m = 0.
ais ehmmated by simply adding the equations, and we get
x+2m=0,
the equation of the dzrectrtw, since the distance of focus from di-
rectrix = 2m.

227. The angle between any two tangents is half the angle be-
tween the focal radii vectores to their points of contact.

For, from the isosceles PFT, the angle PTF which the tan-
gent makes with the axis is half the angle PFN, which the focal
radius makes with it. Now, the angle between any two tangents

28
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is equal to the difference of the angles they make with the axis,
and the angle between two focal radn is equal to the difference of
the angles which ¢tiey make with the axis.

The theorem of the last Article follows as a particular case
of the present theorem ; for if two tangents make with each other
an angle of 90°, the focal radii must make with each other an
angle of 180°, therefore, the two tangents must be drawn at the
extremities of a chord through the focus, and, therefore, from the
definition of the directrix, must meet on the directrix.

228. T'he line joining the focus to the intersection of two tan-
gents bisects the angle which their points of contact subtend at the

Jocus.
The equations of two tangents being

zcos*a + ysinacosa+m =0, zcos’ +ysinBcosB+m=0;

subtracting them, we find for the line joining their intersection
to the focus, g gin (a + ) - ycos (a + B) = 0.

This is the equation of a line making the angle a + (3 with the
axis of z. Butsince a and 3 are the angles made with the axis
by the perpendiculars on the tangent, we have VFP = 24 and
VEP = 23; therefore the line making an angle with the axis
= « + (3 must bisect the angle PFP". This theorem may also be
proved by calculating, as in Art.196, the angle (0 - 6') subtended
at the focus by the tangent to a parabola from the point zy ; when

it will be found that cos (6 — @) = 2

independent of the co-ordinates of the point of contact, will
be the same for each of the two tangents which can be drawn
through zy. (See O’Brien’s Co-ordinate Geometry, p. 156.)

Cor. 1. If we take the case where the angle PFP = 180°,
then PP’ passes through the focus; the tangents TP, TP will
intersect on the directrix, and the angle TFP = 90°. (See Art.
197.) This may also be proved directly by forming the equations
of the polar of any point (- m, ¥) on the directrix, and also the
equation of the line joining that point to the focus. These two
equations are

Yy=2m(z-m), 2m(y-y)+y(x-m)=0,

”, a value which, being
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which obviously represent two nght lines at right angles to each
other. P’

Cor. 2. If any chord PP’ ;
cut the directrix in D, then FD
is the external bisector of the
angle PFP'. This is proved as
at p. 168.

Cor. 3. If any variable tan-
gent to the parabola meet two fixed tangents, the angle sub-
tended at the focus by the portion of the variable tangent inter-
cepted between the fixed tangents, is the supplement of the angle
between the fixed tangents.

For the angle QRT is half pFq (Art 227), and, by the pre-
sent Article, PFQ
is obviously also half
pFq, therefore,

PFQ is = QRT,
or is the supplement
of PRQ. \
Cor. 4. The cir-
cle circumscribing the triangle formed by any three tangents to a
parabola will pass through the focus. For the circle described
through PRQ must pass through F, since the angle contained
in the segment PFQ will be the supplement of that contained in
PRQ. :
229. To find the polar equation of the parabola, the focus being
the pole.

We proved (Art. 219) that the focal P
i 7
=2'+m=VM+m=FM+ 2m =pcos0 + 2m.

Hence _ 2m
P =1 cost

This is exactly what the equation of Art. 198 becomes, if we

suppose e =1(Art.212). The properties proved in the Examples

to Art. 198 are equally true of the parabola.
In this equation 0 is supposed to be measured from the side
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FM ; if we suppose it measured from the side FV, the equation

becomes 2m

P = 1¥cosh’
This equation may be written

pcos*$0 =m,
or pcos $0 = (m)},

and is, therefore, one of a class of equations,
p" cosnf) = a”,
some of whose properties we shall mention hereafter.

——————

CHAPTER XIII.

EXAHP?EB AND MISCELLANEOUS PROPERTIES OF THE CONIC SECTIONS.

230. TrE method of applying algebra to problems relating
to conic sections is essentially the same as that employed in the
case of the right line and circle, and will present no difficulty to
any reader who has carefully worked out the Examples given in
Chapters m1. and vir. We, therefore, only think it necessary to
select a few out of the great multitude of examples which lead to
loci of the second order, and we shall then add some properties
of conic sections, which it was not found convenient to insert in
the preceding chapters. :

Ex. 1. A line of constant length moves about
in the legs of a given angle: to find the locus de- L
scribed by a fixed point on it. N/ NP
Denoting PL by »n, PK by m, and LK by 7, we
have, by'r similar triangles,

oL=Y miok=2 O ™ K
m n
Bat since LK?* = OL? + OK2 — 20K. OL cosw,
we have Byp BA 2Bzycosw
=t T T
m ' . mn
or A 2z'ycosw_1_
e m T mm

the equation of an ellipse having the point O for its centre, since B* — 4AC is here ne-

. . 4
gative, being = — P sin3.
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Ex. 2. If P be a fixed point, and LK any right line drawn through it, to find the
locus of intersection of the parallels to OK, OL, through the points L and K.

Ex. 8. Or of perpendiculars erected to OK, OL, through the same points.
Ex. 4. If a point Q be taken on LK so that QK = PL, to find its locus.

Ex. 5. Two equal rulers, AB, BC, are connected B
by a pivot at B; the extremity A is fixed, while the
extremity C is made to traverse the right line AC;
find the locus described by any fixed point P on BC.

Ex. 6. Given base and difference of base angles ofa A C
triangle: to find the locus of vertex.

‘We may proceed exactly as at page 85, where the sum of the base angles is given.
The locus will be found to be an equilateral hyperbola, of which the base is a diameter.
The difference of base angles being given, it is easy to see that the internal and external
bisectors of the vertical angle must be parallel to fixed lines, and these lines will be
rallel to the asymptotes of the locus. Conversely, if we consider the triangle whose pase
is any diameter of an equilateral hyperbola, and whose vertex is on the curve, the siess
are parallel to conjugate diameters (Art. 183) ; but conjugate diameters of an equilateral
hyperbola make equal angles with the asymptotes (Art. 178).

Ex. 7. Given base and the product of the tangents of the base angles of a triangle:
find the locus of vertex.

It will be a conic section, of which the extremities of the base are vertices. This is

the converse of Art. 174.

Ex. 8. Given base and the product of the tangents of the halves of the base angles :
find the locus of vertex.

Expressing the tangents of the half angles in terms of the sides, it will be found that
the sum of sides is given: and, therefore, that the locus is an ellipse, of which the extre-
mities of the base are the foci.

Ex. 9. Given base and sum of sides of a triangle: find the locus of the centre of the
inscribed circle,

It may be immediately inferred, from the last two examples, that the locus is an el-
lipse, whose vertices are the extremities of the given base.

Ex. 10. Given the vertical angle of a triangle in magnitude and position, and also
the area : find the locus of a point dividing the base in a given ratio.

Ex. 11. Given base of a triangle, and that one base angle is double the other; find
locus of vertex.,

Ex. 12. Trisect a given arch of a circle.

Ans. The point of trisection is determined as the intersection of the given
arch with a given hyperbola.

Ex. 13. Given base and area of a triangle; find the locus of the intersection of per-
pendiculars,

Ex. 14. Find the locus of the centre of a circle which touches two others; or which
touches a given circle and a given right line.

Ex. 15. Given the base of a triangle, and the length of the intercept made by the
sides on a given line; find the locus of vertex.,

4



190 EXAMPLES ON CONIC SECTIONS.

Ex. 16. Two vertices of a given triangle move along fixed right lines ; find the locus
of the third.

Ex. 17. Two vertices of a triangle move along fixed right lines, and the sides pass
through fixed points ; find the locus of the third vertex.

Ex. 18. Find the locus of the centre of a circle which makes given intercepts on two
given lines. .

Ex. 19, A triangle ABC circumscribes a given circle; the angle at C is given, and
B moves along a fixed line ; find the locus of A.

Let us use polar co-ordinates, the centre O being the pole, and the angles being mea-
sured from the perpendicular on the fixed line; let the co-ordinates of A, B, be p, 0; 0, 9"
Then we have p’'cos@ =p. But it is easy to see that the angle AOB is given (=a).
And since the perpendicular of the triangle AOB is given, we have

e pp’sina
T V(p*+p— 2pp’ cosa)’
But 0 + 6’ = a ; therefore the polar equation of the locus is
pip?einia
~ picost (a—0) + p2— 2pp cosa cos(a — 6)’
which represents a conic.

Ex. 20. Given two conic sections, to find the locus of the pole, with respect to one,
of ‘any tangent to the other.

Let their equations be 22 g

””

Az?+Bry+Cy?+ Dz + Ey + F=0,
the polar of any point, with regard to the second, is (Art. 144)
(2A7 + By’ + D)2 +(2Cy’ + Bz’ + E)y + Dz’ + Ey' + 2F = 0.
But the condition that this should touch the first is (p. 150)
@ (2Ar + By + D)2 + b3(2Cy’ + Bz + Ey3=(Dz' + Ey' + 2F).
This condition, which must be satisfied by the point (z'y’), is the equation of its locus,
and is plainly of the second degree. '

231. We give in this Article some examples on the focal
properties of conics.
Ex. 1. The distance of any point on a conic from the focus is equal to the whole

length of the ordinate at that point, produced to meet the tangent at the extremity of
the focal ordinate.

Ex, 2. If from the focus a line be drawn making a given angle with any tangent,
find the locus of the point where it meets it.

Ex. 8. Tofind the locus of the pole of a fixed line with regard to a series of concentric
and confocal conic sections.

We know that the pole of any line (%+f—. = 1), with regard to the conic

2y
(%, + ‘Z—: =1 ), is found from the equations mx = a3 and ny = b3 (Art. 172).
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Now, if the foci of the conic are given, a? — b3 = ¢* is given ; hence, the locus of the
pole of the fixed line is mz —ny = o,
the equation of a right line perpendicular to the given line.

If the given line touch one of the conics, its pole will be the point of contact (Art.
144). Hence, given two confocal conics, if we draw any tangent to one and tangents to
the second where this line meets it, these tangents will intersect on the normal to the
first conic.

Ex. 4. The focus being the pole, prove that the polar equation of the tangent, at the
point whose angular co-ordinate is a, is —2&p =ecosf + cos(0 — a).

This expression is due to Mr. Davies (Philosophical Magazine for 1842, p. 192,
cited by Walton, Examples, p. 368). °

Ex. 5. Prove that the polar equation of the chord through points\whose angular co-
ordinates are a + 3, a — 8, is
p - -

% =ecosf + sec 3 cos (0 — a).

This expression is due to Mr. Frost (Cambridge and Dublin Math. Journal, i. 68,
cited by Walton, Examples, p. 875).

These equations may be conveniently used in investigating theorems concerning
angles subtended at the focus. Still simpler methods, however, of obtaining these will
be given in Chapter x1v.

Ex. 6. If a chord PP’ of a conic pass through a fixed point O, then tan 3 PFO.
tan § P'FO is constant.

The reader will find an investigation of this theorem by the help of the equation of
the last Example (Walton’s Examples, p. 877). I insert here the geometrical proof
given by Mr. MacCullagh, to whom, I believe, the theorem is due. Imagine a point O
taken anywhere on PP’ (see figure, p. 187), and let the distance FO be ¢’ times the dis-
tance of O from the directrix ; then since the distances of P and O from the directrix are
proportional to PD and OD, we have

FP  FO. e sin PDF  sinODF e

PDTOD "¢’ ” SnPFD T @nOFDuxe
Hence (Art. 197), cosOFT e
cos PFT ¢’
or, since (Art. 196) PFT is half the sum, and OFT half the difference, of PFO and P'FO
e—e

tan }PFO . tan }PFO =

ete’
It is obvious that the product of these tangents remains constant if O be not fixed, but
be anywhere on a conic having the same fgcus and directrix as the given conic.
Ex. 7. If normals be drawn at the extremities of any focal chord, a line drawn
through their intersection parallel to the axis will bisect the chord.
1]
Take any point on the directrix whose co-ordinates are z = 1, y =3, then the equa-

tion of the polar of that point, which passes through the focus, will be - + By =1,
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Substituting for # from this equation in the equation of the curve, the ordinates of the
points where this line meets the curve are given by the equation
s
(B3 + e33%) y3 — 2%t By — % =0.
Hence, if ', y", be the ordinates of the point of intersection, we have

weg ., -0

!I+!I=b,+e,‘6,1 yy'-‘a’(b’_'_egﬁ’-)l

but (Art. 185, Ex. 4)

o B 1y
n YYPEmTamE " . 2y :
It may be found, in like manner., that the abscisss of the intersection of the chord
with the curve are determined by the equation
@ + B2 —2b%z + *(B* - ) =0,
whence e = 2b%c oo = (b — B’)‘
B eapt 5+ '3
and the abscissa of the intersection of normals is
_e@®-6M
NIGEYID)

Ex. 8. If a chord pass through a focus, the line joining the intersection of tangents
at its extremities to the intersection of the corresponding normals will pass through the
other focus.

The equation of the joining line is ¢B (z + ¢) = (a® + ¢*)y.

Ex. 9. Find the locus of the intersection of normals at the extremities of a focal
chord.

, _ (-
Solving for 3 from =z = AT apy)’ we have

z

_bB(@-a2) _Be(at+ )
pr= (c+2)’ Bep= at(c+2)
5 Btet 2 4 ot
But since y=sr_‘%-,, we have ﬁ=(—:(cl+%!.
Hence (ad+ ey b3 (e — a¥z)
A(c+z c(ct+z) '
and the locus is the ellipse
(a® + e)iyp=0? (c.+ z) (3 — atz),
or (a® + c3)%y® + a3b328 + blex = biet.

Ex. 10. If 0 be the angle between the tangents to an
ellipse from any point P ; and if p, p’ be the distances of
p*+p?—4al
that point from the focus, prove that cos9=—5‘;p,—-~
For (Art. 189)
FT.FT b
PF.PF  pp
But cos FPF' — cos TPt = 2 dla TPF . sin ¢PF;
And 2pp’ cos FPF' = p* + p% — 4¢c*

sin TPF . sintPF =
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232. Wegive in this Article some examples on the parabola.
The reader will have no difficulty in distinguishing those of the
examples of the last Article, the proofs of which apply equally
to the parabola.

Ex. 1. Find the co-ordinates of the intersection of the two tangents at the points
2y, 2"y, to the parabola y2= pz. dns. y =y’_-;3i" e %’_’

Ex. 2. The three perpendiculars of the triangle formed by three tangents intersect on
the directrix (Steiner, Gergonne, Annales, xix. 59, Walton, p. 119).

The equation of one of those perpendiculars is (Art. 42)

y'!lm; vy (z 3’3’”) + yml.; y (y _ 3’"';3"") =0;
which, after dividing by ¥” — y”, may be written
The symmetry of the equation shows that the three perpendiculars intersect on the direc-
trix at & height WYY YAty
y= et

Ex. 8. The area of the triangle formed by three tangents is half that of the triangle
formed by joining their points of contact (Gregory, Cambridge Journal, ii. 16, Walton,

187).
i Sulzsﬁtnting the co-ordinates of the vertices of the triangles in the expression of

Art. 81, we find for the hm:ana,%(y’-y") W -y¥") (v" — y"); and for the former
area half this quantity.

Ex. 4. Find an expression for the radius of the circle circumscribing a triangle in-
scribed in a parabola.

The radius of the circle circumscribing a triangle, the lengths of whose sides are d, e, f;
and whose area = X is easily proved to be g But if d be the length of the chord joining

the points #'y", z”y", and @' the angle which this chord makes with the axis, it is ob-

vious that dsin@’=y”"— y". Using, then, the expression for the area found in the last
- P

Example, we have R = 2an0sng sno” ‘We might express the radius, also, in terms

of the focal chords parallel to the sides of the triangle. For (Art. 198, Ex, 2) thelength

Y

of & chord making an angle 8 with the axis is ¢ =Y. Hence m=°‘;; .

sin’
It follows, from Art. 217, that ¢, ¢”, ¢ are the parameters of the diameters which
bisect the sides of the triangle.

Ex. 5. Express the radius of the circle circumscribing the triangle formed by three
tangents to a parabola in terms of the angles which they make with the axis.

RO

RS TS M- R’=“;: , Where p', p", p” are the pa-

rameters of the diameters through the points of contact of the tangents
(see Art. 217).

2c
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Ex. 6. Find the angle contained by the two tangents through the point z'y’ to the.
parabola y? = 4muz.
The equation of the pair of tangents is (as in Art. 150) found to be
(¥ — 4ma) (y* — 4mz) = {yy — 2m (z + 2')}2
A parallel pair of lines through the origin is
Yy — y'zy + ma2 = 0.
The angle contained by which is (Art. 70) '
V(g™ — 4mz”)
Z+m
Ex. 7. Find the locus of tangents to a parabola which cut at a given angle.
Ans. The hyperbola y?— 4me = (z + m)? tan3$, or y3 +(z —m)*=(z+m)3 sec?¢.
From the latter form of the equation it is evident (see Art. 190) that the
hyperbola has the same focus and directrix as the parabola, and that its ec-
centricity = secg.
Ex. 8. Find the locus of the foot of the perpendicular from the focus of a parabola
on the normal. :
The length of the perpendicular from (m, 0) on 2m(y —y) +y'(z —2) =01is

y@+m) o,

) =V{( +m)}.

But if 6 be the angle made with the axis by the perpendicular (Art. 217)
in = i =
0= {22}, wmy(%5)

Hence the polar equation of the locus is

tang =

_ mcosd .
P="gmg » V="

Ex. 9. Find the co-ordinates of the intersection of the normals at the points 2y, 25"

YIHYY Yt Y +Y)
4m y 8ms

Or if a, 3, be the co-ordinates of the corresponding intersection of tan-

Ans. 2=2m+

gents, then (Ex. 1) z=2m+ﬁ—’-—a, y=-a—ﬂ.
m m

Ex. 10. Find the locus of the intersection of normals at the extremities of chords
which pass through a given point 2’y’.

‘We have then the relation By’ = 2m (s’ + a) ; and on subetituting in the results of
the last Example the value of a derived from this relation, we have

2mz + By = 4m? + 263 + 2ma’; 2mYy = 2Pmz’ — Y;
whence, eliminating 3, we find
2{2m(y ~y") +y'(z—2)}3 = (dm2’ — ") (¥y + 22’z — 4mz’ — 2279), )

the equation of a parabola whose axis is parallel to the perpendicular from the given point
on its polar.

Ex. 11. Find the locus of the intersection of normals at right angles to each other.
B

In this case a = — m, z=8m+,—n-,

y=8 y=m(z - 8m).
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Ex. 12. If the lengths of two tangents be a, b, and the angle between them w; find
the parameter.
Draw the diameter bisecting the chord of contact; then the parameter of that dia-
Y - . y? sin?0 "’y’
meter mp:;, and the principal parameter is p= ~—— (where @ is the

length of the perpendicular on the chord from the intersection of the tangents). But
2wy = absinw, and

1628 = a? + b% + 2ab cosw ; hence p=—4—a‘&—(seep.180).
(a% + % + 2abeosw)t
Ex. 13. Show, from the equation of the circle c&cumscn‘bingtbreetangents to a pa-

rabola, that it passes through the focus.

The equation of the circle circaumscribing a tﬁmgle being (Art. 105) By sin A
+ ya sin B + af3 sin C'= 0, the absolute term in this equation is found (by writing at
full length for a, zcosa + ysina — p, &c.) to be pp”sin(B—y) +p'psin(y — a)
+ pp’sin(a — 8). But if the line a be a tangent to a parabola, and the origin the
focus, we have (Art. 224) p =c-££;, and the absolute term —m {sin(B~7)
cosa + sin (y — a) cos B + &in(a — B) cosy}, which vanishes identically.

Ex. 14. Find the locus of the intersection of tangents to a parabola, being given
either (1) the product of sines, (2) the product of tangents, (8) the sum or (4) difference
of cotangents of the angles they make with the axis.

Ans. (1) a circle, (2) a right line, (8) a right line, (4) a parabola.

233. We add a few miscellaneous examples.

Ex. 1. If an equilateral hyperbola circumscribe a triangle, it will also pass through
the intersection of its perpendiculars (Brianchon & Poncelet : Gergonne, Annales, xi. 205;
Walton, p. 283).

The equation of a conic meeting the axes in ngen points is (Ex. 1, p. 137)

bbx’+Bxy+aay'-—bb(a+a)x—aa’(b+b’)y + aa'db' = 0.

And if the axes be rectangular, this will represent an equilateral hyperbola (Art. 178)
if ad = — bb'. 1If, therefore, the axes be any side of the given triangle, and the perpen-
dicular on it from the opposite vertex, the portions a, , b, are given, therefore ' is also

given; or the curve meets the perpendicular in the fixed point y = — %, which is

(Ex. 7, p. 85) the intersection of the perpendiculars of the triangle.

Ex. 2. Given a triangle, such that any vertex is the pole of the opposite side with
respect to an equilateral hyperbola; the circle circumscribing the triangle passes through
the centre of the curve. [This is a particular case of a theorem to be proved in the next
Chapter (Brianchon & Poncelet, Gergonne, xi. 210 ; Walton, p. 804).]

Take two sides of the triangle for axes; now the pole of the axis of z, with regard
to a conic given by the general equation, lies on the diameter bisecting chords parallel
to that axis (2Az + By + D =0), and also on the polar of the origin (Dz+ Ey + 2F =0).
If, then, we have DE = 2BF, both these lines will meet the axis of y in the same point,

and the pole of the axis of # will be the point!/=—~]B2 on the axis of y. In the same

case the pole of the axis of y will be the point on the axis of z, z = — %



196 THE ECCENTRIC ANGLE.

The equation of the circle through the origin and through these two points is
B(2*+ 2zy cosw + y8) + Ex + Dy = 0,

or z(2Cy + Bz + E)+ y(2Az + By + D)-2(A+ C~Beosw)ay =0,

an equation which will evidently be satisfied by the co-ordinates of the centre, provided
we have A + C = B cosw, that is to say, provided the curve be an equilateral hyperbola
(Arts. 70, 178). If DE be not = 2BF, we have still proved that the circle passes
through the centre, which is described through the origin and through the points
(o, -g), (-g, o), that is to say, through the points where each axis is met by the
diameter bisecting chords parallel to the other. Hence, a circle described through the
centre of an equilateral hyperbola, and through any two points, will also pass through
the intersection of lines drawn through each of these points parallel to the polar of the
other. ‘ : .

Ex. 8. If on any tangent to & conic there be taken points A, B, such that AB may
be constant; find the locus of the intersection of tangents from A and B (see the section
on the Anharmonic Properties of Conics).

The points where a pair of tangents to a conic, given by the general equation, meet
the axis of z are found (Art. 150) from the equation.

{(4AC —B?) y?+ (4AE — 2BD) y'+ 4AF — D3} 23+ 2{(BD - 2AE) 2y’ + (2CD - BE)
¥+ (D — 4AF) &' + (DE — 2BF) y'} z + {(4AF — D3) 22 + (4BF —2DE) z'y’
+ (4CF - E3)y} = 0.

Forming the difference of the roots of this equation, and putting it equal to a con-
stant, we obtain the equation of the locus which will be in general of the fourth degree;
but if D* = 4AF, the axis of z will touch the given conic, and the equation of the locus
will become divisible by y*, and will reduce to the second degres. We could, by the help
of the same equation, find the locus of the intersection of tangents ; if the sum, produet,
&c., of the intercepts on the axis be given.

THE ECCENTRIC ANGLE.*

234. It is always advantageous to express the position of a
point on a curve, if possible, by a single independent variable,
rather than by the two co-ordinates 2’y’. We shall, therefore,
find it useful, in discussing properties of the ellipse, to make a
substitution similar to that employed (Art.100) in the case of
the circle; and shall write

z'=acos¢, ¥y =bsing,

* The use of this angle occurred to me some years ago, as a particular case of the
methods given in Chapter xiv. It has, however, been already recommended by Mr.
O’Brien in the Cambridge Mathematical Journal, vol. iv. p. 99, and has since been in-
troduced by him, under the name here adopted, into his treatise on Plane Co-ordinate
Geometry, p. 111,




THE ECCENTRIC ANGLE. 197

a substitution, evidently, consistent with the equation of the ellipse

€

The geometric meaning of the angle ¢ is easily explained.
If we describe a circle on the axis major as diameter, and pro-
. duce the ordinate at P to meet the circle at Q, then the angle

QCL=¢, for CL = CQ cosQCL, or z'=acos¢ ; andPL=£QL
(Art. 166); or, since QL = @ sin ¢, we have y' = b sin ¢.

235. Some important consequences may be drawn from this
construction.

If we draw through P a parallel PN
to the radius CQ, then

PM:CQ::PL:QL::%:a,
but CQ =a, therefore PM = b.
PN parallel to CQ is, of course, = a.

Hence, if from any point of an ellipse
a line = a be inflected to the minor axis, D
its intercept to the axis major = . If the ordinate PQ were
produced to meet the circle again in the point Q), it could be
proved, in like manner, that a parallel through P to the radius
CQ' is cut into parts of a constant length. Hence, conversely,
if a line MN, of a constant length, move about in the legs of a
right angle, and a point P be taken so that MP may be constant,
the locus of Pis an ellipse, whose axes are equal to MP and NP.
(See Art. 230, Ex. 1.)

On this principle has been constructed an instrument for de-
scribing an ellipse by continued motion, called the Elliptic Com-
passes. CA, CD', are two fixed rulers, MN a third ruler of a

* constant length, capable of sliding up and down between them,
thén a pencil fixed at any point of MN will describe an ellipse.

If the pencil be fixed at the middle point of MN it will de-
scribe acircle. (O’Brien’s Co-ordinate Geometry, p. 112.)

236. The consideration of the angle ¢ affords a simple me-
thod of constructing geometrically the diameter conjugate to a
given one, for
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tanf<Y

b
E’ = Etan¢n

Hence the relation
tan@ tan gl = - 2 (Art. 174)

becomes tan ¢ tang' = -1,
or ¢~ ¢ =90°
. Hence we obtain the following construction for drawing the

diameter conjugate to any given one. Let the ordinate at the
given point P, when produced, meet the o
semicircle on the axis major at Q,? join Q
CQ, and erect CQ' perpendicular to it; then
the perpendicular let fall on the axis from
Q' will pass through P, a point on the con- Moc M
jugate diameter. -

Hence, too, can easily be found the co-ordinates of P’ given

in Art. 176, for, since

’

" ’

cos¢ = sing, we have L Z,
e b
and since gin ¢’ = - cos ¢, we have %—=-—§.

From these values it appears that the areas of the triangles
PCM, PCM,, are equal. ’
Ex. 1. To express the lengths of two conjugate semidiameters in terms of the
angle ¢. Ans. @'t =a?%cos3¢ + b3sin?¢; b'3 = a3 sin?¢ + b2 cos¢.
Ex. 2. To express the equation of any chord of the ellipse in terms of ¢ and ¢’ (see
. 93 z .
b 82 dna. % conk(p+ 9+ sind (4 + $)= 000k (6 — )-
Ex. 3. To express similarly the equation of the tangent.
z Y sing =
Ans. acos¢+b sing = 1.
Ex. 4. To express the length of the chord joining two points a, 3,
D2 = a3(cosa — cosB)? + b2(sina — sinB)*
D =2sin}(a—fB){a*sin*}(a + B)+ brcos*} (a + B) } 1
But (Ex. 1) the quantity between the parentheses is the semidiameter conjugate to that
to the point § (a + B); and (Ex. 2, 3) the tangent at the point 4 (a + f3) is parallel to

the chord joining the points a, 3 ; hence, if 5’ denote the length of the semidiameter pa-
rallel to the given chords, D = 2b'sin § (a — ).
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Ex. 5. To find the area of the triangle formed by three given points a, 3, y.
By Art. 31 we have

2% = ab{sin(a - f) + sin(B - 7) + sin(y - a)}
=ab{2sin}(a—p)cos}(a—p)—2sin}(a—pB)cosy(a+B-27)} -
=4absin} (a—B)sing (8- y) sind(y - a)
3 = 2absin}(a —B)sin}(B - 7) sin} (y — a).

Ex. 6. To find the radius of the circle circumscribing the triangle formed by three
given points a, B, 7. BEb"

If d, ¢, f be the sides of the triangle formed by the three points, R—def =
where ¥', b”, b are the semidiameters parallel to the sides of the tm.ngle. If ¢ycye”!
be the patalle.l focal chords, then (see p.193) B*—c cre” (These expressions are due

to Mr. MacCullagh, Dublin Ezam. Papers, 1836, p. 22 ; see also Crelle, vol. xL. p.81.)
Ex. 7. To find the squation of the circle circumscribing this triangle.

Ans. xi+y9_w cos} (a +B) cos § (B+7) cosd (y + a)— 2053 —as)y
m%(“*ﬁ)"ni(ﬁ+7)mn§(7+a)—a +8 a’— {cos(a+[3)
+ cos(B+y)+cos(y + a)}.

From this equation the co-ordinates of the centre of this circle are at once obtained.
Ex. 8. To find the locus of the intersection of the focal radius vector FP with the
radius of the circle CQ. )
Let the central co-ordinates of P be z%', of O 2y, then
we have, from the similar triangles, FON, FPM,

’

y Y bsing P

T —— i ——

z+ec 2 +c a(e+cosp) ’ﬁ.
Now, since ¢ is the angle made with the axis by the “

radius vector to the point O, we at once obtain the polar
equation of the locus by writing p cos¢ for z, p sing for y,

and we find
p b
ctpcosp  a(e+ cosp)
or _ be
P T @—byomyp

Hence (Art. 199) the locus is an ellipse, of which C is one focus, and it can easily be
proved that F is the other.

Ex. 9. The normal at P is produced to meet CQ ; find the locus of their intersection.
The equation of the normal is (Art. 184)

2 en
z Yy
or (Art. 284) e by
cosp simp
but we may, as in the last example, write p cos¢ and p sing for 2 and y, and the equa-
tion becomes (@a=b)p=es,
or p=a+b

The locus is, therefore, a circle concentric with the ellipse.
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Ex. 10. It is useful in astronomy to express the angle PFC in terms of the angleg.
It will be found that

tan}PFC =‘/(};—:)m;¢.

Ex. 11. If from the vertex of an ellipse a radius vector be drawn to any point on
the carve, find the locus of the point where a parallel radius through the centre meets
the tangent at the point.

Thetangentofthemglemademththeaxiabythendimthortothevemx
.=‘ T o ; therefore, the equation of the parallel radius through the centre is

y_ y - bsing b 1-cosp
z Z+a a(1+oos¢) a sng j

or 'Y .
3 sing +'¢- o8¢ =;,

and the locus of the intersection of this line with the tangent
Y . z -
zsm¢+;eos¢-l
is,obviously,§=l, thet;ngentatthebtherexﬂemityofthoaxis.

The same investigation will apply, if the first radius vector be drawn through any
point of the curve, by substituting a’ and ' for @ and b ; the locus will then be the tan-
gent at the diametrically opposite point.

237. The methods of the preceding Articles do not apply to
the hyperbola. - For the hyperbola, however, we may substitute
F¥=asecy, Y =>btang,

" &6
=) -(%£) =1
a b
This angle may be represented ~9
geometrically by drawing a tan-
gent MQ from the foot of the ordi- . c M
nate M to the circle described on
the transverse axis, then the agle QCM = ¢, since
CM = CQ secQCM.
We have also QM = a tan ¢, but PM. = 5 tan¢. Hence, if
from the foot of any ordinate of a hyperbola we draw a ta.ngent :

to the circle described on the transverse axis, this tangent is in a
constant ratio to the ordinate.

238.* Since the equation of the conjugate hyperbola is

* This Article is taken from a paper by Mr. Turner in the Cambridge and Dublin
Math. Jour., vol. i. p. 122.
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yY _(2Y.

) - ()

any point on the conjugate hyperbola may be expressed by
y' =bsecy, and 2" = atang¢.

Now if @ be the angle made by any diameter with the axis of

e have
o we v tan0=-"£:—-ésm¢
Z a

In like manner v
tang =¥ -2 1
2’ asing

hence the relation connecting two conjugate diameters

tan 0 tan@ = g;

a

becomes gin ¢ = sing’;
or, simply, o ¢p=9¢.

SIMILAR CONIC SECTIONS.

239. Any two figures are said to be similar and similarly
placed, if radii vectores drawn to the first from a certain point O
are in a constant ratio to parallel.radii drawn to the second from
another point 0. Ifit be pos- P
sible to find any two such

: 2
points O and o, we can find ° \,& i }
" an infinity of others ; for, take Q&y
any point C, draw oc parallel
to OC, and in the constant ratio == OP’ then from the similar tri-

angles OCP, ocp, ¢p is parallel to CP and in the given ratio. In
like manner, any other radius vector through ¢ can be proved to
be proportional to the parallel radius through C.

" Iftwo central conic sections be similar, all diameters of the one
are constantly proportional to.the parallel diameters of the other,
since the rectangles OP-0Q, op-og, are proportional to the

~ squares of the parallel diameters (Art. 152).

240. We now propose to investigate the condition that two

conic sections, whose equations are given,
2p
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Az +Bzy+Cy*+ Dz + Ey + F =0,
azr* +bxy +cy +dzx +ey +f =0,
should be similar, and similarly placed.

The equation of the first, referred to its centre as origin, must
(Art. 155) be of the form

Az + Bzy + Cy*=F,
and the square of any semidiameter

)
=7 cos’0+ BcosOsinf+ Csin®9’

the square of a parallel semidiameter of the second is
A

= acos0 + bcosOsind + cein®f’

-

R?

The ratio -1;: cannot be independent of @, unless we have

a b ¢

Hence, two conic sections will be similar, and similarly placed,
if the coefficients of the highest powers of the variables are the same
in both, or only differ by a constant multiplier.

241. It is evident that the directions of the axes of similar
conics must be the same, since the greatest and least diameters
of one must be parallel to the greatest and least diameters of the
other.

If the diameter of one become infinite, so must also the pa-
rallel diameter of the other, that is to say, the asymptotes of
similar and similarly placed hyperbole are parallel. The same
thing follows from the result of the last .Article, since (Art. 157)
the directions of the asymptotes are wholly determined by the
highest terms of the equation. -

1 _
Similar conics have the same eccentricity; for 4 p L must
?a? — m*b? . .. . .
be =-m—9-—#—-- Similar and similarly placed conic sections
ma

have hence sometimes been defined as those whose axes are pa-
rallel, and which have the same eccentricity.
If two hyperbole have parallel asymptotes they are similar,
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for their axes must be parallel, since they bisect the angles be-
tween the asymptotes (Art. 157), and the eccentricity wholly
depends on the angle between the asymptotes (Art. 170).

242. Since the eccentricity of all parabole is constantly = 1,
we should be led to infer that all parabol® are similar and simi-
larly placed, the direction of whose axesis the same. In fact, the
equation of one parabola, referred to its vertex, being y* = pz, or
peosl

sin®0 ’
it is plain that a parallel radius vector through the vertex of the
other will be to this radius in the constant ratio %

p=

Ex. 1. If on any radius vector to a conic section through a fixed point O, OQ be
taken in a constant ratio to OP, find the locus of Q.

‘We have only to substitute mp for p in the polar equation, and the locus is found to
be a conic similar to the given conic, and similarly placed.

The point O may be called the centre of similitude of the two conics; and it is ob-
viously (see also Art. 120) the point where common tangents to the two conics intersect,
since when the radii vectores OP, OP’ to the first conic become equal, so must also
0Q, 0Q’ the radii vectores to the other.

Ex. 2. If a pair of radii be drawn through a centre of similitude of two similar conica,
the chords joining their extremities will be either parallel, or will meet on the chord of
intersection of the conics.

This is proved preocisely as in Art. 121.

Ex. 8. Given three similar conics, their six centres of similitude will lie three by
three on right lines (see figure, page 113)

Ex. 4. If any line cut two similar and concentric conics, its parts intercepted between
the conics will be equal.

Any chord of the outer conic which touches the interior will be bisected at the point
of contact.

These are proved in the same manner as the theorems at pages 171, 172, which are
but particular cases of them ; for the asymptotes of any hyperbola may be considered as
& conic section similar to it, since the highest terms in the equation of the asymptotes are
the same as in the equation of the curve. .

Ex. 5. If a tangent drawn at V, the vertex of the inner of two concentric and si-
milar ellipses, meet the outer in the points T and T', then any chord of the inner drawn
through V is half the algebraic snmofthe parallel chords of the outer through T
and T, ’

243. Two figures will be similar, although not similarly
placed, if the proportional radii make a constant angle with each
other, instead of being parallel; so that, if we could imagine one
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of the figures turned round through the given angle, they would
be then both similar and similarly placed.

To find the condition that the two conic sections,

A2’ + Bay + Cy*+ Dz + Ey + F = 0,

azx? +bxy +cy* +dz +ey + f=0,
should be similar, even though not similarly placed. (Mr. Jellett :
Dublin Examination Papers, 1847.)

- 'We have only to transform the first equation to axes making
any angle 0 with the given axes, and examine whether any value
can be assigned to 6 which will make the new A, B, C propor-
tional to a, b, c.

Let A'=ma, B =mb, C'=mc. But the axes being sup-
posed rectangular, we have seen (Art. 160) that the quantities
B?-4AC, A +C, are unaltered by transformation of co-ordi-
nates; hence we have

A+C=A'+C=m(a+c),
B2 - 4AC = B* - 4A'C’' = m*(b* - 4ac),
and the required condition is
B*- 4AC b - 4ac
(A+Cy “(a+epy .
If the axes be oblique it is seen in like manner (Art. 161) that
the condition for similarity is
B: - 4AC b - 4ac
(A+C-Becoswy (a+c-booswy

It will be seen (Arts. 70, 157) that the condition found ex-
presses that the angle between the (real or imaginary) asymptotes
of the one curve is equal to that between those of the other.

THE CONTACT OF CONIC SECTIONS.

244. We proved (Art. 15) that we obtain an equation of the
mn™ degree to determine the co-ordinates of the points of inter-
section of two curves of the m* and n* degrees. Hence, two
conic sections will in general intersect in four points.

If two of these points of intersection coincide, the conic sec-
tions are said to touch each other, and the line joining the coinci-
dent points will be the common tangent.
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Let the equations of the conics, referred to the tangent and
normal, be (see p. 160)
Az’ + Bry + Cy» + Ey = 0,
A'z*+ Bzy+ Cy*+ Ey = 0,
then the equation of the line (L.M) joining the other two points
of intersection will be, as in Ex. 2, p. 160,
(BA'- AB)z+ (CA'-AC)y + (EA'- AE) = 0.,
This is called a contact of the first order.

Now the contact of the conics will evidently be more close if
three of their points of intersection coincide. In this case one of
the points L, M must coincide with T, the line LM must pass
through the origin, and we must have the condition

EA'- AE =0
This is called a contact of the second order. Curves which have a
contact higher than the first order are said to osculate, and it ap-
pears that conics which osculate, in general, meet each other in
one other point.

The contact of two conics will be the closest possible when
they have four consecutive points in common. In this case the
line LM must coincide with the tangent at T(y = 0), and we
must have the two conditions

EA'-AE'=0, BA'-AB=0.
This is called a contact of the third order ; and since two conic
sections cannot have more than four points common, it is the
highest order of contact which two different conics can have.

Hence, if the equation of one curve be

22+ Bzy + Cy» + Ey = 0,
that of the other will be '
2*+ Bay + C'y*+ Ey=0.
245. Hence an infinity of conic sections can be drawn having
a contact of the third order with a given conic at a given point,
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and any one condition will enable us to determine the touching
conic. Thus, for example, the parabola having a contact of the
third ‘order with the conic

2+ B2y +Cyr+ Ey=0
will be z’+Bwy+§y *+Ey=0.

‘We cannot describe a circle to have a contact of the third or-
der with a given conic, because wo conditions must be fulfilled
in order that this equation should represent a circle; or, in other
words, we cannot describe a circle through four consecutive points
on a conic, since three points are sufficient to determine a circle.
‘We can, however, easily find the equation of the circle passing
through three consecutive points on the curve. This circle is
called the osculating circle, or the circle of curvature.

The equation of the conic being

Az* + Bay + Cy* + Ey = 0,
that of any circle touching it is (Art. 77, Cor. 2)
2+ y*+ 2ry=0,
and the condition that the circle should osculate is (Art. 244)
E
E-= 2AT orre= m

The quantity r is called the radzus of curvature of the comc

at the point T.

246.. To find an expression for the radius of curvature at any
point of an ellipse.

It is plain, from the last Article, that this can be found by
transforming the equation to the tangent and normal at the point.

The equation referred to a diameter through the point and its

conjugate (z’ i 1), is transferred to parallel axes through

the given point, by substituting  + o' for x, and becomes
© Yy 2z
- + -b—,; + -;,- = 0.

The axes are now a tangent and diameter through the point, and
we wish, allowing the axis of y to remain unaltered, to make the
normal the axis of z.
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Now, if X and Y be rectangular co-ordinates, z and y ob-
lique co-ordinates, inclined at an angle 0, the axis of y remaining
unaltered, we see (as in Art.217) that

zsinf=X; y+zcosf=Y;
and, therefore, X X
"m0’ ¥~ Y tmp
On making these subatitutions, the coefficient of X will be
2
s oand that of ¥* will be 7

. b
a'sin@
on the tangent ; therefore the radius of curvature

hence the radius of curvature

- Now, a’sin @ is the perpendicular from the centre

/3

b b
= ; = (.A.l't. 179) ';'b'

247. This value enables us to construct simply for the radius
of curvature at any point. We proved (Art. 185) that the length

of the normal = —é, and that cosy = (\// being the angle between

the focal radius and the normal) ; hence

RN .

cosy
If, therefore, we erect a perpendicular to the normal at the
point where it meets the axis, and again at p
the point Q, where this perpendicular meets 'i e
the focal radius, draw CQ perpendicular
to it, then C will be the centre of curva-
ture, and CP the radius of curvature. :

Another useful construction is founded on the principle that
if a circle intersect a conic, its chords of intersection will make
equal angles with the axis. For, the rectangles under the seg-
ments of the chords are equal (Euc. 111. 35), and therefore the
parallel diameters of the conic are equal (Art. 162), and, there-
fore, make equal angles with the axis (Art. 165).

Now in the case of the circle of curvature, the tangent at T
(see figure, p. 205) is one chord of intersection, and the line TL
the other; we have, therefore, only to draw TL, making the
same angle with the axis as the tangent, and we have the point



208 CONTACT OF CONIC SECTIONS.

L ; then the circle described through the points T, L, and touch-
ing the conic at T, is the circle of curvature.
This construction shows that the osculating circle at either
vertex has a contact of the third degree.
Ex. 1. Using the notation of the eccentric angle, find the condition that four points
a, 3, ¥, ¢ should lie on the same circle (Joachimstal, Crelle, xxxvi. 95).

The chord joining two of them must make the same angle with one side of the axis
as the chord joining the other two does with the other; and the chords being

. z .

Zoonp(a+B)+3 aing(a+B)=cmb(a—P); > cosk(y + )+ ¥ aini(y+9)

- . =cos}(y - 9)
we have tang(a + 8) + tanj (y + 8)=0; a + B +y+3=0; or =2mn.

Ex. 2. Find the co-ordinates of the point where the osculating circle meets the conic
again.

3 .

We have a= =1y ; hence § =— 8a; 0rx.=-4-:7—33'; =%,—3y',

Ex. 8. There are three points on a eonicwhoeeoocnhtingcirclespuuthrongh.a
given point on the curve; these lie on a circle passing through the point, and form a
triangle of which the centre of the curve is the intersection of bisectors of sides (Steiner,
Crelle, xxxii. 800 ; Joachimstal, Crelle, xxxvi. 95).

Here we are given J, the point where the circle meets the curve again, and from the

last Example the point of contact is @ = — g But since the sine and cosine of & would

not alter if & were increased by 860°, we might also have a= —'—; +120°% or =-—;—:+240°,

and from Ex. 1, these three pointslie on a circle passing through J. If in the last
Example we suppose XY given, since the cubics which determine z’ and y’ want the se-
cond terms, the sums of the three values of z and.of y are respectively equal to cipher:
and therefore (Ex. 4, p. 5) the origin is the intersection of, the bisectors of sides of the
triangle formed by the three points. Itis easy to see that the normals at these points are
the three perpendiculars of this triangle, and therefore that they meet in a point.

248. To find the radius of curvature of the parabola.

The equation, referred to any diameter and tangent (y* = p'z),
is transferred to the tangent and normal by the same substitution
as in Art. 246, and we find

/

4
=P _P° .
2sinf 2pt (Art. 217);

or since (Arts. 217, 218)

N-Zang, R-_l -2

s cosy
The construction, therefore, used. in the last Article, applies also
to the case of the parabola.
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Ex. 1. In all the conic sections the radius of curvature is equal to the cube of the
normal divided by the square of the semi-parameter.

Ex. 2. Express the radius of curvature of an ellipse in terms of the angle which the
normal makes with the axis.

Ex. 8. Find the lengths of the chords of the circle of curvature which pass through
the centre or the focus of a central conic section. 208 2b's

Ex. 4. The focal chord of curvature of any conic is equal to a focal chord of the
conic drawn parallel to the tangent at the point.

Ex. 5. In the parabola the focal chord of curvature is equal to the parameter of the
diameter passing through the point.

249. To find the co-ordinates of the centre of curvature of a
central conic.

These are evidently found by subtracting from the co-ordl-
nates of the point on the conic the projections of the radius of
curvature upon each axis. Now it is plain that this radius is to
its projection on y as the normal to the ordinate y. We find the

projection, therefore, of the radius of curvature on the axis of
'2

y by multiplying the ra(hus » by X = ébT The y of the centre

y. Butd?=8b+ 5 y”, therefore the

/e

bz
y of the centre of curvature is
iyt

at

We should have got the same values by making a =3 =y
in Ex. 7, Art. 236.

Or again, the centre of the circle circumscribing a triangle is
the intersection of perpendiculars to the sides at their middle
points ;- and when the triangle is formed by three consecutive
points on a curve, two sides are consecutive tangents to the
curve, and the perpendiculars to them are the corresponding
normals, and the centre of curvature of any curve is the intersec-
tz'on of two consecutive normals. Now if we make o' = 2’ = X,

= y"'=Y, in Ex. 4, p. 161, we obtain again the same values as
those just determined.

250. To find the co-ordinates of the centre of curvature of a
parabola.

of curvature then is

-a? , . o .
Y In like manner its z is

z?

2E
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The projection of the radius on the axis of y is found in like
manner by multiplying the radius of curvature ‘
N . ¥_ 9.
50 ™ N~ 5w’
and subtracting this quantity from 3’ we have

. . . P _ p+ 4z
Inhkemannerxtszlsw+——2sinzo &+

The same values may be found from Ex. 9, p. 194.

