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PART ONE

Plane Analytic

Geometry





Chapter 1

COORDINATES ON A STRAIGHT LINE
AND IN A PLANE

1. An Axis and Segments of an Axis

1. Consider an arbitrary straight line. It extends in two oppo-
site directions. Let us choose at will one of these directions and
refer to it as positive (and to the other direction as negative).

A straight line to which a positive direction has been assigned
is called an axis. In diagrams, the positive direction of an axis

is indicated by an arrowhead (see, for example, Fig. 1, where an
axis a is shown).

B

Fig. 1.

*

2. Let there be given an axis, and let there also be specified
a unit segment, that is, a unit of length by means of which any
segment can be measured, so that the length of any segment may
be determined.

Take two arbitrary points on a given axis and denote them

by the letters A and B. The segment bounded by the points A,

B is called a directed segment if one of these points has been

designated as the initial point, and the other as the terminal point

of the segment. A segment is considered to be directed from its

initial to its terminal point.
In the succeeding pages, a directed segment is denoted by the

two letters that mark the points bounding the segment; the letter

marking the initial point is always written first, and a horizontal

bar is placed over the letters. Thus, AB denotes the directed seg-
ment bounded by the points A, B and having A as its initial

point; BA denotes the directed segment bounded by the points A,

B and having B as its initial point.

When dealing with directed segments of an axis in our future

work, we shall often refer to them simply as segments, omitting
the word "directed".
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Let us now agree to define the value of a segment AB of an
axis as the number equal to the length of the segment and taken
with a plus or minus sign according as the direction of the seg-
ment agrees with the positive or the negative_direction of the axis.

We shall denote the value of a segment AB by the symbol AB
(without the horizontal bar). We do not exclude the case when
the points A and B coincide; in this case, the segment AB is

called a zero segment, since its value is equal to zero. A zero

segment has no definite direction, and hence the term "directed"

may be applied to such a segment only conventionally.
The value of a segment, as distinct from its length, is a signed

number; the length of a segment is obviously the modulus *) of

its value, and therefore, in accordance with the notation adopted
in algebra for the modulus of a number,_we shall use the symbol

\AB\ to denote the length of a segment AB. Clearly, \AB\ and \BA\

represent the same number. On the other hand, the values AB
and BA themselves differ in sign, so that

= ~~BA.

Figure 1 shows an axis a and points A, fi, C, D on that axis;

i 2 is a unit segment. The points A, B, C, D are assumed to

occupy positions such that the distance between A and B is equal
to two units, and the distance between C and D to three units.

The direction from A to B agrees with, and the direction from C
to D is opposite to, the positive direction of the axis. Accordingly,
we have

AB = 2, CD ==-3,
or

BA= -2, DC= 3.

Also, we may write

\*=2, |CD|= 3.

3. For any positioji^of points A, B f C on an axis, the values

of the segments AB f BC and AC are connected by the relation

(1)

we shall call this relation the fundamental identity.
Let us prove this^fundamental identity. Suppose first that the

segments AB and BC are different from zero and havejhe same

direction (Fig. 2, the top line); then the segment AC has its

*> The word "modulus" has the same meaning as "absolute value".
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length equal to the sum of the lengths of the segments AB, BC
and agrees in direction with these segments. In this case, all the

three numbers AB, BC and AC have like signs, and the number
AC is equal to the sum of the numbers AB, BC, which means
that identity (1) holds true. _ _

Suppose next that the segments AB and BC are different from
zero and havQ^opposite directions (Fig. 2, the bottom line). Then

the segment AC has itsjength equal to the difference of the

lengths of the segments AB, BC and agrees in direction with the

longer of these segments. In

this case, the numbers AB A_B_C

and BC differ in sign, and
~"H l '

AC has its modulus equal to A_C B_
the difference of the moduli

"H * '

*""

of the numbers AB, BC and Fig- 2.

agrees in sign with the num-
ber having the larger modulus. Consequently, for this position
of the points, the number AC is equal to the sum of the numbers
AB, BC, according to the rule for addition of signed numbers;
this means that identity (1) is again valid.

Finally, suppose that one of the segments AB, BC is a zero

segment. If AB is a zero segment, then the point B coincides with
the point A, and hence

If BC is a zero segment, then the point B coincides with the

point C, and hence

Thus, identity (1) is actually valid for every position of the

points A, B, C.

Note. If the symbols AB, BC and AC in relation (1) were
considered simply as the lengths of the respective segments
(without regard to signl), the relation would be valid only for

the case when the point B is situated between the points A and C.

Relation (1) owes its universality precisely to the fact that AB,
BC and AC are understood in it as the values of the segments

AB, BC and AC, that is, as their lengths taken with appropriate

signs *).

*) In the case of segments not lying on an axis and regarded as arbitrary

segments in a plane, no sign need be attributed to their lengths. The lengths
of such segments may be denoted as in elementary geometry (that is, without

the modulus symbol); this will often be done below (see, for example, Art. 40,

where the length of the segment is denoted by CM, rather than by |CAf|).
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2. Coordinates on a Line.

The Number Axis

4. In this article we shall describe a method which permits
us to determine the position of points on an arbitrarily chosen

straight line by -the specification of numbers.
Let there be given an arbitrary straight line a. We next choose

a segment as the unit of length, assign a positive direction to the

line a (thereby making it an axis), and mark some point on this

line by the letter 0.

Let us now agree to define the coordinate of any point M on

the axis a as the value of the segment OM. The point wilt be

called the origin of coordinates; the coordinate of the origin itself

is equal to zero.

The specification of the coordinate of a point M completely
determines the position of M on the given line. For, the modulus
of the coordinate, i. e. |OAf|, is the distance of M from the (pre-

assigned) point O, while the sign of the coordinate, i. e., the sign
of the number OM, gives the direction in which the point M lies

relative to the point 0; if the coordinate is positive, then M lies

in the positive direction from 0; if the coordinate is negative,
then M lies in the negative direction from 0; if the coordinate is

zero, then M coincides with 0. (All this immediately follows from
the definition of the value of a segment of an axis; see Art. 2.)

Imagine that the straight line a is drawn horizontally before

us and is positively directed to the right. The location of points
of the line a, according to the sign of their coordinates, may then

be described as follows: Points with positive coordinates lie to

the right of the origin 0, and points with negative coordinates, to

the left.

The coordinate of an arbitrary point is generally denoted by
the letter x. In cases when several points are considered, they are

often denoted by one letter having different subscripts, say MI,
M2, . . . ,

M n ;
then the coordinates of these points are also denoted

by one letter with corresponding subscripts: x\, x2 ,
. . .

,
xn .

To show briefly that a given point has a given coordinate,
the latter is enclosed in parentheses and written next to the sym-
bol of the point itself, as for example, MI (x { ) ,

M2 (x2 ) ,
. . .

,
Mn (xn ) .

5. We shall now prove two simple but important theorems

concerning an axis to which a coordinate system has been attached.

Theorem 1. For any two points MI(XI) and M2 (jc2 ) of an axis,

we always have the relation

Af
1
M2
= A:2 xr (1)
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Proof. In consequence of the fundamental identity (Art. 3),

whence

But OM2
= x2 , OMl

= x
l , and so

as was to be proved.
This theorem may be phrased as follows: To find the value

of a segment of an axis, it is necessary to subtract the coordinate

of its initial point from the coordinate of its terminal point. (See

i Hg MI Afr

Fig 4.

Figs 3 and 4; it should be observed that the coordinate x
}
in Fig. 4

is negative.)

Theorem 2. If Afi(jci) and M 2 (Jt2) are any two points of an

axis, and if d is the distance between them, then

J I y, .-I /0\a
|

A2 A! |

. \&)

Proof. In agreement with the preceding theorem,

but the distance between the points MI and M% is the modulus

of the value of the segment M\M2 ,
and hence

fl
I

y. y

The theorem is thus proved.

Note. Since the numbers x2 x
l and x\ x2 have the same

modulus, it is equally correct to write d = \x2 x\\ and
d = \Xi x2 \. Taking this into account, we may phrase the above
theorem thus: To compute the distance between two points of an

axis, it is necessary to subtract the coordinate of one point from
the coordinate of the other and take the modulus of the resulting

difference.

Example l._Given_the points A (5), B( 1), C( 8), 0(2), ftodJtofc. values of

the segments AB, CD and DB.
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Solution. By Theorem 1, we have

AB = ~-l~b = $,

CD = 2 (-8)= 10,

Example 2. Find the distance between the points P(3) and Q( 2).

Solution. It follows from Theorem 2 that

6. If a coordinate system is attached to an axis, each point
oi that axis will have one completely determined coordinate.

Conversely, for any (real) number x there will be found on the

axis one completely determined point M having the given coordi-

nate x.

Let us adopt the convention that the point M represents the

number x. An axis on which coordinates have been introduced

(by the method described in Art. 4) is called the number axis.

Fig. 5, shows the number axis with several integers marked on it.

-4 -J -t -f ff f t 3 *

Fig. 5.

Representation of numbers as points of the number axis per-
mits us to visualise geometrically our concept of the totality of

numbers, and also makes it possible to express arithmetical rela-

tions in geometrical terms. For example, all solutions of the

inequalities 3 < x < 5 may be visualised as the points situated

on the number axis between the point representing the number 3

(that is, having the coordinate 3) and the point representing the

number 5 (that is, having the coordinate 5). This fact can be

expressed briefly as follows: The inequalities 3 < x < 5 represent
the interval (on the number axis) bounded by the points 3 and 5.

The geometric representation of arithmetical relations has

proved to be of great convenience and is widely used in all

branches of mathematics.

3. Rectangular Cartesian Coordinates in a Plane.

A Note on Oblique Cartesian Coordinates

7. When a method has been indicated, which permits us to

establish the location of points in a plane by the specification of

numbers, then we say that a coordinate system has been attached

to the plane. We shall now consider the simplest and most com-
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monly used coordinate system, called the rectangular cartesian

system of coordinates.
A rectangular cartesian system of coordinates is determined

by the choice of a linear unit (for measurement of lengths) and

of two mutually perpendicular axes numbered (that is, designated
as the first and second axis) in any order. The point of intersec-

tion of the axes is called the origin of coordinates, and the axes

themselves are called the coordinate axes; the first axis is also

termed the *-axis or axis of abscissas, and the second axis is

termed the y-axis or axis of ordinates.

Let us denote the origin by the letter O, the x-axis by the let-

ters Ox, and the y-axis by Oy. In diagrams, the letters x, y mark
the respective axes at the points farthermost from in the posi-
tive direction, so that the direction of the x- and y-axes is unam-

biguously indicated by the position of the letters 0, x and O, y,

respectively. Thus, there is no need to indicate the positive direc-

tions of the coordinate axes by means of arrowheads, which will

therefore be omitted in the succeeding diagrams.
Let M be an arbitrary point in the plane. Project the point M

on the coordinate axes, that is, drop perpendiculars from M to the

lines Ox and Oy\ mark the respective feet

of these perpendiculars as Mx and My

"

(Fig. 6).
The coordinates of a point M in a My

given system are defined as the numbers

x ' y y \ /

where OMX is the value of the segment
OMX of the x-axis, and OMy is the value of Fig. 6.

the segment OMy of the y-axis. The num-
ber x is called the first coordinate or abscissa of the point M, and
the number y is called the second coordinate or ordinate of M. To
indicate briefly that the point M has the abscissa x and the ordi-

nate y, we use the notation M(x, y). If several points are to be

considered, we shall often denote them by one letter having
different subscripts, as for example, M\, Af2 ,

. . .
,
M n \ the coordi-

nates of these points will then have corresponding subscripts, and
so the points under consideration will be written thus: M\(x\,y\),

8. When a rectangular cartesian system of coordinates has
been attached to a plane, then each point of the plane has one

completely determined pair of coordinates #, y in this system.
Conversely, for any two (real) numbers x, y, there will be found
in the plane one completely determined point whose abscissa is x

2-521



18 Coordinates on a Straight Line and in a Plane

and whose ordinate is y in the given system. To plot a point from

its coordinates x, y, the segment OMX equal in value to x is laid

off (from the origin) on the x-axis, and the segment OMy of the

value y is laid off on the y-axis, the directions in which these

segments are laid off being determined by the signs of the num-
bers x, y. Next, a line is drawn through Mx parallel to the axis

Oy, and another line through M y parallel to Ox; the intersection

of these two lines will give the required point M.
9. In Art. 4 it was explained how a system of coordinates

is attached to a straight line. We shall now attach a system
of coordinates to each of the coordinate axes Ox and Oy, retaining
the given linear unit and the given directions of the axes Ox, Oy,
and choosing the point O as the origin of coordinates on each

axis.

Consider an arbitrary point M and its projection Mx on the

axis Ox.

The coordinate of Mx on the axis Ox is equ^l to the value of

the segment OMX , in Art. 7, this value was called the abscissa

of the point M. Hence we conclude that the abscissa of the point
M is equal to the coordinate of the point Mx on the axis Ox.

Similarly, the ordinate of the point M is equal to the coordinate

of the point Mv on the axis Oy. For all their obviousness, these

propositions are of great importance; in fact, they enable us to

apply Theorems 1 and 2 (Art. 5), which express basic properties
of a coordinate system on a line, to all points in a plane.

10. To facilitate subsequent formulations, let us now agree
about the use of certain terms.

The axis Oy divides the entire plane into two half-planes;
the half-plane containing the positive half of the axis Ox will be
termed the right half-plane, and the other, the left half-plane.

In like manner, the axis Ox divides the plane into two half-

planes, of which the one containing the positive half of the axis

Oy will be termed the upper half-plane, and the other, the lower

half-plane*).
11. Let M be an arbitrary point of the right half-plane; then

the segment OMX is positively directed on the axis Ox and, con-

sequently, the abscissa x = OMX of the point M is positive. On
the other hand, if M lies in the left half-plane, then the seg-

ment OMX is negatively directed on the axis Ox, and the number
x = OMX is negative. Finally, if the point M lies on the axis Oy t

*) The adoption of these terms is justified by the usual position of the

coordinate axes in diagrams, where the axis Ox is generally seen directed to

the right, and the axis Oy directed upwards.
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its projection Mx on the axis Ox coincides with the point and
x = OMX is zero.

Thus, all points of the right half-plane have positive abscissas

(x > 0) ;
all points of the left half-plane have negative abscissas

(x < 0) ;
the abscissas of all points lying on the axis Oy are

equal to zero (x = 0).

By similar reasoning, it can be established that all points of

the upper half-plane have positive ordinates (t/>0); all points

of the lower half-plane have negative ordinates (y < 0) ;
the

ordinates of all points lying on the axis Ox are equal to zero

(y
=

o).
Note that the origin 0, as the point of intersection of the axes,

has both coordinates equal to zero: x = 0, y = 0, and is charac-

terised by this property (that is, both

coordinates are zero only for the

point 0).
12. The two coordinate axes jointly H

divide the plane into four parts, called

quadrants and numbered according to

IV

the following rule: The first quadrant
is the one lying simultaneously in the ^
right and the upper half-planes; the

second quadrant lies in the left and the

upper half-planes; the third quadrant
lies in the left and the lower half-planes; p ig> 7.

and, finally, the fourth quadrant
is the one situated in the right and the lower half-planes.

(The order in which the quadrants are numbered is illustrated in

Fig. 7.)

Let M be a point with coordinates x, y. From the foregoing,
it follows that,

if x > 0, y > 0, M lies in the first quadrant;
if x < 0, y > 0, M lies in the second quadrant;
if x < 0, y < 0, M lies in the third quadrant;
if x > 0, y < 0, M lies in the fourth quadrant.

Consideration of the coordinate half-planes and quadrants is

useful because it permits an easy orientation as to the position
of the given points by the signs of their coordinates.

13. We have now become acquainted with the rectangular
coordinate system, which is the most commonly used system of

coordinates. However, when dealing with certain special problems,
other systems may turn out to be more convenient in some cases.
Let us therefore devote a few words to a cartesian coordinate

system whose axes intersect at any angle.
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Such a system is determined by choosing a unit of length
and two axes Ox, Oy, which intersect in the point at any angle
(other than and 180). Let M be an arbitrary point of the plane.
Draw two lines through M parallel to the axes Ox, Oy and denote

their respective points of intersection

/y with Ox and Oy by Mx and M y

M
In the chosen system, the coordi-

nates of the point M are defined as the

numbers

7 where OMX is the value of the segment

Fig. 8. OMX of the axis Ox, and OMy is the

value of the segment OMy of the axis Oy.
The rectangular cartesian system of coordinates constitutes the

particular case of the above-described system when the axes Ox,

Oy make a right angle. If the angle between the axes Ox, Oy is

other than right, the system is called an oblique cartesian system
of coordinates. Since oblique cartesian coordinates find no further

application in this book, we shall often refer to rectangular
cartesian coordinates simply as cartesian coordinates.

4. Polar Coordinates

14. We shall now describe the so-called polar
%
coordinate

system, which is a very convenient and fairly frequently used

system.
A polar coordinate system is determined by choosing a point 0,

called the pole, a ray OA, drawn from that point and called the

polar axis, and a scale for measurement
of lengths. When determining a polar

system, it must also be specified which
direction of rotation about the point is

to be considered positive. Usually, counter-

clockwise rotation is taken as positive.

Given the pole and the polar axis

(Fig. 9), let us consider an arbitrary
A

point M. Let p denote the distance of M Fig. 9.

from the point (p
= |OM|), and 6 the

angle through which the ray OA must be rotated to reach coinci-

dence with the ray OM (6
= Z AOM). This angle 8 will be un-

derstood as in trigonometry (that is, as a signed quantity deter-

mined to within an addend of the form 2nn),
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The numbers p and 6 are called the polar coordinates of the

point M (in reference to the chosen system). The number p is

termed the first coordinate or polar radius, and the number 8, the

second coordinate or polar angle (the polar angle is also termed
the amplitude) .

Note 1. From all possible values of the polar angle of the

point M, one definite value is singled out, namely, the value which
satisfies the inequalities

K < 6 < TC;

we shall call it the principal value. The principal value of the po-
lar angle may be defined verbally as the angle through which
the ray OA must be rotated (no matter which direction) to reach
coincidence with the ray OM, so that the rotation will not exceed
180. In the particular case when the direction of the ray. OM is

precisely opposite to that of the ray 0/4, two 180 rotations are

possible; then the positive rotation is chosen, that is, 8 = n is

taken as the principal value of the polar angle.

Note 2. If the point M coincides with 0, then p
= \OM\ = 0.

This means that the first coordinate of the pole is equal to zero;
its second coordinate obviously has no definite value.

15. Sometimes, the cartesian and the polar systems are to be
used side by side. The following problem arises in such cases:
Given the polar coordinates of a point,
to find its cartesian coordinates; and,

conversely, given the cartesian coordi-

nates of a point, to find its polar
coordinates. We shall now derive the

formulas of this coordinate transfor-

mation (that is, the formulas for tran-

sition from polar to rectangular coor-

dinates, and vice versa) for the partic-
ular case when the pole of the polar
system coincides with the origin of rec-

tangular cartesian coordinates, and the

polar axis coincides with the positive
semi-axis of abscissas (Fig 10). Also, when determining the po-
lar angle, we shall regard as positive the direction of the
shortest rotation of the positive semi-axis Ox into the positive
semi-axis Oy.

Let M be an arbitrary point in the plane, and let (x, y) and
(p, 8) be its cartesian and polar coordinates, respectively. Describe
a circle of radius p about the pcle 0; this circle will be considered
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as the trigonometric unit circle, and the axis Ox as the initial

diameter. From the point Af, drop perpendiculars to the axes Ox
and Oy\ denote their feet by Mx and My respectively (see Fig. 10).

The segment OMX is the cosine line of the angle Q; therefore,

OMX = \OM\ cos 8. The segment OMy is the sine line of the

angle 6; therefore OMy
=* \OM\ sin 8. But OMX = x, OMy

=
y,

\OM\ = p; hence, the above relations give

, y = psin9. (1)

These are the formulas expressing cartesian coordinates in terms

of polar coordinates. The expressions for polar coordinates in

terms of cartesian coordinates may be obtained either from these

formulas or directly from Fig. 10:

tan8 = i.
(2)

Note, however, that the formula tan 8 =~ fails to completely

determine even the principal value of the polar angle; in fact,

we must also know whether 8 is positive or negative.

Example. Given the rectangular cartesian coordinates of a point: (2, 2);

find its polar coordinates (assuming that the pole of the polar system coincides

with the origin of the cartesian system, and that the polar axis coincides with

the positive x-axis).
Solution. By formulas (2), we have

tan6 = 1.

3 1

According to the second of these relations, 6 = -jU or 6 =
-J-TC. Since the

given point lies in the second quadrant, the first of the two indicated values

of 8 must be chosen as the principal value. Thus, p
= 2



Chapter 2

ELEMENTARY PROBLEMS
OF PLANE ANALYTIC GEOMETRY

5. Projection of a Line Segment.
Distance Between Two Points

16. In all our future work we shall always assume that some
coordinate system has been chosen. Whenever we speak of any
points as given, this will mean that their coordinates are known.
If it is required to find some unknown points, we shall consider

the problem solved as soon as the ..

coordinates of those points have been j *

calculated. .X
The present chapter is concerned M .S^ \

with the solutions of several elemen-
'y |

tary problems of analytic geometry.
|

17. Let there be given an arbi- ,

trary segment M\M 2 and an axis u -1 1-
(Fig. 11) Pi P2 u

From the points MI and M2 , drop Fig. 11.

perpendiculars to the axis u and
denote their respective feet by PI and P2 . Consider the segment

PiP2 of the axis u. The initial point of PjP2 is the projection

of the initial point of the given segment AJtAf2 ; the terminal point

of P 4P2 is the projection of the terminal point of MiM2 . The value

of the segment PiP2 of the axis u is called the projection of the

given segment MiM2 on the axis a; this is expressed symbolically

by the relation

According to this definition, the projection of a segment on
an axis is a number, which may be positive (Fig. 11), negative

(Fig. 120), or zero (Fig. 126).
The necessity of calculating the projections of a segment on

the coordinate axes arises particularly frequently in analytic

geometry. We shall agree to denote the projection of an arbitrary

segment on the axis Ox by the capital letter X, and the projection
on the axis Oy by the capital letter Y.

The problem of calculating X, Y when points AJi, M2 are given
is solved by means of the following
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Theorem 3. For any points MI (x if y { ) and M2 (x2, 1/2), the

projections of the segment M
1
M 2 on the coordinate axes are

expressed by the formulas

X= Xt x
l , K= y2 yj. (1)

Proof. From the points Afi, MZl drop perpendiculars on the

axis Ox and denote their feet by PI, PI (Fig. 13). According to

M

p.

(0)

p
t -p,

(b)

Fig. 12.

Art. 9, the coordinates of these points on the axis Ox are jci, x2 ,

respectively. Hence, by virtue of Theorem 1 of Art. 5,

But PiP2 = X, and therefore X =
= X2 x\. The relation K=Q 1Q2 =3:

~
y* y\ is established in a sim-

ilar way. This completes the

proof.

Thus, to obtain the projections
of a segment on the coordinate
axes t subtract the coordinates of

__ its initial point from the corre-

x spending coordinates of its termi-

nal point.

Suppose that the initial point
MI of the segment coincides

with the origin 0; then x {
=

0, y i
= 0. In this case, we denote

the terminal point of the segment simply by the letter M, and
the coordinates of the point M by the letters *, y\ by formu-
las (1), we then obtain

Fig. 13.
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where X, Y are the projections of the segment OM. The segment
OM extending from the origin to the given point M is called

the radius vector of that point. Formulas (!') express the obvious

fact that the rectangular cartesian coordinates of a point are the

projections of its radius vector on the coordinate axes.

18. The problem of determining the distance between two

given points is one of the most frequently encountered elementary

problems of analytic geometry. If the points are given in rectan-

gular cartesian coordinates, the solution of this problem is fur-

nished by the following

Theorem 4. For any position of points MI (x\, y\) and Af 2 (x2 ,

y%) in the plane, the distance d between them is determined by
the formula __

yi)
2

- (2)

Proof. We shall keep the notation used in the preceding theo-

rem, and, in addition, denote by N the intersection of the lines

MiQi and AU^ (Fig. 13). MiM^N is a right-angled triangle, and

so, by Pythagoras' Theorem,

But the lengths of the sides M\N and M%N are clearly identical

with the absolute values of the projections X, Y of the segment

MiMz on the coordinate axes; therefore

Hence, by Theorem 3, we find

as was to be shown.

Example. Find the distance between the points M\ (2, 3) and Af2 (5, 4).

Solution. By formula (2),

^3p = )/~50 = 5

19. Let us once more consider the segment MiMz. Through
its initial point A4, draw a ray u parallel to the axis Ox and

having the same direction as Ox (Fig. 14). Denote by 8 the angle

through which the ray u must be rotated to make its direction

coincide with that of the segment MiAf2 ; this angle will be under-

stood as in trigonometry (that is, as a signed quantity deter-

mined to within the term 2nji).

We shall call the angle 9 the polar angle of the segment
in reference to the given coordinate axes. Obviously, 8 is nothing
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more than the polar angle of the point Mz in the polar coordinate

system whose pole is the point MI and whose polar axis is the

ray w, in this polar system, the length d of the given segment
will be the polar radius of the point Af2 .

Let us now regard the point Afi as the origin of a new carte-

sian coordinate system, whose axes are directed similar to the

axes of the original cartesian

system (in Fig. 14, the new
axes are shown in dashed line).

The projections of the segment

M\M 2 on the corresponding
axes of the old and the new

system being identical, we shall

denote them, as before, by X,
Y. The numbers X, Y are the

cartesian coordinates of the

point M2 with respect to the new

system. Applying to them for-

mulas (1) of Art. 15, we find

,
K=rfsin8. (3)Fig. 14, X=

Formulas (3) express the projections of an arbitrary segment
on the coordinate axes in terms of its length and its polar angle.

From these formulas and in virtue of Theorem 3,

16, (4)

or

cos 9 =

y 2 y 1
==

sin = ~

'
<
5)

Formulas (5) make it possible to determine the polar angle of
a segment from the coordinates of its terminal and initial points

(after finding d from formula (2)).
In many cases, the formula

tan = --=-
(6)

can also be conveniently used; this formula is readily derived
from (4).

Example 1. Given the length d = 2 Y"2 and the polar angle 9 = 135 of a

segment, find its projections on the coordinate axes.

Solution. By formulas (3), we find

X = 2 J/l cos 135 = 2 / 2
(- )

=* - 2,

135 = 2 ==- = 2.
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Example 2. Find the polar jingle of the segment directed from the point

Ai 1(5,1^3) to the point Ma (6, 2/3).
Solution. By formula (2),

Using formulas (5), we find

cos ,
sin 8

2 ,

Hence, principal value of is 60.

20. Let u be an arbitrary axis, and let q> be the angle of incli-

nation of the segment MiM2 with respect to this axis, that is, the

angle through which the axis u has to be rotated to make its

direction coincide with that of the segment M^M^

^
(a)

'

PI

Fig. 15.

(b)

The following formula serves for computing the projection of

the segment MiM2 on the axis u:

projwM^z= d cos 9; (7)

that is, the projection of a segment on any axis is equal to the

length of the segment multiplied by the cosine of its angle of
inclination with respect to this axis.

Formula (7) needs no proof, since it is essentially the same
as the first of formulas (3) in Art. 19. It should only be noted

that, since the sign of an angle does not affect its cosine, the

angle cp
in formula (7) may be taken as in elementary geometry:

in the range to 180 and without regard to sign.
If cp is an acute angle, cosq> and the projection of the segment

are positive (Fig. 15a); if <p is an obtuse angle, coscp and the

projection of the segment are negative (Fig. 156). If cp is a right
angle, the projection is zero.
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Example. Given the points Afi(l, 1) and ^(4,6) Find the projection of the

segment M\M% on the axis passing through the points A (1,0) and B (5,3),
and directed from A to B.

Solution. Let u be the given axis, cp the angle of inclination of the segment

M\M2 with respect__to the axis u, 6 and 6' the polar angles of the seg-

ments MiM2 and AB (see Fig. 16, where all these angles have Afj as vertex).

Fig. 16.

It is apparent that cos <p
= cos (0 6'). Denote the projections of the seg-

ment AfiM2 on the coordinate axes by X, Y, the projections of_the segment AB

by X', F, and the lengths of the segments M
{
M2 and AB by d and d\

respectively. By formula (7),

proju M\M2
= d cos cp

= d cos (9 6') = d (cos cos 0' + sin 6 sin 6')-

Hence, using formulas (3) of Art. 19, we obtain

IX X' Y Y1 XX' -f- YY'

d'

Applying Theorems 3 and 4, we find

Consequently,

The problem is solved.

1 _ 3-4+ 5.3 _ 27
l2
~

5 ~"T"

6. Calculation of the Area of a Triangle

21. Let there be given three points A (# t , y { ), B (x2 , y2 ) and
C (xs, f/s), which are not on the same straight line. We shall now
derive the formula expressing the area S of the triangle ABC in

terms of the coordinates of its vertices.
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Let cp be the angle between the segments AB and AC, and let

d and df
be the lengths of these segments. As we know from

elementary geometry, the area of a triangle is equal to half the

product of its two sides and the sine of the included angle;
hence

S= -c; dd'sin (1)

Denote by 8 the polar angle^of
the segment AB^ll the short-

est rotation of the segment AB to the segment AC through the

angle cp is in the positive direction, then,_by adding cp to 8, we

obtain the polar angle of the segment AC\ denoting it by 8',

y

x

(b)

Fig. 17.

we have 6' = 6 + cp (Fij^
17 a). On the other hand, if the short-

est rotation of AB to AC is in the negative direction, then the

polar angle 6' of the segment AC is obtained by subtracting (p

from 6; in this case, 8' = 8 -cp (Fig, 17 b). Thus, cp
=

(8' 8);

hence, from formula (1), we have

5 = \ dd
f
sin (V 8)

=
-J-

dd' (sin 6' cos 8 cos 6' sin 6) . (2)

Let us denote the projections of the segment AB on the coor-

dinate axes by X, F, and the projections of the segment AC by
X', Y'. By formulas (3) of Art. 19,

, Y=ds\r\Q.
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Removing the parentheses in the right-hand member of (2)

and using these last relations, we find

S=(XY'-X'Y). (3)

According to Theorem 3 of Art. 17,

-A = X<2 -j, ^ =:= y2 ,Vl

X'^Xs Xv J" = y3 y,.

Substituting these expressions in formula (3), we obtain

s= -

[C** *i) (vs y i) (*3 *\) (yi y i)l (4)

Since the expression within the brackets is a determinant of the

second order *>, formula (4) may also be written as

1 x
l y2 y l

2 xz x
l y3 y }

(5)

This result may be expressed in the form of the following

Theorem 5. For any three points A (*i, r/i), B (x2 , y%), C (x3y

*/3), not lying on the same line, the area S of the triangle ABC
is determined by formula (5). The right-hand member of this

formula is equal to +S if the shortest rotation of the segment
AB to the segment AC is in the positive direction; it is equal to

S if the shortest rotation of AB to AC is in the negative direc-

tion.

Example. Given the points A(\, 1), B(6, 4), C(8, 2). Find the area of the

triangle ABC.
Solution. By formula (5),

y\

y\

i

Hence, 5 = 8. The fact that the right-hand member of_(5) is negative in the

present case means that the shortest rotation of AB to AC is in the negative
direction.

7. Division of a Line Segment
in a Given Ratio

22. The problem of dividing a line segment in a given ratio

belongs to those elementary problems of analytic geometry which

find numerous applications. Before giving a precise formulation

*> See the Appendix (page 225) for basic information on determinants.
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of the problem, we must explain at some length what is meant

by the ratio in which a point divides a given segment.
Let there be given any two distinct points in the plane, and

let one of these points be designated as the first, and the other

point as the second. Denote them, in this order, by MI and M2 .

Through these points, draw a straight line u and assign to it a

positive direction, thereby making it

an axis.

Further, let M be a third point of

the axis M, occupying any position
on the axis, provided only that it

does not coincide with the point M2

(Fig. 18).

The number K determined by the

relation
\ t 1 M

(1) Fig-
MM,

where M\M and MM2 are the values of the directed segments M {
M

and MM2 of the axis u, is called the ratio in which the point M
divides the directed segment MiM2 .

Note 1. The number X does not depend upon the choice of the

positive direction on the line u determined by the points MI and
M2 . For, if the positive direction of this line is reversed, then the

values MiM and MM2 will simultaneously change their signs

(without changing their moduli), so that the fraction -^p wil

obviously remain unchanged.

Note 2. Moreover, the number K does not depend upon the

choice of the scale for measurement of lengths. For, if the scale

is changed, the values of all segments on the axis MiM2 will be

multiplied by the same factor, and so the ratio
-jjjf-

will remain

unchanged.

Note 3. If the condition that M must not coincide with M2 is

not imposed, then in the cajse when M coincides with M2 ,
rela-

tion (1) does not determine any number (because MM2
=

0). The

ratio -7J7F- is then said (for a reason explained in the next arti-

cle) to beSnfinite".

23. Suppose that the positive direction on the line MiM2 is

chosen so that the segment MiM2 is positively directed; then MiM 2

is a positive number. If, then, the point M lies between the points
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Mi and M2 , the numbers MiM, MM2 are also positive, so that the

ratio X= 1

is a positive number. As the point M approaches

the point MI, K approaches zero (K becomes zero when M coin-

cides with MI); as the point M approaches the point Af 2 ,
X increa-

ses without limit and is said to tend to infinity (we therefore

say that K "becomes infinite" when M coincides with M2 ).

Suppose now that the point M (on the line determined by
the points MI and M 2 ) lies outside the segment M^M2 . In this

case, one of the numbers MiM, MM2 is positive, the other nega-

tive, and ^
-$[M~

is a negative number since MiM and MM2

differ in sign.

24. In analytic geometry, the problem of dividing a line seg-
ment in a given ratio is as follows:

Given the coordinates of two points Mi(x i9 #1), M2 (*2 , y2 )

and the ratio h in which some (unknown) point M divides the

segment MiM2 ,
to find the coordinates

of M,
The solution of this problem is

furnished by the following

Theorem 6. // a point M(x, y)

divides the segment M\Mz in the ratio

X, then the coordinates of that point
are given by the formulas

F1 S- 19 - Proof. Project the points MI, M 2

and M on the axis Ox and denote
their projections by PI, P2 and P, respectively (Fig, 19).