251. The evolute of a curve is the locus of the centres of
curvature of its different points. If it were required to find the
evolute of a central conic, we should solve for 2 in terms of the
 and y of the centre of curvature, and, substituting in the equa-

3 2
tion of the curve, should have (writing 2— =A, % =B),

A B%
In like manner the equation of the evolute of a parabola is found
to be , 27py* = 16 (= - p),

which represents a curve called the semicubical parabola.

*CHAPTER XIV.

METHODS OF ABRIDGED NOTATION.

252. WE have proved (Art. 15) that we obtain an equation
of the mn® degree to determine the co-ordinates of the points of
intersection of two curves of the m* and n** degrees; and since
an equation of the mn degree has always mn roots, real or ima-
ginary, we infer (as in Art. 69) that a curve of the m* degree
will always intersect a curve of the n** degree in mn points, real
or imaginary. Two conic sections, therefore, S=0, S =0,
always intersect each other in four points, real or imaginary ;
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and (Art. 36) S+4S =0 is the equation of another conic through
these four points of intersection.

253. This will, of course, still be true if either or both the
quantities S, S be resolvable into factors. Thus, let S be re-
solvable into factors, and represent the pair of right lines a, 3;
then S+ kaf3 =0, -which is evidently satisfied by the co-ordinates
of the points where either a or 3 meets S; will represent a conic
passing through the four points where S is met by this pair of
right lines. It is, therefore, the equation of a conic having a and
BJfor its chords of intersection with S. If either a or 3 do not
meet S in real points, it must still be considered as a ckord of
tmaginary intersection, and will preserve many important pro-
perties in relation to the two curves, as we have already seen in
the case of the circle (Art. 111).

Ifboth S and S’ break up into factors, the equation ay+ %38 =0
represents the conic circumscribing the quadrilateral (af3yd), as
we have already seen, p. 97.

It is obvious that in what precedes a need not denote a line
whose equation has been reduced to the form zcosa+ysina=p,
but that S + LM = 0 (see convention, Art. 52) will in like man-
ner represent a conic passing through the points where L-and M
meet S, &c.

Ex. 1. What is the equation of a conic passing through the points where a given
conic S meets the axes?

Here the axes # = 0, ¥ = 0 are the chords of intersection, and the equation must be
of the form 8 + %2y = 0, where % is indeterminate. Compare Ex. 1, p. 137.

Ex. 2. Find the equation of the conic passing through five given points.

Having formed the equations of a, 3, y, 8, the sides of the quadrilateral formed by
four of the given points, we know that the equation must be of the form ay = %34 ; and,
substituting in this equation the co-ordinates of the fifth point, we are able to deter-
mine %.

~ Ex. 3. Form the equation of the conic which passes through the points (1, 2), (3, 5)
(-1,4), (-8, ~1), (- 4,3).
Considefing the quadrilateral formed by the first four points, we see that the equa-
tion must be of the form
(Bx—2+1) (bz—2y+18) =k(x - 4y + 17) (8x — 4y + 5).
Substituting in this the co-ordinates — 4, 8, which must satisfy it, we obtain &=~ Z;%l
Substituting this value, and reducing the equation, it becomes

7922 — 320zy + 301y% + 11012 — 1665y + 1586 = 0.
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254. We have seen that the equation S + kaf3 = 0 represents
a conic passing through the
four points P, Q; p,¢q; where
a, 3 meet S: and it is evi-
dent that the closer to each
other the lines af3 are, the
nearer the point P is to p, ‘
and-Q to g. Suppose then that the lines a and 3 coincide, then
the points P, p; Q, ¢ coincide, and the second conic will touch
the first at the points P, Q. We learn then that the equation
S + ka* = 0 represents a conic having double contact with S, and
whose chord of contact is a. In like manner ay + k3* = 0 repre-
sents a conic, to which a and +y are tangents, while 3 is their
chord of contact, as we have already seen (Art.104). Similarly
S+L2 = 0 represents a conic having double contact with S, L being
the chord of contact; and LN = M?* denotes a conic to which L
and N are tangents, while M is their chord of contact.

If the line a were a tangent to S,the two points P and Q
would coincide, and the conic S + £a* would have four consecu-
tive points common with S, and would therefore have with it a
contact of the third degree. Thus, for instance, we have seen
(Art. 244) that the equations of two conics which have contact
of the third order at a point on the axis of z are of the form

S=0and S+4y*=0.

255. The forms given in the preceding articles receive impor-
tant modifications, if any of the lines which they involve be at an
infinite distance. It was proved (Art.64) that when a line is re-
moved to an infinite distance, its equation is reduced to the con-
stant term. If, then, in any of the preceding equations, we
substitute a constant for any of the quantities a, (3, &c., we shall
have the form which that equation will assume when the line
a, 3, &c., is at an infinite distance.

Thus we know that the lines L, N touch the conic LN = M?
at the points where they meet M ; if, then, we substitute for M
a constant m, we see that the conic LN = m? is touched by the
lines I, N at the points at infinity on those lines : in other words,
that the lines L, N are asymptotes to this conic. If we suppose




METHODS OF ABRIDGED NOTATION. 213

the lines L, N to be the axes, we obtain the known form of the
equafion of a conic referred to its asymptotes 2y = m* (Art. 204).

In like manner, the equation !N = M* (where / is a constant)
denotes a conic to which N is one tangent, and /, the line at in-
finity, is another. In this equation the highest terms form the
perfect square M?, and therefore the curve is a parabola. Con-
versely, every parabola has one tangent altogether at an infinite
distance. In fact, the equation which determines the direction
of the points at infinity on n parabola is a perfect square (Art.
136) ; the two points of the curve at infinity therefore coincide ;
and therefore the line at infinity is to be regarded as a tangent
(Art. 81). And the form ofthe equation of the parabola pz =y*
denotes that the line at infinity p is one tangent, the line z another,
and that the diameter y is the line joining their points of contact.

So, in general, the equation

(az +by)*+ Dz + Ey + F =0

denotes a parabola to which Dz + Ey + F = 0 is a tangent, and
az + by = 0 the diameter through the point of contact.

256. In like manner, it may be inferred from Art. 253 that
the equations S=0, S+ IM=0 (where / is a constant), de-
note two conics intersecting each other in the two finite points
where M meets either, and also in the two infinitely distant points
where the line at infinity / meets either. Now, it is plain that
the coefficients of 2% xy, and y* are the same in the two equa-
tions S=0, S +/M =0; and therefore (Art. 240) that these
equations denote two conics similar and similarly placed. We
learn, therefore, that two conics similar and similarly placed can
cut each other only in two finite points ; and that this is because
they also cut each other in two real, coincident, or imaginary
points at infinity.

257. We may arrive geometrically Y
at the same conclusion.

First. If the curves be hyperbole.

The asymptotes of similar hyperbola are

parallel (Art. 241), that is, they inter-

sect each other at infinity; but cach —2 X
asymptote intersects its own curve at in-
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finity ; hence we infer that similar and similarly placed hyperbolae
intersect each other in the two points at infinity, where each is
intersected by its own asymptotes (see the figure, where the two
hyperbol evidently tend to intersect at the two points at infinity,
where OX meets oz, and OY imeets oy).

Secondly. If the curves be ellipses. Ellipses only differ from
hyperbola in having imaginary instead of real asymptotes. The
directions of the points at infinity on either of two similar ellipses
are determined from the same equation (Az? + Bay + Cy® = 0)
(Arts. 134 and 240). Now, although the roots of this equation
are in both cases imaginary, yet they are in both cases the same
imaginary roots; we infer, therefore, that two similar ellipses
pass through the same two imaginary points at infinity.

Thirdly. If the curves be parabolee. They are both touched
by the line at infinity (Art.255). The direction of the point of
contact at infinity is the same as that of the diameters (Art. 140),
and is therefore the same for two similarly placed parabole (Art.
242). Hence two similarly placed parabole touch each other at
infinity.

" 258. It may be inferred in precisely the same way, from
Art. 254, that the equation S+ /2= 0, where [ is constant, de-
notes a conic touching the conic S in two points at infinity.
Now if the equations of two conics only differ in the constant
terms, since the co-ordinates of the centre do not contain F
(Art. 138), the conics must have the same centre; and since the
first three terms are the same in both, the conics are similar;
hence the conics S and S + 22 are similar and concentric. We
learn then that similar and concentric conics are to be regarded as
touching each other at two points at an infinite distance. This is
otherwise evident, since we have proved in the last Article that
the curves pass through the same points at infinity ; and since
they have the same, real or imaginary, asymptotes, they have also
the same tangents at those points.

If the curves be parabole, then since the line at infinity
touches both, by Art. 254, the conics S and S + /2 have with
cach other a contact of the third order at infinity. Two para-
bolz whose equations only differ in the constant term will be
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equal to each other; for the parabole 3* = px, and y* =p (2 + n),
are obviously equal, and if the origin be transferred to any other
point the equations will continue to differ only in the constant
term. 'We have seen too (Art. 213) that the expression for the
parameter of a parabola does not involve the absolute term.
The parabol®, then, S and 8 + 2, are equal to each other, and
we learn that two equal and similarly placed parabole may be

. considéred as having with each other a contact of the third order
at infinity. '

259. Since all circles are similar curves, it follows, as a par-
ticular case of the last Articles, that all circles pass through the
same two imaginary points at infinity, and that concentric circles
touch each other in two imaginary points at infinity. Thus we see
the reason why two circlés cannot cut each other in more than
two finite points, and why two concentric circles do not meet in
any finite point, although two curves of the second degree in
general intersect in four points. We shall also show that the
theorems established (p. 103, &c.), concerning circles which pass
through the same two points, are only particular cases of more
general theorems concerning conic sections which pass through
the same four points.

260. We proceed to notice some inferences which follow im-
mediately on interpreting the preceding equations by the help of
Art. 27. Thus the equation ay = %(3? implies that the product
of the perpendiculars from any point of a conic on two fixed tan-
gents is in a constant ratio to the square of the perpendicular on
their chord of contact.

The equation ay = %39, similarly interpreted, leads to the
important theorem: The product of the perpendiculars let fall

“Jrom any point of a conic on two opposite sides of an inscribed qua-
drilateral is in a constant ratio to the product of the perpendiculars
let fall on the other two sides.

From this property we at once infer, that the ankarmonic
ratio of a pencil, whose sides pass through four fized points of a
conic, and whose vertex is any variable point of it, s constant.

For the perpendicular
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_OA.OB-sin AOB 0OC.OD . sin COD
“T AB » T CD

Now if we substitute these values
in the equation ay = %39, the con-
tinued product OA..OB-OC-0OD
will appear on both sides of the
equation, and may therefore be
suppressed, and there will remain

. sin AOB . sin COD

., AB-CD_
snBOC -smAOD _* BC-AD’

k

but the right-hand member of this equation is constant, while
the left-hand member is the anharmonic ratio of the pencil
0A, 0B, OC, OD.

The consequences of this theorem are so numerous and im-
portant, that we shall devote a section of the next chapter to
develop them more fully.

261. If S = 0 be the equation to a circle, then (Art.88) S is
the square of the tangent from any point zy to the circle ; hence
S - kaf3 =0 (the equation of a conic whose chords of intersection
with the circle are a and 3) expresses that the locus of a point,
such that the square of the tangent from it to a fixed circle is in a
constant ratio to the product of its distances from two fixed lines,
is a conic passing through the four points tn which the fized lines
intersect the circle. ]

This theorem is equally true whatever be the magnitude of
the circle, and whether the right lines meet the circle in real or
imaginary points; thus, for example, if the circle be infinitely
smally the locus of a point, the square of whose distance from a

Jized point is in a constant ratio to the product of its distances from
two fized lines, is a conic section; and the fixed lines may be con-
gidered as chords of imaginary intersection of the conic with an
infinitely small circle whose centre is the fixed point.

262. Similar inferences can be drawn from the equation
S - ka?* = 0, where S is a circle. We learn that the locus of a
point, such that the tangent from it to a fized circle is in a constant
ratio to its distance from a fized line, is a conic touching the circle
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at the two points where the fixed line meets it; or, conversely, that
if a circle have double contact with a conic, the tangent drawn to
the circle from any point on the conic is in'a constant ratio to the
perpendicular from the point on the chord of contact.

In the particular case where the circle is infinitely small, we
obtain the fundamental property of the focus and directrix, and
we infer that the focus of any conic may be considered as an infi-
nitely small circle, touching the conic tn two imaginary points
situated on the directriz.

263. In general, if in the equation of any conic the co-ordi-
nates of any point be substituted, the result will be proportional to
the rectangle under the segments of a chord drawn through the
point parallel to a given line.*

For (Art. 151) this rectangle

F
= Acos*0 + BcosOeind + Csin’f’

where, by Art. 129, F' is the result of substituting in the equa-
tion the co-ordinates of the point; if, therefore, the angle 6 be
constant, this rectangle will be proportional to F'. Hence, we
may extend the last-proved theorems to the case where S is any
conic. For example: ¢ If two conics have double contact, the
square of the perpendicular from any point of one upon the chord
of contact, is in a constant ratio to the rectangle under the seg-
ments of that perpendicular made by the other;” or, in general,
¢ If a line parallel to a given one meets two conics in the points
P, Q, p, ¢, and we take on it a point O, such that the rectangle
OP - OQ may be to Op - Og in a constant ratio, the locus of O is
a conic through the points of intersection of the given conics.”

264. If two conics have each double contact with a third, their
chords of contact with the third conic, and a pair of their chords
of intersection with each other, will all pass through the same
point, and will form an harmonic pencil.

Let the equation of the third conic be S = 0, and those of the
other two conics,

S+12=0, S+ M:=0.

* This is equally true for curves of any degree.
2F
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Now, on subtracting these equations, we find for the equation
of the chords of intersection,

Le-M=0.

The chords of intersection, therefore (L - M = 0, L + M = 0),
pass through the intersection of the chords of contact (L and M),
and form an harmonic pencil with them (Art.55).

It is important that the student should acquire the habit of
taking notice of the number of particular theorems often included
under one general enunciation; thus, for example, the present
theorem holds good, and is proved, in like manner, if the conic S
reduce to two right lines; hence, the ckords of contact of two
conics with their common tangents pass through the intersection of
their common chords.

Again, if Sbeany conic, while S+ L* and S+ M? both reduce
to pairs of right lines, these right lines will then form a circum-
scribing quadrilateral, and the chords of intersection (L? — M?)
will be the diagonals of that quadrilateral, while the chords of
contact (L and M) obviously are the diagonals of the inscribed
quadrilateral formed by joining the points of contact. Hence,
the diagonals of any tnscribed, and of the corresponding circum-
scribed quadrilateral, pass through the same point, and form an
harmonic pencil.

The theorem of this Article may also be stated thus: Ifa
conic section pass through two given points, and have double con-
tact with a given conic, the chord of contact passes through a fized
point. For, suppose any conic (S + L? = 0) through the two
given points to be fixed, then the intersection of its chord of
contact (L), with the line joining the given points, determines a
point through which, by the present Article, any other chord of
contact must pass.

In like manner : Given two tangents and two points on a conic
section ; the chord of contact will pass through a fixed pomt onthe
line joining the two given points.

265. If three conics have each double contact with a fourtlz their
six chords of intersection will pass three by three through the same
points, thus forming the sides and diagonals of a quadrilateral.
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Let the conics be
S+Le=0, S+M:=0, S+N2=0.
By the last Article the chords will be .
L-M-=o, M-N-=0, N-L=0;
L+M=o, M+N=0, N-L-=0;
L+M-=o, M-N-=o, N+L=0;
L-M-=0, M+N-=0, N+L-=0o.

Asin the last Article, we may deduce hence many particular
theorems, by supposing one or more of the conics to break up into
right lines. ’

Thus, for example, if S break up into right lines, it represents
two common tangents to S + M?, S + N?; and if L denote any
right line -through the intersection of those common tangents,
then S + L also breaks up into right lines, and represents any
two right lines passing through the intersection of the common
tangents. Hence, §f'through the intersection of the common tan-
gents of two conics we draw any pair of right lines, the chords of
each conic joining the extremities of those lines will meet on one of
the common chords of the conics. This is the extension of Art.

121. Or, again, tangents at the extremities of either of these right
lines will meet on one of the common chords.

266. If S + L2, S+ M?, S+ N? all break up into pairs of
right lines, they will form a hexagon circumscribing S, the chords
of intersection will be diagonals of that hexagon, and the propo-
sition of this Article becomes Brianchon’s theorem : ¢¢ The three
opposite diagonals of every hexagon circumscribing a conic intersect
in a point.”

By the opposite diagonals we mean (if the sides of the hexa-
gon be numbered 1, 2, 3, 4, 5, 6) the lines joining (1, 2) to (4, 5),
(2, 3) to (5, 6), and (3, 4) to (6, 1); and by changing the order
in which we take the sides, we may consider the same lines as
forming & number (sixty) of different hexagons, for each of which
the present theorem is true. '

By supposing two sides of the hexagon to be indefinitely near,
we obtain from this theorem a very simple construction for the so-
lution of the problem,—¢Given five tangents, to find the point
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of contact of any of them,”—since any tangent is intersected by
a consecutive tangent at its point of contact (p. 130).

267. If three conic sections have one chord common to all, their
three other common chords will pass through the same point.

Let the equation of one be S = 0, and of the common chord
L = 0, then the equations of the other two are of the form

S+LM=0, S+LN =0,
which must have, for their intersection with each other,
LM-N)=0;
but M - N is a line passing through the point (MN).

According to the remark in Art. 259, this is only an extension
of the theorem (Art. 113), that the radical axes of three circles
meet in a point. For three circles have one chord (the line at
infinity) commen to all, and the radical axes are their other com-
mon chords. _

The theorem of Art. 265 may be considered as a still further
extension of the same theorem, and three conics which have each
double contact with a fourth may be considered as having four
radical centres, through each of which pass three of their com-
mon chords.

The theorem of this Article may, as in Art. 113, be other-
wise enunciated : Given four points on a conic section, its chord of
intersection with a fized conic passing through two of these points
will pass through a fixed point.

A number of particular inferences may also be drawn from
the theorem of the present Article, by sup-
posing one or more of the conics to break up
into two right lines. Thus, for example, if ¢
one of the conics break up into the pair of
lines OA, OB, we obtain the theorem :
¢¢ If through one of the points of intersection
of two conics we draw any line meeting the conics in the points
P, p, and through any other point of intersection B a line meet-
ing the conics in the points Q, ¢, then the lines PQ, pg, will meet
on CD, the other chord of intersection.” Next let the points
A, B coincide, then the two conics will touch at A, and we learn
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that < if two right lines, drawn through the point of contact of
two conics, meet the curves in points P, p, Q, ¢, then the chords
PQ, pg, will meet on the chord of intersection of the conics.”

This is a particular case of a theorem given in Art. 265, since
one intersection of common tangents to two conics which touch,
reduces to the point of contact (Art. 123).

268. The equation of a conic circumseribing a quadrilateral
(ay = #{33) furnishes us with a proof of ¢ Pascal’s theorem,” that
the three intersections of the opposite sides of any hexagon inscribed
tn a conic section are in one right line.

Let the vertices be abedef, and let ab = 0 denote the equation of
the line joining the points a, b, then, since the conic circumscribes
the quadrilateral abed, its equation must be capable of being put
into the form ab.cd - bc.ad = 0.

But since it also circumscribes the quadrilateral defz, the same
equation must be capable of being expressed in the form

de.fa - ¢f.ad = 0.
From the identity of these expressions we have
ab.cd - de . fa = (bc - ¢f) ad.

Hence we learn that the lefi-hand side of this equation (which
from its form represents a figure circumscribing the quadrilateral
formed by the lines ab, de, cd, af) is resolvable into two factors,
which must therefore represent the diagonals of that quadrilateral.
But ad is evidently the diagonal which joins the vertices ¢ and d,
therefore dc ~ ¢f must be the other, and must join the points
(ab, de), (cd, af) ; and since from its form it denotes a line through
the point (bc, ¢f), it follows that these three points are in one
right line. 'We shall in the next chapter give another demon-
stration of this important theorem.

By supposing two vertices of the hexagon to be indefinitely
near, we may, “given five points on a conic, draw a tangent at
any of these points.” ~

269. We may, as in the case of Brianchon’s theorem, obtain
a number of different theorems concerning the same six points,
according to the different orders in which we take them. Thus
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gince the conic circumscribes the quadrilateral beef, its equation
can be expressed in the form
be.cf-bc.ef=0.
Now, from identifying this with the first form given in the last
Article, we have
ab.cd-be.¢f = (ad - ef) be;

" whence, as before, we learn that the three points (ab, ¢f'), (cd, be),

(ad, ¢f) lie in one right line, viz. ad - ¢f = 0. ’
In like manner, from identifying the second and third forms
of the equation of the conic, we learn that the three points
(de, ¢f), (fa, be), (ad, bc) lie in one right line, viz. bc - ad = 0.
But the three right lines
bc-ef=0, ef-ad=0, ad-bc=0,

meet in a point (Art.37). Hence we have Steiner’s theorem,
that ¢ the three Pascal’s lines which are obtained by taking the
vertices in the orders respectively, abedef, adcfeb, afcbed, meet
in a point.” For some further developments on this subject we
refer the reader to the note at the end of the volume.

TRILINEAR CO-ORDINATES.

270. We proved (Art.61)that being given three lines (a, 8,7),
we can express the equation of any other right line in the form

Aa+ BB +Cy=0.

In the same manner we can show that there is no conic sec-

tion whose equation may not be written in the form
Aa® + Baf3 + C3* + Day + EBy + Fy? = 0.
For this equation is obviously of the second degree ; and since it
contains five independent constants, we may (as in Art. 128) de-
termine these constants so that the curve which it represents may
pass through five given points, and therefore may coincide with
any given conic. In short, since the equation just written con-
tains the same number of constants as the equation
A2*+ Bry + Cy»+ Dz + Ey + F = 0,

it must be equally capable of representing any particular conic.

In like manner, in general, there is no curve of any degree
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whose equation may not be expressed as a homogeneous function
of the quantities a, 3, y. For it can readily be proved that the
number of terms in the complete equation of the n* order between
two variables is the same as the number of terms in the homo-
geneous equation of the n™ order between three variables.

271. If (as in Art. 66) we render the Cartesian equation
homogeneous by the introduction of the linear unit z, we at once
perceive the identity of the two forms

Aa? + Baf3 + C3? + Day + EBy + Fy? =0,

Az + Bzy + Cy* + Daz + Eyz + F22 = 0;
the latter being the form assumed by the former, when two of the
lines of reference (af3) are the axes (2y), and the third (y) is the
line at infinity z. It is important to keep constantly in view the
analogy which subsists between these two forms of equations.
If, for instance, we make y =0 in the first equation, the result
Aq? + Baf3 + C@3 = 0 is plainly the equation of the lines joining
the point (af3) to the points where y cuts the curve. In like
manner, if we make 2z =0 in the second equation, the result
A2? + By + Cy? = 0 must be the equation of the pair of lines
joining the origin (2y) to the points where the line at infinity
cuts the curve (Art. 134).

Precisely the same argument which proves (Art. 36) that the

curve represented by

(Aa*+ Ba3+CB) + y(Da+ EB + Fy) =0

passes through the intersections of the line y with the pair of
lines (Ad?+ Baf3 + Cf3?), proves likewise that the curve passes
through the intersections of the same pair of lines with the line
Da + EB + Fy =0. This latter equation then denotes the fourth
gide of a quadrilateral inscribed in the conic, of which the other
three sides are the line v, and the lines joining to a3 the points
where y meets the curve. In like manner Dz + Ey + F = 0 is
the equation of a line joining the two finite points where the
curve is met by two lines drawn through the origin to meet the
curve at infinity.

In general let the equation of a curve of any degree be written

Up + UnaZ + Un22? + Up52® + &C. = 0,
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(where we use the abbreviations ., u,.,, &c. to denote terms of
the ', n - 1%, &c. degrees). Now, if we seek the points where
the line at infinity meets the curve, we have only to make z = 0,
when we obtain the equation u, = 0; hence we infer that the
directions of the points at infinity on any curve are found by
putting the highest terms of the equation = 0.

Again, we saw (Art. 136), that, if A =0 in the equation of
the second degree, the axis of z will meet the curve in one infi-
nitely distant point. The same thing appears, by making y = 0
in the equation, which will then reduce to '

Dzz+ Fz* = 0.
The axis, therefore, meets the curve, not only in the finite point
where it meets the line (Dz + F'), but also in the point at infinity
where it meets the line z.

In like manner, if both A and D = 0, the points where the
axis meets the curve are given by the equation Fz? = 0; hence,
the axis meets the curve in two coincident points at infinity, and
is, therefore, an asymptote.

272. We shall commence our examples of the use of trilinear
co-ordinates with the equation (Art. 254) of a conic section, re-
ferred to two tangents and their chord of contact,

LM = R,
and shall first show how to express the equation of any line con-
nected with the conic in terms of L, M, R.

We can express the position of any point on the curve by a
single variable (Art. 234); for if u = R be the equation of the
line joining any point on the curve to (LR), then, substituting
in the equation of the curve, we get

M=puR and p’L=M
for the equations of the lines joining this point to (MR) and
(LM): any two of these three equations, therefore, will deter-
mine a point on the curve. We shall call this point the point u.

We can form, by Art. 59, the equation of the line joining

two points on the curve y and y', and we get
pL-(u+ )R+ M=0,
an equation evidently satisfied by either of the suppositions
(uL=R, uR=M), or (/L=R, yR=M).
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If p and ' coincide, we find the equation of the tangent, viz.,
wL-2uR + M =0.

Hence, conversely, if the equation of a right line (u?’L-2uR+M=0)

contain an indeterminate quantity u in the second degree, the right

line will always touch a conic section (LM = R?).

273. Given four points of a conic, the anharmonic ratio Qf the
pencil joining them to any fifth pomt is constant
‘The lines joining four points u, u"y u”, u" to any fifth point
u, are
W (L-R)+(M-uR)=0, u’(uL-R)+(M-uR)=0,
W(L-R)+ (M-yuR)=0, u"(uL-R)+ (M- 4uR)=0,
and their anharmonic ratio is (Art. 55)

K (W - )
( pom 1) (W' - "y
and is, therefore, independent of the position of the point .
‘We shall, for brevity, use the expression, ¢ the anharmonic
ratio of four points of a conic,” when we mean the anharmonic
ratio of a pencil joining those points to any fifth point on the
curve.
274. Four fized tangents cut any fifth in points whose anhar-
monic ratio is constant. '
Let the fixed tangents be those at the points u', u”, u”, ™3
and the variable tangent that at the point u; then the anharmonic
ratio in question is the same as that of the pencil joining the four
points of intersection to the point LM. Now if we eliminate R
from the equations of any two tangents,
pli-2uR + M =0,
wL-2R+M=0,
we obtain uwLi - M =0,
the equation of the line joining LM to the intersection of these
two tangents. The anharmonic ratio in question is therefore that
of the four lines,
p'L-M=0, ysL-M=0, yu"L-M=0, pyp"L-M =0,

which by Art. 55 is o
(=) (W= ")

(M, - I["/) (Mu _ Il'm/)’
26
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a result independent of u. Hence too we see that the anharmonic
ratio of four tangents is the same as that of their points of
contact.

275. Since the equation of the line joining any point to (LM)
is u?’Li- M, we see that the two points + u and - u lie on a right
line passing through LM.

The expression given in the last Article for the anharmonic
ratio of four points on a conic, y', u”, u”, u"’, remains unchanged,
if we alter the sign of each of these quantities; hence we derive
an important theorem, that if'we draw four lines through any point
LM, the anharmonic ratio of four of the points (u's 'y u"s u"”
where these lines meet the conic, is equal to the anharmonic ratio
of the other four points (- u'y — p’s — u”y — u'") where these lines
meet the conic.

The equation in this form enables us easily to investigate pro-
perties of two conic sections relating to the point of intersection
of their common tangents. For, let L and M be common tan-
gents to two conics, and their equations will be

LM-R=0, LM -R>=0.

A point of one conic may be said to correspond to a point of
the other if the line joining them passes through (LLM) the inter-
section of common tangents. This will be the case if they have
the same u, since the equation u?’Li - M = 0 does not involve R
or R. Points are said to correspond inversely if they have the
same pu with opposite signs. , The chord joining any two points
‘of one conic is said to correspond to the chord joining the corre-
sponding points of the other.

Corresponding lines must meet on one or other of the common
chords of the curves (Art. 265).

The chords of intersection of LM — R? and LM - R are

R:-R?=0, .
but wLl-@w+p)R+M=0,
peli - (p+ )R+ M =0,
evidently intersect on the common chord R - R'. If the lines
correspond inversely they meet on the common chord R + R/,
as will be seen by changing the signs of u and ' in the latter*
equation.




METHODS OF ABRIDGED NOTATION. 227 .

The anharmonic ratio of four points of one conic is equal to

. the anharmonic ratio of the four corresponding points of the other.

This useful theorem follows immediately from the expression

for the anharmonic ratio of four points given in the last Article,
and from the fact that corresponding points have the same u.

276. To find the equation of the polar of any point.
Let the co-ordinates of the point substituted in the equation
of either tangent through it give the result

wLl - 2uR' + M = 0.
N . , M R
ow, at the point of contact, u? = I and u = I (Art. 272).

Therefore, the co-ordinates of the point of contact satisfy the
equation ML’ - 2RR + ML = 0,
which is, therefore, that of the polar required.

‘We may sometimes express a point by the equations

aLL-R =0, R-M=0;

in this case, by exactly the same method, the equation of the
polar is found to be
abL - 2aR + M = 0.

277. Tt is evident that if we were given any relation between
the u’s of two points, we could find the envelope of the chord
joining them, or the locus of the intersection of their tangents.
One or two simple cases of this are worth mentioning. For ex-
ample, if we were given the product of two u’s, pyu' = a, then
(Art. 274) the intersection of their tangents will lie on the right
line a. - M = 0; and by substituting a for uu’ in the equation
of the chord joining the points, we see that this chord must pass
through the fixed point (aL + M, R).

In general the chord joining two points,

puLli - (u+ )R+ M =0,
will pass through a fixed point (Art. 50) if
auu' -b(u+p) +c=0,
where a, b, c are any constants; that is, if
. bu - ¢
#= au-b




228 METHODS OF ABRIDGED NOTATION.

If the ratio of two u’s be given, ' = kyu, the equation of the
chord becomes
hwLi- (1+ R)uR+ M =0;
the chord must, therefore (Art. 272), always touch the conic
4kLM = (1 + k)*R>.

This property may be expressed in a more symmetrical form,
as follows: ¢ The chord joining the points u tan ¢, ucot ¢, will
always touch the conic LM sin*2¢ = R* at the point u on that
conic.” It can be proved, in like manner, that ¢ the locus of the
intersection of tangents at the points y tan ¢ and u cot ¢, will be
the conic LM = R?sin?2¢.”

278. Since the expression for the anharmonic ratio of four
points on a conic (Art. 273) remains unaltered, if we multiply
each yu either by tan ¢ or by cot ¢, we obtain an important theo-
rem: “ If two conics have double contact, the anharmonic ratio of
Jour of the points in which any four tangents to the one meet the
other, is the same as that of the other four points in which the four
tangents meet the curve, and also the same as that of the four
points of contact.””*

Or, again: ¢ If from four points of one of the conics pairs of
tangents be drawn to the other, the anharmonic ratio of one set
of points of contact is equal to the anharmonic ratio of the other
set.”

If, in the expression for the anharmonic ratio of four points

(Art. 273), we substitute for each u, Z: 3" (a, b, ¢, d being con-

stants), the anharmonic ratio will remain unaltered. It will be
found that this is the most general substitution we can make for
p, which will leave the anharmonic ratio unehanged. The chord

joining u, ‘:I—:;‘, will envelope a conic having double contact
i

with the given one. For its equation is
p(@+bu)Li-{(a+bu)+pu(c+du)} R+ (c+du)M =0,
or (BL-dR)u*+ (aL-bR-cR+dM)u+cM-aR =0,

* This extension of the theorem in page 226 was communicated to me by Mr. Town-
send, who had obtained it geometrically.
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a line always touching a conic whose equation can be written in
the form

4(bc - ad) (LM - R?) + (aL+ (b-c) R - dM}? = 0,

and which, therefore, has double contact with the given conic.
We may see, from Art. 277, that the touched conic will reduce
to a point if b = - ¢,

Hence, ¢ Given three chords of a conic, AA’, BB, CC'; the
envelope of a fourth chord DD, such that the anharmonic ratio
of ABCD is equal to that of AB'C'D, will be a conic having
double contact with the given one.”

279. We give now some examples of the application of the
preceding formule to the investigation of questions relating to
the position of lines (Art.1). We suppress some formula re-
lating to the magnitude of lines and angles, as, where these are
concerned, it is in general more advantageous to use ordinary
rectangular co-ordinates.

Ex. 1. A triangle is circumscribed to a given conic; two of its vertices move on
fixed right lines: to find the locus of the third.

Let us take for lines of reference the two tangents through the intersection of the
fixed lines, and their chord of contact. Let the equations of the fixed lines be

aL-M=0, BL-M=0,
while that of the conic is LM -R3=0. .
Now we proved (Art. 277) that two tangents which meet on aL — M must have the
product of their u’s = a; hence, if one side of the triangle touch at the point u, the

others will touch at the points :—:, l-l-:-, and their equations will be
2
O —2%R+M=0, ZrL-2lmimM=,
M » » [

p can easily be eliminated from the last two equations, and the locus of the vertex is
found to be 4ab
=— _R2
LM @y R?,
the equation of a conic having double contact with the given one along the line R.

Ex. 2. To find the envelope of the base of a triangle, inscribed in a conic, and whose
two sides pass through fixed points.
Take the line joining the fixed points for R, let the equation of the conic be LM = R?,
and those of the lines joining the fixed points to LM be
aL+M=0, BL+M=0.

Now, it was proved (Art. 277) that the extremities of any chord passing through
(aL + M, R), must have the product of their u’s = a.
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b
Hence, if the vertex be u, the base angles must be i and ;, and the equation of
the base must be
abL — (a + b) uR + usM = 0.
The base must, therefore (Art. 272), always touch the conic

_(atby .
IM=— ®

a conic having double contact with the given one along the line joining the given points.

Ex. 8. To inscribe in & conic section a triangle whose sides pass through three given
points.

Two of the points being assumed, as in the last Example, we saw that the equation
of the base must be abL — (a + b) uR + u3M = 0.
Now, if this line pass through the point cL — R = 0, dR — M = 0, we must haye

adb - (a + b) pc + pted = 0,

an equation sufficient to determine u.

Now, at the point u we have uL = R, u3L = M ; hence the co-ordinates of this point
must satisfy the equation 431, — (g + B) cR + odM = 0.

The question, therefore, admits of two solutions, for either of the points in which this
line meets the curve may be taken for the vertex of the required triangle.

The solution here given, although algebraically complete, has the disadvantage of
not pointing out how to construct geometrically the line whose equation has just been
given; it will be a useful exercise, however, on the preceding formule, if the student
verify by this method the following construction, which we shall prove otherwise in the
next chapter :—‘¢ Form the triangle whose sides are the polars of the three given points,
join each point to the opposite vertex of this triangle, and the line joining the points in
which two of these lines meet the opposite sides of the polar triangle will be the required
line.”

The three given points are

(eL+M,R), (3L + M, R), (cL —R, dR - M),
and the three polars, aL - M, bL - M, cdL —2cR + M;
the three joining lines are
b(a+ed)L—2¢c(a+b)R+ (a+ed)M=0,
a(b+cd)L-2c(a+b)R+(d+cd)M=0,
edL - M=0.

Now, the line whose equation we want to.construct passes through the intersection of the
first of these lines with L — M, and of the second with gL — M.

Ex. 4. Mac Laurin’s method of generating conic sections. The three sides of a tri- .

angle pass through three fixed points, and two vertices move on fixed lines, the third
vertex will describe a conic section.

Let the triangle formed by the given points be L, M, N.

Let the given lines be L+aM +BN =0, - 1¢))
L+aM+bN=0. @)

Let the base of the triangle be L = uM. ®)
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Substituting this value of L in (1) we find, for the equation of the line joining (1, 8) to
™, N), (p+a)M 4+ BN =0.
In like manner, the line joining (2, 8) to (L, N) is
(p+a)L+ pubN=0.
Eliminating p from the last two equations, the equation of the locus is
@LM = (aM + bN) (L + b'N).
The locus is, therefore, a conic passing through the points (L, N), (M, N), (L, 1), (M, 2).

Ex. 5. The base of a triangle touches a given conic, its extremities move on two
fixed tangents to the conic, and the other two sides of the triangle pass through fixed
points: find the locus of the vertex.

Let the fixed tangents be L, M, and the equation of the conic LM = R2. Then the
point of intersection of the line L with any tangent (4L — 2uR + M) will have its co-
ordinat® L, B, M respectively proportional to 0, 1, 2u. And (by Art. §9) the equation
of the line joining this point to any fixed point L'R'M’ will be

LM — L'M =2 (LR'—- L'R).
Similarly, the equation of the line joining the fixed point L"R"M" to the point (2, g, 0),
which is the intersection of the line M with the same tangent, is
2 (RM” - R'M) = s (LM" — L'M).
Eliminating g, the locus of the vertex is found to be
(LM’ - L'M) (LM” — L'M) = 4(LR' — L'R) (RM" - R"M),
the equation of a conic through the two given points.

Ex. 6. If in the last example the extremities of the base lie on any conic having
double contact with the given conic, and passing through the given points, to find the
locus of the vertex. .

Let the conics be Rs
~R2= —— =
LM -R2=0, LM wop 0,

then, if any line touch the latter at the point g, it will, by Art. 277, meet the former in
the points u tan¢g and u cot¢, and if the fixed points are 'y p", the equations of the
sides are py tangL — (4" + p tang) R+ M =0,
pp” cot$L — (4" + p cot ) R + M.
Eliminating u, the locus is found to be
(M - yR) (W'L - B) = tan’ (M — u'R) (4L — R).

FOCAL PROPERTIES.

280. We shall next discuss the equation L? + M2 - R? = 0,
which is one of great importance, and, as well as the equation
LM = R?, admits of our expressimg the position of any point on
the curve by a single indeterminate. "We may suppose

L = R cos ¢, M=Rsing;
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then (as at pp. 93, 198) the chord joining any two points is

Loos}(g+¢) + Msing (¢ +¢) = Rcosi(qb $)s
and the tangent at any point is
-Licos¢ + Msing = R.

281. The equation L? + M? — R*= 0 represents a conic such
that any of the lines L, M, R is the polar with regard to it of the
intersection of the other two. For it may be written in any of the
forms

Lr=R:-M:; M:=R°-L¢; R:=M:+1n
The first form shows that the lines R + M, R - M (which inter-
sect in RM) are tangents, and L their chord of contact ; ®onse-
quently RM is the pole of L. Similarly, the second form shows
that RL is the pole of M. The third form shows that the ima-
ginary lines L + My -1, L - My/ -1 (which intersect in the
real point M), are tangents, and R their chord of contact; con-
sequently the point LM is in like manner the pole of R, but it
lies inside the conic, since the tangents through it are 1magma.ry

It is evidgnt in like manner that the equation

e Ad*+ Baf + OBt = y°
denotes a conic such that the point af3 is the pole with regard to
it of the line v ; for the left-hand side of the equation can be re-
solved into the product of factors representing two lines which
pass through of3.

282. The mostim}prtantapplicationof the equation L+ M?=R?
is in obtaining the properties of the foci. For if =0, y=0, be
any lines at right angles to each other through a focus, and y = 0
the equation of the directrix, the equation of the curve is

w% + y3 = e? 73,
a particular form of the equation we are examining.

The form of the equation shows that the focus () is the
pole of the directrix vy, and that the polar of any point on the
directrix is perpendicular to the line joining it to the focus
(Art. 197), for y, the polar of (2y), is perpendicular to @, but =
may be any line drawn through the focus.

The form of the equation shows that the two imaginary lines
represented by the equation (2* + y* = 0) are tangents drawn

.
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through the focus. Now, since these lines are the same whatever
v be, it appears that all conics which have the same focus have
two imaginary common tangents passing through this focus. All
conics, therefore, which have both foci common, have four imagi-
nary common tangents, and may be considered as conics inscribed
in the same quadrilateral. The imaginary tangents through the
focus (2* + 3 = 0) are the same as the lines drawn to the two
imaginary points at infinity on any circle (see Art. 259). Hence
we obtain the following general conception of foci, which we shall
find useful .afterwards: ¢ Through each of the two infaginary
points at infinity on any circle draw two tangents to the conic;
these ®ingents will form a quadrilateral, two of whose vertices
will be real and the foci of the curve, the other two may be con-
sidered as imaginary foci of the curve.” :

283. The tangents through (v, z) to the curve are evidently
ey + z and ey - z. If| therefore, the curve be a parabola, e = 1;
and the tangents are the internal and external bisectors of the
‘angle (yz). Hence, ‘ tangents to a parabola from any point on -
the directrix are at right angles to each other.”

In general, since z = ey cos ¢, y = ey sing, we have .

Y - tang;
or ¢ expresses the angle which any radius vector makes with z.
Hence we can find the envelope of a chord which subtends a"
constant angle at the focus, for the chord
zcos}(p+¢)+ysing(g+¢) = eyCos}(p-9),
if ¢ - ¢' be constant, must, by the present section, always touch
24y = Oy oo} (9~ 6),
a conic having the same focus and directrix as the given one.
284. The line joining the focus to the intersection of two taxi-
gents is found by subtracting
zcosg +ysing —ey =0,
zcos¢g' + ysing' — ey = 0,
to be "xeind(p+¢) -ycoss(p+¢)=0
the equation of a line making an angle § (¢ + ¢) with the axis of
z, and therefore bisecting the angle between the focal radii.
2 H
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The line joining to the focus the point where thechord of
contact meets the directrix is

zcosd(p+ ¢)+ysin(p+¢)=0,
a line evidently at right angles to the last.
To find the locus of the intersection of tangents at pomts which
subtend’ a given angle 28 at the focus.
By an elimination precisely the same as that in Ex. 1 and 2,
P- 93, the equation of the locus is found to be (2 + 3*) cos?d = e%y?,
which »epresents a conic having the same focus and directrix as

. . e
the given one, and whose eccentricity = prvey .

If the curve be a parabola, the angle between the tangents is
in this case given. For the tangent (zcos¢ + ysing — v) bisects
the angle between zcos¢ + y sin ¢ and y. The angle between the
tangents is, therefore, half the angle between zcos ¢ + ysing and
zcos¢' + ysing, or =4 (¢ — ¢). Hence, the angle between two
tangents to a parabola is half the angle which the points of contact
subtend at the focus ; and again, the locus of the intersection of tan~
gents to a parabola, which contain a given angle, is a hyperbola
with the same focus and directriz, and whose eccentricity is the se-
cant of the given angle, or whose asymptotes contain double the
given angle (Art. 170). '

, - ENVELOPES.

285. We have seen that the line represented by the equation
wL-2.R+M-=0,
always touches the curve LM = Rz,

We wish the reader to take notice that this will be the case
whether L, M, R represent right lines or not. For the equation
L= (u+p)R+M=0

must be satisfied for any points which satisfy the equations
@L-R=0, uR-M=0), (WL-R=0, yR-M=0),

and is therefore the equation ofa curve passing through the points

in which yLi - R and ;'L - R meet LM - R*. Now let u = 4/,

and we see that u?Li - 2uR + M touches LM - R? in the points
where uL — R meets it.
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Similar remarks apply to the equation
Lcos¢ + Msing = R,
which indeed may be reduced to the precedmg form by assuming
tan¢ = u, as we have then
— 2

n .
005¢=-1+_"2, sm¢=-l—+—"z,

and substituting these values, and clearing of fractions, we have
an equation in which u only enters in the second degree.

If, therefore, we are required to find the curve always touched
by a variable line, we have only to form its equation so as to con-
tain ondy a single indeterminate, and, if this indeterminate be only
in the second degree, the envelope can be found as above. We
can in like manner find the envelope of a line whose equation
contains fwo indeterminates, provided these be connected by some
given relation, for we have only to eliminate one of the indeter-
minates by the help of the given relation.

Ex. 1. To find the envelope of a line such that the product of the perpendiculars on
it from two fixed points may be constant.

Take for axes the line joining the fixed points and a perpendicular through its middle
point, so that the co-ordinates of the fixed points may be y =0, z = + ¢ ; then if the va-
riable line be y — mz + n = 0, we have by the conditions of the question

(n + mc) (n — me) = b3(1 + m?),

or , n? = b3 + b3Im? + cIm?, .
but 72 = y3 — 2mzy + mizd,
therefore me (23— B — %) — 2may + yI - B3 =
and the envelope is 22y2 = (22 - B3 — ¢?) (y2 - B?),
or 2?
a:?+§=L
Ex. 2. Find the envelope of a line such that the sum of the squares of the perpendi-
culars on it from two fixed points mzfy be constant. Ans. 2t .f 1
53— c’ b2
Ex. 8. Find the envelope if the difference of squares of perpendiculars be given.
Ans. A parabola.

Ex. 4. Through a fixed point O any line OP is drawn to meet a fixed line; to find
the envelope of PQ drawn so as to make the angle OPQ constant.

Let OP make the angle 6 with the perpendicular on the fixed line, and its length is
2 8ecO; but the perpendicular from O on PQ makes a fixed angle 3 with OP, therefore
its length is = p sec® cos3; and since this perpendicular makes an angle = 6 + 3 with
the perpendicular on the fixed line, if we assume the latter for the axis of x, the equa-

tiou of PQ is zcos(0+PB)+ysin(0+pB)=psechcosf, °
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or % ¢08(20 + B) + y sin (20 + B) = 2p cosB — 2 cosB — y sinf,
an equation of the form Lcos¢ + Msing = R,
whose envelope, therefore, is '
A+ y% = (zc0s + ysin — 2p conBY,

the equation of a parabola having the point O for its focus.

Ex. 5. To find the envelope of the line i + E =1, where the indeterminates arc
connected by the relation u + p' = C. poE

We may substitute for p', C — p, and clear of fractions; the envelope is thus found
to be A3 4+ Bt 4 C2— 2AB — 2AC — 2BC = 0,
an equation to which the following form will be found to be equivalent,

+VA+VB+VC=0.

Thus, for example,—Given vertical angle and sum of sides of a triangle, to find the en-

velope of base.

The equation of the base is z ¥y
ats=t

wherea +b=c.
The envelope is, therefore,
2P+ y?— 22y — 2ex —2cy + 3=0,
a parabola touching the sides # and y.
In like manner,—Given in position two conjugate diameters of an ellipse, and the
sum of their squares, to find its envelope.