By a well-known theorem of elementary geometry, which states

that parallel lines intercept proportional segments on trans-

versals, we have
r\ r it it

L (3)MM,

According to Theorem 3 (Art. 17),

t
^i

-~^ X, ~~
^Cj, * * 2

~~~ *^9 *

Hence, from (3), we get
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Solving this equation for the unknown x, we find that

Thus, we have obtained the first of formulas (2). The second
formula is established in an entirely analogous manner, by pro-

jecting the same points on the axis Oy\ this completes the proof.

Note. If X = 1, formulas (2) become meaningless, since

the denominators of these formulas are then zero (1 + X = 0).
But in this case the problem itself has no solution; in fact, no

point can divide the segment M\MZ in the ratio A, = 1, for, if

-= U then MiM = MM2 ,
or M {M + MM2

= M,M2
= 0,

which is impossible, since MI, M2 are, by hypothesis, distinct

points.

25. Note an important special case of the theorem just

proved: // MI (x if y {) and M2 (x2, y2) are two arbitrary points

and M (x, y) is the midpoint of the segment M {
M2t then

y _ tl _x
g

, y

These formulas are obtained from formulas (2) of Art. 24 by set-

ting X = 1 *). Accordingly, we may state that each coordinate of
the midpoint of a segment is equal to half the sum of the corre-

sponding coordinates of its endpoints.

Example 1. Given the points MI (1,1) and M2 (7, 4). On the line through MI
and A/2, find the point M which is two times closer to MI than to M2 and
lies between the points Mj and M2 . __

Solution. The required trisection point divides the segment MiM 2 in the ratio

A- =
-9-' By formulas (2) of Art. 24, the coordinates of M are: * = 3, y = 2.

Example 2. Given the points MI (1, 1) and M2 (7, 4). On the line through MI
and M2 ,

find the point M which is two times closer to M! than to M2 and lies

outside the segment bounded by the points MI and M2 .

Solution. The required point divides the segment MjM2 in the ratio A== y.
By formulas (2) Art. 24, the coordinates of M are: x 5, y = 2.

Example 3. Given the vertices 4(5, 1), B( 1, 7), C(l, 2) of a triangle.
Find the length of the internal bisector of the angle A in this triangle.

Solution. Let M be the point of intersection of the bisector with side BC, and
let c and b be the respective lengths of the sides AB and AC. From elementary
geometry, the bisector of an angle of a triangle divides the opposite side in

*> If M is the midpoint of the segment MiM2 , then MiM = MM2 , and hence

3-521
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the ratio _of the sides containing the angle. Thus, the point M divides the

segment BC in the ratio

_ BM _ c

MC
""

b
*

Using formula (2) of Art. 18, we find the lengths of the sides AB and AC:

Hence, K=2. Applying formulas (2) of Art. 24, we find the coordinates

of the point M\ x y , y = -~- .

Using formula (2) of Art. 18 once again, we obtain the required length of

the bisector AM = ~y~2.

Example 4. The masses m\ t
m2 , m3 are placed at the points M\(x\, y\),

^2(^2, #2), ^3(^3, l/s), respectively. Find the centre of gravity of this system
of masses.

Solution. Let us first find the centre of gravity M'(x', //) for the system of

two masses m\ and m2 . According to a well-known mechanical principle, the

centre of gravity of this system of masses divides the segment M\M2 into

parts inversely proportional to the masses m
lt
m2 , that is, in the ratio

k = . By formulas (2) of Art. 24, we find
mi

i
W2* *2

\ 4. L

y 2 / 2

Let M(A:, i/) be the centre of gravity of the system of three masses m h
m2 ,

m3 . The position of the point M will remain unchanged if the masses m lt

m2 are concentrated at the point M''. In other words, the point M is the centre

of gravity of the system of the following two masses: the mass m 3 placed at

the point M3 ,
and the mass m\ + m2 placed at the point M'. We can therefore

find the required point M as the point dividing the segment M'M 3 in the ratio

X =--J
. Applying formulas (2) of Art. 24, we obtain:

/Ttj j~ **2

x 3

__ __ /Wj -f-

I
m 3

|
i

-- '

y
^ . a i!-- 22 3

^i + ^2 = rn\ + ^2 . ^i + m *

j -f- m2

i

'

j -f
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Note. Given the system of masses mh m2 , mh placed at the points
M[(x\> yi), M2 (x2 , r/2 ), ,

M k (xh , yh ), the coordinates of the centre of

gravity of this system of masses are determined by the formulas

To prove this, the reader should use formulas (2) of Art. 24 and the method
of mathematical induction.

8. Transformation of Cartesian Coordinates

by Translation of Axes

26. In problems of analytic geometry, as we already know,
the position of the given geometric objects is determined in refer-

ence to some coordinate system. It may, however, be necessary
to replace the given reference system by another coordinate

system, thought to be more convenient for some reason. But an

arbitrary point has, in general, different coordinates in different

coordinate systems. Therefore, when making use of two coordinate

systems in a single problem,
the following necessity arises:

given the coordinates of an

arbitrary point in one system,
to calculate the coordinates

of that point in reference

to the other system. This is

achieved by means of the coor-

dinate transformation formulas
corresponding to the required

change of coordinate system.

y'

Fig. 20.

27. Let us, first of all, estab-

lish the formulas for transfor-
mation of cartesian coordinates

by translation of axes, that is, the formulas corresponding to

the change of a cartesian coordinate system when the origin
is moved to a new position without changing the direction of the

axes (and the scale).
Let Ox, Oy be the old coordinate axes, and let 0V, O r

y
r
be

the new axes (Fig. 20). The position of the new axes relative to

the old system is determined by giving the old coordinates of
the new origin:

/

(a, b). We shall refer to the number a as the

amount of the shift in the direction of the axis. Ox and to the

number b as the amount of the shift in the direction of the axis

3*
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Oy. An arbitrary point M of the plane has coordinates (x, y)
with respect to the old axes; the same point M has different

coordinates (*', y
f

)
with respect to the new axes. We now pro-

pose to establish the formulas expressing x, y in terms of *', y'

(or K', y' in terms of x, y).

Project the point 0' on the axis OK, and the point M on the

axes OK and 0V.
Denote the projection of the point 0' on the axis Ox by O'x

and the projections of the point M on the axes Ox and 0V by

Mx and MX '
. Obviously, the value of the segment 0'XMX of the

axis Ox is equal to the value of the segment 0'M X ' of the axis

0V. But 0'M X ,
= x'\ consequently, XMX *= x'. Also, O0'x = a,

OAfx = x. By the fundamental identity (see Art. 3), OAf* =
= O0'x + XMX \ hence, from the foregoing, we have x = x

f + a.

Similarly, by projecting 0' and M on the axes Oy and O't/', we
find y = y

f + b.

Thus,
X= A;

/

-4-0 y = y'-|~ft. (1)

These are the required formulas, which may also be written in

the form

x' = x a> y' = y *. (V)

This result can be formulated as follows: When a cartesian coor-

dinate system is translated by an amount a in the direction of
the axis Ox, and by an amount b in the direction of the axis Oy,
this means the subtraction of a from the abscissas, and of b from
the ordinates of alt points.

9. Transformation of Rectangular Cartesian
Coordinates by Rotation of Axes

28. We now proceed to establish the formulas for transforma-
tion of rectangular cartesian coordinates under rotation of axes.

that is, the formulas corresponding to the change of a rectangular
cartesian system when both axes are turned in the same direction

and through the same angle, without changing the origin and the

scale.

Let Ox, Oy be the old, and Ox', Oy' the new coordinate axes

(Fig. 21). The position of the new axes relative to the old system
is determined by giving the angle of rotation which brings the

old axes into coincidence with the new axes. This angle will be
denoted by the letter a and understood as in trigonometry; the

positive direction of rotation will be defined as in Art. 15.
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An arbitrary point M of the plane has coordinates (x, y) with

respect to the old axes; the same point has, in general, different

coordinates (x', y') with respect to the new axes. Namely,

M

jc' = OAfr
f y'-OAV (see Fig. 21). Our

objective is to establish the formulas expressing x', y' in terms of

x, y (or x, y in terms of x', y').

Let (p, 6) be the polar coordi-

nates of the point Af, when taking
Ox as the polar axis, and let (p, 6')

be the polar coordinates of the

same point Af, when taking Ox'
as the polar axis (in either case,

p=|OAf|). Obviously, = 6' + a.

Further, by formulas (1) of

Art. 15,

^= pcos0, y = psin0,

and similarly,

jt' = pcos0', y'= psin0'. Fig. 21.

Hence,

x= p cos =
p cos (0' -f a)

=
p (cos 0' cos a sin 0' sin a)

==

=
p cos 0' cos a p sin 0' sin a= x' cos a y' sin a,

y = p sin =
p sin (0'+ a)

=
p (cos 6' sin a -f- sin 0' cos a)

=
=

p cos 0' sin a -f- p sin 0' cos a= x f
sin a -f y

'
cos a.

Thus

x= x'cosa y'sina, \

These are the required formulas, that is, the formulas expressing,

for a rotation of axes through an angle a, the old coordinates

(x, y) of an arbitrary point M in terms of the new coordinates

(x't y') of M.
The formulas expressing the new coordinates x', y' of the

point M in terms of its old coordinates x, y can be derived from

relations (1), regarded as a system of two equations in the two
unknowns x', y', by solving this system for x', y'. However, these

formulas can also be obtained immediately by the following argu-
ment: // the new system is obtained by a rotation of the old sys-
tem through an angle a, then the old system is obtained by a

rotation of the new system through the angle a; we may there-

fore interchange the old and the new coordinates in relations (1),
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simultaneously replacing a by a. On performing this transfor-

mation, we get

x'~ xcosa-f- y sin a, \

y
f= x sin a -f-y cos a, J

which are the required formulas.

10. Transformation of Rectangular Cartesian

Coordinates by Change of Origin and Rotation
of Axes

29. We shall now consider a motion of axes, which may be
achieved by a translation followed by a rotation. (The scale is

assumed to remain unchanged.)
Let a denote the shift of the system in the direction of the

axis Ox, and b the shift in the direction of the axis Oy\ let a be
the angle of rotation of the system. Denote the new axes by 0V
and O'y'. An arbitrary point M of the plane has coordinates (x,

y) with respect to the old axes; the same point M has, in general,
different coordinates (x', y') with

respect to the new axes. We propose
to find the formulas expressing
x'

y y' in terms of x, y t
as well as the

formulas expressing^, y in terms of

', y'.

-a

\ To achieve this, we introduce an

x auxiliary coordinate system, whose
axes have the same directions as

the axes of the old system, and

Fig. 22. whose origin coincides with that of

the new system (Fig. 22); let 0V,
O'y" be the axes of the auxiliary system, and let x", y" be the

coordinates of the point M with respect to these axes. Our

auxiliary system is obtained by translating the old system a units

in the direction of Ox and b units in the direction of Oy, so that,

by Art. 27,

Further, the new system is obtained by rotating the auxiliary

system through an angle a; therefore, by Art. 28,

y'sina,
"= x' sin a -f- y

'
cos a.
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Substituting these expressions for x", y" in the right-hand mem-
bers of the preceding relations, we have

x = x' cos a y' sin a -f- a, \

y x f

sin a-f y' cos a-f- ft. j

Solving the system (1) for x
1
and y', we find

*'= (x a)cosa+ (y ft) sin a,
|

y'
= (* a) sin a-f (y ft) cos a. J

The last two pairs of relations are the formulas we have been

seeking.
Formulas (1) express the old coordinates of an arbitrary point

in terms of its new coordinates; on the other hand, formulas (2)

express the new coordinates in terms of the old coordinates.

We shall formulate this result as the following

Theorem 7. If the axes of a rectangular cartesian system are

translated a units in the direction of Ox and b units in the direc-

tion of Oy, and if, in addition, the axes are rotated through an

angle a (the scale remaining unchanged), then the resulting

change of system is represented by the coordinate transformation

formulas

y ^.x'sina-f-y'cosa-f-ft,

which express the old coordinates x, y of an arbitrary point in

the plane in terms of its new coordinates x', y't and by the for-

mulas

x'=; (x a) cos a-f-(yb) sin a, )

y' = (x a)sina-f(y ft)
cos a, J

which are algebraically equivalent to (1) and express the new
coordinates in terms of the old.

Example. Find the coordinate transformation formulas corresponding to a

shift of the origin to the point 0' (2,3) and a rotation of the axes

through -f 45.

Solution. Letting a = 2, & = 3, ct =
-j- in formulas (1), we get the following

expressions for the old coordinates in terms of the new;

y 2
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Hence (or from formulas (2)), we obtain the expressions for the new coordi-

nates in terms of the old:

-_

Note. The usual position of the coordinate axes in diagrams is such that the

shortest rotation of the positive x-axis into the positive #-axis will be in the

counterclockwise direction. In this case, the coordinate system is called right-

handed. Sometimes, however, use is made of a system whose axes are positioned
in a different manner, namely, so that the shortest rotation of the positive
x-axis into the positive y-axis will be in the clockwise direction, in which case

the coordinate system is called left-handed.
Let there be given two (rectangular cartesian) coordinate systems. If they

are both right-handed, or both left-handed, then the axes of one system can be

brought into coincidence with the axes of the other by means of a translation

followed by a rotation through a certain angle; hence and from the foregoing,
it follows that, when replacing one of these systems by

the other, the coordi-

nates of any point in the plane are transformed according to formulas of the

form (1). If, on the other hand, one of the given systems is right-handed and
the other left-handed, then the axes of one system cannot be brought into

coincidence with those of the other by a translation and a subsequent rotation;

in fact, if the positive semi-axis of abscissas of one (the "old") system is

carried, by a translation and a rotation, into the positive semi-axis of abscissas

of the other (the "new") system, then their positive semi-axes of ordinates

will go in opposite directions. Consequently, when replacing one of these

systems by the other, the coordinates are transformed according to the formu-

las obtained from (1) by changing the sign of y'. Thus, the general formulas
for transformation of rectangular cartesian coordinates (provided that the

scale remains unchanged) may be written as

* = *'cosa q: /SJna~f0, }

y = x' sin a y' cos a -f 6, )

* '

where a, b are the old coordinates of the new origin, and a is the angle
through which the old axis of abscissas must be rotated to go into the new
axis of abscissas. In formulas (3), the upper signs correspond to the case
when the change is made from a right-handed system to another right-
handed one, or from a' left-handed system to another left-handed one\ the
lower signs correspond to the case when one of the systems is right-handed,
and the other left-handed. Also, it must be borne in mind that, if the old

system is a left-handed one, the angle a is measured positively in the clockwise
direction.



Chapter 3

THE EQUATION OF A CURVE

11. The Concept of the Equation of a Curve.

Examples of Curves Represented by Equations

30. In elementary geometry, only a small number of curves

(the straight line, circle, broken lines) are subjected to a detailed

investigation. The needs of engineering, however, pose before

mathematics the general problem of investigating various curves

of diverse shape and properties. To solve this general problem,
more advanced methods are required than those of elementary
geometry. Such advanced methods are furnished by algebra and
mathematical analysis. The use of the methods of algebra and

analysis is based on a uniform mode of determining a curve,

namely, that of representing a curve by an equation.

31. Let x and y be two arbitrary variables. This means that

both the symbol .and the symbol y represent any (real) num-
bers whatsoever. [A relation of the form F (#, y)

=
0, where

F (KJ y) denotes an expression containing x and
i/, is called an

equation in two variables, x and
t/]/(provided

that F (x, y) =
is valid not identically, that is, not for every pair of numbers

x, y). Examples of equations are 2x + 7y 1 = 0, x2 + y
2 25 = 0,

sin x + sin y 1 = 0, etc.

If the relation F (x, y) = is valid for all values of x, y, it

is called an identity. Examples of identities are (x + y)
2 x2

2xy y*
=

Q, (x + y) (x y) & + </
2 =

0, etc.

The left-hand members of equations in two variables, occurring
in the succeeding pages, may contain other symbols a, 6, c, . . .,

apart from x and (/; but in such cases we shall assume these

other symbols to be fixed (though perhaps unspecified) numbers,
and we shall call them the constant parameters of a given equa-
tion. For example, the equation ax + by 1=0 has a and b as

its parameters.

32. Two numbers x = XQ , y = t/o are said to satisfy an equation
in two variables if the equation holds true when these numbers
are substituted in it for the variables. For instance, the numbers
x 3, y = 4 satisfy the equation x2 + y

2 25 = 0, because its

left-hand member vanishes upon substitution of these numbers;
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on the other hand, the numbers x = 1, y = 2 do not satisfy this

equation, since their substitution in the left-hand member does

not make it zero.

33. Consider an arbitrary equation F (x, y) = 0. Let x and y
denote numbers satisfying this equation (rather than any arbi-

trary numbers). In general, x and y may still vary under this

condition; but they may no longer vary in an arbitrary manner
with respect to each other, because the possible values of y are

determined by assigning a value to x. The equation F (x, */)
=

is therefore said to establish a functional relation between the

variables x and y.

34. The fundamental concept of analytic geometry is that of

the equation of a curve. We shall now explain the meaning of

this concept.
Let there be given any curve in the plane; also, let a coordi-

nate system be chosen.

The equation of a given curve (in a chosen coordinate system)
is defined as the equation F (x, y) = in two variables which
is satisfied by the coordinates x, y of all points lying on the curve
and by the coordinates of no other point.

Thus, if the equation of a curve is known, we can determine
for each point of the plane whether it lies on that curve or not.

To answer this question, it is necessary merely to substitute the

coordinates of the point for the variables in the equation. If the

coordinates of the point under test satisfy the equation, then the

point lies on the curve; if they do not satisfy the equation, then
the point does not lie on the curve.

The definition just made constitutes the basis of the methods
of analytic geometry, which consist essentially in the investiga-
tion of curves by analysing their equations.

35. In many problems the equation of a curve is regarded as

something known, whereas the curve itself is regarded as some-

thing to be derived. In other words, often an equation is given be-

forehand, and a curve is thereby determined; such an approach
is dictated by the necessity of geometric representation of func-

tional relations.

If an equation is given and we are to answer the question:
What curve is represented by this equation? (or, what is the
curve having this as its equation?), then it is convenient to use
the definition phrased as follows:

The curve represented by a given equation (referred to some
coordinate system) is the locus of all those points of the plane
whose coordinates satisfy the equation.
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36. The curve represented by an equation of the form y = f(x)
is called the graph of the function f(x). It may also be said that

the curve represented by an arbitrary equation F(x, y) = is the

graph of the functional relation between x and y, established by
this equation.

37. Since the quantities x, y are regarded as the coordinates
of a variable point, they are called the current coordinates. If,

instead of cartesian coordinates, any other coordinate system is

used as the reference system, then the current coordinates should

be denoted by different letters, according to the notation adopted
for the system used.

38. Let us consider a few elementary examples of curves

represented by equations.
1. Given the equation x */

= 0. Rewriting it in the form

y = x, we conclude that the equation is satisfied by the coordi-

nates of those points, and those only, which are situated in the

first or the third quadrant, at equal distances from the coordi-

nate axes. Thus, the locus of points whose coordinates satisfy the

given equation is the line bisecting the first and third quadrants
(Fig. 23); this line is the curve represented by the equation
x y = (also, this line is the graph of the function y = x).

Fig. 23. Fig. 24.

2. Given the equation x + y = 0. Rewriting it in the form

y = x, we conclude that this equation is satisfied by the coor-

dinates of those points, and those only, which are equidistant from

the coordinate axes and found in the second or the fourth quad-
rant. Thus, the locus of points whose coordinates satisfy the given

equation is the line bisecting the second and fourth quadrants

(Fig. 24); this line is the curve represented by the equation
x + y = (also, this line is the graph of the function y = x).

3. Given the equation x2
#
2 = 0. Rewriting it in the form

(x y) (x + y) =
0, we conclude that this equation is satisfied
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by the coordinates of those points, and those only, which satisfy

either the equation x y = 0, or the equation x + y = 0. Thus,
the curve represented by the equation x2

y
2 = consists of the

points of the two lines bisecting the quadrants (Fig. 25).
4. Given the equation x2 + y

2 = 0. Since, for real x and y,

the numbers x2 and y
2 cannot differ in sign, it follows that they

cannot cancel out when added together; consequently, if

x2 + y
2 =

0, then x = and y = 0. Thus, the given equation is

satisfied by the coordinates of the point (0, 0) alone. This

means that the locus of points whose coordinates satisfy the equa-
tion x2 + y

2 = consists of a single point. In this case, the equa-
tion is said to represent a degenerate curve.

M

Fig. 25. Fig. 26.

5. Let x2 + y
2 + 1 = be the given equation. Since, for any

real x and y, the numbers x2 and y
2 are non-negative, it follows

that x2 + y
2 + 1 > 0. Hence, the given equation cannot be satis-

fied by the coordinates of any point at all, and it does not repre-
sent any geometric object in the plane.

6. Consider the equation p a cos 6, where a is a positive

number, and the variables p and 8 denote polar coordinates. Let

M be a point with polar coordinates (p, 8), and let A be the point
with polar coordinates (a, 0). If p

= acos8, then Z.OMA is a

right angle, and conversely. Hence, the locus of points whose

polar coordinates satisfy the equation p
= acos8 is a circle of

diameter OA (Fig. 26).
7. Consider the equation p

= a 8, where a is a positive num-
ber. To visualise the curve represented by this equation, let 9

increase from zero, and observe the motion of a variable point
M (p, 8), whose coordinates are related by the given equation.
If 8 = 0, then also p

= 0; as 8 increases from zero, p increases

in proportion to 8 (the number a serving as the factor of propor-

tionality). We note that the variable point M (p, 8), starting from
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the pole of the chosen polar system of coordinates, moves about

the pole (in the positive direction) and simultaneously recedes

from the pole. Thus, the point M describes a kind of spiral; the

spiral represented by the equation p
= a6 is called the spiral of

Archimedes (Fig. 27).
Each time the point M (p, 8), moving along the spiral of Archi-

medes from any initial position, makes a complete turn about the

pole in the positive direction, the angle 8 increases by the amount
2jt, and the polar radius

p, by 2ajt. It follows that the spiral of

Archimedes cuts every polar ray into equal segments (excepting

Fig. 27. Fig. 28.

the segment adjacent to the pole); all these segments have a

constant length of 2ajt.

The equation p
= a8 in which a is a negative number repre-

sents the "inverted" spiral of Archimedes, whose points corre-

spond to negative values of 8 (Fig. 28).

8. Given the equation p =y, where a is a positive number;

let us investigate the curve represented by this equation. Take

any positive value of 8, say 9 =
^; the corresponding point will

be AlJ-,
TrJ.

H now 8 increases indefinitely, then p, being in-

versely proportional to 8, tends to zero; consequently, the variable

point M (p, 8) moves around the pole in the positive direction and,

at the same time, approaches indefinitely close to the pole

(Fig. 29). Next, let 8 decrease, starting from the value y and

tending to zero; then p-*oo and the point M (p, 8) recedes to

infinity. To investigate the motion of the point M in greater de-

tail, project the point M on the polar axis and denote the projec-
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tion by P; then, obviously, PAf = psin6 (see the second of for-

mulas (1), Art. 15). In virtue of the given equation, psinO = a-

Now, it is known from the calculus that l as 6->0.

Fig. 29.

Consequently, as 6->0, the value of PM tends to a. Hence we
can conclude that, as the point M tends to infinity, it approaches
the straight line which runs parallel to the polar axis at the

distance a from the latter.

Fig. 30.

We see that the given equation, like that of the previous
example, represents a spiral (in this case, the hyperbolic
spiral).

The equation P
= j in which a is a negative number, repre-

sents the "inverted" hyperbolic spiral, whose points correspond to

negative values of 8 (Fig. 30).
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9. Given the equation p
= a e

, where a is a positive number

greater than unity. This equation represents a spiral called the

logarithmic spiral.
To visualise this particular kind of spiral, let Q-> -f oo; then

p
=- a-> + oo, and hence a variable point M (p, 6), moving about

the pole in the positive direction, recedes indefinitely from the

pole. Each time the point M, starting from any position, makes
a complete turn about the pole in the positive direction, 2jt is

added to the polar angle of M t while its polar radius is multiplied

by a2jt
(since a e + 2jt = aa2jt

). Thus, with each turn about the pole,

Fig. 31. Fig. 32.

the polar radius of M increases in geometric progression (a
2jt

being
the common ratio of the progression).

Now let 8-> oo; then p-^0 and the point M, turning about

the pole (in the negative direction) approaches it indefinitely
near (Fig. 31).

If a is less than unity (and is still positive), the equation

p
= a 6

represents the "inverted" logarithmic spiral (Fig. 32).
In this case, as the point M rotates about the pole in the positive

direction, it approaches indefinitely close to the pole; as M ro-

tates in the negative direction, it recedes from the pole without

limit (since, for the case < a < 1, we have a 8 -> as 8 -> + oo,

and a 9 -> + oo as 8-* oo).
If a = 1, the equation p

= a 8
represents a circle, because

p
= 1 for any 8.

In the above examples, the equations were of such simple
form as to permit an immediate visualisation of the associated

curves. In more complicated cases, even an approximate tracing
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(to a preassigned degree of accuracy) of the curve in question

may present great difficulties and require the use of various

methods of the calculus and analytic geometry.

12. Examples of Deriving the Equation
of a Given Curve

39. In the preceding section, we discussed several examples
dealing with the determination of curves from the given equa-
tions. We shall now consider some examples of an opposite char-

acter; in each of these examples, the curve is defined in purely

geometric terms, and it is required to find (to "derive") the equa-
tion of the curve from this geometric definition.

If a curve has been defined as the locus of points satisfying
a certain condition, then, by expressing this condition in terms of

coordinates, we shall obtain a definite relation between the coor-

dinates. This will be the equation of the given curve, for it will be
satisfied by the coordinates of a point if, and only if, the posi-
tion of the point obeys the imposed condition, that is, if the point
lies on the given curve.

40. Example. Given a rectangular cartesian coordinate system, and let C(a, |3)

be the centre of a circle whose radius is equal to r (Fig. 33). Derive the equa-
tion of the circle.

Let M be a variable point, and denote its coordinates (that is, the current

coordinates) by the letters x, y. The given circle is the locus of points each of

which is at a distance r from the point C;
j

___^^ hence, the point M lies on the given circle if,^""""""^
'and only if,

CM = r. (I)

By formula (2) of Art. 18, CM =
= Y(x a)

2+ (y p)*. Substituting this ex-

rpession for CM *) in (1), we have_ (2)

p ^ We have thus found the equation that con-
** '& *** nects the variables x, y and is satisfied by the

coordinates of the points, and those only,
which lie on the given circle. Consequently, this is the required equation.
Our problem is solved.

41. Squaring both sides of (2), we obtain the standard form of the equation
of a circle with centre C (a, p) and radius r:

(3)

*> See the footnote on page 13,
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Equation (3) appears in many geometric problems *>. Setting a =
0, p in

this equation, we obtain the equation of a circle with centre at the origin:

* + y* = r. (4)

42. Example. Derive the equation of the path traced by a point Af, whose
distance from the point B(8 t 0) is twice its distance from the point A (2, 0)
at each instant of the motion.

Let x, y be the coordinates of the point M (that is, the current coordi-

nates). By hypothesis, the point M is always two times closer to A than to B\
that is,

2AM = BM. (5)

By formula (2) of Art. 18,

AM = Y(x 2)
2+ y

2

Hence, from (5), we have

2 /(*- 2)
2+ y

2 = V(x- 8)
2+ y

2
.

(6)

We have obtained an equation connecting the variables x and y. It is satisfied

by the coordinates of all points of the path considered and by the coordinates
of no other point in the plane. Consequently, this is the required equation, and
the problem is solved. It remains only to

reduce the equation to a more convenient

form, which is achieved as follows. Squaring
both sides of (6), we obtain the equation

equivalent to equation (6) **>. Removing the

parentheses, we find

4;c2 16* -f 16+ 4y
2= x 2 16*+ 64+ y

2
,

or

\ /?

With the equation of the path put in Fig 34
this form, the path can readily be visualised.

v
**'

"

For, comparing the derived equation with

equation (4) of Art. 41, we conclude that the path under discussion is a

circle with centre at the origin and with radius r 4.

43. Example. Find the equation of a straight line in polar coordinates, given
that p is the distance from the pole to the straight line, and 60 the angle from
the polar axis to the ray drawn from the pole perpendicular to the line

(Fig. 34).

*> Squaring both sides of an equation may result in an equation which
will not be equivalent to the original equation; that is, the resulting equation
may be satisfied by such values of x and y as will not satisfy the original
equation. In the present case, however, this is not so: equations (2) and (3)
are equivalent. In fact, extracting the square root of both sides of (3) yields

+ y (X OL)* + (y P)
2 = r. But the right-hand member must be taken here

with the plus sign, or else the equation will not be true. Thus, not only
equation (3) follows from equation (2), but also (2) follows from (3).

**) This is
proved in the same way as the analogous statement in Art. 41

(see the preceding footnote).

4-521
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Solution. Let a be an arbitrary straight line, and p the foot of the perpendic-
ular dropped upon it from the pole 0; by hypothesis, OP = p and the angle 0o

from the polar axis OA to the ray OP are known. Let us consider an arbitrary

point M(p, 6) in the plane. Obviously, the point M lies on the line a if, and

only if, the projection of the point M on the ray OP coincides with the point P,

that is, if p cos (p
=

p, where cp
~ ZPOM Noting that cp

= 6

(or cp
= 0o 6), we hence obtain p cos (0 )

= p as the required equation
of the line a; p and are here the current coordinates.

13. The Problem of the Intersection

of Two Curves

44. The following problem has often to be solved in analytic

geometry:
Given the equations of two curves,

to find their points of intersection.

As always in analytic geometry, "to find the points" means
here "to calculate their coordinates". The principle underlying
the solution of this problem becomes immediately clear from the

definition of the equation of a curve (Art. 34). For, each point
of intersection of the given curves is common to the two curves.

Consequently, the coordinates of such a point must
satisfy

both

the equation F (x, y) = and the equation O (x, y) = 0. All the

points of intersection of these curves will be found by solving the

equations simultaneously, each solution of the system

/?(*, y)= 0,

determining one of the required points. Of course, computational
difficulties may be encountered in practical application of this

general principle.

Example 1. Given the equations of two circles: (x I)
2
-f (# 3)

2 = 4 and

(x 3)
2

4- (y 5)
2 = 4. Find their points of intersection.

Solution. By removing the parentheses and transposing all terms to the left-

hand side, the equations may be reduced to the form

x* + y
2 2x $y + 6 0, x* + y

2 6* IQy + 30 = 0. (1)

Subtracting the second equation from the first, we get 4x + 4y 24 = 0,

or y = x -f 6. Together with the first of the given equations, this last

equation forms the system
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The systems (1) and (2) are equivalent*). Accordingly, in order to solve our

problem, we have merely to solve the system (2). Substitution of y x -f 6
in the first of equations (2) yields x2

-f x2 \2x + 36 2x + 6x 36 -f 6 = 0,

or x2 4* + 3 = 0. Hence, x
it 2 = 2 T

/
~4 3; that is, x

{

=
1, x2

= 3. The
values of y, corresponding to these values of x, are found from the equation
y = __ 4. 5. we |lave ^j

= 5 for Xl = j
t an(j f/2

== 3 for *2 = 3. Thus, the re-

quired points are (1, 5) and (3, 3).

Example 2. Given the equations of two curves: x + y = (the bisector of the

second quadrant), and (x 5)
2 + /

2 =:
1 (a circle). Find their points of inter-

section.

Solution. We form the system

:}
From the second of these equations, y = x. Substituting this in the first

equation, we obtain (x 5)
2 + x2 = ^ O r x2 5x + 12 = 0. Hence,

_5
1 /251,2

--j-^J/ -f
1Z '

Since K 23 is an imaginary number, we conclude that the system has no real

solutions and, consequently, the given curves do not intersect.

14. Parametric Equations of a Curve

45. Let there be chosen a coordinate system, and let

y-t(0 )
0)

be two given functions of a single variable t.

We shall agree to regard the quantities x and y, for every
value of /, as the coordinates of a point M. The quantities x and y,

in general, change with t\ it follows that the point M moves in

the plane. Relations (1) are called the parametric equations of
the path traced by the point M; the independent variable t ts

called a variable parameter.
Parametric equations play an important role in mechanics,

where they are used as the so-called equations of motion. For, if

a particle M moves in a plane, it has definite coordinates jc, y at

any instant of time t. The equations expressing x and y as func-

tions of time t are called the equations of motion of the point Af;

they are of the form (1).

In mechanics, the motion of a particle is regarded as mathe-

matically determined if its equations have been found.

*) Since the system (2) has been derived from the system (1), which is,

in its turn, readily derivable from the system (2),

4*
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46. Let x w $ (/), y as
\|) (/) be the parametric equations rep-

resenting some curve as the path of a point M (#, y).
If T7 (x, #) = is a consequence of the given equations, then

it is satisfied by the coordinates x = <p(f), # = if (/) of the point
M for every /. Hence the point M moves along the curve F(x, y) =
= 0. If, in so doing, the point M traces the entire curve, then

F (*> {/)
= is an ordinary equation of the path of M. The deri-

vation of F (x, y) = as a consequence of the parametric equa-
tions x = <p (t), y = ty (t) is called the elimination of the para-
meter.

Example. The equations x = r cos t, y = r sin t are the parametric equations
of a circle with centre at the origin and with radius r. For, squaring these

equations and adding them, term by term, we obtain x2 + y
2 = r2 as their

consequence. It is hence evident that the point M(x, y) moves on this circle.

Moreover, since the parameter t can assume all possible values, the ray OM
(which makes the angle / with the axis Ox) can occupy all possible positions.
Consequently, the point M traces the entire circle (doing this an indefinite

number of times as t increases indefinitely).

47. Let p
=

f (8) be the polar equation of a certain curve.

The same curve can be represented in cartesian coordinates by
the parametric equations

je=/(9)cose,

y ='/(6) sin 6.

These equations are obtained by simply substituting f (8) for p

in the formulas x = p cos 6, y = p sin 8 (see Art. 15).

Example. The polar equations of the spiral of Archimedes, the hyperbolic

spiral, and the logarithmic spiral are p
= a9, p y , and p

#8
, respectively

(see Art. 38). Hence, their parametric equations in cartesian coordinates are:

x = 06 cos 6, y = ^0 sin

a cos __ a sin
-

% y g
~

for the spiral of Archimedes;

for the hyperbolic spiral;

x = cfi cos0, y = cfi sinO

for the logarithmic spiral.

In all these cases, the polar angle G of the variable point serves as the

parameter.

15. Algebraic Curves

48. Analytic geometry has as its main subject of study the

curves represented, in rectangular cartesian coordinates, by alge-

braic equations. These are equations of the following forms:
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= 0; (1)

=fy (2)

^Q\ (3)

4, B f C, Dt E, etc., denote here fixed numbers and are called

the coefficients of these equations.

Equation (1) is called the general equation of the first degree
(its coefficients may have any values whatsoever, provided only
that the equation does contain terms of the first degree; that is,

A and B cannot both be zero at the same time); equation (2) is

called the general equation of the second degree (its coefficients

may have any values, provided only that the equation does con-

tain terms of the second degree, which means that the three

coefficients A, B, C cannot all be zero at the same time); equa-
tion (3) is called the general equation of the third degree (its

coefficients may have any values,, provided only that the four

coefficients A, B, C, D are not all simultaneously zero). The equa-
tions of the fourth, fifth, etc., degrees have analogous forms.

Examples of non-algebraic equations are

y

y
- 10*= 0,

10
A"

A curve represented, in a rectangular cartesian system of co-

ordinates, by an algebraic equation of degree n is called an alge-
braic curve of the nth order.

49. Theorem 8. A curve represented by an algebraic equation of degree n

in rectangular cartesian coordinate system, wilt be represented in any other

rectangular cartesian system by another algebraic equation of the same

degree n.

Proof. Let some curve be represented by an algebraic equation of degree n

in a coordinate system with axes Ox and Oy. When replacing this system by
another rectangular system with axes 0'*', O'y\ the coordinates of all points
of the plane are transformed according to formulas of the form

X = X f
COS ot q: y' Sin a -f" fl

y = je' sin a y' cos a -f" ;}

where the signs before the second terms of the right-hand members are chosen

in conformity with the note made at the end of Art. 29. In order to obtain

the equation of the same curve in the new coordinates, we must replace the

variables in its original equation according to formulas (4). The left-hand
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member of the original equation is a sum of monomials, each of which is a prod-
uct (taken with some coefficient) of non-negative whole powers of the varia-

bles x and y. On replacing x and y according to formulas (4) and removing
all parentheses, we shall obtain, on the left-hand side of the transformed

equation, a sum of new monomials, each of which will be a product (taken with
some coefficient) of non-negative whole powers of the new variables x' and y''.

Consequently, the algebraic character of the equation is preserved under such
a transformation.

Next, we must prove that the degree of the equation remains unchanged.
This is almost obvious. For, since formulas (4) are first-degree equations in x'

and y', the replacement of x and y according to these formulas and the remov-
al of all parentheses in the left-hand member of the transformed equation
cannot result in the appearance of any monomial of a degree *> higher than
the nth with respect to the new variables x' and y

f
.

Hence, the degree of an algebraic equation cannot be raised by any such
transformation. It remains, however, to be shown that the degree of the

equation cannot be lowered by any such transformation (i. e., that the highest
terms cannot all cancel out after the transformation). But if a transformation
from one rectangular cartesian system of coordinates to another such system
could result in lowering the degree of an algebraic equation, then the inverse

transformation would necessarily raise its degree, and this we have just shown
to be impossible. The proof is thus complete.

The theorem just proved shows that the algebraic character and degree of

an equation are intrinsic properties of the associated algebraic curve itself t

which means that they are independent of the choice of coordinate axes,

The general theory of algebraic curves forms the subject of

special treatises on analytic geometry. The present book deals

systematically with curves of the first and the second order only.
In the next few sections, it will be established that curves of

the first order are straight lines (and only straight lines).

*> The degree of a monomial is defined as the sum of the exponents of

the variables contained in the monomial,
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CURVES OF THE FIRST ORDER

16. The Slope of a Straight Line

50. Let there be given a rectangular cartesian system of coor-

dinates and a straight line. Denote by a the angle through which
the axis OK must be turned to reach coincidence with one of the

two directions of the given straight line; this angle will be taken

with a plus or minus sign according as the turning is in the posi-
tive or the negative direction. We shall call a the angle of incli-

nation of the given straight line (with respect to the axis Ox).
If, by turning the axis Ox through a certain angle, Ox is made

to coincide with one of the directions of the given straight line,

y

(a}

Fig. 35.

then each additional rotation through jt, or 2jt, or 3jt, etc.,

will again bring the axis into coincidence with one of the direc-

tions of the given line. Thus, the angle a can have an infinity of

values differing from one another by the amount nrc, where n
is a natural number. For the most part, it is the smallest positive
value of the angle a (Fig. 35 a, b) that is taken as the angle of
inclination of a line; in the case of a line parallel to the axis Ox,
its angle of inclination is considered equal to zero.

It is important to note that, for a given line, all values of

its angle of inclination have the same trigonometric tangent, since

tan (a mt) =* tan a. r\
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51. The tangent of the angle of inclination of a straight line

is called the slope of that line.

Denoting the slope by the letter &, we can write the above
definition symbolically:

(1)

In particular, if a = 0, then also k = 0, which means that the

slope of a line parallel to the axis Ox is equal to zero. If ^=
-^^

then k = tan a has no arithmetical meaning (is represented by no

number), that is, the slope of a line perpendicular to the axis

Ox fails to exist. However, it is very often said that, if a straight
line is perpendicular to the axis

Ox, its slope "becomes infi-

nite", thereby expressing the

fact that, as a-> y , ->oo.

The slope of a straight line

is the essential characteristic

of the direction of that line

and is constantly used in ana-

lytic geometry and its applica-
tions.

52. Let there be given an arbitrary straight line, provided only
that it is not perpendicular to the axis Ox. Take any two points
Mi (jci, j/i) and M2 (*2 , yz ) on this line. The polar angle 6 of the

segment M\M% is equal to the angle of inclination of the given
line, so that the tangent of the angle 6 is equal to the slope of

this line (Fig. 36); hence, by formula (6) of Art. 19, we have

*=5E5- (2)

(this relation is also apparent from Fig. 36). Formula (2) ex-

presses the slope of the straight line passing through two given

points.

17. The Slope-intercept Equation
of a Straight Line

53. Let there be given an arbitrary straight line, provided
that, as before, it is not perpendicular to the axis Ox. We shall

now derive the equation of this line, assuming that we know its