If in the equation o oy 1
atp =

we have a3 + b? = ¢, the envelope is
z+y+e=0.
, The ellipse, therefore, must always touch four fixed right lines.
Ex. 6. Again,* given the two equations

§+% % =0, V(ua)+V(Wb)+V@ue)=0,

if we eliminate u”, the equation in '-"-" will be only of the second order, and the envelope
will be found to be Aa + Bb + Ce = 0.4

* This example, and its applications, are taken from Mr. Hearn's Researches on Conic
Sections. )
+In geqeral, given the two equations

()™ + (WBY" + (WO =0, (ua) + (WO + (W' =0,
it can be proved that the envelope is

(& (5F7+ (=0
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Thus, for example, in the equation of a conic circumscribing a triangle,

’

s % + "7 =0
(Art. 105), if the constants be connected by the relation
V(ua) + V(b)) + V(') =0,
the conic will touch the right line
aa+ b3+ ecy=0.
Or, again, in the equation of a conic inscribed in a triangle,
v (ua) +V(uB) +V (u'y) = 0
(Art. 108), if the constants be connected by the relation

BE W
A+B+c"°’

the conic will touch the right line
Aa+BB+Cy=0.

286. These principles enable us to write the equation of a
conic having double contact with two given conics, S and S
Let E and F be their chords of intersection, so that S - §'= EF,
then the equation of any conic touching the two will be

wEs - 2'14(S +8)+Fr=0.
For, if we seek the envelope of this conic, we find
EF? - (S+8)=0, or 455 =0;
hence this conic touches both the given ones.

Since u is of the second degree, we see that through any
point can be drawn fwo conics, each of which will have double
contact with the given ones; and it can be proved that one of the
chords of intersection of these conics is the line joining the given
point to (EF), and the other the fourth harmonic to this line, E
and F.

287. The equation of a conic having double contact with two
circles assumes a simpler form, viz.

w-2u(C+C)+(C-C)=0.

The chords of contact of the conic with the circles are found
to be C-C+u=0,and C-C' -pu=0,
which are, therefore, parallel to each other, and equidistant from
the radical axis of the circles. This equation may also be written
in the form vC+yvC =ypu
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Hence, the locus of a point, the sum or difference of whose tangents
to two given circles is constant, is a conic having double contact with
the two circles. 1If we suppose both circles infinitely small, we
obtain the fundamental property of the foci of the conic.

If u be taken equal to the intercept between the circles on
one of their common tangents, the equation denotes a pair of
common tangents to the circles. w

Ex. 1. Solve by this method the Examples (p. 110) of finding common tangents to
circles, Ans. Ex. 1. VC4+VC'=40or=2. Ans. Ex. 2. VC+VC'=1or=V - 80.

Ex. 2. Given three circles; let L, L’ be the common tangents to C, C"; M, M’ to
C", C; N, N" to C,C’; then if L, M, N meet in a point, so will L', M’, N",
Let the equations of the pairs of common tangents be
VC' +vC' =¢ VC"+VC=t¢, VC+VC =t¢"
Then the condition that L, M, N should meet in a point is ¢’ + ¢ = ¢"; and it is obvious
that when this condition is fulfilled, L', M’, N’ also meet in a point.

288. The equation of a conic inscribed in a quadrilateral is

found as a particular case of Art. 286, and is
wE?*-2u (AC + BD) + F2 = 0,
where ABCD are the sides, EF the diagonals, and AC~-BD=EF. ‘
This equation, however, will assume a simple form if expressed |
in terms of the three diagonals of the quadrilateral. Let L, M, N
represent the diagonals, then (1) L+ M+ N, (2) M+ N - L,
(3 L-M+N, (4) L+ M- N, represent the four sides; for
L passes through the intersections of (12), (34); M through
those of (13), (24); N through those of (14), (23); and the
cquation of the conic touching the four sides may be written
wl? - p(Le + M? - N2) + M2 = 0.
For this always touches (L?+ M?- N?)? - 41°M* =
(L+M+N) (M+N-L) (L-M+N) (L+M-N).
The equation of the touching conic may be written

M2 N
2= —+ .
, po l-p
Ex. 1. Find the equation of the conic touching the four sides of the quadrilateral
whose equations are given (Ex. 8, p. 27).
It will be seen that we have here

1 1 1 1 1 1 1 1
~L=(;+;,).t‘, M—(z+ ;,—)y, N._(‘—.—;)x+(-,;—-,?)y—2.
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And the coric is

(2o g T 205 3]

Ex. 2. Find the locus of the centre of the conic touching four right lines.
The centre of the conic whose equation is given in the last example is determined by
the equations,

()220 )220
(-5 (- eelis-2 (i

Eliminating u, we have
1 1 1 1 _ (a+a)y B+d)
(;—;)54(;—3:)3'-2—M.(a._a)-’c-r“.(b,_b)%
or 2z 2y
a-atv-p"

the equation of the line joining the middle points of the diagonals.

L

GENERAL EQUATION OF THE SECOND DEGREE.

289. We have already seen that the general trilinear equa-

tion of the second degree is

Aa*+ Baf3 + CB3* + Day + EBy + Fy* =0,
which for the sake of symmetry we shall write in the form

aa* + a3 + a"y* + 203y + 2b'ya + 26"a3 = 0.
This equation is evidently equivalent to the equation
(aa+by+bB) + (aa'-b") 3* + 2(ad - bb") By + (aa” - b?)4*=0,
but the last three terms are the equation of two right lines drawn
through (3y); hence (Art. 281) aa + &'y + b3 is the chord of
contact of two tangents drawn through (3y), that is to say, the
polar of the point (By).

In like manner, the polars of (ya) and (af3) are

ap +by+ba=0, a’y + 53 + ba=0.

290. The form of the equation of the tangents through (3y)
leads to an important property of the sides of a circumscribing
hexagon, and affords a useful test for determining whether six
lines touch a conic.

The tangents are

(aa’ = b"%)[3*+ 2(ad - bY") By + (aa” - b?)y* =0,
(da" - B)y* +2(ab - b'B) ya + (aa' - b*) a? = 0,
(@"a -b%)a* + 2 (V- 00) o3 + (aa”- b%)[3°=0.
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Now, if the roots of the first equation be 3 =ky, 3 = kv, we
have . aad'-b?

W=

" . - . aa' - b"

The corresponding quantities for the other equations are oy

and g,,‘;—~zb7:, and these three multiplied together are = 1. Now,

recollecting the meaning of £ (Art. 53) we learn, that if A, F, B,
D, C, E, be the vertices of a circumscribing hexagon,

sinEAB .sin FAB.sin FBC .sin DBC .sinDCA .sinECA _
sinEAC .sinFAC .sin FBA . sin DBA .sin DCB .sin ECB

Hence, also, if the equations of three pairs of lines can be put into
the form L* + M2 - 2¢LM .= 0,

M: + N? - 2/MN =0,

N2 + L2t - 2w’'NL =0,
they will touch the same conic section, for the equations last given
can be reduced to this form by writing ¢/ (da” - &) L for a, &ec.

291. It appears from Art. 289 that the equation of the polar
of any point (3v), with regard to the conic, S =0, is the first de-
rived equation of S = 0, considered as a function of a. We shall
anticipate the notation of the calculus, and denote this derived

1.

. dS
equation by o
In like manner, the polar of (ay), with regard to S, is the

' as
. dS a3’
and the polar of of3 is & Hence, if the equation of a conic be

first derived equation of S, considered as a function of 3, =

expressed in terms of the equations of three right lines, the equation
of the polar of the intersection of any two of them is the first derived
of the equation of the conic, considered as a function of the third
line. The equations of polars given already are particulars cases
of this. For example, the polar of the origin (zy), with regard to
Ag? +.Bzy + Cy* + Dzz + Eyz + F2* = 0,
is Dz + Ey + 2Fz=0;
that is, its first derived equation with regard to z.
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Again, the equation of the diameter which bisects chords pa-
rallel to the axis of z is

230, or 2Az+By+Dz=0,

and we shall show hereafter that this diameter may be considered
as the polar of the point (yz) at infinity on the axis of z.-

Ex. 1. Given four points on a conic, the polar of any other given point will pass
through a fixed point (Ex. 8, p. 187).

The equation of the conic must be of the form S + &8’ = 0, where S and §' are any
two conics through the four points: now the polar of any point By with regard to this is

-"—Qj_ !‘s') 0, which, it will be seen, is equivalent to
das a8
—th—=0:*
ot A 0;

and since this equation only involves % in the first degree, it will pass through a fixed
point.
Ex. 2. To find the locus of the pole of a given line (y), with regard to a conic of

which four points are given.
‘We have to eliminate 2 from the equations
ds ‘g’ =0 dS dS’
da da dﬂ dﬁ
and we find @d_s_’_ﬂ_ﬂdS’_o
dadB dBda
the equation of a conic section,

If we suppose the given line at an infinite distance, we obtain the locus of the centres
(Ex. 4, p. 187). .

Ex. 8. Given two points and two tangents to a conic, the polar of a fixed point
touches & conic section.

Let LM be the two tangents, R the line joining the given points, and LM — N2 one
conic touching the two lines, and passing through the given points; then the equation
of any other must be of the form

LM - (N +AR):=0;
the polar is, therefore,
dR d(NR) d(N3—-LM)
2PRE+2k. aa + 7 =0,
which must always touch a conic section, since % enters in the second degree. In the

¢ We may mention here, that if the axes of S be parallel to the axes of §', so will
the axes of 8 + %8'; for if we take the axes of S for axes of co-ordinates, neither S nor
8’ will contain the term zy. If S’ be a circle, the axes of S + %S’ must be always pa-
rallel to the axes of 8. If S + %S’ reduce to a pair of right lines, its axes will become
the internal and external bisectors of the angles between these right lines: thus we ob-
tain the theorem of p. 208.

21
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same manner it may be proved that the locus of the pole of a given line is a conic
section.

In general, if the equation of a conic section involve an indeterminate in the second
degree, the polar of any fixed point will touch a conic section. Thus, for example, the
locus of centres of conic sections which have double contact with two given conics
(Art. 286) is a conic section.

292. To find the equation of the polar of any point (d3'y'),
with regard to a conic section.

This may be done by a method similar to that used Art. 150.
It is proved, as in Art. 7, that if o, a” be the lengths of the per-
pendiculars from two points upon a given line, la” + md l: 72 will be
the length of the perpendicular on that line from the point which
divides in the ratio /: m the line joining the given points. But
since equations in trilinear co-ordinates are always homogeneous,
they are not affected if the co-ordinates of any point be all multi-
plied or divided by the same quantity. Hence la" + md, I3+ m[3',
ly" + ny', may be taken as the trilinear co-ordinates of the point
dividing in the ratio /: m the line joining a'3'y/, a’3"y". Ifthen
we substitute these values in the general equation S = 0, we have,
to determine the points where this conic is met by the line join-
ing a3y, a"B"y", the quadratic

{ad" + d B”' +a'y" + 203"y" + 2b'y"a" + 2b"a"3"}
+2Im{(aad"+b"+ b3’ ’) a'+(a B"+ by"+ a") 3+ (a"y"+ bﬁ +bad") v}

+m*{aa’ + aﬁ" +a"y? + 263y + 2by'd + 203} =

Now, as in Art. 150,*when a”ﬁ” " is on the polar of a3y,
coefficient of /m must vanish, since we know that the line j Jommg
the points must in this case be cut harmonically ; the equation
of the polar of a'3'y’ is, therefore,

(aa + by + V'B)d + (@B + by + b'a) B’ + (a’y + 53 + ba) y' = 0,
which we may write for shortness
,dS ., dS ,dS
a ——- + B _B +v -‘7— = 0.
When o3'y’ is on the curve, this equation, of course, represents
the tangent at that point.

Ex. 1. To find the equation of the pair of tangents at the points where the conic 8
is cut by the line .
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The v’ of either point of contact will in this case = 0, and the equation of the tan-
gent at it will become as ds
ad—+ 8 5-=0.

da aB

But making y = 0 in the general equation, the points of contact are determined by
the equation ag’® + 2b"a'B’ + aB3=0.

Eliminating a’(3’ between these equations, we find for the equation of the pair of tangents

(5]-() (2)- (2]

As a particular case of this, we find for the equation of the asymptotes of a conic given
by its Cartesian equation (since the asymptotes are the pair of tangents at the points
where the curve is met by 2 the line at infinity),

A(5]-+()(E)- (2]

Ex. 2. The lines joining corresponding vertices of any triangle, and of its conjugate
triangle with respect to a conic, meet in a point. By the conjugate triangle is under-
stood the triangle whose sides are the polars of the vertices of the first triangle (see
Ex. 3, p. 230).

It is obvious that the result of substituting the co-ordinates of any point (1) in the
equation of the polar of (2) is the same as the result of substituting the co-ordinates of
(2) in the polar of (1). Let us denote this result by ¢”; and, in like manner, let ¢’ de-
note the result of substituting the co-ordinates of (2) in the equation of the polar of (3),
and ¢” the result of substituting the co-ordinates of (3) in the polar of (1). Let the equa-
tions of the three polars of the vertices of the first triangle be P’ =0, P* =0, P" = 0.
Then the equation of any line through the intersection of the last two lines will be
P” = kP", and if this line pass through the point (1), the co-ordinates of this point sub-
stituted in the last equation give ¢” = 4¢". Hence the equations of the three lines
joining corresponding vertices are

tP =t'P", t' P’ =¢"P", t"P" =¢(P,
which obviously meet in a point.

Ex. 8. The intersections of corresponding sides of two conjugate triangles lie in one
right line. ’

We can (by Art. 59) write in the form /P’ + mP” + aP” = 0, the equation of the
line joining a'/8'y’, a"3"y". Remembering that the co-ordinates of the first point substi-
tuted in P, P”, P give results, &', ¢”, ¢"; while those of the second point give results,
t", 8", t'; the equation of the joining line is found to be

(" —tYP' 4+ (£t - )P+ (68" —t"HP" = 0.
Similarly the equatiohs of the other sides of the first triangle are
(" —s"¢)P + (68" — " YP'+ (t't"— st )P =0,
(8" —t2 )P + (tt" — s"t") P+ (" - s"t)P" = 0.
And the intersections of corresponding sides of the two triangles lie on the right line
P P P”

s+ +

Ut — gttt — 'ttt - 8"t
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Ex. 4. The anharmonic ratio of four points on a right line is the same as that of
their four polars.

For the anharmonic ratio of the four points

la’ + ma", U'd + ma", I"a’ + m"a", "a’ + m"a’,
is evidently the same as that of the four lines
® +mP", TP + o'P", I'P’ + m"P”", I"P’ + m"P".

Ex. 5. To express the equation of the conic 8 in terms of P’, P”, P".

From the general principles of trilinear co-ordinates, it follows that the equation of
the conic can be expressed in the form

AP3 + AP 4 A'P"t + 2BP"P” + 2BP"P + 2B"PP" = 0.

Now the equation of the polar of any point being formed according to the rules of
Art. 292, the equation of the polar of a’3'y’, whose co-ordinates in this system are
st is

(A’ + BE+Bt)P' + (A't" + Bt' + Bs) P'+ (A"t' + Bt" + Ba) P"=0;
and since the polar of this point is P, we must have

At + B+ B =0, A+ Bt +Bs=0.
In like manner, we have

At"+ B¢ +B's"'=0, A"¢'+ Bs"+Bt"=0,

A‘n + B:'m + B”" = 0, A"’ + B.m + B”‘" = o.

These equations are sufficient to determine the six unknown quantities A, A’, &ec.,
and we find for the equation of the conic,

(s"s" — ) P24 (83" = ') P8 + ('s"— ") P2+ 2 ("¢ — ¢'s') P"P”
+2(C - S)PP 4+ 2(t¢ ~ ) PP =0,

Ex. 6. To inscribe in a conic a triangle whose sides pass through three given points.

Let afy be the co-ordinates of the vertex of the triangle; we find, as in Art. 150,
the co-ordinates of the point where the line joining aBy, a’3’y” meets the conic again,
by substituting in the equation of the curve la + m«’, I8 + m3, Iy + my’, for a, B, y.
And since afy is on the curve, this gives us

2mP + mis'=0; —=—g,
and the co-ordinates of the point required are s'a — 2P'a, &3 — 2P, &'y — 2Py, If
these values be substituted in ¥, P*, P*, they give results,

's, &'P"— 2¢"P, 4P - 2¢'P.
Similarly, the co-ordinates in the same system of the point where the line joining a3y,
a”"3"y", meets the conic again, are s"P' — 2t"P", — s"P”, s"P" — 2¢P". The condition
that these points should lie in a right line with ¢’, Z, 5™, is
Ps (8¢ - tt’) + P24 (87" — £0)) + PP (40617 — 25703 — 'P2— 4t)
+ PP (- tt7) + P"'P’: (:’t' €M) =0.
The vertex of the required triangle is thus determined as the intersection of the given
conic with another conic, but the solution assumes a simple form if we subtract from the
equation just found the equation of the conic given in the last Example multiplied by
t”, when we get
(PELPC-Pt) (Pt - 6t)+ P (£t - st)+ P" (55— "D} = 0.




METHODS OF ABRIDGED NOTATION. 245

It is obvious, from Ex. 2, that the first factor in this product represents the same
right line as that described in the solution of the same problem given at p.230. The
second factor is irrelevant to the geometrical solution: for it represents (see Ex. 3) the
line joining the points a’/8'y', u’3’y"; and though either of the points in which this line
meets the carve fulfils the condition which we have expressed analytically, namely, that
if it be joined to a'3y’, a’3"y", the points in which the joining lines meet the curve lie
on a right line which passes through a”3"y"; yet as the jommg lines coincide, they
cannot be sides of a triangle.

Ex.7. If two conics have double contact, any.tangent to the one is cut harmonieally
at its point of contact, the points where it meets the other, and where it meets the chord
of contact. ) .

If we substitute in the equation 8 + R*=0, la'+ ma", I3’ + mf3", Iy’ + my", for
af3y (where the points a8y, a"3"y" satisfy the equation S = 0), we get

(R + mR")2+ 2lmt"= 0.

Now, if the line joining a’S'y, a’3"y", touch 8 + R3, this equation must be a perfect
square: and it is evident that the only way this can happen is if " = — 2R'R", when the
equation becomes (JR'— mR")2= 0 ; whence the truth of the theorem is manifest.

INSCRIBED AND CIRCUMSCRIBED TRIANGLES.

293. We gave (p. 99) the equation of a conic circumscribed
about a triangle,* !

we may prove, precisely as at p. 100, that the tangents at the
three vertices are

B+ma=0, my+nB3=0, na+ly=0;
that the three points in which each tangent meets the opposite
side are in one right line,

and that the lines joining each vertex to the opposite vertex of
the circumscribed triangle are

Y_°o_
n 0,

which evidently meet in a point.
To find the equatwn of a conic circumscribing aﬁy, and having
its centre at a given point (a'3'y).

* This equation was, I believe, first discussed by M. Bobillier (Annales de Mathéma-
tiques, vol. xviii. p. 320).
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The polar of any point is (Art. 292)

o (my + nf3) + ' (na + Iy) + y' (I3 + ma) = 0.
Now it is required to determine /mn, so that this equation should
represent a line at an infinite distance (Art. 157).
Comparing this equation, therefore, with the equation of a
line at infinity (Art. 64),
ga+ b3 +cy=0,
where abe are the lengths of the sides of the triangle af3y, it will
be found that we may take
l=d' (B3 +cy'-ad); m=(aa' +cy -b3); n=vy'(ad + 53 -cy).

In like manner we could determine /, m, n, so that the polar
of (d3'y") should be any right line, Aa + BB + Cy, by writing
A,B,C, for a, b, c.

If we were given three points on a conic and any fourth con-
dition, this fourth condition will give a relation between I, m, n ;
then, by writing in this relation the values of /, m, », just found,
we can find the locus of centres of the conic, or the locus of the
poles of a given line.* Thus, for example, if we are given a fourth
point on the conic, we must have

i + _1—71_ + ﬁ =0,
all B" 1”
and therefore the locus of the centre of the conic circumscribing
a quadrilateral is
a(dB+ecy-aa) PB(aa+cy-5B) vy(aa+bdB-cy)
" + " + ” = 0’
a B ]
a conic through the middle points of the given quadrilateral ; for
‘aa + b3 - cy represents the line joining the middle points of
af3, &e. .
If we are given a tangent to the conic we must have

v(IA) + y(mB) + vy (#C) = 0,
in order that the conic should touch
Aa + BB + Cy = 0 (p. 237),

* The method given in this and the following Article, of finding the locus of the centre
of a conic section described under certain conditions, is taken from Mr. Hearn's Researches
on Consc Sections.
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therefore the locus of centre, three points and a tangent being
given, is
V{Aa(®B +ey -aa)j + v {Bﬁ(aa + ¢y - 8))
+ vV {Cy(®B + aa - cy)} =
a curve in general of the fourth degree.

294. The equation of the conic section inscrided in a triangle
may be written in either of the forms (Art. 108)
v (la) + v(mB) + ¥ (ny) = 0,
Pa* + m*3* + n*y* - 2mnf3y - 2nlya - 2lmaf3 = 0.

It was proved (Art.109)
that AD, BE, CF meet
in a point, their equations
being
mB-ny =0, ny-la=0,

la-mB=0;
that LP, MQ, NR have
for their equations respec-
tively, Q
2mf3 +2ny -la=0, 2ny+2la-mB=0, 2la+2mB-ny=0,
and that PQR is a right line whose equation is
la+mB+ny=0.
It is evident likewise that CA, CF, CB, CR form a harmonic
pencil, their equations being :
B=0, la-m3=0, a=0, la+mB3=0.

To find the equatwn of a conic inscribed in af3y, and having
its centre at a given point (a3'y).

The polar of any point with regard to this conic is (Art. 292)
al(mB +ny' - la) + Bm(ld + ny' - mB) + yn(la’ + mB' - ny') = 0.
Now if it were required to determine I, m, n, so that this polar

should coincide with
La+MB+ Ny=0,

we should find
I=L(MB + Ny -La); m=M(Ld+ Ny -Mf3);
’ n = N(Ld' + M3 - Ny).
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Hence the locus of the centres of a conic touching three lines,
and passing through a given point a"3"y", is
v (ad" (B3 + cy - aa)} + v (8" (aa + cy - BB3))

+ v (ey"(aa + BB - cy)} = 0,
the equation of a conic touching the lines joining the middle
points of the sides of the triangle formed by the given tangents.

If the conic touch a fourth given line, Aa + BB + Cy =0,

we must (p. 237) have the relation
I m =n
ATB'C
the locus of the centre is, therefore,
a(B +cy-aa) blaatey-3B) c(aa+dB-ey)
A B [§) =0

the equation of a right line.*

Thus too we may easily form the equation of a conic touching
five given l‘ight lines, viz. a, B, v Aa+ Bﬁ + C'y, Ala+ B'B + C"y H
for we have the two equations

! m =n ! m =n
K+§+-C—=0, 'K,'PF'F@-O,
from which we can determine !:m and /:n.

Ex. 1. Find the equation of the conic touching the five lines, a, B, 7, a + 8 + 7,
2a -7

;V’zhaZe I+m+n=0, 3 +m—n=0: hence the required equation is

2(-at+ @B+ (=0
Ex. 2. Find the equation of the conic touching a, 8, y, at their middle points.
dns. (aa)t+ @B+ (o)t =0.

Ex. 8. Find the condition that (7a)*+ (m@)¥ + (ny)¥= 0 should represent a parabola.

m

Ans, The curve touches the line at infinity when % + 3

+£=0.
[

¢ The condition that & conic circumscribed about the triangle (afBy),

? .
_+2+:=0,
a Y

B

shonld touch another inscribed in it,

v (La) + V (MB) +V (Ny) = 0,
aLyt+ eyt 4+ ()= o;

hence we can find the locus of the centre of the conic inscribed in a given triangle, and
touching another circumscribed to the same triangle, or vice versd (Hearn, p. 50).

is (note, p. 236)
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Ex. 4. To find the locus of the focus of a parabola touching a, 3, y-
Generally, if the co-ordinates of one focus of a conic inscribed in the triangle a3y be
a3y, the lines joining it to the vertices of the triangle will be

ﬂﬁvrﬁ.

T P Y
and since the lines to the other focus make equal angles with the sides of the triangle
(Art. 194), these lines will be (Art. 57)
aa=@p fB=17 vy=da;
1
mdtheoo-o:dimtesoftheot.hetfoenamcybeukené,%,,?

Hence, if we are given the equation of any locus described by one focus, we can at
once write down the equation of the locus described by the other; and if the second focus
" be at infinity, that is, if a” sinA + 3"sin B + " sinC = 0, the first must lie on the circle
m:'A_‘_s%*m;c_o The co-ordinates of the focus of a parabola at infinity are

¥
! m n . .
A’ 5B’ Fa'C’ since (remembering the relation in Ex. 8) these values satisfy
both the equations, asinA + BsinB + ysinC =0, Via+VmB + Yy =0.
3 * 2

The co-ordinates, then, of the finite focus are “‘;A, ’*';B, "';C.

Ex. 5. To find the equation of the directrix of this parabola.

Forming, by Art. 294, the equation of the polar of the point whose co-ordinates
have just been given, we find

la (sin?B + sin3C — 8in?A) + mQ (sin?C + sin?A - sin3B) + ny (sin?A + sin?B — 6in3C) =0,
or lasinB sinC cos A + m3sinCsin A cosB + nysinAsinBcosC= 0.
Substituting for » from Ex. 8, the equation becomes
1sinB&inC (a cosA — y cosC) + msinCsin A (3 cosB — y cosC)=0;
hence the directrix always passes through the intersection of the perpendiculars of the
triangle (see Ex. 8, p. 54).

DISCRIMINANTS.

295. The condition that an equation of the second degree
should represent two right lines, is called the discriminant of that
equation. When a conic breaks up into two right lines, the
polar of any point passes through the intersection of the two
lines; being the fourth harmonic to the two lines and the line
joining their intersection to the given point. Now the line

+ B’ dﬁ 7 i@_ will always pass through a fixed point,

dS dS ds .
provided that ——. % B Iy

then we form the condmon that
2 K

represent lines meeting in a point. If
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aa+ VB +by=0, aB+by+ba=0, a'y+ba+b3=0,
should represent lines meeting in a point ; by eliminating a, (3, v
between these equations, we obtain the discriminant of the given
equation, viz.,
ab? + a'b* + a"b"™ — ad'a’ — 266D = 0,
which only differs in notation from what we have obtained already
by other methods (see pp. 67, 139).*

296. Given the equations of two conics,
(S) aa® +df3® +a'y* + 263y + 2bya + 20°a3 =0,
(S) Aa*+ A3+ A’y + 2By + 2B'ya+ 2B"a3 = 0,
if it were required to form the equation of their chords of inter-
section, we have only to form the discriminant of S + S|, by
writing ka + A for a, kb + B for b, &c. in the discriminant of S;
and putting this discriminant = 0, it will be found that we have
a cubic to determine k. It is geometrically evident that this
must be the case, since if the two conics intersect in the points
ABCD, there can be drawn through these four points any of
the three pairs of right lines, AB, CD; AC, BD; AD, BC.
If then the roots of the cubic be ¥, &, k", the equations of the
pairs of right lines willbe ¥S + §'= 0, #'S+ S5 =0, ¥"S+S'=0.
The cubic in question actually is
k2 (ab? + a'b + a"b"™ - ad'a” - 2060") + k* (A (B~ a'a”) + A’ (b - a'a)
+A"(6" - aa’) + 2B (ab - D") + 2B'(a'd’ - "D) + 2B"(a"" - bb'))
+k{a(B*-A'A") +a'(B"- A"A) + a"(B” - AA)
+2b(AB - BB") + 26’ (A'B' - B"B) + 20"(A"B” - BB))}
+{AB*+ AB”+ A'B” - AA'A” - 2BBB"} = 0.

If we call the discriminant of S, v ; then it is plain that the co-

* The condition that an algebraic equation should have equal roots is also called the
discriminant of that equation. For if the equation be made homogeneous by the intro-
duction of a variable y, the condition that the equation should have equal roots is
;'—i=o, §=o And, in general, if a ho-
mogeneous function of any number of variables be differentiated successively with respect
to all these variables, and the variables eliminated between the resulting equations, the
result of elimination is called the discriminant of the given function.

obtained by eliminating z and y between
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efficient of 4* is v, and that the absolute term is . The co-
efficient of &2 is

Adv A,dv A,,dv+de+de B,,dv

d d ” dbu’
as is also evident from Taylor’s theorem.. The coefficient of 2
isa v’ + &e. '

dA

297. To find the condition that the line la + m3 + ny should
touch the conic S.

Form the discriminant of &S + (la + mf3 + ny)? and it will be
found to be

Ry + k’{l’g +m ZV, + n’Zv,, + m”:: + nldb’ +Im :Z,

the coefficient of % and the absolute term vanishing identically.
It is easy to see the geometrical reason why this should be the
case. Forif §' represent the two right lines AB, CD, we have
v'=0, and one root of the cubic is £ = 0, as it plainly ought to
be. But suppose that S'is a perfect square, and represent two
coincident lines, then the points A, C; B, D; coincide, and the
pair of lines AD, BC is also represented by S'. We must have
then fwo roots of the cubic, £ = 0, or the equation must be divi-
sible by 42. In this case the third pair of lines AC, BD is the
pair of tangents to the conic at the points where it is met by
la + m3 + ny ; and substituting in £S + S’ the value of % obtained
by putting the discriminant = 0, the equation of this pair of tan-
gents is found to be

(Fg+&c.)s-v(la+m[3+ny)ﬁ=0

But suppose now that the line la + m3 + ny touches S, then it is -
plain that the pair of tangents AC, BD also coincides with §';
we must therefore have the three roots of the cubic £ = 0, or the
equation must be divisible by £2°. Hence we obtain the same
condition that la + m@3 + ny should touch S, as was otherwise
obtained (Art. 154), viz.,

piv dy ,4v dy dy dy dA

2 —_— ==
T +md, nd,,+mndb+ ldb lmdb,,_().

‘We may sometimes write this condition = = 0.
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The condition that S + S’ should touch la + mf3 + ny is im-
mediately obtained by writing ka + A for a, &b + B for b, &c. in
3 ; and the result will obviously contain & in the second degree.
Hence the problem to describe a conic through four points to
touch a given line admits of two solutions.

Ex. Find the condition that /a + mS3 + ny should touch 8 + (Y'a + m'B + n'y)%.
Ans. T + K = 0, where K is the result of writing mn’ — nm', a7 — In’,
'l for a, B,y in 8.

298. To find the condition that two conics S and S' should
touch each other.

‘When two points A, B, of the four points of intersection of
two conics coincide, then it is plain that the pair of lines AC, BD
is identical with the pair AD, BC. In this case, then, the cubic
in & (Art. 296) must have two equal roots. Now it can readily
be proved that the discriminant of the cubic

Lit+ Mi*+ Nk +P=0 _

is (MN - 9LP)* = 4 (M*- 3LN) (N*- 3MP). .
Substituting then for L, M, N, P, their values given in Art. 296,
we obtain the required condition, which will be of the sixth de-
gree in the coefficients of each equation. And it may be inferred,
as at the close of the last Article, that the problem ¢ to describe
a conic through four given points to touch a conic,” is one which
admits in general of six solutions.

299. To find the co-ordinates of the pole with regard to S of
the right line la + mf3 + ny.

If these co-ordinates be d, 3, 7', we must have

N Zg, ry ;ft identical with la + m@ + ny,
or aa +b" =l, df +by+Va'=m, a'y+bd+b3 =n;
whence we get o proport.iona.l to
1B - da") + m (8" - BY') + n (a'b - b'b), &e
values which may be written

o dz B - ds , _ds
e=ar amw Y " dn
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CHAPTER XV.

GEOMETRICAL METHODS.

. 360. HaviNg in the previous chapters sufficiently illustrated
the use of the method of co-ordinates, we purpose to occupy the
present chapter with some important geometrical methods, an
account of which must form an essential part of any work devoted
to the theory of curves.

THE METHOD OF RECIPROCAL POLARS.*

301. Being given a fixed conic section (X) and any curve (S),
we can generate another curve (s) as follows: draw any tangent
to S, and take its pole with regard to = ; the locus of this pole will
be a curve s, which is called the polar curve of S with regard to
3. The conic =, with regard to which the pole is taken, is called
the auriliary conic.

We have already met with a particular example of polar
curves (Ex. 20, p. 190), where we proved that the polar curve of
one conic section with regard to another is always a curve of the
second degree.

‘We shall for brevity say that a point corresponds to a line -
when we mean that the pointis the*pole of that line with regard
to = ; thus, since it appears from our definition that every point
of & is the pole with regard to = of some tangent to S, we shall
briefly express this relation by saying that every point of s cor-
responds to some tangent of S.

302. The point of intersection of two tangents to S will corre-

spond to the line joining the corresponding points of s.
This follows from the property of the conic =, that the point

* This beautiful method was introduced by M. Poncelet, whose account of it will be
found at the commencement of the fourth volume of Crelle’s Journal. The reader will
find the principle of duality, which is involved in this method, treated of from a purely
analytical point of view in the author's work on the Higher Plane Curves, chap. 1.
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of intersection of any two lines is the pole of the line joining the
poles of these two lines (Art. 146).

Let us suppose that in this theorem the two tangents to S are
indefinitely near, then the two corresponding points of s will also
be indefinitely near, and the line joining them will be a tangent
to s (Art.81); it also easily follows, from our definition of a tan-
gent, that any tangent to a curve intersects the consecutive tangent
at its point of contact (see Art. 142); hence for this case the last
theorem becomes : If any tangent to S correspond to a point on s,
the point of contact of that tangent to S will correspond to the tan-
gent through the point on s.

Hence we see that the relation between the curves is recipro-
cal, that is to say, that the curve S might be generated from s in
precisely the same manner that s was generated from S; hence
the name ¢ reciprocal polars.” '

- 303. We are now able, being given any theorem of position
- (Art. 1) concerning any curve S, to deduce another concerning
the curve s. Thus, for example, if we know that a number of
points connected with the figure S lie on one right line, we learn
that the corresponding lines connected with the figure s meet in
a point (Art. 146), and vice versd; if a number of points con-
nected with the figure S lie on a conic section, the corresponding
lines connected with s will touch the polar of that conic with re-
gard to =; or, in general, if the locus of any point connected
with S be any curve S, the envelope of the correspondmg line
connected with s is &/, the reciprocal polar of S'.

304. The degree of the polar reciprocal of any curve is equal
to the number of tangents which can be drawn from any point to
that curve.

For the degree of s is the same as the number of points in
which any line cuts s; and to a number of points on s, lying on
a right line, correspond the same number of tangents to S passing
through the point corresponding to that line. Thus, if S be a
conic section, two, and only two, tangents, real or imaginary,
can be drawn to it from any point (Art. 142); therefore, any
line meets s in two, and only two points, real or imaginary ; we
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may thus infer, in;lependently of Ex. 20, p. 190, that the reci-
procal of any conic section is a curve of the second degree.

305. We shall exemplify, in the case where S and s are conic
sections, the mode of obtaining one theorem from another by this
method.

We know (Art. 268) that ¢ if a hexagon be inscribed in S,
whose sides are A, B, C, D, E, F, then the points of intersection,
AD, BE, CF, are in one right line. Hence we infer, that ¢ ifa
hexagon be circumscribed about s, whose vertices are a, b, ¢, d, e, f;
then the lines ad, be, cf, will meet in a point” (Art. 266). Thus
we see that Pascal’s theorem and Brianchon’s are reciprocal to each
other, and it was thus, in fact, that the latter was first obtained.

In order to give the student an opportunity of rendering him-
self expert in the application of this method, we shall write in
parallel columns some theorems, together with their reciprocals.
The beginner ought carefully to examine the force of the argu-
ment by which the one is inferred from the other, and he ought
to attempt to form for himself the reciprocal of each theorem be-
fore looking at the reciprocal we have given. He will soon find
that the operation of forming the reciprocal theorem will reduce
itself to a mere mechanical process of interchanging the words
¢ point” and ¢ line,” ¢¢inscribed” and ¢¢ circumscribed,” ¢¢locus”
and “envelope,” &c.

If two vertices of a triangle move
along fixed right lines, while the sides
pass each through a fixed point, the
locus of the third vertex is a conic
section. (Ex. 4, p. 230.)'

If, however, the points through
which the sides pass liein one rightline,
the locus will be a right line. (p. 40.)

In what other case will the locus be
aright line? (p. 41.)

. JIf two sides of a triangle pass
through fixed points, while the ver-
tices move on fixed right lines, the
envelope of the third side is a conic
section.

If the lines on which the vertices
move meet in a point, the third side
will pass through a fixed point.

In what other case will the third -

side pass through a fixed point ?
(. 47.)

If two conics touch, their reciprocals will also touch; for the

first pair have a point common, and also the tangent at that point
common, therefore the second pair will have a tangent common
and its point of contact also common. So likewise if two conics
have double contact their reciprocals will have double contact.
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If a triangle be circumscribed to
a conic section, two of whose vertices
move on fixed lines, the locus of the
third vertex is a conic section, having
double contact with the given one.
(Ex. 1, p. 229.)

THE METHOD OF RECIPROCAL POLARS.

If a triangle be inscribed in a co-
nic section, two of whose sides pass
through fixed points, the envelope of
the third side is a conic section, hav-
ing double contact with the given one.
(Ex. 2, p. 229.)

306. We proved (Art. 302, see figure, p. 258) ifto two points

P, P, on §, correspond the tangents pt, p't, on s, that the tangents
at P and P’ will correspond to the points of contact p, ¢/, and
therefore Q, the intersection of these tangents, will correspond to
the chord of contact pp’. Hence we learn that to any point Q,
and its polar PP, with respect to S, correspond a line pp’ and its

pole q with respect to s.

Given two points on a conic, and
two of its tangents, the line joining
the points of contact of those tangents
passes through a fixed point. (Art.
264.)

Given four points on & conic, the
polar of a fixed point passes through
a fixed point. (Ex. 8, p. 137.)

Given four points on a conic, the
locus of the pole of a fixed right line
is a conic section. (Ex. 2, p. 241.)

The lines joining the vertices of a
triangle to the opposite vertices of its
polar triangle with regard to a conic,
meet in a point. (Ex. 2, p. 243.)

Inscribe in a conic a triangle whose
sides pass through three given points.
(Ex. 6, p. 244.)

. Given two tangents and two points
on a conic, the point of intersection
of the tangents at those points will
move along a fixed right line.

Given four tangents to a conic, the
locus of the pole of a fixed right line
i8 a right line. ,

Given four tangents to a conic, the
envelope of the polar of a fixed point
is a conic section. :

The points of intersection of each
side of any triangle, with the opposite
side of the polar triangle, lie in one
right line. (Ex. 8, p. 243.)

Circumscribe about a conic a tri-
angle whose vertices rest on three
given lines.

307. Given two conics, S and S', and their tﬁo reciprocals, s

and s'; to any point common to Sand S’ will correspond a tangent
common to s and s, and to any chord of intersection of S and §'
will correspond an intersection of common tangents to s and s

If three conics have two points
common, and, therefore, one com-
mon chord, their other three common
chords will meet in a point. (Art.267.)

If three conics have two common
. tangents, or if they have each double

~N

If three conics have two tangents
common, the points of intersection of
the other three pairs of common tan-
gents lie on one right line.

If three conics have two points
common, or if they have each double
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contact with a fourth, their six chords
of intersection will pass three by three
through the same points. (Art. 265.)

Or, in other words, three conics,
having each double contact with a
fourth, may be considered as having
four radical centres. (p. 105.)

If through the point of contact of
two conics which touch, any chord be
drawn, tangents at its extremities
will meet on the common chord of the
two conics.

3

If, through the intersection of com-
mon tangents of two conics any two
chords be drawn, lines joining their
extremities will intersect on one or
other of the common chords of the
two conics. (p. 226.)

If A and B be two conics having
each double contact with S, the
chords of contact of A and B with S,
and their chords of intersection with
each other, meet in a point, and form
a harmonic pencil. (Art. 264.)

If A, B, C, be three conics, having
each double contact with S, and if A
and B both touch C, the tangents at
the points of contact will intersect on
a common chord of A and B,
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contact with a fourth, the six points
of intersection of common tangents lie
three by three on the same right lines.

Or, three conics, having each dou-
ble contact with a fourth, may be
considered as having four axes of si-
militude. (See Art. 122, of which
this theorem is an extension.)’

If from any point on the tangent
at the point of contact of two conics
which touch, a tangent be drawn to
each, the line joining their points of
contact will pass through the inter-
section of common tangents to the
conics.

If, on a common chord of two co-
nics, any two points be taken, and
from these tangents be drawn to the
conics, the diagonals of the quadrila-
teral so formed will pass through one
or other of the intersections of com-
mon tangents to the conics.

If A and B be two conics having
each,.double contact with S, the inter-
sections of the tangents at their points
of contact with S, and the intersec-
tions of tangents common to A and
B, lie in one right line, which they
divide harmonically.

If A, B, C, be three conics, having
each double contact with S, and if A
and B both touch C, the line joining
the points of contact will pass through
an intersection of common tangents of
A and B.*

* The reader will take notice that we have now proved that every theorem used in
Art. 127, in the theory of three circles, has a theorem corresponding in the theory of thres
conics which are each inscribed in the same given conic ; and hence that, given three such
conics, we can find a fourth inscribed in the same conic, and such as to touch the three
given conics. The learner will do well to refer to Art. 127, and to examine for himself
how the demonstration there given is to be extended to the case of three conics inscribed
in a given conic. The chief difference occurs in (5) of that Article, for the line 4’3" is
now constructed by joining the pole of SS8" to any one of the four radical centres of

’ 2L
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308. We have hitherto supposed the auxiliary conic 3 to be
any conic whatever. It is most common, however, to suppose
this conic a circle ; and hereafter, when we speak of polar curves,
we intend the reader to understand polars with regard to a circle,
unless we expressly state otherwise.

‘We know (Art. 86) that the polar of any point with regard
to a circle is perpendicular to the line joining this point to the
centre, and that the distances of the point and its polar are, when
multiplied together, equal to the square of the radius; hence the
relation between polar curves with regard to a circle is often
stated as follows: Being gwen
any point O, if from it we let fall
a perpendicular OT on any tan-
gent to a curve S, and produce
it until the rectangle OT .Op is
equal to a constant k*, then the
locus of the point p is a curve s,
which is calledthe polar reciprocal
of S. For thisis evidently equi-
valent to saying that p is the pole of PT, with regard to a circle
whese centre is O and radius £&. We see, therefore (Art. 302),
that the tangent pt will correspond to the point of contact P, that
is to say, that OP will be perpendicular to pt, and that OP.O¢ = 2.

It is easy to show that a change in the magnitude of £ will
affect only the size and not the shape of s, which is all that in
most cases concerns us. In this manner of considering polars, all
mention of the circle may be suppressed, and s may be called the

the three conics. The problem therefore admits of thirty-two solutions instead of eight,
as in the case of the three circles. The theorems which answer to (6) of the same Ar-
ticle are the following:

The chord of contact of the required co- The pole of this chord, with regard to S,
nic with 8 passes through the intersection  lies on the line joining' one of their radical
of one of the axes of similitude of the three  centres with the pole, with regard to 8, of
given conics with the polar of one of their  one of their axes of similitude.
radical centres with regard to S.

The reader will find a very able investigation of this whole problem in a memoir pub-
lished by Mr. Cayley in vol. xxxix. of Crelle’s Journal.
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reciprocal of S with regard to the point O. We shall call this
point the origin.

The advantage of using the circle for our auxiliary conic
chiefly arises from the two following theorems, which are at once
deduced from what has been said, and which enable us to trans-
form, by this method, not only theorems of position, but also
theorems involving the magnitude of lines and angles: 8 penis ' v

The distance of any point P from the origin w the reczproca‘l of
the distance of the corresponding line pt.

The angle TQT between any two lines TQ, T'Q, is equal to
the angle pOp’ subtended at the origin by the corresponding points
p, P, for Op is perpendicular to TQ, and Op’ to T'Q.

‘We shall give some examples of the application of these prin-
ciples when we have first investigated the following problem :

309. To find the polar reciprocal of one circle with regard to
another. 'That is to say, to find the locus of the pole p with re-
gard to the circle (O) of any tangent PT to the circle (C) Let
MN be the polar of the point C
with regard to O, then having.
the points C, p, and their polars
MN, PT, we have by Art. 98,
the ratio gg OI{;, but the first
ratio is constant, since both OC
and CP are constant; hence the :
distance of p from O is to its distance from MN in the constant
ratio OC : CP, its locus is therefore a conic, of which O is a focus,
MN the corresponding directrix, and whose eccentricity is OC
divided by CP. Hence the eccentricity is greater, less than, or’
= 1, according as O is without, within, or on the circle C.

- Hence the polar reciprocal of a circle is a conic section, of
which the origin is the focus, the line corresponding to the centre is
the directriz, and which is an ellipse, hyperbola, or parabola, ac-
cording as the origin is within, without, or on the circle.

310. Weshall now deduce some properties concerning angles, |
“by the help of the theorem given in Art. 308.
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Any two tangents to a circle make
equal angles with their chord of con-
tact.

THE METHOD OF RECIPROCAL POLARS.

The line drawn from the focus to
the intersection of two tangents bisects
the angle subtended at the focus by

their chord of contact. (Art. 196.)
For the angle between one tangent PQ (see fig. p. 258) and
the chord of contact PP’ is equal to the angle subtended at the
focus by the corresponding points p, ¢; and similarly, the angle
QPP is equal to the angle subtended by p, ¢; therefores since

QPP = QPP, pOgq = p'Oq.

Any tangent to a circle is perpen-
dicular to the line joining its point of
contact to the centre.

Any point on a conic, and the point
where its tangent meets the directrix,
subtend a right angle at the focus.

This follows as befafe, recollecting that the directrix of the
conic answers to the centre of the circle. .

VAny line is perpendicular to the
line joining its pole to the centre of
the circle.

The line joining any point to the
centre of a circle makes equal angles
with the tangents through that point.

The locus of the intersection of
tangents to a circle, which cut at a
given angle, is a concentric circle.

The envelope of the chord of con-

tact of tangents which cut at a given
angle is a concentric circle.

If from a fixed point tangents be
drawn to a series of concentric circles,
the locus of the points of contact will
be a circle passing through the fixed
point, and through the common cen-
tre.

Any point and the intersection of
its polar with the directrix subtend a
right angle at the focus.

If the point where any line meets
the directrix be joined to the focus,
the joining line will bisect the angle
between the focal radii to the points-
where the given line meets the curve.

The envelope of a chord of a conic,
which subtends a given angle at the
focus, is a conic having the same focus
and the same directrix. )

The locus of the intersection of tan-
gents, whose chord subtends a given
angle at the focus, is a conic having
the same focus and directrix.

If a fixed line intersect a series of
conics having the same focus and
same directrix, the envelope of the
tangents to the conics, at the points
where this line meets them, will be a
conic having the same focus, and
touching both the fixed line and the
common directrix.

In the latter theorem, if the fixed line be at infinity, we find
the envelope of the asymptotes of a series of hyperbole having
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the same focus and same directrix, to be a parabola having the
same focus and touching the common directrix.

Iftwo chords at right angles to each
other be drawn through any point on
a circle, the line joining their extre-
mities passes through the centre.