slope k and its y~in\tercept b (that is, the value b of the direct-

ed segment OB cut off by this line on the axis Or/; see Fig. 37).
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Let M be a variable point, with x, y as its (current) coordi-

nates, and consider also the point B (0, b) at which the line cuts
the axis Oy. Let us compute the value of the right member in

formula (2) of Art. 52, taking the point B as Mi and the point M
as Afa. If the point M lies on
the given line, the computation
will yield the slope of the line,

that is,

y-b = *; (3)

on the other hand, if M does
not lie on the given line, this

relation will not be valid. Con-

sequently, (3) is the equation
of the given straight line (this
is also apparent from Fig. 37, Fig. 37.

when taking into account that

k = tana). Clearing of fractions and transposing b to the right
side, we get

54. Thus, every straight line not perpendicular to the axis

Ox can be represented by an equation of the form (4).

Conversely, every equation of the form (4) represents a

straight line having slope k and y-intercept b. For, if y = kx + b

is the given equation, it is always possible to draw the line with
the given slope k and making the given intercept b on the axis

Oy, no matter what the numbers k and b\

but, according to the foregoing, the given
equation will then be the equation of the

line drawn. An equation of the form (4)
is called the slope-intercept equation of a

straight line.

Example. Draw the line whose equation is

pig 38 Solution. Mark off the segment OB =* 2 on the
'

axis Oy (Fig. 38); through the point B, draw the

segment BAT= 4 in the "right" direction, parallel
to the axis CU; and lay off the segment NM = 3 from the point N "upwards"
(in the direction of the axis Oy). Joining the points B and M will then give
the required line (which cuts off the intercept b 2 on Oy and makes with Ox

an
3 \

angle whose tangent is
-j j

.
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55. The function

is called linear. From the foregoing, we can say that the graph
of a linear function is a straight line.

When b = 0, we have

y'^kx. (5)

The variables x and y, connected by such a relation, are said

to be proportional-, the number k is called the factor of propor-

tionality. From the above discussion, it is clear that the graph of
the function y = kx is the line of slope k passing through the

origin.

56. In many cases it is necessary to find the equation of the

straight line with given slope k and passing through the given
point MI (Xi, j/i). The desired equation is obtained directly from
formula (2) of Art. 52. Let M be a Variable point with (current)
coordinates x, y. If M lies on the line of slope k passing through
the point M, then, by virtue of formula (2) of Art. 52,

if the point M does not lie on the line, relation (6) is not valid.

Accordingly, (6) is the required equation, usually written in the

form

yy\ = k(x x
l ). (7)

Note. In the particular case when the point B (0, b) is taken

as Afi (jci, j/i), equation (7) assumes the form (4).

57. By using relation (7), the following problem can easily
be solved: to find the equation of the line passing through the two

given points MI (xi, y\) and M 2 (x*, yi)-

Using formula (2) of Art. 52, we find the slope of the line:

after which, from (7), we obtain the required equation

* -M x2 X\
V 17

It is customary to write this equation in the form
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Example. Find the equation of the line through the points M\ (3, 1) and
A/2 (5, 4).

Solution. Inserting the given coordinates in (8), we obtain

or 3* 2y 7 = 0.

18. Calculation of the Angle Between
Two Straight Lines. Conditions for the Parallelism

and Perpendicularity of Two Straight Lines

58. The problem of determining the angle between two
straight lines is one of the standard problems of analytic ge-
ometry. We shall now derive a formula for calculating the angle
between straight lines whose slopes are known (we assume that
neither of the lines is perpen-
dicular to the axis Ox).

~
^

Consider two straight
lines; one of them (no matter

which) will be referred to

as the first line, and the

other as the second line (see

Fig. 39). Let fe, and k2 de-

note the respective slopes of

these lines, and let <p be the

angle which the second line

makes with the first, that

is, the angle through which
the first line has to be turned

to reach coincidence with
Fig. 39.

one of the directions of the second line. The angle 9 will be taken

with a plus or minus sign according as the turning is in the posi-
tive or the negative direction. It is this angle cp that we shall

mean when speaking of the angle between two straight lines.

Let ai be the angle of inclination of the first line. If the

axis Ox is turned through the angle ai, the axis will coincide with

one of the directions of the first line; if the axis Ox is then given
an additional turn through the angle cp,

it will coincide with one
of the directions of the second line. Thus, by adding the angle cp

to the angle ai, the angle of inclination of the second line is

obtained; we shall designate this angle of inclination as ci2. Ac-

cordingly, we have cti + cp
=

02, or cp
=

012 cti-

Hence
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Now, tana
1
= A

1 , tana2
=

2 ; therefore,

0)

This is the formula we have been seeking.

If <p
= - the tangent of the angle (p has no arithmetical

meaning ("becomes infinite"); then, and only then, the denomi-
nator of the right-hand member in (1) is equal to zero.

1 3
Example. Given the lines y = y*+ !2, y = Ar-f-3. Find the angle be-

tween them.
Solution. By formula (1),

_l\
7 j

5
-- '

|. (-1)

21+4 ,
tan<p =-5

-- '=-_!__= 1.~

Thus, one of the angles made by the given lines is equal to 45.

59. In solving various problems of analytic geometry, it is often

important to ascertain whether two straight lines, whose equa-
tions are known, happen to be parallel, or perpendicular, or nei-

ther. This question can also be easily resolved.

Let ki and k2 be the known slopes of two straight lines whose

angles of inclination will be denoted by cti and a2, respectively.

Obviously, the given lines will be parallel if, and only if, their

angles of inclination are equal, that is, if tan cti
** tan 0,2- But

tan cci
=

ki, tan a2
= k2 . Hence, the condition for the parallelism

of two straight lines is the equality of their slopes:

The given straight lines will be perpendicular if, and only if,

the angle cp between them is equal to
-g-,

that is, if tancp has no

arithmetical meaning; in this case, the denominator of the right-
hand member in formula (1) will become zero, so that we shall

have 1 + kik2
= 0. Consequently, the condition for the perpendicu-

larity of two straight lines is expressed by the relation

This last relation is usually written as

*
2
= -

(2)
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and, accordingly, the condition that two straight lines should be

perpendicular is formulated as follows: The slopes of perpendicu-
lar lines are negative reciprocals.

Applying the formulas just derived, we can say at once that,
2 2

for instance, the lines y ~-^x-}~ 1, y -g x-{-5 are parallel,
O A

whereas the lines y = -^x~{-2, y= ~^x-{-3 are mutually

perpendicular.

Example. Find the projection of the point P (4, 9) on the line passing through
the points A (3, 1) and B(5, 2).

Solution. The required point will be found by solving simultaneously the

equation of the line AB and the equation of the perpendicular dropped to this

line from the point P. We shall begin by determining the equation of the

line AB; using relation (8) of Art. 57, we obtain

To arrive at the equation of the perpendicular from the point P to the line AB,
we shall write the equation of an arbitrary line through the point P; by for-

mula (7) of Art. 56, we get

y-9:=*(*-4), (*)

where k is the slope (unspecified as yet). The required line must be perpendicu-
lar to AB; consequently, its slope must satisfy the condition for perpendicular-

ity with respect to the line AB. The slope of AB being equal to '/2, it follows

from formula (2) that k = 2. Inserting this value of k in equation (*), we
obtain

y 9 = 2 (x 4) or y = 2jc-f 17.

Solving simultaneously the equations

1 1

y=T* 5-.

y- 2* +17,

we find the coordinates of the projection sought:

x = 7, y = 3.

19. The Straight Line As the Curve of the First Order.

The General Equation of the Straight Line

60. We shall now establish the following fundamental

Theorem 9. In cartesian coordinates, every straight line is

represented by an equation of the first degree and, conversely,

every equation of the first degree represents a straight tine.
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Proof. We shall begin by proving the first part of the theorem.

Let there be given an arbitrary straight line. If this line is not

perpendicular to the axis Ox, then, according to Art. 53, it is rep-
resented by an equation of the form y = kx + b, that is, by an

equation of the first degree.
If the line is perpendicular to the axis Ox, then all its points

have the same abscissa, equal to the ^-intercept of the line

(that is, to the value of the segment cut off by the line on the

axis Ox\ see Fig. 40); denoting this A'-intercept by the letter a,

we thus obtain the equation of the line in

the form x = a which, again, is an equation
of the first degree. Hence, every straight
line is represented by an equation of the first

degree in cartesian coordinates; the first

part of the theorem is thus proved.

z We now proceed to prove the converse
statement. Let there be given an equation of

the first degree,

Fig. 40. A*+ 5y+ C= 0, (1)

where A, B, C may have any values whatsoever. If B=fO, the

given equation may be written in the form

A C
y = --B x ^-

A C
Replacing -g- by k and

-g- by 6, we obtain y = kx + b\ by

Art. 53, an equation of this form represents a straight line with

slope k and ^-intercept b.

If B = 0, then A + 0, and equation (1) may be put in the form

_ C
X-j.

Q
Denoting -j by a, we get x = a, that is, the equation of a line

perpendicular to the axis Ox. Thus, every equation of the first

degree represents a straight line. This completes the proof of the

theorem.

We know that curves represented by equations of the first

degree in cartesian coordinates are called curves of the first order

(see Art. 48). Using this term, we can express the above result

as follows: Every straight line is a curve of the first order; every
curve of the first order is a straight line.

61. An equation of the form Ax + By +C = is called the

general equation of a straight line (inasmuch as it is a general
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equation of the first degree). By varying the values of A, B, C,
it can be made to represent every possible straight line without

exception.

20. Incomplete Equations of the First Degree.
The Intercept Equation of a Straight Line

62. Let us consider three special cases when the equation of

the first degree is incomplete.

(1) C = 0; the equation has the form Ax + By = and rep-
resents a straight line through the origin.

For, the numbers x = 0, y = satisfy the equation Ax + By = Q.

Consequently, our straight line contains the origin.

(2) B = (4^0); the equation has the form Ax + C = and

represents a line parallel to the axis Oy.
This case has already been discussed in Art. 60, in the process

of proving Theorem 9. As shown there, the equation Ax + C =
is reducible to the form

x = a,

Q
where a=

-j.
An equation of this form represents a straight

line perpendicular to the axis Ox because, according to this

equation, all points of the line have the same abscissa (x = a)
and are therefore situated at the same distance from the axis

Oy (to the "right" of Oy if the ^-intercept a of the line is posi-

tive, or to the "left" of Oy if a is negative; see Fig. 40).
In particular, when a = 0, the straight line coincides with the

axis Oy. Thus, the equation

* =
represents the y-axts.

(3)4 = (fl =0); the equation assumes the form By + C =
and represents a straight line parallel to the axis Ox.

The proof is analogous to that used in the previous case. It

will suffice to note that, letting -g-=, the equation

may be written as

where the number b is the "level of location" common to all

points of the line (Fig. 41), and also the ^/-intercept of the line.

In particular, when 6 = 0, the straight line coincides with the

axis Ox. Thus, the equation

represents the x-axis.
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63. Let us now consider the equation

in which the coefficients ,4, B, C are all different from zero. Such
an equation can be reduced to a special form, which is found

convenient when dealing with some problems of analytic geome-

try. Transposing the constant term C to the right-hand side of

the equation, we obtain

= C.

Dividing the equation through by C, we then get

Ax
-C

By _
-C

I
"i i

i r l

or

c_
A

y i

c
~~

B

Introducing the notation

we have
A '

C_

B '

(1)

This is the special form of the equation of a straight line that we
wished to obtain.

Fig. 41.

<*

Fig. 42.

It is an important fact that the numbers a and b have a very

simple geometric meaning; namely, a and b are the intercepts cut

off by the line on the x- and r/-axes, respectively (see Fig. 42).
To verify this, let us find the points in which our line meets the

coordinate axes. The point of intersection of the line and the axis
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Ox is determined by solving simultaneously the equations of the

line and of the axis Ox:

Hence x = a, y = 0. Thus, the x-intercept of the line is actually

equal to a. In a similar way, the (/-intercept of the line is shown
to be equal to b.

An equation of the form (1) is called the intercept equation

of a straight line. This form is, in particular, convenient to use

when plotting straight lines on paper.

Example. Given the line

Write its equation in the intercept form and
draw the line.

Solution. The intercept form of the equation
of the given line is

~ 5
T 3 Fig. 43.

To plot the line, mark off the ^-intercept a = 5 and the ^/-intercept b = 3 on
the coordinate axes Ox and Oy, respectively, and join the points so found

(Fig. 43).

21. Discussion of a System of Equations
Representing Two Straight Lines

64. Let there be given a system of two equations of the first

degree:
A ^n^r _n .

^

Each of equations (1), taken separately, represents a straight
line. Each simultaneous solution of these equations represents a

point common to the two straight lines.

We shall analyse the system (1) and give a geometric inter-

pretation to the results of our analysis.

Suppose that -j^-^-^.In this case the determinant of the

system is different from zero:

A\ B
\

A2 B2

* '

5-521
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This means that the system is consistent and has a single
solution *); accordingly, the lines represented by the equations
of the system intersect in a single point; hence, these straight
lines are distinct and non-parallel. The coordinates of the point
of intersection are found from equations (1) by means of the

formulas

C 2

or

A, B,

C, A,

C2 A 2

Suppose now that

possible: either

Consider the first

A-A
A 2

~
B 2

-r~~

C\

A, B
}

A 2 B2

Here, again, two cases are

A, ___ B, _ C,-- - ~"

(2)

of these cases. Denoting each of thethe

equal ratios -^ and ~ by the letter q, we may write: A^Azq,
/l2 >2

Bi^Btf, Ci ^= C2^. Multiplying the second of equations (1) through
by q and subtracting the result from the first equation, we obtain

Ci C2 <7
= 0. This relation is in contradiction to Ci^C2q. Still,

it is a consequence of the system (1); hence, no matter what may
be the values of the variables x, y, the equations of the system
(1) cannot give correct equalities simultaneously, that is, the

system (1) has no simultaneous solutions. In this case, the

straight lines represented by equations (1) have no point in com-

mon, that is, are parallel.
Consider now the other possible case, in which

A
A 2

A
B2

Equating each of these ratios to q yields A
{
= A 2q, fl

1

Ci Czq. Multiplying the left-hand side of the second equation
by a certain number q, we therefore obtain the left-hand side of

the first equation. It follows that equations (1) are equivalent.
Hence, both equations (1) represent the same straight line.

*> See Art. 2 of the Appendix.
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Examples, (i) The lines

O A

intersect, since T ^T ' T^e coorc^ina *es * tne P in ^ f intersection are

x = 1, # =* +1.

(2) The lines

231
are parallel, because -r =

-Q

=
-* (The given system is obviously incon-

sistent, since multiplying the first equation through by 2 and subtracting the

result from the second equation gives the contradictory equality 1 = 0.)

(3) The lines

coincide, because the given equations are equivalent.

Note. The relation
-^-
=

-g-
is known as the condition for

the parallelism of two straight lines

}
= and A2x+ B2y -f C2

= 0,

although under this condition the lines may be either parallel or

coincident, as we have seen above. Before calling -A
L = "^

1 the
J\i 5 2

condition for the parallelism of two straight lines, we must there-

fore agree to regard the case when the two lines coincide as a

special (limiting) case of their parallelism.

65. As an immediate result of the above discussion, we have
the following important proposition:

Two equations,

A
l
x+ B

ly+ C
l
= and A2x+ B2y-\-C2

= Q,

represent the same straight line if, and only if, their coefficients
are proportional, that is,

A
l Bj d

A 2 B2 C2

'

We shall use this result later.

5*
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22. The Normal Equation of a Straight Line.

The Problem of Calculating the Distance
of a Point from a Straight Line

66. We shall now consider* a special form, known as the normal

form, of the equation of a straight line.

Let there be given an arbitrary straight line. Through the

origin, draw the line n (called the normal] perpendicular to the

given line, and denote by the letter P the point at which the

normal cuts the given line (Fig. 44).
We shall regard the direction from the point to the point P

as the positive direction of the normal (if P coincides with 0,
that is, if the given line passes through
the origin, the positive direction of

the normal may be chosen at will).

Thus, the normal will be regarded as

an axis.

Let a be the angle from the axis Ox
to the directed normal, and

Jet p denote

the length of the segment OP.
The angle a will be considered as in

trigonometry and called the polar angle

Fi 44
of the normal.

'

We shall now derive the equation of

the given line, assuming that the

numbers a and p are known. For this purpose, take an arbitrary

point M on the line and designate its coordinates as x,

y\ obviously, the projection of the segment OM on the normal is

equal to OP and, since thejpositive direction of the normal agrees
with that of the segment OP, the value of the segment is repre-
sented by a positive number, namely, the number p:

p. (1)

Let us find the expression for the projection of the segment
OM on the normal in terms of the coordinates of the point M.

Letting cp
denote the angle between the segment OM and the

normal, and p, 8 the polar coordinates of the point M, we obtain,

by Art. 20,

pro},, OM= p cos cp
=

p cos (a 6)
=

p (cos a cos 6 -f sin a sin 0)
=

=
(p cos 6) cos a+ (p sin 0) sin a= x cos a -f- y sin a.

Thus,

proj rt
OM =s x cos a -f y sin a. (2)
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From (1) and (2) it follows that A: cos a + y sin a = p, or

x COS a -f- y sin a p =s 0. (3)

This is the desired equation of the given line (as we see, it is

satisfied by the coordinates x, y of every point M lying on
the line; on the other hand, if a point M does not lie on the line,

its coordinates do not satisfy equation (3), because then

projn OM =/= p).
The equation of a straight line written in the form (3) is

called the normal equation of a straight line; a denotes here the

polar angle of the normal, and p is the distance from the origin
to the straight line.

67. Let there be given an arbitrary straight line. Construct

its normal n (assigning a positive direction to it, as described

in the preceding article). Further, let

Af* be any point in the plane, and let
4

d denote the distance of M* from the

given line (Fig. 45).
We shall argee to define the depar-

ture of the point M* from the given
straight line as the number +d if M*
lies on that side of the line towards
which the directed normal points, and _

as the number d if M* lies on the /\0
other side of the line. We shall denote Fig. 45.

the departure of a point from a straight
line by the letter 6; thus, 6 = d, and it will be helpful to note

that 6 = +d when the point M* and the origin are on opposite
sides of the line, and 6 = d when M* and the origin are on the

same side of the line. (For points lying on the line, 6 = 0.)

The problem of calculating the departure of a point from a

straight line is one of the standard problems of analytic geometry.
This problem is solved by means of the following

Theorem 10. // a point M* has coordinates (x*, y*) and a

straight line is represented by the normal equation

x cos a + y sin a p 0,

the departure of the point M* from the straight line is given by
the formula

'Ana- p. (4)

Proof. Project the point M* on the normal and denote the

projection by Q (Fig. 45). We have
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where_PQ, OQ__and OP are the values of the directed segments

PQ, OQ and OP on the normal. But OQ= proj nOM*, OP=p; hence

/?. (5)

Applying formula (2) of Art. 66 to our point M*, we get

proj,, OM*= x* cos a+ y* sin a. (6)

From (5) and (6), we have

8= x* cos a -f- y* sin a p.

The theorem is thus proved.

Note now that x* cos a + y* sin a p is nothing more than

tbe left-hand member of the normal equation of the given
straight line, with the current coordinates replaced by the coor-

dinates of the point M*. We hence obtain the following rule:

To find the departure of a point M* from a straight line, the

coordinates of the point M* must be substituted for the current

coordinates in the left-hand member of the normal equation of the

straight line. The resulting number will be the departure required.

Note. The distance of a point from a straight line is equal to

the modulus (the absolute value) of the departure of that point:
d =

1
6 |. Consequently, to find the distance of a point from a

straight line, it is sufficient to calculate the departure by the rule

just given and to take the modulus of this departure.

68. As we have seen, the problem of calculating the departure
of a point from a straight line is readily solved if the straight
line is represented by its normal equation. It will now be shown
how to reduce the general equation of a straight line to the nor-

mal form. Let

Axr-f y+ C= (7)

be the general equation of some straight line, and let

x cos a+ y sin a /?
=

(3)

be its normal equation.
Since equations (7) and (3) represent the same line, the

coefficients of these equations are proportional, according to

Art. 65. This means that, on multiplying equation (7) throughout
by a certain factor ji, we shall obtain the equation

which will be identical with equation (3); that is, we shall have

pC p. (8)
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To find the factor
(i, square and add the first two of these

relations; this gives

Hence,

(9)v ;

The number
^i, multiplication by which reduces the general

equation of a line to the normal form, is called the normalising
factor of that equation. Formula (9) determines the normalising
factor incompletely, since its sign remains undetermined.

To determine the sign of the normalising factor, let us use

the third of relations (8) . According to this relation, |iC is a neg-
ative number. Hence, the normalising factor is opposite in sign
to the constant term of the equation normalised.

Note. If C= 0, the sign of the normalising factor may be

chosen at pleasure.

Example. Given the line 3* 4# -f 10 = and the point M(4, 3). Find the

departure of the point M from the given line.

Solution. To apply the rule stated in Art, 67, we must first reduce the given

equation to its normal form.

To this end, we find the normalising factor

= 1 = 1

*
/3^pP 5

'

Multiplying our equation by u., we obtain the required normal equation

Substituting the coordinates of the point M in the left member of this equation,
we obtain

B = - 1(3- 4-- 4* 3+ 10) = 2.
Q

Thus, the point M has a negative departure from the given line and is at the

distance d = 2 from it.

23. The Equation of a Pencil of Lines

69. The collection of all those lines in the plane which pass
through a point 5(x , t/ )

is called the pencil of lines with

vertex S. In analytic geometry it is often necessary to find, from
the known equations of two lines of a pencil, the equation of a

third line of the same pencil, provided that the direction of this

third line has been specified in some way. Problems of this type
can be solved by using, for instance, equation (7) of Art, 56:
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y y\
= k(x x\), with the coordinates JC

, f/o of the vertex of

the pencil taken as x it t/i (the slope k is determined here accord-

ing to the manner in which the direction of the required line has
been specified). When employing this method, however, the coor-

dinates XQ, f/o of the vertex must first be computed.
The following proposition permits us to solve such problems

without computing the coordinates xQj yQ .

Let AiX + Biy + C {
=

0, A 2x + B2y + C2
= be the equations

of two straight lines intersecting in the point S, and let a, p be

any numbers which are not both simultaneously equal to zero;

then

a (A,x+ B,y+Q+ p (A2
x+ B2y + C2)

=
(1)

is the equation of a line through the point S.

Proof. Let us, first of all, establish that relation (1) is actually
an equation (rather than an identity). For this purpose, we put it

in the form

(aA,+ pA>) x -f (*B, + p 2) y + (aCj+ [C2)
=

(2)

and proceed to show that the quantities cu4i + $A 2 and aBi + pB 2

cannot both be zero. Suppose the converse is true, that is,

aAi + $A 2
= and aBi + pB2

= 0; but then -4L = ~ and
1 '

J\2 ^
D O

--== . Since the numbers a and 6 are not both zero, the ratio
JL>2

a
Q

cannot be indeterminate; the last two relations therefore yield
A K

the proportion -j
L =

-p
L

- But the coefficients A\, 61 cannot be
-^2 D 2

proportional to the coefficients A 2 ,
B2 ,

since the given lines inter-

sect (see Art. 64). Hence, our supposition has to be rejected. Thus,

aA[ + $A 2 and a^ + $B2 cannot vanish simultaneously, which
means that (2) is an equation (in the variables x and y). Further,
it is immediately evident that (2) is a first-degree equation and,

hence, represents a straight line. It remains to prove that this

line passes through the point S. Let x
, yo be the coordinates of S.

Since each of the given lines passes through the point S, it fol-

lows that AiXQ + fiii/o + Ci = and A 2xQ + B2yQ + C2
=

0, whence

+ C
2)
= 0.

We see that the coordinates of the point S satisfy equation (1);

consequently, the line represented by (1) passes through S, and
so the proof is complete.

Thus, an equation of the form (1) represents (for any values

of a, p, not both zero) a straight .line of the pencil with vertex S.
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Let us now prove that it is always possible to choose the

numbers a, p so as to make equation (1) represent any (previously

assigned) line of the pencil with vertex S. Since each line of the

pencil with vertex S is determined by specifying the point S and
one more point on the line, it follows that, to prove the assertion

just made, we have merely to show that the numbers a, p in (1)

can always be chosen so as to make the line represented by (I)

pass through any preassigned point M*(x*, /*).

But this is evident; for, the line represented by (1) will pass

through a point Af* if the coordinates of Af* satisfy this equation,
that is, if

a (A^+ B,f+ C,)+ P (A*?+ B,y*+ C2)
= 0. (3)

We assume that the point M* does not coincide with the point
5 (this being the only case we are concerned with). Then at least

one of the numbers

is different from zero, so that (3) is an equation, rather than an

identity; namely, (3) is an equation of the first degree in two

unknowns, a and p. To find the unknowns a, p, one of them is

assigned an arbitrarily chosen value, and then the value of the

other is computed from the equation; for instance, if A^x* +
+ B%y* + Cz 4= 0, then a may be assigned any value (other than

zero) and the corresponding value of p determined from the rela-

tion

Thus, an equation of the form (1) can be made to represent
a straight line passing through any preassigned point of the

plane and, hence, to represent any straight line of the pencil with

vertex 5. An equation of the form (1) is therefore called the

equation of a pencil of lines (with vertex S).
Q

If a + 0, then, letting
~ ^ we obtain from (1):

AlX+ Biy+ Cl+ X (A*x+ B2y+ C2)
= 0. (4)

In problem-solving practice, this form of the equation of a pencil
of lines is used more frequently than the form (1). However, it is

important to note that, since the case a = is eliminated when

reducing (1) to (4), an equation of the form (4) cannot repre-
sent the line A 2x + B2y + 2

= 0; that is, an equation of the form

^4) can be made, by varying the value of A, to represent every
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straight line of the pencil except one (the second of the two given

lines).

Example. Given the two lines 2* + Zy 5 = 0, 7x + Iby -f 1 = 0, which in-

tersect in the point 5. Find the equation of the line through S and perpendicu-
lar to the line \2x 5y 1 = 0.

Solution. Let us first verify the data: the given lines do intersect, because
2 3

y =
-rgr Now, we write the equation of the pencil of lines with vertex 5:

2*-f3y-5+ X(7.*:+15y+ l)
= 0. (5)

To single out the required line from this pencil of lines, let us compute K accord-

ing to the condition that the line in question must be perpendicular to the

line I2x 5y 1 = 0. Rewriting equation (5) in the form

0, (6)

we find the slope of the required line:

k__ 2+ 7X

3+15X'

Now, the given line has the slope

12

By the perpendicularity condition, fc = -r- t that is,
R\

2+ 7X __ 5

3-fl5A~~ 12'

Hence A, *= 1. Substituting K 1 in (6), we get

5* 12y 6 = 0,

or

The problem is solved.



Chapter 5

GEOMETRIC PROPERTIES OF CURVES
OF THE SECOND ORDER

The present chapter deals with the three types of second-order

curves: the ellipse, hyperbola and parabola. The main object of

the chapter is to acquaint the reader with the more important

geometric properties of these curves.

24. The Ellipse. Definition of the Ellipse
and Derivation of Its Canonical Equation

70. An ellipse is the locus of points the sum of whose distances

from two fixed points (called the foci) of the plane is a constant;

this constant is required to be greater than the distance hetvwi-
the foci. It is customary to designate the foci of an ellip

and F2 -

Note. It is obvious that the sum of the distances c

trary point M from two fixed points F\ and F2 cannot b

the distance between the points FI and F*. This sum i

the distance between F\ and Ft if, and only if, the poi
on the line segment /W Consequently, the locus of

\

sum of whose distances from the two fixed points Pi ar

constant equal to the distance between FI and p2, is the

FiFz itself; this case has been excluded by the restrictic

at the end of the above definition.

71. Let M be an arbitrary point of an ellipse with foci /, ^ A .

The segments FiM and FzM (as well as their lengths) are called

the focal radii of the point M. The constant sum of the focal

radii of a point on an ellipse is generally denoted by 2a. Thus,
for any point M of an ellipse,

2a. (1)

The distance FiF^ between the foci is denoted by 2c. From

we have

2a>2c, that is, a>c: (2)
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The following method of constructing an ellipse by means of a

piece of thread is directly based on the definition of the ellipse.

Fasten at points FI and F2 the ends of an inextensible thread of

length 2a and stretch the thread taut with the point of a pencil.

Move the pencil point and it will describe an ellipse with FI, F2 as

the foci and 2a as the sum of focal radii. On completing the actual

construction, it will be clearly seen that the ellipse is a convex

closed curve (an oval) symmetric with respect to the line /V^

Fig. 46.

with respect to the perpendicular bisector of the seg-

(Fig. 46). A little later, we shall establish the shape

pse analytically by discussing its equation derived in

rticle.

t there be given an ellipse with foci F it F2 (we assume
iu c are also given). Let us attach to the plane a rectan-

irtesian coordinate system, whose axes are specially chos-

n respect to the ellipse; namely, let the line F
}F2 be taken

,e x-axis, the direction from F
{ to F2 adopted as positive,

ana the origin placed at the midpoint of the segment FiF2

(Fig. 46). We proceed to derive the equation of the ellipse re-

ferred to the chosen coordinate system.
Take an arbitrary point M in the plane. Designate its coordi-

nates as x and y, and the distances of the point M from the foci

as ri and r2 (fi
= FiM, r2 = F2M). The point M will lie on the

given ellipse if, and only if,

ri -f-r2
= 2a. (3)

In order to obtain the desired equation, it is necessary to express
the variables TI and r2 in terms of the coordinates x, y and to

substitute these expressions in (3).
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Note that the coordinates of the foci FI and F2 are ( c, 0)
and ( + c, 0), respectively, since F|F2

= 2c and since the foci are

symmetrically situated on the axis OK with
respect

to the origin;

bearing this in mind and using formula (2) of Art, 18, we find

r2=l(*-<f+ y
2

. (4)

Substituting these expressions for r4 and r2 in (3), we obtain

The coordinates of a point M (x, y) satisfy equation (5) if, and

only if, the point M lies on the given ellipse; consequently, (5)
is the equation of this ellipse in the chosen coordinate system.
The purpose of the remaining operations is to arrive at a simpler
form of the equation of the ellipse.

Transposing the second radical to the right side of equa-
tion (5) and squaring both members, we obtain

or

a Y(* c)
2+ y

2= a2 ex. (7)

Squaring both members of the last relation yields

a2 *2 2a2cx+ a2^2
-f- a

2
y

2= a4 2a2cx ~f-
2
-*

2
(8)

whence

(a
2 c2) tf 4- a

2
y
2= a2

(a
2 c2). (v

We shall here introduce a new quantity
i 1 /" 9 9 / 1 1

/? r-!l'..-rr' I/ /X /^* III

the geometric meaning of the quantity b will be clarified a little

later; we shall only note now that b is a real quantity
a>c and, consequently, a2 c2 >0). From (10), we have

hence, equation (9) may be written as

or
y2 V2

+ = 1. 02)

Let us prove that equation (12) is the equation of the given
ellipse. This is not a self-evident fact since we have twice cleared

radicals in the process of reducing (5) to (12); it is obvious only
that (12) is a consequence of (5). We must prove that (5) is, in
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its turn, a consequence of (12), i.e., that these equations are

equivalent.
Let x and y be any two numbers for which equation (12) is

valid. Reversing the steps in the above derivation, we return

from (12) to (9), and then to (8), which will now be written

in the form

Extracting the square root of both sides of the equation, we

get _
(a?-cx). (13)

Note that, in virtue of (12), \x\ < a. From this and from the fact

that c < a, it follows that \cx\ < a 2
]
hence a2 ex is a positive

number. Accordingly, the right side of (13) must be taken with

the plus sign. This brings us back to (7), after which we ob-

tain (6); we shall write this last equation in the form

(x+ c)*+ y
2= [2a

- Y(x- c)*+ y
2

]

2
.

Hence

= +
(2a
_ V(X- cy+ y*\ (14)

Let us discuss the value of

(jc c)
2+ y

2= x2 2cx ~f c*+ y
2

. (15)

From equation (12), #2 <a 2
. Furthermore, \cx\ < a2

,
and so

he absolute value of 2cx is less than that of 2a2
. Finally, we

in also deduce from (12) that */
2 <6 2

;
that is, */

2 <a2 c2
, or

+ */
2 <a2

. Accordingly, the right-hand member of (15) sums

p to less than 4a2
,
so that the square root of that member is less

tilan 2a. Therefore, the quantity enclosed in the parentheses on
he right side of (14) is positive, and hence the right side of (14)
must be taken with the plus sign. Thus, we obtain

whence equation (5) immediately follows.

Thus, not only equation (12) is derivable from equation (5)

but, conversely, (5) can be derived from (12). These two equa-
tions are therefore equivalent, which proves that equation (12)
is the equation of the given ellipse.

Equation (12) is called the canonical equation of the ellipse.

73. The equation

y
2
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which represents the ellipse in a certain system of rectangular
cartesian coordinates, is an equation of the second degree; accord-

ingly, the ellipse is a curve of the second order.

25. Discussion of the Shape of the Ellipse

74. The description of the shape of the ellipse given above

(Art, 71) was based on visual appraisal. Let us now investigate
the shape of the ellipse by analysing its canonical equation

x2
y

2

^r-h-p-^l- 0)

We shall begin by emphasising the following algebraic feature

of equation (1): it contains only terms with even powers of the

current coordinates.

To this algebraic property of equation (1) there corresponds
an important geometric property of the curve represented by the

equation; namely, the ellipse represented by equation (1) is sym-
metrical with respect to both the axis Ox and the axis Oy.

For, if M (x, y) is a point on this ellipse, that is, if the num-
bers x, y satisfy equation (1), then the numbers x, y also sat-

isfy equation (1); consequently, the point Af' (x, y) also lies on
the ellipse. But the points M (x, y) and Af (x, y) are symmetri-
cal with respect to the axis Ox. Thus, all points of the ellipse form

pairs symmetrical with respect to the axis Ox. In other words, if

we fold the drawing along the axis Ox, the upper part of the el-

lipse will be brought into coincidence with its lower part, which
means that the ellipse is symmetric with respect to the axis Ox.

The symmetry of the ellipse with respect to the axis Oy is

proved in a completely analogous manner (the proof being based

on the fact that, if equation (1) is satisfied by the numbers x, y,

it is also satisfied by the numbers X, y).

To investigate the shape of the ellipse, let us express the

quantity y as a function of x, by solving (1) for y:

or

-f- ~y a

Since the ellipse is symmetrical with respect to both coordi-

nate axes, it will be sufficient to consider only its portion con-

tained in the first quadrant.
This portion of the ellipse lies in the upper half-plane and is

therefore associated with the plus sign on the right side of (2);
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at the same time, since the first-quadrant portion of the ellipse

also lies in the right half-plane, x>0 for all points of this por-

tion. Thus, our task is to draw the graph of the function

+ V r f. ~ /o\

y a2
jc

2
, (3)

where x !>0.

Initially, let x 0; for this value of x, y = 6. The point
B (0,6) is the extreme left point of our graph. Now let x increase

from zero. It is obvious that the radicand in (3) will decrease

as x increases; consequently, y will

also decrease in value. Thus, the

variable point M (x, y), tracing the

graph under Consideration, will move
to the right and downwards (Fig. 47).
When x becomes equal to a, we shall

have y = 0, and the point M(x, y)
will coincide with the point A (a, 0)
on the axis Ox. If x increases

further, that is, if#>a, the radicand

in (3) will be negative and y will,

therefore, become imaginary. It

follows that the point A is the
Fig, 47.

extreme right point of the graph. Thus, the first-quadrant portion
of the ellipse is the

^ arc BA shown in Fig, 47,

By reflecting the arc BA in the coordinate axes, we obtain the
entire ellipse; it has the shape of a convex oval with two mutually
perpendicular axes of symmetry (Fig. 48).

Usually the axes of symmetry of an ellipse are referred to

simply as the axes of the ellipse; the intersection of the axes is
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called the centre of the ellipse. The points where the ellipse cuts

its axes are called its vertices. In Fig. 48, the vertices of the

ellipse are the points A, A', B, and B . Note that the segments
AA' = 2a and BB' = 26 are also commonly referred to as the

axes of the ellipse. If the ellipse is situated relative to the coor-

dinate axes as described in Art. 72, that is, if its foci are on the

axis Ox, then = j/^a
2 c2 and, consequently, a>b.

In this case, the segment OA = a is called the semi-major
axis, and the segment OB = 6, the semi-minor axis of the ellipse.

But, of course, an ellipse represented by an equation of the form

(1) can be placed so that its foci will lie on the axis Oy\ then

b > a and the segment OB = b will be the semi-major axis of the

ellipse. In either case, however, the length of the segment OA on
the x-axts is denoted by a, and the length of the segment OB
on the y-axis, by b.

Note. In Fig. 47, the first-quadrant portion of the ellipse is

presented as the arc BA, which is convex "upwards" in all points;
moreover, in the points B and A the direction of the arc is shown
to be perpendicular to the axes Oy and Ox, respectively (so that

the full ellipse has no cusps at its vertices). But it remains to be

proved that the arc BA actually possesses such properties. How-
ever, the proof will be omitted here, since the most convenient
methods for graph analysis of such kind are those furnished by
the calculus.

75. In the special case where b a, the equation

y2 V 2

_ __i

y _ i

a2 -r 2
i

assumes the form

which is the equation of a circle of radius a (with centre at the

origin). Accordingly, the circle is regarded as a special case of

the ellipse.

26. The Eccentricity of the Ellipse

76. The eccentricity of an ellipse is defined as the ratio of the
distance between the foci of that ellipse and the length of its

major axis, denoting the eccentricity by the letter e, we have

Since c < a, it follows that e < 1, that is, the eccentricity of

every ellipse is less than unity.

6-521
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Note that c2 = a2
ft
2

;
therefore

a? a2

hence

e=l/ 1
- and - = V1 <

Accordingly, the eccentricity is determined by the ratio of the

axes of the ellipse and, conversely, the ratio of the axes is deter-

mined by the eccentricity. Thus, the eccentricity characterises the

shape of an ellipse. As the eccentricity increases towards unity,

1 e2 decreases and, consequently, the ratio ~ diminishes; this

means that the greater the eccentricity, the more elongated is the

ellipse. In the case of a circle, b = a and & = 0.

27. Rational Expressions for Focal Radii
of the Ellipse

77. Consider an arbitrary point M(x, y) on a given ellipse.

Let /*i and r2 be the focal radii of this point; then

(1)

However, the focal radii can also be represented by formulas free

of irrational terms. In fact, from equation (7) of Art. 72, we have

Letting here ~~~e and using the second of formulas (1), we

obtain

r2= a ex.

By the definition of the ellipse,

^+^= 20,;

substituting a sx for r2 gives

r
l
= a -f- sx>

Thus, we have the formulas

= e

(2)
r2= a ex,

which will find an important application in 34.
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28. Point-by-point Construction of the Ellipse.
The Parametric Equations of the Ellipse

78. Let there be given an ellipse

y2 V 2

(1)

Describe two circles of radii a and b (assuming that a > b)
about the centre of the ellipse; draw an arbitrary ray from the
centre of the ellipse and denote by t the polar angle of this ray
(Fig. 49). The ray will cut the larger and the smaller circle in

F ig. 49.

points P and Q, respectively. Next, draw a line through the point
P parallel to the axis Oy, and another line through the point Q
parallel to the axis Ox\ let M be the point of intersection of these

lines, and let PI and Qi be the projections of P and Q on the
x-axis.

Let us express the coordinates of the point M in terms of t.

From Fig. 49, it is apparent that

6*

y = /yw as QjQ OQ sin t= b sin t.
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Thus,

=
v '

Substituting these coordinates in (1), we can see that they
satisfy the equation for any value of t. Hence, the point M is on
the ellipse. Thus, we have shown how to plot a point of the

ellipse. By drawing a number of rays and repeating the construc-

tion for each of these rays, we can plot any desired number of

points of the ellipse. This method is often used in drawing prac-
tice since, by joining the plotted points with the aid of a curved

ruler, one can obtain a sketch of the ellipse, fully satisfactory
from the practical viewpoint.

79. Equations (2) express the coordinates of an arbitrary point
of the ellipse as functions of the variable parameter t\ hence,

equations (2) are the parametric equations of the ellipse (see

14).

29. The Ellipse as the Projection
of a Circle on a Plane. The Ellipse

as the Section of a Circular Cylinder by a Plane

80. We shall now prove that the projection of a circle on an

arbitrary plane is an ellipse.

Let a circle k lying in a plane p be projected upon a plane a.

Denote by k' the locus of the projections of all points of the circle

k\ it is to be shown that k
f

is an ellipse. For convenience let the

plane a pass through the centre of the circle k (Fig. 50). Intro-

duce a rectangular cartesian coordinate system in the plane a,

taking the line of intersection of the planes a and p as the axis

Ox, and the centre of the circle k as the origin. Let a denote the

radius of the circle k, and cp the acute angle between the planes
a and p. Let P be an arbitrary point of the circle k, M its projec-
tion on the plane a, Q its projection on the axis Ox, and / the

angle which the segment OP makes with the axis Ox. Now,
express the coordinates of the point M in terms of /. From Fig. 50,

it is readily seen that

y = QM= QP cos cp
= OP sin t cos cp