The locus of the intersection of
tangents to a parabola which cut at
right angles is the directrix.

‘We say a parabola, for, the point through which the chords
of the circle are drawn being taken for origin, the polar of the

circle is a parabola (Art. 309).

The envelope of a chord of a circle
which subtends a given angle at a
given point on the curve is a concen-
tric circle.

Given base and vertical angle of a
triangle, the locus of vertex is a circle
passing through the extremities of the
base.

Thelocus of the intersection of tan-
gents to a parabola, which cut at a
given angle, is a conic having the same
focus and the same directrix.

Given in position two sides of a tri-
angle, and the angle subtended by the
base at a given point, the envelope
of the base is a conic, of which that

point is a focus, and to which the two
given sides will be tangents.

The envelope of any chord of a
conic which subtends a right angle at
any fixed point is a conic, of which
that point is a focus.

The locus of the intersection of tan-
gents to an ellipse or hyperbola which
cut at right angles is a circle. .

¢ If from any point on the circumference of a circle perpen-
_diculars be let fall on the sides of any inscribed triangle, their
three feet will lie in one right line” (Art. 106).

If we take the fixed point for origin, to the triangle inscribed
in a circle will correspond a triangle circumscribed about a para-
bola ; again, to the foot of the perpendicular on any line corre-
sponds a line through the corresponding point perpendicular to
the radius vector from the origin. Hence, ¢ If we join the focus
to each vertex of a triangle circunmscribed about a parabola, and
erect perpendiculars at the vertices to the joining lines, those per-
pendiculars will pass through the same point.” If, therefore, a
circle be described, having for diameter the radius vector from
the focus to this point, it will pass through the vertices of the
circumscribed triangle. Hence, Given three tangents to a para-
bola, the locus of the focus is the circumscribing circle (p. 187).

The locus of the foot of the per- If from any point a radius vector
pendicular (or of a line making a . b{z drawn to a circle, the envelope of
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constant angle with the tangent) from  a perpendicular to it at its extremity

the focus of an ellipse or hyperbola  (or of a line making a constant angle

on the tangent is a circle. with it) is a conic having the fixed
point for its focus.-

311. Having sufficiently exemplified in the last Article the
method of transforming theorems involving angles, we proceed
to show that theorems involving the magnitude of lines passing
through the origin are easily transformed by the help of the first
theorem in Art. 308. For example, the sum (or, in some cases,
the difference, if the origin be without the circle) of the perpen-
diculars let fall from the origin on any pair of parallel tangents
to a circle is constant, and equal to the diameter of the circle.

Now, to two parallel lines correspond two points on a line
passing through the origin. Hence, ¢ the sum of the reciprocals
of the segments of any focal chord of an ellipse is constant.”

‘We know (p. 169) that this sum is the reciprocal of the semi-
parameter of the ellipse, and since we learn from the present
example that it only depends on the diameter, and not on the po-
sition of the reciprocal circle, we infer that the reciprocals of equal
circles, with regard to any origin, have the same parameter.

The rectangle under the segments The rectangle under the perpen-
of any chord of a circle through the  diculars let fall from the focus on two
origin is constant. parallel tangents is constant.

Hence, given the tangent from the origin to a circle, we are
given the conjugate axis of the reciprocal hyperbola.

Again, the theorem, that the sum of the focal distances of
any point on an ellipse is constant, may be expressed thus:

The sum of the distances from the The sum of the reciprocals of per-
focus of the points of contact of pa- pendicularslet fall from any point on
rallel tangents is constant. two tangents to a circle, whose chord

: of contact passes through the pomt,
is constant.

312. Many relatlons involving the magnitude of lines .not
passing through the origin may be transformed by the help of the
theorenr of Art.98. Thus we know, that if PA, PB, PC, PD,
be the ‘perpendiculars let fall from any point of a conic on the
sides of an inscribed quadrilateral, PA .PC =4PB- PD (Art.

D
260); now we may write this relation, gﬁ z)ﬁ . g_g . g]f)”
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but if a, b, ¢, d, be the points corresponding to the lines A, B,
C, D, and ap the perpendicular let fall from a on the line cor-

responding to P we have (Art. 98) g—‘; - (f‘;_‘;. Similarly for the

other sides; and Oa, 08, Oc, Od, being constant, we infer that
tf a fized quadrilateral be circumscribed to a conic, the product of
the perpendiculars let fall from two opposite vertices on any va-
riable tangent is in a constant ratio to the product of the perpen-
diculars let fall from the other two vertices.

The product of the perpendiculars
from any point of & conic on two fixed
tangents, is in a constant ratio to the
square of the perpendicular on their
chord of contact. (Art. 260.)

The product of the perpendiculars
from two fixed points of a conic on
any tangent, is in a constant ratio to
the square of the perpendicular on it,
from the intersection of tangents at
those points.

If, however, the origin be taken on the chord of contact, the
reciprocal theorem is, ¢ the intercepts, made by any variable tan-
gent on two parallel tangents have a constant rectangle.”

The product of the perpendiculars
on any tangent of a conic from two
fixed points (the foci) is constant.

’

The square of the radius vector
from a fixed point to any point on
a conic, is in a constant ratio to the
product of the perpendiculars let fall
from that point of the conic on two
fixed right lines.

313. Very many. theorems concerning magnitude may be re-

duced to theorems concerning lines cut harmonically or anhar-
monically, and are transformed by the following principle: 7o
any four points on a right line correspond four lines passing through
a point, and the ankarmonic ratio of this pencil is the same as that
of the four points.

This is evident, since each leg of the pencil drawn from the
origin to the given points is perpendicular to one of the corre-

sponding lines. We may thus derive the anharmonic properties
of the conics in general from that of the circle.

The anharmonic ratio of the pencil The anharmonic ratio of the points
joining four points on a conic to a  in which four fixed tangents to a conic
variable fifth is constant. cut any variable fifth is constant.

The first of these theorems is true for the circle, since all the
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angles of the pencil are constant, therefore the second is true for
all the conics. The second theorem is true for the circle, since
the angles which the four points subtend at the centre are con-
stant, therefore the first theorem is true for all the conics. By
observing the angles which correspond in the reciprocal figure
to the angles which are constant in the case of the circle, the
student will perceive that the angles which the four points of
the variable tangent subtend at either focus are constant, and
that the angles are constant which are subtended at the focus
by the four points in which any inscribed pencil meets the

In like manner, the theorem of Art. 149 is the reciprocal of
that in Art. 147, and both, being true for the circle, must be true
for all the conics.

314. The anharmonic ratio of a line is not the only.relation
concerning the magnitude of lines which can be expressed in
terms of the angles subtended by the lines at a fixed point.
For, if there be any relation which by substituting (asin Art.54)

for each line AB involved in it, OA. Olz)-lsm AOB can be re-

duced to a relation between the sines of angles subtended at a
© given point O, this relation will be equally true for any trans-
versal cutting the lines joining O to the points A, B, &e.; and
by taking the given point for origin a reciprocal theorem can be
easily obtained. For example, the following theorem, due to
Carnot, is an immediate consequence of Art. 151 : ‘ If any conic
meet the side AB of any triangle in the points ¢, ¢'; BC in a,a;
AC in b, &' ; then the ratio '
Ac-Ac'-BiB_a:_-_C_b;Qé' 1

Now, it will be seen that this ratio is such that we may sub-
stitute for each line Ac the sine of the angle AQOc, which it sub-
tends at any fixed point; and if we take the reciprocal of this
theorem, we obtain the theorem given already at p. 240.

315. Having shown how to form the reciprocals of particular
theorems, we shall add some general considerations respecting
reciprocal conics. :
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We proved (Art. 309) that the reciprocal of a eircle is an
ellipse, hyperbola, or parabola, according as the origin is within,
without, or on the curve; we shall now extend this conclusion to
all the conic sections. It is evident that, the nearer any line or
point is to the origin, the farther the corresponding point or line
will be ; that if any line passes through the origin, the corre-
sponding point must be at an infinite distance ; and that the line
corresponding to the origin itself must be altogether at an infinite
distance. To two tangents, therefore, through the origin on one
figure, will correspond two points at an infinite distance on the
other; hence, if two real tangents can be drawn from the origin,
the reciprocal curve will have two real points at infinity, that is,
it will be a hyperbola; if the tangents drawn from the origin be
imaginary, the reciprocal curve will be an ellipse; if the origin
be on the curve, the tangents from it coincide (p. 130), therefore
the points at infinity on the reciprocal curve coincide, that is,
the reciprocal curve will be a parabola. Since the line at infinity
corresponds to the origin, we see that, if the origin be a point on
one curve, the line at infinity will be a tangent to the reciprocal
curve; and we are again led to the theorem (Art.255) that
every parabola has one tangent situated at an infinite distance.

Hence Ex. 2, p. 160, is the reciprocal of the theorem, Art.226.

316. To the points of contact of two tangents through the
origin must correspond the tangents at the two points at infinity
on the reciprocal curve, that is to say, the asymptotes of the
reciprocal curve. - The eccentricity of the reciprocal hyperbola
depending solely on the angle between its asymptotes, depends,
therefore, on the angle between the tangents drawn from the
origin to the original curve. ,

_ Again, the intersection of the asymptotes of the reciprocal
curve (i. e. its centre) corresponds to the chord of contact of tan-
gents from the origin to the original curve. We met with a
. particular case of this theorem when we proved that to the centre
of a circle corresponds the directrix of the reciprocal conic, for
the directrix is the polar of the origin which is the focus of that
conic.

We can thus, likewise, find the azes of the reciprocal curve,

2m
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for they must be lines drawn through its centre parallel to the
internal and external bisectors of the angle between the tangents
drawn from the origin. This may otherwise be expressed (by the
help of the theorem, Art. 194), that if through the origin we
draw a conic confocal to the given one, the axes of the reciprocal
conic will be parallel to the tangent and normal at the origin to
the confocal conic. This latter statement is preferable, because
it holds when the origin is within the curve.

. 317. Hence, given two circles, we can find a point such that
the reciprocals of both shall be confocal conics. For, since the
reciprocals of all circles must have one focus (the origin) com-
mon ; in order that the other focus should be common, it is only
necessary that the two reciprocal curves should have the same
centre, that is, that the polar of the origin with regard to both
circles should be the same, or that the origin should be one of the
two points determined in Art. 116. Hence, given a system of
circles, as in Art. 114, their reciprocals with regard to one of these
limiting points will be a system of confocal conics. Theorems,
therefore, concerning confocal conics, are at once transformed into
theorems relating to the system of circles, e. g., the theorem of
Art. 192 corresponds to ¢ the common tangent to two circles sub-
tends a right angle at either of the limiting points.” The theo-
rem of Art. 194 corresponds to—¢¢ if any line intersect two circles,
its two intercepts between the circles subtend equal angles at

- either limiting peint.” Or, again, by Ex. 3, Art. 231, any fixed
point, and the fixed point through which (Art. 115) its polar
must pass, subtend a right angle at the limiting points.

‘We may mention here that the method of reciprocal polars
affords a simple solution of the problem, ¢ to describe a circle
touching three given circles.” The locus of the centre of a circle
touching two of the given circles (1), (2), is evidently a hyper-
bola, of which the centres of the given circles are the foci, since
the problem is at once reduced to—¢¢ Given base and difference of
sides of a triangle.” Hence (Art. 309) the polar of the centre,
with regard.to either of the given circles (1) will always touch a
circle which can be easily constructed. In like manner, the polar
of the centre of any circle touching (1) and (3) must also touch
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a given circle. Therefore, if we draw a common tangent to the
two circles thus determined, and take the pole of this line with
respect to (1), we have the centre of the circle touching the three
given circles.®

318. Given any two conics; there are three points such that
their reciprocals with regard to any of them will be concentric
curves. For there are three points whose polars with regard to the
two conics are the same, namely, if we form the common inscribed
quadrilateral by joining the four points in which the curves inter-
sect, the three points E, F, O (see Art. 149, Ex. 1). These three
points may be real, even when the conics cut in imaginary peints.

319. To find the equation of the reciprocal of a conic with re-
gard to its centre.
We found, in Art. 182, that the perpendicular on the tangent
could be expressed in terms of the angles it makes with the axes
p* = a*cos*0 + b*sin’0. '
Hence the polar equation of the reciprocal curve is

k‘
— = a’cos’0 + *sin’0,
P

or a’z* by
=T
a concentric conic, whose axes are the reciprocals of the axes of
the given conic. ’
320. To find the equation of the reciprocal of a conic with re-
gard to any point (¥y’).
The length of the perpendicular from any pointis (Art. 182)

P =§= V(a’cos’ﬂ + B*6in*@) — ' cosf - ¥ sin@ ;

=1,

therefore, the equation of the reciprocal curve is
(a2 + yy + k2)* = a*a® + by,
321, To find the reciprocal of the conic
az’ + a'y* + a"z* + 2byz + 2bzx + 20°zy = 0.
For symmetry we shall write &* = - 2%, and look for the reciprocal

" # This solution is taken from Gergonne's Annales.
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with regard to 2° + y* + 22 = 0. Then the polar with regard to
this of any point on the reciprocal curve will touch the given
curve. But the equation of the polar is 22 + yy' + 22 = 0; and
expressing (Art. 154) the condition that this line should touch
the given conic, the equation of the reciprocal is found to be
(aa" - b*)a* + (a"a - b*)y* + (ad’ - b"™)2*

. +2 (b’b” ab) yz+2(b'd - a®)zz + 2(bb' - a"V") 2y = 0.
We have seen (Art. 296) that the coefficients in this equation are

equal to —— v zv,, &c. We shall denote these coefficients by

Aq,%, QB, 3, 38" It is easy to deduce from this equation the
properties which we have already obtained geometrically, such
as, that if the curve be a parabola, the origin will be a point
on the reciprocal curve, &c. .

Ex. 1. To find the equation of the reciprocal of the reciprocal of a given conic. This

maust evidently represent the given curve itself. The equation is

AR -B)22 4 & =0;
and writing for A, &c., their values, this is found equal to the given equation multiplied
by v. In like manner the discriminant of the reciprocal is found = v*.

Ex. 2. To find the reciprocal of a system_of conics which pass through four points.
The equation of any conic of the system being 8 + 48’ = 0, the equation of the reciprocal
is found by writing @ + 2A for @, a’ + AA’ for a’, &c., in the equation of the reciprocal.
It is easy to see that the result will contain % in the second degree. We may write it
2 4 k® + &%’ = 0, where = and X’ are the reciprocals of S and 8/, while
®=(a’A"+a"A’— 20B) 22+ (a"A + aA"— 20B)y2 + (aA'+ dA - 2b"B") 22

+2(@%B"+ 5B —aB—bA)yz+2("B+bB"—a'B' - bA) zz
+2 (B +¥B—a"B"-b"A")xy.

Now, since the original system of conica passes through four fixed points, the reci-
procal system always touches four fixed right lines. But the form of the equation
shows that the reciprocal always touches 4=3'= ®2. This, then, is the equation of the
four lines which are common tangents to X, ¥, and the other conics of the reciprocal
system. But the form of 43X = 3, the equation to these four lines, shows that = is
touched by them, and that ® passes through the points of contact. In like manner,
& passes through the four points where X' is touched by the common tangents. Hence
the eight points of contact of common tangents to the two conics =, 2, all lie on the
same conic P.

Ex. 8. To find the equation of the common tangents to S and 8.

The system reciprocal to the system of conics which have the same common tangents
‘will pass through four fixed points, and will be = + #2'= 0. Forming, then, the reci-
procal of this latter system, we find VS 4 AF + k3V'S'= 0, where F is what ¢ becomes
when the coefficients A, ', &c. of the reciprocal are written for A, A, &c. The equa-
tion, then, of the common tangents will be F# = 4VV'SS".
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Ex. 4. To find the envelope of a systel;x of confocal conics.
. 2 2

The equation ofsuchalystemisa’—i-—”+§%§=l. The reciprocal of this is
(Art. 319) (a*— k1) 22+ (* — #2) y*=1; and as this denotes a system of conics through
the four points of intersection of (a2x2 + b%y® — 1) and (22 + ¢?), it follows that the
system of confocal conics touches four fixed right lines. Arranging their equation,

BB+ a2yt —atd?) + B+ -2 — ) - =0,
they always touch . ]
(a? + 02 — 27 — y2)1 + 4 (b32% + AAY* — a30?) = 0,

which will be found to be equivalent to

{#+@E-cp} {P+@E+e)} =0,
& result in accordance with Art. 282,

Ex. 5. The equation of the pair of tangents from any point zy’z’ to 8 is found by
substituting yz' — 2¥', 22’ — 22, zy’ — yz’ for 2, y, z in the equation of the reciprocal
curve. .

Any point on either tangent through 2y’z’ evidently possesses the property that the
line joining it to #'yz’ touches the curve. In order, then, to find the equation of the pair
of tangents, we have only to express (Art. 154) the condition that the line joining two
points 2(y2" - y'2) +y (@2 - 2'2) + 2(2y" - 2y) =0
should touch the curve, and to consider then z"y"z” as variable. And remembering
(Art. 821) that the coefficients are the same in the condition that a line should touch the
curve, and in the equation of the reciprocal curve, the truth of the theorem is manifest.
As we have already (Art. 150) obtained the equation of the pair of tangents in another
form, it follows (a8 may easily be verified) that
(@ + o'yt + &o.) (a7 + iy &e.) — (a2’ +ayy + &) = A (97 — oy
+ R (22 — 22’8 + &e.

In like manner, .

(BoA + &e) (A + &e) — (Bsd + &e)1 = v{a (v - )" + &e.).

Ex, 6. To verify that, if two conics have double contact with each other, their reci~
procals have double contact with each other (Art. 294).

The reciprocal of 8 + (Iz + my + nz)3 is (Art. 297) = + {a (mz — ny)? + &ec.}.

But since (Ex. 5)

v {a(mz — ny)? + &e.} = T (AB + &c.) — (Alz + &) .
The reciprocal is
{v+ AP+ &)} = - (Alz + &P =0,

a conic evidently having double contact with =.
322. Given the reciprocal of a curve with regard to the origin
of co-ordinates, to find the equation of its reciprocal with regard

to any peint (z'y).
If the perpendicular from the origin on the tangent be P, the
perpendicular from any other point is (Art. 27)

P - &' cosf - y'sin6,
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and, therefore, the polar equation of the locus is
B R

;-R-zwso y'sin0;
hence
kB dz+yy+ & and Rcos@  pcosh
P B zx+ vy + I
we must, therefore, substitute, in the equation of the given reci-
bz ky

procal, m for z, and m for Y.

The effect of this substitution may be very simply written as
follows : Let the equation of the reciprocal with regard to the

origin be Un + Upy + Uy gy &o. (see Art. 271),
then the reciprocal with regard to any point is

, 2 ’ , 2
Up + Uy (f_‘”_,i_ykz—"'_k_) + Ung (w—‘%’yg—i)zi' &e.

a curve of the same degree as the given reciprocal.

323. Before quitting the subject of reciprocal polars, we wish
to mention a class of theorems, for the transformation of which
M. Chasles has proposed to take as the auxiliary conic a parabola
instead of a circle. We proved (Art. 216) that the intercept made
on the axis of the parabola between any two lines is equal to the
intercept between perpendiculars let fall on the axis from the poles
of these lines. This principle, then, enables us readily to trans-
form theorems which relate to the magnitude of lines measured
parallel to a fixed line. 'We shall give one or two specimens of
the use of this method, premising that to two tangents parallel to
the axis of the auxiliary parabola correspond the two points at in-
finity on the reciprocal curve, and that, consequently, the curve
will be a hyperbola or ellipse, according as these tangents are real
or imaginary. The reciprocal will be a parabola if the axis pass
through a point at infinity on the original curve.

¢¢ Any variable tangent to a conic intercepts portlons on two
parallel tangents whose rectangle is constant.”

To the two points of contact of parallel tangents answer the
asymptotes of the reciprocal hyperbola, and to the intersections of
those parallel tangents with any other tangent answer parallels
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to the asymptotes through any point; and we obtain, in the first
instance, that the asymptotes and parallels to them through any
point on the curve intercept portions on any fixed line whose rect-
angle is constant. But this is plainly equivalent to the theorem :
¢ The rectangle under parallels drawn to the asymptotes from
any point on the curve is constant.”

‘Chords drawn from two fixed If any tangent to a parabola meet
points of a hyperbola to a variable two fixed tangents, perpendiculars
third point, intercept a constant from its extremities on the tangent
length on the asymptote. : at the vertex will intercept a constant

length on that line.

This method, of parabolic polars is plainly much more limited
in its application than the method of circular polars, whose re-
sources in transforming theorems of magnitude M. Chasles has
possibly underrated.

HARMONIC AND ANHARMONIC PROPERTIES OF CONICS.“

324. The harmonic and anharmonic properties of conic sec-
tions admit of so many applications in the theory of these curves,
that we think it not unprofitable to spend a little time in point-
ing out to the student the number of particular theorems either
directly included in the general enunciations of these properties,
or which may be inferred from them without much difficulty.

The casés which we shall most frequently consider are, when
one of the four points of the right line, whose anharmonic ratio

we are examining, is at an infinite distance. The anharmonic

_ : o AB.CD ,
ratio .of four pomts, As B’ C’ D, bemg n general = ADBC’ if

D be at an infinite distance, the ratio i—l])) is ultimately = 1, and

the anharmonic ratio becomes simply ﬁ—g . If the line be cut
harmonically, its anharmonic ratio = 1, and if D be at an infinite
distance AC is bisected. The reader is supposed to be acquainted
with the geometric investigation of these and the other funda~
mental theorems connected with anharmonic section.

* The disoovéry of the anharmonic properties of conics is due to M. Chasles, from the
notes to whose History of Geometry the following pages have been developed.
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325. We shall commence with the theorem (Art. 147): ¢« If
any line through a point O meet a conic in the points R, R", and
the polar of O in R, the line ORRR" is cut harmonically.”

First. Let R” be at an infinite distance; then the line OR
must be bisected at R'; that is, if through a fized point a line be
drawn parallel to an asymptote of an hyperbola, or to a diameter
of a parabola, the portion of this line between the fixed point and
its polar will be bisected by the curve (Art. 216).

Secondly. Let R be at an infinite distance, and RR” must be
bisected at O; that is, if through any point a chord be drawn pa-
rallel to the polar of that point, it will be bisected at the point.

If the polar of O be at infinity, every chofd through | that
point meets the polar at infinity, and is therefore bisected at O:
Hence this point is the centre, or the centre may be considered as
a point whose polar is at infinity (p. 139).

Thirdly. Let the fixed point itself be at an infinite distance,
then all the lines through it will be parallel, and will be bisected
on the polar of the fixed point. Hence every diameter of a conic
may be considered as the polar of the point at infinity in which its
ordinates are supposed to intersect (p. 241).

This also follows from the equation of the polar of a point
(Art. 144),

(2A‘”"’B.V+D)+(2Cy+Bz+E)%,+].)“’_+%fiF=o,

Now, if 2y’ be a point at infinity on the line my = nz, we must
make %, = %, and 2 infinite, and the equation of the polar becomes
m(2Az + By + D) + n(2Cy + Bz + E) = 0,

a diameter conjugate to my = nx (Art. 139).

326. We may, in like manner, make particular deductions
from the theorem (Art. 149), that the two tangents through any
point, any other line through the point, and the line to the pole
of this last line, form an harmonic pencil.

Thus, if one of the lines through the point be a diameter, the
other will be parallel to its conjugate, and since the polar of any
point on a diameter is parallel to its conjugate, we learn that the
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portion between the tangents of any line drawn parallel to the
polar of the point is bisected by the diameter through it.

Again, let the point be the centre, the two tangents will be
the asymptotes. Hence the asymptotes, together with any pair of
conjugate diameters, form an harmonic pencil, and the portion of
any tangent intercepted between the asymptotes is bisected by
the curve (Art. 201).

327. The anharmonic property of the points of a conic (Art.
260) gives rise to a much greater variety of particular theorems.
For, the four points on the curve may be any whatever, and either
one or two of them may be at an infinite distance ; the fifth point
O, to which the pencil is drawn, may be also either at an infinite
. distance, or may coincide with one of the four points, in which
latter case one of the legs of the pencil will be the tangent at that
point ; then, again, we may measure the anharmoniec ratio of the
pencil by the segments on any line drawn across it, which we
may, if we please, draw parallel to one of the legs of the pencil,
80 a8 to reduce the anharmonic ratio to a simple ratio.

The following examples being intended as a practical exercise
to the student in developing the consequences of this theorem,
‘we shall merely state the points whence the pencil is drawn, the
line on which the ratio is measured, and the resulting theorem,
recommending to the reader a closer examination of the manner
in which each theorem is inferred from the general principle.

We use the abbreviation {O- ABCD) to denote the anhar-
monic ratio of the pencil OA, OB, OC, OD.

Ex. 1. {A.ABCD} = {B.ABCD)}.

Let these ratios be estimated by the segments on the

line CD; let the tangents at A, B meet CD in the points
T, T, and let the chord AB meet CD in K, then the ratios
are TK.CD _ KT.CD
TD.KC  KD.TC’

that is, if any chord CD meet two tangents in T, T, and P
their chord of contact in K,

KC.KT.DT =KD.KT.CT. '

(The reader must be careful, in this and the following

examples, to take the points of the pencil in the same order K
on both sides of the equation. Thus, on the left-hand side of this equation we took K

2N
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second, because it answers to the leg OB of the pencil ; on the right-hand we take K first,
because it answers to the leg OA).

Ex. 2. Let T and T coincide, then
KC.DT=KD.CT,
or, any chord through the intersection of two tangents is cut harmonically by the chord
of contact (Art. 147). *

Ex. 8. Let T be at an infinite distance, or the secant CD drawn parallel to PT, and
it will be found that the ratio will reduce to

TK? = TC. TD.

Ex. 4. Let one of the points be at an infinite distance, then {O.ABCw } is con-
stant. Let this ratio be estimated on the line Coo. Let the lines AO, BO, cut Coo in

a, b; then the ratio of the pencil will redncetog%; and we learn, that if two fixed

points, A, B, on a hyperbola or parabola, be joined to any variable point O, and the
joining line meet a fixed parallel to an asymptote (if the curve be a hyperbola), or a dia-
meter (if the curve be a parabola), in a, b, then the ratio Ca : Cb will be constant. :

Ex. 5. If the same ratio be estimated on any other parallel line, lines inflected from
any three fixed points to a variable point cut a fixed parallel to an asymptote or diame-
ter, so that ab: ac is constant.

Ex. 6. It follows from Ex. 4, that if the lines joining AB to any fourth point O’ meet

Co in a'b, we must have ab aC

at ~ aC
Now let us suppose the point C to be also at an infinite distance, the line Coo becomes an
asymptote, the ratio ab: a’ becomes one of equality, and lines joining two fixed points
to any variable point on the hyperbola intercept on either asymptote a constant portion
(p- 178).

Ex. 7. {A.ABCw } = { B. ABCw }.

Let these ratios be estimated on Coo; then if the
tangents at A, B, cut Cw in @, b, and the chord of
contact AB in K, we have :

Ca CK

CK  ©b
(observing the caution in Ex. 1). Or, if any parallel
to an asymptote of an hyperbola, or a diameter of a parabola, cut two tangents and their
chord of contact, thedntercept from the curve to the chord is a geometric mean bet ween
the intercepts from the curve to the tangents. Or, conversely, if a line b, parallel to a
given one, meet the sides of a triangle in the points a b K, and there be taken on it a
point C such that CK2 = Ca: Cb, the locus of C will be a parabola, if Cb be parallel to
the bisector of the base of the triangle (Art. 216), but otherwise an hyperbola, to an
asymptote of which ab is parallel.

Ex. 8. Let two of the fixed points be at infinity,

{o.ABx '} = { . ABo '};
the lines o o, ®'o’, are the two asymptotes, while o o' is altogether at infinity.
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Let these ratios be estimated on the diameter OA ; let this
line meet the parallels to the asymptotes B o, Bo', in a
and a'; then the ratios become % = g—:. Or, parallels
to the asymptotes through any point on a hyperbola cut any
semidiameter, so that it is a mean proportional between the
segments on it from the centre.

Hence, conversely, if through a fixed point O a line be
drawn cutting two fixed lines, Ba, Ba’, and a point A taken
on it so that OA is a mean between Oa, Oa’, the locus of A
is a hyperbola, of which O is the centre, and Ba, Ba', parallel to the asymptotes.

Ex. 9. {®.ABow'} = {«.ABww'}.
Let the segments be measured on the asymptotes, and we have g; = ?, (O being
a

the centre), or the rectangle under parallels to the asymptotes through any point on the
curve is constant (we invert the second ratio for the reason given in Ex, 1).

328. We next proceed to examine some particular cases of
the anharmonic property of the tangents to a conic (Art. 27 4).

Ex. 1. This property
assumes a very simple form, R
if the curve be a parabola, .
for one tangent to a para-
bola is always at an infl-
nite. distance (Art. 255). T /\F
Hence three fixed tangents
to aparabola cut any fourth
in the points A, B, C, so
that AB : AC is always constant. If the variable tangents coincide in tarn with each of
the given tangents, we obtain the theorem,

P 7

R _RP_&
QR Pg P’

Ex. 2. Let two of the four tangents to an ellipse or hyperbola be parallel to each
other, and let the variable tangent coincide alternately
with each of the parallel tangents. In the first case
the ratio is
D¢
ﬁ"

Hence the rectangle Ab. D¥' is constant.

It may be deduced from the anharmonic property
of the points of a conic, that if the lines joining any point on the curve O to A, D, meet
the parallel tangents in the points b, 3’ then the rectangle Ab. D?’ will be constant.

%1—’, and in the second

INVOLUTION.

329. Ifwe have a system of points on a right line ABCDE,
&c., and another system A'B'C'D'E), &c., either on the same or
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on a different right line, the systems are said to be similar, if the
anharmonic ratio of any four points of the first system be equal
to that of the four corresponding points of the second system.
Thus, if we join the points A, B, C, &c., to any point P, and cut
by any transversal the pen-
cil so formed, we obtain a
system abe, &ec., which is
obviously similar to the
given one. In the figure
the transversal is drawn
through A, so that the GA B C D B
points a and A coincide. .

It is always possible to construct a system similar to a given
one, and such that three arbitrary points A’, B’, C', shall corre-
spond to three points A, B, C, of the given system. For draw
through A any line making an angle with AB; measure on it
from the point A, ab= A'B’, ac = A’C’: then the intersection of
bB, ¢cC determines the point P, by joining which to the points
D, E, &c., we obtain the corresponding points de, &e. And if we
take C'D’ = cd, D'E’ = de, &c., we have a system ABCDE), &e.
similar to ABCDE.

330. When two similar systems form part of the same right
line, it will not in general happen that any point will have the
same point corresponding to it when it is considered as belonging
to the first and as belonging to the second system. Thus if in
the figure we consider the point A’as belonging to the first sys-
tem, and construct the corresponding point by joining PA/, &e.,
the point so determined would not in general coincide with A.
If, however, it should happen that the points A, A’ mutually
correspond, whether A be considered as belonging to the first or
to the second system, then every pair of points which correspond
will correspond, no matter to which system they are considered
to belong, and the whole series of points is said to form a system
in involution.

 Supposing, for instance, that to the points ABB'A’ of the
first system there correspond A’'BBA of the second, we say that
the points b and B must coincide. For we have
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(ABBA') = (A'BbA),

or AB.-B'A’ AB.bA
AA'BB T AABY
or, AB:BB':: Ab:bB.

The line AB’ then is cut at b, and at B into parts which are in
the same ratio, and therefore 4 and B must coincide.

331. Two pairs of points AA’, BB' determine a system in in-
volution.

It would in fact only be a particular case of Art. 329 to de-
termine a system similar to AA'BB'CD, &c., and such that to
A, A’, B should correspond A’, A, B. 'We need only draw through
A any line making an angle with AB; measure oﬁ' from A,
aa=A’A,at'=A'B’;
then draw A’a’, B¥
intersecting in P, and
the point P joined to
B,C,D, &c. will deter-
mine the correspond-
ing points of thesecondo AB ¥ X
system. N.B. —The points A, A’ are said to be conjugate to
each other.

332. We recommend the reader to make a table of the diffe-
rent relations of magnitude between three pairs of points in invo-
lution, inferred from the identity of their anharmonic ratios. For
instance, from {ABCA’} = {A’'BC'A} we have

AB-CA” AB.CA
AABC AA.BC’
or AB.CA'-BC' = AB-CA.BC.

As the development of these relations can present no difficulty
to the reader, the only case on which we think it necessary to
dwell is when one of the points has its conjugate at an infinite
distance. This would happen if we draw Po parallel to AB, and
meeting a'b’ in 0; and measure A‘O=ao. The point O will then
have its conjugate at infinity, and is called the centre of the sys-
tem of points in involution.
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Now the relation between the points takes in this case a very
simple form ; for we have
{ABOO'} = {A'BOO},
or AO-BO'_A0-BO,
. . AO-BO A'0.BO”’
let O’ be at an infinite distance, and this equation becomes
OA.OA'=0B-OB’;
or, the product of the distances from the centre of any two conjugate
points is constant. It is plain that the construction given in this
Article enables us,  being given two pairs of points of a system
in involution, to find the centre.”

333. Some writers have founded their definition of involution
on the property just proved, and have defined a system of points
in involution as a series of points so taken that

OA-OA'=0B-OB' = &ec. = c.
It can at once then be proved that the anharmonic ratio of any
four points of such a system is equal to that of their four conju-

gates, since the anharmonic ratio E:—.:—::,))-((Lr,:—:,,—g (where r is the
distance of any of the points from O) remains unchanged, if we
substitute for each of the distances r, its reciprocal.

334. A point which coincides with its conjugate has been
called by Mr. Davies (see The Mathematician, vol. i. pp. 169,
243) a focus of the system of points in involution. It is plain
that there are two foci equidistant from the centre on either side
of it, and whose common distance is given by the equation
OF? = OA-0OA’. When A and A’ both lie on the same side
of the centre we have OF? = + ¢, and the foci are real ; but if A
and A’lie on different sides of the centre OF? = — ¢?, and the foci
are imaginary.

Any two conjugate points of the system, together with the two
Joci, form four points of a line cut harmonically. For the relation
{AFF'A’} = {A'FF'A) gives us

AF-AF AF-AF FA FA'
AAFF AA TP ¥ FA "FA°
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or the distance between the foci FF is divided internally and ex-
ternally at A and A’into parts which are in the same ratio.
Cor. When one focus is at infinity, the other bisects the
distance between two conjugate points, and it follows hence that
in this case the distance AB between any two points of the sys-
tem is equal to AB), the distance between their conjugates.

335. Given two pairs of points of the system, we can find the
Joci: either by first finding the centre (Art. 332), or directly as
follows :—Since F is conjugate to itself, we have

(AFBA’) = (AFBA),

or AF.BA’ AF.BA
ATF-BA - AF .BA’
Hence‘ AF:: AF>:: AB-AB': A'B. AB';

or F is the point where the line AA’ is cut, either internally or
externally, in a certain given ratio. )

It is important to observe that the relation between six points
in involution is of the class noticed in Art. 314, and is such that
the same relations will subsist between the sines of the angles sub-
tended by them at any point as subsist between the segments of
the lines themselves. Consequently, if a pencil be drawn from
any point to six points in involution, any transversal cuts this pencil
tn siz points in involution. Again, the reciprocal of siz points in
tnvolution is a pencil in involution.

336. We proceed to mention the most important application
of these principles to the theory of conic sections.

If a quadrilateral abed
be inscribed in a conic sec-
tion, and .any transversal
cut the conic in A, A’, the
sides ab, c¢d, in B, B’, and
the sides ad, bc in C, C/,
thenthe points AA'BB'CC’
are in involution, for by the anharmonic property of conic sections,

{a- AdbA') = {c- AdbA'};
but if we observe the points in which these pencils cut A A’, we get
{ACBA’} = {AB'C'A’} = {A'C'B’A}.
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Since two pairs of points BB’, CC’ determine a system in invo-
lution, the points EE’, in which any other conic through the
points abed meet the transversal, belong to the same system in
involution. Hence a system of conics circumscribing the same qua-
drilateral meet any transversal in a system of points in involution.

Reciprocally, if a system of conics be tnscribed in the same
quadrilateral, the pairs of tangents drawn to them from any pvint
will form a system in involution.

337. Since the diagonals ac, bd may be considered as a conic
through the four points, it follows as a particular case of the last
Article that any transversal cuts the four sides, and the diagonals
of a quadrilateral in points BB, CC’, DD, which are in invo-
lution. This property enables us, being given two pairs of points
BB’, DD’ of a system in involution, to construct the point con-
jugate to any other C. For take any point at random, a; join
aB, aD, aC; construct any triangle bcd, whose vertices rest on-
these three lines, and two of whose sides pass through B'D’, then
the remaining side will pass through C’, the point conjugate to C.
The point a may be taken at infinity, and the lines aB, aD, «C
will then be parallel to each other. If the point C be at infinity
the same method will give us the centre of the system. The
simplest construction for this case is,— Tlirough B, D, draw
any pair of parallel lines Bb, Dc; and through B'D’ a different
pair of parallels D'd, B'c; then be will pass through the centre of
the system.”

Ex. 1. If three conics circumscribe the same quadrilateral, the common tangent to

any two is cut harmonically by the third. For the points of contact of this tangent are
the foci of the system in involution. ’

Ex. 2. If through the intersection of the common chords of two copics we draw a
tangent to one of them, this line will be cut harmonically by the other. For in this case
the points D and D’ in the last figure coincide, and will therefore be a focus.

Ex. 8. If two conics have double contact with each other, or if they have a contact
of the third order, any tangent to the one is cut harmonically at the points where it
meets the other, and where it meets the chord of contact. For in this case the common
chords coincide, and the point where any transversal meets the chord of contact is a
focus.

Ex. 4. To describe a conic through four points abcd to touch a given right line.
The point of contact must be one of the foci of the system BB'CC/, &c., and these points
can be determined by Art. 334. This problem, therefore, admits of two solutions.



ANHARMONIC PROPERTIES OF CONICS. 281

Ex. 5. If a parallel to an asymptote meet the curve in C, and any inscribed quadri-
lateral in points abed; Ca.Cec = Cb.Cd. For C is the centre of the system.

Ex. 6. Solve the examples, p. 273, &c., as cases of involution.

In Ex. 1, K is a focus: ip Ex. 2, T is also a focus: in Ex. 3, T is a centre, &c.

Ex. 7. The intercepts on any line between a hyperbola and its asymptotes are equal.
Forin this case one focus of the system is at infinity (Art. 835).

338. We now proceed to give some examples of problems
easily solved by the help of the anharmonic properties of conics.

Ex. 1. To prove Mac Laurin’s method of generating conic sections (p. 230), viz.,—
To find the locus of the vertex V of a triangle whose sides pass through the points
A, B, C, and whose base angles move on the fixed lines Og, Ob. N

Let us suppose four such triangles drawn, then since the pencil {C.aa'a"a"} is the
same pencil as {C.bb'6"6"'}, we have

{ada’a"} = (65"},

and, therefore,
{A.ad'a’a”} = {B.bbBb"} ;
or, from the nature of the question, °

{A.VVV'V"} = {B.VVV'V};
and therefore A, B,V, V', V*, V" lie on the
same conic section. Now if the first three
triangles be fixed, it is evident that the
locus of V™ is the conic section passing through ABVV'V",

Ex. 2. M. Chasles has showed that the same demonstration will hold if the side ab,
* instead of passing through the fixed point C, touch any conic which touches Oa, Ob, for
then any four positions of the base cut Oa, Ob, so that

{aa'a’a"} = {bbD"D"} (Art. 274),
and the rest of the proof proceeds the same as before.

Ex. 3. Newton’s method of generating conic sections:—Two angles of constant
magnitude move about fixed points P, Q; the intersection of two of their sides traverses
the right line AA’; then the locus of V, the
intersection of their other two sides, will be
a conic passing through P, Q.

For, as before, take four positions of the
angles, then

{P.AA'AA™} = {Q.AA'A"A™}
but {P.AA'A"A™} = {P.VV'V'V"},

{Q.-AAA"A"} = {Q.VV'V'VTY,
since the angles of the pencils are the same;
therefore {P.VV'V'V"} = {Q.VV'V'V"};
and, therefore, as before, the locus of V" is a conic through P, Q, V, V', V".

Ex. 4. M. Chasles has extended this method of generating conic sections, by supposing
: 20
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the point A, instead of moving on a right line, to move on any conic passing throngh
the points P, Q, for we shall still have

{P.AA'A"A"} = {Q.AA’A"A"}.
Ex. 5. The demonstration would be the same if, in place of the angles APV, AQV

being constant, APV and AQV cut off constant intercepts each on one of two fixed lines,
for we should then prove the pencil

{P.AA'A"A"} = {P.VVV'V"},
because both pencils cut off intercepts of the same length on a fixed line.

Thus, also, given base of a triangle and the intercept made by the sides on any fixed
line, we can prove that the locus of vertex is a conic section.

Ex. 6. We may also extend Ex. 1, by supposing the extremities of the line ab to
move on any conic section passing through the points AB, for, taking four positions of
the triangle, we have, by Art. 275,

ad'a"a"} = {BbD"D"};
therefore, {A.add"a"} = {B.bbD"D"},
and the rest of the proof proceeds as before.

Ex. 7. The base of a triangle passes through C, the intersection of common tangents
to two conic sections; the extremities of the base ab lie one on each of the conic sections,
while the sides pass through fixed points AB, one on each of the conics: the locus of the
vertex is a conic through A, B.

The proof proceeds exactly as before, depending now on the last theorem proved,
Art. 275.

We may mention that the theorem of Art. 275 admits of a simple geometrical proof.
Let the pencil {O.ABCD} be drawn from points corresponding to {o.abed}. Now, the
lines OA, oa, intersect at r on one of the common chords of the conics; in like manner,
BO, bo, intersect in # on the same chord, &c. ; hence {rrr"r"} measuresthe anharmonic
ratio of both these pencils.

Ex. 8. In Ex. 6 the base, instead of passing through a fixed point C, may be sup-
posed to touch a conic having double contact with the given conic (see Art. 278).

Ex. 9. If a polygon be inscribed in a conic, all whose sides but one pass through
fixed points, the envelope of that side will be a conic having double contact with the
given one.

For, take any four positions of the polygon, then, if @, b, ¢, &c., be the vertices of

* the polygon, we have
! {ad'a"a"} = {BBD"} = {ec'c"c"}, &e.
The problem is, therefore, reduced to that of Art. 278,—* Given three pairs of points,
aa'a”, dd'd”, to find the envelope of a™4", such that
ad'a’a"} = {ddd’d"}.”

Ex. 10. To inscribe'a polygon in a conic section, all whose sides pass through fixed
points. ‘

If we assume any point (a) at random on the conic for the vertex of the polygon,
and form a polygon whose sides pass through the given points, the point z, where the
last side meets the conic, will not, in general, coincide with a. If we make four such
attempts to inscribe the polygon, we must have, as in the last example,

o rom

{add’a"} = {22'2"2"
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Now, if the last attempt were successful, the point 4" would coincide with z”, and the
problem is reduced to,—* Given three pairs of points, aa’a’, 2z'2", to find a point K such
that {Kad'a"} = {Kzz'7'}.”

Now, if we make az"a’za”’s the vertices of an inscribed hexagon (in the order here given,
taking an @ and z alternately, and so that az, 4z, a7, E
may be opposite vertices), then either of the points in
which the line joining the intersections of opposite
sides meets the conic may be taken for the point K.
For, in the figure, the points ACE are aa's”, DFB are
2%’ and if we take the sides in the order ABCDEF

L, M, N are the intersections of opposite sides. Now,
since {KPNL} measures both {D.KACE} and
{A.KDFB}, we have

{KACE} = {KDFB} Q E.D.*

It is easy to see, from the last example, that K is
a point of contact of a conic having double contact with the given conic, to which
az, a’7', a7’ are tangents, and that we have therefore just given the solution of the
question, ¢ To describe a conic touching three given lines, and having double contact with
a given conic.”

Ex. 11. The anharmonic property affords also a simple proof of Pascal’s theorem,
alluded to in the last example. ’

We have {E.CDFB} = {A.CDFB}. Now, if we examine the segments madé by
the first pencil on BC, and by the second on DC, we have

{CRMB} = { CDNS}.
Now, 1f we draw a pencil from the point L to each of these points, both pencil® will have

the three legs, CL, DE, AB, common, therefore the fourth legs, NL, LM, must form one
right line.

Ex. 12. Pascnl’s ‘theorem leads at once to Mac Laurin’s method of generating conic
sections, for if we suppose the five points ABCDE given, and F variable, then F will be
the vertex of a triangle FMN, whose sides pass through the fixed points L, A, E, and
whose base angles move on the fixed lines CD, CB. We see, therefore, that, given five
points on a conic, we can determine as many other points on the conic as we please.
By the same construction, given five points on a conic, ABCDE, we can determine the
point where any line AN through one of them meets the conic again. So also, given five
points on a conic, we can find its centre. For we may draw parallels through A to BC,
BD,.and determine the points where they meet the conic again, and then find the centre
by note, p. 128.

* This construction for inscribing a polygon in a conic is due to M. Poncelet ( Traité
des Proprietés Projectives, p. 351). The demonstration here used, which was commu-
nicated to me by Mr. Townsend, seems to me more simple than that employed by M.
Poncelet. The proof here used shows that Poncelet’s construction will equally solve
the problem, ¢ To inscribe a polygon in a conic, each of whose sides shall touch a conic
having double contact wnh the given conic.” The conics touched by the sides may be
all different. -
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Ex. 18. Given four points on a conic, ADFB, and two fixed lines through any one
of them, DC, DE, to find the envelope of the line CE joining the points where those
fixed lines again meet the curve.

The vertices of the triangle CEM move on the fixed lines DC, DE, NL, and two of
its sides pass through the fixed points, B, F, therefore, the third side envelopes a conic
section touching DC, DE (by the reciprocal of Mac Laurin’s mode of generation).

Ex. 14. Given four points on a conic ABDE, and two fixed lines, AF, CD, passing
each through a different one of the fixed points, the line CF joining the points where the
fixed lines again meet the curve will pass through a fixed point. .

For the triangle CFM has two sides passing through the fixed points B, E, and the
vertices move on the fixed lines AF, CD, NL, which fixed lines meet in a point, there-
fore (p. 255) CF passes through a fixed point.

The reader will find, in the section on Projections, how the last two theorems are
suggested by other well-known theorems.

Ex. 15. To inscribe a triangle in a conic whose three sides pass through three given
points.

This is of course a particular case of Ex. 10, but our present object is to give a geo-
metrical proof of the construction used at p. 230.

If we consider the qua- E
drilateral of which E, L,N
are vertices, and D, F the
inteérsections of opposite
sides; by the harmonic

.+ properties of a quadrilate-

ral, ML, ME, MN, MD
form a Mrmonic pencil,
and therefore the line B1
is cut harmonically in the F M D
points where it meets these four lines. But since B is the pole of MD, B1 is also cut
harmonically in the points where it meets the conic and where it meets MD; hence it
appears that B1 and MN must intersect on the conic, or that 1, 2, Blie on one right line.
In the same manner it is proved that 13 passes through A, and 32 through C.