= a cos cp sin /.

Denoting the constant a cos cp by the letter b t
we obtain
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These equations are identical with the parametric equations of

the ellipse given in Art. 78; hence, the curve k' is an ellipse

(with semi-major axis a and semi-minor axis b = acoscp).

81. Likewise, it can easily be shown that every section of a

circular cylinder by a plane not parallel to the axis of the cylin-

der is an ellipse.

Fig. 50.

To prove this, consider a circular cylinder cut by a plane a

(Fig. 51). Let k' be the curve formed by the intersection, and

the point where the plane a cuts the axis of the cylinder; let the

plane p be passed through the point perpendicular to the axis.

The section of the cylinder made by this plane will be a circle k.

Let the radius of this circle and the acute angle between the

planes a and
f}

be denoted by a and
<p, respectively. Next, let us

attach coordinate axes to the plane a, as shown in Fig. 51. Take
an arbitrary point M on the curve k'\ let P be its projection on
the plane fj, Q its projection on the axis Ox, and t the angle
which the segment OP makes with the axis Ox. Expressing the

coordinates of the point M in terms of t, we obtain

x =s OQ= OP cos t= a cos /,

cos cos y
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LettinS
" = *' we get

x= a cost,

These equations are the parametric equations of an ellipse;
the curve V is, therefore, an ellipse, as was to be shown.

Fig. 51.

Note that > &\ hence a is the semi-minor axis of the

ellipse k'
9 and = -- is its semi-major axis, which means that

the ellipse k
r

is elongated in the direction of the axis Oy.
The fact that the ellipse is the plane section of a circular

cylinder, and also the projection of a circle on a plane, is very

helpful in visualising the curve.
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30. The Hyperbola. Definition of the Hyperbola
and Derivation of Its Canonical Equation

82. A hyperbola is the locus of points the difference of whose
distances from two fixed points (called the foci) in the plane is

numerically a constant; this constant is required to be less than

the distance between the foci and different from zero. It is custo-

mary to denote the foci of a hyperbola by F
{
and F2 ,

and the dis-

tance between them by 2c.

Note. It is obvious that the difference of the distances of an ar-

bitrary point M from two fixed points FI and F2 cannot be greater
than the distance between the points F\ and F2 . This differ-

ence is equal to the distance between F
{ and F2 if, and only if,

the point M lies on one of the

extensions of the segment FiF2 . p1 p
Consequently, the locus of T +-*

points, the difference of whose

M

Fig. 52.distances from the two fixed

points FI, F2 is a constant

equal to the distance between F\ and F2 ,
consists of the two exten-

sions of the segment F 4F2 (Fig. 52).
If the difference of the distances of a point M from points

F! and F2 is equal to zero, then the point M is equidistant from

M
\

Fig. 53. Fig. 54.

FI and F2 . Hence, the locus of points, the difference of whose
distances from the two fixed points Fh F2 is a constant equal to

zero, is the perpendicular bisector of the segment FiF2 (Fig. 53).
These cases have been excluded by the restriction made at the

end of the above definition.

83. Let M be an arbitrary point of a hyperbola with foci F t

and F2 (Fig. 54). The segments FiM and F2M (as well as the
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lengths of these segments) are called the focal radii of the point
M and are designated as rt and r2 (/VW = r it F2M = r2). By the

definition of the hyperbola, the difference of the focal radii of its

point M is a constant (that is, the difference of the focal radii

of a point M remains the same for different positions of M on the

hyperbola); this constant is generally denoted by 2a. Thus, for

any point M of the hyperbola, we have either

2a, (1)

when the point M is nearer to the focus F2 , or

/yW-/vV/= 2a, (2)

when the point M is nearer to the focus FI.

By the definition of the hyperbola, F {M F2M < /V^ and
F2M F {M < FiF2 ;

hence 2a < 2c, that is,

a < c. (3)

In the next article, we shall derive the equation of the hyperbola
and then, by analysing this equation, establish the shape of the

curve. We shall see that the hyperbola consists of two separate

parts called the branches of the hyperbola, each branch extending
indefinitely in two directions; the entire hyperbola is symmetric
with respect to the line FiF2 ,

and also with respect to the perpen-
dicular bisector of the segment F 4F2 (see Fig. 54).

84. Let there be given a hyperbola with foci FI, F2 (we assume
that a and b are also given). Let us attach to the plane a rectan-

gular cartesian coordinate system, whose axes are specially
chosen with respect to the hyperbola; namely, let the line F 4F2

be taken as the jc-axis, the direction from FI to F2 adopted as

positive, and the origin placed at the midpoint of the segment
F 1F2 (Fig.54).

We proceed to derive the equation of the hyperbola referred

to the chosen coordinate system. Take an arbitrary point M in the

plane; designate its coordinates as x and y, and its focal radii

FiM and F2AJ as r t and r2 , respectively. The point M will lie on
the (given) hyperbola if, and only if, r

{
r2 = 2aor r2 ri=2a.

These two relations may be combined into

ri -r2=2a. (4)

To obtain the desired equation of the hyperbola, it is necessary
to express the variables r 4 and r2 in terms of the current coordi-

nates x, y and to substitute these expressions in (4). Since

FiF2
= 2c, and since the foci FI, F2 are symmetrically situated on

the axis Ox with respect to the origin, it follows that the coordi-
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nates of the foci are
( c, 0) and (+ c, 0), respectively; bearing

this in mind and using formula (2) or Art. 18, we find

(5)

Substituting these expressions in (4), we obtain

= 2a. (6)

The coordinates of a point M(x, y) satisfy equations (6) if,

and only if, the point M lies on the given hyperbola; consequently,

(6) is the equation of this hyperbola referred to the chosen coor-

dinate system (in fact, we have here two equations: one for the

right-hand branch, and the other for the left-hand branch of the

hyperbola).
The purpose of the remaining operations is to arrive at a

simpler form of the equation of the hyperbola. Transposing the

second radical to the right side of equation (6) arid squaring
both members, we obtain

!

-f}/
2= 4a2

4ay(;c-<:)
2+ y

2+ (;t c)
2+ y

2
, (7)

or ________
(8)

Squaring both members of (7) yields

cW 2a2cx+ a4 = a2*2 2a?cx+ a2c2 4- a
2
y

2
, (9)

whence

(& a2
) x2- a2

y
2= a2

(c
2 a2

). (10)

We shall introduce here a new quantity

b=V&^a*\ (11)

the geometric meaning of the quantity b will be made clear a

little later; we shall only note now that b is a real quantity

(since, by Art. 83, c>a and, consequently, c1 a2
>0). From

(11), we have

2^2.^2;

hence equation (10) may be written as

or
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Let us prove that equation (12) is the equation of the given
hyperbola. This is not a self-evident fact since we have twice
cleared radicals while reducing (6) to (12); it is obvious only
that (12) is a consequence of (6).

We must prove that (6) is, in its turn, a consequence of (12),
i. e., that these equations are equivalent.

Let x and y be any two numbers for which equation (12) is

valid. Reversing the steps in the above derivation, we return

from (12) to (10), and then to (9), which will now be written

in the form

(ex a2
)

2= a2
[(x c)

2
-f- y

2
]

.

Extracting the square root of both sides of this relation, we
get

ex a?= aY(x c)
2+ y

2
. (13)

If the point (x, y) is situated in the left half-plane, then
x < and the left member of (13) is negative. Consequently, in

this case the right member of (13) must be taken with the minus

sign. If, on the other hand, the point (x, y) lies in the right half-

plane, then x > 0; from (12), we have #>a. Since c > a, it

follows that ex > a2
,
so that the left member of (13) is positive;

in this case, the right member of (13) must therefore be taken

with the plus sign. Thus, equation (13) has the same significance
as equation (8). Next, on carrying out the necessary operations,
we come from (8) back to (7), which will now be written as

Hence _ _
-)2+y 2

2a]- (14)

Let us determine which sign to choose before the brackets

enclosing the right member of (14). We have to consider the

following two cases:

(1) The point (x, y) lies in the right half-plane; then, accord-

ing to the foregoing, the plus sign must be chosen within the

brackets, the quantity enclosed in the brackets is positive, and
the brackets must therefore be preceded by a plus sign.

(2) The point (x, y) is situated in the left half-plane. In this

case, A: is a negative number, so that the difference x c is

numerically equal to the sum |x| + c. By (12), \x\^>a\ also,

c > a. Therefore, (jc c)
2 >4a2

,
so that, of course, the sum

(x c)
2 + //

2 exceeds 4a2
; hence, the square root of that sum is

greater than 2a, and the quantity enclosed in the brackets on the

right side of (14) is, again, positive. Thus, in this case also, the
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right member of (14) must be taken with the plus sign. We see

that, for any position of the point (A;, y), equation (14) reduces

to the form

V(x+ c?+ y
2= Y(x- c)

2+ y
2

2a,

whence (6) can at once be obtained.

Thus, not only equation (12) is derivable from equation (6),

but, conversely, (6) is derivable from (12). These equations are

therefore equivalent, which proves that (12) is the equation of the

given hyperbola.

Equation (12) is called the canonical equation of the hyper-
bola.

85. The equation

which represents the hyperbola in a certain system of rectangular
cartesian coordinates is an equation of the second dergee; accord-

ingly, the hyperbola is a curve of the second order.

31. Discussion of the Shape of the Hyperbola

86. We shall now investigate a hyperbola represented by the

equation
x2

y
2___ 1. (1)

Let us express the quantity y as a function of x by solving (1)

for y:

or

y *"
a *

'
^ '

Since equation (1) contains only terms with even powers of

the current coordinates x, y, it follows that the hyperbola repre-
sented by (1) is symmetric with respect to both coordinate axes

(the proof of this is similar to that of the analogous assertion

for the ellipse; see Art. 74); hence, it will clearly be sufficient

to consider only the portion of the hyperbola in the first quadrant.
This portion of the hyperbola lies in the upper half-plane and

is therefore associated with the plus sign before the right member
of (2) ; at the same time, since the first-quadrant portion also lies
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in the right half-plane, x>0 for all its points. Thus, our .task

is to investigate the function

where x !>0, and to draw the graph of this function.

To begin with, let x = 0. Substitution of x = in the right

member of (3) gives y = ]/ a2
, that is, an imaginary number.

As x increases, y remains imaginary until x becomes equal to a.

Setting x a in (3), we find y = 0. Consequently, the point
A (a, 0) is the extreme left point of the graph. As x increases

further, y is continually real and positive in value; this is imme-

diately evident from formula (3) since, for x > a, we have
x2 a2 > 0. From formula (3), it is

also evident that y is an increasing
function of x (when x^a), which
means that, as x increases, y does like-

wise all the time. Finally, we see from
formula (3) that, as x increases in-

definitely, y also increases indefinitely

(as x -* +00, y ~+ +00). Bringing all

these results together, we come to the

following conclusion: As x increases

from a, the variable point M(x, y),
which describes the graph, moves continually to the "right" and

"upwards", starting from the point A (a, 0) and receding indefi-

nitely from both the axis Oy (to the "right") and the axis Ox
("upwards"; see Fig. 55).

87. Let us examine more closely the manner in which the point
M "goes to infinity". Besides the equation

representing (for x ^> a) the portion of the hyperbola under

investigation, let us consider for this purpose the equation

y=+|*. ,

(5)

which represents the straight line with slope k ~ and passing

through the origin. Figure 55 shows that part of the line which
lies in the first quadrant {to construct it, we have used the right

triangle OAB with sides OA = a and AB = b\ obviously, the

slope of the line OB is precisely k =
-J.
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We shall now prove that, as the point M recedes to infinity,

it approaches indefinitely close to the straight line y = x.

Take an arbitrary value of x(x^a) and consider two points:

M(x, y) and N(x t K), where

The point M(x, y) lies on the hyperbola (4), and the point

N(x, Y) lies on the line (5); since both points have the same
abscissa x, the line joining the points M and N will be perpen-
dicular to the axis Ox (Fig. 56). Let us compute the length of

the segment MN.
First of all, note that

Hence Y > y and, consequently, MN= Y {/. Now,

y _ y= JL
(x _ y^IT^2 )

=
b (x Vx* a2

) (x+ V*'
2 a2

)

that is,

(7)

Fig. 56.

Let us analyse this last expression, assuming that x -> +00.
Its denominator is the sum of two indefinitely increasing posi-

tive terms; as #-> + oo, the denominator therefore tends to

(positive) infinity. The numerator ab of our expression is a

constant. Bringing these two facts together, we conclude that,

as x-> + oo, the right member of (7) tends to zero; hence

MN = V y also tends to zero.

Denote by P the foot of the perpendicular dropped from the

point M to the line y =

that line). Obviously, MP<MN t
and since MA/

that also MP -^0, as was to be proved.

Thus, as the variable point M recedes to infinity along the

first-quadrant portion of the hyperbola (1), the distance from

the point M to the straight line y = jX tends to zero.

jc (MP is thus the distance from M to

0, it follows
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88. Let F be an arbitrary curve, M a variable point on the

curve, and let a be a straight line. If motion of the point M along
the curve F is possible such that: (1) the point M recedes to infin-

ity and, at the same time, (2) the distance from M to the line a

tends to zero, then the curve F is said to approach the line a

asymptotically. In this case, the line a is called an asymptote of

the curve F.

Using the terms just introduced, we can formulate the result

of the investigation carried out in Art. 87 as follows:

The graph of the function y = ~ Y*2 cfi (that is, the

investigated portion of the hyperbola) approaches the line

y x asymptotically as x->- + oo; or, the line y x is

an asymptote of the graph of the function y = - Vx<* a*
( ar| d,

at the same time, an asymptote of our hyperbola).

89. We shall now point out some further features of the position
of the hyperbola relative to its asymptote (concerning ourselves,
as before, only with the first-quadrant portion of the hyperbola).

Let us once more take the points M(x, y) and N(x, Y), con-

sidered in Art. 87, recalling that the point M lies on the hyper-
bola, and N on the asymptote. As has been established in Art. 87,

y > y. Hence, the point M is always "below" the point N. In other

words, the first-quadrant portion of the hyperbola (1) lies,

throughout its extent, "below" its asymptote.
Further, we have, according to formula (7),

y v
ab

y

The denominator of the fraction is, for x ^ a
y real and positive,

and increases as x increases. Since the numerator is here a con-

stant, it follows that the fraction continually decreases as x in-

creases. Thus, it may be asserted that, as x monotonically tends

to positive infinity (that is, continually increases), MN = Y y

monotonically tends to zero (that is, continually decreases to-

wards 0).

Let cp be the angle of inclination of the line y x, and

let P be the foot of the perpendicular dropped from the point M
to this line; then, obviously,

Afp= AfAT. Coscp. (8)

Since MN monotonically tends to zero, and since cos 9 is a

constant, it follows from (8) that MP also monotonically tends

to zero.
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In other words, whatever may be the position (in the first

quadrant) of the point M on the hyperbola (4), as M moves along
the hyperbola to the "right", its distance from the asymptote
becomes continually smaller. We shall express this fact as fol-

lows: The hyperbola approaches its asymptote monotonically.

90. Let us summarise all that has been said in Arts. 86-89.

The first-quadrant portion of the hyperbola under investi-

gation starts from the point A (a, 0) and extends indefinitely out
to the "right" and "upwards", asymptotically approaching the line

y = x (from "below" and monotonically).

The graph in Fig. 55 has been drawn in accordance with the

statement just formulated.

Note. The following two properties of our graph are also of

importance: (1) its direction is perpendicular to Ox in the point

Fig. 57.

A(a, 0); (2) it is convex "upwards" in all points. The proof of

these properties will not, however, be given here, since the most
natural methods for graph analysis of such kind are those fur-

nished by the calculus.

91. Now that the portion of the hyperbola (4) in the first

quadrant has been investigated, a general view of the entire

hyperbola can be readily obtained by reflecting the graph in the
coordinate axes. d

The hyperbola represented by the equation v (\ 4* *

^i_^l 1
^ ^

a2 b*
~ {

is shown in Fig. 57. It is easily seen that the entire hyperbola
has two asymptotes,
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and

we are already familiar with the first of these lines, and the

second line is the reflection of the first in the axis Ox (or Oy).
Usually the axes of symmetry of a hyperbola are referred to

simply as its axes, and the intersection of the axes is called the

centre of the hyperbola. (In the case under consideration, the

axes of the hyperbola are coincident with the coordinate axes.)
One of the two axes (in our case, the one coincident with the axis

OA:) intersects the hyperbola, whereas the other axis does not

intersect it. The points of intersection of the hyperbola and the

axis are called the vertices; a hyperbola has two vertices (marked
by the letters A and A' in Fig. 57).

The rectangle with sides 2a and 26, which is symmetric with

respect to the axes of a hyperbola and tangent to it at the ver-

tices, is called the fundamental rectangle of the hyperbola (in

Fig. 57, it is the rectangle BB'C'C). The diagonals of the funda*

mental rectangle of a hyperbola coincide with its asymptotes.
It should be noted that in mathematical books the term "axes

of the hyperbola" is customarily applied also to the segments of

lengths 2a and 26, joining the midpoints of the opposite sides ol

the fundamental rectangle. Accordingly, the equation

is said to represent a hyperbola with semi-axes a and b.

Note. When making a sketch of a hyperbola with semi-axes

a and 6, one should begin by constructing the fundamental rect-

angle and then the asymptotes of the hyperbola. Following that,

the hyperbola itself can be sketched in either "by eye", or after

plotting a few of its points. In Fig. 57, it is shown (by dashed

lines) how to locate the foci of a hyperbola by using its funda-

mental rectangle; this method is clearly based on the relation

C2 s=fl 2 + 2
t
which follows from the formula (11) of Art. 84.

92. Consider now an equation of the form

-+-' <
9>

By interchanging the letters x and y, a and 6, this equation can

be reduced to the equation studied in the preceding articles.

Hence it is clear that equation (9) represents a hyperbola situated

as shown in Fig. 58 (with its vertices 6 and B' lying on the axis
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Oy). Equation (9) is also called the canonical equation of the

hyperbola.

93. Two hyperbolas represented by the equations

y2 V 2 y2 ,2^ y _ i j^ i y ___. i

in the same coordinate system and for the same values of a and
6, are said to be conjugate to each other.

Fig. 58.

94. A hyperbola with equal semi-axes (a = b) is called an

equilateral hyperbola. The canonical equation of an equilateral

hyperbola may be written in the form

The fundamental rectangle of an equilateral hyperbola is

obviously a square; it is hence clear that the asymptotes of an

equilateral hyperbola are mutually perpendicular.

32. The Eccentricity of the Hyperbola

95. The eccentricity of a hyperbola is defined as the ratio of
the distance between the foci of that hyperbola and the distance

between its vertices', denoting the eccentricity by the letter e, we
obtain

c
8=

a

Since c > a for a hyperbola, it follows that e > 1; that is, the

eccentricity of every hyperbola is greater than unity.
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Noting that c2 = a2 + fr
2

, we find

whence

Accordingly, the eccentricity is determined by the ratio and,

conversely, the ratio is determined by the eccentricity. Thus,

the eccentricity of a hyperbola characterises the shape of its fun-
damental rectangle and, hence, of the hyperbola itself.

As the eccentricity decreases towards unity, e2 1 decreases

and, consequently, the ratio diminishes; this means that the

less the eccentricity of a hyperbola, the more elongated is its

fundamental rectangle (in the direction of the axis joining the

vertices). In the case of an equilateral hyperbola, a = b and

e = /2.
33. Rational Expressions for Focal Radii

of the Hyperbola

96. Consider an arbitrary point M(x, y) on a given hyperbola.
If r4 and r2 are the focal radii of this point, then

*. (1)

However, focal radii may also be represented by formulas free

of irrational terms. In fact, from equation (8) of Art. 84, we have

the plus sign refers here to the case when the point M is on the

right-hand branch of the hyperbola. Letting = e and using

the second of formulas (1) we obtain

r2=(-a). (2)

To express the first focal radius, we make use of the basic

relation r4 r2 = 2a, where the plus sign likewise refers to

points of the right-hand branch of the hyperbola. From this rela-

tion, we find r4
= r2 2a = (ex + a). Thus, for points of the

right-hand branch of a hyperbola,

TJ
= ex -f a, r2= ex a; (3)
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whereas for points of the left-hand branch,

r
l (ex+ a), r2= (ex a). (4)

These formulas will find an important application in the next

section.

34. The directrices of the Ellipse
and Hyperbola

97. Consider an ellipse in a rectangular cartesian coordinate

system chosen so that the ellipse will be represented by the ca-

nonical equation

4-r 21-

We assume that the ellipse
is not a circle, i. e., that

a =h b and, consequently,
8 = 0.

It is also assumed that the

ellipse is elongated in the di-

rection of the axis Ox\ i. e.,

that a > b.

The two straight lines per-

pendicular to the major axis

F i g. 59.

of the ellipse and situated symmetrically with respect to the centre

at a distance from it are called the directrices of the ellipse.

In the chosen coordinate system, the equations of the direc-

trices are of the form

and *=+ 7-

We shall agree to refer to the first of the directrices as the

left-hand directrix, and to the second as the right-hand directrix.

Since e < 1 for an ellipse, it follows that > a. Hence, the

right-hand directrix is situated to the right of the right-hand
vertex of the ellipse; by analogy, the left-hand directrix lies to the

left of the left-hand vertex. The ellipse together with the direc-

trices is shown in Fig. 59.

98. Consider a hyperbola in a rectangular cartesian coordinate

system chosen so that the hyperbola will be represented by the

canonical equation
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The two straight lines perpendicular to that axis of the hyper-
bola which intersects it, and situated symmetrically with respect

to the centre at a distance y from it, are called the directrices

of the hyperbola.
In the chosen coordinate system, the equations of the direc-

trices are of the form

d * . a
X ancj x= -\ .

We shall agree to refer to the first of the directrices as the

left-hand directrix, and to the second as the right-hand directrix.

Since e > 1 for a hyperbola, it follows that < a. Hence

the right-hand directrix is situated between the centre and the

y

Fig. 60.

right-hand vertex of the hyperbola; by analogy, the left-hand

directrix is situated between the centre and the left-hand vertex.

Fig. 60 shows the hyperbola together with the directrices.

99. The meaning of the directrices of the ellipse and hyperbola
is clarified by the following two theorems.

Theorem 11. If r is the distance from an arbitrary point of an

ellipse to one of its foci, and d the distance from the same point

to the directrix corresponding to that focus, then the ratio
d

is

a constant equal to the eccentricity of the ellipse:

_. 'z^^z g

Proof. Let us take, for definiteness, the right-hand focus and
the right-hand directrix. Let M(x, y) be an arbitrary point of the
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ellipse (see Fig. 59). The distance from M to the right-hand
directrix is expressed by the relation

rf= 7-Jf, (1)

as is easily seen from the diagram; the distance from the point
M to the right-hand focus is given by the second of formulas

(2), 27:

r a ex. (2)

From (1) and (2), we have

r _ a ix _ (a &x) t _
d a a ix-- x

e

The theorem is thus proved.

Theorem 12. If r is the distance from an arbitrary point of a

hyperbola to one of its foci, and d the distance from the same

point to the directrix corresponding to that focus, then the ratio

~ is a constant equal to the eccentricity of the hyperbola:

Proof. Let us take, for definiteness, the right-hand focus and
the right-hand directrix. Let M(x, y) be an arbitrary point of the

hyperbola (see Fig. 60). We have to consider the following two
cases:

(1) The point M is on the right-hand branch of the hyperbola.
Then the distance from M to the right-hand directrix is expressed

by the relation

*=*-. (3)

as is apparent from the diagram. The distance from the point M
to the right-hand focus is given by the second of formulas (3),

33:

r= ex a. (4)

From (3) and (4), we have

r _ tx a _ (tx <Z)E _
~d _.L zx a

'

c
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(2) The point M is on the left-hand branch of the hyperbola.
Then the distance from M to the right-hand directrix is expressed

by the relation

where
|
x

\
is the distance from the point M to the axis Oy,

~ the

distance from the directrix to the axis Oy, and d the sum of these

distances; but, since M lies on the left-hand branch of the hyper-
bola, A: is a negative quantity, so that \x\ = x, and we obtain

. (5)

The distance from M to the right-hand focus is given by the

second of formulas (4), 33:

r= (ex d). (6)

From (5) and (6), we have

tx-\-a

The theorem is proved.

100. The property of the ellipse and hyperbola expressed by
the above theorems serves as a basis for the following definition

of these curves. The locus of points whose distance r from a fixed

point (a focus) is in a constant ratio

3
= * (e

= const.)

to their distance d from a fixed straight line (the corresponding
directrix), is an ellipse if e < 1, or a hyperbola if e > 1. (This
statement can be verified by deriving the equation of this locus

and ascertaining that the obtained equation is the equation of an

ellipse or a hyperbola according as e < 1 or e > 1.)

The question naturally arises: What is the locus, defined in an

analogous way for E *
1, that is, the locus of points, for each of

which r = d? This locus turns out to be a new second-order curve,
called the parabola.
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35. The Parabola. Derivation

of the Canonical Equation of the Parabola

101. A parabola is the locus of points whose distance from
a fixed point (called the focus) in the plane is equal to their

distance from a fixed straight line (called the directrix and
assumed not to pass through the focus).

It is customary to denote the focus of a parabola by the

letter F, and the distance from the focus to the directrix by the

letter p. The quantity p is called the

parameter of a parabola. The curve

is shown in Fig. 61 (the details of the

drawing are fully explained in the next

few articles).

Note. In accordance with Art. 100,

a parabola is said to have eccentricity
8=1.

y

Fig. 61.

.

102. Let there be given a parabola
(we assume that the parameter p is

also given). Let us attach to the plane
a rectangular cartesian coordinate

system, whose axes are specially chosen
with respect to the given parabola;

namely, let the ^-axis be drawn through
the focus perpendicular to the directrix,

the direction from the directrix to the focus adopted as positive
on the x-axis, and the origin placed midway between the focus

and the directrix (Fig. 61). We now proceed to derive the equation
of the given parabola in this coordinate system.

Take an arbitrary point M in the plane and designate its

coordinates as x and t/. Let r denote the distance of the point M
from the focus (r

= FM), and d the distance of the point M from
the directrix. The point M will lie on the given parabola if, and

only if,

r= d. (1)

In order to obtain the desired equation, it is necessary to express
the variables r and d in terms of the current coordinates x

t y and
to substitute these expressions in (1). Note that the coordinates

of the focus F are
(y, Oj; bearing this in mind and using for-

mula (2) of Art. 18, we find

(2)
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Denote by Q the foot of the perpendicular dropped from M upon
the directrix, The coordinates of the point Q will clearly be

f y, y); hence, by formula (2) of Art. 18, we obtain

(3)

(on extracting the root, we take x +
-^

with its original sign

since x-\~ jr
ls a positive number; this follows from the fact that

the point M(x, y) must lie on that side of the directrix where the

focus is situated, that is, we must have -*;> y, whence

^c-h-f- > Oj. Substituting expressions (2) and (3) for r and d

in (1), we find

The coordinates of a point M(x, y) satisfy equation (4) if, and

only if, the point M lies on the given parabola; accordingly, (4)

is the equation of this parabola referred to the chosen coordinate

system.
To reduce the equation of the parabola to a simpler form, we

square both members of (4), which gives

or

y'= 2/?x. (6)

We have derived equation (6) as a consequence of equation (4).

It is easy to show that equation (4) may, in its turn, be derived

as a consequence of (6). In fact, equation (5) is readily obtained

from (6) by "retracing steps"; next, from (5) we get

It remains to show that, if x, y satisfy equation (6), then the plus
sign is here the only sign to choose. But this is clear since, from

(6), jt=-| and, consequently, jc^-0, so that x+ -- is a posi-

tive number. Thus, we have come back to equation (4). Since

each of equations (4) and (6) is a consequence of the other, they
are equivalent. We hence conclude that equation (6) is the equa-
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tion of the parabola. This equation is called the canonical equation
of the parabola.

103. The equation y
2 =

2pj*r, which represents the parabola
in a certain system of rectangular cartesian coordinates is an

equation of the second degree; accordingly, the parabola is a

curve of the second order.

36. Discussion of the Shape of the Parabola

104. Let us analyse the equation

(1)

in order to form a clear idea of the shape of the parabola and

thereby to show the correctness of its representation in Fig. 61.

Since equation (1) contains y only in an even power, the

parabola represented by it is symmetrical with respect to the

axis Ox. It will therefore be sufficient

to investigate only the portion of the

parabola which lies in the upper half-

plane. This portion is represented by
the equation

(2)

For negative values of x, equation (2)

gives imaginary values of y. Consequen-
tly, no point of the parabola appears
to the left of the axis Oy. For x = 0,

'

pig. 62.

we have y = 0. Hence the origin lies

on the parabola and is its extreme "left" point. Equation (2)

shows that, as x increases from zero, y continually increases. The

equation also shows that, as x -> + oo, y -> + <x>.

Thus, the variable point M(x, y), which traces the portion of

the parabola under consideration, moves to the "right" and

"upw
r

ards", starting from the origin and receding indefinitely
from both the axis Oy (to the "right") and the axis Ox ("up-

wards"; see Fig. 62).

Note. The following two properties of the parabola are also

of importance: (1) the direction of the parabola is perpendicular
to the axis Ox in the point 0(0, 0); (2) the portion of the para-
bola in the upper half-plane is convex "upwards". The graph in

Fig. 62 has been drawn in accordance with these properties. Their

proof will not, however, be given here, since the most natural

methods for curve analysis of such kind are those furnished by
the calculus,
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105. Now that we have established the shape of the portion
of the parabola lying in the upper half-plane, the determination

of the shape of the entire parabola will present no difficulties;

we have merely to reflect this portion of the curve in the axis Ox.

The above-discussed Fig. 61 gives a general idea of the entire

parabola represented by the equation

Usually the axis of symmetry of a parabola is referred to

simply as its axis (in the case under consideration, the axis of

the parabola coincides with the axis Ox). The point where a

parabola cuts its axis is called the vertex of the parabola (in our

case, the vertex is coincident with the origin). The number p,

that is, the parameter of a parabola, represents the distance be-

tween the focus and the directrix. The geometric meaning of the

parameter p may also be described as follows. Take some def-

inite value of the abscissa, say x = 1, and find from equa-
tion (1) the corresponding values of the ordinate: y =_
We obtain two points of the parabola, M

l (\, + V%p)
A/2 (l, V^P\ symmetric with respecHo the axis; the distance

between these points is equal to 2|^2/?, Thus, 2^2/7 is the

length of the chord perpendicular to the

axis and one unit of length distant from
the vertex. We see that the length

(=2)^2/7) of this chord of the parabola
increases with p. Consequently, the para-
meter p characterises the "spread" of a

parabola, provided that this "spread" is

measured perpendicular to the axis at a

definite distance from the vertex.

y

106. The equation

(3)

(where p is positive) may be reduced to

the equation y
2 = 2px by substituting x

Fig* 3*

for x, that is, by a transformation of

coordinates corresponding to a reversal

of the direction of the axis Ox. Hence, the equation y
2 = 2px

also represents a parabola whose axis is coincident with the axis

Ox and whose vertex coincides with the origin; but this parabola
is situated in the left half-plane,

as shown in Fig. 63.
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107. By analogy with the foregoing, we may assert that each
of the equations

;c
2= 2py

(where p > 0) represents a parabola symmetric with respect to

the axis Oy, with vertex at the origin (these equations, as

well as equations (1) and (3), are referred to as the canonical

equations of the parabola). A parabola represented by the equa-
tion x2 = 2py is said to open upwards; a parabola represented by

(0) (b)

Fig. 64.

the equation x2 2py is said to open downwards (see Fig. 64 a

and b, respectively); the use of these terms is natural and re-

quires no further explanation.

37. The Polar Equation of the Ellipse,

Hyperbola and Parabola

108. Using the results of Arts 99-102, we shall now derive

the polar equation of the ellipse, hyperbola and parabola (com-
mon in form to all the three curves) for a certain, specially chos-

en, position of the polar axis. It should be remarked, however,
that in the case of the hyperbola this equation will represent only
one of its branches, rather than the entire curve.

Let there be given any one of the above-mentioned curves: an

ellipse, a hyperbola, or a parabola (if the given curve is a hyper-

bola, we shall consider a branch of it only). Denote the given
curve by the letter L,
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Let F be the focus of the curve, and g the directrix corre-

sponding to that focus (in the case of a hyperbola, we shall denote

by F and g the focus and directrix nearest to the branch under

consideration).
Let us place the polar coordinate system so that the pole will

coincide with the focus F, and the polar axis will be directed
from the focus, along the axis of the curve L, away from the di-

rectrix g (Fig. 65). As usual, let
p,

6 denote the polar coordinates
of a variable point M of the curve L. To derive the equation of

the curve L, we shall use, as a basis,

I the relation

d M̂ ~
z= e

' 0)

where e is the eccentricity of the curve,
and r and d have the same meaning as

in Arts 99-102.

Since the pole is coincident with the

focus F, it follows that

r= P . (2)

Further,

Fig. 65. (3)

Let P be the point whose position on the curve L is such that
the line segment FP is perpendicular to the axis of L, and let p
denote the length of the segment FP. In other words, p is equal
to half the focal chord of L, perpendicular to the axis of the curve;,
the quantity p is called the focal parameter *> of the curve L.

From the basic relation (1), which refers to all points of the
curve L, we have (for the point P, in particular)

FP
SP

= . Now, SP = DF, so thatwhence SP

From this and from relation (3), we get

= ~-f pcos (4)

*) If the curve L is a parabola, FP = PS (see Art. 101) and, consequently,
p = DF, that is, p is equal to the distance between the focus and the directrix.

In this case, therefore, the quantity p coincides with the already familiar para-
meter of the parabola, designated by the same letter*
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Substituting expressions (2) and (4) for r and d in the left-hand

member of (1), we find

whence
7+ p cos

p
P

1 cos
' (5)

This is the polar equation of the ellipse, the hyperbola (or rath-

er, one branch of the hyperbola) and the parabola. Here p is

the local parameter, and e the eccentricity of the curve. Equa-
tion (5) is used in mechanics.

38. Diameters of Curves of the Second Order

109. An important and, at first glance, surprising property of second-order

curves (ellipses, hyperbolas and parabolas) is expressed by the following

Theorem 13. The midpoints of parallel chords of a second-order curve lie on
a straight line.

Proof. (1) Let the given curve be the ellipse

x2
y*

"^T + TT l 0)

(Fig. 66). Denote by k the common slope of parallel chords; then the equation
of each of them may be written as

y=kx+ l, (2)

where / has different values for dif-

ferent chords. Let us find the endpoints
of a chord represented by equation

(2) for some value of /. Solving (1)

and (2) simultaneously and eliminat-

ing y from them, we obtain

,

_j
b 2

or

(3) Fig. 66.

The roots x\, #2 of this quadratic are the abscissas of the endpoints MI, M2 of

the chord. Let MQ(XQ , yQ ) be the midpoint of the chord; then

Now, by the well-known theorem concerning the sum of the roots of a quad-
ratic equation,
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Hence

Having found x , we find (/o from (2):

a?kl

Thus,
a?kl

(b)

Fig. 67.

By varying here the value of /, we shall obtain the coordinates XQ , yo of the

midpoints of different parallel chords of the ellipse; but, as is clear from rela-

tions (4), xQ and yQ will invariably be connected by the equation

v ft b2

or i/o where
b*

Thus, the midpoints of all chords of slope k He on the straight line

(2) Let the given curve be the hyperbola

(5)

(6)

(7)

(Fig. 67a and b). Denote by k the common slope of parallel chords; then the

equation of each of them may be written as

(8)
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Before proceeding further, note that no chords of a hyperbola can be parallel

to its asymptotes (since every line parallel to an asymptote meets the hyper-

bola at one point only); therefore, k = and k = . Let us find the end-

points of a chord represented by equation (8) for some value of /. Eliminat-

ing y between (7) and (8), we get

a" 62

'

or

(b
2 a2k2

) x2 2a2klx a2
(I

2+ b 2
)
= 0. (9)

Since k* , it follows that b2 a2k2 =0. Consequently, (9) is a quadratic

equation. The roots x\, x2 of this quadratic are the abscissas of the end-

points MI, M2 of the chord. Let MO (XO,/O) be the midpoint of the chord; then

*o = 9
*

Using the theorem on the sum of the roots of a quadratic equation, we find

2a2kl

a2 kt
Hence, XQ = , 2_ 2

. 2 Now that x is known, we find f/o from (8) :

Thus,

a2 kl b 2
l

By varying here the value of /, we shall obtain the coordinates XQ, yo of the

midpoints of different parallel chords of the hyperbola; but, as is clear from
relations (10), XQ and yo will invariably be connected by the equation

i<L-JL
XQ

~~
a2 k

'

or yo = k'xo, where

Thus, the midpoints of all chords of slope k lie on the straight line

y = k'x. (12)

(3) Finally, let the given curve be the parabola

(13)

(Fig. 68). Denote by k the common slope of parallel chords; then the equation
of each of them may be written as

(14)
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Before proceeding further, note that no chords of a parabola can be parallel
to its axis (since every straight line parallel to the axis meets the parabola
at one point only); therefore k =p 0.

Let us find the endpoints of a chord represented by equation (14) for some
value of /. Eliminating y between (13) and (14), we get

or

(15)

Since k =
0, it follows that (15) is a quadratic equation. The roots x

lt
x2 of

this equation are the abscissas of the endpoints M\, M2 of the chord. Let

MO (*o, #o) be the midpoint of this chord; then

y ^f^^^y we have

by the theorem on the sum of the roots of a

quadratic,

, 2(kl p)~

Consequently, XQ = TS

known, we find yo from (14):

kx Q+ / = ,

Now that XQ is

+<=-*
Thus,

pkl
Fig. 68.

(16)

By varying here the value of /, we shall get the coordinates of the midpoints
of different parallel chords of the parabola; but, as is clear from relations (16),

#o will invariably be equal to the number -r- Thus, the midpoints of all chords

of slope k lie on the straight line

y = T' (17)

which is parallel to the *-axis and also to the axis of the parabola.
We could now regard the theorem as completely proved, were it not for

a certain defect in our computation technique. Namely, we represented chords

of a second-order curve by an equation in the slope-intercept form y = kx + /.

Our computations, therefore, must become meaningless when the chords under

consideration are parallel to the axis Oy (since straight lines parallel to the

axis Oy have no slope). For such curves, however, the validity of the theorem
follows at once from the symmetric properties of the ellipse, hyperbola and

parabola. For, the ellipse, hyperbola and parabola represented by the canonical

equations (1), (7) and (13) are symmetric with respect to the axis Ox. Con-

sequently, when the chords of these curves are parallel to the axis Oy, their

midpoints still lie on a straight line (in this case, on the axis Ox).

110. The straight line passing through the midpoints of parallel chords of

a second-order curve is called a diameter of that curve.
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All diameters of an ellipse or a hyperbola pass through the centre of the

curve\ this is clear geometrically (since the centre is the midpoint of every
chord passing through it), and is also immediately evident from equations (6)
and (12) of Art. 109.

According to equation (17), all diameters of a parabola are parallel to its

axis.

We shall now point out some properties of the diameters of the ellipse and

hyperbola.
Consider the ellipse

x2 v 2*
i

y 1

~^2l TT ll

Let k be the slope of a diameter of the ellipse. Draw chords parallel to this

diameter; the locus of their midpoints is a second diameter, which is said to

be conjugate to the first. The slope k' of the second diameter is determined
from (5), which gives

kk' = .

(18)

Let us now find the diameter conjugate to the diameter of slope k'\ analogous
to the above, the slope k" of this new diameter will be determined by the
relation

2

K K * "
;r- .

Hence, from (18), we obtain: k" k.

Thus, if one diameter of an ellipse is conjugate to another diameter, then
this second diameter is conjugate to the first. Such diameters are therefore
called conjugate diameters. Relation (18) is referred to as the condition that
the diameters (of an ellipse) of

slopes k and k' should be con-

jugate.
The reciprocity of conjugate

diameters may also be expressed
as follows: // one diameter of
an ellipse bisects the chords

parallel to another diameter,
then this second diameter bi-

sects the chords parallel to the

first (Fig. 69; this diagram also

illustrates an interesting con-

sequence of the foregoing prop-
osition, namely, that the tan-

gent lines to an ellipse at the

ends of its diameter are par-
allel to each other and to the

conjugate diameter).

Fig. 69.

All that has just been said about the diameters of the ellipse, is directly

applicable to the diameters of the hyperbola, except that the condition for

conjugate diameters of the hyperbola is somewhat different from (18). In fact,

for a hyperbola represented by the equation
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the condition that its diameters of slopes k and k' should be conjugate is

as follows from relation (11).
Note. The axes of symmetry of an ellipse (and of a hyperbola) form a pair

of conjugate diameters, since each axis bisects the chords parallel to the other.

The axes of symmetry differ from all other pairs of conjugate diameters in

being mutually perpendicular as well as conjugate.

39. The Optical Properties of the Ellipse,

Hyperbola and Parabola

111. Among the most remarkable properties of the ellipse, hyperbola and

parabola are their so-called optical properties. Incidentally, these properties
show that the term "foci" owes its origin to physics.