339. It was proved (Ex. 4, p. 244) that the anharmonic ratio
of four points on a right line is the same as that of their polars
with respect to any conic. A particular case of this theorem is,
the anharmonic ratio of any four diameters is equal to that of their
Jour conjugates. 'We might also prove this directly, from the
consideration that the anharmonic ratio of four chords proceeding
from any point of the curve is equal to that of the supplemental
chords (Art. 183).
A conic circumscribes a given quadrilateral, to find the locus
of its centre.
" Draw diameters of the conic bisecting the sides of the quadri-
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lateral, their anharmonic ratio is equal to that of their four con-
Jjugates, but this last ratio is given, since the conjugates are
parallel to the four given lines; hence the locus is a conic passing
through the middle points of the given sides. If we take the
cases where the conics break up into two right lines, we see that
the intersections of the diagonals, and also those of the opposite
sides, are points in the locus, and, therefore, that these points lie
on a conic passing through the middle points of the sides and of
the diagonals. When the given quadrilateral has a re-entrant
angle it is easy to see that such a quadrilateral cannot be inscribed
in a closed figure of the shape of the ellipse or parabola, and that
the circumscribing conic must therefore be a hyperbola, which
may have some of the vertices in opposite branches. But since
the centre of an hyperbolais neverat infinity, the locus of centres
must in this case be an ¢llipse. Through four points not so dis-
posed, in general, two parabole can be drawn, for (Art. 255)
this is a particular case of Ex. 4, p. 280. The locus of centres
will in this case be a Ayperbola, having for asymptotes lines pa-
rallel to the diameters of these two parabole. The locus of
centres will be a parabola when one of the given points is at an
infinite distance ; that is, when it is required, ¢ Given three points
and a parullel to an asymptote, to find the locus of centre.”

It is very easy to show, by the same method, that the locus
of the pole of any given right line is a conic section.

340. We think it unnecessary to go through the theorems,
which are only the polar reciprocals of those investigated in the
last examples; but we recommend the student to form the polar
‘reciprocal of each of these theorems, and then to proveit directly
by the help of the anharmonic property of the tangents of a conic.
A single example will suffice. :

" Any transversal through a fized point P meets two fized lines
OA, OB, in the points A, B, and portions of given lengths AC, -
BD, are taken on those lines: to find the envelope of CD. ..
" Take any four positions of ¢the transversal, and we have

T {AA'A"A") = (BBB'B"},

-

but {AA’A"A"} = (CC'C’C"}, and {(BBB'B”} = (DD'D'D"};
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therefore, the four lines, CD, C'D’, C"'D", C"D", cut the two
lines OC, OD, so that

{CCC"'C"} = (DD'D'D"},
and, therefore, the envelope of CD is a conic touching OA, OB

341. Generally when the envelope of a moveable line is found
by this method to be a conic section, it is useful to take notice
whether in any particular position the moveable line can be alto-
gether at an infinite distance, for if it can, the envelope is a para-
bola (Art. 255). Thus, in the last example the line CD cannot
be at an infinite distance, unless in some position AB can be at
an infinite distance, that is, unless P is at an infinite distance.
Hence we see that in the last example if the transversal, instead
of passing through a fixed point, were parallel to a given line, the
envelope would be a parabola. In like manner, the nature of the
locys of a moveable point is often at once perceived by observing
parthmlar positions of the moveable point, as we have exemplified
in Art. 339.

342. Given three points on a right line, a, b, ¢, and three
points on another right line, A, B, C, if we take dD so that
(abed} = (ABCD),
it is evident, from the preceding Articles, that the envelope of dD
is a conic section, and that the lines pd, PD, joining dD to two
fixed points, will intersect on a conic passing through these points.*
Let us examine the most general relation between d and D that
this should be the case. Ifwe denote the distances of abed from
any fixed point o on the same line by r, ', 7", ¥, and the distances
of ABCD from a fixed point O on the other right line by
R, R, R”, R", we have
r-r)(@"-r) _ R-R) R -R")
(r-r)y(-r") (R R) (R’ -R")’

* -We saw, p. 229, that it is also true, if ABCD, abed, be points on the same conic
section, that Dd will envelope a conic if { ABCD } = {abed}, and the intersection of PD,
pd, will in this case be on a conic if P, p be poifits on the conic. Again, any two conics will
be cut by four tangents to any conic having double contact with both, so that { ABCD } =
{abed} (Art. 278); but it will not be true conversely, that, if this relation holds, the
envelope of Dd will be a conic, unless the points ABC, abe, be so taken that Aa, Bb, Ce,
may all touch the same conic having double contact with both.
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and if we suppose r and R alone variable, this gives a relation of
the form . ’
kRr+IR+mr+n=0 (compare Art.278).

This relation containing three independent constants is, there-
fore, the most general connexion between od and OD if dD en-
velope a conic touching od, OD.

If k=0, dD will envelope a parabola, since then R and r will ‘
become infinite at the same time.

M. Chasles has given this relation in a different form. Let
there be given two other points e and E, thenif A. g+ e g—g =1,
dD will envelope a conic; for if the distances eo, EO, be called
a, A, this relation may be written

Aor-a+’1.RI{A =1,

r

an equation included in the general form we have given.

343. The distances from the origin of a pair of points on the
axis being given by the equation Az + 2Bz + C = 0, and those
of another pair of points by the equation A'2? + 2Bz + C' = 0,
to find the condition that the four should form a harmonic
system. :

The roots of the first equation being a, o', and of the second
" 3, 3, the required condition is

B-a)(@-d)+(B-d)(B-a)=0,
which, expressed in terms of the coefficients, is
AC + AC-2BB' =0.
N. B. It can be proved that the condition that the anharmo-
nic ratio of the system shall be given is, that (2BB'- AC’'- AC)?
shall be in a given ratio to (B*- AC) (B* - A'C).

344. The pair of points given by any equation of the form
(A2* + 2Bz + C) + I(A'z* + 2Bz + C') = 0 is in involution with
the points given by A2* + 2Bz + C =0, A2* + 2Bz + C'= 0.

For, let the foci of the system determined by the latter two
pairs of points be given by the equation az? + 2bz + ¢ = 0, then
we must have (Art. 343)

aC +cA-2B=0, aC' +cA'-2bB' =0;
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and it is evident that when these conditions are fulfilled we must
bave  4(C+1C) +c(A +1A)-25(B+IB)=0.

345. To find the centre and the foci of the system just
written.
The foci are found, by solving for a, b, ¢, from the equations
aC+cA-2B=0, aC +cA'-2bB =0,
and substituting the resulting values in az? + 2bz + ¢ = 0; when
we get .
(AB' -BA")a* + (AC'-CA)z + (BC' - CB) = 0.
This may be otherwise written, if we make the equation homo-
geneous by introducing a new variable y, and write
U=Az*+2Bzy + Cyt, V=Az"+2Bay+Cyp,
then the equation which determines the foci is
dU dV _dU dV _
dz dy ~ dy dz
The centre is got by determining /so that the equation U +1V =0
shall have one of its roots infinite, or shall have the coefficient of
z*= 0 (Art. 131). The centre therefore is given by the equation
2(BA’-BA)z+(CA'-CA)=0.

346. To find the locus of a point such that the tangents from
it to two given conics shall form a harmonic pencil.

For simplicity we shall take the equations of the conics,
Az + Cy* + Fz2 = 0, Az + C'y* + F'2* = 0, which is equivalent
to supposing (see Art. 281) that we have chosen for z, y, z the
three lines whose poles with regard: to both conics are the same
(Art. 318). Then the equation of the pair of tangents from any
point to the first conic being
(Az* + Cy* + F2*) (Ax" + Cy* + F2?) = (Axz’' + Cyy' + Fz2)3,
if we make in this z=0, the points where the line z is met by
these tangents is given by the equation

A(Cy* + F2*)a* - 2AC2yzy + C(Aa2" + F2?)y? = 0,
and forming the condition (Art. 345) that this shall form a har-
monic aystem with the corresponding pair of points for the second
conic, we find for the equation of the locus,

0.
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AC'(A'z + F2?) (Cy*+ F2?) + A'C(Az+ F2?) (Cy*+ F2?)

: =2AA'CCz,
or AA(CF+CTF)z®+ CC(AF + AF)y*+ FF(AC + A'C)2% = 0.
And it will be seen that this is identical with the equation (see
Ex. 3, p. 268) of the conic F which passes through the eight
pointsof contact of common tangents tothe two conics. It isproved.
in like manner that if the anharmonic ratio of the tangents be
given, the locus is a curve of the fourth degree, F? = kSS'

THE METHOD OF INFINITESIMALS.

347. In the next Part we purpose to show how the differential
calculus enables us readily to draw tangents to curves, and to de-
termine the magnitude of their areas and arcs. We wish first,
however, to give the reader some idea of the manner in which -
these problems were investigated by geometers before the inven-
tion of that method. The geometric methods are not merely in- -
teresting in a historical point of view; they afford solutions of
some questions more concise and simple than those furnished by
analysis, and they have even recently led to a beautiful theorem
(Art. 357), which had not been anticipated by those who have
applied the integral calculus to the rectification of conic sections.

If a polygon be inscribed in any curve, it is evident that the
more the number of the sides of the polygon is increased, the
more nearly will the area and perimeter of the polygon approach
to equality with the area and perimeter of the curve, and the more
nearly will any side of the polygon approach to coincidence with
the tangent at the point where it meets the curve. Now, if the
sides of the polygon be multiplied ad infinitum, the polygon will
coincide with the curve, and the tangent at any point will coincide
with the line joining two indefinitely near points on the curve.
In like manner, we see that the more the number of the sides of
a circumscribing polygon is increased, the more nearly will its arca
and perimeter approach to equality with the area and perimeter
of the curve, and the more nearly will the intersection of two of
its adjacent sides approach to the point of contact of either.
Hence, in investigating. the area or perimeter of any curve, we
may substitute for the curve an inscribed or circumscribing poly-

2p
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gon of an indefinite number of sides; we may consider any tan-
gent of the cutve a3 the line joining two indefinitely near points
on the curve, and any point on the curve as the intersection of
two indefinitely near tangents.

348. Ex. 1. To find the direction of the tangent at any point
of a circle. '

In any isosceles triangle AOB, either base angle OBA is less
than a right angle by half the vertical angle; but as the points
A and B approach to coincidence, the D
vertical angle may be supposed less =

than any assignable angle, therefore g ‘
the angle OBA which the tangent . A |
makes with the radius is ultimately aj : A
\
ciple here proved, viz., that two inde- Q
finitely near lines of equal length are

equal to a right angle. We shall fre-
at right angles to the line joining their extremities.

quently have occasion to use the prin-

Ex. 2. The circumferences of two circles are to each other as
their radii.

If polygons of the same number of sides be inscribed in the
circles, it is evident, by similar triangles, that the bases ab, AB,
are to each other as the radii of the circles, and, therefore, that
the whole perimeters of the polygons are to each other in the
same ratio; and since this will be true, no matter how the num-
ber of sides of the polygon be increased, the circumferences are
to each other in the same ratio.

Ex. 3. The area of a circle is equal to the radius multiplied by
the semicircumference. .

For the area of any triangle OAB is equal to half its base
multiplied by the perpendicular on it from the centre ; hence the
area of any inscribed regular polygon is equal to half the sum of
its sides multiplied by the perpendicular on any side from the
‘centre; but the more the number of sides is increased, the more _
nearly will the perimeter of the polygon approach to equality
with that of the circle, and the more nearly will the perpendicu-
lar on any side approach to equality with the radius, and the
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difference between them can be made less than any assignable ‘
quantity ; hence ultimately the area of the circle is equal to the
radius multiplied by the semicircumference ; or = 72 .

349. Ex. 1. To determine the direction of the tangent at any
point on an ellipse.

Let P and P be two indefi-
nitely near points on the curve,
then FP + PF' = FP' + P'F’; or,
taking FR = FP, FR' = F'P, we
have PR = PR’; but in the tri-
angles PRP, PR'P', we have also
the base PP’ common, and (by
Ex. 1, Art. 348) the angles PRP’, PR'P’right ; hence the angle
PPR = PPR. Now TPF is ultimately equal to PP'F, since
their difference PF P’ may be supposed less than any given angle;
hence TPF = P'PF', or the focal radii make equal angles with
the tangent.

Ex. 2. To determine the direction of the tangent at any point
on a hyperbola.

We have .

FP - FP = FP - FP,
or, as before,

PR =PR.
Hence the angle
PPR = PPR,

or, the tangent is the internal bisector
of the angle FPF".

Ex. 3. To determine the direction of the tan- -
gent at any point of a parabola. N

‘We have FP = PN, and FP'= P'N’; hence
PR=PS, or the angle NP'P = FPP. The
tangent, therefore, bisects the angle FPN. D

350. Ex.1. To find the area of the parabolic
sector FVP.

Since PS = PR, and PN = FP, we have the
triangle FPR half the parallelogram PSNN',
Now if we take a number of points P'P’, &c.
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between V and P, it is evident that the closer we take them, the
more nearly will the sumn of all the parallelograms PSNN', &ec.,
approach.to equality with the area DV PN, and the sum of all the
triangles PFR, &c., to the sector VFP; hence ultimately the
sector PFV is half the area DV PN, and therefore one-third of
the quadrilateral DFPN.

Ex. 2. To find the area of the segment of a parabola cut off by
any right line.

Draw the diameter bisecting it, then
the parallelogram PR’ is equal to PM/,
since they are the complements of paral-
lelograms about the diagonal; but since
TM is bisected at V', the parallelogram
PN’ is half PR’; if, therefore, we take a
number of points P, P, P”, &c., it follows that
the sum of all the parallelograms PM’ is
double the sum of all the parallelograms
PN’, and therefore ultimately that the space V'PM is double
V'PN ; hence the area of the parabolic segment V/'PM is to that
of the parallelogram V'NPM in the ratio 2: 3.

g

351. Ex.1. The area of an ellipse is equal to the area of a circle
whose radius is a geometric mean between the semiazes of the ellipse.

For if the ellipse and the D g

circle on the transverse axis be 4 Y
divided by any number of lines d
parallel to the axis minor, then 4°F

since mb:md::m% :md'::b: a, 5

the quadrilateral mbb'm’ is to A i A

mddm’ in the same ratio, and
the sum of all the one set of qua-
drilaterals, that is, the polygon
Bbb5” A inscribed in-the ellipse \»
is to the corresponding polygon

Dddd’A inscribed in the circle, in the same ratio. Now this will
be true whatever be the number of the sides of the polygon: if
we suppose them, therefore, increased indefinitely, we learn that
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the area of the ellipse is to the area of the circle as 4 to a; but
the area of the circle being = wa?, the area of the ellipse = wab.

Cor. It canbe proved, in like manner, that if any two figures
be such that the ordinate of one is in a constant ratio to the cor-
responding ordinate of the other, the areas of the figures are in
the same ratio. .

Ex. 2. Every diameter of a conic bisects the curve.

For if we suppose a number of ordinates drawn to this diame-
ter, since the diameter bisects them all, it also bisects the trapezium
formed by joining the extremities of any two adjacent ordinates,
and by supposing the number of these trapezia increased without
limit, we see that the diameter bisects the curve.

352. Ex. 1. Thearea of the sector of a hyperbola made by join-
ing any two points of it to the centre, is equal to the area of the
segment made by drawing parallels from them to the asymptotes.

For since the triangle PKC = QLC, the area PQC = PQKL.

Ex. 2. Any two segments, '
PQKL,-RSMN, are equal, if

PK:QL::RM: SN.
For

PK:QL::CL:CK,
but (Art. 202)

" CL=MT, CK=NT;
we have, therefore,
RM:SN:: MT': NT,

and therefore QR is parallel to PT. We can now easily prove
that the sectors PCQ, RCS are equal, since the diameter bisect-
ing PS, QR will bisect both the hyperbolic area PQRS, and
also the triangles PCS, QCR.

If we suppose the points Q, R to coincide, we see that we can
bisect any area PKNS by drawing an ordinate QL, a geometric
mean between the. ordinates at its extremities.

Again, if a number of ordinates be taken, forming a continued
geometric progression, the area between any two is constant.

353. The tangent to the interior of two similar, similarly placed,
and concentric conics cuts off a constant area from the exterior
conic.
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For we proved (p. 203) that this tangent is always bisected
at the point of contact; now if we draw any two tangents, the
angle AQA’ will be equal to BQB),
and the nearer we suppose the point Q
to P, the more nearly will the sides
AQ, A'Q approach to equality with the
sides BQ, BQ; if, therefore, the two
tangents be taken indefinitely near, the triangle AQA’ will be
equal to BQB', and the space AVB will be equal to A'VB’;
since, therefore, this space remains constant as we pass from any
tangent to the consecutive tangent, it will be constant whatever
tangent we draw. '

Cor.'1. It can be proved, in like manner, that if a tangent to
one curve always cut off a constant area from another, it will be
bisected at the point of contact; and, conversely, that if it be
always bisected it cuts off a constant area.

"Hence we can draw through a given point a line to cut off
from a given conic the minimum area. If it were required to cut
off a given area it would be only necessary to draw a tangent
through the point to some similar and concentric conic, and the
greater the given area, the greater will be the distance between
the two conics. The area will therefore evidently be least when
this last conic passes through the given point; and since the tan-
gent at the point must be bisected, the line through a given point
which cuts off the minimum area is bisected at that point.

In like manner, the chord drawn through a given point which
cuts off the minimum or maximum area from any curve is bi-
sected at that point. In like manner can be proved the following
two theorems. I am indebted to the late Professor Mac Cullagh
for my knowledge of all the theorems of this Article, and I do
not remember having seen them elsewhere published.

Ex. 1. If atangent AB to one curve cut off a constant arc from
another, it is divided at the point of contact, so that AP : PB in-
versely as the tangents to the outer curve at A and B.

Ex. 2. Ifthe tangent AB be of a constant length, and if the
perpendicular let fall on AB from the intersection of the tangents
at A and B meet AB in M, then AP will = MB.
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354. To find the radius of curvature at any point on an ellipse.

The centre of the circle circumscribing any triangle is the in-
tersection of perpendiculars erected at the middle points of the
sides of that triangle; it follows, therefore, that the centre of the
circle passing through three consecutive points on the curve is
the intersection of two consecutive normals to the curve.

Now, given any two triangles FPF’, FP'F’, and PN, P'N,
the two bisectors of their vertical angles, it is easily proved, by
" elementary geometry, that twice the angle PNP'= PFP’+ PF'P":
(See figure, p. 291).

Now, since the arc of any circle is proportional to the angle
it subtends at the centre (Euc. VI. 33), and also to the radius
(Art. 348), if we consider PP’ as the arc of a circle, whose

centre is N, the angle PNP” is measured by % In like man- -
ner, taking FR = FP, PFP is measured by T2, and we have

2PP PR PR’
PN " FP T FP’

but PR = PR’ = PP sin PPF;
therefore, denoting this angle by 6, PN by R, FP, F'P, by ps P
we have 2 1 1

Reind p * e

Hence it may be inferred that the focal chord of curvature is double
the harmonic mean between the focal radii. Substituting %, for
sin@, 2a for p + p’, and b for pp’, we obtain the known value,

R=—.

a

The radius of curvature of the hyperbola or parabola can be
investigated by an exactly similar process. In the case of the
_ parabola we have p’ infinite, and the formula becomes

.2 1
Rsin®  p’

I owe to Mr. Townsend the following investigation, by a dif-

ferent method, of the length of the focal chord of curvature :
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Draw any parallel QR to the tangent at P, and describe a
circle through PQR meeting the focal p R
chord PL of the conic at C. Then by
the circle PS-SC = QS- SR, and by Q
the conic (Ex. 2, p. 170)
PS-SL:QS-SR::PL:MN;
therefore, whatever be the circle,

SC:SL::MN:PL; »
but for the circle of curvature the points S and P coincide, there-
fore PC:PL::MN:PL;
or, the focal chord of curvature & equal to the focal chord of the
conic drawn parallel to the tangent at the point (p. 210).

355. The radius of curvature of a central conic may otherwise
be found thus: .

Let Q be an indefinitely near point
on the curve, QR a parallel to the
tangent, meeting the normal in S;
now, if a circle be described passing
through P, Q, and touching PT at P,
since QS is a perpendicular let fall
from Q on the diameter of this circle,
we have PQ? = PS multiplied by the diameter; or the radius of

curvature GZIZ)TQ:S’,‘ Now, since QR is always drawn parallel to

the tangent, and since PQ must ultimately coincide with the tan-

gent, we have PQ ultimately equal to QR ; but, by the property

of the ellipse (if we denote CP and its conjugate by ', &),
b?:a%::QR*: PR.RP'(= 22" PR),

therefore QR® ‘= 20 PR .

’

a

. ? PR
Hence the radius of curvature = 7 PS’ Now, no matter how
small PR, PS are taken, we have, by similar triangles, their
PR CP « 2 A

ratio ——=

. b
PS = CT = ; Hence radius of curvature = ;
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It is not difficult to prove that at the intersection of two con-
Jocal conics the centre of curvature of either is the pole with re-
spect to the other of the tangent to the former at the intersection.

356. Iftwo tangents be drawn to an ellipse from any point of a
confocal ellipse, the excess of the sum of these two tangents over
the arc intercepted between them is constant.*

For, take an indefinitely near T
point T, and let fall the perpendicu-
lars TR, T'S, then (Art. 348)

} 75 N’
PT=PR=PP+PR = P
(for PR may be considered as the \ \_/
continuation of the line PP); in like - \_/

manner, QT = QQ’ + QS.

Again, since, by Art. 194, the angle TT'R = T'TS, we have
TS '=TR; and therefore PT + TQ = PT' + T'Q. Hence,
(PT+TQ)- (PT+TQ)=PP-QQ'=PQ-PQ.

Cor. The same theorem will be true of any two curves which
possess the property that two tangents, TP, TQ, to the inner one,
always make equal angles with the tangent T'T" to the outer.

\

357. Iftwo tangents be drawn to an ellipse from any point of a
confocal hyperbola, the difference of the arcs PK, QKj is equal to
the difference of the tangents TP, TQ.}

For it appears, precisely as be-
fore, that the excess of TP’ - P’K
over TP - PK = T'R, and that
the excess of T'Q/ - QK over
TQ - QK is TS, which is equal
to T'R, since (Art. 194) TT bi-
sects the angle RT'S. The dif-
ference, therefore, between the
excess of TP over PK, and that
of TQ over QK, is constant; but

* This beautiful theorem was djgcovered by Dr. Graves. See his Translation of
Chasles's Memoirs on Cones and Spherical Conics, p. 77.

+ This extension of the preceding theorem was discovered by Mr. Mac Cullagh.
Dublin Exam. Papers, 1841, p. 41; 1842, pp. 68, 83. M. Chasles afterwards indepen-

2q
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in the particular case where T coincides with K, both these ex-.
cesses, and consequently their difference, vanish ; in every case,
therefore, TP - PK = TQ - QK.

Cor. Fagnani's theorem, ¢ That an elliptic quadrant can be
so divided, that the difference of its parts may be equal to the
difference of the semiaxes,” follows immediately from this Article,
. since we have only to draw tangents at the extremities of the
axes, and through their intersection to draw a hyperbola confocal
with the given ellipse. The co-ordinates of the points where it
meets the ellipse are found to be

aS
“a+ b

'———-—-.
y a+b

358. If a polygon circumscribe a conic, and if all the vertices
but one move on confocal conics, the locus of the remaining vertex
will be a confocal conic.

In the first place, we assert that if the vertex T of an angle
PTQ circumscribing a conic, move on a confocal conic (see fig.
Art. 356) ; and if we denote by a, b, the diameters parallel to
TP, TQ; and by a, 3, the angles TPT, TQ'T’, made by each
of the sides of the angle with its consecutive position, then aa =53.
For (Art. 356) TR = T'S; but TR=TP-a; T'S=T"Q"-3, and
(Art. 152) TP and TQ are proportional to the diameters to
which they are parallel.

Conversely, if aa = 53, T moves on a confocal conic. For
by reversing the steps of the proof we prove that TR = T'S;
hence that T'T” makes equal angles with TP, TQ, and therefore
coincides with the tangent to the confocal conic through T'; and
therefore that T" lies on that conic.

If then the diameters parallel to the sides of the polygon be
a, b, c, &c., that parallel to the last side being d, we have aa =543,
because the first vertex moves on a confocal conic; in like man-
ner b3 = ¢y, and 8o on until we find aa = d3, which shows that
the last vertex moves on a confocal conic.®

dently noticed the same extension of Dr Graves'stheorem. C
1848, tom. xvii. p. 838.

® This proof is taken from a paper by Dr. Hart; Cambridge and Dublin Math.
Jour., iv. 193.

tes Rendus, October,

(
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THE METHOD OF PROJECTIONS.*

359. We have already several times had occasion to point out
to the reader the advantage gained by taking notice of the num-
ber of particular theorems often included under one general
enunciation, but we now propose to lay before him a short sketch -
of a method which renders us a still more important service, and
which enables us to tell when from a particular given theorem
we can safely infer the general one under which it is contained.
The method of projections, indeed, as requiring some knowledge
of the geometry of three dimensions, may seem scarcely admissible
into a treatise on plane geometry; yet, as it is only in laying
down its principles that we shall have to use a few not very diffi-
cult theorems of solid geometry, and as the applications of the
method (the principles being once admitted) do not require any
consideration of space of three dimensions, we feel that it could
not with propriety be excluded from the present treatise. The
reader will have less difficulty in following the demonstrations
here given, as in studying spherical trigonometry he has been
already introduced to the consideration of space of three di-
mensions.

360. If all the points of any figure be joined to any fixed
point in space (O), the joining lines will form a cone, of which
the point O is called the vertez, and the section of this cone, by
any plane, will form a figure which is called the projection of the
given figure. The plane by which the cone is cut is called the
plane of projection.

To any point of one figure will correspond a point in the other.

For, if any point A be joined to the vertex O, the point a, in
which the joining line OA is cut by any plane, will be the pro-
jection on that plane of the given point A.

A right line will always be projected tnto a right line.

For, ifall the points of the right line be joined to the vertex,

* This method is the invention.of M. Poncelet. See his T¥aité des Proprictés Pro-
Jectives, published in the year 1822. I ghall be glad if the slight sketch here given in-
duces any reader to study a work, from which I have perhaps derived more information
than from any other on the theory of curves.
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the joining lines will form a plane, and this plane will be inter-
sected by any plane of projection in a right line.

Hence, if any number of points in one figure lie in a right
line, s0 will also the corresponding points on the projection; and
if any number of lines in one figure pass through a point, so will
also the corresponding lines on the projection.

361. Any plane curve will always be projected into another
curve of the same degree.

For it is plain that, if the given curve be cut by any right line
in any number of points, A, B, C, D, &c., the projection will
be cut by the projection of that right line in the same number of
corresponding points, a, b, ¢, d, &c., but the degree of a curve is
estimated geometriecally by the number of points in which it can
be cut by any right line. If AB meet the curve in some real and
some imaginary points, ab will meet the projection in the same
number of real and the same number of imaginary points.

In like manner, if any two curves intersect, their projections
will intersect in the same number of points, and any point com-
mon to one pair, whether real or imaginary, must be considered
as the projection of a corresponding real or imaginary point com-
mon to the other pair.

Any tangent to one curve will be projected into a tangent to the
other. .

For, any line AB on one curve must be projected into the
line ab joining the corresponding points of the projection. Now,
if the points A, B, coincide, the points a, b, will also coincide,
and the line ab will be a tangent.

More generally, if any two curves touch each other in any
number of points, their projections will touch each other in the
same number of points.

/A 362. If a plane through the vertex parallel to the plane of
projection meet the original plane in a line AB, then any pencil
of lines diverging from a point on AB will be projected into a
system of parallel lines on the plane of projection. For, since
the line from the vertex to any point of AB meets the plane of -
projection at an infinite distance, the intersection of any two lines
which meet on AB is projected to an infinite distance on the
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plane of projection. Conversely, any system of parallel lines on
the original plane is projected into a system of lines meeting on a
point in the line DF, where a plane through the vertex parallel to
the original plane is cut by the plane of projection. 'The method
of projections then leads us naturally to the conclusion, that any
system of parallel lines may be considered as passing through a
point at an infinite distance, for their projections on any plane
pass through a point in general at a finite distance; and again,
that all the points at infinity on any plane may be considered as
lying on a right line, since we have showed, that the projection of
any point in which parallel lines intersect must lie somewhere on
the right line DF in the plane of projection.

363. We see now that if any property of a given curve does
not involve the magnitude of lines or angles, but merely relates
to the position of lines as drawn to certain points, or touching cer-
tain curves, or to the position of points, &c., then this property
will be true for any curve into which the given curve can be pro-
jected. Thus, for instance, ¢ if through any point in the plane
of a circle a chord be drawn, the tangents at its extremities will
meet on a fixed line.” Now since we shall presently prove that .
every curve of the second degree can be projected into a circle,
the method of projections shows at once that the properties of
poles and polars are true not only for the circle, ‘but also for all
curves of the second degree. Again, Pascal’s and Brianchon’s
theorems are properties of the same class, which it is sufficient
to prove in the case of the circle, in order to know that they are
true for all conic sections.

364. Properties which, if true for any figure, are true for its
projection, are called projective properties. Beside the classes of
theorems mentioned in the last Article, there are many projective
theorems which do involve the magnitude of lines. For instance,
the anharmonic ratio of four points in a right line, { ABCD} being
measured by the ratio of the pencil {O.ABCD} drawn to the
vertex, must be the same as that of the four points {abed}, where
this pencil is cut by any transversal. Again, if there be an equa-
tion between the mutual distances of any number of points in a
right line, such as
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AB.CD.EF +k.AC.BE.DF +1.AD.CE.BF + &c. = 0,

where in each term of the equation the same points are men-

tioned, although in different orders, this property will be projec-
tive. For (see Art. 314) if for AB we substitute

OA.OB.sinAOB

oP s &e.

each term of the equation will contain OA.OB.OC .OD.OE.OF
in the numerator, and OP? in the denominator. Dividing, then,
by these, there will remain merely a relation between the sines
of angles subtended at O. It is evident that the points A, B, C,
D, E, F, need not be on the same right line; or, in other words,
that the perpendicular OP need not be the same for all, provided
the points be so taken that after the substitution, each term of
the equation may contain in the denominator the same product,
OP.OP.OP", &c. Thus, for example,  If lines meeting in a
point and drawn through the vertices of a triangle ABC meet the
opposite sides in the points a, b, ¢, then Ab.Bc.Ca= Ac.Ba.Cb.”
This is a relation of the class just mentioned, and which it is
sufficient to prove for any projection of the triangle ABC. Let
us suppose the point C projected to an infinite distance, then
AC, BC, Ccare parallel, and the relation becomes
Ab.Bc = Ac.Ba,

the truth of which is at once perceived on making the figure.

365. It appears from what has been said, that if we wish to
demonstrate any projective property of any figure, it is sufficient
to demonstrate it for the simplest figure into which the given
figure can be projected ; e. g._for one in which any line of the
given figure is at an infinite distance.

Thus, if it were required to investigate the harmonic proper-
ties of a complete quadrilateral ABCD, whose opposite sides in-
tersect in E, F, and the intersection of whose diagonals is G, we
may join all the points of this figure to any point in space O, and
cut the joining lines by any plane parallel to OEF, then EF is
projected to infinity, and we have a new quadrilateral, whose
sides ab, cd intersect at e at infinity, that is, are parallel; while
ad, bc intersect in a point fat infinity, or are also parallel. We
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thus see that any quadrilateral may be projected into a parallelo-
gram. Now since the diagonals of a parallelogram bisect each
other, the diagonal ac is cut harmonically in the points a, g, c,
and the point where it meets the line at infinity e¢f. Hence ABis
cut harmonically in the points A, G, C, and where it meets EF.

Ex. If two triangles ABC, A'B'C’, be such that the points of intersection of AB, A'B';
BC, B'C’; CA, C'A’; lie in a right line, then the lines AA’, BB', CC’ meet in a point.

Project to infinity the line in which AB, A'B', &c., intersect; then the theorem be-
comes: * If two triangles abe, a’d’c’ have the sides of the one respectively parallel to the
sides of the other, then the lines aa’, bb', cc’ meet in a point.” But the truth of this lat-
ter theorem is evident, since aa’, b’ both cut cc’ in the same ratio.

366. Before giving examples of the application of the method
of projections to curves of the second degree, we wish to examine
more particularly than in Art. 361 the nature of the section made
by any plane in a cone standing on a circular base. 'We there
proved that the projection of a circle must be always a curve of
the second degree, and we wish now to show that the same circle
may be projected into any of the three species of curves of the
second degree. 'We commence by proving that any curve will be
projected into a similar curve, on a plane parallel to the plane of
the original curve.

For take any fixed point A in the plane of one of them, and
the corresponding point a in the plane of the other, and let radii
vectores be drawn from them to any corresponding points B, 4;
now from the similar triangles OAB, Oab, AB is to ab in the
constant ratio OA : Oc ; and since every radius vector of the one
curve is in this constant ratio to the corresponding radius vector
of the other, the two curves are similar (Art. 239).

Cor. Ifa cone standing on a circular base be cut by any plane
parallel to the base, the section will be a circle. This is evident
as before: we may, if' we please, suppose the points A, a the
centres of the curves.

367. The section by any plane of a cone standing on a circular
base is a curve of the second degree.

A cone of the second degree is said to be right if the line
joining the vertex to the centre of the circle which is taken for
base be perpendicular to the plane of that circle; in which case
this line is called the azis of the cone. If this line be not per-
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pendicular to the plane of the base, the cone is said to be obligue.
The investigation of the sections of an oblique cone is exactly the
same as that of the sections of a right cone, but we shall treat
them separately, because the figure in the latter case being more
simple will be more easily understood by the learner, who may at
first find some difficulty in the conception of figures in space.

Let a plane (OAB) be drawn through the axis of the cone
OC perpendicular to the plane of the section, so that both the
section MSsN and the base ASB are
supposed to be perpendicular to the
plane of the paper: the line RS, in
which the section meets the base, is,
therefore, also supposed perpendicu-
lar to the plane of the paper. Let us
first suppose the line MN, in which
the section cuts the plane OAB to >
meet both the sides OA, OB, asin the M&Z"
figure, on the same side of the vertex.

Now let a plane parallel to the base be drawn at any other
point s of the section. Then we have (Euc. ITIL. 35) the square
of RS, the ordinate of the circle, = AR .RB, and in like manner
rs* = ar .rb. But from a comparison of the
similar triangles ARM, arM; BRN, &N,
it can at once be proved that

AR.RB:MR.RN::ar.rb: Mr.rN.

Therefore
RS*:7s2:: MR.RN: Mr.rN.

Hence the section MSsN is such that the
square of any ordinate rsis to the rectangle
under the parts in which it cuts the line
MN in the constant ratio RS*: MR . RN.
Hence it can immediately be inferred (Art.
152) that the section is an ellipse, of which A
MN is the axis major, while the square of /
the axis minor is to MN?in the given ratio i

RS*: MR.RN.
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Secondly. Let MN meet one of the sides OR produced. The
proof proceeds exactly as before, only that now we prove the
square of the ordinate rs in a constant ratio to the rectangle
Mr . rN under the parts into which it cuts the line MN produced.
The learner will have no difficulty in proving that the locus will
in this case be a hyperbola, consisting evidently of the two oppo-
site branches NsS, Ms'S'.

Thirdly. Let the lineMN be parallel to
one of the sides. In this case, since AR=ar,
and RB:rb:: RN:rN, we have the square
of the ordinate rs (=ar.rd) to the abscissa
rN in the constant ratio

RS*(= AR.RB):RN.

The section is therefore a parabola.*

* Those who -first treated of conic sections only considered the case when a right
cone is cut by a plane perpendicular to a side of the cone: that is to say, when MN is
perpendicular to OB. Conic sections were then divided into sections of a right-angled,
acute, or obtuse-angled cone ; and according to Eutochius, the commentator on Apollo-
nius, were called parabola, ellipse, or hyperbola, according as the angle of the cone was
equal to, less than, or exceeded a right angle. (See the passage cited in full, Walton's
Ezxamples, p. 428.) It was Apollonius who first showed that all three sections could be
made from one cone; and who, according to Pappus, ‘gave them the names parabola,
ellipse, and hyperbola, for the reason stated, p. 170. The authority of Eutochius, who
was more than a century later than Pappus, may not be very great, but the name para-
bola was used by Archimedes, who was prior to Apollonius.

It is worth mentioning, that if a sphere be inscribed in a right cone touching the
plane of any section, the point of contact will be a focus of that
section, and the corresponding directriz will be the intersection of
the plane of the section with the plane of contact of the cone with
the sphere. (Bp. Hamilton's Conic Sections, lib. ii. prop. 87.)

Let a sphere be both inscribed and exscribed between the
cone and the plane of the section. Now, if any point P of the
section be joined to the vertex, and the joining line meet the
planes of contact in Dd, then we have PD = PF, since they
are tangents to the same sphere, and, similarly, Pd = PF’, there-
fore PF + PF’' = Dd, which is constant. The point (R) where
FF’ meets AB produced, is a point on the directrix, for by the
property of the circle NFMR is cut harmonically, therefore, R is a point on the polar of
F. Thisis only a particular case of a more general theorem.

1t is not difficult to prove that the parameter of the section MPN is constant, if the
distance of the plane from the vertex be constant.

2R
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368. It is evident that the projections of the tangents at the
points A, B of the circle are the tangents at the points M, N of
the conic section (Art. 362) ; now in the case of the parabola the
point M and the tangent at it go off to infinity ; we are therefore
again led to the conclusion that every parabola has one tangent
altogether at an infinite distance.

369. Let the cone now be supposed oblique. The plane of
the paper is a plane drawn through the line OC, perpendicular to
the plane of the circle AQSB. Now let
the section meet the base in any line QS,
draw a diameter LK bisecting QS, and
let the section meet the plane OLK in the
line MN, then the proof proceeds exactly
as before ; we have the square of the ordi-
nate RS equal to the rectangle LR .RK;
if we conceive a plane, as before, drawn e
parallel to the base (which, however, isleft /"7 "
out of the figure in order to avoid render- "\..‘__ /
ing it too complicated), we have the square
of any other ordinate, rs, equal to the corresponding rectangle
Ir.rk; and we then prove by the similar triangles KRM, £rM;
LRN, &N, in the plané OLK, exactly as in the case of the right
cone, that RS?:rs?, as the rectangle under the parts in which
each ordinate divides MN, and that therefore the section is a
conic of which MN is the diameter bisecting QS, and which is an
ellipse when MN meets both the lines OL, OK on the same side
of the vertex, an hyperbola when it meets them on different sides
of the vertex, and a parabola when it is parallel to either.

In the proof just given QS is supposed to intersect the circle
in real points; if it did not, we have only to take, instead of the
circle AB, any other parallel circle ad, which does meet the sec-~
tion in real points, and the proof will proceed as before.

370. If a circular section be cut by any plane in a line RS, the
rectangle DR . RF of the segments of the diameter of the circle
conjugate to QS is to the rectangle gR . Rk under the segments of
the diameter of the section conjugate to QS as the square of the
diameter of the section parallel to QS is to the square of the con-
Jugnrte diameter gk.
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This has been proved in the last Article, in the case where
QS meets the circle in real points, o
since rs*=dr.7f. Now, if the plane
meet any other parallel plane in a
line QS which does not meet the
curve: First, we say that the dia-
meters conjugate to QS with regard
to the circle, and with regard to the
other section, will meet QS in the
same point R ; for, by Art. 366, the
diameter df, bisecting chords of any
circular section parallel to g¢s, will be projected into a diameter
bisecting the parallel chords of any parallel section. The middle
points, therefore, of all chords parallel to ¢s, must lie in the
plane Odf; and, consequently, the diameter conjugate to QS, in
the section ggks, must be the line gk, in which it is met by the
plane Odf. DF, therefore, and gk, intersect in the point R,
where QS meets the plane Odf.

Now, since we have proved that the lines g%, df, DF, lie in
one plane passing through the vertex, the points D, d, are pro-
jections of g, that is, they lie in one right line passing through the
vertex ; we have, therefore, by similar triangles, as in Art. 367,
dr.7f:DR.RF::gr.rk.gR.Rk; and, since dr.rf:gr.rk, as
the squares of the parallel semidiameters, DR .RF : gR . Rk in

the same ratio.

371. If a plane be drawn through the vertex parallel to the
circular base meeting the section ggks in TL, it follows, as a par-
ticular case of the preceding, that ¢Li.L4: OL? in the ratio of the
squares of the parallel diameters of the section. Hence we see
that, given any conic section and a line, TL, in its plane, it is an
indeterminate problem to find O the vertex of a cone such that
the section of'it, by any plane parallel to OTL, should be a circle.
. For, draw the diameter of the section conjugate to TL, then the
distance of L from the vertex of the cone is determined by the
present Article ; also OL must lie in the plane perpendicular to
TL, since it is parallel to the diameter of a circle perpendicular
to TL; O may, therefore, be any point of a certain circle in a
plane perpendicular to TL.
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Hence, Given any conic section, and-any line TL tn its plane
not culting it, we can project it, so that the conic section may be-
come a circle ; and the line may be projected to infinity, for we
have only fo take any point O, such that the plane OTL may be
parallel to the planes of circular section, and then any plane pa-
rallel to OTL will be a plane of projection fulfilling the required
conditions.

372. Giver any conmic section and a point in its plane, we can
project it into a circle, of which the projection of that point is the
centre, for we have only to project it so that the projection of the
polar of the given point may pass to infinity (Art. 157).

Or again, Any two conic sections may be projected so as both to
become circles, for we have only to project one of them into a cir-
cle so as that any of its chords of intersection with the other shall
pass to infinity, and then, by Art. 259, the projection of the se-
cond conic passing through the same points at infinity as the
circle must be a circle also.

Any two conics which have double contact with each other may
be projected into concentric circles. A

For we have only to project one of them into a circle so that
its chord of contact with the other may pass to infinity (Art. 259).

Strictly speaking, all these projections have only been shown
to be possible when the line projected to infinity does not meet
the conic in real points ; but it will be found in practice that thisis
a limitation which it is unnecessary to attend to, and that a pro-
jective proposition once proved true for any state of a figure may
become unmeaning, but will rever becom® false, when certain
lines in that figure have become imaginary. Thus, for example,
although the method of projecting into concentrie circles only
directly proves properties of conics having double contact, whose
chord of contact is imaginary, we shall not think it necessary to
seek for an independent proof‘ of the same properties in the case
where the chord of contact is real.

373. We shall now give some examples of the method of de-
riving properties of conics from those of the circle, or from other
more particular properties of conics.

Ex. 1. ‘““A line through any point is cut harmonically by the curve and the polar of




THE METHOD OF PROJECTIONS. . 309

that point.” This property and its reeiprocal are projective properties (Art. 364), and
both being true for the circle, are true for every conic. Hence all the properties of the
circle depending on the theory of poles and polars are true for all the conie sections.

Ex. 2. The anbarmonic properties of the points and tangents of a conic are projective
properties, which, when proved for the circle, as in Art. 813, are proved for all the conics.
Hence, every property of the circle which results from either of its anbarmonie properties
is true also for all the comic sections.

Ex. 8. Carnot’s theorem (Art. 314), that if a conmic meet the sides of a triangle,

Ab. Ab.Be.Bc.Ca.Ca' ="Ac. Ac’. Ba.Bda'. C5.CV,
is a projective property which need onl§ be proved in the case of the circle, in which
case it is evidently true, since Ab.Ad = Ac. Ac’, &ec.

The theorem is evidently true, and can be proved in like manner for any polygon.

Ex. 4. From Carnot’s theorem, thus proved, could be deduced the properties of Arxt.
151, by supposing the point C at an infinite distance; we then have

Ab.A¥ Ba.Bd
Ac.A¢  Be.Be”
where the line Ab is parallel to Ba.
Ex. 5. Given two concentric circles, Given two conics having double contact
any chord of one which touches the other  with each other, any chord of ome which
is bisected at the point of contact. touches the other is cut harmonically at

the point of contact, and where it meets
the chord of conmtact of the conics. (Ex. 3,
p- 280.)

For the line at infinity in the first case is projected into the chord of contact of two
conics having double contact with each other. Ex. 4, p. 208, is only a particular case of
this theorem.

Ex. 6. Given three concentric circles, Given three conics alt touching each
any tangent to one is cut by the other two  other in the same two points, any tangent
in four points whose anharmonic ratio is  to ome is cut by the other wo in four points
comdtant. . whose anharmonic ratio is constant.

The first theorem is obviously true, since the four lengths ave constant. TBhe second
may be considered as an extension of the anbharmogric propesty of the tangents of a conic.
In like manner, the theorems (in Art. 278) with regard to anharmonic ratios in conics
having double contact are immediately proved by projecting the conics into concentric
eircles.

Ex. 7. We mentioned already, that it was sufficient to prove Pascal theorem for the
case of & cirele, but by the help of Art. 362 we may still further simplify our figure, for
we may suppose the line joining the intersection of AB, DE, to that of BC, EF, to pass
off to infinity ; and it is only necessary to prove that, if a hexagon be inscribed in a
circle having the side AB parallel to DE, and BC to EF, then CD will be paraltel to
AF ; but the truth of this can be shown from elementasy considerations.

Ex. 8. A triangle is inscribed in any conic, two of whese siles pass through fixed
points, to find the envelope of the third (p. 229). Let the line joining the fixed points
be projected to infinity, and at the same time the conic into a circle, and this preperty
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becomes,—* A triangle is inscribed in a circle, two of whose sides are parallel to fixed
lines, to find the envelope of the third.” But this envelope is a concentric circle, since
the vertical angle of the triangle is given ; hence, in the general case, the envelope is a
conic touching the given conic in two points on the line joining the two given points.

Ex. 9. To investigate the projective properties of a quadrilateral inscribed in a conic.
Let the conic be projected into a circle, and the quadrilateral into a parallelogram (Art.
865). Now the intersection of the diagonals of a parallelogram inscribed in a circle is
the centre of the circle; hence the intersection of the diagonals of a quadrilateral in-
‘scribed in a conic is the pole of the line joining the intersections of the opposite sides.
Again, if tangents to the circle be drawn at the vertices of this parallelogram, the dia-
gonals of the quadrilateral so formed will also pass through the centre, bisecting the
angles between the first diagonals; hence, * the diagonals of the inscribed and cerre-
sponding circumscribing quadrilateral pass through a point, and form an harmonic
pencil.”

Ex. 10. Given four points on a conic,
the locus of its centre is a conic through
the middle points of the sides of the given
quadrilateral.

Ex. 11. The locus of the point where
parallel chords of a circle are cut in a given
ratio is an ellipse having double contact
with the circle. (Art. 166.)