Let us, first of all, formulate these properties from a purely geometric

viewpoint.
1. The line tangent to an ellipse at a point M makes equal angles with the

focal radii F\M, F2M and passes externally to the angle F\MF2 (Fig. 70a).

(0)

2. The line tangent to a parabola at a point M makes equal angles with

the focal radius FM and the ray drawn from M parallel to the axis of the

parabola, in the direction in which the parabola opens (Fig. 706).
3. The Ijne tangent to a hyperbola at a point M makes equal angles with

the focal radii F\M, F2M and passes within the angle F\MF2 (Fig. 70c).
We shall omit the proof of these properties. It will be sufficient here to note

that, in order to prove them analytically, one must be able to find the slope
of a tangent line, given the equation of the curve and the point of tangency.
The appropriate rules are given in textbooks on the calculus. To clarify the

physical meaning of the aoove propositions, let us imagine that an ellipse,

parabola or hyperbola is revolved about its axis (containing the foci), thereby

generating a surface called an ellipsoid, paraboloid or hyperboloid, respectively,
A physical surface of such shape, when silvered, will form an elliptic, parabolic
or hyperbolic mirror, respectively. Recalling the optical laws of reflection, we
conclude that:

1. If a source of light is placed at one of the foci of an elliptic mirror, its

rays will, after reflection at the mirror, converge to the other focus,
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2. If a source of light is placed at the focus of a parabolic mirror, its rays
will, after reflection at the mirror, be parallel to the axis.

3. If a source of light is placed at one of the foci of a hyperbolic mirror,
its rays will, after reflection at the mirror, appear to emanate from the other

focus.

The above property of a parabolic mirror is utilised in searchlights.

40. The Ellipse, Hyperbola and Parabola
as Conic Sections

112. A new light is cast on the geometric nature of ellipses, hyperbolas and

parabolas by the following

Theorem 14. A section of any circular cone made by a plane (not passing
through the vertex of the cone) is a curve no other than an ellipse, hyperbola,
or parabola, ff the cutting plane cuts only one nappe of the cone and the

intersection is a closed curve, this curve is an ellipse; if the plane cuts only
one nappe of the cone and the intersection is an open curve, this curve is a pa-
rabola; if the plane cuts both nappes of the cone, the section is a hyperbola
(Fig. 71).

Fig. 71.

This theorem follows from the more general statement that a plane section

of a quadric surface is a curve of the second order.

From Fig. 71 it is apparent that, by rotating the cutting plane about the

line PQ, the curve of intersection can be made to change. Let it, for example,
be an ellipse initially; as the plane rotates, the curve becomes a parabola for

the instant when the cutting plane is parallel to a plane tangent to the cone,
and then the curve changes to a hyperbola.

Accordingly, ellipses, hyperbolas and parabolas are called conic sections,

8*



Chapter 6

TRANSFORMATION OF EQUATIONS BY CHANGE
OF COORDINATES

41. Examples of Reducing the General Equation
of a Second-order Curve to Canonical Form

113. The analysis of the general equation of a second-order

curve and its reduction to the simplest (canonical) form consti-

tutes an important problem of analytic geometry. Without attempt-

ing to give here a general solution, we shall devote the present
section to elucidating the essence of the problem by means of

concrete examples.
But first we must make a remark concerning the notation. The

general equation of a curve of the second order, that is, the gen-
eral equation of the second degree in x and y was earlier

( 15) written as

In the theory of second-order curves, however, the majority
of formulas contain the coefficients B, D and E divided by 2.

It is therefore advisable to put the general equation of the sec-

ond degree in the form

that is, to denote by the letters 5, D and E the halves of the re-

spective coefficients. If, for instance,

is the given equation, then

4=1, B=j. C = 2, =
-|.

= 2, F=l.

The numbers A, B, C, D, E, F are called the coefficients of equa-
tion (1) (as we see, the application of this term to B, D and E
is here a matter of convention). The first three terms of equa-
tion (1), that is, the second-degree terms, are referred to as the

highest terms of the equation,
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To illustrate at once the convenience of writing the equation
of the second degree in the form (1), note the following identity:

Ax* -f 2Bxy+ Cy
2+Wx+ 2y+ F=

(2)

which can readily be verified. This identity shows that it is natu-

ral to regard the second, fourth and fifth terms of equation (1)

as made up of two identical parts each. Relation (2) is helpful
in many cases and will presently be used.

114. Let there be given an equation of a second-order curve

in the general form

Q. (1)

It is required to simplify this equation by changing the coordi-

nates (that is, by moving the axes to a new and more advan-

tageous position). More precisely, it is required to:

(1) eliminate the term in xy from the equation; (2) reduce

the number of the first-degree terms to a minimum (remove them

completely, if possible); and (3) remove, if possible, also the

constant term. An equation fulfilling these requirements is called

the canonical equation. Given below are practical illustrations of

how to perform the operations necessary for reducing a given

equation to its canonical form.

Example. Reduce the equation

17*2
-f \2xy + Sy

2 46* 2By + 17 = (3)

to its canonical form.

Solution. To begin with, we shall try to simplify the equation by a trans-

lation of the coordinate axes. Let us move the origin to the point S (xo,y ),

which will be regarded as arbitrary for the present. The corresponding trans-

formation of coordinates will be, by 8,

(4)

Introducing the new coordinates in the left-hand member of (3) i. e., replac-

ing x and y by their expressions (4) and collecting like terms, we find

17x* -f I2xy+ 8y
2 46* 28y+ 17 =

I2xy+8f2+ 2 (17* + 6y
-

23) x+

~46.* ~28y +17). (5)

The transformed equation of the given curve will be free of first-degree terms
if #o, l/o are chosen so that the equations

- 23 = 0,

14 = W)
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will hold. Solving these equations simultaneously, we get x<> 1, y I. Let F

denote the constant term of the transformed equation; computation of F is

greatly facilitated by the use of identity (2) together with equations (6):

- 28y + 17 -

- 20.

= (17XQ+ 6y - 23)

+ (- 23* - 14y + 17)

+ 8y
fl

-
14) yQ

23*
fl

-
14y + 17

The origin of the new coordinate system is located at the point S (whose old

coordinates are *o = 1, #o = 1). In terms of the new coordinates, the equation
takes the form

17*
2

-f 122 y+ 8y
2 20 = 0. (7)

Note that the^
left-hand member of (7) remains unchanged when replacing

y by #, y. If, therefore, equation (7) is satisfied by some numbers x, y,

then it is also satisfied by the numbers #, y. Hence, if a point M(x, y)

lies on the given curve, then the point A/( x, y) also lies on the curve. But

the points M(x, y) and N(x t -~y) are symmetric with respect to the point 5.

Fig. 72. Fig. 73.

Thus, all points of the given curve form pairs symmetric with respect to 5

(Fig. 72). In this case, the point S is called the centre of symmetry, or simply
the centre, of the given curve. The geometric meaning of the transformation

performed is now clear: we have moved the origin to the centre of the curve.

Next, we shall rotate the translated axes through a certain angle a, The

corresponding transformation of coordinates will be, by 9,

x' cos y' sin a,

x' sin a
-f- y' cos a.

(8)
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Replacing x, 'y in (7) by their expressions (8) and collecting like terms, we
obtain

17*2+ 12*y+ 8y
2 20 = (17 cos 2 a -f 12 cos a sin a+

-f 8sin 2
a) jt'

2
-f 2( 17 cos a sin a+ 6 cos 2 a 6 sin 2

a-f

+ 8 cos a sin a) x'y' + (17 sin 2 a 12 cos a sin a -f 8 cos 2
a) y'

2
20. (9)

Let us choose the angle a so that the coefficient of the term in x'y' will vanish.

For this purpose, we must solve the trigonometric equation

17 cos a sin a -f- 6 cos 2 a 6 sin 2 a -f- 8 cos a sin a = 0,

or

6 sin 2 a -f- 9 sin a cos a 6 cos 2 a = 0.

Hence

Solving this last quadratic for tana, we find:
tana=-g-

or tana 2. We

shall take the first solution, which corresponds to a rotation of the coordinate

axes through an acute angle. Computation of cos a and sin a for this value of

tan a gives
1 2

cos a = -
r =

tana 1

sma =
;

Hence, from (9), we find the equation of the given curve in the #', t/'-system:

or

*'
2

- v
/2

_ __L 2._~'

We have obtained the canonical equation of an ellipse with semi-axes 2 and I

(the major axis of this ellipse lies on the axis Oy'\ see Fig. 73).

115. In the case of the general curve of the second order

Ax*+ 2Bxy+ Cy
2+Wx+ 2Ey+ F= 0,

the equations determining its centre S (XQ, j/o) are written as

0,

(
'

After moving the origin to the centre S, the equation of the given
curve takes the form

Q 9 (11)

Where
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Making use of identity (2), we rewrite this as

F == (Ax, -f By o+ D) x,+ (Bx*+ Cy + E) y + (^o+ Ey Q+ F).

Under the condition that *o, f/o are the coordinates of the centre

of the curve, we find, by (10),

To derive equations (10) and (11), the reader should perform
(in general form) the operations used in the preceding example
to obtain equations (6) and (7).

116. The system of equations (10) may happen to be incon-

sistent, that is, to have no solutions. In this case, the curve has
no centre and the simplification of the given equation must be

carried out according to a different plan.

Example. Reduce the equation

4*2_ Xy + y
*_ 2* 14y+ 7 = (12)

to its canonical form.

Solution. On forming equations (10):

4*0 2y l=0
f

we see that the obtained system is inconsistent. Hence the given curve has no

centre, and so we cannot proceed as in Art. 114.

We shall use a different procedure. Prior to changing the origin, let us
rotate the axes through a certain angle a. By 9, the corresponding formulas
of coordinate transformation will be

x = x r
cos a y' sin a,

y = x r
sin a

-f* y' cos a.

Introducing the new coordinates in the left-hand member of (12), we get

4*2 4 Ky+ y
2 2x 14y+ 7 = (4 cos 2 a 4 cos a sin a -f

-f sin 2
a) Ar

/2+ 2 (~- 4 sin a cos a 2 cos 2 a+ 2 sin 2 a+
-}- sin a cos a) x'y'+ (4 sin 2

oc -f- 4 sin a cos a+ cos 2
a) y

/2
-f-

-f 2 ( cos a 7 sin a) x'+ 2 (sin a 7 cos a) y
'

-f 7. (13)

Let us now choose the angle a so that the coefficient of x'y' will vanish. To
this end, we must solve the trigonometric equation

4 sin a cos a 2 cos 2 a
-f- 2 sin2 a

-f- sin a cos a == 0,

or

2 sin 2 a 3 sin a cos a 2 cos 2 a = 0.

Hence
2 = 0,
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This gives tan a = 2 and tan a
-g-.

We take the first solution, which corre-

sponds to a rotation of the axes through an acute angle, Calculating cos a and
sin a for this value of tan a, we get

cos a = 1 1

ftan
2

oc

tana

Vr+tarTa"

)/V
2

Hence, from (13), we find the equation of the given curve in the #', y'*

system:

5/
, _ 2 J/5/ +7 = 0. (14)

To effect a further simplification of (14), we shall now translate the

axes Ox', Oy
f
.

Rewrite (14) as follows:

y'
2-2-M-

+ 7 = 0.

Completing the square in

obtain

we

Let us once again introduce new
coordinates (x", y"), setting

*"+ ^ y'+V.
Fig. 74.

which corresponds to translating the axes by the amount ~- in the di

rection of the axis Ox', and by the same amount in the direction of the

axis Oy'. In terms of x"
9 y", the equation of the given curve will take the

form

/'
2 =

This is the canonical equation of the parabola with parameter p
\j

and with vertex at the origin of the x", [/"-coordinate system; the parabola
is symmetric with respect to the #"-axis and opens in Jhe positive direction

of this axis. The coordinates of the vertex are
(~g~ -g-)

in the x'
t #'-sys-

tern, and
(~g .

|)
shown in Fig. 74,

*n Xt location of the parabola is
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117. Let us return to the system of equations (10) representing
the centre of the given curve:

Denote by 6 the determinant of this system:

AB
8==

BC
If 6 =

0, the system (10) has a unique solution (see Ap-
pendix, 1). In this case, the given second-order curve has a

single centre and is called a central curve. Central curves include

ellipses and hyperbolas. When 6^= 0, it may, however, also

happen that the canonical form, to which the given equation is

reducible, resembles that of an ellipse or a hyperbola, but is fully
identical with neither, as in the three examples below. Before con-

sidering them, it should be noted that, if 6^0, the general

equation of the second degree can always be simplified by fol-

lowing the same procedure as in the example of Art. 114. The
transformation work is therefore left out in the examples that

follow.

Example 1. The equation 5x2 + 6xy -f 5*/
2 4* -f 4y + 12 = (for which

6 9 ^ 0) reduces to the canonical form x'2 + 4y'
2 + 4 = 0, or

*'
2 +j-_i

This equation bears a resemblance to the canonical equation of an ellipse.

However, it represents no real geometric figure in the plane since, for any real

numbers x'
', y'',

its left-hand member is non-negative, whereas its right-hand
member is 1. This and similar equations are referred to as the equations of

an imaginary ellipse.

Example 2. The equation 5*2 + 6xy + 5y* 4* -I- 4y + 4 (for which
6 = 9 =

0) reduces to the canonical form x'2 + 4t/
/2 = 0, or

/2 ,2

TT+T ' <*>

Equation (*) also bears a resemblance to the canonical equation of an ellipse,

but it represents a single point (x'
= 0, i/'^O), and not an ellipse. This and

similar equations are called the equations of a degenerate ellipse. To see what
is meant by this term, consider the equation

y/2 y'2

^-+V ==e2
' <**>

where e is any positive number (e>0). Equation (**) represents an ordinary

ellipse with .semi-axes a == 2e, b e. Now imagine that e tends to zero.
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-f 3*/
2 + 16* -h 16// -f 16 = (for which

Then a-> 0, b ->0, and the ellipse "degenerates" into a point (Fig. 75), while

equation (**) is transformed into equation (*).

Example 3. The equation 3*2
-f

6 = 16 =0) reduces to the ca-

nonical form x'2 4#'
2

0, or

x'
2

v
/2

z y o <*\
4 1

~ U> u
Equation (*), which resembles
the canonical equation of a hy-

perbola, represents a pair of

intersecting straight lines:

K> __
2y'

=
0, x' 4- 2y' - 0, This

and similar equations are called

the equations of a degenerate
hyperbola.

To see what is meant by
the term, let

V-V = *
2

. (**) Fig. 75.

where e is any positive number (e>0). Equation (**) represents an ordinary
hyperbola with semi-axes a 2e, 6 = e, and with vertices on the #-axis. Now
imagine that e tends to zero. Then a->0, 6->0, the vertices of the hyperbola

Fig. 76.

come closer .and closer together, and the hyperbola "degenerates" into a
pair of

lines, namely, into the pair of its asymptotes, while equation (**) is transformed
into equation (*). If e2 is replaced in (**) by e2

, we obtain a hyperbola
with vertices on the t/-axis. As e->0, this hyperbola degenerates into the same
pair of lines as before (Fig. 76).
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Suppose now that, for the given general equation of the second

degree, we have 6 = 0. If 6 = 0, the following two cases are

possible:

(1) The system of equations (10) has no solutions at all; then

our second-order curve has no centre. In this case, the given

equation can always be reduced to its canonical form by proceed-

ing as shown in the example of Art. 116, the result being always
the canonical equation of a parabola.

(2) The ^system of equations (10) has an infinite number of

solutions; then the given second-order curve has an infinite num-
ber of centres.

Example 4. Consider the second-order curve

__ 2y 3 = 0, (*)

for which 6 = 0. In this case, the system (10) will be

This system is equivalent to a single equa-
tion, 2x #0+1=0; consequently, the

curve has an infinite number of centres, which
form the straight line 2x y + 1 =0.
Note that the left-hand member of equa-
tion (*) is factorable into two first-degree

expressions:

__ 2y __ 3 =

Hence, the curve under consideration is a

pair of parallel straight lines,

2* y -f 3 = and 2x y 1 = 0.

The straight line 2x y + 1 =
0, made

up of the centres, is simply the mean line

of this pair of lines (Fig. 77).
To simplify the given equation (*), we

can proceed as in Art. 116. Transforming
the left-hand member of the equation in a manner analogous to that used

in (13) and applying further the same argument and procedure, we find

tan a = 2. By rotating the axes through the angle a (tan a = 2), we reduce the

given equation to the form

Fig. 77.

'
3= 0;

hence

Setting x' x"> y
r

s=y
ff

-J--L , which corresponds to a translation of the

axes Ox', Oy' by the amount ^- in the direction of the axis Or/', we
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finally get

5y"
2 -4 = 0.

Once again, the given equation represents a pair of parallel lines (]fy" 2 =

and V y" + 2 = 0, when referred to the #", {/"-coordinate system).

An equation of the second degree, which represents a second-

order curve with an infinite number of centres (as in the last

example), is customarily referred to as the equation of a dege-
nerate parabola.

118. The examples considered in this section show convinc-

ingly enough that the general equation of a second-order curve

can always be reduced to the canonical form.

42. The Hyperbola as the Inverse

Proportionality Graph. The Parabola as the Graph
of a Quadratic Function

119. In mathematics and its applications, one often encoun-

ters an equation of the form xy = w, or y = -

(where

m = const + 0) ; which is referred to as the equation expressing
the inverse proportionality of the quantities x and y. It is easy to

show that, in rectangular cartesian coordinates x, y, such an equa-
tion represents an equilateral hyperbola whose asymptotes coin-

cide with the coordinate axes.

For, if we rotate the axes Ox and Oy through an angle
a = 45, the coordinates of all points in the plane will be trans-

formed according to the formulas

x= x! COS a y
'
sin a=

X,' I y'= x' sin a -f- V
'
cos a= ~~

.-r* -

(1)

Transforming the equation xy ~ m by formulas (1), we obtain,
in terms of the new coordinates,

_
2m 2m

We see that this is the canonical equation of an equilateral hyper-
bola with semi-axes a = b = ]/2|m|; its asymptotes are inclined

at 45 to the new coordinate axes and, consequently, are coinci-

dent with the original axes; if the number m is positive, then our

hyperbola cuts the new jc'-axis; if m is negative, the hyperbola
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cuts the new J/'-axis. Hence we conclude that, as was to be shown,
the equation xy = m represents an equilateral hyperbola whose
asymptotes coincide with the coordinate axes; this hyperbola is

situated in the first and third quadrants if m > (Fig. 78 a), or

in the second and fourth quadrants if m < (Fig. 786).

(b)

Fig. 78.

Accordingly, an equilateral hyperbola may also be spoken of

as the inverse proportionality graph.

120, The equation

y =a.*2
-f b (2)

where a + Q, represents a parabola whose axis of symmetry is

perpendicular to the x-axis; if a > 0, the parabola opens upwards;
if a <0f the parabola opens downwards.

To prove this, we have merely to reduce equation (2) to

its canonical form. For this purpose, rewrite the equation as

or

or

(3)

y
4ac I

~4a~

Now let the origin be moved to the point I
-^ ,

~^4a )*
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Then the coordinates of all points in the plane will be trans-

formed according to the formulas

2a
' y y \ 40

'

and equation (3), in the new coordinates, will take the form

ax2
,

or

(4)

where p is a positive number determined by the relation p =
-go"-

We have obtained the canonical equation of a parabola with

vertex at the new origin. This parabola is symmetric with respect
to the new axis of ordinates (they-axis)
and opens upwards or downwards

according as the number a=
2/7

is

positive or negative. Since the |/-axis

is perpendicular to the original x-axis,

the parabola is situated exactly as was
indicated at the beginning of the

article. Our assertion is thus proved.

121. The expression ax2 + bx + c

is called a quadratic function of x.

Accordingly, a parabola (with vertical

axis) can be referred to as the graph
of a quadratic function.

Example. The equation r/2x2 4x 1 rep-
resents a parabola which opens upwards, since

a = 2 > 0. In order to find its vertex, rewrite

the equation as y + 3 = 2(x I)
2

. To reduce this equation to its canonical form,
the origin must be moved to the point (1, 3), This point is the vertex of our

parabola (Fig. 79).
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Chapter 7

SOME ELEMENTARY PROBLEMS
OF SOLID ANALYTIC GEOMETRY

43. Rectangular Cartesian Coordinates
in Space

122. When a method has been indicated, which permits us to

determine the location of points in space by the specification of

numbers, then we say that a coordinate system has been attached
to space. We shall now consider the simplest and most commonly
used coordinate system, called the rectangular cartesian system
of coordinates.

A rectangular cartesian coordinate system in space is deter-

mined by the choice of a linear unit (for measurement of lengths)
and of three concurrent and mutually perpendicular axes, num-
bered (that is, designated as the first, second and third axis) in

any order.

The point of intersection of the axes is called the origin of

coordinates, and the axes themselves are called the coordinate

axes\ the first coordinate axis is also termed the x-axis or axis of

abscissas, the second is termed the y-axis or axis of ordinates,
and the third is termed the z-axis or axis of applicates.

Let us denote the origin by the letter O, the x-axis by the let-

ters Ox, the y-axis by Oy, and the 2-axis by Oz. In diagrams,
the letters x, y, z mark the respective axes at the points farther-

most from O in the positive direction, so that the direction of

each axis is unambiguously indicated by the position of the let-

ters.

Let M be an arbitrary point in space. Project the point M on
the coordinate axes, that is, drop perpendiculars from M to the

lines Ox, Oy and Oz\ designate the feet of these perpendiculars
as Mx , My and Mz , respectively.

The coordinates of a point M in a given system are defined as

the numbers
x == OMX , y = OMy, z= OMZ ,

where OMX is the value of the segment OMX of the x-axis, OM y is

the value of the segment OMy of the y-axis, and OMZ is the value

of the segment OMZ of the z-axis (the definition of the value of

an axis segment was given in Art. 2). The number x is called

the first coordinate or abscissa of the point M, the number y is
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called the second coordinate or ordinate of M, and the number z

is called the third coordinate or applicate of M. In the text, the

coordinates of a point are given in parentheses, next to the letter

denoting the point itself: M (x, y, z).

The projection of the point M on the axis Ox can also be ob-

tained as follows: drop a perpendicular from M to the plane Oxy
and, from its foot Mxy ,

draw a perpendicular to the axis Ox; this

second perpendicular will have Mx as its foot; in other words,
Mx is the projection of Mxy on the axis Ox. The projection of Mxy

on the axis Oy is, obviously, the

point My .

Similarly, if Mxz and M yz are

the respective feet of the perpen-
diculars dropped from M to the

planes Oxz and Oyz, then the
Mrz

Fig. 80.

points Mx , My and Mz will be
obtained by projecting Mxz and

MyZ on the respective coordi-

nate axes. (By this method, each
of the points Mx ,

Myj Mz can be

obtained in two ways; for exam-

ple, the point Mx is the projection
on the axis

and Mxz .)

Ox of both Mxy

The points Mx ,
Afy ,

M z ,
Mxy ,

Mxz ,
M yz ,

and form the vertices

of a rectangular parallelepiped, whose edges, taken with the

appropriate signs, are the coordinates of the point M. This pa-

rallelepiped is shown in Fig. 80.

123. When a rectangular cartesian system of coordinates has
been attached to space, then each point of space has one complete-

ly determined triad of coordinates x, y, z in this system. Con-

versely, for any three (real) numbers x, y, z, there will be found
in space one completely determined point with the abscissa x,

the ordinate y and the applicate_z. To plot a point from its coor-

dinates x, y, z, the segment OMX , equal in value_to x, is laid

off (from the origin) on the ;t-axis, the segment OMy of the value

y is laid off on the #-axis, and the segment OM Z of the value z

is laid off on the z-axis. Then, passing through Mx ,
M y and Mz

planes perpendicular to the axes Ox, Oy and Oz
t respectively, we

shall find the required point as the point of intersection of these

three planes.

124. Let us now agree about the use of certain terms (assum-
ing that the axes are chosen as in Fig, 80),.
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The plane Oyz divides all space into two half-spaces; the half-

space containing the positive half of the axis Ox will be termed
the near half-space, and the other half-space will be termed the

far half-space.

Similarly, the plane Oxz divides space into two half-spaces, of

which the one containing the positive half of the axis Oy will be
termed the right half-space, and the other, the left half-space.

Finally, the plane Oxy also divides all space into two half-

spaces, of which the one containing the positive half of the axis

Oz will be termed the upper half-space, and the other, the lower

half-space.

125. Let M be an arbitrary point of the near half-space; then

the segment OMX is positively directed on the axis Ox and, con-

sequently, the abscissa x = OMX of the point M is positive. If, on
the other hand, M is situated in the far half-space, then the seg-

ment OMX is negatively directed on the axis Ox and the number
x = OMX is negative. Finally, if the point M lies in the plane Oyz,
its projection Mx on the axis Ox coincides with the point 0, so

that x = OMX is zero.

Thus, all points of the near half-space have positive abscissas

(x > 0); all points of the far half-space have negative abscissas

(x<0); the abscissas of all points lying in the plane Oyz are

equal to zero (x = 0).

By reasoning in a similar way, it can easily be established

that all points of the right half-space have positive ordinates

(y > 0); alt points of the left half-space have negative ordinates

(y < 0); the ordinates of all points lying in the plan\e Oxz are

equal to zero (y = 0).

Finally, all points of the upper half-space have positive appli-

cates (z > 0); all points of the lower half-space have negative

appltcates (z < 0); the applicates of all points lying in the plane

Oxy are equal to zero (z = 0).

Since the points of the plane Oxz are characterised by the

relation y = 0, and the points of the plane Oxy, by the relation

z = 0, we conclude that the points of Ox are characterised by the

two relations

In like manner, the points of the axis Oy are characterised by
the two relations

and the poinits of the axis Oz by

jc= 0, y = 0.
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Note that the origin 0, as the point of intersection of the axes,

has all the three of its coordinates equal to zero (x
= 0, y = 0,

2 = 0) and is characterised by this property (that is, all three

coordinates are zero only for the point 0).

126. The three planes Oxy, Oxz and Oyz jointly divide space
into eight parts, called octants and numbered according to the

following rule: The first octant is the one lying simultaneously
in the near, right and upper half-spaces; the second octant lies

in the far, right and upper half-spaces; the third octant lies in

the far, left and upper half-spaces; the fourth octant lies in the

near, left and upper half-spaces; the fifth, sixth, seventh and

eighth octants are those situated in the lower half-space under
the first, second, third and fourth octants, respectively.

Let M be a point with coordinates x, y, z. From the foregoing,
it follows that,

if x > 0, y > 0, z > 0, M lies in the first octant;
if x < 0, y > 0, z > 6, M lies in the second octant;

if x < 0, y < 0, z > 0, M lies in the third octant;
if x > 0, y < 0, z > 0, M lies in the fourth octant;

if x > 0, y > 0, z < 0, M lies in the fifth octant;
if x < 0, y > 0, z < 0, M lies in the sixth octant;

if x < 0, y < 0, z < 0, M lies in the seventh octant;
if x > 0, y < 0, z < 0, M lies in the eighth octant

Consideration of the coordinate half-spaces and octants is

useful in that it permits an easy orientation as to the position of

the given points by the signs of their coordinates.

44. The Concept of a Free Vector.

The Projection of a Vector on an Axis

127. From elementary physics the reader knows that some

physical quantities, such as temperature, mass, density, are called

scalar quantities. Some other quantities, such as force, displace-

ment, velocity, acceleration, are called vector quantities.

Every scalar quantity may be characterised by a single num-
ber, which represents the ratio of this quantity to an appropriate
unit of measure. On the other hand, the specification of a num-
ber is not enough for characterising a vector quantity, since vec-

tor quantities, apart from being dimensional, are also directional

quantities.
Geometric vectors serve for abstract expression of concrete

(physical) vector quantities. ,

Geometric vectors, or simply vectors, are defined as directed

line segments.
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Geometric vectors form the subject of the so-called vector

analysis in the same way as numbers form the subject of arith-

metics. In vector analysis, certain operations are performed on

vectors; these operations are mathematical abstractions of certain

uniform operations performed on various concrete vector quanti-
ties in physics.

Vector analysis, originally developed to satisfy the needs of

physics, has also proved to be fruitful in mathematics itself. In

this book vectors are used as one of convenient tools of analytic

geometry.
Initial information on vector analysis is contained in the next

chapter. The remaining articles of the present chapter deal only
with the elementary, purely geometric propositions on directed

segments in space.

However, it seems advisable already at this stage to introduce

some of the notions, designations and terms adopted in vector

analysis.

128. Since a vector is a directed segment, it will, as before,

be designated in the text by two capital letters with a bar over

them, the first of the letters denoting the initial point, and the

second letter the terminal point of the vector. In addition, we
shall very frequently indicate a vector by a single small letter in

bold-face type (as, for example, a). In diagrams, a vector will

always be represented by an arrow, if the vector is designated
in the text by a single letter, this letter will be placed at the

head of the arrow. The initial point of a vector is also called its

point of application. A vector whose initial and terminal points
coincide is called a zero vector. Vectors lying on the same

straight line or on parallel lines are said to be collinear.

129. Definition of the equality of vectors. Vectors are called

equal if they are collinear and have the same length and direc-

tion.

__The _vectors AB and CD shown in Fig. 81_are equal

(AB =* CD) *>;_Fig. 82_ presents^ unequal vectors PQ and PR

(PQ + PR], EF and GH (EF + GH).
Obviously, two vectors each equal to a third vector are equal

to each other.

From the definition of the equality of vectors, it follows that,

for any vector a and any point P whatsoever, there exists one,

and only one, vector PQ extending from P and equal to the vec-

tor a; in other words, the point of application of every vector may

*) The vectors are supposed to lie in the plane of the drawing.
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be chosen at pleasure. Accordingly, vectors are considered in

geometry as determined to within their position (that is, no dif-

ference is made between equal vectors obtained from one another

by translation). It is in this sense that vectors are said to be

free.

130. The length of a vector (in a given scale) is called its mod-
ulus. The modulus of a zero vector is equal to zero. The modu-
lus of a vector a is designated as \a\ or a. Clearly, if a b,

then fa| = |6|; the converse conclusion is, of course, impermis-
sible.

131. Let there be given an arbitrary axis u and a vector AB.
From the points A and fi, drop perpendiculars to the axis u

and denote their feet by A' and B', respectively. The number A'B',

that is, the value of the directed segment A'B' of the axis u, is

the projection of the vector AB on the axis u:

Constructing the projection of the vector AB on the axis u is il-

lustrated in Fig. 83, where, for greater clarity, planes a and p
have been drawn through the points A and B perpendicular to the

axis u. The intersections of these planes with the axis u give the

points A' and B' (since the planes a and p are perpendicular to

the axis M, the straight lines AA' and BB' are also perpendicular
to the axis u).

132. Take an arbitrary point S in space; from this point, draw

a ray in the direction of the vector AB, and another ray in the

direction of the axis u (Fig. 83). The angle cp made by these two

rays is called the angle of inclination of the vector AB with res-

pect to the axis u. It is obviously immaterial where to choose the

point S for constructing the angle cp.
It is equally obvious that

the angle cp will remain unchanged if the axis u is replaced by
another similarly directed axis. Let v denote the axis having the
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same direction as u and passing through the point A. According

t^what has just been said, the angle of inclination of the vector

AB with respect to the axis v is equal to cp. Let C be the point
where the axis v meets the plane p. Since the axis v is parallel
to the axis a, which is perpendicular to the plane p, it follows

that the axis v is also perpendicularjto the plane p. Consequently,
AC is the projection of the vector AB on the axis v. Furthermore,

Fig. 83.

since the axes u and v are parallel and similarly directed, their

segments included between the parallel planes a and p have

equal values: A'B' = AC. Hence

proja AB= proj^ AB. (1)

On the other hand, since the vector AB and the axis v lie in the

same plane, we may apply to them formula (7) of Art. 20, which

gives

pro']v AB=\AB\cos<?. (2)

From (1) and (2), we obtain

proj tf A5=|Afi|coscp.
'

(3)

If the vector AB is denoted, for brevity, by the single letter a, for-

mula (3) takes the form

=
|a|cos<p. (4)
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Thus, the projection of a vector on an axis is equal to the

product of the modulus of the vector and the cosine of its angle

of inclination with respect to that axis.

133. Consider two equal vectors A\B { ,
A 2B 2 and an axis u.

Since equal vectors have the same modulus and the same angle
of inclination with respect to the axis u, it follows that the appli-
cation of formula (3) to each of the vectors will yield the same
result:

Thus, equal vectors have their projections on the same axis

equal.

45. The Projections of a Vector

on the Coordinate Axes

134. Assuming that a rectangular cartesian system of coordi-

nates has been attached to space, let us consider an arbitrary
vector a. Let X denote the projection of the vector a on the

axis Ox, Y the projection of a on the axis Oy, and Z the projec-
tion of a on the axis Oz.

By Art. 133, every vector equal to a has the same numbers X,
Y, Z as its projections on the coordinate axes.

Conversely, if the projections of a vector b on the coordinate
axes are the same as those of a vector a, then b= a. To verify
this, draw both vectors a and b from the origin of coordinates

and denote their terminal points by the letters A and B, respec-

tively. Since the vectors a and b have the same projection X
on the axis Ox, it is evident that the points A and B must lie in

the same plane perpendicular to the axis Ox, namely, in the plane
whose intercept on the axis Ox is equal in value to X. For a sim-

ilar reason, the points A and B must lie in the same plane per-

pendicular to the axis Oy, namely, in the plane whose intercept
on the axis Oy is equal to Y\ A and B must also lie in the same
plane perpendicular to the axis Oz, namely, in the plane whose

intercept on the axis Oz is equal to Z. But then the points A and
B necessarily coincide, because the three above-mentioned planes
intersect in a single point. Accordingly,

This means that the projections of a vector on the coordinate
axes completely determine it as a free vector, that is, to within
its position in space. The projections X, Y, Z of a vector a are

therefore called its (cartesian) coordinates.
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To express the fact that a vector a has coordinates X, Y, Z,
we shall henceforth use the notation

a=*{*, K, Z} 9

where the right-hand member is considered as a new symbol for

a vector.

135. In analytic geometry it is often necessary to calculate

the coordinates of a vector, that is, its projections on the coordi-

nate axes, from the given coordinates of the terminal and initial

points of the vector. This problem is solved by the following

y

Fig. 84.

Theorem 15. For any two points A (xif y if Zi) and B (x^ y& z>i)>

the coordinates of the vector AB are determined by the formulas

X^XI XK Y= y 2 Vi, Z=*Zt zv (1)

Proof. From the points A and B, drop perpendiculars on the

axis Ox and denote their feet by Ax ,
Bx (see Fig. 84, where planes

perpendicular to the axis Ox have been drawn through A and fl,

for greater clarity). The coordinates of the points A x and Bx on
the axis Ox are Xi and #2, respectively. Hence, by Theorem 1 of

Art. 5,

AXBX x2 xr
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But A XBX = X, so that X = x2 x { . The relations K=*/2 #1

and Z = 22 2i are established in a similar way.
Thus, to obtain the coordinates of a vector, subtract the coor-

dinates of its initial point from the corresponding coordinates of

its terminal point.

136. Let M (x, y, z) be an arbitrary point in space. The vec-

tor r = OM drawn from the origin of coordinates to the point M
is called the radius vector of that point. _

Calculating the coordinates of the vector OM by formulas (1),

that is, setting x2
= x, y2

=
y, z2 = z, Xi = 0, tji

-
0, z {

= 0, we

get

which means that the coordinates of the radius vector of a point
M are the same as the coordinates of that point. It should, how-

ever, be noted that, apart from formulas (1), this last statement

follows immediately from the definition of the cartesian coordi-

nates of a point M (see Art. 122).

137. Let there be given an arbitrary vector a = [X, Y, Z}.

We shall now derive a formula for computing the modulus of the

vector a from the known coordi-

nates X, 7, Z of this vector.

For simplicity, we shall assume
that the vector is drawn from
the origin of coordinates. Through
the terminal end A of the vec-

tor a, let three planes be passed
perpendicular to the coordinate

axes; denote the points where the

planes intersect the axes by Ax ,
A

y ,

A z , respectively. These planes,

together with the coordinate

planes, form a rectangular
parallelepiped having the seg-

flu

Fig. 85.

ment OA as a diagonal (Fig. 85). It is known from elementary

geometry that the square of the length of the diagonal of a rec-

tangular parallelepiped is equal to the sum of the squares of the

lengths of its concurrent edges. Hence,

OA OAl.

Now, OA=\a\. OA
relation becomes

X OA y
= Y, OA Z

= Z; thus, the above
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or

(2)

This is the desired expression for the modulus of an arbitrary vec-

tor in terms of its coordinates.

46. Direction Cosines

138. Let a, p, 7 denote the angles which a vector a makes
with the coordinate axes; cos a, cos p, cos 7 are called the direc-

tion cosines of the vector a. They are called so because, once these

cosines are given, they determine the direction of the vector.

If both the modulus and the direction cosines of a vector

are given, the vector is thereby completely determined (as a free

vector). In this case the coordinates of the vector can be computed,

according to Art. 132, from the formulas

^=|a|cosa, K=|a|cosp, Z=|a|cos7. (1)

139. We summarise the results of the two preceding articles

in the form of the following

Theorem 16. For any vector a, its modulus \a\, direction

cosines cos a, cos p, cos 7, and coordinates X, Y, Z are connected

by the relations

Z=|a|cos?, (1)

(2)

Note. The last four formulas enable us to calculate the direc-

tion cosines of a vector from the coordinates of this vector. For,

from these formulas it follows that

_ Z
cos

if

(3)

Here the roots are taken in the arithmetical sense (as always in

cases where no signs are prefixed to the radicals).

140. Squaring both members of each of relations (3) and

adding, we find

cos 2 a -f- cos
2
p -f" cos

2
7
=

hence
cos2 a -f cos2

p+ cos2
7 = 1. (4)

Relation (4) permits us to calculate any one of the angles a,

P, 7, when the other two angles are given and it is also known
whether the required angle is acute or obtuse.
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47. Distance Between Two Points.

Division of a Line Segment in a Given Ratio

141. In solid analytic geometry (as well as in plane analytic

geometry) every problem, however complex it may be, is reduced

to certain elementary problems, such as the problem of deter-

mining the distance between two given points, the problem of

dividing a line segment in a given ratio, the problem of calcu-

lating the angle between two vectors, etc. In the present section

we shall take up the first two of these problems.

142. Given two arbitrary points Mi (x 4 , t/i, 24 ) and M2 (#2, #2,

e2), compute the distance d between them.

The desired result is obtained at once by the use of Theo-

rem 15 (Art. 135) and formula (2) of the previous section.

In fact, we have

further, d is the modulus of the vector AJiM2 , so that

d= (*2
-

*i)
2+ (y 2

-
y i)

2+ (22
~

*i)
2

- (1)

This formula furnishes the solution of the problem.

143. Given two arbitrary points MI (jti, y^ Zi) and Af2 (xz , y2 ,

^2 ), find on the line MiM2 the point M dividing the segment MiM2

in the given ratio K.

The solution of this problem is similar to that of the analog-
ous problem in plane analytic geometry (see Art. 24). We shall

therefore give the desired result directly: If x, y, z denote the

coordinates of the required point Af, then

_ _ y _x
i-f-x

' y
i-fx

' z

In particular, the coordinates of the midpoint of a given seg-
ment are obtained from these relations by setting k = 1:

_
y

144. In solving other elementary problems of solid analytic

geometry, it is convenient to use certain special operations on

vectors, known as addition of vectors, multiplication of vectors

by numbers, scalar multiplication of vectors, and vector multipli-

cation of vectors. The definitions and basic properties of these

operations are presented in the next three chapters,



Chapter 8

LINEAR OPERATIONS ON VECTORS

48. Definitions of Linear Operations

145. The linear operations on vectors are those of vector addi-

tion and multiplication of vectors by numbers.
Definition of the sum of two vectors. Let a and b be two

given vectors. Draw b from the terminal point of a ; then the sum
a-\-b is defined as the vector extending from the initial point

of the vector a to the terminal point of the vec-

tor b.

The construction of the sum a -f- b is shown
in Fig. 86. The rule for addition of vectors

contained in the above definition is customar-

ily called the triangle rule.

Note. When constructing the sum a+ & by
the triangle rule, it may happen that the termi-

nal point of b will coincide with the initial point
of a; then a+ # is a zero vector: a-f-#= 0.

Definition of the product of a vector and a Fig.
number. Let there be given a vector a
and a number a, and let \a\ and |a| denote their respective
moduli The product aa (or aa) is defined as the vector

collinear with a, equal in length to \a\ |a| and having the same
direction as the vector a if a > 0, or the opposite direction

if a<0.
The operation of constructing the vector aa is called the mul-

tiplication of the vector a by the number a.

Note 1. If a = or a = 0, the product has its modulus equal
to zero and, hence, is a zero vector. In this case, the product aa
has no definite direction.

Note 2. The operation of multiplication of a vector by a num-
ber may be visualised as follows: Multiplying a vector a by a
number a means that the vector a is "stretched a-fold". The use
of the word "stretched" is, of course, a matter of pure convention;

for instance, if a =-9-, then "stretched a-fold" actually means
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"shrunk by half"; if a is a negative number, "stretched a-fold"

means that the vector is elongated |a|-fold (gets a times its for-

mer modulus), while its direction is reversed.

49. Basic Properties of Linear Operations

146. We shall now establish the basic properties of the linear

operations used in vector analysis.
First of all, we shall show that the sum of any two vectors

is {dependent of the order in which they are added.

For this purpose, let us consider two arbitrary vectors a and

b. Since geometric vectors are free vectors, we may draw a
and b from a common initial point
chosen at will. Let the letters A and
B denote the terminal points of the vec-

tors a and b so drawn (Fig. 87). Next,

apply the vector b at the point A, de-

note its terminal point (in this new

position) by the letter C, and join the

points B and C by a segment. Clearly,

the vector BC has the samejength and
a A direction as the vector OA\ hence

F ig 87

Considering now the geometric

figure OAC and recalling the rule

for addition of vectors (the triangle rule), we find that

OC = a-\-b. On the other hand, when considering the figure

OBC, we find that, by the same rule, OC =6-f-a. Hence

a+ 6= 6+ a, (1)

as was to be shown.

The property expressed by identity (1) is called the commuta-
tive property of vector addition.

Note. The figure OABC is referred to as the parallelogram
constructed on the vectors a, b with common initial point 0,

and the vector OC is said to be its diagonal (even if a= OA
and b = OB lie on the same straight line, that is, if OABC is

not, properly speaking, a parallelogram). Accordingly, the rule

for addition of vectors can now be given the following new word-

ing:

// vectors a and b are drawn from a common initial point
and a parallelogram is constructed on them, then the sum a-\~b
(or ft+ 0) is that diagonal of the parallelogram which extends

from the common initial point of a and b.
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Expressed in this form, the rule for vector addition is called

the parallelogram rule.

147. Now that we have defined the sum of two vectors, the

definition of the sum of any number of vectors will follow natu-

rally enough.
Let, for example, a, b, and c be three given vectors. Adding

a and b gives the vector a-\-b. Next, by adding
'

to a+ 6
we obtain the vector (a-\-b)-\-c. On the other hand, we can
also construct the vector a -f- (b -f- c]

that is, add the sum b+ c to the vec-

tor a.

It is easy to show that, for any three

vectors a, b, c, we always have the

relation

(a+ b}+c^a+ (b+ c\ (2)

The property expressed by identity (2)
is called the associative property of

vector addition.

To prove the associative property,
draw the vector b from the terminal

point of the vector a, and then draw c from the termi-

nal point of b. With the vectors so drawn, denote the initial point
of the vector a by the letter O, the terminal point of a by A,
the terminal point of b by 5, and the terminal point of c by C
(Fig. 88). Then

Consequently,

as was to be proved.

Owing to the associativity of vector addition, we may speak
of the sum of three vectors a, b, c and write it in the form

without having to specify whether a+ #+ ==

or a-\-b-{-c = a-{-(b-\-c) is meant. The sum of

four, five or any other number of vectors may be defined in a

similar way.
In practical addition of vectors, we can do without the con-

secutive construction of the intermediate sums; the sum of any
number of vectors can be constructed at once by using the fol-

lowing

10-521
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General rule for addition of vectors. To construct the sum of

vectors
t ,02, . . ., a n ,

draw 2 from the terminal point of 0^ next

draw 3 from the terminal point of 2 > after this draw 4 from the

terminal point of 3 , and so on, until the last vector an is drawn.
Then the sum

1 ~f-02 + ... + 0,, will be the vector directed from
the initial point of 0j to the terminal point of an .

Let be the initial point of the vector a
1? and let A it

j4 2 , . ., A n denote the respective terminal ends of the vectors

t , 02, . . ., an drawn in accordance with the rule just formulated.

The figure OA\Az ..__/! n
is referred to as the broken line with

A n -iA n = an ; the,vector segments OA i =a l ,
/4 1^2 =02,

vector OA n is said to close the polygon A n . Since

we may say that the sum of several vectors is constructed by
closing the polygon. (Fig. 89 illustrates the construction of the

sum of four vectors.)

Note. In Art. 146 it was established that the sum of two
vectors is independent of the order in which they are added. From

this and from the associativity of

vector addition, it follows that

the sum of any number of vectors

is also independent of the order

in which the vectors are add-

ed.

148. We shall now point out

three properties of the linear

operations, which refer both to

addition of vectors and to multi-

plication of vectors by numbers.
These properties are expressed

by means of the following three

identities (in which K and p, denote arbitrary numbers ;0 and b

arbitrary vectors):

(1)

(2)

The truth of the first identity becomes apparent when the

identity is expressed in geometric terms: it means that stretch-
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ing the vector a X+ji-fold gives the same vector as adding the
vector a stretched ji-fold to the vector a stretched X-fold *),

The geometric meaning of the second identity is equally
transparent: stretching the vector a jn-fold followed by stretch-

ing the vector \ia A-fold results in the same vector as stretching
the vector a A^t-fold.

The third identity follows from the theory of similar figures.
For, the vector a+ 6 forms a diagonal of the parallelogram
constructed on the vectors a and b (assuming that a and b have
been drawn from a common initial point); when the vectors a, b,
and a-\rb are all stretched A-fold, the resulting figure is similar
to the original parallelogram and is, therefore, another paralle-
logram. Accordingly, K(a+ b) is a diagonal of the parallelogram
constructed on the vectors
Xa and X; hence A(0+ 0) == Xa + Kb. (See Fig. 90, which

corresponds to the case K > 0;

all vectors shown in the figure
are assumed to issue from the

point 0.)
These three properties of

the linear operations are of fun-

damental importance, as they
enable us to carry out calculations in vector algebra in, basic-

ally, the same way as in ordinary algebra. The first of these prop-
erties expresses the permissibility of "distributing" the vector
factor among the terms of the scalar factor; the third property
expresses the permissibility of "distributing" the scalar factor

among the components of the vector factor. Both properties are
therefore called distributive. Together they permit us, when mul-

tiplying a scalar polynomial by a vector polynomial, to perform
the operation "term by term".

The second property enables us to "associate" scalar factors
into groups when multiplying a vector by several scalars in

succession (for example, 2(5a) = lOa). The second property is

therefore called associative.

50. The Vector Difference

149. Vector algebra includes subtraction of vectors; as in arith-

metic, this operation is the inverse of addition.

Consider two arbitrary vectors a and b. The difference b a

*) Here the term "stretching" is to be understood as specified in Note 2
oi Art. 145,

10*
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is defined as the vector which, added to the vector a, gives the

vector b.

Draw the vectors a and b from a common initial point 0, and
mark their terminal points as A and B (Fig. 91). Now let us find

the difference b a. Suppose that the desired vector b a is

applied at the point A\ then its terminal point must^cpincide with

the point fi, since adding b a to the vector a OA must give
the vector b = OB.

Hence, the difference b a is precisely the vector AB:

Thus, the difference of two vectors drawn from the same
initial point is the vector extending from the terminal point of

Fig. 91. Fig. 92.

the vector "subtrahend" to the terminal point of the vector

"minuend".

150. Besides the arbitrary vector a, let us now consider the

vector ( l)a. The vector (1) a is called the negative of the

vector a and is denoted by the symbol a:

Since multiplying the vector a by 1 results in a vector which

has the same modulus as, and is collinear with, the vector a, but

points in the opposite direction (Fig. 92), the vectors a and a

are sometimes spoken of as equal but opposite vectors.

If the vector a is drawn from the terminal point of the

vector a, then the terminal point of a will coincide with the

initial point of a; consequently, a+ (a) is a zero vector:

-a)= 0. (1)
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151. We now return to the consideration of the two arbitrary
vectors a and b. From identity (1), it immediately follows that

b a = &+ ( a). (2)

For,

hence, the vector 6+ ( a), added to the vector fl, gives the

vector b y which means that the vector b + (a) is the difference

b a.

Relation (2) expresses the following new rule for subtraction:

To obtain the difference b a, add the, negative of the vector

a to the vector b (see Fig. 93; from the diagram, it is immediately
clear that the sum of the vectors a and b-\-(~ a) is the vector b).

This rule is particularly convenient to use when constructing the

result of the addition and subtraction of several vectors; for

example, to find x = a b c-}-d e, we have merely to con-

struct the sum of the vectors a, 6, c, d, e, as shown in

Art. 147. '

51. Fundamental Theorems on Projections

152. In this article we shall establish two important theorems
on the projections of vectors.

Theorem 17. The projection of the sum of vectors on an axis

is equal to the sum of their projections on this axis:

proj u (a!+ a 2+ ...+ an )
= pro^a^ proj u a2 + ... + proj^a,,.

Proof. Form the broken line with vector segments a ]v #2, . . .,
&n

(see Art. 147); that is, draw the vector a2 from the terminal point
of the vector a i, then draw a3 from the terminal point of a 2, etc.,

and finally draw the vector a n from the termini point of the vec-

tor an -i. With the vectors so drawn, denote the initial point ofa
x

by the letter 0, the terminal point of a
l by A\, the terminal point

of a2 by A& etc. Then

(1)

Projecting all these points 0, A\, A 2 , . . ., A n on an axis u and

denoting their respective projections by O r

, A[, A'
2

, . . ., A'
n (see

Fig. 94, which corresponds to n = 3), we obtain

O'A't
=

proj u
av A{A'2

=
proj u

a
2 , . . .

, A'
n^A'n = proj u

an . (2)

On the other hand, in consequence of relation (1),

pr oja (a,+ a
2+ . . . + a

n]
=

pr oja OAn
=

O'A'^ (3)
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Now, for any position of the points 0', A{, A'2 , . . X on the

axis a, we have (by Art. 3) the identity

X (4)

From identity (4) and formulas (2) and (3), we find that

The theorem is proved.

Theorem 18. When a vector is multiplied by a number, the

projection of the vector is multiplied by the same number:

Proof. Draw the vector a from any point on the axis u, and
denote the terminal point of a by the letter A. Next, draw the

u

Fig. 94.

vector aa fromjhe samej)oint and mark the terminal point of

aa by B. Thus, OA = a, OB = aa.

Consider the straight line v which contains the points 0, A, B.

Choose either of the directions of this line as the positive direc-

tion, thereby making the line an axis.

Project the points 0, A and B upon the axis a; let 0', A', B'

be their respective projections (Fig. 95a and b). By a well-known
theorem of elementary geometry, we have the proportion

O'B' OB
(5)
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If the segments OB and OA (which lie on the axis v) are like-

directed, then the segments O'B' and O'A' (which lie on the

axis u) are also like-directed; if, on the other hand, the segments
OB and OA are oppositely directed, then the segments O'B' and

O'A' also have opposite directions (this latter case, corresponding

B'

(Q)

Fig. 95.

to a negative a, is illustrated in Fig. 956). Thus, the ratios
O'B r OB
Q, ., and

TJ-J-
of the values of these segments have like signs,

so that relation (5) may be rewritten as

O'B'

O'A'

OB
OA

OB
Since OB = o.a and OA = a, it follows that

-^j
= a. Consequently,

"'
!1= a, or O'B' = a O'A'. Hence

The theorem is thus proved.

Note. This last theorem can be expressed in more graphic

language as follows: When a vector is stretched a-fold, its pro-

jection is also stretched a-fold.

153. In Art. 134 we established the principle of determining
every free vector in space by the specification of three numbers
the coordinates of the vector. It is essential for us to know what
arithmetical operations on the vector coordinates correspond to

the linear operations performed on the vectors themselves. This

question is immediately resolved by Theorems 17 and 18 of Art.

152, once it is recalled that the (cartesian) coordinates of a vector

are its projections on the coordinate axes. For, Theorem 17 means
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that, when vectors are added, their coordinates are added. Thus, if

<*={*!, Y 19 Z } }
and b={X2 , K2 , Z2 },

then

a+6= {*!+ %>, YI+ Y* Z
}+ Z,}.

It follows that

a ft={A
r

1
X2 , K! K2 , Zj Z2 ).

These results may also be expressed symbolically by the single
relation

(X19
Y 19 Z,} {X2 , K2 , Z2 )

= (X, X* Y
l

K2 , Z l
Z2 }. (6)

Further, according to Theorem 18, when a vector is multiplied by
a number, its coordinates are multiplied by the same number.

Thus, if a = (X, Y, Z}, then, for any number a,

aK, aZ}.

Another symbolic expression for this is

a{X, r, Z} = {aX aK, aZ). (7)

154. From the foregoing, it is easy to deduce the condition for
the collinearity of two vectors, whose coordinates are given.

For, vectors a= [Xi, KI, ZJ and b= [X^ K2 ,
Z2} are collinear

if, and only if, one of them can be obtained by multiplying the

other by some number: b = Ka (we assume a=f= 0). The vector

relation

is equivalent to the three scalar relations

y\ 2
===

Ay\|, Y
2
== AJr

j,
/

2
=== A^I,

which mean that the coordinates of the vector b are proportional
to the coordinates of the vector a. Consequently, the vectors

a = {Xi, Yi, Zi} and b = {X2 ,
K2 ,

Z2} are collinear if, and only if,

J\1 _ _

Y2 _ ,2-2

xr-yr~^r f

//ia/ is, if their coordinates are proportional.

52. Resolution of Vectors into Components

155. Assuming that a rectangular cartesian system of coor-

dinates has been attached to space, we shall now consider, in

connection with this system, a definite triad of vectors denoted

by the symbols /, /, #and determined by the following conditions:
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(1) the vector / lies on the axis Ox, the vector j lies on the

axis Oy, and the vector k lies on the axis Oz;

(2) each of the vectors /, J, k points in the positive direction

of the axis on which it lies;

(3) /, / * are unit vectors, that is, |/|
=

1, |/|
= 1,|*|= 1.

We shall now show that any vector in space may be expressed
in terms of the vectors i, /, k by means of the linear operations.

Consider an arbitrary vector a. We shall assume (for con-

venience in exposition) that the vector a is drawn from the origin

of coordinates. Let A denote

the terminal point of a. Draw
a straight line through the point
A parallel to the axis Oz. The
line must intersect the plane Oxy\
denote the point of intersection

by B. Next, through the point B
draw a line parallel to the axis

Oy, and a second line parallel to

the axis Ox. The first of these

lines must intersect the axis Ox,
and the second line the axis Oy.
Denote these points of intersection

by A x and A y , respectively. Final- Fig- 96.

ly, draw a line through the

point A parallel to the line 05; the line so drawn must meet the
axis Oz in some point, which will be denoted by A z (Fig. 96).

According to the rule for vector addition (applied to the

parallelogram OBAA Z ), we have

a = OB+ OA,. (1)

Similarly, by applying the rule for vector addition to the paralle-

logram OAyBAx ,
we obtain

From (1) and (2),

(2)

(3)

Since the vectors OA X and /lie on the same straight line, OA X

can be obtained by "stretching" the vector /; hence we may write:

OA X = X/, where K is some number.

In like manner, OA y
=

jjj and OA Z
= vk (Fig. 96 corresponds

to the case where the numbers A, ^ and v are all positive).



154 Linear Operations on Vectors

From (3) and the relations OA X
~

A/, OA y
=

\\j, OA Z
= vA?,

we obtain

. (4)

We have thus shown that any vector a in space can actually
be expressed in terms of the vectors /, /, k by using the linear

operations.
We shall refer to the triad of vectors /, /, k as the coordinate

basis, our purpose being to express all vectors in space in terms
of this basis (as shown above).

The representation of a vector a as the sum X/H-ty+ vAj is

called the resolution of a vector a into components with respect
to the basis /, /, k. The numbers A,, |i, v are called the coefficients
of this resolution; the vectors Ji/, pj, v are said to be the compo-
nents of the vector a with respect to the basis /, /, k.

The vectors hi, (y, v# are termed the components of a because,

by addition, they are compounded into the vector a.

156. We shall now find out the geometric meaning of the

coefficients K, JLI,
v. Since OA X = A/ and since / is a unit vector,

it follows that the number K is the ratio of the segment OA X to

the unit of measure taken with a plus or minus sign according
as the segment agrees or disagrees in direction with the vector /)

In other words, K is the value (understood as defined in Art.

2) of the segment OAX on the axis Ox, that is K = OA
XL

Bul OA X

is nothing more than the projection of the vector a= OA on the

axis Ox. Consequently,

X= proj^ a= X.

Similarly,

(i
=

proj y
a = K, v= proj2 a= Z.

157. All that has been stated in Arts 155 and 156 may be

summarised as the following
Theorem 19. Any vector a can always be resolved into compo-

nents with respect to the basis /, /, , that is, can always be

expressed in the form

the coefficients of this resolution are uniquely determined by the

vector a; namely, X, Y, Z are the projections of the vector a on

the coordinate axes (that is, the coordinates of the vector a).

158. Now, vectors can also be resolved into components with

respect to bases other than the basis i, /, k.
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Let a
lf
a2 , a3 be three given vectors. For greater clarity, we

shall assume that they are drawn from a common initial point 0.

No special conditions will be imposed upon these vectors (which
may therefore have any lengths and make any angles with one

another), the only requirement being that the vectors ar a2 , a3 ,

when drawn from a common initial point 0, must not lie in the

same plane. With this proviso, the following theorem holds true:

Any vector a can always be expressed as a linear combination

of the vectors av a2 , a3
:

a= Xa
1+ [Aa2+va3 . (5)

Such an expression for a vector a is called its resolution with

respect to the basis av a2 , a3
.

To prove this theorem, let three axes Ox, Oy, Oz be drawn

through the point in the directions of the vectors a l9 a2 , a3 ,

respectively. Relation (5) can then be established by repeating
verbally the reasoning and procedure used to derive (4), except
that the vectors /, j\ % must everywhere be replaced by a

lf 2 , as

(and that the parallelepiped shown in Fig. 96 should be visualised

as on oblique one).
It remains to find out the geometric meaning of the coef-

ficients A,, fi,
v

in^ (5). We have OA X = Aaf, hence K is the value

of the segment OA X of the axis Ox, provided that the vector a\ ha
been chosen as the unit segment
on this axis. Similar are the

interpretations of ji and v. The seg-
ments OAX ,

OA y ,
OA Z are some-

times called the oblique pro-

jections of the vector a on the

axes Ox, Oy, Oz. Accordingly, we

may say that the coefficients h,

p, v in (5) are the values of the

oblique projections of a on the '

axes Ox, Oy, Oz, provided that Fi S- 96^

each of these projections is meas-
ured on its axis in the appropriate scale. It follows that the

coefficients of the resolution of a given vector with respect to a

given basis are determined uniquely (since they represent com-

pletely specified geometric quantities).

159. If a vector a lies in the plane of the vectors l5 a2 , then

its resolution with respect to the basis a
lv a2 , a3 has the form

a= Xaj+ p.a2 ,
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that is, v = 0.
For,_J_he point A coincides in this case with the

point B, and hence OA 2
= 0.

If we intend to consider vectors lying in one definite plane

only, and to resolve them into components, it is sufficient to use

for the purpose a basis formed by two vectors a lt
a 2 , which lie

in the given plane (the third vector becoming superfluous). Any
pair of vectors an a2 in this plane may be taken as a basis, the

only proviso being that the vectors a lt a2 , when drawn from a

common initial point 0, must not be on the same straight line.

In other words, the vectors forming a plane basis must not be

collinear. Naturally, it is simpler to construct components in a

plane than in space; the process is illustrated in Fig. 96a. We
have

a = OA= OAX

The segments OA X ,
OA y are the oblique projections of the vector

a upon the axes Ox, Oy\ the coefficients K and
ji

are the values of

these projections, provided that the vectors a
l
and a2 have been

adopted as the unit segments on the respective axes.



Chapter 9

THE SCALAR PRODUCT OF VECTORS

53. The Scalar Product and Its Basic

Properties

160. The scalar product of two vectors is defined as the num-
ber equal to the product of the moduli of these vectors by the

cosine of their included angle.
The scalar product of two vectors a, b is denoted by the

symbol a&.

Designating the angle between the vectors as 9, we may ex-

press the scalar product of vectors a, b by the formula

aft= |a| |6|coscp. (1)

For our subsequent work, it is important to note that

\b\ coscp
= proja* (see Art. 132) and, consequently,

(2)

Similarly, \a\ cos 9 = proj^a, so that we also obtain

(3)

Thus, the scalar product of vectors a, b may be regarded
either as the product of two numbers, of which one is the modulus

of a and the other is the projection of b upon the axis of a, or as

the product of two numbers, of which one is the modulus of b and
the other is the projection of a upon the axis of b.

161. The concept of the scalar product has its origin in mechan-

ics; namely, if a (free) vector a represents a force whose point
of application experiences a displacement from the initial to the

terminal point of a vector b, then the work w done by this force

is determined by the relation

In vector analysis, this quantity is termed a product of two
vectors because it possesses some algebraic properties of the

ordinary product of numbers (these properties are dealt with in

the next article); it is termed the scalar product because it is

a scalar (i. e., a number).
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162. The algebraic properties of the scalar product are as

follows:

/. The scalar product is commutative:

ab ba.

Proof. By definition, ab= \a\\b\ cos(p and ba = |6||a| cos <p;

but |a||6|
= |6||a|as an ordinary product of numbers, and hence

ab ba.

2. The scalar product is associative with respect to multiplica-
tion by numbers:

(aa) b = a (ab).

Proof. By formula (3), we have

Now, according to Theorem 18 (Art. 152), proj&(aa) = aproj&a.
Hence

On the other hand, by the same formula (3), \b\pro\b a= ab. Thus,

(aa) b= a
( |
b

| projf, a)= a (ab}.

Note 1. From the properties 1 and 2, it follows that

For,

(aa) (Pft)
= a (a (Pft) )

= a
( (p) a)= a

((3 (6a) )
=

(a?) (ba)= (a?) (aft).

3. rfte sca/ar product is distributive with respect to addition:

Proof. By formula (2), we have

But, according to Theorem 17 (Art. 152),

projaft + projaC. Hence

On the other hand, by the same formula (2), |alproj a6= aft and
= ^t:. Consequently,

a (b+ c)= |
a

| proj a *+ 1 I proj fl
c=

The last of the properties just established enables us to carry
out the scalar multiplication of vector polynomials term by term.
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In virtue of the first property, the order in which the factors are

multiplied is immaterial. The second property of the scalar prod-
uct permits us (see Note 1 above) to group together the scalar

coefficients of the vector factors. For example,

(2a+ 56) (3c+ 4d)= (2a+ 5d) (3c)+ (2a

= (2a) (3c)+ (56) (3*)+ (2a) (4rf)+ (56) (4d)=
= 6ac+ 1 56c+ Sad+ 206d.

Note 2. In one respect, the scalar product of vectors differs

essentially from the ordinary product of numbers; namely, since

the scalar product of two vectors is a number, and no longer a

vector, it is meaningless to speak about the scalar product of

three or more vectors. Note that the symbol (ab)c can only be

understood thus: (ab}c is the product of the number ab and the

vector c, that is, (ab)c is the vector c "stretched a6-fold".

163. In this article we shall state a number of important
geometric properties of the scalar product.

1. If non-zero vectors a and b make an acute angle, the scalar

product ab is positive.

For, if
cp is an acute angle, then cos <p > 0; consequently,

ad==\a\ |6|coscp>0.

2. // non-zero vectors a and b make an obtuse angle, the

scalar product ab is negative.

For, if cp
is an obtuse angle, then cos <p < 0; consequently,

ab= \a |6|coscp<0.

3. // vectors a and b are mutually perpendicular, thenab = Q.

For, if a and 6 are perpendicular, then (p =-g-
and cosq) = 0;

hence

ab= \a\ |6|coscp= 0.

4. If the scalar product of two vectors a, 6 is zero, then the

vectors a, 6 are mutually perpendicular.
For, if at least one of the vectors a, 6 is zero, it can be

considered perpendicular to the other vector, since a zero vector

may be regarded as having any direction; if, on the other hand,
neither of the vectors is zero, then (in consequence of the relation

ab \a\\b\ cos <p
=

0) cos 9 = 0, that is, cp
=
j , which means that

the vectors a and 6 are perpendicular.
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We may combine the last two properties into the following

single statement: Two vectors have their scalar product equal to

zero if, and only if, they are mutually perpendicular.

Finally, we shall point out one more property of the scalar

product:
5. The scalar product of a vector with itself is equal to the

square of its modulus:

For, aa = |a||a[ cosO; but cosO = 1, and hence aa = |a
2

.

Note. The scalar product aa is called the scalar square of the

vector a and is denoted by the symbol a 2
. From the foregoing, we

have a2
a|

2
;
that is, the scalar square of a vector is equal to the

square of its modulus.

54. Representation of the Scalar Product

in Terms of the Coordinates of the Vector Factors

164. The following theorem makes it possible to compute the

scalar product of two vectors from their coordinates, that is, from

their projections on the axes of a rectangular cartesian coordi-

nate system.

Theorem 20. Given the coordinates of vectors a and b:

d={X^ Kj, Zj), b = [X<2, Y<2, Z2 )

their scalar product is determined by the formula

Proof. We shall first draw up a "multiplication table" for the

base vectors /, j\ k:

(1)

In this table, the scalar products of different base vectors are

equal to zero because of the mutual perpendicularity of the base
vectors (see the property 3, Art. 163); P =

1, /> = 1, *2= 1 since

/, y, k are unit vectors (see the property 5, Art. 163).

Resolving the vectors a and b with respect to the basis /, /, k
yields, by Theorem 19 of Art. 157,

( }
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In virtue of the algebraic properties of the scalar product estab-

lished in Art. 162, we may compute ab by multiplying, term

by term, the right-hand members of relations (2):

ab = X,X^+ X
l

^Jtl+ Z
l YJtf+ Z.ZJP.

Applying the base vector multiplication table (1), we find

as was to be shown.
The theorem just proved may be phrased as follows: The

scalar product of two vectors is equal to the sum of the products
of their corresponding coordinates.

165. We shall now state a number of important corollaries to

Theorem 20.

Corollary 1. A necessary and sufficient condition for the per-

pendicularity of vectors

a = {*lf
Y

19 Z,\ and b = {X2 ,
K

2 , Z,}

is given by the relation

^
1
x2+r1

r2+z 1
z2 =o. (3)

For, by Art. 163, vectors a and b are mutually perpendicular
if, and only if, ab= 0. But, from Theorem 20, we have aft =XiX2+
+ YiY2+ Z\Z<2 . Consequently, vectors a and b are perpendicular if,

and only if, relation (3) holds true.

Corollary 2. The angle q) between vectors

=
{*!, Y^ZJ and b={X2J

K2 , Z2 }

is determined by the relation

COS cp ==_ XiXi+Yfo+ ZiZt ,

4)

For, by the definition of the scalar product, a&= |a||6| coscp;
hence

But we have, by Theorem 20, ab = XjX2 + K t y2 + Z {Z2 and, by

Theorem 16 (Art. 139), |a| = VXi+ Y]+ Zl |6| =
= V Xl-\- Y\-+Z\. Substitution of these expressions in (5) gives
the required formula (4).

11-521
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Corollary 3. // an axis it makes angles a, p, 7 with the coordi-

nate axes, the projection of an arbitrary vector s = {X, 7, Z} upon
the axis u is determined by the relation

pro\ u s= A
r

cosa+ rcos^+ Zcos-f. (6)

To prove this, suppose that the direction of the axis u is speci-
fied by a unit vector e. According to formula (2) of Art. 160, we

have es \e\pro) c s. Now observe that \e
= 1 and proj es= proj u s.

Hence, pro] us = es. Since the vector e has the direction of the

axis u, it follows that the vector e and the axis u make the same

angles (namely, a, p, 7) with the coordinate axes. Hence, by
Theorem 16 (Art. 139), we conclude that

proj A
. e

|
e

\

cos a, proj y
e =

|

e
\

cos p, pro\ z e \

e
\
cos 7 ;

but \e =
1, and so

={cosa, cosp,

We thus have s={X, K, Z} and ={cosct, cos p, cos 7}; by
Theorem 20, we find: proj u s = es = X cos a+Y cos p+ Z cos 7,

as was to be proved.

166. Example 1. Given three points A (1, 1, 1), B (2, 2, 1) and C (2, 1, 2);

find the angle cp
= Z BAG,

Solution. Using Theorem 15 (Art. 135), we find

TB = {i, i, 0}, J5c={i, o, i}.

Hence, by the second corollary to Theorem 20, we have

1 1

-7=
-

;r=r TT
I
2 ^2-^2 2

COS <P

Consequently, (p
= 60.

Example 2._Gwen the points A (1, 1, 1) and B (4, 5, 3); find the projection

of the vector AB on the axis u making equal acute angles with the coordinate

axes.

Solution. Let cos a, cos p, cos 7 be the direction cosines of the axis u\ by
the conditions of the problem, they are all eaual and positive (since a, g, 7 are

equal acute angles). Now, by relation (4) of Art. 140,

cos 2 a
-f- cos

2
p+ cos 2

7
= 1.

Hence, from the foregoing,

COS Ot = COS P
= COS 7

=
^=r

.

By Theorem 15 (Art. 135), __
AB= {3, 4, 4}.

All that remains now is to use the third corollary to Theorem 20, that is, to

apply formula (6); doing this, we find

projaF AB = 3 ~L+ 4 . -^ - 4 -)
= V 3 .
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THE VECTOR AND TRIPLE SCALAR PRODUCTS
OF VECTORS

55. The Vector Product and Its Basic Properties

167. We shall now define a new operation on vectors, known
as vector multiplication of vectors; it will be assumed that a rec-

tangular cartesian system of coordinates has been attached to

space.
The vector product of a vector a by a vector b is defined as

the vector (denoted by the symbol [ah]) which is determined by
the following three conditions:

(1) the modulus of the vector \ab\ is equal to \a\\b\ sin
cp, where

(p
is the angle between the vectors a and b ;

(2) the vector [ab] is perpendicular to each of the vectors a
and b,

(3) the direction of the vector [ab\ relative to the vectors a
and b is the same as the direction of the coordinate axis Oz rela-

tive to the coordinate axes Ox and Oy. More precisely, if the three

vectors a, b and [06] are all drawn from a common initial point,
then [ab] must be so directed that the shortest rotation of a to b
will be (when viewed from the terminal point of \ab\) in the same
direction as the shortest rotation of the positive semi-axis Ox into

the positive semi-axis Oy (when viewed from some point on the

positive semi-axis Oz).
For definiteness, we shall assume that, in the chosen coor-

dinate system, the shortest rotation of the positive semi-axis Ox
into the positive semi-axis Oy is seen from points on the positive
semi-axis Oz to be in the counterclockwise direction. Such a

system of coordinates is called right-handed. A right-handed sys-
tem may also be characterised as follows: If the thumb of the

right hand is extended in the direction of the axis 0*, while its

forefinger is extended in the direction of the axis Oy, then its

middle finger will point in the direction of the axis Oz of that

system *\

The direction assigned to the vector product* [aft] is in accord-

ance with our choice of a right-handed system of coordinates;

*) A coordinate system is called left-handed if the axes Ox, Oy and Oz
are directed analogous to the thumb, forefinger and middle finger of the left

hand.

11*
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namely, if a, b and \ab\ are drawn from the same initial point,
then the vector \ab\ must be so directed that the shortest rotation

of the first factor, a, to the second factor, b, is seen from the

terminal point of \ab\ to be in the counterclockwise direc-

tion (Fig. 97), We may also apply the following "rule of the right
hand"'. If a, b and \ab\ are drawn from the same initial point,

then the vector \ab\ must be directed

analogous to the middle finger of

the right hand whose thumb extends
in the direction of the first factor

(that is, the vector a), while its

forefinger extends in the direc-

tion of the second factor (that is,

the vector b). It is this rule that

will generally be referred to be-

low.

168. The concept of the vector

product owes its origin to mechan-
ics; namely, if b is the vector

representing a force applied at a

X ^-' point Af, and a is the vector extend-

^^-"' ing from a point to the point Af,

Fig. 97. then the vector \ab\ represents the mo-
ment of the force b about the point 0.

In vector analysis \ab\ is termed a product of vectors be-

cause it possesses some algebraic properties of the product of

numbers (see the properties 2 and 3, Art. 171); it is termed the

vector product because it is a vector.

169. First of all, we shall state the more important geometric
properties of the vector product.

1. If vectors a and b are collinear, their vector product is

equal to zero.

Proof. If a and b are collinear vectors, the angle cp between
them is equal either to (in the case when a and b are simi-

larly directed) or to 180 (in the case when a and b are oppo-
sitely directed). In both cases, sin

cp
= 0. Consequently,

[a6]|
=

|0||6| sincp
=

0, that is, the modulus of \ab\ is zero, and
hence the vector \ab\ itself is equal to zero.

2. // the vector product of vectors a and b is equal to zero,

the vectors a and b are collinear.

Proof. Let [ab\= 0; then |[a*]|
=

0, and therefore \a\\b\ sin<p=0.
If neither of the vectors and b is equal to zero, then the last

relation gives sin cp
= 0, and hence a and b are collinear vec-
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tors. If, on the other hand, at least one of the vectors a and b is

zero, then we may consider it collinear with the other vector, since

a zero vector can be regarded as having any direction.

We now combine these two properties of the vector product
into the following single statement: Two vectors have their vec-

tor product zero if, arid only if, they are collinear.

3. If vectors a and b are drawn from the same initial point,
then the modulus of their vector product \ab\ is equal to the area

of the parallelogram constructed on the vectors a and b.

Proof. Let S denote the area of the parallelogram constructed

on the vectors a and b. It is known from elementary geometry
that the area of a parallelogram is equal to the product of its

adjacent sides by the sine of the included angle. Hence

\a\\b\ sin cp
= 5, and so

\\ab\\=S, (1)

as was to be shown.

170. In consequence of the last property, the vector product

may be expressed by the formula

[aft]
= 50, (2)

where e is the vector determined by the following three condi-

tions:

(1) the modulus of e is equal to unity;

(2) the vector e is perpendicular to each of the vectors a
and ft;

(3) the vector e is directed in the same way as the middle

finger of the right hand whose thumb extends in the direction of

the vector a , and whose forefinger extends in the direction of

the vector b (the vectors a, b and e are assumed to be drawn
from the same initial point).

To prove formula (2), compare the conditions which deter-

mine the vector e with those determining the vector product [aft];

from this comparison it will easily be seen that the vectors \ab\
and e are collinear and like-directed. Hence the vector \ab\ -can

be obtained by multiplying the vector e by a certain positive

number; this number is equal to the ratio of the modulus of \ab\
to the modulus of e, and since |0|= 1, it is equal simply to

the modulus of [aft], i. e., to the number S. Thus, [ab\*= Se, as

was to be proved. (Fig. 98 is an illustration of formula (2) for

the case \a\
-

2, |ft)
=

2, <p
= 90.)

171. We now proceed to establish the algebraic properties of

the vector product.
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1. The vector product is anticommutative:

\ab\ = -\ba\, (3)

that is, the vector product of a by b is the negative of the vector

product of b by a .

Proof. If a and b are collinear vectors, then both \ab\ and

\ba\ are zero, so that relation (3) holds. Suppose now that the

vectors a and b are not collinear.

To begin with, note that, by the first two conditions contained

in the definition of the vector product, the vectors \ab\ and \ba

have the same modulus and are collinear; hence, either [a&]
= J6a

or \ab\
=

\ba\. It remains to determine which of these two

possibilities materialises. The question is resolved by a considera-

tion of the third condition. For, when ex-

tending the thumb and forefinger of the

right hand first in the directions of a
and b, respectively, and then in the direc-

tions of b and a, the hand has to be
turned in such a way that the direction of

the middle finger in the second case will

be opposite to its direction in the first

case. Hence \ab] and \ba\ have opposite
directions, that is, [ab] [ba\.

2. The vector product is associative

with respect to multiplication by a scalar:

[*]

e

and
(4)

(5)

Fig. 98. Proof. Formula (5) can be reduced
to (4) by reversing the order of the fac-

tors of the vector products in both the left and the right member
(whereupon the letters a and b must be interchanged). Hence, it

will be sufficient to establish formula (4).

Note first of all that, if K = or if a, b are collinear vectors,
formula (4) is obviously true since, in either case, its left and

right members will be equal to zero. Suppose now that K + and
the vectors a, b are not collinear.

By the first condition in the definition of the vector product,
the modulus of the vector [ab] is equal to|a||6| sinq), where cp

is the angle between the vectors a and b\ hence the modulus of

the vector A [ab] is equal to \K\ \a\\b\ sin cp. By the same condi-

tion, the modulus of the vector [(ha)b] is equal to \K\ \a\ \b\sin i|),
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where
\|)

is the angle between the vectors Xa and b. But the an-

gle ty is equal either to the angle (p (if K is positive), or to the

angle jt (p (if X is negative); in both cases, sin cp
= sin

\|).
It

follows that the modulus of the vector [(Xa)b] is equal to the

modulus of the vector X[a6].

By the second condition contained in the definition of the vec-

tor product, both vectors K[ab] and [(Ka)b] are perpendicular
to each of the vectors a and b, the vectors K[ab] and [(Xa)#J
are therefore collinear.

Since the vectors h\ab\ and [(Ka)b] have the same modulus
and are collinear, it follows that they are equal or else are the

negatives of each other; that is, either [(Ka)b] ~\[ab], or

[(Xa)6]
= h[ab}. It remains to find out which of the two

possibilities materialises. We shall have to consider the cases

K > and K < separately.
Let h > 0; then the vectors Ka and a have the same direction.

In this case, by the rule of the right hand, the vector [Cka)b\ has

the same direction as the vector \ab\\ but, if X > 0, the vector

\\ab\ also has the same direction as [ab\. Consequently, the vec-

tors [(Ka)b\ and K[ab\ are like-directed, and hence [(\a)b\^
= A [ab]. Now let X < 0; then the vectors \a and a have oppo-
site directions. In this case, by the rule of the right hand, the

vector [(^a)b\ has its direction opposite to that of \ab\ ; but, if

A < 0, the vector K[ab] also has the opposite direction to that

of [ab\. Consequently, the vectors [(ka)b] and K\ab\ are like-

directed, and hence [(A,a)6]
=

X[ab\. We thus see that this rela-

tion is always valid.

3. The vector product is distributive with respect to addition:

[arj (6)

and

(7)

Proof. Formula (7) can be reduced to (6) by reversing the

order of the factors in both the left and the right member of (7).
It will, therefore, be sufficient to establish formula (6). It should
also be noted that formula (6) is clearly true if a = 0. We shall

assume in what follows that a = 0.

Let us begin by considering the particular case when the

first of the vectors is a unit vector and the other two vectors are

each perpendicular to the first vector.

Draw all the three vectors from a common initial point 0. Let
a be the first (unit) vector; denote the other two vectoj^ (per-

pendicular to_a ) by OB and OC, and their sum by OD, i. e.,

OB + OC (Fig. 99).
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Introducing the notation

[a 0], OC*= KGC], OD*= [a ODl = [a (dB+OC)J,

we have, by virtue of the first two conditions in the definition of

the vector product,

(1) \OB*\ = \[aQOB]\ = \aQ \ 1

05
1

sin 90 =
|

OB
|.

(2) 05*J_a , 05*J_O8.

It
follows^

that the vector OB* can be obtained by rotating

the vector OB about a through 90. In virtue of the third condi-

tion, this rotation will be in the counterclockwise direction (when

Fig. 99.

viewed from the terminal point of the vector a
c). In like manner,

the
vectors_

OC* and OD* are obtained by rotating the vectors

OC and OD about a through 90 and in the same direction. Thus,
the entire figure 0#*D*C* is obtained by a rotation of the paral-

lelogram OBDC\ consequently, Ofi*Z)*C* is a parallelogram.
Hence we conclude that OD* = OB* + OC*, or

[a ODI = [a OB]+ [aoOCl. (8)

This is relation (6) for our particular case.

Next, let a be any vector perpendicular to the vectors OB and

OC. Let a denote the unit vector having the same direction as a;
then a = |a|a . Multiplying both members of (8) by the number

|a| and replacing |a|a by a, we obtain

\aOD\^\aOB\+ \a
7

JC\. (9)

Finally, consider vectors a, b, c having arbitrary directions.

Let us assume that they are drawn from a common initial point O.
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Through the terminal points of the vectors ft, c and ft+ , draw

straight lines parallel to the vector a. Pass a plane through the

point perpendicular to these lines and intersecting them in the

points B, C and D, respectively (Fig. 100).

Consider the vector products [ab\ and [a OB]; they are easily
shown to give the same vector. For, in

the^
first place, the modulus

of [ab\ is equal to the modulus of [a OB], since the area of the

parallelogram constructed on the vectors a and b is equal to the

area of the rectangle constructed on the vectors a and OB;
secondly, the vectors [ab\ and

[a OB] are collinear, since both are

perpendicular to the same plane

(namely, to the plane containing

the vectors a, b and OB); and

lastly, in accordance with the rule

of the right__hand, the vectors

\ab\ and [a OB] are like-directed.

Thus,

[a 05] = [aft].

Similarly,

[adC]=[ot], [

Inserting these expressions in (9),

we obtain

D

Fig. 100.

as was to be proved.

172. The last of the algebraic properties just established

enables us to carry out the vector multiplication of vector polyno-
mials term by term. The second property of the vector product
permits us to group together the scalar coefficients of the vector

factors. For example,

[(2a+ 5ft) (3t+ 4d)]
=

[(2a+ 5ft) (3c)\+ [(2a

=
I(2a) (3t)]+ [(5ft) (3c)\+ [(2a)

= 6 [at]+ 15 [ftt]+ 8 [ad]+ 20 [bd\.

It must, however, be borne in mind that the order of the factors

of the vector product is material. In consequence of the first

property (Art. 171), a minus sign must be prefixed to the vector

product after Its factors have been interchanged.
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Note. As has been shown in Art. 169, collinear vectors have
their vector product zero. In particular, the vector product of two
identical factors is zero: \aa\

= 0. For this reason, the concept
of the vector square is not used in vector analysis.

56. Representation of the Vector Product
in Terms of the Coordinates

of the Vector Factors

173. The following theorem permits us to compute the vector

product of two vectors from their coordinates, that is, from their

projections on the axes of a rectangular cartesian coordinate

system.

Theorem 21. Given the coordinates of vectors a and b:

the vector product of the vector a by the vector b is determined

by the formula

\ab\
= Y, Z, X, X,

(i)

Proof. We shall first draw up the vector multiplication table

for the base vectors. According to the note made at the close

of Art. 172, [] = 0, [fj]
=

0, [**]= 0. Consider now the vector

product [tj\. The modulus of the vector [ij\ is equal to the area

of the parallelogram constructed on the vectors t and j (see
Art. 169, the property 3). This parallelogram is a square with

side equal to unity, so that its area is equal to unity. Hence [(/]

is a unit vector. Since the vector \lj\ must be perpendicular to the

vectors / and j and directed according to the rule of the right
hand, it is easily seen that [//] coincides with the third base
vector k\ that is, [(/]

= . By a similar argument, we find the

relations [/*]
= /, [/]==/ It remains to express 1/71, \kj\, and

[];but l/fl
=

-]</], [*/]
=-

1/*], [l = -l]; hence [Ji}
=

\kj\
= i, [ik\

= / Thus, the desired multiplication
table is as follows:

\tj\=k,

= -t> [**l=o.

(2)
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By Theorem 19 of Art. 157, the resolution of the vectors a and
b with respect to the basis /, j, k yields

(3)

In virtue of the algebraic properties of the vector product,
established in Art. 171, we may compute \ab\ by multiplying,
term by term, the right-hand members of relations (3):

[aft]
=

\ii\

\Ji\ 4- Y,

[kl\ 4- Z,

[ij]+ X,Z, \tk\+
\jj\+ K,Z2 [jk]+
\kj\+ Z,Z2 \kk\.

Making use of the base vector multiplication table (2), we hence
find

or

\ab\
= Y 71

1 ^i
Af. (4)

We have expressed the vector \ab\ in terms of the basis /, / k\

the coefficients of this resolution are the coordinates of the vector
. Thus,

[ab]
= Y,

X2 K2

(1)

as was to be shown.

Note. When carrying out calculations by formula (1), it is

convenient to begin by forming the following array from ttie

coordinates of the given vectors:

Covering in turn the first, the second and, finally, the third

column of this array gives three determinants of the second

order; evaluating the determinants and prefixing a minus sign