Given four points on a conic, the Jocus
of the pole of any fixed line is a conic pass-
iug through the fourth harmonic to the
point in which this line meets each side of
the given guadrilateral.

If through a fixed point O a line be
drawn meeting the conic in A, B, and on it
a point P be taken, such that {OABP}
may be constant, the locus of P is a conic
having double'contact with the given conic.

374. We may project several properties relating to foci by
the help of the definition of a focus given, page 233.

Ex. 1. The locus of the centre of a circle
touching two given circles is a hyperbola,
having the centres of the given circles for
foci.

If a conic be described through two
fixed points, and touching two conics which
also pass through those points, the locus of
the pole of the line joining those points is
a conic inscribed in the quadrilateral formed
by joining the two given points to the poles
of the same line with regard to the given
conics.

We give this example as worth the learner’s study, because it illustrates the different

principles that all circles pass through two fixed points ‘at infinity (Art. 259); that the
centre is the pole of the line joining them (Art. 157); that a focus is the intersection of
tangents passing through these fixed points (Art. 282); and that we are safe in extend-
ing our conclusion from imaginary to real points (Art. 872).

Ex. 2. Given the focus and two points
of a conic section, the intersection of tan-
gents at those points will be on a fixed line.
(Art. 196.)

Ex. 3. Given a focus and two tangents
to a conic, the locus of the other focus is a

Given two tangents, and two points on
a conic, the locus of the intersection of tan-
gents at those points is a right line,

Given four tangents and a fixed point
on each of two of them, the locus of the
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right live. (This follows from Art. 194.)
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intersection of tangents from these points is
a right line,

For, the two points at infinity on any circle lie one on each of the tangents from one
focus, and the intersection of the other tangents from these two points is the other focus.

Ex. 4. Given three tangents to a para-
bola, the locus of the focus is the circum-
scribing circle. (p. 187.)

Given four tangents to a conic, and two
fixed points on one of them, the locus of
intersection of the other tangents from these
points is a conic passing through the two
points, and circumscribing the triangle
formed by the other thres tangents.

For every parabola has one tangent at infinity, and the two points through which

every circle must pass lie on this tangent.

Ex. 6. The locus of the centre of a
circle passing through a fixed point, and
touching a fixed line, is a parabola of which
the fixed point is the focus.

Ex. 6. Given four tangents to a conic,
the locus of the centre is the line joining
. the middle points of the diagonals of the

Given one tangent, and three points on
a conic, the locus of the intersection of tan-
gents at any two of these points is a conic
inscribed in the triangle formed by those
points.

Given four tangents to a conic, the locus
of the pole of any line is the line joining
the fourth harmonics of the points where

quadrilateral. the given line meets the diagonals of the

. quadrilateral.

It follows from our definition of a focus, that if two conica have the same focus, this
point will be an intersection of common tangents to them, and will possess the properties
mentioned in Art, 265. Also, that if two conics bave the same focus and directrix, they
may be considered as two conics having double contact with each other, and may be
projected into concentric circles.

375. Since angles which are constant in any figure will in
general not be constant in the projection of that figure, we pro-
ceed to show what property of a projected figure may be inferred
when any property relating to the magnitude of angles is given,*
and we commence with the case of the right angle.

Let the equations of two lines at right angles to each other
be =0, y = 0, then the equation which determines the direction
of the points at infinity on any circle is 2* + * = 0, or

z+yy-1=0, z-yy-1=0.

* Some particular cases where constant angles are projected into constant angles
bave been treated of by M. Poncelet, Traité des Propriétés Projectives, p. 267 ; and by
Mr. Mulcahy, Modern Geometry, p. 116; who have thus deduced by projection properties
relating to angles subtended at the foci of conics from properties of the circle. As these
theorems, however, may be more simply obtained otherwise, we have thought it better
not to occupy space with this method of obtaining them, and have substituted the gene-
ral theory of projection of angles given in the text.
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Hence (Art. 55) these four lines form an harmonic pencil. Hence,
given four points, A, B, C, D, of a line cut harmonically, where
A, C may be real or imaginary, if these points be transferred by
areal or imaginary projection, so that A, C may become the two
imaginary points at infinity on any circle, then any lines through
B, D will be projected into lines at right angles to each other.
Conversely, any two lines at right angles to each other will be pro-
Jected into lines which cut harmonically the line joining the two
fized points which are the projections of the imaginary points at
infinity on a circle.

Ex. 1. The tangent to a circle i3 at °~ Any chord of a conic is cut harmoni-
right angles to the radius. cally by any tangent, and by the line join-

ing the point of contact of that tangent to
the pole of the given chord. (Art. 147.)

For the chord of the conic is supposed to be the projection of the line at infinity on
the plane of the circle; the points where the chord meets the conic will be the projections
of the imaginary points at infinity on the circle; and the pole of the chord will be the
projection of the centre of the circle.

Ex. 2. Any right line drawn through Any right line through a point, the line
the focus of a conic is at right anglesto the  joining its pole to that point, and the two
line joining its pole to the focus. (Art. tangents from the point, form an harmonic
197.) ' pencil. (Art. 149.)

It is evident that the first of these properties is only a particular case of the second,
if we recollect that the tangents from the focus are the lines joining the focus to the two
imaginary points in any circle (Art. 282).

Ex. 8. Let us apply Ex. 6 of the last Article to determine the locus of the pole of a
given line with regard to a system of confocal conics. Being given the two foci, we are
given a quadrilateral circumscribing the conic (Art. 282), one of the diagonals of this
quadrilateral is the line joining the foci, therefore (Ex. 6) one point on the locus is the
fourth harmonic to the point where the given line cuts the distance between the foci.
Again, another diagonal is the line at infinity, and since the extremities of this diagonal
are the points at infinity on a circle, by the present Article the locus is perpendicular to
the given line. The locus is, therefore, completely determined.

Ex. 4, Two confocal conics cut each If two conics be inscribed in the same
other at right angles. quadrilateral, the two tangents at any of

their points of intersection cut any diagonal
of the circumscribing quadrilateral har-

monically.
The last theorem is a case of the reciprocal of Ex. 1, p. 280.
Ex. 5. The locus of the intersection of If from any two points B, D, which cut
two tangents to a central conic, which cut  a given line AC harmonically, tangents be
at right angles, is a circle, drawn to a conic, the locus of their inter-

section O is a conic through the points
A, C.
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The last theorem may, by Art. 149, be stated otherwise thus: *The locus of & point
O, such that the line joining O to the pole of AO may pass through C, is a conic through
A, C;” and the truth of it is evident directly, by taking four positions of the line, when
we see, by Art. 889, that the anharmonie ratio of four lines, AQ, is equal to that of four

corresponding lines, CO.

Ex. 6. The locus of the interseetion of
tangents to a parabola, which cut at right
angles, is the directrix.

Ex. 7. If from any point on a conic
two lines at right angles to each other be
drawn, the chord joining their extremities
passes through a fixed point.  (p. 160.)

If in the last example AC touch the
given conic, the locus of O will be the lina
joining the points of contact of tangents
from A, C.

If a harmonic pencil be drawn through
any point on a conic, two legs of which are
fixed, the chord joining the extremities of
the other legs will pass through a fixed

point.

In other words, given two points, @, ¢, on a conic, and {ebed} an harmonic ratio, bd
will pass through a fixed point, namely, the intersection of tangents at @, . But the
truth of this may be seen directly : for let the line ac meet dd in K, then since {a.abced}
is a harmonic pencil, the tangent at & cuts dd in the fourth harmonic to K : but so like-
wise must the tangent at ¢, therefore these tangents meet bd in the same point. As a
particular case of this theorem we have the following: * Through a fixed point on a conie
two lines are drawn, making equal angles with a fixed line, the chord joining their extre-
mitjes will pass through a fixed point.”

376. A system of pairs of right lines drawn through a point,
every two of which make equal angles with a fixed line, cut the line
at tnfinity in a system of points in involution, of which the two points
at infinity on any circle form one pair of conjugate points. For
they evidently cut ary right line in a system of points in involu-
tion, the foci of which are the points where the line is met by the
given internal and external bisector of every pair of right lines.
The two points at infinity just mentioned belong to the system,
since they also are cut harmonically by these bisectors.

The tangents from any point to a sys-
tem of conics inscribed in the same quadri-
lateral cut any diagonal of that quadrila-
teral in a system’of points in involution of
which the two extremities of that diagonal
are a pair of conjugate points. (Art. 836.)

377. Two lines diverging from a fized point, which contain a
constant angle, cut the line joining the two points at infinity on a
circle, so that the anharmonic ratio of the four points is constant.

For the equation of two lines containing an angle 0 being
z=0, y =0, the direction of the points at infinity on any circle is
determined by the equation

The tangents from any point to a sys-
tem of confocal conies make equal angles
with two fixed lines. (Art. 194.)

2s
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2+ 3y + 22ycosf =0; ‘
and, separating this equation into factors, we see, by Art. 55, that
the anharmonic ratio of the four lines is constant if @ be constant.

Ex. 1. “The angle contained in the same segment of a circle is constant.” We see,
by the present Article, that this is the form assumed by the anharmonic property of four

points on a circle when two of them are at an infinite distance.

Ex, 2, The envelope of a chord of a
conic which subtends a constant angle at
the focus is another conic having the same
focus and the same directrix.

Ex. 8. The locus of the intersection of
tangents to a parabola which cut at a given
angle is & hyperbola having the same focus
and the same directrix.

Ex. 4. If from the focus of a conic a
line be drawn making a given angle with
any tangent, the locus of the point where
it meets it is a circle.

If tangents through any point O meet
the conic in T, T', and there be taken on
the conic two points A, B, such that
{O.ATBT’} is constant, the envelope of
AB is a conic touching the given conic in
the points T, T".

Ifin Art. 875, Ex. 6, the points B, D
be 80 taken that { ABCD} is constant, the
locus of O is a conic touching the given
conic at the points of contact of tangents
from A, C.

If a variable tangent to a conic meet
two fixed tangents in T, T, and a fixed
line in M, and there be taken on it a point
P, such that {PTMT’} may be constant,
the locus of P is a conic passing through
the points where the fixed tangents meet
the fixed line.

A particular case of this theorem is: ‘ The locus of the point where the intercept of
a variable tangent between two fixed tangents is cut in & given ratio, is a hyperbola
whose asymptotes are parallel to the fixed tangents.”

Ex. 5. If from a fixed point O, OP be
drawn to a given circle, and the angle
TPO be constant, the envelope of TP is a
conic having O for its focus.

Given the anharmonic ratio of a pencil
three of whose legs pass through fixed
points, and whose vertex moves along a
given conic, passing through two of the
points; the envelope of the fourth leg is a
conic touching the lines joining these two
to the third fixed point.

A particular case of this is: ¢ If two fixed points A, B, on a conic be joined to a
variable point P, and the intercept made by the joining chords on a fixed line be cut in
a given ratio at M, the envelope of PM is a conic touching parallels through A and B

to the fixed line.”

Ex. 6. If from a fixed point O, OP be
drawn to a given right line, and the angle
TPO be constant, the envelope of TP is a
parabola having O for its focus.

Given the anharmonic ratio of a pencil,
three of whose legs pass through fixed
points, and whose vertex moves along a
fixed line, the envelope of the fourth leg is
a conic touching the three sides of the tri-
angle formed by the given points,*

# The method of projections can equally be used in obtaining from properties of plane
curves properties of other curves not plane, e. g. curves on the surface of a sphere. Mr.




THE MRTHOD OF PROJECTIONS. 315

378. We shall conclude this chapter with a brief account of
the method of orthogonal projection, which, before the publication
of M, Poncelet’s treatise, was the only method of projection much
used by geometers. If from all the points of any figure perpen-
diculars be let fall on any plane, their feet will trace out a figure
which is called the orthogonal projection of the given figure.
The orthogonal prOJectlon of any figure is, therefore, a right sec-
tion of a cylinder passing through the given figure.

All parallel lines are in a constant ratio to their orthogonal
projections on any plane.

For (see fig. p. 4) MM represents the orthogonal projection
of the line PQ, and it is evidently = PQ multiplied by the cosine
of the angle which PQ makes with MM'.

All lines parallel to the intersection of the plane of the figure
with the plane on which it is projected, are equal to their orthogonal
projections.

For, since the intersection of the planes is itself not altered
by projection, neither can any line parallel to it.

The area of any figure in a given plane is in a constant ratio
to its orthogonal projection on another given plane.

For, if we suppose ordinates of the figure and of its projection
to be drawn perpendicular to the intersection of the planes, since
every ordinate of the projection is to the corresponding ordinate
of the original figure in the constant ratio of the cosine of the

Mulcahy, some years ago, gave the following method of obtaining the properties of
angles subtended at the focus from those of small circles on a sphere. The method de-
pends on the following principle: the locus of the vertices of all the right cones from
which a given ellipse can be cut is a hyperbola passing through the foci of the ellipse.
For, see note, p. 805, the difference of MO and NO is constant, being equal to the diffe-
rence of MF and NF'.

Now, let us take any property of a small circle of a sphere, e. g. if through any point
P, on the surface of a sphere, a great circle be drawn, cutting the small circlein the points
A, B, then tan JAP tan §BP is constant. Now, let us take a cone whose base is the
small circle, and whose vertex is the centre of the sphere, and let us cut this cone by any
plane, and we learn that ¢if through a point p, in the plane of any conic, a line be drawn
cutting the conic in the points @, b, then the product of the tangents of the halves of the
angles which ap, bp subtend at the vertex of the cone will be constant ; this property will
be true of the vertex of any right cone, out of which the section can be cut, and, there-
fore, since the focus is a point in the locus of such vertices, it must be true that tan afp
tan 3dsp is constant (see p. 191).
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angle between the planes to unity; by Art. 351, Cor., the areas
of the figures will be in the same ratio.

Any ellipse can be orthogonally projected into a circle.

For, if we take the intersection of the plane of projection with
the plane of the given ellipse parallel to the axis minor of that
ellipse, and if we take the cosine of the angle between the planes

= g, then every line parallel to the axis minor will be unaltered

by projection, but every line parallel to the axis major will be
shortened in the ratio b: a, the projection will, therefore (Art.166),
be a circle, whose radius is .

379. We shall apply the principles laid down in the last Ar-
ticle to investigate the expression for the radius of a circle cir-
cumscribing a triangle inscribed in a conic, given Ex. 6, p. 199.*

Let the sides of the triangle be a, 3, v, and its area A, then,
by elementary geometry,

_aPy
R-33-

Now let the ellipse be projected into a circle whose radius is 5,
then, since this is the circle circumscribing the projected triangle,

we have !
b= 287
: 4A’
But, since parallel lines are in a constant ratio to their projec-
tions, we have tai: b: b,
B': B:: b: v,
v iy b

and, since (Art. 378) A’is to A as the area of the circle (= #6*)
to the area of the ellipse (= wabd), we have

A':A::b:a.
Hence aBy aB-y -
2A” S 4A tab?: bbb,
and, therefore, R _ bb"b”'
" ab

¢ This proof of Mr. Mac Cullagh’s theorem is due to Dr. Graves.




NOTES.

Pascar’s Trrorew, Page 222.

M. StENER was the first who (in Gergonne’s Annales) directed the
attention of geometers to the complete figure obtained by joining in
every possible way six points on a conic. M. Steiner’s theorems were
corrected and extended by M. Pliicker (Crelle’'s Journal, vol. v. p. 274),
and the subject has been more recently investigated by Messrs. Cayley
and Kirkman, the latter of whom, in particular, has added several new
theorems to those already known. - We shall in this note give a slight
sketch of the more important of these, and of the methods of obtaining
them. The greater part are derived by joining the simplest principles
of the theory of combinations with the following elementary theorems
and their reciprocals : * If two triangles be such that the lines joining
corresponding vertices meet in a point (which we shall call the pole of
the two triangles), the intersections of corresponding sides will lie in
one right line (which we shall call their azis).” *If the intersections
of opposite sides of three triangles be for each pair the same three points
in a right line, the poles of the first and second, second and third, third
and first, will lie in a right line.”

Now let the six points on a conic be a, b, ¢, d, ¢, f; which we shall
call the points P. These may be connected by fifteen right lines, ab, ac,
&c., which we shall call the lines C. Each of the lines C (for example
ab).is intersected by the fourteen others ; by four of them in the point
a, by four in the point b, and consequently by six in points distinct
from the points P (for example the points ab, cd; &.) These we shall
call the points p. There are forty-five such points ; for there are six
on each of the lines C. To find then the number of points p, we
must multiply the number of lines C by 6, and divide by 2, since two
lines C pass through every point p.
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If we take the sides of the hexagon in the order abcdef, Pascal’s
theorem is, that the three p points, (ab, de), (cd, fa), (be, ¢f), lie in one
right line, which we may call either the Pascal abcdef, or else we may
denote as the Pascal :;:EC
as showing more readily the three points through which the Pascal
passes. Through each point p four Pascals can be drawn. Thus
through (ab, de) can be drawn abedef, abfdec, abeedf, abfedc. We then
find the total number of Pascals by multiplying the number of points p
by 4, and dividing by 8, since there are three points p on each Pascal.
We thus obtain the number of Pascal’s lines = 60. We might have
derived the same directly by considering the number of different ways
of arranging the letters abedef.

Consider now the three triangles whose sides are

ab, cd, of, (1)
de, fa, be, (2)
of by, ad. (3)
The intersections of corresponding sides of 1 and 2 lie on the same

Pascal, therefore the lines joining corresponding vertices meet in a
point, but these are the three Pascals,

ond {greal {Bag}

This is Steiner’s theorem (p. 222) ; we shall call this the g point,

{ab.de.cf]

, 8 form which we sometimes prefer,

cd. fa.be
¢ .bc.ad J

The notation shows plainly that on each Pascal’s line there is only one
g point ; for given the Pascal {ab. de.of } the g point on it is found
cd. fa.be
by writing under each term the two letters not already found in that
vertical line. Since then three Pascals intersect in every point g, the
number of points g =20. If we take the triangles 2, 3; and 1, 3; the
lines joining corresponding vertices are the same in all cases: therefore,
by the reciprocal of the second preliminary theorem, the three azes of
the three triangles meet in a point. This, however, is plainly only the

ab.cd.¢f
g point< de. fa.bc ¢, and therefore leads us to no new theorem.
cf .be.ad
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Let us now consider the triangles,
ab cd ef )

ab.ce.df cd.bf . ae ef.bd.ac} )

de.bf.ac J' af.ce.bd)’ bc.ae.df)’

ab.ce .df cd.bf . ae ef.bd.ac} ®)

of .bd.ae J’ be.ac.dfJ’ ad.ce.bf)’
Now the intersections of corresponding sides of 1 and 4 are three points
‘Which lie on the same Pascal; therefore the lines joining corresponding
vertices meet in a point. But these are the three Pascals,

ab.ce.df cd.bf . ae ef.ac.bd}
cd.bf.ae I’ ef.ac.bd)’ ab.df.ce '

We may denote the point of meeting as the % point, cd . bf. ae
¢f .ac.bd
The notation differs from that of the g points in that only one of the
vertical columns contains the six letters without omission or repetition.
On every Pascal there are three % points, viz., there are on

ab.cd.of | . ab.cd.ef ab.cd.ef ab.cd.ef
do. of o }s de.af.be po de.afibe o de.af.be ps
cf.bd.ae ac.be.df. bf .ce.ad

where the bar denotes the complete vertical column. We obtain then
Mr. Kirkman’s extension of Steiner’s theorem :—The Pascals intersect
three by three, not only in Steiner’s twenty points g, but also in sizty other
points h. The demonstration of Art. 269 applies alike to Mr. Kirkman’s
and to Steiner’s theorem.

In like manner if we consider the triangles 1 and 5, the lines join-
ing corresponding vertices are the same as for 1 and 4; therefore the
corresponding sides intersect on a right line, as they manifestly doon a
Pascal. In the same manner the corresponding sides of 4 and § must
intersect on a right line, but these intersections are the three % points,

ab.ce.df ae.cd.bf ac.bd.¢f
de.bf.ac ¢+ bd.af.ce ps df.ae.be p-
of ae.bd) ac.be.df) ce.bf.ad)
Moreover, the axis of 4 and 5 must pass through the intersection of
ab.cd.ef
the axes of 1, 4, and 1, 5, namely, through the g point, de. af. bc .
¢f.be.ad ]
In this notation the g point is found by combining the complete

ab.oa.df}
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vertical columns of the three & points. Hence we have the theorem:
¢ There are twenty lines z, each of which passes through one g and three k
points” The existence of these lines was observed independently by
Mr. Cayley and myself. The proof here given is Mr, Cayley’s.
Again, let us take three Pascals meeting in a point . For instance,

ab.ce.df de.bf .ac ¢f.ae.bd
de.bf.ac J’ qf‘.ae.bd}’ ab.df.ce J°
‘We may, by taking on each of these a point p, form a triangle whose
vertices are (df; ac), (bf, ae), (bd, ce), and whose sides are, therefore,
ac.bf.de bf.ce.ad bd.ac.ef
df.ae.cb)’ aebd.¢f J' ce.df.ab)’
Again, we may take on each a point %, by writing under each of the
above Pascals af. cd. be, and so form 8 triangle whose sides are
ac.bf .de ¢f.ae.bd df.ab. ce
be.cd.afJ’ ba.cd.af}' be.cd.afJ’
But the intersections of corresponding sides of these triangles, which
must therefore be on & right line, are the three g points,

be.cd.a be.cd.a be.cd.af be.cd.a
ac.bf.de >, cf.ae.bd >, df.ab.ce >, c¢f.ab.de p.
df. ae.be ad.bf. ce ac.ef . bd ad.ef . be

I have added a fourth g point, which the symmetry of the notation
shows must lie on the same rightline; these being all the g points into
the notation of which de. cd.af can enter. Now there can be formed,
as may readily be seen; fifteen different product?s of the form be. cd. af';
we have then Steiner’s theorem, The g points lie four by four on fifteen
right lines 1. .

My limits do not allow me to do more than add the enunciations of
a few more theorems (principally Mr. Kirkman’s), but the preceding
examples are sufficient to show how they may be demonstrated, and how
any reader who chooses to prosecute the study of the figure may find
other theorems in great abundance: ¢ The twenty lines = pass four by
Jour through fifteen points y.” The four lines  whose g pointsin the pre-
ceding notation have a common vertical column will pass through the
same point. ¢ There are sixty lines J, each of which passes through one
point p and two points h.> ¢ The lines J again pass three by three through
sixty points j, three of which lie on each of thelines . Mr. Kirkman calls -
points m the intersections of two Pascals, corresponding to hexagons
which have four common sides, no opposite pairs being the same for
both ; for example, abedef, abefed ; and points r, those corresponding
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to hexagons which have three common sides, two of which are con-
tiguous ; for example, abedef, abeefd. * The ninety points m lie three by
three on sixty lines M.” * There are sixzty lines R, each containing siz
points r, and also ons of the siz points P, and which pass in threes through
twenty points . (See Cambridge and Dublin Math. Jour., vol. v. p. 185).

ART. 296, Page 250.

Dr. Boole’s method (p. 143) may be applied to find the relations
between the coefficients of the equations of two conics, which remain
unaltered when we transform from one set of trilinear co-ordinates to
another. Thus, if we form the condition that &S + & = 0 shall repre-
sent two right lines, it is plain that the values of k determined by put-
ting this condition = 0, must be the same no matter in what system of
co-ordinates 8 is expressed. Hence then the ratio between any two
coefficients in the cubic for £ (Art. 296) remains unaltered when we
transform from one set of trilinear co-ordinates to another. Several
theorems may hence be easily proved. For instance, let us define a
self-conjugate triangle, one such that any side is the polar of the oppo-
site vertex with regard to a given conic; and let it be required to prove
that the vertices of any two self-conjugate triangles all lie on the same conic
(see Ex. 2, p. 195). Let the sides of the first triangle be , g, z; those
of the second u, v, w; then supposing these quantities to include con-
stants implicitly, the equation of the conic can (Art. 281) be expressed
in either of the forms #?+ %*+2*=0, or ¥’ +v* + w'=0. And let
the equation of any other conic expressed in terms of the sides of the
first triangle be

Az® + A'y*+ AV2 + 2Byz + 2B'2x + 2B/zy = 0,
and of those of the second be

aw® + a'v: + @’w? + 2bvw + 26'wu + 2buy = 0;
then we have

Az + & + k(2 + ¥ + 2) = au’® + &e. + k(4 + 0* + w?).
Forming then the discriminant of each side of this equation, and
equating corresponding coefficients of %, we find
A+A'+A=a+ad +a";

(AA'-B")+(A’A"-B?) + (A”A - B?)=(aa’- V") + (a'a" - b*)+ (a"a-b*).
If now a conic be described passing through three vertices of the first
triangle and two of the second, we must have the five quantities
A, A’ A" a, a, all =0, and therefore by the first equation a” =0,
Again, if a conic be described to touch the three sides of the first

triangle and two of the second, we must have five of the six members
2T
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of the second equation = 0, and therefore also the sixth, or the siz sides
of the two triangles all touch the same conic. In the same manner it is
proved that if two triangles be both inscribed in the same conic, their
sides will touch the same conic, and vice versd.

ON THE PROBLEM TO DESCRIBE A CONIC UNDER CERTAIN CONDITIONS.

We saw (p. 119) that five conditions determine a conic; we can,
therefore, in general describe a conic being given m points and # tan-
gents where m +n=5. We shall not think it worth while to treat
separately the cases where any of these are at an infinite distance, for
which the constructions for the general case only require to be suitably ,
modified. Thus to be given a parallel to an asymptote is equivalent to
one condition, for we are then given a point of the curve, namely, the
point at infinity on the given parallel. If, for example, we were re-
quired to describe & conic, given four points and a parallel to an
asymptote, the only change to be made in the construction (p. 283) is
to suppose the point E at infinity, and the lines DE, ME therefore
drawn parallel to a given line.

To be given an asymptote is equivalent to two conditions, for we are
then given a tangent and its point of contact, namely, the point at in-
finity on the given asymptote. To be given that the curve is a parabola
is equivalent to one condition, for we are then given a tangent, namely,
the line at infinity. To be given that the curve is a circle is equivalent
to two conditions, for we are then given two points of the curve at in-
finity. To be given a focus is equivalent to two conditions, for we are
then given two tangents to the curve (p. 233), or we may see otherwise
that the focus and any three conditions will determine the curve; for
by taking the focus as origin, and reciprocating, the problem becomes,
to describe a circle, three conditions being given; and the solution of
this, obtained by elementary geometry, may be again reciprocated for:
the conic. Again, to be given the pole, with regard to the conic, of any
given right line, is equivalent to two conditions; for three more will de-
termine the curve. For (see figure, p. 132) if we know that P is the
polar of R'R”, and that T is a point on the curve, T’, the fourth har-
monic, must also be a point on the curve: or if OT be a tangent, OT’
must also be & tangent; if then, in addition to a line and its pole, we
are given three points or tangents, we can find three more, and thus
determine the curve. Hence, to be given the centre (the pole of the line
at infinity) is equivalent to two conditions. It may be seen likewise
that to be given a point on the polar of a given point is equivalent to
one condition. For example, when we are given that the curve is an
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equilateral hyperbola, this is the same as saying that the two points at
infinity on any circle lie each on the polar of the other with respect to
the curve. '

Given five points.—We have shown (Ex. 12, p. 283) how by the
ruler alone we may determine as many other points of the curve as we
please. We may also find the polar of any given point with regard to
the curve ; for by the help of the same Example we can perform the
- construction of Ex. 2, Art. 149, Hence too we can find the pole of
any line, and therefore also the centre.

Five tangents—We may either reciprocate the comstructions of
Ex. 12, p. 283, or reduce this question to the last by Art. 266.

Four points and a tangent.—We have already given one method of
solving this question, p. 280. As the problem admits of two solutions,
of course we cannot expect a construction by the ruler only. We may
therefore apply Carnot’s theorem (Art. 314),

Ac.Ac¢.Ba.Bd'.Cb.Cbh' = Ab. A¥.Bc.B¢’. Ca.Ca'.

Let the four points a, @', b, b’ be given, and let AB be a tangent, the
points ¢, ¢ will coincide, and the equation just given determines the
ratio Ac’:Bc?, everything else in the equation being known. This
question may also be reduced, if we please, to those which follow; for
given four points, there are (Art. 318) three points whose polars are
given ; having also then a tangent, we can find three other tangents
immediately, and thus have four points and four tangents.

Four tangents and a point.—This is either reduced to the last by re-
ciprocation, or by the method just described ; for given four tangents,
there are three points whose polars are given (p. 134).

Three points and two tangents.—It is a particular case of Art. 337
that the two points where any line meets a conic, and where it meets
two of its tangents, belong to a system in involution of which the point
where the line meets the chord of contact is one of the foci. If, there-
fore, the line joining two of the fixed points @, b, be cut by the two
tangents in the points A, B, the chord of contact of those tangents
passes through one or other of the fixed points F, ¥, the foci of the
system (a, b, A, B), (see Art. 264). In like manner the chord of con-
tact must pass through one or other of two fixed points G, G’ on the
line joining the given points @, ¢. The chord must therefore be one or

-other of the four lines, FG, FG’, F'G, F’G’; the problem, therefore,
has four solutions.

Two points and three tangents.—The triangle formed by the three
chords of contact has its vertices resting one on each of the three given
tangents; and by the last case the sides pass each through a fixed point
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on the line joining the two given points: therefore this triangle can be
constructed.

To be given two points or two tangents to & conic is & particular
case of being given that the conic has double contact with a given conic.
For the problem to describe a conic having double contact with a given
one, and touching ‘three lines, or else passing through three points, see
p-283. Having double contact with two, and passing through a given
point, or touching a given line, see p. 237. Having double contact
with a given one, and touching three other such conics, see p.257.

We have already alluded (p. 252) to the problem, ‘ to describe a
conic through four points to touch a given conic.” Let the required
conic be 8 + 8/, which is to touch 8. Then the polar of the point of
contact, with regard to S”, is the tangent at the point, and is also its
polar for S + kS', and therefore passes through the intersection of the
polars with regard to S and 8/. Now let it be required to find the locus
of a point such that its polars, with regard to S, 8/, S”, should meet in
a point. If £, 9, § be the current co-ordinates, we have to eliminate
these between the equations of the three polars,

dS dS dS S’ dS’ dS’ dS" dS" dS"
a.nd the result is,

ds (dS’ dS” dS dS"\ dS (dS’ dS’ dS’' dS”
=T T s (a'w“zwz)
ds (dS’ as’ ds' ds"\ _ 0
dz \dz "dy ~dy’ TJ?) -
a curve of the third degree, whose intersections with 8” give the six
solutions sought.

If S, 8/, 5’7 all pass through the same two points A, B, the locus
reduces to a line and a conic: for the line joining those points must be
a factor in the locus, since the polar of any point C on that line must
pass through D, the fourth harmonic to A, B, C. If S, S/, S” repre-
sent circles, the equation just written represents the circle cutting all
those at right angles.

The locus will also break up into a line and conie, if one of the
. quantities S’ be a perfect square L?; since L will then be a factor in
the locus. Hence we can describe a conic to touch a given conic S at
two given points (S, L), and also touching S/; for the intersection of
the locus with S determines the points of contact with S” of conics
of the form S + L2

THE END.
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F.R.S.; and ROBERT GRANT,M.A,,F.R.A.S.
In Two Volumes. Vor. I. 8vo. with Plates
and Woodcuts, 21s,

Arnold—Poems. By Matthew Arnold.
Firsr SEriEs, Third Edition. Fecp. 8vo.
price Bs. 6d. SEcOND SERIES, price bs.

Arnold. — Merope, & Tragedy. By Matthew
ARNoOLD. Witl; a Preface and an Historical
Introduction. Fep. 8vo. bs.

Lord Bacon’s Works. A New Edition,
revised and elucidated; and enlarged by the
addition of many pieces not printed before.
Collected and edited by BoBERT LESLIE
Ers, M.A., Fellow of Trinity College,
Cambridge; James SreppINg, M.A. of
Trinity College, Cambridge ; and Dovaras
DxexoN HeATH, Esq., Barrister-at-Law, and
late Fellow of Trinity College, Cambridge.—
Youis, I. to III. 8vo. 18s, each; Vor IV.
14s.; and Vor. V. 18s., comprising the
Division of Philosophical Works ; with a co-
pious IXDEX.,

*,* Vois. VI, and VII, comprising
Bacon’s ZLiterary and Professional Works, are
just ready.

Joanna Baillie's Dramatic and Poetical
. Works: Comprising the Plays of the Pas-
sions, Miscellaneous Dramas, Metrical Le-
gends, Fugitive Pieces, and Ahalya Baee;
with the Life of Joanna Baillie, Portrait,
and Vignette, Square crown 8vo. 21s.
cloth ; or 42s. bound in morocco by Hayday.

Baker. — The Rifle and the Hound in
Ceylon. By 8. W. Baxkr, Esq. New
Edition, with 13 Illustrations engraved on
Wood. Fep. 8vo. 4s. 6d.

Baker. — Eight Years’ Wanderings in Ceylon.
By 8. W. BaAxkEr, Esq. With 6 coloured
Plates. 8vo, price 158,

Barth. — Travels and Discoveries in
North and Central Africa : Being the Jour-
nal of an KExpedition undertaken under
the auspices of Her Britannio Majesty’s Gto-
vernment in the Years 1849—1855‘: By
Hx~NRY BarTH, Ph.D.,D.C.L., Fellow of the
Royal Geographical and Asiatic Bocieties,
&c. 'With numerous Maps, Wood Engrav-
ings, and Tlustrations in tinted Lithography.
b vols, 8vo. £5. bs, cloth,

¢ Few books of travel | leave the reader nothin,
to desire. Theauthor’s quali-
an interest or 8o complete a | fications place him in the

as | first rank of scientific ex-
these of Dr, Barth. Short of | plorers,”
actual personal survey, they

ATHENRUM,
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Bayldon's Art of Valuing Rents and
Tillages, and Claims of Tenants upon
Quitting Farms, at both Michaelmas and
Lady-Day ; as revised by Mr. DONALDSON.
Seventh Edition, enlaried and adapted to the
Present Time: With the Principles and
Mode of Valuing Land and other g’roperty
for Parochial Assessment and Enfranchise-
ment of Copyholds, under the recent Aots of
Parliament. By RoBERT BaxEkm, Land-
Agent and Valuer, 8vo. 10s, 6d.

Black's Practical Treatise on Brewing,
based on Chemical and Economical Princi-
fles : With Formule for Public Brewers, and

nstructions for Private Families. New
KEdition, with Additions, 8vo. 10s, 6d.

Blaine’s Encyclopzdia of Rural Sports;
or, a complete Account, Historical, Prac-
tical, and Descriptive, of Hunting, Shooting,
Fishing, Racing, &. New Edition, revised
and corrected ; with above 600 Woodcut
Tllustrations from Drawings by J. Leech,
Alken, T. and G. Landseer, R. B. Davis,
and other Artists. In 1 vol. 8vo. price 42s.
half-bound.

Blair's Chronological and Historical
Tables, from the Creation to the Present
Time: With Additions and Corrections from

the most authentic Writers; including the

Computation of St. Paul, as connecting the
Period from the Exode to the Temple.
Under the revision of Sre Henry Erus,
K.H. Imperial 8vo. 31s. 6d. half-morocco.

Bloomfield. — The Greek Testament,
with copious English Notes, Critical, Phi-
lological, and Explanatory. Especially
adapted to the use oP Theological Students
and Ministers. By the Rev. 8. T. Broox-
FIELD, D.D., F.8.A. Ninth Edition, revised.
2 vols. 8vo. with Map, price £2. 8s.

Dr. Bloomfleld’s College and School Edition of
the Greek Testament: With. brief English
Notes, chiefly Philological and Explanatory.

~Seventh Edition; with Map and Index.
Fep. 8vo. 7s. 6d.

1

"Dr. Bloomfleld’s College and School Lexicon
to the Greek Testament. New Edition,
carefully revised. Fecp. 8vo. price 10s. 6d.

Bourne’s Catechism of the Steam-Engine
in its various Applications to Mines, Mills,
Steam-Navigation, Railways, and icul-
ture: With Practical Instructions for the
Manufacture and Management of Engines
of every olass. Fourth Edition, enlarged ;
with 89 Woodcuts. Fep. 8vo. 6s.

Bourne. — A Treatise on the Steam-
Engine, in its Application to Mines, Mills,
Steam-Navigation, and Railways. By the
Artisan Club. Edited by Jorx BournE, C.E.
New Edition; with 33 Steel Plates and 849
‘Wood Engravings. 4to. price 27s.

Bourne,—A Treatise on the Screw Propeller:
‘With various Suggestions of Improvemént.
By JorN BourNg, C.E. New Edition, tho-
roughly revised and corrected. With 20
large Plates and numerous Woodcuts. 4to.
price 38s.

Boyd.— A Manual for Naval Cadets.
Published with the sanction and approval
of the Lords Commissioners of the Admi-
ralg %’ JorN M‘NEerLL Boyp, CaY in,
R.N, ith Compass-Signals in Colours,
and 286 Woodcuts. Fep. 8vo. 10s. 6d.

Brande.—A Dictionary of Science, Lite-
rature, and Art: Comprising the History,
Description, and Scientific Principles of
every %mnch of Human Knowledge; with
the Derivation and Definition of all the
Terms in general use. Edited by W. T.
‘BraNDE, F.R.8.L. and E,; assisted by D=z.
J. CavviN. Third Edition, revised and cor-
rected ; with numerous Woodcuts. 8vo. 60s.

Professor Brande’s Lectures on Organic
Chemistry, as applied to Manufactures;
including Dyeing, %leaching. Calico-Print-
ing, Sugar-Manufacture, the Preservation
of Wood, Tanning, &e. ; delivered before the
Members of the Royal Institution. Edited
by J. ScorrEry, M.B. Fcp. 8vo. with
Vgoodouts, price 7s. 6d.

Brewer. — An Atlas of History and Geo-
graphy, from the Commencement of the
Christian Era to the Present Time : Com-
prising a Series of Sixteen coloured Maps,
arranged in Chronological Order, with Illus-
trative Memoirs. By the Rev.J. 8. BREWER,
M.A., Professor of English History and
Literature in King’s College, London.
Second Edition, revised and corrected.
Royal 8vo. 12s, 6d. half-bound.

Brialmont,—The Life of the Duke of
‘Wellington. From the French of ALExIs
Brianmont, Captain on the Staff of the
Belgian Army: With Emendations and
Additions. By the Rev.G. R. GLE1G, M.A,,
Chaplain-General to' the Forces and Pre-
bendary of St. Paul’s. With Maps, Plans
of Battles, and Portraits, Vous. L, and II.
8vo. 80s.

Brodie. — Psychological Inquiries, in a
Series of Essays intended to illustrate the
Influence of the Physical Organisation on
the Mental Faculties. By Sir BENJAMIN C,

~  BroDIE,Bart. Third Edition. Fcp.8vo. bs.
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Bull.— The Maternal Management of
Children in Health and Disease. By
T. Burr, M.D.,, Member of the Royal
College of Physicians ; formerly Physician-
Acocoucheur to the Finsbury Midwifery
Institution. New Edition. ¥cp. 8vo. bs.

Dr. T. Bull’'s Hints to Mothers on the Manage-
ment of their Health during the Period of
Pregnanoy and in the Lying-in Room : With
an Exposure of Popular Errors in connexion
with those subjects, &c.; and Hints upon
Nursing. New Edition. Fep. 8vo. Bs.

Bunsen. — Christianity and Mankind,
their Beginnings and Prospects. By
Baron C.C.J. Bunsex, D.D., D.C.L., D.Ph.
Being a New Edition, correeted, remodelled,
and extended, of Hippolytus and his Age.
%7 vols. 8vo, £5. bs.
*,* This Edition is composed of three distinct works,
which may be had separately, as follows :—
. Hippoly' his Age; or, the Beginnin, d
! %irmpectt:'ofm Cgrlstsmnftoy grvols.e 8vo, price gl'%‘a
2. Ogtlén& %fa:lhe Phl.losgphy ot;ni&;s&li ’}ﬂlistmy Zp-
and Religion: ng an Ac-
gosnt of m‘ﬂl’;’fﬁmum Conferences, %
price £1. 188,
8. Analecta Aute-Nicena, 8 vols, 8vo, price £2, 2s,

2 vole, 8vo.

Bunsen.— Lyra Germanica. Translated
from the German by CATHERINE WINK-
‘WORTH. Fifth Edition of the FIRsT SERIES,
Hymns for the Sundays and chief Festivals
of the Christian Year. SEcoND SERIES, the
Christian Life. Fep. 8vo. price 5s. each
Series. :

*,* These selections of German Hymns
from collections published in Germany by
and form companion volumes to

Theologia Germanica: Which setteth forth
many fair lineaments of Divine Truth, and
saith very lofty and lovely things touching
a Perfect Life. Translated by Susanna
WiNgwoRTH. With a Preface by the Rev.
CHARLES KINGSLEY ; and a Letter by Baron
BuxnseN. Third Edition. Fep. 8vo. bs.

ve been made
aron BUNSEN;

Bunsen. — Egypt's -Place in Universal
History: An Historical Investigation, in
Five Books. BI; Baron C. C. J. BUNSEN,
D.D., D.C.L,, D.Ph. Translated from the
German by O. H. Corrrrrr, Esq., M.A.
‘With many Illustrations. Vor. L. 8vo. 28s.;
Vor. IL 8vo. 30s.

Bishop Butler's General Atlas of Modern
and Ancient Geeography; comprising Fifty-
two full-coloured Maps; with complete In-
dices, New Edition, nearly all re-engraved,
enlarged, and greatly improved. Edited by
the Author’s Son. Royal 4to.24s. half-bound.

The Modern Aﬂ:ls of 28 full-coloured Maps,

Royal 8vo, price 12s.
Separately {The ‘Ancient Atlas of 24 full-coloured Maps,
Royal 8vo. price 12s.

Bishop Butler’s Sketch of Modern and
Ancient Geography. New Edition, tho-
roughly revised, with such Alterations intro-
duced as continually progressive Discoveries
and the latest Information have rendered
necessary. Post 8vo. price 7s. 6d.

Burton.—First Footsteps in East Africa ;
or, an Exploration of Harar. By RicHARD
F. BurTON, Captain, Bombay Army. With
Maps and coloured Plates. - 8vo. 18s.

Burton. — Personal Narrative of a Pil-
grimage to El Medinah and Meccah. By
RicaArp F. BurtoN, Captain, Bombay
Army. Second Edition,revised ; with colouied
Plates and Woodcuts. 2 vols. crown 8vo.
®rice 24s,

The Cabinet Lawyer: A Popular Digest
of the Laws of England, Civil and Criminal ;
with a Dictionary of Law Terms, Maxims,
Statutes, and Judicial Antiquities ; Correct
Tables of Assessed Taxes, Stamp Duties,
Ezxcise Licenses, and Post-Horse Duties;
Post-Office Regulations ; and Prison Disci-
pline. 17th Edition, comprising the Publio
Acts of thoSession 1858. Fep, 8vo. 10s. 6d.

The Cabinet Gazetteer: A Popular @eogra-
phical Dictionary of All the Countries of
the World. By the Author of T%e Cabinet
Lawyer. Fep, 8vo. 10s. 6d. cloth.

Calendars of State Papers, Domestic
Series, published under the Direction of the
Master of the Rolls, and with the Sanction
of H.M. Secretary of State for the Home
Department :—

" The Reign of JAMES I. 1603-23, edited by

Mrs, GrEEN. Vois. I to IIL imperial 8vo.
16s. each. .

The Reign of CHARLES I. 1625-26, edited
by Jorx Brucg, V.P.S.A. Imperial 8vo. 15s.

The Reigns of EDWARD VI, MARY,
ELIZABETH, 1547-80, edited by R. LEMON,
Esq.” Imperial 8vo. 16s.

Historical Notes relative to the History
of England, from the Accession of HENRY
VIII. to the Death of ANNE (1509-1714),
compiled by F. 8. Thomas, Esq. 3 vols.
imperial 8vo. 40s.

State Papers relating to Scotland, from the
Reifdn of HENRY VIII. to the Accession of
JAMES I. (1509-1608), and of the Corre-
spondence relating to MARY QUEEN of
SCOTS, during her Captivity in England,
edited by M. J. THORPE, Esq. 2 vols, imp.
8vo. 80s.
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Calvert. — The Wife’'s Manual; or,
Prayers, Thoughts, and Songs on Several
Occasions of a Matron’s Life. By the Rev.
W. CaLverT, M.A, Ornamented from De-
signs by the Author in the style of Queen
Elizabeth’s Prayer-Book. Second Edition.
Crown 8vo. 10s. 6d. -

Catlow.—Popular Conchology; or, the
Shell Cabinet arranged according to the
Modern System : With a detailed Account
of the Animals, and a complete Descriptive
List of the Families and era of Recent
and Fossil Shells,. By Aexcs Catrow.
Second Edition, much improved ; with 405
‘Woodcut Illustrations. Post 8vo. price 14s.

Cecil. — The Stud FParm; or, Hints gn
Breeding Horses for the Turf, the Chase, and
the B,oag. Addressed to Breeders of Race-
Horses and Hunters, Landed Proprietors,
and especislly to Tenant Farmers. By
Ceom.. Fep. 8vo. with Frontispiece, Ba.

Cecil's Stable Practice; or, Hints on Training
for the Turf, the Chase, and the Road;
with Observations on Racing and Hunt-
ing, Wasting, Raee-Riding, and Handi-
capping : Addressed to Owners of Racers,
Hunters, and other Horses, and to all who
are concerned in Racing, Steeple-Chasing,
and Fox-Hunting. Fcp. 8vo. with Plate,
price Bs. half-bound.

Chapman, — History of Gustavus Adol-
phus and of the Thirty Years’ War up to the
‘King’s Death : With some Account of its
Conclusion by the Peace of Westphalia, in
1648. By B. CmapmaN, M.A., Vicar of
Letherhead. 8vo. with Plans, 12s. 6d.

Chevreul On the Harmony and Contrast
of Colours, and their Applications to the
Arts: Including Painting, Interior Decora-
tion, Tapestries, Carpets, Mosaics, Coloured
Glazing, Paper-Staining, Calico-Printing,
Letterpress-Printing, M&Colouﬁng,Dress,
Landscape and Flower-Gardening, &c. &o.
Translated by CHARLES MARTBL. Second
Edition; with 4 Plates. Crown* 8vo.
price 10s. 6d.

Conybeare and Howson.—The Life and
Epistles of Saint Paul: Comprising a com-
plete Biography of the Apostle, and a
Translation of his Epistles inserted in
Chronological Order. By the Rev. W. J.
CONYBEARE, M.A.; a.ng the Rev. J. 8.
HowsoN, MLA. Second Edition, revised and
corrected ; with several Maps and Wood-

cuts, and 4 Plates. 2 vols. square crown .

8vo. 81s. 6d. cloth.