to the second of them, we find the three coordinates of the vector

product [a6].
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It should also be remarked that formula (4), which is equiv-
alent to (1), can be put in the form

\ab] =
I j k

X
: K, Z,

* 2

(5)

For, on expanding this determinant in terms of the elements of

the first row, we get an expression identical with the right-hand
member of (4).

174. Example 1. Given the vectors a = {2, 5, 7} and b =
{1, 2, 4}. Find the

coordinates of the vector product [&b].
Solution. In accordance with the note made at the end of the preceding ar-

ticle, we form the array

/2 5 7N

U 2 4/'

By covering in turn the columns of this array, we obtain three determinants
of the second order; evaluating them and taking the second determinant with
a minus sign, we find the required projections

Example 2. A (1,1,1), 5(2,2,2) and C(4,3,5) are three given points
in space. Find the area S A of the triangle ABC.

Solution. Consider the vectors AB and AC. By the property 3 (Art. 169),

the modulus of the vector product [^^_^4C] is equal to the area of the paral-

lelogram constructed on the vectors AB and AC. Now, the required area SA
of the triangle ABC is equal to half the area of this parallelogram; hence

It only remains to compute the right-hand member of this relation.
We first find, by Theorem 15 (Art. 135), the coordinates of the vectors

AB and AC:

A={1, 1, 1}, ^C={3, 2, 4}.

Hence, [ABAC] { 2, - 1, 1} and \[ABAC]\ = J/^-f 1
2+ l = V

r
6.

Thus, SA -^Vn5.

57. The Triple Scalar Product

175. Let there be given any three vectors a, b and c. Suppose
that the vector multiplication of the vectors a and b is followed

by the scalar multiplication of the resulting vector \ab\ and the
vector c\ the number \ab\ c thus determined is called the triple
scalar product of the three vectors a, b, c. In the remaining arti-
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cles of this chapter, we shall study the basic properties of the

triple scalar product and point out some problems where the triple

scalar product can effectively be used.

176. We shall agree to speak of vectors a, ft, c as coplanar
if they lie in the same plane or in parallel planes. Since

geometric vectors are free vectors, it follows that coplanar
vectors can always be made to lie in the same plane by means
of parallel displacement (translation). In particular, coplanar
vectors will lie in the same plane when they are drawn from a

common initial point.

177. If three given vectors are also designated as the first,

second and third vector, then the given vectors are called an
ordered triad of vectors; we shall hereafter refer to them simply
as a triad of vectors, omitting the adjective. In the text, a triad

of vectors will be written in order; for example, when we write

a, by c, this will mean that a is regarded as the first, b as the

second, and c as the third vector, whereas writing b, c, a, will

mean that b is regarded as the first, c as the second, and a
as the third vector.

178. A triad of non-coplanar vectors is called right-handed
if its vectors, when drawn from a common initial point and taken

in their order, are directed analogous to the thumb, forefinger and
middle finger of the right hand. Speaking in more detail, a triad

of non-coplanar vectors is called a right-handed triad if its third

vector is on the same side of the plane containing the first two

vectors, as the middle finger of the right hand whose thumb
extends in the direction of the first vector and whose forefinger
extends in the direction of the second vector of the triad.

A triad of non-coplanar vectors is called left-handed if its

vectors, when drawn from a common initial point and taken

in their order, are directed analogous to the thumb, forefinger
and middle finger of the left hand.

Triads of coplanar vectors are neither right-handed nor left-

handed.

179. Let a, ft, c be any given non-coplanar vectors. Number-

ing them in all possible different ways, we obtain six triads:

a, ft, c\ ft, c, a; c, a, ft; ft, a, c\ a, c, ft; c, b, a. By the

inspection of a model (which is easily made of wire), it can be
verified that three of these triads are right-handed, and the other

three left-handed; namely,

a, ft, c\ ft, c, a; c, a, ft
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are triads of one orientation, that is, are either all of them right-

handed, or all left-handed;

b, a, c; a, c, b\ c, b, a

are triads of the opposite orientation *).

180. The geometric meaning of the triple scalar product is

expressed by the following important

Theorem 22. The triple scalar product \ab\ c is equal to the

volume of the parallelepiped constructed on the vectors a, 6, c;

the sign of this volume is positive or negative according as the

triad a, b, c is right-handed or left-handed. If the vectors a, b,
c are coplanarf \ab] c = 0.

Proof. Suppose first that the vectors a and b are non-collinear.

Denote by S the area of the parallelogram constructed on the

vectors a, b, and let e be a unit vector, defined as in Art. 170.

By formula (2) of Art. 170, we have

Hence

\ab\ c= S (ec)
= S

\

e
\ proj^ c S proj, c. (1)

But projeC
= h, where h is the altitude of the parallelepiped

constructed on the vectors a, 6, c and having as its base the

*) The following visual method for distinguishing triads can also be used.

Imagine that you are placed inside the solid angle made by a given triad of

vectors. If the circuit from the first to the second vector, from
the second to the third and, finally, from the third to the first

vector is then seen to be in the counterclockwise direction, the

given triad is right-handed; if this circuit is seen to be in the

clockwise direction, the triad is left-handed. According to this

rule, the triads a, b, c\ b, c, a and c, a, Q in the diagram
given here are right-handed.
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parallelogram constructed on the vectors a, b (Fig. 101). Hence,

denoting the volume of the parallelepiped by V and recalling
that AS = V, we find from (1):

[ab]c=V. (2)

We must now determine when the sign of the volume V will

be positive, and when negative. For this purpose, note that

pro'] e c = + h if the vector c is on the same side of the base plane

(containing a, b) as the vector e, that is, if the triad a, b, c

is of the same orientation as the triad a, b, e (see Art. 178);

projeC
= h if the vectors c and e are on opposite sides of the

plane containing a, b, that is, if the triads a, b, c and a, b, e

have opposite orientations. Now, by the definition of the vector e

(see Art. 170), the triad a, 6, e is right-handed. Hence, the

volume V in (2) is positive if a, b, c form a right-handed triad,

and negative if a, b, c form a left-handed triad. If the vector c

lies in the plane of a, 6, that is, if the vectors a, b, c are

coplanar, then proj e c=0 and, as is clear from (1), [ab\c Q.

This completes the proof of the theorem for the case when the

vectors a, b are non-collinear. There remains for consideration

the case when a, b are collinear. In this case, [a&]= 0, and hence

[ab]c
=

Q, which again is in accordance with what has been
stated in the theorem (since, if the vectors a and b are collinear,

the three vectors a, b, c are coplanar).
The theorem is thus proved.

181. The following identity is easily derived from Theorem 22:

[ab]c = a[bc\. (3)

Proof. Since the scalar product is commutative,

a [be]
=

[be] a. (4)

Further, by Theorem 22 we have

[ab]e= V, [bc\a= V. (5)

According to Art. 179 the triads a, b, c and b, c, a are of

one orientation; hence, by Theorem 22, the right members of

relations (5) have like signs. Relations (5) thus yield

[ab] c= [be] a.

Hence, in consequence of (4),

as was to be shown.
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182. From now on, we shall denote the triple scalar products

[ab\ c and a [be] by a simpler symbol: abc. No ambiguity can arise

from the omission of the brackets indicating vector multiplication,
since [ab]c a\bc\.

183. It should be stressed that Theorem 22 has as its immediate

consequence the following proposition:
The triple scalar product of vectors a, b, c is zero if, and

only if, the vectors a, b, c are coplanar.

For, Theorem 22 plainly states that abc=0 if a, b, c are

coplanar vectors. The fact that abc = only if a, b, c are cop-
lanar vectors follows from the same theorem; for, if the vectors

a, b, c are non-coplanar, then the parallelepiped constructed on

them has a volume different from zero, and hence abc^=Q.
The same proposition can also be phrased as follows:

A necessary and sufficient condition for the coplanarity of

three vectors a, b, c is that their triple scalar product should

be zero: abc = 0.

58. Representation of the Triple Scalar

Product in Terms of the Coordinates

of the Vector Factors

184. Theorem 23. Given the coordinates of vectors a, b, c.

a=[Xv Y
l,Z l } 1

b = iX2,Y2 , Z2 },
c= {X,, K3 , 73 },

the triple scalar product abc is determined by the formula

X, Y, Z,

X2 Y2 Z2

X^ *
3 Z%

Proof. We have abc = [ab]c. From Theorem 21 (Art. 173),

K, Z,

'2 ^2 2\n /*()

X, Y,

The scalar multiplication of this vector by the vector

c = {X3 ,
Ys ,

Z3} yields, by Theorem 20 (Art. 164),

abc= \ab\ c
Z

} *i YI
y v
A% I 2

X,

Zo=

as was to be proved.
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Example. 4(1, 1, 1), (4,4,4), C(3,5,5), (2,4,7) are four given points
in space. Find the volume of the tetrahedron ABCD.

Solution. From elementary geometry, the volume VT of the tetrahedron
ABCD is_pne_sixth of_the volume of the parallelepiped constructed on the

vectors AB, AC and AD\ hence, from Theorem 22, we conclude that VT is

numerically equal to one sixth of the triple scalar product AB*AC*AD. It

only remains to compute the value of this triple product. First of all, we
determine the coordinates of the__vectors AB,__ AC, AD. By Theorem 15

(Art. 135), we have: 4B={3, 3, 3}, 4C={2, 4, 4}, AD={\, 3, 6).

Using Theorem 23, we now find

333
AB-AC'AD = 244

1 3 6

= 18.

Hence, Fr = 3.

185. According to Art. 183, a necessary and sufficient condition

for the coplanarity of three vectors is that their triple scalar prod-
uct should be zero.

Hence, by Theorem 23, we conclude: Given the coordinates of
vectors a, b, c:

a necessary and sufficient condition for the coplanarity of these

vectors is that

X,

= 0,

i. e., that the determinant of the third order formed from the

coordinates of the vectors a, b, c should be zero.

12-521



Chapter 11

THE EQUATION OF A SURFACE
AND THE EQUATIONS OF A CURVE

59. The Equation of a Surface

186. As we know, some of the simpler surfaces (the plane,

sphere, circular cylinder, circular cone) yield readily to investi-

gation by the methods of elementary geometry. But the general

problem of investigating the diverse curves encountered when

dealing with various questions of mathematics and its applications
demands the use of more advanced methods, furnished by algebra
and mathematical analysis. This use of algebraic and analytical
methods is based on a uniform mode of determining a surface,

namely, that of representing a surface by an equation.

187. Let x, y, z be arbitrary variables; this means that the

symbols x, y, z represent any (real) numbers whatsoever. A rela-

tion of the form F(x, y, z)
=

0, where F(x, y, z) denotes an

expression containing x, y, z, is called an equation in three vari-

ables jc, y, z (provided that F(x, y, z)
= is valid not identically,

that is, not for every triad of numbers x, y, z).

Three numbers x = JCG , y = i/o, Z= ZQ are said to satisfy a given

equation in three variables if the equation holds true when these

numbers are substituted in it for the variables. If F(x, y, z)
=

is an identity, it is satisfied by any numbers x, y, z.

188. The fundamental concept of solid analytic geometry is

that of the equation of a surface. We shall now explain the mean-

ing of this concept.
Let there be given any surface in space; also, let a coordinate

system be chosen.

The equation of a given surface (in a chosen coordinate

system) is defined as the equation in three variables which is

satisfied by the coordinates of all points lying on the surface and

by the coordinates of no other point.

Thus, if the equation of a surface is known, we can determine
for each point in space whether or not it lies on the surface. To
answer this question, it is necessary merely to substitute the

coordinates of the point for the variables in the equation; if the

coordinates of the point under test satisfy the equation, the point
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lies on the surface; whereas, if its coordinates do not satisfy the

equation, the point does not lie on the surface.

The definition just made constitutes the basis of the methods
of solid analytic geometry, which consist essentially in the investi-

gation of surfaces by analysing their equations. In cases when the

surface under consideration is determined in purely geometric
terms, we begin its investigation by deriving the equation of the

surface. In many problems, however, the equation of a surface
is regarded as something known, while the surface itself is re-

garded as something to be derived. In other words, often an

equation is given beforehand, and a surface is thereby determined.

189. If an equation is given and we are to answer the

question: "What surface is represented by this equation?'' (or:
"What is the surface having this as its equation?"), then it is

convenient to use the definition phrased as follows:

The surface represented by a given equation (referred to some
coordinate system) is the locus of those points whose coordinates

satisfy the equation.

Note. If M(x, y, z) is a variable point of the surface, then x, y,
z are called the current coordinates.

190. Example. In rectangular cartesian coordinates, the

equation

represents a sphere, whose centre is at the point C(a, p, y) and
whose radius is equal to r. For, if M(x, y, z) is an arbitrary

point, then Y(x a) -f- (y p)*+ (z ?)
2= CM. Hence, it is evi-

dent that equation (1) is satisfied by the coordinates of those

points, and those only, whose distance from the point C is equal
to r. Consequently, the locus of the points whose coordinates sat-

isfy this equation is a sphere with centre C(a, p, y) and radius r.

60. The Equations of a Curve.
The Problem of the Intersection

of Three Surfaces

191. In solid analytic geometry every curve is regarded as the
intersection of two surfaces and, accordingly, is represented by
two equations.

For, if F(x, y, z)
= and (D(#, (/, z)

= are the equations of
two surfaces intersecting in a curve L, then the curve L is the
locus of the points common to the two surfaces, that is, of the

12*
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points whose coordinates satisfy both equations F(x, y, z)

and <D(x, y, z)
= simultaneously.

Thus, the two equations

> y, *)
= 0,

|

,y, *)= 0, J

simultaneously, represent the curve L.

For example, the two equations

considered simultaneously, represent a circle (as the intersection of two

spheres) .

192. If F(JC, y, z)
=

0, O(* f */, 2)
= 0, (x, {/, z)

= are the

equations of three surfaces, then each common solution of the

system

y, 2)
= 0,

y, z)
=

gives the coordinates of a point common to the three surfaces.

Consequently, the geometric problem of finding the points of
intersection of three surfaces is equivalent to the algebraic prob-
lem of solving simultaneously a system of three equations in

three unknowns.

Example. Find the points of intersection of three surfaces, given that the

first surface is a sphere with centre at ( 1, 1, 0) and radius 5, the second
surface a sphere with centre at (1, 1, 3) and raduis 4, and the third surface
a plane parallel to the plane Oxy and situated in the upper half-space,
3 units above the plane Oxy.

Solution. The problem amounts to finding the simultaneous solutions of

the three equations

-3)'= 16,

Substituting 2 = 3 in the first two equations and removing the parentheses,
we get

(x
-

I)
2+ (y-

_2Ar 2y = 14.

Hence jr+ ytsj), *2
-fy

2
=*14, so that_**=^^7

two points: ()/7, ^7,3) and ( /7, Y! , 3).

x Thus, we obtain
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61. The Equation of a Cylindrical Surface

with Elements Parallel to a Coordinate Axis

193. In this article we shall specially consider an equation
of the form F(x, y)

= 0. The distinctive feature of this equation
is that its left-hand member lacks the variable z. This means that

the equation relates only the first two coordinates, leaving the

third coordinate free to assume any values.

We propose to show that an equation of this form represents
a cylindrical surface whose elements are parallel to the axis Oz.

Let S denote the surface

represented by an equation of

the form F (x, y)
= 0. Let

MQ (XQ, f/o, 2o) be an arbitrary

point of the surface S. Since the

point MQ lies on 5, it follows

that the numbers XQ, yo, ZQ satis-

fy the equation F (x, y)
= 0;

but then the numbers jt
, t/o, 2.

where z is any number what-

soever, also satisfy the equation,
since F (x, y) does not de-

pend on z. Hence, for any z,

the point M (#<>, #o, z) lies

on the surface 5 (Fig. 102),
which means that the straight
line drawn through MO parallel
to the axis Oz lies entirely
on the surface S. Thus, the sur-

face S is made up of straight
lines parallel to the axis Oz, i. e., S is a cylindrical surface with
elements parallel to the axis Oz, as was to be shown.

It should be observed that, in the plane Oxy (in the plane
coordinate system determined by the axes Ox and Oy) the equa-
tion F(x, y) =

represents a curve, namely, the directing curve
of the cylinder under consideration. In the space coordinate

system, however, the same curve must be represented by two
equations:

\J
102.

=*o,
\= 0. )

Example. The equation #2
-f (/

2=r2
, referred to a space coordinate system,

represents a circular cylinder; its directing curve (a circle), lying in the

plane Oxy, is represented by the two equations
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194. By analogy with the above, it is easily seen that the

equation F (x, z) represents (in space) a cylindrical surface

with elements parallel to the axis Oy\ the equation F(y, z)
=

represents a cylindrical surface with elements parallel to the

axis OK.

195. Consider a curve L (in space) represented by the equa-
tions

Let

V^, y)= (2)

be the equation obtained from the system (I) by eliminating the

variable z. This means that:

(1) equation (2) is a consequence of the system (1); i. e., each
time the two equations of the system (1) are simultaneously
satisfied by three numbers x

y y, z, the first two of these numbers

satisfy equation (2);

(2) if two numbers #, y satisfy equation (2), a third number
z can be found such that the three numbers x, y, z will satisfy
both equations of the system (1).

By Art. 193, equation (2) represents a cylindrical surface with

elements parallel to the axis Oz. Further, in accordance with the

first of the properties of equation (2) just stated, every point
of the curve L lies on this cylindrical surface, which means that

the surface passes through the curve L. Finally, according to the

second property, each element of this surface passes through some

point of the curve L. From all this, we conclude that the surface

represented by the equation (#, y)
= is made up of straight

lines which project the points of the curve L on the plane Oxy\
the surface is therefore called the cylindrical surface projecting
the curve L on the plane Oxy (or simply the projecting cylin-

der).
The projection of the curve L on the plane Oxy is represented

by two equations:

'"LI:}

In a similar way, by eliminating the variable x or the variable

y from the system (1), we can obtain the projection of the curve

L on the plane Oyz or on the plane Oxz.



Algebraic Surfaces 183

Example. The intersection of two spheres determines the circle

( '

Find the projection of this circle on the plane Oxy.
Solution. We must find the equation of the cylinder projecting the given

circle on the plane Oxy. This is achieved by eliminating z between the equa-
tions (3). Subtracting the second equation from the first, we get

y+ *=l; (4)

hence 2=1 y. Substituting the expression 1 y for z in either of the given

equations, we find

2y = 0. (5)

This is the desired result of the elimination of z from the system (3). For,

equation (5) is a consequence of equations (3). Furthermore, if x and y

satisfy equation (5), then the first of equations (3) gives

z = }
/"l-.* 2 -y 2 = J/"l-f 2y

2 -2y-y 2 =
(1 y);

from the second equation of the system (3), we have

z- 1 = l-*2 -(y-l) 2 = Vl + 2y
2 -2y-y 2+ 2y- = y .

Thus, if two numbers x, y satisfy (5), then a third number z (namely,
z=l y) can be found such that the three numbers x

y y, z will satisfy both

equations of the system (3).

We see that the two conditions (see the beginning of this article) which

must be satisfied by the result of the elimination of z from (3), are fulfilled

for equation (5). By the foregoing, equation (5) represents the cylinder pro-

jecting the given circle on the plane Oxy. The projection itself is represented

by the two equations

2y = 0,

Since the first equation is reducible to the form -pH
--

j

=
1, this

Y T
projection is an ellipse with semi-axes a ===> ^

"rT'

62. Algebraic Surfaces

196. Solid analytic geometry has as its main subject of study
the surfaces represented, in rectangular cartesian coordinates, by

algebraic equations. These are equations of the following forms:

Ax+ By+ Cz+ D= Q\ (1)

2+ Cz2+ 2/Xcy+ 2Exz+ 2Fyz+ 2G;c+
= Q\ (2)
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A, fl, C, D, , etc., denote here fixed numbers and are called

the coefficients of these equations.

Equation (1) is termed the general equation of the first

degree (its coefficients may have any values whatsoever, provided

only that the equation does contain first-degree terms; that is,

A, B, C cannot all be zero at the same time); equation (2) is

termed the general equation of the second degree (its cbefficients

may have any values whatsoever, provided only that the equation
does contain second-degree terms, which means that the six coeffi-

cients A, 5, C, D, ,
F cannot all be zero at the same time).

Equations of the third, fourth, etc., degrees have analogous forms.

A surface represented, in a rectangular cartesian system of

coordinates, by an algebraic equation of degree n is called an

algebraic surface of the nth order.

It can be proved that a surface, represented by an algebraic equation of

degree n in any rectangular cartesian system of coordinates, will be repre-
sented in any other rectangular cartesian system by another algebraic equation
of the same degree n. The proof, which is similar to that of Theorem 8

(Art. 49), is based on the formulas for transformation of rectangular cartesian

coordinates in space.

197. The general theory of algebraic curves forms the subject
of special treatises on analytic geometry. In this book, we are

only concerned with surfaces of the first and the second order.



Chapter 12

THE PLANE AS THE SURFACE
OF THE FIRST ORDER.

THE EQUATIONS OF A STRAIGHT LINE

63. The Plane as the Surface

of the First Order

The next few sections are devoted to the establishment of the

fact that surfaces of the first order are planes and only planes,
and to the consideration of various forms of the equation of a

plane.

198. Theorem 24. Every plane is represented by an equation

of the first degree in cartesian coordinates.

Proof. Assuming that a rectangular cartesian system of coordi-

nates has been attached to space, let us consider an arbitrary

plane a and prove that this plane is represented by an equation
of the first degree. Take a point M (x , r/o, 2o) in the plane a; in

addition, choose any vector (except the zero vector!) perpendicular
to the plane a. Denote the chosen vector by the letter n, and its

projections on the coordinate axes by A, B, C.

Let M(x, y, z) be an arbitrary point. It lies in the plane a if,

and only if, the vector M M is perpendicular to the vector n.

In other words, a point M lying in the plane a is characterised

by the condition

Expressing this condition in terms of the coordinates x, y, z,

we shall obtain the equation of the plane a. For this purpose, we
write the coordinates of the vectors M M and n.

MQ
M= [x x , y y , z z

),

n={4, 5, C}.

By Art. 165, two perpendicular vectors have their scalar product
zero; that is, the sum of the products of the corresponding coordi-

nates of two perpendicular vectors is equal to zero. Hence,
Af M -L n if, and only if,

~zQ)
= 0. (1)
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This is the desired equation of the plane a, since it is satisfied by
the coordinates x, y, z of a point M if, and only if, M lies in the

plane a (that is, if MQM _L n).

Removing the parentheses, we may write equation (1) in the

form

Denoting now the number AxQ By Cz by D, we obtain

+ D = 0. (2)

We see that a plane a is actually represented by an equation of

the first degree. The proof is thus complete.

199. Every (non-zero) vector perpendicular to a plane is called

its normal vector. Employing this term, we can say that the

equation

is the equation of the plane passing through the point M (xQ , yQt

z
)
and having n = [A, B, C} as its normal vector.

An equation of the form

is called the general equation of a plane.

200. Theorem 25. Every equation of the first degree in carte-

sian coordinates represents a plane.

Proof. Assuming that a rectangular cartesian system of coordi-

nates has been chosen, let us consider an arbitrary equation of the

first degree:
Q. (2)

By an "arbitrary" equation we mean that its coefficients A, 5,

C, D may be any numbers whatsoever (but, of course, excluding
the case where the three coefficients A, B, C are all zero simul-

taneously). We must prove that equation (2) is the equation of

a plane.
Let jc

, */o, 2 constitute a solution of equation (2), that is, let

XQ, #0, 2 be a triad of numbers satisfying that equation *). Sub-

stituting the numbers x
, #o, ^o for the current coordinates in the

left-hand member of (2), we obtain the arithmetical identity

Q. (3)

*) Equation (2), like every equation of the first degree in three unknowns,
has infinitely many solutions. To obtain one of these, two unknowns are assigned
arbitrary values, and then the third unknown is found from the equation.
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Subtracting identity (3) from equation (2), we get the equation

-z,)= 0, (1)

which, according to the preceding article, is the equation of the

plane passing through the point M (*o, */o, *o) and having
n =

{A, B, C} as its normal vector. Now, equation (2) is equiv-
alent to equation (1), since equation (1) can be obtained from

(2) by the term-by-term subtraction of identity (3), and since

equation (2) can, in its turn, be obtained from (1) by the term-

by-term addition of identity (3). Consequently, equation (2) is an

equation of the same plane.
We have shown that an arbitrary equation of the first degree

represents a plane\ the theorem is thus proved.

201. As we know, surfaces represented (in cartesian coordi-

nates) by equations of the first degree are termed surfaces of the

first order. Using this term, we may express the above results

as follows:

Every plane is a surface of the first order; every surface of the

first order is a plane.

Example. Write the equation of the plane passing through the point A/

(1, 1, 1) perpendicular to the vector fl= {2, 2, 3}.

Solution. By Art. 199, the required equation is

2(*
or

202. To conclude the section, we shall prove the following
proposition: // the two equations A

{
x + B {y + C 4z + D t

= and
A 2x + B2y + C2z + D2

= represent the same plane, their coeffi-
cients are proportional.

For, in this case, the vectors #1 = {A\, fli, CJ and #2 = [A 2 ,

B2 ,
C2]

are perpendicular to the same plane and, hence, are col-

linear. But then, by Art. 154, the numbers A 2 ,
B 2 ,

C2 are propor-
tional to the numbers A\ 9 B\ 9 C\; denoting the factor of proportion-

ality by fi, we have A 2
= A

{ \i y
B2

=
BJJLI, C2

= C^. Let
MQ (XQ, j/o, Zo) be any point in the piano; the coordinates of M
must satisfy each of the given equations, and so A^xQ + BiyQ +
+ CiZo + Di = and A2xQ + B2yQ + C2zQ + D2

= 0. Multiplying
the first of these relations by \i

and then subtracting it from the

second relation, we obtain D2 DIJI
= 0. Consequently, D2

==

and
A% u^ 2 ^2 _
^r

==
'sr

==
'cr

=::

07 i
1 -

This proves our proposition.
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64. Incomplete Equations of Planes.

The Intercept Form of the Equation of a Plane

203. We know that every first-degree equation

(in cartesian coordinates) represents a plane. Let us now con-

sider some special cases of the equation of the first degree,

namely, the cases where some of the coefficients A, *B, C, D
are zero.

(1) D = 0; the equation has the form Ax + By + Cz and

represents a plane passing through the origin.

For, the numbers x = 0, */
= 0, z = satisfy the equation

Ax + By + .Cz = 0. Consequently, our plane contains the origin
of coordinates.

(2) C = 0; the equation assumes the form Ax + By + D =
and represents a plane parallel to the axis Oz (or passing through
that axis).

For, in this case, the normal vector n =
[A, B, C} has its

projection on the axis Oz equal to zero (C = 0); hence, the vector

n is perpendicular to the axis Oz, and the plane itself is parallel
to Oz (or passes through Oz).

(3) B = and C = 0; the equation has the form Ax + D =
and represents a plane parallel to the coordinate plane Oyz (or
coincident with Oyz).

For, in this case, the normal vector n =
(A, 5, C} has its

projections on the axes Oy and Oz equal to zero (B = and
C =

0); hence, the vector n is perpendicular to the axes Oy and

Oz, and the plane itself is parallel to these axes (or passes

through each of them). But this means that the plane represented

by the equation Ax + D = is parallel to the plane Oyz or co-

incides with it. The same can also be verified in a different way,

thus: rewrite the equation Ax + D = as x = ---=- and letA
D AU . .

-J-
= a; this gives

According to this equation, all points of our plane have the same
abscissa (x

=
a) and hence are all situated at the same

distance from the plane Oyz (in "front" of it if a > 0, or in

"back" of it if a < 0); consequently, a plane represented by such
an equation is parallel to the plane Oyz. From this, it is also

clear that a is the intercept of our plane on the axis Ox. In partic-

ular, when D =
0, then a = 0; in this case, the plane under
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consideration coincides with the plane Oyz. Thus, the equation
x = represents the plane Oyz.

204. By analogy with the above, it is easily established that:

1. An equation of the form Ax + Cz + D = represents a

plane parallel to the axis Oy (or passing through it); an equation
of the form By + Cz + D = represents a plane parallel to the

axis Ox (or passing through it).

2. An equation of the form By + D = represents a plane

parallel to the plane Oxz (or coincident with it); an equation
of the form Cz + D = represents a plane parallel to the plane
Oxy (or coincident with it). The last two equations can be written,

respectively, as y = b and z = c, where b is the intercept of the

first plane on the axis Oy, and c is the intercept of the second

plane on the axis Oz. In particular, the equation y = represents
the plane Oxz, and the equation z = represents the plane Oxy.

205. Let us consider the equation of a plane,

in which all the coefficients A, 5, C, D are different from zero.

This equation can be reduced to a special form, which is found
convenient when dealing with some problems of analytic geometry.

Transposing the constant term D to the right-hand side of

the equation, we obtain

Dividing both sides of the equation by D, we then obtain

Ax . By . Cz _
1

or

*
I

y
I

* _ i

_ D __j^ _ *L
'ABC

Introducing the notation

___>. b __P_ __j2.

we have
x

, y ,

z ., ...

~~T"^~n~"y (l;

This is the special form of the equation of a plane that we
wished to obtain. The numbers a, 6, c have here a very simple

geometric meaning; namely, a, b and c are the intercepts of the

plane on the respective coordinate axes. To verify this, let us
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find the points in which our plane is pierced by the coordinate

axes. The point of intersection of the plane and the axis Ox is

determined from the equation of the plane, ~-fy+ 7 ==1, under

the additional condition (/== 0,2=0; hence x=a, and so the inter-

cept of the plane on the axis Ox is actually equal to a. In like

manner, the intercepts of the plane on the axes Oy and Oz are

shown to be equal to b and c, respectively.

An equation of the form (1) is referred to as * the intercept

equation of a plane.

Example. Find the equation of the plane whose intercepts on the coordi-

nate axes are a = 2, b = 3, c = 4.

Solution. By the foregoing, the desired equation can be written at once:

65. The Normal Equation of a Plane.

The Distance of a Point from a Plane

206. We shall now consider still another special form, known
as the normal form, of the equation of a plane.

Let there be given any plane Jt. Through the origin, draw the

straight line n (called the normal) perpendicular to the plane JT,

and denote by P the point in which the normal pierces the plane it

(Fig. 103). We shall regard the direction from the point to the

point P on the normal as its positive direction (if P coincides

with 0, that is, if the given plane passes through the origin, the

positive direction of the normal may be chosen at will). Let a, (3,

Y denote the angles which the directed normal makes with the

coordinate axes, and let p be the length of the segment OP.
We proceed to derive the equation of the given plane jt,

assuming that the numbers cos a, cos p, cos Y and p are known.
For this purpose, take an arbitrary point M in the plane n and

designate_the coordinates of M as x, y, z. The projection of the

vector OM on the normal is clearly equal to OP and, since the

positive direction of the normal agrees with that of the segment

OP, the value of this segment is represented by a positive num-
ber, namely, the number p\ thus,

pro) nOM= p. (1)

Now observe that OM =
{x, y, z}. Hence, by the third corollary

to Theorem 20 (Art. 165),

pr o] nOM x cos a+ y cos p -f- z cos 7. (2)
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From relations (1) and (2), it follows that x cosa+ #
+ z cos 7

=
p, or

x cos a+ y cos p+ z cos 7 p= 0. (3)

This is the desired equation of the given plane (as we can see, it

is satisfied by the coordinates x, \jf z of every point M lying in the

plane; on the other hand, if a point M does not lie in the plane,

Fig. 103.

the coordinates of M do not satisfy equation (3), because then

projn OM + p).
The equation of a plane written in the form (3) is called the

normal equation of a plane; cos a, cos p, cos f are here the direc-

tion cosines of the normal, and p is the distance of the plane from
the origin.

207. Let there be given an arbitrary plane. Draw its normal n
and assign a positive direction to the normal as described in the

preceding article. Further, let M* be any point in space, and let d
denote the distance of M* from the given plane (see Fig. 103).

We shall agree to define the departure of the point M* from
the given plane as the number +d if M* lies on that side of the

plane towards which the directed normal points, and as the num-
ber d if M* lies on the other side of the plane. We shall denote
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the departure of a point from a plane by the letter 6; thus,

6 = d, and it will be helpful to note that 6 = +d when the

point M* and the origin are on opposite sides of the plane, and

5 = d when M* and the origin are on the same side of the

plane. (For points lying in the plane, 6 = 0.)

Theorem 26. For a point M* having coordinates (x*, (/*, z*)
and a plane represented by the normal equation

x cos a+ y cos p -+ z cos 7 p = 0,

the departure of the point M* from the plane is gfyen by the fo%-

mula
8= x* cos a+ y* cos fi+ z* cos 7 p. (4)

Proof. Project the point M* on the normal; let Q be the pro-

jection (see Fig. 103); then

%= PQ = OQ~ OP,

whereJPQ, OQ^and OP are the values of the directed segments

PQ, OQ and ~OP of the normal. But OQ -
proj n OM*, OP =

p\

hence _
B^projflOAP /?. (5)

By the third corollary to Theorem 20 (Art. 165),

proj/Mf= x* cos a -f- y* cos p+ z* cos 7. (6)

From (5) and (6), we obtain

8 = x* cos a -f- y* cos p -f- 2* cos 7 /?.

The theorem is thus proved.
Note now that x* cos a + y* cos p + z* cos 7 p is nothing

more than the left-hand member of the normal equation of the

given plane, with the current coordinates replaced by the coordi-

nates of the point M*. Hence we have the following rule:

To find the departure of a point M* from a plane, the coordi-

nates of the point M* must be substituted for the current coordi-

nates in the left-hand member of the normal equation of the plane.
The resulting number will be the required departure.

Note. To find the distance of a point from a plane, we have

merely to compute the departure by the rule just given, and to

take its absolute value.

208. We shall now show how to reduce the general equation of

a plane to the normal form. Let

+ D= Q (7)
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be the general equation of a plane, and let

x cos a -f- y cos p+ 2 cos 7 /?
= (3)

be its normal equation.
Since equations (7) and (3) represent the same plane, the

coefficients of these equations are, by Art. 202, proportional. This

means that, on multiplying equation (7) throughout by a certain

factor jx, we shall obtain the equation

= 0,

which will be identical with equation (3); that is, we shall have

, pDp. (8)

To find the factor jn, square and add the first three of these rela-

tions; this gives

= cos2 a+ cos2
p+ cos2

?.

But, according to Art. 140, the right member of this last relation

is equal to unity. Hence

~ *

The number ji, multiplication by which reduces the general equa-
tion of a plane to the normal form, is called the normalising fac-

tor of that equation. Formula (9) determines the normalising fac-
tor incompletely, since its sign remains unspecified. To determine
the sign of the normalising factor, let us use the fourth of rela-

tions (8). According to this relation, |j,D
=

p, which means that

\iD is a negative number.

Hence, the normalising factor is opposite in sign to the con-

stant term of the equation to be normalised.

Note. If D =
0, the sign of the normalising factor may be

chosen at pleasure.

Example. Given the plane 3* 4y + 12z + 14 = and the point M(4,3, 1).

Find the departure of M from the plane.
Solution. To apply the rule stated in Art. 207, we must first reduce

the given equation to its normal form. For this purpose, we find the normalis-

ing factor

= 1 ^ 1

* ~~

^324.424.122
~

13
"

Multiplying our equation by fi, we get the desired normal equation of the

plane:

13 -521
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Substituting the coordinates of M in the left member of this equation, we have

& = -L (3.4 4.3+12.1 + 14) = 2.
*

Thus, the point M has a negative departure from the given plane and Is

at the distance d = 2 from that plane.

66. The Equations of a Straight Line

209. We have already pointed out in Art. 191 that, in solid

analytic geometry, every curve is regarded as the intersection

of two surfaces and is represented by two equations. In particular,

every straight line will be regarded as the intersection of two

planes and will, accordingly, be represented by two equations of

the first degree (in cartesian coordinates, of course).
Let a rectangular cartesian system of coordinates be attached

to space. Consider an arbitrary straight line a (Fig. 104). Let jtj

y

Fig. 104.

and Ti2 denote any two distinct planes intersecting in the line a,

and suppose that the equations of these planes are known; we
shall write them as

and

Since the line a is the intersection of the planes jti and ji2, if is

represented by their two equations, taken simultaneously:

+.Z) 1
= 0, 1

+ D
2
= 0. J

0)

210. Suppose that we are given beforehand two equations of

the first degree; let them be of the form (1). Will they, when con-

sidered simultaneously, always represent a straight line? Clearly,

they will represent a straight line if, and only if, the correspond-
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ing planes are non-parallel and non-coincident, that is, if the nor-

mal vectors #1 = {A\> BI, Ci} and #2 = {^2, B 2 ,
C2} of these planes

are non-collinear. Recalling that the collinearity condition for two
vectors is that their coordinates should be proportional (see Art
154), we conclude:

Two equations of the form (1), taken simultaneously, represent
a straight line if, and only if, the coefficients A it B it C4 of one

of the equations are not proportional to the coefficients A%, B& Ca

of the other.

211. An infinite number of distinct planes pass through every
straight line; obviously, there exist infinitely many possibilities
of selecting two planes from that number. It follows that every

straight line can be represented by two equations chosen in infi-

nitely many different ways. We shall now show a very simple meth-
od which enables us, by combining the known equations of two

planes passing through the given straight line, to obtain from
them any desired number of new equations, each of which will

also represent a plane passing through the given line.

Let there be given a straight line a and the equations of two
distinct planes jti and Jt2, passing through this line:

A^x+ B$ -f Cjz -4- D!= and A>JC -f- B2y+ C2z 4- D 2
= 0.

Let us take any two numbers a and p, which are not both simul-

taneously equal to zero, and form the relation

a (A,x+ B,y+ C,z+ A)+ P (A*+ B&+ C2z+ A)= O f (2)

or, written in a different form,

MJ+M2) x+ (aA+ B2) y+ (aC,+ pC2) z+(^+ P^2)
= 0.

(3)

It is easy to show that the three numbers aAi + p/! 2 , aB { + pB2

and aCi + pC2 cannot all be zero simultaneously. For, if aAi +
+ P^2 = 0, afli 4- pB2

- 0, aCt -f pC2
- 0, then

^L... __L ^i _ __P. J^L _ A
A2

a
' B 2 a.

' C2
a

"

6
Since the numbers a and p are not both zero, the ratio - cannot

be indeterminate; from the above proportions, it therefore follows
that AI, BI, Ci are proportional to A Zj B2 ,

C2 , i. e., that the normal
vectors n\ = {^4 lf BI, d} and n% == (A^ J32 , C21 of the given planes
are collinear; but this is impossible, since the given planes are

non-parallel and non-coincident.

Since the three numbers aA\ + p^4 2 , aB { + pB 2 , and aCi + pC2

cannot all vanish at the same time, relation (3) is an equation. It

13*
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is obviously an equation of the first degree and hence it represents
a plane.

Furthermore, since equation (3) is a consequence of the equa-
tions Ai* + B {y + CiZ + Di = and A 2x + B2y + C2z + D2

= 0,

it follows that every triad of numbers (#, y, z) satisfying these

two equations satisfies equation (3) as well. Hence, every point

lying on the intersection of the planes ni and 312 also lies in the

plane represented by equation (3). In other words, equation

(3) or equation (2), which is equivalent to (3) represents
a plane through the line a.

Thus, if

:0 and

are the equations of two planes passing through a straight line,

then the equation

a (A,x+ B,y+ C,z+ DO+ p (A2x+ B
2y+ C2z+ D

2)
=

(2)

represents a plane passing through the same straight line.

We can use this proposition to simplify the equations of a

straight line. For example, the equations of the straight line

2 5=
can be replaced by simpler ones as follows: combine the given

equations, setting first a = 1, p
=

1, and then a = 1, p = 1; this

will give the equations

=(U
= 0, )

representing the same straight line as the original equations.

212. Let a straight line a be represented by the equations

>2=0,

as the intersection of the two planes ni and Jt2 . We know that the

equation

a (A& 4- B$ 4- Cjz+ DO+ P (A^x+ B
2y+ C2e 4- D2)

== 0, (2)

for all values of a, |3 (not both zero) represents a plane through
the straight line a. We shall now prove that it is always possible
to select the values of a, p so that equation (2) will represent any
(previously assigned) plane passing through the line a.
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Since each plane passing through the line a is determined by
specifying (beside the line a) one of its points, it follows that, in

order to prove the assertion just made, we have merely to show
that the numbers a, p in (2) can always be chosen so as to make
the plane represented by (2) pass through any preassigned point

M*(**, y*, z*).
But this is evident; for, the plane represented by equation (2)

will pass through a point M* if the coordinates of M* satisfy this

equation, that is, if

a (AlX
*+ BlV

*+ Qz*+ A)+ P (^2**+ B2y
*+ C2z*+D

2)
= 0. (4)

We assume that the point M* does not lie on the line a (this

being the only case we are concerned with). Then at least one of

the numbers A {x* + By* + C {z* + D lf A&* + B2y* + C2z
* + D2

is different from zero, and hence (4) is an equation of the first

degree in two unknowns, a and p. To find the unknowns a, p, one
of them is assigned an arbitrary value, and then the value of the

other is computed from the equation; for example, if A^ + B^y* +
C22* + D2

= 0, then a may be assigned any value (other than

zero), and the corresponding value of p may then be determined
from the relation

~~
A2x*+B2y*+C2z*+D2

'

Thus, an equation of the form (2) can be made to represent
a plane passing through any preassigned point in space, and hence
to represent any plane passing through the given straight line a.

213. The totality of planes passing through the same straight
line is called a pencil of planes. An equation of the form (2) is

called the equation of a pencil of planes since, by assigning
appropriate values to a and p, it can be made to represent every

plane of a pencil.
P

If a =0, then, letting
=

>,, we obtain from (2)

+D
l+ X (A2x+ B2y+ C2z+ D2)

= 0. (5)

In practical solving of problems, this form of the equation of

a pencil of lines is used more frequently than the form (2). How-
ever, it is important to note that, since the case a = is excluded