*,* The Original Edition, with more numerous Ilustra-
tions, in 2 vols, 4t0, price 436, —may also be had,

Chronicles and Memorials of 'Great
Britain and Ireland during the Middle Ages,
published by the anthority of H.M. Trea-
sury, under the direction of the Master of
the Rolls ........... terenenses veeeesone Royal 8vo.

Capgrave’s Chronicle of England, edited by
the Rev. F. C. HinaesTOoN, M. A, ......8s. 6d.

Chronicon Monasterii de Abingdon, edited
by Rev. J. STEVENBON............ Vou. I. 8s. 6d.

Lives of Edward the Confessor, edited b,
the Rev. H. R. Luarp, M.A............. 8s. 6d.

Monumenta I'ranciscans, edited by the Rev.
J. 8. BREWER, MLA. ........ccoeeeeeen.. 83, 6d.

Fasciculi Zizaniorum Magistri Johannis
Wiyclif cum Tritico. Edited by the Rev. W.
W. SHIRLEY, MLA. .(ueeeieeiiieenene... .88, 6d.

Stewart’s Buik of the Croniclis of Scotland,
edited by W. B. TuBNBULL.....Vor. L. 8s. 6d.

J. Capgrave Liber de Illustribus Henricis,
edited by Rev. F. C. HinarsToN, M.A. 8s. 6d.

English Translation of Capgrave’s Book of
the Illustrious Henries, by the Rev. F. C
HINGESTON, MLA. ....cicciviiinennnnennes 10s. 6d.

Historia de Monasterii 8. Augustini Cantua-
rensis, edited by Rev. C. HARDWICKE. 8s. 6d.

Connolly.—History of the Royal Sappers
and Miners: Including the Services of the
Corps in the Crimea and at the Siege of
Sebastopol. By T. W.J. CoNNOLLY, Quar-
termaster of the Royal Engineers. Second
Edition, revised and enlarged ; with 17 co-
loured plates. 2 vols. 8vo. price 30s.

Dr. Copland’s Dictionary of Practical
Medicine: Comprising General Pathology,
the Nature and Treatment of Di
Morbid ™ Structures, and the Disorders es-
pecially incidental to Climates, to Sex, and
to the different Epochs of Life; with nume-
rous approved Formuls of the Medicines
recommended. Now complete in 3 vols,
8vo. price £5. 11s. cloth. *

Bishop Cotton’s Instructions in the
Doctrine and Practice of Christianity. In-
tended chiefly as an Introduction to Confir-
mation. Fourth Edition. 18mo. 2s. 6d.

Cresy’s Encyclopmdia of Civil Engi-
neering, Hristorical, Theoretical, and Prac-
tical.  Illustrated by upwards of 8,000
‘Woodcuts. Second Edition, revised and
brought down to the Present Time in a
Supplemenc,oomprisingl[etropolitm ‘Water-
Supply, Drainage of Towns, Railways,
Cubical Proportion, Brick and Iron Con-
struction, Iron Screw Piles, Tubular Bridges,
&c. 8vo. 63s. cloth.
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Crosse.— Memorials, Scientific and Li-
terary, of Andrew Crosse, the Electrician.
Edited by Mrs. CrossE. Post 8vo. 9s. 6d.

Crowe,— The History of France. By
Evre Evaxs Crowk., In Five Volumes.
Vor. 1. 8vo, price 14s.

Cruikshank. — The Life of Sir John
Falstaff, illustrated in a Series of Twenty-
four original Etchings by George Cruik-
shank.  Accompanied by” an imaginary
Biography of the Knight by Rosxrr B.
BrouaH. Royal 8vo. price 12s. 6d. cloth.

Lady Cust’s Invalid’s Book.— The In-
valid’s Own Book: A Collection of Recipes
from various Books and various Countries.
By the Honourable Lapy Cusr. Second
Edition, Fcp. 8vo. price 2s. 6d. .

Dale.—The Domestic Liturgy and Family
Chaplain, in Two Parts: Parr I. Church
Services adalgted for Domestic Use, with
Prayers for Every Day of the Week, selected
from the Book of Common Prayer; PART
I1. an appropriate Sermon for Every Sunday
in the Year. By the Rev. THoMAS DALE,
M.A,, Canon Residentiary of 8t. Paul’s,
Second - Edition. Post 4to. 21s, cloth;
81s, 6d. calf ; or £2. 108, morocco.

TERE FAMILY CHAPLAIN, 125,
Separately {12z Doxasrro Lrrvser, 106, 64.

Davies.—Algiers in 1857: Its Accessi-
bility, Climate, and Resources described
with especial reference to English Invalids;
with details of Recreation obtainable in its
Neighbourhood added for the use of Tra-
vellers in general. By the Rev. E. W. L.
Davies, M.A,, Oxon. Post 8vo. with 4
Illustrations, 6s.

Davy (Dr. J.) —The Angler and his
Friend ; or, Piscatory Colloquies and Fish-
in%Excursions. By Jorx Davy, M.D,,
F.R8,, &.. Fop. 8vo. price 6s.

The Angler in the Lake District: or, Piscatory
Colloquies and Fishing Excursions in West-
moreland and Cumberland. By JomwN
Davy,M.D,, F.R.8. Fop. 8vo. 6s. 6d.

Delabeche.—Report on the Geology of
Cornwall, Devon, and West Somerset. By
Sir H. T. DerABECHE,F.R.S. With Maps,
Plates, and Woodcuts. 8vo. price 14s.

De la Rive.—A Treatise on Electricity
in Theory and:Practice. By A. DB 1A RIVE,
Professor in the Academy og Geneva. Trans-
lated for the Author by C.V. WALKEE,
F.R.8. With numerous Woodcut Illustra-
tions. 8 vols. 8vo. price £3. 13s. cloth.

Abbe Domenech’s Missionary Adven-
tures in Texas and Mexico: A Personal

" Narrative of Six Years’ Sojourn in those
Regions. Translated from the French under
the Author’s superintendence. 8vo. with
Map, 10s. 6d. .

The Bclipse of Faith ; or, & Visit toa
Religious Sceptic. 9¢AEdition. Fcp. 8vo, Bs.

Defence of Tho Eclipse of Faith, by its
Author: Being a Rejoinder to Professor
Newman’s Reply : Including a full Exami-
nation of that Writer's Criticism on the
Character of Christ; and a Chapter on the
Aspects and Pretensions of Modern Deism.
Second Edition, revised. Post 8vo, bs. 6d.

The Englishman’s Greek Concordance of
‘the New Testament : Being an Attempt at a
Verbal Connexion between the Greek and
the English Texts ; including a Concordance
to the Proper Names, with Indexes, Greek-
English and English-Greek. New Edition,
witﬁ a new Index. Royal 8vo. price 42s.

The Englishman’s Hebrew and Chaldee Con-
cordance of the Old Testament: Being an
Attempt at a Verbal Connexion between
the Original and the English Translations ;
with Indexes, a List of the Proper Names
and their Occurrences, &c. 2 vols. royal
8vo. £8. 18s, 6d.; large paper, £4. 14s. 6d.

Ephemera’s Handbook of Angling;
teaching Fly-Fishing, Trolling, Bottom-
Fishing, Salmon-Fishing : With the Natural
History of River-Fish, and the best Modes
of Catching them. Third Edition, corrected
and improved ; with Woodcuts, Fep. 8vo.bs.

Ephemera’s The Book of the Salmon: Com-

prising the Theory, Principles, and Prac-
tice of Fly-Fishing for Salmon; Lists of
good Salmon Flies for every &f’od River in
the Empire; the Natural History of the
Salmon, iés Habits described, and the best
way of artificially Breeding it. Fcp. 8vo.
with coloured Plates, price 14s.

Fairbairm.—Useful Information for En-
gineers: Being a Series of Lectures delivered
to the Working Engineers of Yorkshire and
Lancashire. With Appendices, containing
the Results of Expermmental Inquiries into
the Strength of Materials, the Causes of
Boiler Explosions, &e. By Wiriam
FareBAeN, F.R.S,, F.G.8. Second Edition ;
with numerous Plates and Woodcuts. Crown
8vo. price 10s. 6d.

Fischer.—Francis Bacon of Verulam:
Realistio Philosophy and its Age. By Dr.
K. FrsomER. Translated by JorN OXEN-
PORD, Post 8vo. 9s. 6d.
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Forester—Rambles in the Islands of
Corsica and Sardinia: With Notices of
their History, Antiquities, and present
Condition. By TrHowas FORESTER, Au-
thor of Norway in 1848-1849. With
coloured Map ; and numerous Illustrations
in Colours and Tintgand on Wood, from
Drawings made during the Tour by Lieut.-
Col. M. A. BiopureH, R.A. Imperial
8vo. price 28s.

Garratt.—Marvels and Mysteries of In-
stinct ; or, Curiosities of Animal Life. By
GEOBGE GARBATT. Second Edition, revised
and improved ; with a Frontispiece. Fep.
8vo. price 4s. 6d.

Gilbart.—A Practical Treatise on Bank-
- ing. By JamEs Wrrriam Grusazt, F.R.8,,
General Manager of the London and West-
minster Bank. Sizth Edition, revised
and enlarged. 2 vols. 12mo. Portrait, 16a.

Gilbart. — Logic for the Million: A
Familiar Exposition of the Art of Reasoning.
By J. W. Giusart, F.R.S. 5th Edition;
with Portrait of the Author. 12mo. 3s. 6d.

Gleig.—Essays, Biographical, Historical,
and Miscellaneous, contributed chiefly to the
Edinburgh and Quarterly Reviews. By the
Rev. G. R, Gzrie, M.A,, Chaplain-General
to the Forces and Prebendary of 8t. Paul’s.
2 vols. 8vo.-21s.

The Poetical Works of Oliver Goldsmith.
Edited by BorToN CorNEY, Esq. Illustrated
by Wood Engravings, from Designs by
Members of the Etching Club. Square
erown 8vo. cloth, 21s.; morocco, £1. 16s.

Gosse.— A Naturalist’'s Sojowrn in
Jamaica, By P. H. Gossg, Esq. With
Plates. Post 8vo. price 14s.

Greathed.—ILetters from Delhi during
the Siege. By H. H. GrraTHED, Esq.,
Political Agent, Post 8vo,

Green.—Lives of the Princesses of Eng-
land. By Mrs. Mary ANNE EVERETT
GREEN, Editor of the Letters of Royal and
Tllustrious Ladies, 'With numerous Por-
traits. Complete in 6 vols. post 8vo. price
10s. 6d. each.—Any Volume may be had
separately to complete sets. .

Greyson. — Selections from the Corre-
spondence of R. E. H. GrrvsoN, Esq.
dited by the Author of The Eclipse of
Faith. Second Edition. Crown 8vo. 7s.6d.

Grove,— The Correlation of Physical
Forces. By W. R. Geove, Q.C., M.A.,
F.R.8., &o. Third Edition. 8vo. price 7s.

Gurney.—St. Louis and Henri IV, : Being
a Second Series of Historical Sketches.
By the Rev. JouN H. GURNEY, M.A., Rector
of St. Mary’s, Marylebone. Feop. 8vo. 6s.

Evening Recreations; or, Samples from the
Lecture-Room. Edited by the Rev. J. H.
Gurxrey, M.A. Crown 8vo. 5s.

Gwilt’s Encyclopedia of Architecture,
Historical, Theoretical, and Practical. By
.‘I;sxﬁnEGwnm. Vfgth gore than 1,000

ood Engravings, m Designs by J. 8.
@wir. Third Rdition. Svo.42s.

Hare (Archdeacon).—The Life of Luther,
in Forty-eight Historical E ings. B
GusTav KoN1@. With Enxgpmons by}
Archdeacon Hare and SusaNNA WIKNK-
WORTH. Fep. 4to. price 28s.

Harford.—Life of Michael Angelo Buon-
arroti: With Translations of many of his
Poems and Letters; also Memoirs of Savo-
narola, Raphael, and Vittoria Colonna. By
JorN 8. Hazrrorp, Esq., D.C.L., F.R.S.
Second Edition, thoroughly revised ; with
20 copperplate Engravings. 2 vols. 8vo. 25s.

Illustrations, Architectural and Pictorial, of
the Genius of Michael Angelo Buonarroti.
With Descriptions of the Plates, by the
Commendatore CANINA; C. R. COCKERELL,
Esq., R.A.; and J. 8. Harrorp, Esq.,
D.C.L.,, F.R.8. Folio, 73s. 6d. half-bound.

Harrison.—The Light of the Forge; or,
Counsels drawn from the Sick-Bed of E. M.
By the Rev. W. HARRISON, M.A., Domestic
Chaplain to H.R.H. the Duchess of Cam-
bridge. Fcp. 8vo. price bs.

Harry Hieover.—Stable Talk and Table
Talk; or, Spectacles for Young Sportsmen.
By Harry Hizovee. New Edition, 2 vols,
8vo. with Portrait, price 24s.

Harry Hioover.—The Hunting-Field. ByHarry
Hrrover. With Two Plates. Fcp. 8vo.
5s. half-bound.

Harry Hieover. — Practical Horsemanship.
By HArrY HIEOVER. Second Edition; with
2 Plates. Focp. 8vo. Bs. half-bound.

Harry Hieover.—The Pocket and the Stud; or,

. Practical Hints on the Management of the
Stable. By HarrRY Hikovir. Seccond
Edition; with Portrait of the Author. Fep.
8vo. price 5s. half-bound.

Harry Hieover.—The Stud, for Practical Pur-
poses and Practical Men: Being a Guide
to the Choice of a Horse for use more than
for show. By Harry Hieovee. With
2 Plates. Fep. 8vo. price 6s. half-bound.
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Hassall. —Adulterations Detected; or,
Plain  Instructions for the Discovery of
Fraudsin Food and Medicine. By ARTHUR
Hrrr Hassarr, M.D. Lond., Analyst of The
Lancet Sanitary Commission ; and Author of
the Reports of that Commission published
under the title of Food and its Adulterations
(which may also be had, in 8vo. price 28s.)
'With 225 Illustrations, engraved on Wood.
Crown 8vo, 17s. 6d.

Hassall.—A History of the British Fresh
Water Alge: Including Descriptions of the
Desmidesm and Diatomacese. With upwards
of One Hundred Plates of Figures, illus-
trating the various Species. By ARTHUR
Hiiy Hassarn, M.D., Author of AMicro-
scopic Anatomy of the Human Body, &e. 2
vols. 8vo. with 108 Plates, price £1. 15s.

Col. Hawker's Instructions to Young
Sportsmen in all that relates to Guns and
Shooting.  10th Edition, revised by the
Author’s Son, Major P. W. L. HAWKER ;
with a Portrait of the Author, and nu-
merous Plates and Woodouts. 8vo. 21s.

Haydn's Book of Dignities : Containing
Rolls of the Official Personages of the British
Empire, Civil, Ecclesiastical, Judicial, Mili-
tary, Naval, and Municipal, from the Earliest
Periods to the Present Time. Together
with the Sovereigns of Europe, from the
Foundation of their respective States; the
Peerage and Nobility of Great Britain ; &c.
Being a New Hdition, improved and conti-
nued, of Beatson’s Political Index. 8vo.
price 26s. half-bound.

Hayward. — Biographical and Critical
Essays, reprinted from Reviews, with Ad-
ditions and Corrections. By A. HAYWARD,
Esq., Q.C. 2 vols. 8vo. price 248.

The Heirs of Gheveleigli: A Novel. By
GERVAISE ABBOTT. 3 vols. post 8vo.
price 81s. 6d.

Sir John Herschel.—Outlines of Astro-
nomy. By Sie Joux ¥. W. HERsSOHEL,
Bart., K.H.,, M.A. Ffﬂb Edition, revised
and corrected to the existing state of Astro-
nomical Knowledge ; with Plates and Wood-
cuts, 8vo. price 18s,

8ir John Herschel’s Essays from the Edin-
burgh and Quarterly Reviews, with Ad-
dresses and other Pieces. 8vo. price 18s.

Hinchliff —Summer Months among the
Alps: With the Ascent of Monte Rosa.
By Tromas W. HiNomLIFF, of ‘Lincoln’s
Inn, Barrister-at-Law. With 4 tinted
Views and 8 Maps. Post 8vo. price 10s. 6d.

Hints on Etiquette and the Usages of
Society: With a Glance at Bad Habits.
New Edition, revised (with Additions) by a
Lady of Rank. Fep.8vo. price Half-a-Crown.

Holland, — Medical Notes and Reflec-
tions. By Sre Henxry Horrawp, Bart.,
M.D., F.RS8., &c., Physician in Ordinary
to the Queen and Prince-Consort. Third
Edition, revised throughout and corrected ;
with some Additions. 8vo. 18s.

Holland.—Chapters on Mental Physiology. By
Siz Hexry Horianp, Bart., F.R.8., &c.
Founded chiefly on Chapters contained in
Medical Notes and Reflections by the same
Author. Second Edition. Post 8vo. 8s. 6d.

Hooker.—~Kew Gardens; or, a Popular
Guide to the Royal Botanic Gardens of
Kew. By 812 Wirniau JaoxsoN HOOKER,
K.H., &c., Director. 16mo. price Sixpence.

Hooker's Museum of Economic Botany; or, a
Popular Guide to the Useful and Remark-
able Vegetable Products of the Museuam
in the Royal Gardens of Kew. 16mo, 1s.

Hooker and Arnott.—The British Flora ;
comprising the Phenogamous or Flowering.
Plants, and the Ferns. Seventh Edition,
with Additions and Corrections; and nu-
merous Figures illustrative of the Umbelli-
ferous Plents, the Composite Plants, the
Grasses, and the Ferns. By Siz W. J.
Hooxeg, F.R.A. and L.8,, &c.; and G. A.
‘WArLxER-ArNoTT, LL.D., F.L.8S., 12mo.,
with 12 Plates, price 14s.; with the Plates
coloured, price 21s.

Horne’s Introduction to the Critical
Study and Knowledge of the Holy Scrip-
tures. TZentl Edition, revised, corrected,
and brought down to the present time.
Edited by the Rev. T. HarTwELL HORNE,
B.D. (the Author); the Rev. SAMUEL
Davinsox, D.D. of the University of Halle,
and LL.D.; and 8. PRIDEAUX TREGELLES,
LL.D. With 4 Maps and 22 Vignettes and
Facsimiles. 4 vols. 8vo. £3. 18s. 6d.

*4* The Four Volumes may also be had segarately as
follows :—

Vor. I.—A Summary of the Evidence for the Genuineness,
Anuthenticity, Uncorrupted Preservation, and Inspiration of
the Holy Scriptures. Bythe Rev.T.H.Horne,B.D..8vo.158,

Vor. II.—The Text of the Old Testament considered : With
a Treatise on Sacred Interpretation; and a brief Introduc-
tion to the Old Testament Books an Apocrypha. By S
Davidson, D.D. (Halle) and LL.D. .......c.ceeene. 8vo.
Vor. III.—A Summary of Biblical Geography and Anti-
qult?:'e. By the Rev. 'f"r{! Horne, B.D. 8vo. 18s.
,—An Introduction to the Textual Criticism of the
Nxoo"i'Lvtan::‘t.“ the Rev, T. H. Horne, B.D. The
Critical Part re-written, and_the remainder revised and
edited by 8, P, Tregelles, LL.D. ........... 35 ..8vo0, 18s.
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Horne. — A Compendious Introduction
to the Study of the Bible. By the Rev.
T. HarTwers HorxNg, B.D. New Edition,
with Maps and Illustrations, 12mo. 9s.

Hoskyns.—Talpa ; or, the Chronicles of
a Clay Farm: An Agricultural Fragment.
By CrANDO8 WrEN HoskyNs, Esq. Fourth
Edition. With 24 Woodcuts from the
original Designs by GROBGE CRUIKSHANK.
16mo. price bs. 6d.

How to Nurse Sick Children: Intended
especially as a Help to the Nurses in the
Hospital for Sick Children ; but containing
Directions of service to all who have the
charge of the Young. Fecp. 8vo. 1s. 6d.

Howitt (A. M.)—An Art-Student in
Munich, By Axwa Mary Howrrr. 2
vols. post 8vo. price 14s.

Howitt.—The Children’s Year. By Mary
Howirr. With Four Illustrations, from
Designs by A. M. How1rT. S8quare 16mo, Bs.

Howitt.—Tallangetta, the BSquatter’s
Home: A Story of Ausetralian Life. By
‘Wirrram Howrirr, Author of Two Years in
Victoria, &o. 2 vols. post 8vo. price 18s,

Howitt. —Land, Labour, and Gold;
or, Two Years in Victoria: With Visit to
Sydney and Van Diemen’s Land. By
WinLiaM HowITr. Second Edition, con-
taining the most recent Information re-
garding the Colony. 2 vols, crown 8vo.
price 10s.

‘Howitt.—Visits to Remarkable Places :
Old Bffaéls, Battllo;-Fields, an% Sz’n:l: illustra-
tive o iki assages in Engli i
and Poetry. By Wirrram Howirr. Wit
about 80 Wood Engravings, New Edition.
2 vols. square crown 8vo. price 25s.

William Howitt's Boy’s Country Book: Being
the Real Life of a Country Boy, written
by himself ; exhibiting all the Amusements,
Pleasures, and Pursuits of Children in the
Country. New Edition; with 40 Wood:
cuts. Fcp. 8vo. price 6s. :

Howitt.—The Rural Life of England. By
Winiax Howirr. New KEdition, oor-
rected and revised; with Woodcuts by
Bewick and Williams, Medium 8vo. 21s.

Huc.—Christianity in China, Tartary,

% and Thibet. By M. I'Abbé Huo, formerly

&. Missionary Apostolic in China ; Author of
The Chinese Empire, &c. Vois. 1. and II.
8vo. 21s.; and Vox. III, price 10s, 6d.

Huc.—The Chinese Empire: A Sequel
to.-Huc and Gabet’s Journey through Tartary
and Thibet. By the Abbé Huc, formerly
Missionary Apostolic in China, Second
Edition ; with . 2 vols.. 8vo, 24s.

Hudson’s Plain Directions for Making
‘Wills in conformity with the Law : With a
clear Exposition of the Law relating to the
distribution of Personal Estate in the case
of Intestacy, two Forms of Wills, and much
useful information. New and enlarged Edi-
tion; including the Provisions of the Wills
Act Amendment Act. Feop. 8vo. 2s. 6d.

Hudson's Executor’s Guide. New and
enlarged Edition, revised by the Awuthor
with reference to the latest reported Cases
and Acts of Parlisment. Fop. 8vo. 6s.

Hudson and Kennedy.—Where there ’s
a Will there’s a Way: An Ascent of Mont
Blanc by 8 New Route and Without Guides.
By the Rev. C. Hupsox, M.A,, snd E. 8,
KERNEDY, B.A. Second Edition, with Plate
and Map. Post 8vo. bs. 6d.

Humboldt’s Cosmos. TPransiated, with
the Author’s authority, by MRs. SaBINE.
Vors. 1. and II. 16mo. Half-a-Crown each,
sewed ; 3s. 6d. each, cloth : or in pest 8vo.
12s. each, cloth, Vor. III. post 8vo.
12s. 6d. cloth: or in 16mo. PArT I. 2s. 6d.
sewed, 8s. 6d. cloth ; and PARTII. 3s. sewed,
4s. cloth. Vou. IV. Part I. post 8vo. 15s.
cloth; and 16mo. price 7s. 6d. cloth, or
7s. sewed.

Humboldt's Aspects of Nature. Translated,
with the Author’s authority, by MEs.Sasrvz.
16mo. price 6s.: or in 2 vols. 38. 6d. each,
cloth; 2s. 6d. each, sewed.

Humphreys. — Parables of Our Lord,
illuminated and ornamented in the style of
the Missals of the Renaissance by HENRY
Noxr HumpHREYS. Square fep. 8vo. 21s.
in massive carved covers; or 80s. bound in
morocco by Hayday.

Hunt. — Researches on Light in its
Chemical Relations ;* embracing a Con-
sideration of all the Photographic Processes.
By RoserT HuxT, F.R.8. Second Edition,
with Plate and Woodcuts. 8vo. 10s. 6d..

Hutchinson. —Impressions of Western
Africa : With a Report on the Peculiarities
of Trade up the Rivers in the Bight of
Biafra. By T. J. HUTCHINSON, Ksq.,
British Consul for the Bight of Biafra and
the Island of Fernando- Po. Posb 8vo.
prioe 8s. 6d.
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Idle.—Hints on Shooting, Fishing, &c.,
both on Sea and Lland, and in the Fresh-
‘Water Lochs of Scotland : Being the Expe-
riences of C. Ip1e, Esq. Fep. 8vo. bs.

Mrs. Jameson’s Legends of the Saints
and Martyrs, as represented in Christian Art:
Forming the Firer SmBIEs of Sacred and
Legendary Art.
improved; with 17 Etchings and upwards
of 180 Woodcuts, many of which are new
in this Edition. 2 vols. square crown 8vo.
price 81s. 6d.

Mrs. Jameson's Legends of the Monastic
Orders, as represented in Christian Art.
Forming the SEcOND SERIES of Sacred and
Legendary Art. Second Edition, enlarged ;
with 11 Etchings by the Author, and 88
Woodcuts. Square crown 8vo, price 28s.

Mrs, Jameson’'s Logends of the Madonna,
as represented in Christian Art : Forming
the THIRD SERIES of Sacred and Legendary
Art. Second Edition, corrected and en-
larged; with 27 Etchings and 166 Wood
Engravings. Square crown 8vo. price 28s.

Mrs. Jameson’s Commonplace-Book of
Thoughts, Memories, and Fancies, Original
and Belected. PanT L, Ethics and Character;
Parr II. Literature and Art. Second Edit.
revised and corrected ; with Etchings and
‘Woodcuts. Crown 8vo. 18s.

Mrs. Jameson’s Two Leotures on-the Employ-
ment of Women :—
1. S18TERS of CHARITY, Catholic_and Protestant,
Abroad and at Home. Second Edition, with new
face. Fcp. 8vo. 48,

2. The COMMUNTION of LABOUR: A Second Lecture on
the Social Employment of Women, Fop. 8vo. 3s,

Jaquemet’s Comperdium of Chronology:
Containing the most important Dates of

. General History, Political, Ecclesiastical,
and Literary, from the Creation of the
‘World to the end of the Year 1854, Edited
by the Rev. J. ArcorN, M.A, Second
Edition. Post 8vo. price 7s, 6d.

Jaquemet’s Chronology for Sehools:
Containing the most important Dates of
Greneral History, Political, Xcolesisastical,
and Literary, from the Creation of the
‘World to the end of the year 1857, Hdited
by the Rev. JorN ALcORN, M.A. Fep. 8vo.
price 3s. 6d.

Lord Jeffrey’s Contributions to The
Edinburgh Review. A New Edition, com-
plete in One Volume, with a Portrait en-
g”""’d by Henry Robinson, and & Vignette.

quare crown 8vo. 21s. cloth ; or 80g, calf,—~
Orin 8 vols. 8va. price 42s,

Third Edition, revised and |

l

Bishop Jeremy Taylor's Entire Works:
‘With Life by Bisgor HeBeR. Revised and
corrected by the Rev. OHARLES PAGE EDEN,
Fellow of Oriel College, Oxford. Now
complete in 10 vols. 8vo. 10s. 6d. each.

Johnston.—A Dictionary of Geography,
Descriptive, Physical, Statistical,and Histori-
cal: Forming a complete Greneral Gazetteer
of the World. By A. KxiTH JOHNSTON,
FRS.E, F.R.G.8, F.G.8,, Geographer at
Edinburgh in Ordinary to Her jesty.
Second Edition, thoroughly revised. In 1
vol. of 1,360 pages, comprising about 50,000
Names of Places. 8vo. 86s. cloth; or half-
bound in russia, 41a,

Kemble.—The Saxons in England: A
History of the English Commonwealth till
the Norman Conquest. By Joux M. KEM-
BLE, M.A., &. 2 vols. 8vo. 28s.

Kesteven.—A Manual of the Domestic
Practice of Medicine. By W.B. KESTEVEN,
Fellow of the Royal College of Surgeons of
England, &. Square post 8vo. 7s. 6d.

Kirby and Spence’s Introduction to
Entomology ; or, Elements of the Natural
History of Insects : Comprising an Account
of Noxious and Useful Insects, of their Meta-
morphoses, Food, Stratagems, Habitations,
Societies, Motions, Noises, Hybernation,
Instinot, &c. Seventk Edition, with an Ap-
pendix relative to the Origin and Progress
of the work. Crown 8vo. bs.

Mrs. R. Lee’s Elements of Natural His-
tory ; or, First Principles of Zoology : Com-
prising the Principles of Classification, inter-

with amusing and instructive Ac-
counts of the most remarkable Animals,
New Edition; Woodcuts. Fecp. 8vo. 7s.6d.

The Letters of a Betrothed, Fcp. 8vo.
price Bs. cloth.

Letters to my Unknown Friends. By
a LApy, Author of Letters on Happiness.
Fourth Edition.  Fep. 8vo. ba..

Lettors on Happiness, addressed to a Friend.
By a Loy, Author of Zetters to my Unknown
Friends. KFep. 8vo. 6s.

L.E:.L.—The Poetical Works of Letitia
Elizabeth Landon ; comprising the Impro-
visalrice, the Venetian Bracelet, the Golden
Violet, the Troxdadour, snd Poetical Remains,
New Edition ; with 2 Vigunettes by B. Doyle.
2 vols, 16mo. 10s, cloth ; morocco, 2613.
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LARDNER'S CABINET CYCLOPEDIA

Ot!hmy Biognhy Literature, the Arts and Sciences, Natural History, and Manufactures.
P A Beries of Original Warks by

Bir JorN HERSCREL,
SiR JAMES MACKINTOSH,
RoBERT SOUTHEY,

SiR DAVID BREWSTER,

THOMAS KEIGATLEY,
JouN FORSTER,

SIR WALTER Scorr,
THoOMAS MOORE,

Buuor THIRLWALL,
Tne Rev. G. R. GLE1G,
J. C. L. Dx 818MoNDI,
Joun PHILLIPS, F.R.S., G.S.

AND OTHER EMINENT WRITERS.
Complete in 132 vols. fcp. 8vo. with Vignette Titles, price, in cloth, Nineteen Guiuneas.
The Works separately, in Sets or Series, price Three Shillings and Sixpence each Volume.

\

A List of the Works composing the CABINET CYCLOPADIA :—

1. Bell’s History of Russia ................ 8 vols, 10s, 6d.
2. Bell’s Lives of British Poets .. ... Svols, 7s.

8, Brewster'sOptics .........ccovvvvvinen 1 vol. 8s. 6d.

4. Cooley’s Maritime md Inland Discovery 8 vols. 10s. 6d.
5. Crowe’s History of France .............. 8 vols. 10s. 6d.
6. De Morgan on Probabilities ............ 1 vol. 8s. 6d.

7. De Sismondi’s History of the Italian

RODUBHCS ....vvvveeerivnnniannnn.s 1vol.8s.6d.

8, De Sismondi’s Fall of the Roman Empire 2 vols. 7s.
.................. 1 vol. 8s. 6d.
... 2vols. 78.

11. Dunham’s Spain and Portng-l 5 vols. 17s, 6d.
12, Dunham’s History of Denmark, Sweden,
and NOTWAY ....ovviiiinnniniinnnnas 8 vols. 10s, 6d.
13. Dunham’s History of Poland. ... 1vol. 8s, 6d.
14, Dunham’s Germanic Empi 8 vols. 10s, 6d.
15, Dunham’s Europe durlng the Middle
ABES......oiiiviiiiiniiiinns tereseans 4 vols. 14s,
16. Dunham’s British D tists .......... 2 vols. 7s.
17. Dunham’s Lives of Early Writers of
Great Britaln ............oo00iiiiinn 1vol. 8s. 6d,
18. Fergus’s Hhuwy of the Uniwd suuu . 2 vols. 78,
19. Fosbroke’s Grecian & R ities 2 vols, 7s.
20, Forster’s Lives of the sw«men of the
Commonwealth ...........coevvvinnn. 5 vols, 17s. 6d.
21. Gleig’s Lives of British Military Com-
ders. ... $vols. 10s. 6d.
. 1vol. 8s. 6d.
. 1 vol. 8s. 6d.
1vol. 8s. 6d.
1 vol. 8s. 6d.
2 vols, 7s.
1vol. 8s, 6d.
8 vols. 10s. 6d.
29, James’s Lives of Foreign Statesmen.... 5 vols. 17s. 6d.
30, Kater and Lardner’s Mechanics ........ 1 vol. 8s. 6d.
81. Keightley’s Outlines of History .. .. 1vol. 8s. 64,
32. Lardner’s Arithmetic .......... v+ 1 vol. 8s. 6d.
33, Lardner’s Geometry ..... eeeonne ......lvolu.ed.

84. Lardneron Heat ..............oeconvenns 1vol. 8s. 64.
85. Lardner’s Hydrostatics and Pn tics 1 vol. 8s. 6d.
86. Lardner and Walker's Electricity and
Magnetism...........coovveiinniiinnns 2 vols. 7s
87. Mackintosh, Forster, and Courtenay’s
Lives of British Statesmen........... 7 vols. 24s. 64,
88, llwkinto-h, Wallace, and Bell’s History

f England.

89, Montgomery and Shelley’s eminent Ita-

lian, Spanish, and Portuguese Authors 8 vols. 10s. 64,
40, Moore’s History of Ireland.............. 4 vols. 14s.
41. Nicolas’s Chronology of History . .. 1vol. 8s. 6d.
42, Phillips’s Treatise on Geology .......... 2 vols. 7s.
43, Powell’s History of Natural Phﬂooophy 1vol. 3s. 6d.
44. Porter’s Treatise on the Manufacture of

Glass .
46. Roscoe’s British Lawyers. ..
47, Scott’s History of Seotland .
48, Shelley’s Lives of eminent French

Athors ......c.eoviiiivinnnnnns veen o 2v0l8, 78,
49, Shuckard and Swainson’s Insects ....... 1vol. 8s. 6d.
50. Southey’s Lives of British Admirals .... 5 vols. 17s. 6d.
51. Stebbing’s Church History.............. 2 vols, 7s,

52, Stebbing’s History of the Reformation.. £ vols. 7s.
53, Swainson’s Discourse on Natural History 1 vol. 8s. 6d.
54. Swainson’s Natural History and Classi-

fication of Animals .......... .. 1vol. 8s. &d.
55, Swainson’s Habits au

1vol. 8s. 6d.
2 vols. 7s.

Dr. John Lindley's Theory and Practice
of Horticulture ; or, an Attempt to explain
the principal Operations of Gardening upon
Physiological Grounds: Being the Second
Edition of the Theory of Horticulture, much
enlarged ; with 98 Woodcuts. 8vo. 21s.

Dr. John Lindley’s Introduction to
Botany. New Edmon, with Corrections and
copious Additions. 2 vols. 8vo. with Six
Plates and numerous Woodcuts, price 24s.

Lorimer’s (C.) Letters to a Young Master
Mariner on some Subjects connected with
his Calling, New Edition. Fep. 8vo, §s.6d.

Linwood.—Anthologia Oxoniensis, sive
Florilegium e Lusibus poeticis diversorum
Oxoniensium Greeocis et Latinis decerptum.
Curante GULIELMO Lutwoo», MA., XEdis
Christi Alumno. 8vo. price 14s.

Loudon’s Encyclopmdla of Agriculture:
Compmmg the Theo; r{.an Practice of the
Valuation, Trans ying-out, Improve-
ment, and M ent of Landed Property,
and of the Cultivation and Economy of the
Animal and Vegetable Productions of Agri-
oulture. New and cheaper Editien; with
1,100 Woodcuts. 8vo. 81s. 6d,
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Loudon’s Encyclopsdia of Gardening:
Comprising the Theory and Practice of Hor-
ticulture, Floriculture, Arboriculture, and
Landscape- Gardening. 'With many hundred
‘Woodcuts. .New Edition, corrected and
improved by Mzs. LoupoN. 8vo. 50s.

Loudon’s Encyclopedia of Trees and
Shrubs, or Adréoretum et Fruticetum Britan-
nicum abridged : Containing the Hardy Trees
and Shrubs of Great Britain, Native and

Foreign, Scientifically and Popularly De-

scribed. With about 2,000 Woodcuts.
8vo. price 60s.

Loudon’s Encyclopedia of Plants: Com-
prising the Specific Character, Description,
Culture, History, Application in the Arts,
and every other desirable Particular respect-
ing all the Plants found in Great Britain.
New Edition, corrected by Mrs. LouDox.
‘With upwards of 12,000 Woodcuts. 8vo.
£3, 13s. 6d.—Second Supplement, 21s.

Loudon’s Encyclopmdia of Cottage,
Farm, and Villa Architecture and Furniture.
New Edition, edited by Mrs. Loupox ; with
more than 2,000 Woodcuts. 8vo. 63s.

Loudon’s Hortus Britannicus; or, Cata-
logue of all the Plants found in Great
Britain. New Edition, corrected by Mgs.
LoupoN. 8vo. 31s. 6d.

Mrs. Loudon’s Lady’s Country Compa-
nion; or, How to Enjoy a Country Life
Rationally. Fourth Edition, with Plates
and Woodcuts. Fcp. 8vo. bs.

Mrs. Loudon’s Amateur Gardener’s
Calendar, or Monthly Guide to what should
be avoided and done in a Garden. New
Edition. Crown 8vo. with Woodcuts, 7s. 6d.

Low’sElements of Practical Agriculture;
comprehending the Cultivation of Plants, the
Husbandry of the Domestic Animals, and
the Economy of the Farm. New Edition;
with 200 Woodcuts. 8vo.21s, -

Macaulay.—Speeches of the Right Hon.
Lord Macaulay. Corrected by HiMserr.
8vo. price 12s.—Lord Macaulay’s Speeches
on Parliamentary Reform, 16mo. price 1s.

Macaulay. — The History of England
from the Accession of James II. By
the Right Hon. Lorp MAcauzAay. New
Edition. Vous. I. and II. 8vo. price 82s. ;
Vous. II1. and IV. price 36s.

Lord Macaunlay’s History of England
from the Accession of James II. New
Edition of the first Four Volumes of thg
8vo. Edition, revised and corrected. 7 vols.
post 8vo. price 6s. each.

Lord Macaulay’s Critical and Historical
Essays contributed to The Edinburgh
Review. Four Editions, as follows :—

1. A L1BRARY EDITION (the Nénth), in 8 vols. 8vo,
price 36e,

2. Complete in ONE VoLUME, with Portrait and Vig-
g&tw&r’Square crown 8vo, price 21s, cloth; or

8. Another NEw EDITION, in . fep. 3
e OX, in 8 vols, fep. 8vo. price

4. '13:3 g:&r.u's EDITION, in 2 vols. crown 8vo. price

Macaulay.—Lays of Ancient Rome, with
Iory and the Armada. By the Right
Hon. Loep Macauray. New Edition.
16mo, price 4s. 6d. cloth; or 10s. 6d.
bound in morocco.

Lord Macaulay’s Lays of Ancient Rome.
With numerous Illustrations, Original and
from the Antique, drawn on Wood by
Greorge Scharf, jun., and engraved by Samuel
Williams. New Edition. Fep. 4to. price
21s. boards ; or 42s. bound in morocco.

Mac Donald. — Poems. By George
Mac DoNaLp, Author of Within and With-
out. Fep. 8vo. 7s.

Mac Donald.—Within and Without: A
Dramatic Poem. By GEoRGE MAC DoNALD.
Second Edition, revised. Fep. 8vo. 4s, 6d,

MacDougall.—The Theory of War illus-
trated by numerous Examples from His-
tory. ByLieutenant-Colonel MAcDoUGALL,
Commandant of the Staff College. Second
Edition, revised. Post 8vo. with 10 Plans
of Battles, price 10s. 6d.

MacDougall. -—-The Campaigns of Hannibal,
arranged and critically considered, ex-
pressly for the use of Students of Military
History. By Lieut.-Col. P. L.MAcDov@ALL,
Commandant of the Staff College. Post
8vo. with Map, 7s. 6d.

M‘Dougall—The Eventful Voyage of
H.M. Discovery Ship Resolute fo the Aretic
Regions in Search of Sir John Franklin and
the Missing Crews of H.M. Discovery Ships
Erebus and Terror, 1852, 1858, 1854. By
GEORGE F. M‘DovaaLL, Master. With a
coloured Chart; 8 Illustrations in tinted
Lithography ; and 22 Woodcuts. 8vo. price
21s. cloth.
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Sir James Maclintosh’'s Miscellaneous
Works : Including his Contributions to The

. Edinburgh Review. Complete in One
Volume; with Portrait and Vignette,
Square crown 8vo. 21s. cloth ; or 30s. bound
in calf: or in 8 vols. fop. 8vo. 21s.

8ir James Mackintosh's History of England
from the Earliest Times to the final Esta-
blishment of the Reformation. Library Edi-
tion, revised. 2 vols. 8vo. 21s,

Macleod.— The Elements of Political
Economy. By HENRY DUNNING MACLEOD,
Barrister-at-Law. 8vo. 16s.

Maocleod. —The Theory and Practice of Bank-
ing: With the Elementary Principles of
Currency, Prices, €redit, and HExchanges,
By HxNeYy Dusring MacrLEoD, Barrister-
at-Law. 2 vols, royal 8vo, price 80s.

M‘Culloch’s Dictionary, Practical, Theo-
retical, and Historical, of Commerce and
€ommercial Navigation. INustrated with
Maps and Plans. New Edition, thoroughly
revised and corrected ; with a Supplement.
8vo. price 50s. cloth ; half-russia, 55s.

M‘Culloch’s Dictionary, Geographical,
Statistical, and Historioal, of the various
Countries, Places, and Iﬁrincipal Natural
Objects in the World. Illustrated with Six
large Maps, New Edition, revised; with a
Supplement. 2 vols. 8vo. price 63s.

Maguire.—Rome; its Ruler and its In-
stitutions. By JoHN FrANCIS MAGUIRE,
M.P. With a Portrait of Pope Pius IX.
Post 8vo: price 10s. 6d.

Mrs. Marcet’s Conversations on Natural
Philosophy, in which the Elements of that
Science are familiarly explained. Thirteenth
Edition, enlarged and corrected; with 84
Plates. Fop. 8ve. price 10s. 6d..

Mrs. Maroet's Conversations on Chemistry,
in which the Elements of that Bocience
are familiarly explained and illustrated by
Experiments. New Edition, enlarged and
improved. 2 vols. fop. 8vo. price 14e.

Martineau. — Studies of Christianity:
A Series of Original Papers, now first col-
lected or new. By JAMES MARTINEAU.
Crown 8vo. 7s. 6dL

Martineau, — Endeavours after the Christian
Life : Discourses. By JAMES MARTINRAU.
2 vols. post 8vo, 7s. 6d. each,

Martineau.—Hymnsg for the Christian
Church and Home. Collected and edited by
JaMES MARTINEAU: Eleventh Edition, 12mo.
8s. 6d. cloth, or bs. calf ; Fifth Edstion, 32mo.
1s. 4d. cloth, or 1s. 8d. roan.

Martineau.—Miscellanies ; Comprising Essays
on Dr. Priestley, Arnold’s Life and Corre-
ondence, Church und State, Theodore
guker's Discourse of Religion, ““Phases of
Faith,” the Church of England, and the
Battle of the Churches. By JAMEs MAr-
TINEAU. Post 8vo. 9s.

Maunder’s Scientific and Literary Trea-
sury : A new and popular Encyclopedia of
Science and the ﬂ:fh-wx 3 igclnding
all branches of Science, and every subject
connected with Literature and Art. I%ew
Edition. Fcp. 8vo. price 10s, cloth ; bound
in roan, 12s. ; calf, 12s, 6d.

Maunder’s Biographical Treasury; con-
sisting of Meémoirs, Sketches, and brief
Notices of above 12,000 Eminent Persons of
All Ages and Nations, from the Earliest
Period of History: Forming a new and com-
plete Dictionary of Universal Biography.
Ninth Edition, revised throughout. Fep.8vo.
10s. cloth ; bound in roan, 12s, ; calf, 12s. 6d.

Maunder’s Treasury of Knowledge, and
Library of Reference. Comprising an Eng-
lish Dictio and Grammar, l;J%'nive’rxml
g;;etbeer, a Classical Dictionary nary, a ('Jhx-of no-

a Law Dioti a Synopsis of the
Peer’age, numerous use%xl, Tables, &c. New
Edition, carefully revised and corrected
throughout : With Additions. Fcp. 8vo.
10s. cloth ; bound in roan, 12s.; calf, 12s. 6d.

Maunder’s Treasury of Natural History;
or, a Popular Dictionary of Animated
Nature : In which the Zoological Character-
istics that distinguish the different Classes,
Genera:)f and Specieail;'e combixllned with a
varisty of interssting Enformation illusfrative
of the Habits, Instincts, and General Eco-
nomy of the Animal Kingdom. With 900
‘Woodcuts. New Edition. Fop. 8vo. price
10s. cloth ; roan, 12s.;. calf, 125, 6d.

Maunder's Historical Treasury; eom-
Btining a General Introductory Outline of
niversal History, Ancient and Modern,
and a Series of separate Histories of every
rincipal Nation that exists; their Rise,
gress, and Present Condition, the Moral
and Social Character of their respective In-
habitants, their Religion, Manners and Cus-
toms, &o. New Edition ; revised through-
out, with a new G:eNERAL I¥DEX. Fop. 8vo.
10s. cloth ; roan, 12w, ; oalf, 125, 6d,
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Maunder's Geographical Tresswry. —
The Treasury of Geography, Physical, His-
torical, Descriptive, and Political ; contain-
ing a succinct Account of Every Country in
the World : Preceded by an Introductory
Outline of the History of Geography; a
Familiar Inquiry into the Varieties of Race
and Language exhibited by different Nations;
and & View of the Relations of Geography
to Astronomy and Physical Science. Com-
pleted by Wrxriam Huarzs, F.R.G.8. New
Edition ; with 7 Maps and 16 Steel Plates.
Fcp. 8vo. 10s. cloth ; roan,12s. ; calf, 12s.6d.

Merivale. — A History of the. Romans
under the Empire. By the Rev. CHARLES
MzxerIvaLg, B.D., late Fellow of St. John’s
College, Cambridge. 8vo. with Maps.

Vous. I.and II. comlgrlaing the History to the Fall of

Julius Cesar. Second Edition............cevvvvveiins 288,

Vo, ITL. to the establishment of the Monarchy by Au-
gustus. Second Edition 14s.

Vor. VI. from
Jerusalem, A.D, T0........
Merivale—The Fall of the Roman Republic:

A Bhort History of the Last Century of
the Commonwealth. By the Rev. C. MxxI-
VALE, B.D., late Fellow of St. John’s College,
Cambridge. New Hdition. 12mo. 7s.

Merivale (Migs).—Christian Records: A
Short History of Apostolic Age. By L. A.
MERIVALE. rchp. 8vo. 7s. (;?ige v

¢* This interesting and in- | may derive many useful
structive little volume is| hints from it. And those
worthy_ of the attention of | who are for any
all students. It contains a | examination at which a
concise paraphrase of the | knowledge of the Acts of the
A occa~ | 4. is ired, will

Acts of the Ap y 8 req!
sional introducing the | find it a valuable summary of
words of the narrative itself, imgm,wt matter connected
with luglgae‘::ions for more | with the sacred narrative,
ooTamal - oortein. places, | orgyman may had - bis
o n certain places, | clergyman m: 8
together with much valuable | memory pleun:{ly refreshed
information to illustrate the | by the allusions to many
history...... We hearti&: facts, and derive tions

commend this work to
the E;;n the Acts

who are engaged in
instruction of the Tyoung.
The Sunday School Teacher

Miles.—The Horse’s Foot, and How to
Keep it Sound. Eightk Edition; with an
Appendix on Shoeing in general,and Hunters
in particular, 12 Plates and 12 Woodcuts.
By W. M1Lzes, Esq. Imperial 8vo. 12s. 6d.

*,* Two Casts or Models of Off Fore Feet, No. 1, Skod,

AU Purﬁom, No. 2, Skod with Leather, on Mr. ’s p)

may be had, price Ss, each.

Miles.— A Plain Treatise on Horse-Shoeing.
By Wrnniam Mrres, Esq. With Plates and
Woodcuts. New Edition. Post 8vo. 2s.

Milner’s History ofthe Church of Christ.
With Additions by the late Rev. Isaac
MrinNag, D.D, P.RS. A New Edition,
revised, with additional Notes by the Rev.
T, GRANTHAM, B.D, 4 vols, 8ve. price 52s.

James Montgomery’s Postical Works:
Collective Edition ; with the Author’s Auto-
biographical , complete in One
Volume ; with Portrait and Vignette. Square
crown 8vo. price 10s. 6d. cloth; morocco,
218.—Or, in 4 vols: fep. 8vo. with Portrait,
and 7 other Plates, price 14s.

Moore.—The Power of the Soul over the
Body, considered in relation to Health and

. Morals, By Gmoran Moors, M.D. Hft%
Editton. Fep. 8vo. 6.

Moore.—Man. and his Motives. By George
Moozrg, M.D. Thkird Edition. Fop. 8vo, 6s.

Moore.—The Use of the Body in relation to the
Mind. By GrorGE MooORE, M.D. Third
Edition. Fep. 8vo. 6s..

Moore.— Memoirs, Journal, and Corre-
dence of Thomas Moare. Edited by
e Right Hon. Lorp JoEN RUSSELL, M.P.
‘With Portraits and Vignette Illustrations.

8 vols. post 8vo. price 10s. 6d. each.

Thomas Moore’s Poetical Works : Com-
prising the Author’s recent Introductions
and Notes. The Traveller's Edition, com-
pletein One Volume, printed in Raby Type;
with a Poftrait. Crown 8vo. 12s. 6d. cloth;
moroeco by Hayday, 213.—Also the Libra
Edition com(flete in 1 vol. medium 8vo. wit
Portrait and Vignette, 21s. cloth; morocco
by Hayday, 42s. — And: the Rrst collected
Edition, in 10 vols. f?’ 8vo. with Portrait
and 19 Plates, price 86s.

Moore. — Poetry and Pictures. from
Thomas Moore: Selections of the most
popular and admired of Moore’s Poems,
copiously illuetrated with highly-finished
‘Wood ]gngmvings from original Designs by
eminent Artists. Fep. 4to. price 21s. cloth,
gilt edges; or 42s. morocco elegant or
antique by Hayday.

Moore’s Epicurean. New Edition, with
the Notes from the collective edition. of
Moore’s Poetical Works; and a Vignette en-
graved on Wood from an original Design by
D. Macwisg, R.A. 16mo. Gs. cloth; or
12s, 6d. morocca by Hayday.

Moore’s Songs, Ballads, and Sacred
Songs. New Edition, printed in Ruby
) g.‘gpe; with the Notes from the collective
oy e e T, Gk oA
ignette from a Desi . wic .
82?::). 2s. 6d.—An Edit};m in 16mo. with
Vignette by R. Doyle,. price §s.; or 12s. 6d.
morooco by Hayday.



16 NEW WORKS axp NEW EDITIONS

Moore’s Sacred Songs, the Symphonies
and Accompaniments, arranged for One or
more Voioes, printed with the Words, Imp.
8vo. - [ Nearly ready.

Moore’s Lalla Rookh: An Oriental
Romance. With 18 highly-finished Steel
Plates from Original Designs by Corbould,
Meadows, and Stephanoff, engraved under
the superintendence of the late Charles

Heath. New Edition. Square crown 8vo.

price 158, cloth 3 morocco, 28s.

Moore’s Lalls Rookh, New Edition, printed
in Ruby Type; with the Preface and
Notes from the collective edition of Moore's
Poetical Works, and a Frontispiece from a
Design by Kenny Meadows. 82mo. 2s. 6d.
—An Edition in 16mo. with Vignette, 5s.;
or 12s. 6d, morocco by Hayday.

Moore’s Lalla Rookh. A New Edition,
with numerous Illustrations from original
Designs by JoEN TENNIEL, engraved on
‘Wood by the Brothers Darzier. Fop. 4to.

[In preparation.

Moore’s Irish Melodies, A New Edi-
tion, illustrated with 13 highly-finished
Steel Plates, from Original Designs by
eminent Artists. Square crown 8vo. price
21s. cloth; or 81s. 6d. handsomely bound
in morocco.

Moore’s Irish Melodies, printed in Ruby Type;
with the Preface and Notes from the col-
lective edition of Moore’s Poetical Works,the
Advertisements originally prefixed, and a
Portrait of the Author. 82mo. 2s. 6d.—
An Edition in 16mo. with Vignette, bs.;
or 12s. 6d. morocco by Hayday.

Moore’s Irish Melodies. Illustrated by D.
Maclise, R.A. New Edition; with 161
Designs, and the whole of the Letterpress
engraved on Steel, by F. P, Becker. Super-
royal 8vo. 8ls. 6d. boards; £2.12s. 6d.
morocco by Hayday.

Moore’s Irish Melodies, the Music with
the Words; the Symphonies and Accom-
paniments by Sir John gtevenson, Mus. Doc.
Complete in One Volume, small music size,
convenient and legible at the Pianoforte, but
more portable than the usual form of mu-
sical publications. Imperial 8vo. 81s. 6d.
cloth; or 42s. half-bound in morocco.

The Harmonised Airs from Moore’s
Irish Melodies, as originally arranged for
Two, Three, or Four Voices, printed with
the Words. Imperial 8vo. 16s. cloth; or
25s. half-bound in morocco.

“and General Management o

Moore’s National Melodies, with Music.

National Airs and other Songs, now first
collected. By Thomas Moore. The Music,
for Voice and Pianoforte, printed with the
‘Words. Imperial 8vo. 81s. 6d. cloth; or
42s. half-bound in morococo.

Morell.—Elements of Psychology: Part

L, containing the Analysis of the Intellectual
Powers. ByJ.D.Morery, M.A,, One of
Her Majeety’s Inspectors of Schools. Post
8vo. 7s. 6d.

Morning Clouds. Second and cheaper

Edition, revised throughout, and printed in
a more convenient form. Fep. 8vo. price
Bs. cloth.

Morton.—The Resources of Estates: A

Treatise on the Agricultural Improvement
Landed
Property. By JoEN LOCKHART MORTON,
Civil and Agricultural Engineer; Author
of Thirteen Highland and Agricultural
Society Prize Essays. With 25Illustrations
in Lithography. yal 8vo. 81s. 6d.

Moseley.—The Mechanical Principles of

Engineering and Architecture, By H.
MoseLey, M.A., F.R.8,, Canon of Bristol,
&c. 8econd Edition, e ed; with nu-
merous Corrections and Woodcuts. 8vo. 24s.

Memoirs and Letters of the late Colonel

ARMINE MOUNTAIN, Aide-de-Camp to the
Queen, and Adjutant-Geeneral of Her Ma-
jesty’s Forces in India. Edited by Mrs.

oUNTAIN. Second Edition, revised ; with
Portrait. Fep. 8vo. price 6s.

Mure. — A Critical History of the Lan-

and Literature of Ancient Greece.

y WiLLiam Mvuee, M.P. of Caldwell.
Second Edition. Vos. I. to III. 8vo. price
86s. ; VorL. IV. price 18s. ; Vor. V. price 18s,

Murray's Encyclopsdia of Geography ;

comprising a complete Description of the
Earth : Exhibiting its Relation to the
Heavenly Bodies, its Physical Structure, the
Natural History of each Country, and the
Industry, Commerce, Political Institutions,
and Civil and Social State of All Nations.
Second Edition ; with 82 Maps, and upwards
of 1,000 other Woodcuts. 8vo. price 60s.

Murray. — French Finance and Fi-

nanciers under Louis the Fifteenth. By
JamEs MURRAY. 8vo. 10s. 6d.
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Neale. — The Cloging Scene ; or, Chris-
tianity and Infidelity contrasted in the Last
Hours of Remarkable Persons. By the
Rev. ErsxINE NEALR, M.A. New Editions.
2 vols. fep. 8vo. price 6s. each.

Normanby (Lord).—A Year of Revolu-
tion. From a Journal kept in Paris in the
Year 1848. By the Marquis of NOBMANBY,
K.G. 2 vols. 8vo, 24s.

Ogilvie. — The Master-Builder's Plan;
or, the Principles of Organic Architecture
as indicated in the Typical Forms of Animals.
By Groree OerLvie, M.D., Lecturer on
Institutes of Medicine, &c., Marischal Col-
lege /and University, Aberdeen, Post 8vo.
with 72 Woodcuts, price 6s. 6d.

Oldacre.—The Last of the Old Squires.
A Sketch. By Creprro Orpacek, Esq., of
Sax - Normanbury, sometime of Christ
Church, Oxon., Crown 8vo, price 9s. 6d.

Osborn, — Quedah; or, Stray Leaves
from a Journal in Malayan Waters. By
Captain SmerRaRD OssorN, R.N., C.B,
Author of Stray Leaves from an Arctic Jour-
nal, &. With a coloured Chart and tinted
Tllustrations. Post 8vo. price 10s. 6d.

Osborn.—The Discovery of the North-
‘West Passage by H.M.8. Investigator, Cap-
tain R. M‘CrurE, 1850-1854. Edited by
Captain SEERARD OsBORN, C.B., from the
Logs and Journals of Captain R. M‘Clure.
Second Edition, revised ; with Additions to
the Chapter on the Hybernation of Animals
in the Arctic Regions, a Geological Paper
by Sir RopErick I. MURCHISON, a Portrait
of Captain M‘Clure, a coloured Chart and
tinted Illustrations. 8vo. price 16s.

Owen.— Lectures on the Comparative
Anatomy and Physioloiy of the Invertebrate
Animals, delivered at the Royal College of
Surgeons. By Riomarp Owzr, F.R.S,
Hunterian Professorto the College. Second
Edition, with 235 Woodcuts. 8vo. 21s.

Professor Owen’s Lectures on the Comparative
Anatomy and Physiology of the Vertebrate
Animals, delivered at the Royal College of
Surgeons in 1844 and 1846. With numerous
‘Woodcuts. Vou. 1. 8vo. price 14s,

Memoirs of Admiral Parry, the Arctic
Navigator. By his Son, the Rev. E. PARRY,
M.A. of Balliol College, Oxford ; Domestic
Chaplain to the Lord Bishop of London.
Fifth Edition; with a Portrait and coloured
Chart of the North-West Passage. Fep.
8vo. price bs.

Pattison.—The Earth and the Word;
or, Geeology for Bible Students. By 8. R.
Parrisox, F.G.8. Fep. 8vo. with coloured
Map, 3s. 6d.

Dr. Pereira’s Elements of Materia
Medica and Therapeutics. Third Edition,
enlarged and improved from the Author’s
Materials, by A. 8. Tavror, M.D., and
G. O. ReEs, M.D.: With numerous Wood-
cuts. Vou. I. 8vo. 28s.; Vor. II. Parr I.
21s.; Vor. II. ParT I1. 26s.

Dr. Pereira’s Lectures on Polarised Light,
together with a Lecture on the Microscope.
2d Edition, enlarged from Materials left by
the Author, by the Rev. B. Powerr, M.A.,
&c. Fep. 8vo. with Woodcuts, 7s.

Perry.—The Franks, from their First
Appearance in History to the Death of King
Pepin. By Warrer C. PERRY, Barrister-
at-Law, Doctor in Philosophy and Master
of Arts in the University of Gottingen.
8vo. price 12s. 6d.

Peschel’s Elements of Physics. Trans-
lated from the German, with Notes, by
E. Wesr. With Diagrams and Woodcuts.
8 vols, fep. 8vo. 21s.

Phillips’s Elementary Introduction to
Mineralogy. A New Kdition, with extensive
Alterations and Additions, by H. J. BROOKE,
F.R.S8,F.G8.; and W. H. MiLriegr, M.A.,
F.G.8. With numerous Wood Engravings.
Post 8vo. 18s.

Phillips.—A Guide to Geology. By John
PrarLrres, M.A.,F.R.8,,F.G.8,, &. Fourth
Edition, corrected to the Present Time; -
with 4 Plates. Fop. 8vo. bs. :

Phillips, — Figures and Descriptions of the
Paleozoic Fosesils of Cornwall, Devon, and
West Somerset ; observed in the course
of the Ordnance Geological Survey of that
District. By Jor~ Parcrres, F.R.S,,F.G.8.,
&c. 8vo. with 60 Plates, price 9s.

Piesse’s Art of Perfumery, and Methods
of Obtaining the Odours of Plants: With
Instructions for the Manufacture of Perfumes
for the Handkerchief, Scented Powders,
Odorous Vinegars, Dentifrices, Pomatums,
Cosmétiques, Perfumed Soap, &c.; and an
Appendix on the Colours of Flowers, Arti-
ficial Fruit Essences, &o. Second Edition,
revised and improved ; with 46 Woodcuts.
Crown 8vo. 8s. 6d.
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Captain Portlock’s Report on the Geology
of the County of Londonderry, and of Parts
of Tyrone and Fermanagh, examined and
described under the A uthority of the Master-
General and Board of Ordnance. 8vo. with
48 Plates, price 24e.

Powell. —Essays on the Spirit of the
Inductive Philosophy, the Unity of Worlds,
and the Philosophy of Creation. By the
Rev.Bapey Powzirr, M.A.,F.R.8,,F.R.A8,,
F.G.8,, Savilian Professor of Geometry in the
University of Oxford. Second Edition, re-
vised. Crown 8vo. with Woodcuts, 12s. 6d.

Christianity without Judaism: A Second Series
of Essays on the Unity of Worlds and of
Nature. By the Rev. BADEN PowrrL, M.A.,
&c. Crown 8vo. 7s. 6d.

Pycroft. — The Collegian’s} Guide; or,

Recollections of Colle%e Days : Setting forth
the Advantages and Temptations of a Uni-
versity Educatién. By the Rev.J. PYCROPT,
B.A. Second Edition. Fcp. 8vo. 6s.

Pyoroft’s Course of English Reading, adapted
to every taste-and oo];;m ; or, How and
‘What to Read: With Literary Anecdotes.

New Edition. Fep. 8vo. price bs.

Pyeroft’s Cricket-Figld; or, the Science and
History of the Game of Cricket. Second
Edition, greatly improved ; with Plates and
Woodcauts. Fep. 8vo. price bs.

Quatrefages (A. De). — Rambles of a
Naturalist on the Coasts of France, Spain,
and Sicily, By A. De QUATREFAGES,
Member of the Institute. Translated by
E. C. OTTE, 2 vols. post 8vo. 15a.

Raikes (C.)—Notes on the Revolt in the
North-Western Provinces of India. By
CHariEs Rarxms, Judge of the Sudder
Court, and late Civil Commissioner with
Bir Colin Campbell. 8vo. 7s. 6d.

Raikes (T.)—Portion of the Jonrnal kept
by THOMAS RATKES, Esq., from1831 to 1847:
omprising Reminiscences of Social and
Political Life in London and Paris during
that period. New Edition, complete in
2 vols. crown 8vo. with 3 Portraits, price
12s. cloth.,

Rarey.—A Complete Treatise on the
Science of Handling, Educating, and Taming
all Horses; with a full and detailed Narra-
tive of his Experience and Practice. B:
JouN 8. RAREY, of Ohio, U.S. In I vol,
with numerous Illustrations. [Just ready.

Reade. — The Poetical Works of John
Edmund Reade. New Edition, revised and
corrected ; with Additional Poems. 4 vols.
fep. 8vo. price 20s.

Dr. Reece’s Medical Guide: Comprising
a complete Modern Dispensatory, and a
Practical Treatise onthedistinguishing 8ymp-
toms, Oauses, Prevention, Cure, and Pallia-
tion of the Diseases incident to the Human
Frame. Seventeenth Edition, corrected and
enlarged by the Author’s Sen, Dr. H. RExCE,
M.B.C8., &. 8vo.12s.

Rees.~—Personal Narrative of the Siege
of Lucknow, from its Commencement to its
Relief by 8ir Colin Campbell. By L. E.
REEs, one of the BSurviving Defenders.
Third Edition, with Portrait and Plan. Post
8vo. 9s. 6d.

Rich’s Illustrated Companion to the
Latin Dicﬁonaqfa:ﬁlﬁlnxieon: Form-
ing a Glossary o: e Words representin
%bb Objects connected with the A:tsg,
Manufactures, and Every-Day Life of the
Ancients. With about 2,000 Woodcuts
from the Antique. Post 8vo. 21s.

Richardson. — Fourteen Years’ Expe-
rience of Cold Water: Its Uses and Abuses.
By Captain M. RICHARDSON, late of the
4th Light Dragoons. Post 8vo. with
‘Woodocuts, price 6s.

Horsemanship ; or, the Art of Riding
and Managing a Horse, adapted to the Gaid-
ance of In,dief and Gentlemen on the Road ‘
and in the Field: With Instructions for
Breaking-in Colts and Young Horses. By
Captain M. RICHARDSON, late of the 4th
Light Dragoons. With 6 Plates. Square
crown 8vo. 14s,

Household Prayers for Four Weeks:
With additional Prayers for Special Occa-
:'i::s. To B;g;l; 1; a(}add aDCourse of |

ipture i or Eve in the
Yeul'). By the Rev. J. E. gmn:.z, MA,
Incumbent of 8t. Philip’s, Leckhampton.
Crown 8vo. price 8s. 6d. ‘

Riddle’s Complete Latin-English and

lish-Latin Dictionary, for the use of '
Colleges and Schools. New and cheaper

Edition, revised and corrected. 8vo. 21s. l

Separately { e B Doy 10 |

Riddle’s Diamond Latin-English Dictionary.
A Guide to the Meaning, Quality, and
right Accentuation of Latin Classical Words.
Royal 82mo. price 4s.
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Riddle’s Copious and Critical Latin-
English Lexicon, founded on the German-
Latin Dictionaries of Dr. William Freund.
New and cheaper Edition. Post 4to. 31s. 6d.

Rivers’s Rose-Amateur’s Guide ; contain-
ing ample Descriptions of all the fine leading
varieties of Roses, regularly classed in their
respective Families; their History and
Mode of Culture. Sixth Edition, corrected
and improved. Fop. 8vo. 8s. 6d.

Dr. E. Robinson’s Greek and English
Lexicon to the Greek Testament. A New
Edition, revised and in great pagt re-written.
8vo. price 18s.

Mr. Henry Rogers’s Essays selected from
Contributions to the Edinburgh Review.
Second and cAeaper Edition, with Additions.
8 vols. fep. 8vo. 21s.

Dr. Roget’s Thesaurus of English Words
and Phrases classified and ed 8o as to
facilitate the Expression of Ideas and assist
in Literary Composition, Seventh Edition,
revised and improved. Crown 8vo. 10s. 6d.

Ronalds’s Fly-Fisher's Entomology:
‘With coloured Representations of the
Natural and Artificial Insect, and a few Ob-
servations and Instructions on Trout and
Grayling Fishing. Fifth Edition, thoroughl
revised by an Experienced Fly-Fisher ; wit:
20 new coloured Plates. 8vo. 14s.

Rowton’s Debater: A Series of complete
Debates, Outlines of Debates, and Questions
for Discussion; with ample References to the
best Sources of Information. New Edition.
Fep. 8vo. 6s.

Russell (Dr)— The Life of Cardinal
Mezzofanti : With an Introductory Memoir
of eminent. Linguists, Aneient and Modern.
By C. W. Russkrr, D.D., President of St.
Patrick’s College; Maynooth., With Portrait
and Facsimiles. 8vo. 12s,

The Saints our Example. By the Author
of Letters to my Unknown Friends, &c. Fep.
8vo. price 7s,

Scherzer.—Travels in the Free States of

Central America: Nicaragua, Honduras,
and San Salvador. By Dr. CARL SCHERZER.
With a coloured Map. 2 vols. post 8vo. 16s.

““ This is 2 work which | adventure....Dr. Scher-
will satisfy all who love | zer'sisundoubtedly the best
lively detall of tropical ef- | work on Central America
fects and marvels, and are | sinoe the e of Mr,
not averse to t of hu- | Squiers’ liv )\ -
man romance and scientific ATHEN BUM,

[ SchimmelPenninck (Mrs.)—Life of Mary .

Anne SchimmelPenninck, Author of Select
Memoirs of Port Royal, and other Works.
Edited by her Relation, CErIsTIANA C.
HANKIN. 2 vols. post 8vo. with - Portrait,
price 15s.

Dr.L. Schmitz’s School History of Greece,
from the Earliest Times to the Taking of
Corinth by the Romans, B.0. 146, mainly
based on Bishop Thirlwall’'s History of
Greece.  Fifth Edition, with Nine new Sup-

lementary Chapters on the Civilisation,
%eligion, Literature, and Arts of the An-
cient Greeks, contributed by CHRISTOPEER
K~N1gHT WATSON, M. A.., Trin, Coll. Camb. ;
and illustrated with a Map of Athens and 137
‘Woodcuts, designed from the Antique by
€. Scharf, jun., F.8.A. 12mo. 7s. 6d.

Scoffern (Dr.) — Projectile Weapons of
‘War and Explosive Compounds. By J.
ScorrerN, M.B. Lond., late Professor of

- Chemistry in the Aldersgate College of

Medicine. Tkird Edition, corrected to the
present time. Post 8vo. with ‘Woodecuts,
price 8s. 6d.

Scrivenor’s History of the Iron Trade,

from the Earliest Records to the Present
Period. ew Edition, corrected. 8vo.
price 10s. 6d.

Sir Edward Seagard’s Narrative of his

Shipwreck, and consequent Discovery of
cartain Islands in the . Caribbean Sea.
Third Edition, 2 vols. post 8vo. 21s,—An
ABRIDGMENT, in 16mo. price 2s.

The Sermon in the Mount. Printed by
C. Whittingham, uniformly with the Zhumb
Bible ; bound and clasped. 64mo. 1s, 6d.

Bowdler's Family Shakspeare: In which
nothing is added to the Original Text; but
those words and expressions ‘are: omiftfed
which cannot with propriety be read aloud.
Tllustrated with Thirty-six Vignettes en-
graved on Wood from original Designs by

COOKR, R.A,

a. T, STOTHARD, R.A.
B. COOKH,

H. THOMBON, B.A,
B. WESTALL, B.A.
B. WORDFORDE, R.A,

New Edition, printed in a more convenient
form. 6 vols. fcp. 8vo. price 80s. cloth;
separately, bs. each.

*.% The Lrsrany EDITION, with the same

Tllustrations, in One Volume, mediwum 8vo.
price 21s. cloth.
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Sewell (Miss).—New and cheaper Col-
lected Edition of the Tales and Stories of
the Author of Amy Herbert. Complete in
9 vols. crown 8vo. price £1.10s. cloth ; or
each work, comprised in a single volume,
may be had separately as follows :—

AMY HERBERT .........cccvveveree. 280 6d.
GERTRUDE .......c.ccovvvniiinnienne 2s. 6d.
The EARL'S DAUGHTER .......... 2s. 6d.
The EXPERIENCE of LIFE...... 2s. 6d.
CLEVE HALL ........... PN 8s, 6d.
IVORS; or, the TWO COUSINS 38s. 6d.
KATHARINE ASHTON ............ 8s. 6d.
MARGARET PERCIVAL ......... 5s. 0d.

LANETON PARSONAGE ......... 4s. 6d.

* High and pure aims, ear- | self-training, enraﬁxlliml
nestness of pnrpo«?«:.' and | vated habita'of
gobriety of Judgmenf, are | observation, an
the %unme. which m: eelf-control. No writer gives
welgh and value to more the conviction of writ-
writer’s intellectual endow- | ing from experience; the
ments, which atone for con- | reader, judging
siderable deficiencies, and | works alone, is persuaded of
which constitute her a pecu- | this; it gives them their
lhr:ly safe and trustworthy mwor; we instinctively
ide for young minds...... ow that the Rncﬁcal
he characteristics of the | teaching in them has been
mind before us are ]K:cﬁml worked out, and found to be
religious self-discipline, rigid | true.”
CHRISTIAN REMENBRANCER.

By the same Author, New Editions,

Ursula: A Tale of English Country Life.
2 vols. fep. 8vo. price 12s. cloth.

Readings for Every Day in Lent: Com-
iled from the Writings of BisHOP JEREMY
'AYLOR. Fop. 8vo. pries bs.

Readings for a Month preparatory to
Confirmation : Compiled from the Works of
‘Writers of the Early and of the English
Church., Fep. 8vo. price 4s.

Sharp’s New British Gazetteer, or Topo-
graphical Dictionary of the British Islands
and Narrow Seas: Comprising concise De-
scriptions of about Sixty Thousand Places,
Seats, Natural Features, and Objects of Note,
founded on the best authorities. 2 vols.
8vo. price £2. 16s.

Short Whist; its Rise, Progress, and
Laws: With Observations to make any one a
‘Whist-Player. Containing also the Laws of
Piquet, Cassino, Ecarté, Cribbage, Back-
ga;:m];on. B; dildajor A, Ne}v Edition ; to
which are » Precepts for Tyros, b;
Mrs, B. Fecp. 8vo. 3s. »

Sinclair. — The Journey of Life. By
CATHERINE SINOLATR, Author of The Busi-
ness of Life. New Edition. Fep.8vo, Bs.

Sir Roger De Coverley. From the Spec-

tator. With Notes and Illustrations, by
W. Hexry WiL1s; and 12 Wood Engrav-
ings from Designs by F. TAYLER. Second
and cheaper Edition. Crown 8vo. 10s. 6d.;
or2ls. in morocco by Hayday.—An Edition
without Woodcuts, in 16mo. price 1s,

The Sketches: Three Tales. By the
Authors of 4my Herbert, The Old Mar’s
Home, and Hawkstone. Third Edition ; with
6 Illustrations. Fep. 8vo. price 4s. 6d.

Smee’s Elements of Electro-Metallurgy.
Third Edition, revised, corrected, and con-
siderably enlarged ; with Electrotypes and
numerous Woodcuts, Post 8vo. 10s. 6d.

Smith (G.) — History of Wesleyan Me-
thodism. By Georex SwmiTH, F.AS,
Member of the Royal Asiatic Society, &c.
Vor. 1. Wesley and his Times; and VoL.
I1. The Middle Age of Methodism, from the
Death of Wesley in 1791 to the Confer-
ence of 1816. Crown 8vo. price 10s. 6d.
each volume,

Smith (G. V.)—The Prophecies relating
to Nineveh and the Assyrians, Translated
from the Hebrew, with Historical Intro-
ductions and Notes, exhibiting the principal
Results of the recent Discoveries. By
@. Vaxce SmiTH, B.A. Post 8vo. 10s. 6d.

Smith (J.) —The Voyage and Shipwreck
of 8t. Paul : With Dissertations on the Life
and Writings of St. Luke, and the Ships and
Navigation of the Ancients. By James
SMrTH, of Jordanhill, Esq., F.R.S. Second
Edition ; with Charts, Views, and Wood-
cuts. Crown 8vo. 8s, 6d.

By his Daughter, Lapy Horraxp. With
a Selection from his Letters, edited by
MR8, AUSTIN, New Edition. 2 vols. 8vo. 28s.

The Rev.Sydney Smith’s Miscellaneous

‘Works : Including his Contributions to The
Edinburgh Review. Three Editions :—

1. A LiparY EDITION (the Fourth), in 3
vols. 8vo. with Portrait, 36s.

2. Complete in ONE VOLUME, with Portrait
and Vignette. Square crown 8vo. price
21s. cloth ; or 30s. bound in calf.

8. Another New EDITION, in 3 'vols. fcp.
8vo. price 21s.

|
|
|
\

|

A Memoir of the Rev. Sydney Smith ‘



PUBLISHED BY LONGMAN, BROWN, AxD cd. 21

The Rev. Sydney Smith’s Elementary
Sketches of Moral Philosophy, delivered at
the Royal Institution in the Years 1804,
1805,and 1806. Third Edition. Fcp. 8vo.7s.

Snow.—Two Years’ Cruise off Tierra
del Fuego, the Falkland Islands, Patagonia,
and the River Plate: A Narrative of Life
in the Southern Seas. By W. PARKER
Sxow, late Commander of the Mission
Yacht Ailen Gardiner ; Author of “Voyage
of the Prince Albert in Search of Sir John
Franklin.” With 8 coloured Charts and 6
tinted Illustrations. - 2 vols. post 8vo. 24s.

Robert Southey’s Complete Poetical
‘Works; containing all the Author’s last In-
troductions and Notes. The Library Edi-
tion, complete in One Volume, with Por-
trait and Vignette, Medium 8vo. price 21s.
cloth ; 42s. bound in morocco. — Also, the
First collected Edition, in 10 vols, fep. 8vo.
with Portrait and 19 Vignettes, price 35s.

The Life and Correspondence of the late Robert
Southey. Edited by his Son, the Rev.
L. C.Sourary, M.A,, Vicar of Ardleigh.
With Portraits and Landscape Illustra-
tions. 6 vola. post 8vo. price 63s.

Southey’s Doctor, complete in One
Volume. Edited by the Rev. J. W. WARTER,
B.D. With Portrait, Vignette, Bust, and:
coloured Plate, Square crown 8vo, 21s.

Southey’s Life of Wesley ; and Rise and
Progress of Methodism. Fourth and cheaper
Edition, with Notes and Additions. Edited
by the Author's Son, the Rev. O. C.
SourHEY, M.A, 2 vols. crown 8vo. 12s,

Spencer.—Essays: Scientific, Political,
and Speculative. By HERBERT SPENCER,
Author of Social Statics. Reprinted chiefly
from Quarterly Reviews. 8vo. price 12s.cloth.

Spencer.—The Principles of Psychology. By
HErBERT SPENCER, Author of Social Statics.
8vo. price 16s. cloth,

Stephen.— Lectures on the History of
France. By the Right Hon. Srr Jamzs
StEPHEN,K.C.B.,LL.D.,Professor of Modern
History in the University of Cambridge.
Third Edition. 2 vols, 8vo. price 24s.

Stephen.—Essays in Ecclesiastical Bio-
graphy ; from the Edinburgh Review. By
theRight Hon.S1e James SteruEN, K.O.B.,
LL.D., Professor of Modern History in
the University of Cambridge., Third Edi-
tion. 2 vols. 8vo. 24s,

Stonehenge. — The Dog in Health and
Disease: Comprising the various Modes of
Breaking and Using him for Hunting,
Coursing, Shooting, &c.; and including the
Points or Characteristics of Toy Dogs. By
STONEHENGE. 8vo. with numerous Illus-
trations. [In the press.

Stonehenge.—The Greyhound: Being a
Treatise on the Art of Breeding, Rearing,
and Training Greyhounds for Public Run-
ning ; their Diseases and Treatment: Con-
taining also Rules for the Management of
Coursing Meetings, and for the Decision of
Courses. By STONEHENGE. With Frontis-
piece and Woodcuts. Square crown 8vo.
price 21s. half-bound.

Stow. — The Training System, Moral
Training School, and Normal Seminary for
%reparing Schoolmasters and Governesses,

y Davip S8tow, Esq., Honorary Secretary
to the Glasgow Normal Free Seminary.
Tenth Edition; with Plates and Woodcuts.
Post 8vo. price 6s.

Strickland, — Lives of the Queens of
England. By AGNES STRIORKLAND. Dedi-
cated, by express permission, to Her Ma-
jesty. Embellished with Portraits of every
Queen, engraved from the most authentic
sources. Complete in 8 vols. post 8vo.price
7s. 6d. each.— Any Volume may be had
separately to complete Sets,

Memoirs of Rear-Admiral Sir William
Symonds; Knt., C.B., F.R.S., Surveyor of
the Navy, from 1832 to 1847 : With Cor-
respondence and other Papers relative to
the Ships and Vessels constructed upon his
Lines, as directed to be published under his
Will. Edited by JAMES A, BHARP. With
Sections and Woodcuts. 8vo. price 21s.

Taylor.—Loyola: and Jesuitism in its
Rudiments. By Isaac Tayror. Post 8vo.
with Medallion, 10s. 6d.

Taylor.— Wesley and Methodism. By
Isaac TavLoR. Post 8vo. Portrait, 10s. 6d.

Thacker’s Courser's Annual Remem-
brancer and Stud-Book : Being an Alpha-
betical Return of the Running at all the .
Public Coursing Clubs in England, Ireland,
and Scotland, for the Season 1857-58 ; with
the Pedigrees (as far as received) of the
Doas. By RoBerT ABRAM WELSH, Liver-
pool. 8vo. 21s.

*.* Published annually in October.
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COMPLETION

THE TRAVELLERS LIBRARY.

—_—,——

of the Contents of the TRAVELLER’S LIBRARY, now complete in 102

Parts,

To be d also, in co

ice O:w Shills n{ each, or in 50 Volumes, price 28 6d. each in cloth—
mplete Sets only, at Five Guineas per Set, bownd in cloth,

lettered, m 25 Volumes, classified as follows -—

VOYAGES AND TRAVELS.

AT movve

PE.
..3Y J. BARROW.

. BY 8. LAING.
... Y Py MILES,

BY 8. LAING,
BY T, FORESTER.
I8 DE CUSTINE
. R, M‘CULLOCH.
z M. JERRMANN,
H, Y 8, BROOKS,
Y R. FERGUSON.
...BY J. AULDJO,
F. VON TSCHUDI.

..8Y E. BAINES,

IN ASIA.
CHINA AND THIBET........ BY rE8 ABRE’ HUC.
SYRIA AND PALESTINE............ *“EOT!
THE PHILIPPINE ISLANDS, BY P, GIBONIERE
IN AFRICA.
AFRICAN WANDERINGS .. 2 BY H. WER
MOROCCO

'HE ZULUS OF NATAL..
IN AHERICA.

Y G. H, MAHON.

. .

Y W. HUGHES,

ROUND THE WORLD.
A LADY’S VOYAGE..........BY IDA PFEIFFER.

HISTORY AND BIOGRAPHY.

OF THE DUKE OF WELLINGTON.
THE LIFE OF IARSHAL THE REV. '1‘ [}

« 0.

---------------------- “m

LIAN IIL
FRANCIS ARAGO’S AUTOBIOGRAPHY,
THOMAS HOLCROFT'S MEMOIRS,

CHESTERFIELD & SELWYN, 3Y A. HAYWARD.
SWIFT RICHARDSON, rLO.R.D JEFFREY.
DEFOE AND CHURCHILL . ¥ J. FORSTER.
ANECDOTES OF DR, JOHNEON, nx MRS, PIOZZ].
TURKEY AND CHRISTENDO:
LEIPSIC CAMPAIGN, BY THB REV. G. R, GLEIG.
AN _ESSAY ON THE LIFE AND} BY Y
GENIUS OF THOMAS FULLERS ROGERS,

c

ESSAYS BY LORD MACAULAY.

WARREN HASTINGS.

LORD OLIV'E
WILLIAM PITT,
THE EARL O CHATHAM,
S HISTORY OF THE POPES
LADS' ON'E ON CHURCH AND STATE,
AD! JISON’S LIFE AND WRITINGS,
HORACE WALPOLE, .

LORD BAOON.

B .
COMIC DRAMATISTS 0!' THE RESTORATION.
FREDERIC THE GREA'
HALLAM’S CONSTITUTIONAL HISTORY,
cx;gg%bsnnnmmn OF BOSWELL'S LIFE OF

LORD MACAULAY’S SPERCHES ON PARLIA-
MENTARY REFORM,

WORKS OF FICTION.

THE LOVE 8TORY, 720x SOUTHEY'S DOCTOE.
S1R ROGER DE COVERLEY.. } spxcr  APOR.

coumssu?x&‘or ATTRE-D" o
Y I el TR S 3 ) soms'mn.

.+es..BY E. BOUVESTRE.

ANHEB IN PARIS..
ARD’S NARRATIVE OF

SIR._EDWARD SEA}
HIS SHIPWRECK.,

NATURAL HISTORY, &o.

NATURAL RUSTORY OF } 5y pR. L. KEMP.
INATIONS 0 INSTINCT, 5x DR, L. KEMP,

ELECTRIC TELBGRAPH, &c. 3Y DR. G. WILSON.
OUR COAL-FIELDS AND OUR OOAIrPITS.
CORNWALL, ITS MINES, MINERS, &

- MISCELLANEOUS WORKS.

LECTURES ANDADDBISBES{ cARLISLE or
sgmmogg’ FROM SYDNEY SMITH'S

PRINTING 11vvveseennessessesasanss. BX A STARK,

RATLWAY PIORALS ANDY | 3y H. SPENCER.

MORM ONISM..nrmRE W.J.OR_NYBEABE.
LONDO:

terseersacassseees BYJ R,
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Thirlwall.— The History of Greece. By
the Right Rev. the Lorp BisHor of ST.
Davip’s (the Bev. Connop Thirlwall). An
improved Library Edition ; with Maps. 8
vols. 8vo. price £3.—An Edition in 8 vola.
fep. 8vo. with Vignette Titles, price 28s.

Thomson’s Seasons. Edited by Bolton
CorNEY, Esq. Illustrated with 77 fine
‘Wood Engravings from Designs by Mem-
bers of the Etching Club. Square crown8vo.
21s. cloth ; or 36s. bound in moroceo.

Thomson (the Rev. Dr.) — An Outline of
the necessary Laws of Thought: A Treatise
on Pure and Applied Logic. By WiLLiax
TaoMs0N, D.D., Provost of Queen’s College,
Oxford. 4t Edition. Fop. 8vo. 7s. 6d.

Thomson’s Tables of Interest, at Three,
Four, Four-and-a-Half, and Five per Cent.,
from One Pound to Ten Thousand, md from
1 to 865 Days, in a regular sion of
single Days; with Interest at all the above
RBates, from One to Twelve Months, and
from One to Ten Years, Also, numerous
other Tables of Exchanges, Time, and Dis-
covnts. New Edition, 12mo. price 8s,

The Thumb Bible; or, Verbum Sempi-
‘ternum, By J. Tavrom. Being an Epi-
tome of the Old and New Testaments in
English Vereo. - Reprinted from the Edition
of 1698 ; bound and clasped. 64mo. 1&. 6d.

Tighe and Davis.—Anmls of Windsor;
Being a History of the Castle and Town:
‘With some Acooﬁnt of Etollgl.aqu l’l(alo? aﬁ-
Boent,' By R. B. T1aBE, .3 and J. E.

AVIS, Esz., Barrister-at-Law. With nu-
merous Illustrations. 2 vols. royal 8vo.
price £4. 4s. !

Tooke.~—History of Prices, and of the
State of the Circulation, during the Nine
Years from 1848 to 1866 i ive, Form-
ing Vors. V. and VL. of Tooke’s History of

Prices from 1792 to the Present Time; and
comprising a copious Index to the whole of
the Six Volumes. By TaomAs Teoxs,

F.R.8. and WiLLiax NEWMARCH, 2 vols.

8vo. price 52s. 6d.

Townsend.—Modern State Trials revised
and illustrated with Essays and Notes. By
'W. 0. TownsEND, Esq., M.A,, Q.0. 2 vols.
8vo, prige 80s.

Trollope.—~Barchester Towers : A Novel.
By AxTeONY TROLLOPE. New and cheaper
KEdition, complete in One Volume, Crown
8vo. price 5s. cloth.,

Trollope.—The Warden, By Anthony Trollope,
Post 8vo. 10s, 6d.

Sharon Turner’s Sacred History of the
World, attempted to be Philosophically
considered, in a Series of Letters to a Son.
New Edition, edited by the Rev. 8. TURNER.
8 vols. post 8vo, price 31s. 6d.

Sharon Turner's History of England
during the Middle Ages: Comprising the
Reigns from the Norman Conquest to the
Accession of Henry VIII. Fi%th Kdition,
revised by the Rev. 8. TURNER. 4 vols.
8vo. price 50s.

Sharon Turner’s History of the Anglo-
Baxons, from the Earliest Period to the
Norman Conquest. Seventh Edition, revised
by the Rev. 8. TURNER. 8 vols. 8vo. 365,

Dr. Turton’s Manual of the Land and
Fresh-Water Shells of Great Britain: With
Figures of each of the kinds. New Edition,
with Additions, by Dr. J. E. Gray, F.R.S,,
&e., Keeper of the Zoological Collection in
the British Museum. Crown 8vo. with 12
coloured Plates, price 15s. cloth.

Dr. Ure’s Dictionary of Arts, Manunfac-
tures, and Mines: Containing a clear Ex
sition of their Principles and Praotzpe:
Fourth Edition, much enlarged ; most of
the Articles being entirely re-written, and -
many new Artirges added. With nearly
1,600 Woodcuts. 2 vols. 8vo. price 60s,

Uwins.—Memoir of Thomas Uwins, R.A.
By Mrs. Uwins. With Letters to. his
Brothers during seven years spent in Ttaly ;
and Correspondence with the late Sir Thomas
Lawrence, Sir C. L. Eastlake, Alfred Chalon,
R.A.and other distinguished persons. 2vols.
post 8vo. [Just ready.

Van Der Hoeven’s Handbook of Zoology.
Translated from the Second Dutch Edition
by the Rev. WirLiaM Crarx, M.D., F.R.8.,
&o., late Fellow of Trinity College, and Pro-
fessor of Anatomy in the University of
Cambridge; with additional References fur-
nished by the Author. 2 vols. 8vo. with
24 Plates of Figures, price 60s. cloth; or
separately, VoL. I. Imvertebrata, 30s. and
Vor. 1. Vertebrata, 30s.

** Naturalists will be glad | description of the families
and genera, and the princi-
species, A es of

u executed plates

Handbook of Zoology by the | at the end carries the eye
publication of the second | along the ascending scale of
volume, comprising the Ver- | life by the delineation of
tebrate Animals. e ar- | some of its chief organs.
t is the same as | ProfessorClark has supplied
a great want by thus placing

. & complete and careful ma-

four classes of Fishes, Re] ?h ring the warrant of
0

Iatest seience, within the

reach of the private stu-

dent,” 'UARDIAN,

Vehse.—Memoirs of the Court, Aristo-
cracy, and Diplomacy of Austria. By Dr, E.
VEHSE. Trans! from the German by
FraNz DeMMiER, 2 vols. post 8vo. 21s,
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Von Tempsky. — Mitla; or, Incidents
and Personal Adventures on a Journey in
Mexico, Guatemala, and Salvador, in the
Years 1853 to 1855 : With Observations on
the Modes of Life in those Countries. By
G.F. VoN Tempsgy. With coloured Route
Map, Illustrations in Chromolithography,
and Engravings on Wood. 8vo. price 18s.

*¢ A remarkably-well writ- | from, pours forth his anec-
- ten and amusing account of | dotes in profusion, and has
three years’ travel in Spa- | given the public as enter-
nish America. The author | taining & narrative as we
is a capital story-teller, had | have lately seen.”

a copious budget to draw | GARDENERS’ CHEONICLE.

Wade. — England’s Greatness: Its Rise
and Progress in Government, Laws, Religion,
and Bocial Life; Agriculture, Commerce,
and Manufactures ; Science, Literature, and
the Arts, from the Earliest Period to the
Peace of Paris. By Jorx WADE, Author of
tho Cabinet Lawyer, &c. Post 8vo. 10s. 6d.

Wanderings in the Land of Ham. By a
DaveHTER of JAPHET. Post 8vo. 84. 6d.

*“The vigour and freshness
which characterise her ver-
'io‘lll of :he‘ :hf:-tgld tale are
such as mi expected
from_a lady who has domre
the Nile at the age of seven-
teen, with exuberant spirits,

Waterton.—Essays on Natural History,
chiefly Ornithology. By C. WATERTON, Esq.
With an Autobiography of the Author, and
Views of Walton Hall. New and cheaper
Edition. 2 vols, fop. 8vo. price 10s.

Waterton's Essays on Natural History. Third
Series; with a Continuation of the Auto-
biography, and a Portrait of the Author.
Second Edition, Fop. 8vo. price 6s.

Webster and Parkes’s Encyclopedia of
Domestic Economy; comprising such sub-
jects as are most immediately connected with
‘Housekeeping : As, The Construction of

. Domestic Edifices, with the Modes of Warm-
ing, Ventilating, and Lighting them—A de-
scription of the various articles of Furniture,
with the nature of their Materials—Duties of
Servants—&c. New Edition ; with nearly
1,000 Woodeuts. 8vo, price 50s.

Weld. — Vacations in Ireland. By
OsaRrLESs RicEARD WELD, Barrister-at-
Law. Post 8vo. with a tinted View of
Birr Castle, price 10s. 6d. -

Weld.—A Vacation Tour in the United States
and Canada. By C.R.WEzLD, Barrister-at-
Law. Post 8vo. with Map, 10s. 6d.

West. — Lectures on the Diseases of
Infancy and Childhood. By CHARLES WEST,
M.D., Physician to the Hospital for Sick
Children; Physician-Accoucheur to, and
Lecturer on Midwifery at, St. Bartholomew’s
Hospital. Third Edition. 8vo. 14s.

everything that
comes under its notice.”
CLERICAL JOURNAL,

Willich’s Popular Tables for ascertain-
ing the Value of Lifehold, Leasehold, and
Church Property, Renewal Fines, &c. - With
numerous additional Tables—Chemical, As-
tronomical, Trigonometrical, Common and
Hyperbolic Logarithms; Constants, S8quares,
Cubes, Roots, Reciprocals, &c. Fourth
Edition, enlarged. Post 8vo. price 10s.

Wilmot’s Abridgment of Blackstone'’s
Commentaries on the Laws of England, in-
tended for the use of Young Persons, and
comprized in a series of Letters from a Father
to his Daughter. 12mo. price 6s. 6d.

Wilson’s Bryologia Britannica: Con-
taining the Mosses of Great Britain and
Ireland systematically arrangedand described
according to the Method of Bruck and
Schimper ; with 61 illustrative Plates. Being
a New Edition, enlarged and altered, of the
Muscologia Britannica of Messrs. Hooker and
Taylor. 8vo. 42s.; or, with the Plates
coloured, price £4. 4s. cloth.

Yonge.—A New English-Greek Lexicon :
Containing all the Greek Words used by
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