when reducing (2) to (5), an equation of the form (5) cannot

represent the plane A%x + B2y + C%z + D2
= 0; that is, an equa-

tion of the form (5) can be made, by varying the value of X, to

represent every plane of the pencil except one (the second of the

two given planes).

14-521
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67. The Direction Vector of a Straight Line.

The Canonical Equations of a Straight Line.

The Parametric Equations of a Straight Line

214. We shall now introduce a special form of the equations
of a straight line, which is conveniently used in solving some

problems of analytic geometry. This special form of the equations
of a straight line can be derived from its general equations by
algebraic transformations; however, we prefer to establish it by
a direct method, exhibiting the geometric aspect of the matter.

Let there be given a straight line. Every non-zero vector lying
on the given line or parallel to it is called the direction vector of

that line. The term "direction vector" is applied to such vectors

because any one of them, once it has been

specified, determines the direction of the

line.

We shall denote the direction vector of

/an arbitrary straight line by the letter a, and
the coordinates of this vector by /, m, n:

a= {/, m, n}.

Fig. 105. We proceed now to derive the equations
of the straight line passing through the

given poin\t MQ (xQf yQ, ZQ) and having the given direction vector

a = {/, m, n}.

These equations are easily obtained as follows. Let M(K, y, z)
be an arbitrary ("variable") point of the straight line (Fig. 105)
The vector

AfoAf (* x y y , z ZQ }

is collinear with the direction vector

<*={/, m, n}.

Hence the coordinates of the vector MQM are proportional to those

of the vector a :

X XQ _ y yo Z ZQ /n______= -__. (1)

We see that these relations are satisfied by the coordinates of

every point M(x, y, z) lying on the line under consideration; on
the other hand, if a point M(x, y, z) does not lie on the line, its

coordinates do not satisfy relations (1), since in this case the

vectors MQM and a are non-collinear and their coordinates are

not in proportion. Thus, equations (1) are the equations of the
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straight line passing through the point MQ (xQ , yQ ,
ZQ ) in the direc-

tion of the vector a
{/, m, n}.

We shall refer to equations having the special form just
derived as the canonical equations of a straight line.

The coordinates /, m, n of any direction vector a of a straight
line are called the direction parameters of the line; the direction

cosines of the vector a are called the direction cosines of the line.

215. Let a straight line be represented by two general equa-
tions,

=
( >

We shall now show how to derive the canonical equations of

this line.
- Let HI and jr2 denote the planes represented by the given

equations, and let Hi and HI be the normal vectors of these planes.
To form the canonical equations of our straight line, it is neces-

sary:

(1) to find a point MQ (XQ, yQj ^o) of this line by assigning an

arbitrary value to one of the unknown coordinates x
, y$, ZQ and

substituting this value for the corresponding variable in equations
(2), whereupon the two other coordinates will be determined from

equations (2) by solving them simultaneously;

(2) to find the direction vector a = {/, m, n}. Since the given

straight line is determined by the intersection of the planes jii

and Jt2, it is perpendicular to each of the vectors n
l
and #2 (see

Fig. 104). Hence we can take as the vector a any vector perpen-
dicular to the vectors tti and #2, say, their vector product:
a = [^ 1

w2 ]- Since the coordinates of the vectors m and n 2 are

known: #1 = {/4i, B ly d}, tf2 = {^4 2 ,
ZJ 2 , C2

),
the coordinates of the

vector a= {/, m, n} can be computed by simply using Theorem 21

(Art 173).

Example. Find the canonical equations of the straight line

z 11=0, )

3z 1=0.)

Solution. Setting, for example, XQ
=

1, we find from the given system:

t/Q
= 2, z =

1; thus, we have already determined a point Af (l, 2, 1) of the

line. Let us now find its direction vector. We have: n\ = {3,2,4}, #2 =
{2, 1, 3};

hence a = [n {
n2 ]
=

{ 10, 17, 1}, that is, / = 10, m = 17, /i = l.

The canonical equations of the line are obtained by substituting the values

of x0t f/ , 2o and I, m> n so found in equations (1):

_ __

10
~

17
""" - 1

14*
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216. Let there be given the canonical equations of a straight
line. Denote by t each of the equal ratios forming part of these

canonical equations; we then have

X X y
-- y Z~

/ m
Hence

^ jo.
i

ij.

(3)

These are the parametric equations of the straight line passing
through the point MQ(XQ, y , ZQ) in the direction of the vector

a =
{/, m, n}. In equation (3), t is regarded as an arbitrarily

varying parameter, and x, y, z as functions of t\ as t varies, the

quantities x, y, z vary in such a manner that the point M(x, y, z)
moves along the given straight line. The parametric equations
of a straight line are conveniently used in cases where it is

required to find the point of intersection of the straight line with

a plane.

Example. Given the straight line

and the plane 2x -f y + z- 6 = 0; find their point of intersection.

Solution. The problem amounts to determining x, y, z from the three

given equations (we have two equations of the straight line and one equa-
tion of the plane). The necessary computations will be made simpler if we
raise the number of unknowns (and the number of equations) to four by
letting
jc_2 y 3 z 4 .

l= ^- = ~ =
t\ hence

Substituting these expressions in the left member of the equation of the

given plane, we at once obtain a single equation in one unknown:

Solving this equation, we get t = 1, and hence the coordinates of the

required point are x = 1, y = 2, z = 2.

217. Let us agree to regard t as the number of seconds that

have passed from a preset instant of time ("the instant of start-

ing the stop-watch"), and let us consider equations (3) as the

equations of motion of the point M(x, y, z) (see Art. 45). We now
proceed to clarify the nature of this motion.
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First of all, it is evident from the foregoing that the point
M is in rectilinear motion along the straight line passing through
the point M in the directon of the vector a =

{/, m, n}.

Furthermore, it is easy to verify that the motion of the point
Af, as determined by equations (3), is uniform motion. For, by
(3), we have

these three relations are equivalent to the single vector equation

It is hence apparent that the displacement M M experienced

by the point M in the time of / seconds is equal to the vector

a elongated "/-fold". Thus, the displacement of the point M is

proportional to time /, which means that the motion of the point
M is uniform.

Finally, let us compute the speed of the point M. For this

purpose, note that, in the course of the first second (from t =
till t = 1), the point M experiences the displacement MQM ~ a.

Consequently, the velocity of the point M is numerically equal
to the modulus of the vector a; that is, the speed of M is

v= |/7
2
-f- /ft

2
~f- n2

- Thus, equations (3) determine the uni-

form rectilinear motion of the point M (x, y, z) at the speed
"

~|_ #2" in the direction of the vector a =
{/, m, n}\ the

point MQ (XQ, i/o, zo) is the initial position of the variable point
M (x, y, z), which means that the point M coincides with the point
Mo at * = 0.

Example. Find the equations of motion of the point M(xt y,z) which, start-

ing from MO (1, 1, 1), moves rectilinearly and uniformly in the direction of

the vector s = {2, 3, 6), at the speed v = 21.

Solution. Comparing the modulus of the vector s, which is equal to

|/"2
2
-f- 3

2
-f- 6

2 = 7, with the given speed v = 21, we see that we must take

the vector s stretched threefold as the vector a; that is, a = {6, 9, 18}. The
desired equations are

68. Some Additional Propositions
and Examples

218. In analytic geometry it is often required to write the

equations of a straight line two of whose points are given. We
shall now find the general solution of this problem, letting

M\(x\* y\> *i) and MI(X y ^2)

be two given arbitrary points of the line.

15 -521
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In order to solve the problem, it is sufficient to note that the

vector a = MiM2 can be taken as the direction vector of the line

in question; hence

Assigning to the point Mi(x\, r/i, Zi) the role played by the

point MQ in Art. 215, we obtain

These are the desired (canonical) equations of the straight
tine passing through the two given points M 1 (x 1 , j/ lf

2
4 )

and
M2 (x2 , 1/2,

z2 ).

219. Let us also find the general solution of the following

problem: To write the equation of the plane passing through the

three distinct points Af 4 (*i, y\, Zi), M2 (x2 , t/2 ,
z2 )

and M 3 (;c3 , j/3 ,
z3 ).

Let x, /, z denote the coordinates of an arbitrary point M
in space, and consider the three vectors M\M =

{x x\, y t/i,

z Zi}, MiM2
=

{#2 *i, 1/2
i[i,

z2 Zi} and M {
M3

=
(x3 xi,

1/3 {/i
z3 zj. The point M lies in the plane AfiM2M3 if, and

only if, the vectors AfiAf, M 4A12 and MiM3 are coplanar; by Art.

185, the condition for coplanarity of these three vectors is that

the determinant of the third order formed from their coordinates

should be equal to zero. In the present case, this gives

X

X
l

= 0.

This is the desired equation of the plane passing through the

points MI, M2 ,
M 3 ,

since it is satisfied by the coordinates x, y, z

of a point M if, and only if, the point M lies in the plane.

220. The solution of a number of problems of analytic geometry
requires the knowledge of conditions for the parallelism and the

perpendicularity of two planes, of two straight lines, or of a

straight line and a plane. We proceed to derive these conditions.

(1) Let

be the equations of two given planes. These planes are paral-
lel if, and only if, their normal vectors HI = {A iy B lf d},
#2
=

(^4 2) B 2) C2)
are collinear (Fig. 106; coincident planes are
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considered here as a special case oi parallel planes). Hence, by
Art. 154, we obtain the following condition for the parallelism of
two planes:

AI B2 C%

"A"" "7 ~CT'

The given planes are perpendicular if, and only if, their normal
vectors are perpendicular (Fig. 107). Hence, by Art. 165, we have
the following condition for the perpendicularity of two planes:

= 0.

(2) Let

be the equations of two given straight lines. These lines are

parallel if, and only if, their direction vectors ai = {/ lf mi,

Fig. 106. Fig. 107.

a 2
=

{/2, /W2, n2} are collinear (Fig. 108; coincident lines are consid-

ered here as a special case of parallel lines). This gives the

following condition for the parallelism of two straight lines:

The given straight lines are perpendicular if, and only if,

their direction vectors are perpendicular (Fig. 109; in space,

perpendicular straight lines need not necessarily intersect). Hence
we get the condition for the perpendicularity of two straight
lines:

15*
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(3) Let there be given a straight line,

x x y y Q _ z

I m
and a plane,

The straight line is parallel to the plane if, and only if, the

direction vector a={/, m, n] of the line is perpendicular to the

ft*

Fig. 108. Fig. 109.

normal vector #= [A, B, C} of the plane (Fig. 110; the case when
the straight line lies in the plane is considered here as a special

Fig. 110. Fig. 111.

case of parallelism). Hence we have the following condition for
the parallelism of a straight line and a plane:

The straight line is perpendicular to the plane if, and only if,

the direction vector of the line is collinear with the normal vector

of the plane (Fig. 111). Hence we obtain the following condition
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for the perpendicularity of a straight line and a plane:

A IL*L
I m n

Below we give a few numerical examples.

221. Example 1. Find the equation of the plane passing through the line

3*+ 2y 4- 5*4-6 = 0,

*+ 4y4-3*+ 4 =
and parallel to the line

Solution. Let us form the equation of the pencil of planes (see Arts 212,

213) passing through the first of the given lines:

3*+ 2y+ 5e-f6+ X(*+ 4y+ 3z+ 4) = 0. (1)

From this pencil, we are to select the plane parallel to the second line; this

amounts to finding the appropriate value of X. Write equation (1) as

0. (2)

The required plane must be parallel to the line

x\ _ y~5 +]_
3

~~
2

~
3

'

Using the parallelism condition for a line and a plane, we obtain the fol-

lowing equation in the unknown K:

3 (3 4- X) 4- 2 (2 4- 4X) 3 (5+ 3X) = 0.

Hence A =* 1. Substituting this value for K in equation (2), we find: 4* -f

+ 60 + 8z + 10 = 0, or 2x + 30 + 4z + 5 = 0.

Example 2. Given the line

find its projection on the plane 5* -f 2y -f 2z 7 = 0.

Solution. We must find the plane passing through the given fine and

perpendicular to the given plane; the desired projection will then be deter-

mined as the intersection of this plane and the given plane. Let us form
the equation of the pencil of planes passing through the given line:

4y 3<r 2)=0. (3)

This equation represents the required plane for a certain value of X, which
we shall now determine. Write equation (3) as

2X):=0. (4)

The required plane must be perpendicular to the given plane. Using the

perpendicularity condition for two planes, we get the following equation in

the unknown K:
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Hence X = 1. Inserting the value of X in (4), we find the equation of the plane

passing through the given line and perpendicular to the given plane:
4x 6y 4z + 2 =0, or 2x 3y 2z + 1 = 0. The projection of the given
line on the given plane is thus represented by the equations

3y 2*+ 1=0, )

7 = O.J-f 2z

Example 3. Find the distance from the point P(l, 1, 1) to the line

jr 11 y 18 z 4__ _
2

~
5

~
-2 '

Solution. Through P, pass a plane a perpendicular to the given line, and
find the point Q in which this plane intersects the given line. The desired

distance from the point P to the given line will be equal to the distance

from the point P to the point Q.

By Art. 199, the equation of the plane a may be written in the form

this plane must be perpendicular to the given line. By the perpendicularity
condition for a line and a plane, we have

A _ B _ C
2

~~
5

~~
2

'

letting, for simplicity, the factor of proportionality to be equal to unity, we
find A =

2, B =
5, C = 2. Thus, the plane has as its equation 2(x 1) +

+ 5(0 1) 2(z 1) =0, or 2x + by 2z 5 = 0. Next, we must find the

point Q where this plane intersects the given line. This is achieved by solving
the equations of the given line simultaneously with the equation of the plane
a just found. Proceeding as shown in Art. 216 (see the example at the end
of that article), we find the coordinates of the point Q to be x = 5, ^

=
3,

z = 10. The desired distance d from the point P to the given line, which is

equal to the distance between the points P and Q, is then found from the

well-known distance formula:

d = |/~(5- 1)
2+ (3 1)2+ (10 1)2

= j/To! 10.



Chapter 13

QUADRIC SURFACES

69. The Ellipsoid and the Hyperboloids

222. According to Art. 196, quadric surfaces (i. e., surfaces of

the second order) are those represented by an equation of the

second degree in cartesian coordinates. In this chapter we shall

discuss various quadric surfaces. To begin with, we shall consider

the ellipsoid and the two hyperboloids; these surfaces are the

space analogues of plane ellipses and hyperbolas.

223. An ellipsoid is defined as the surface represented, in a

rectangular cartesian system of coordinates, by the equation

Equation (1) is called the canonical equation of an ellipsoid.

In order to form a clear idea of the shape of an ellipsoid and
to sketch the surface, we shall use the so-called "method of paral-
lel sections".

Consider the sections of the given ellipsoid by planes parallel
to the coordinate plane Oxy. Every such plane is represented by
an equation of the form z = h, and the corresponding curve of

intersection is represented by the two equations

z h.

Hence it can be seen that: (1) when \h\<c t
the plane z = h

intersects the ellipsoid in an ellipse having semi-axes

W

and symmetric with respect to the planes Oxz and Oyz\ (2) the

quantities a* and b* have their largest values when h = (then
a* == a, 6* = 6); in other words, the largest of these ellipses
is the section by the coordinate plane 2 = 0; (3) as \h\ increases,
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the quantities a* and 6* decrease; (4) when h = c, the quanti-
ties a* and b* become zero, that is, the ellipse which is the section

of the ellipsoid (1) by the plane z = c or by the plane z = c

degenerates into a point; in other words, the planes 2 = c are

tangent planes to the ellipsoid; (5) when \h\ > c, equations (2)

represent an imaginary ellipse; this means that, when \h\ > c, the

plane z = h does not meet the given ellipsoid at all.

We have an entirely analogous situation when considering
the sections of the ellipsoid by planes parallel to the coordinate

planes Oxz and Oyz. It will therefore be sufficient to note that

the plane Oxz intersects the ellipsoid in the ellipse represented

by the equations ^V~|-~2~ 1 and y = 0, and that the plane Oyz

intersects the ellipsoid in the ellipse represented by the equations
V
2 z'2

-^2"+-^-
= 1 and x = (see Fig. 112, showing the sections of the

ellipsoid (1) by the planes Oxy, Oxz and z = h).

Fig. 112.

Bringing the above results together, we may conclude that

an ellipsoid is a closed oval surface having three mutually per-

pendicular planes of symmetry. In the chosen coordinate system,
these planes coincide with the coordinate planes.

224. The quantities a, 6, c are called the semi-axes of an

ellipsoid. If they are all of a different length, the ellipsoid is

referred to as triaxial. Let us consider the case where two of the

quantities a, 6, c are equal. Let, for instance, a = b. Then equa-
tions (2) represent a circle with centre on the axis Oz. From this

it follows that, when a = 6, the ellipsoid may be thought of as

the surface generated by revolving an ellipse about one of its

axes. An ellipsoid generated by revolving * an ellipse about its

major axis, is called a prolate ellipsoid of revolution-, an ellipsoid
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obtained by revolving an ellipse about its minor axis is called

an oblate ellipsoid of revolution. In the case a = b = c, the ellip-

soid is a sphere.

225. Consider the equation

x 2
y* z2

-^r+ 'p'+ Tr 1- (3)

Its left member is an expression identical with the left member
of the canonical equation of an ellipsoid. Since this expression >-0,

whereas the right member of (3) is 1, it follows that equation
(3) represents no real geometric object. In view of its similarity
to (1), equation (3) is referred to as the equation of an imaginary
ellipsoid.

226. We turn now to a consideration of the hyperboloids. There
exist two of them: the hyperboloid of one sheet, and the hyperbo-
loid of two sheets.

A hyperboloid of one sheet is the surface represented, in a

rectangular cartesian system of coordinates, by the equation

A hyperboloid of two sheets is the surface represented by the

equation

Equations (4) and (5) are called the canonical equations of

the hyperboloids.

227. In this article we shall investigate the hyperboloid of one
sheet

Consider its sections by the coordinate planes Oxz and Oyz. The
section by the plane Oxz is represented by the equations

We see that this section is a hyperbola symmetric with respect
to the coordinate axes Ox, Oz and cutting the axis Ox in the
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points (a, 0, 0) and (a, 0, 0). The section by the plane Oyz is

represented by the equations

it is a hyperbola symmetric with respect to the axes Oy, Oz and

cutting the axis Oy in the points (0, ft, 0) and (0, 6, 0).

Consider now the sections of the given hyperboloid by planes

parallel to the coordinate plane Oxy. Every such plane is repre-
sented by an equation of the form z /i, and the section of the

hyperboloid by such a plane is represented by the equations

X 2 V 2 h2
\

*,
i

y i i

tl

a 2 """
b*
~ """

c 2
'

j. /gy

z h I& u.
j

Hence it is clear that: (1) every plane z = h intersects the hyper-
boloid (4) in an ellipse having semi-axes

and symmetric with respect to the planes Oxz and Oyz\ (2) the

quantities a* and 6* have their smallest values when h =
(then a* = a, 6* = 6); in other words, the smallest of these

ellipses is the section by the coordinate plane z = (this ellipse
is called the gorge ellipse of a hyperboloid of one sheet); (3) as

\h\ increases indefinitely, the quantities a* and 6* also increase

indefinitely (Fig. 113).

Summarising the above results, we may conclude that the

hyperboloid of one sheet has the shape of an endless tube flaring
out indefinitely on both sides of the gorge ellipse. The hyperboloid
of one sheet possesses three mutually perpendicular planes of

symmetry; in the coordinate system chosen, these planes coincide

with the coordinate planes.

228. The quantities a, 6, c are called the semi-axes of the

hyperboloid of one sheet. The first two of them (a and b) are

shown in Fig. 113. To draw the semi-axis c, it would be necessary
to construct the fundamental rectangle of either of the two hyper-
bolas which are the sections of the hyperboloid of one sheet by the

planes Oxz and Oyz.
Note that, in the case a = 6, equations (6) represent a circle

with centre on the axis Oz. It follows that, when a = 6, the hyper-
oloid of one sheet may be thought of as the surface generated
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by revolving a hyperbola about one of its axes, namely, about
that axis which does not intersect the hyperbola.

Fig. 113.

229. We now proceed to "investigate the hyperboloid of two
sheets

^4--^ ^2-
= 1'

Consider its sections by the coordinate planes Qxz and Oyz< The
section by the plane Oxz is represented by the equations
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We see that this section is a hyperbola symmetric with respect
to the coordinate axes Ox, Oz and cutting the axis Oz in the

points (0, 0, c) and (0, 0, c). The section by the plane Oyz is

represented by the equations

--*- \ \

t>
2 c2 *'

I

it is a hyperbola symmetric with respect to the axes Oy, Oz and

cutting the axis Oz (also in the points (0, 0, c) and (0, 0, c)).

Consider, finally, the sections

of the given hyperboloid by
planes parallel to the coordinate

plane Oxy. Every such plane is

represented by an equation of

the form z = A, and the section

of the hyperboloid by such a plane
is represented by the equations

i -j-r 2 C 2

z= h.
(7)

Hence we see that: (1) when
[h\ > c, the plane z = h intersects

the hyperboloid of two sheets in

an ellipse having semi-axes

and symmetric with respect to the

planes Oxz and Oyz\ (2) as \h\ in-

creases, the quantities a* and 6*

increase; (3) as \h\ increases in-

definitely, a* and b* do likewise;

(4) as \h\ decreases and tends to

c, a* and 6* also decrease and
tend to zero; for h = c, we have

Fi S- 114- a* = 0, 6* = 0, which means
that the ellipse constituting the

section by the plane z = c or by the plane z = c degen-
erates into a point; in other terms, the planes z = care tangent

planes to the hyperboloid; (5) when \h\ < c, equations (7) repre-
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sent an imaginary ellipse; this means that, when \h\ < c, the plane
z = h does not meet the given hyperboloid at all (Fig. 114).

Bringing together all these results, we conclude that a hyper-
boloid of two sheets is the surface composed of two distinct

"sheets" (hence its name: "the hyperboloid of two sheets"), each
of which has the shape of a convex bowl of endless extent. The

hyperboloid of two sheets has three mutually perpendicular planes
of symmetry; in the coordinate system chosen, these planes coin-

cide with the coordinate planes.

230. The quantities a, 6, c are called the semi-axes of the

hyperboloid of two sheets. Shown in Fig. 114 is only the quan-
tity c. To draw a and 6, it would be necessary to construct the

fundamental rectangles of the hyperbolas which are the sections

of the hyperboloid of two sheets by the planes Oxz and Oyz.
Note that, in the case a = 6, equations (7) represent a circle

with centre on the axis Oz. It follows that, when a = b, the hyper-
boloid of two sheets may be regarded as the surface generated by
revolving a hyperbola about one of its axes, namely, about the

axis intersecting the hyperbola.

70. The Quadric Cone

231. Consider the equation
v-2 2 Z2

?r
= 0. (1)

The distinctive feature of (1) is that it is a homogeneous
equation, that is, all its terms are of the same degree (

=
2).

Hence we have the following geometric property of the surface

represented by this equation:

// a point M (other than the origin) lies on this surface, then

all points of the straight line which passes through the origin and
the point M also lie on this surface.

To prove our assertion, let M be a point with coordinates

(/, m, n), and let N be any point of the line OM. By Art. 216, the

coordinates x, y, z of the point N are determined by the relations

x lt, y=mt, z= nt,

where t is some number. Suppose that the point M lies on the

surface under consideration; then

But in this case

6s
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and hence the point N also lies on this surface. This completes
the proof.

Note that this property is possessed by every surface which
is represented in cartesian coordinates by a homogeneous equa-
tion (since the above argument was based solely on the homo-

geneity of a given equation). In other words, a surface represented
by a homogeneous equation is

made up of straight lines all pass-

ing through the same point,

namely, through the origin. Such a

surface is called a conic surface,
or simply a cone. The straight
lines making up the cone are

called its elements, and the point

through which all the elements

pass is referred to as the vertex

of the cone.

In particular, the surface repre-
sented, in a cartesian system of

coordinates, by an equation of the

form (1) is called a quadrtc
cone.

To form a clear idea of the

shape of a quadric cone, we have

merely to consider its section by
a plane not passing through the

origin (that is, by a plane not

passing through the vertex of the

cone). Take, for example, the

plane z = c. The section of the

cone by this plane is represented

by the equations

Fig. 115. z c.

(2)

Obviously, this section is an ellipse having semi-axes a, b and

symmetric with respect to the coordinate planes Oxz

and Oyz.
The sketch of a quadric cone given in Fig. 115 has been drawn

in accordance with this result.

Note that, if a = 6, the ellipse represented by equations (2)

becomes a circle with centre on the axis Oz and, consequently,
the cone is then a circular cone.
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232. Consider the equation

it represents a single real point: x = 0, y = 0, z = 0. However,
in view of its similarity to equation (1), equation (3) is often

called the equation of an imaginary cone.

71. The Paraboloids

233. There exist two surfaces which are the space analogues
of plane parabolas. These surfaces are called the paraboloids (the

elliptic paraboloid and the hyperbolic paraboloid).

234. An elliptic paraboloid is the surface which is represented*
in a rectangular cartesian coordinate system, by the equation

(where p and q are positive). Equation (1) is called the canonical

equation of an elliptic paraboloid. We proceed to investigate this

surface by the method of sections.

Let us consider, first of all, the sections by the coordinate

planes Oxz and Oyz. Setting y = 0, we have, from (1), x2 = 2pz;

thus, the section by the plane Oxz is represented by the equations

y = 0.

We see that the section is a parabola (with vertex at the

origin) opening upwards and symmetric with respect to the axis

Oz\ the parameter of this parabola is equal to p. The section by
the plane Oyz is represented by the equations

and is an analogously situated parabola with parameter q.

Let us now consider the sections of the given paraboloid by
planes parallel to the coordinate plane Oxy. Every such plane is

represented by an equation of the form z = A, and the section of

the paraboloid by such a plane is represented by the equations
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Hence it can be seen that: (1) if h > 0, the plane z = h inter-

sects the elliptic paraboloid in an ellipse with semi-axes

a*= Y%hp, b*= Y2hq and symmetric with respect to the planes
Oxz and Oyz\ (2) as h increases, the quantities a* and 6* in-

crease; (3) as h increases indefinitely, a* and b* do likewise; (4)

as h decreases and tends to zero, a* and 6* decrease and tend to

zero, too; when h = 0, we have a* = 0, 6* = 0; this means that

the ellipse which is the section of the paraboloid (1) by the plane
2 = degenerates into a point; in other terms, the plane z

is tangent to the given elliptic paraboloid; (5) if h < 0, equations

(2) represent an imaginary ellipse, which means that, if h < 0,

the plane z = h does not meet the given paraboloid at all

(Fig. 116).

Fig. 116.

Summarising the above results, we conclude that an elliptic

paraboloid has the shape of a convex bowl of endless extent.

It possesses two mutually perpendicular planes of symmetry; in

the chosen coordinate system, these planes coincide with the

coordinate planes Oxz and Oyz. The point coincident with the

origin of this system is called the vertex of the elliptic paraboloid;

the numbers p and q are called the parameters of the elliptic

paraboloid.
Note that, if p = q, equations (2) represent a circle with

centre oti the axis Oz. It follows that, if p = q, the elliptic para-

boloid may be thought of as the surface generated by revolving
a parabola about its axis.
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235. The surface represented in a rectangular cartesian system
of coordinates by an equation of the form

v-2 V 2

fc-T T (3)

(where p and q are positive) is called a hyperbolic paraboloid.
Let us investigate this surface.

Consider the section of the hyperbolic paraboloid by the plane
Oxz. Setting y = 0, we have, from (3), x2 = 2pz\ thus, the section

by the plane Oxz is represented by the equations

(4)

We see that this section is a parabola with vertex at the origin,

opening upwards and symmetric with respect to the axis Oz\ the

parameter of the parabola is equal to p.

Next consider the sections of the given paraboloid by planes

parallel to the plane Oyz. Every such plane is represented by an

equation of the form x = ft, and the section of the paraboloid by
such a plane is represented by the equations

(5)

Hence we can see that, for any ft, the plane x = ft intersects the

hyperbolic paraboloid in a parabola open downwards and symme-
tric with respect to the plane Oxz (see Art. 120). It is apparent
from the first of equations (5) that all these parabolas have
the same parameter equal to q\ the vertex of each of these para-
bolas lies on the curve of intersection of the paraboloid and the

plane Oxz (Fig. 117), that is, on the parabola open upwards and

represented by equations (4).

Note that every plane y = ft intersects the hyperbolic parabo-
loid in a parabola open upwards, as is evident from the equations

which represent such sections; one of these sections, namely, that

corresponding to h = 0, was considered at the beginning of the

article.

A portion of a hyperbolic paraboloid is presented in Fig. 117;
the edges of this portion are formed by two segments of parabolas

opening upwards and lying in planes parallel to the plane Oxz,
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and by two segments of parabolas opening downwards and lying
in planes parallel to the plane Oyz.

Finally, consider the sections of the hyperbolic paraboloid by
planes parallel to the plane Oxy. Every such plane has z = h as

its equation, and the section of the paraboloid by such a plane is

represented by the equations

Hence it is seen that the planes z = h intersect the hyperbolic

paraboloid in hyperbolas symmetric with respect to the planes

X

Fig. 117.

Oxz and Oyz. If h > 0, the corresponding hyperbolas intersect the

plane Oxz\ if ft < 0, the hyperbolas intersect the plane Oyz\ if

h = 0, the corresponding hyperbola degenerates into a pair of

lines. Fig. 117 shows the section of the paraboloid by one of the

planes z = h (for the case h > 0).

From all this, we may conclude that the hyperbolic paraboloid
is saddle-shaped. It has two mutually perpendicular planes of

symmetry; in the chosen coordinate system, these planes coincide

with the coordinate planes Oxz and Oyz. The point coincident

with the origin of this system is called the vertex of the hyper-
bolic paraboloid; the numbers p, q are called the parameters of

the hyperbolic paraboloid.
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72. The Quadric Cylinders

236. To complete our study of quadric surfaces, let us consider
a second-degree equation lacking the current coordinate z. We
may write this equation in the form

Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0. (i)

By Art. 193, equation (1) represents a cylindrical surface (or
more briefly, a cylinder) with elements parallel to the axis Oz.

Since (1) is an equation of the second de-

\Z gree, the surface represented by it is called

a quadric cylinder.
Note now that equation (1) is in fact

identical with equation (1) of 41, which,
referred to cartesian plane coordinates, repre-

Fig. 118. Fig. 119.

sents a curve of the second order. According to the nature of this

curve, we have quadric cylinders of the following types:

(a) The elliptic cylinder (Fig. 118); by an appropriate choice

of the coordinate system, its equation can be reduced to the form

If a = b, the cylinder is circular.

b) The hyperbolic cylinder (Fig.
ducible to the form

119); its equation is re-
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(c) The parabolic cylinder (Fig. 120); its equation is reducible

to the form

Also, the left-hand member of (1) may happen to be the prod-
uct of two first-degree factors. Then the cylinder "degenerates"
into a pair of planes.

X

Fig. 120.

Finally, it may also occur that an equation of the form (1)

has no real solutions at all (as for example, x2 + y
2 =

1) and

hence represents no geometric object. Such an equation is said

to represent an Imaginary cylinder.

73. The Rectilinear Generators of the Hyperboloid
of One Sheet. The Shukhov Towers

237. An inspection of the various types of quadric surfaces

(see 69-72) immediately reveals that some of them (namely,
cones and cylinders) are ruled surfaces, that is, surfaces made up
of straight lines. But, apart from cones and cylinders, the hyper-
boloid of one sheet and the hyperbolic paraboloid also turn out

to be ruled surfaces. This fact is not revealed "by inspection", but

can readily be proved algebraically. We shall carry out the proof
for the hyperboloid of one sheet.
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Let the canonical equation of the hyperboloid of one sheet

x2

i
y* *'__

a2 "+"
b* c2

~ ]

be rewritten as

^l_j?i i _llV c2
~ *

b*
'

or

(T+f)(f-7H'+i)(l-iK (1)

Consider next the two equations of the first degree

(2)

where a and p are some numbers, not both zero. When a and p
have fixed values, equations (2) together represent a straight
line; by varying the values of a and p, we obtain an infinite?

system of straight lines. Note now that equations (2),. multiplied

together, term by term, give equation (1). Hence each, of these

straight lines lies entirely on the hyperboloid of one sheet. For,
if the coordinates x, y, z of a point satisfy both equations (2),

they also satisfy equation (1); thus, every point of the line repre-
sented by equations (2), for any values of a, p (not both zero),
lies on our hyperboloid of one sheet, which means that the entire

line lies on the hyperboloid.

Finally, let us show that through each point of the hyperboloid
of one sheet there passes one, and only one, line of the system.
Let MQ(XQ, t/o, 2o) be an arbitrary point of the hyperboloid of one

sheet; since its coordinates satisfy the equation of the hyperboloid,
it follows that

Let us find numbers a, p such that the corresponding line of the

system (2) will pass through the point Af . Since the coordinates

of M must satisfy the equations of this line, we have the follow-

ing two equations for the determination of the unknowns a, p:

(4)

16 -521
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If 1+^. 40, we find from the first equation of this system:

where

*=^ii. (5)

When p
= &a, the second equation of the system (4) is also

satisfied; this follows from relations (3) and (5). Substitute

p &a in equations (2), letting a have any value except zero.

Since, after this substitution, both members of each of the equa-

tions contain the factor a, this factor can be divided out. We thus

obtain a completely determined pair of equations,

to which there corresponds one completely determined straight

line; this line passes through the point M (since the numbers

a and
(5
have been chosen in conformity with relations (4)).

On the other hand, if 1-f -^-=0, then formula (5) has no

meaning; but if 1 + ^-
= 0, it necessarily follows that 1

-^
=0.

Here the solution of the system (4) can be found from the second

of its equations, after which it may be shown in a manner analog-
ous to that used above that, also in this case, one and only one

line of the system (2) passes through the point Af .

Thus, for various values of a and p, equations (2) represent
an infinite system of straight lines (rulings), which lie on the

hyperboloid of one sheet and entirely cover the surface. These

rulings are called the rectilinear generators of the hyperboloid
of one sheet.

We have shown that the hyperboloid of one sheet is made up
of straight lines, i. e., that it is a ruled surface. Moreover, the

hyperboloid of one sheet is a doubly ruled surface; this means that

it has two systems of rectilinear generators.

For, analogous to equations (2), we can form the equations

(6)
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Equations (6) also represent a system of rectilinear generators
of the hyperboloid of one sheet, this system being different from
that represented by equations (2).

A hyperboloid of one sheet with its two systems of rectilinear

generators is shown in Fig. 121.

Fig. 121.

238. Without going into the details of the problem, let us

point out that the hyperbolic paraboloid

also has two systems of rectilinear generators-, one of these

systems is represented by the equations
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and the other system by the equations

a(~
\Vp

A hyperbolic paraboloid with its two systems of rectilinear

generators is shown in Fig. 122.

Fig. 122.

239. The idea of utilising the ruled nature of the hyperboloid
of one sheet in constructional practice belongs to the famous
Russian engineer Vladimir Shukhov. V. Shukhov invented struc-

tures from metal members arranged similar to the rectilinear

generators of the hyperboloid of revolution of one sheet. These
structures have proved to be both light and strong. They have
often been used in the construction of water towers and high
radio masts.



APPENDIX

THE ELEMENTS OF THE THEORY
OF DETERMINANTS

1. Determinants of the Second Order
and Systems of Two Equations

of the First Degree in Two Unknowns

1. Consider a square array of four numbers, ai, a2 ,

V
b2 :

(1)

The number a
{
b2 a2b\ is referred to as the determinant of the

second order associated with the array (I). This determinant is

a
*

.

l

; accordingly,denoted by the symbol

*i b
\

a2 b2
(2)

The numbers ai, a2 , 61, b% are called the elements of the deter-

minant. The elements a\, b2 are said to lie on the principal diago-
nal of the determinant, and the elements a2 , b\, on the secondary
diagonal. Thus, a determinant of the second order is equal to the

product of the elements on the principal diagonal minus the prod-
uct of the elements on the secondary diagonal.

For example,
2 5

_4 3
==B _2.3-(-4).5=14.

2. We shall now show how determinants of the second order

are used in analysing and solving a system of two equations of

the first degree in two unknowns.
Consider the system of two equations

(3)a2x -+ b2y = h
2

in the unknowns x and y (the coefficients ai, 61, a2 ,
b2 and the

constant terms A 4 , /i2 are assumed to be known). The pair of num-
bers *o, #o is said to be a solution of the system (3) if these

numbers satisfy the system, that is, if each of equations (3)

becomes an arithmetical identity after substituting the numbers

XQ and j/o for x and y, respectively.
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Let us find all solutions of the system (3); at the same time,
let us analyse the system, namely, determine the cases where the

system (3) has only one solution, more than one solution, and no
solution at all. Using a well-known method of elimination (multi-

plying the first equation throughout by 62 , the second by b\, and

adding the results term by term), we eliminate the unknown y
and obtain

(a^2 a^) x b^ bih2
. (4)

Similarly, by eliminating the unknown x from the system (3), we
find

(afa a
2
b

l ) y = 04A2 a
2
h

}
. (5)

Introducing the notation

a, b,

#2 ^2

(6)

we can write equations (4) and (5) as

(7)

The determinant A formed from the coefficients of the

unknowns of the system (3) is called the determinant of the

system. The determinant A* is obtained by replacing the elements
of the first column of A by the constant terms of the system (3);
the determinant Ay is obtained from A by replacing the elements

of the second column by the constant terms of (3).

Suppose that A = 0; from equations (7), we then find

-L
A

or, in a fuller form,

#2
(8)

Obviously, these formulas give the solution of the derived system
consisting of equations (7). They also give the solution of the
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original system (3). To verify the latter, the unknowns x, y in the

left members of equations (3) must be replaced by their values
from formulas (8); after this substitution (followed by expansion
of the determinants A, A.x , Ay and by simplification easily per-
formed by the reader), the left member of the first of equations
(3) will be seen to equal the number &i, and the left member of

the second equation to equal the number A2 ,
which means that

formulas (8) give the solution of the system (3).

Accordingly, we can formulate the following proposition:

// the determinant A of the system (3) is different from zero, the

system has a unique solution determined by formulas (8).
3. Suppose now that A = 0. Then, if at least one of the deter-

minants Ajc, ky is different from zero, the system (3) has no solu-

tions at all (the equations of the system are said to be inconsist-

ent).

For, if A = 0, but at least one of the determinants A*, Ay is

not equal to zero, then at least one of equations (7) is impossible,
which means that the system (7) has no solutions. But then the

system (3) does not possess any solutions either, since the

system (7) has been derived from the system (3), and so each
solution of (3), if any such solution should exist, would also

constitute a solution of the system (7).
On the other hand, if A = and also A* = Ay = 0, the system

(3) has infinitely many solutions (in this case, one equation of

the system is a consequence of the other).
For, if A = Ax = Ay

=
0, that is, if

then the coefficients of the unknowns and the constant terms
of the given equations are all in proportion. This means that

one of the equations of the system can be obtained by multiplying
the other equation throughout by a certain common factor, so that

the system consists, essentially, of one equation, say a^ + b$ =*

=
/ii, the other equation being its consequence. But an equation

of the form a& + b^y = hi always has infinitely many solutions,

since we can assign arbitrary values to one of the two unknowns
x, y and find the corresponding values of the other unknown from
the equation (for example, if fr^O, we can assign arbitrary

values to x and determine y from the formula y =
"~

gl
f

!

)

Note. Our argument is based on the assumption that each

separately taken equation of the system has a solution. If we
include into consideration systems which contain contradictory

equations, then the above proposition will no longer be true. For
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instance, the system

satisfies the conditions A =
0, A* = 0, Ay

=
0; however, this

system admits no solution.

4. To summarise, if the determinant of the system (3) is differ-

ent from zero (A =0), the system has a unique solution given
by formulas (8) ; if A = 0, the system has either no solution at

all, or infinitely many solutions.

Example 1. Find all solutions of the system

Solution. We begin by evaluating the determinant of the system:

3 4
A =

2 3

Since A = the system has a unique solution determined by formu-

las (8). We now find Ax and Aj/;

Hence

7 3

3 2

2 7

22

= 2-3 4-7 = 22,

= 3.7-2-2=17.

A v 17

Example 2. Find all solutions of the system
' = 1 )

-a}
Solution. The value of the determinant of the system is

3 4

6 8
A = :3- 8 4-6 = 0.

Since A 0, the given system has either no solution, or an infinite num-

ber of solutions. To see which of the two possibilities materialises in the

present case, we find A* and Ay :

; :
*--*

3 1

6 3

Since A 0, but A* =0, A y + 0, our system has no solutions.
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Note. The same conclusion can be reached at once by multiplying the first

equation throughout by 2 and subtracting the result, term by term, from the

second equation, which will give 01, that is, a contradictory equation. Hence
the given equations are inconsistent.

Example 3. Find all solutions of the system

= U
= 2.J

Solution. The coefficients of x and y are the same as in example 2;

accordingly, A = 0. Hence, our system has either no solution, or infinitely

many solutions. But, as is easily seen, the second equation of the system
is derivable from the first equation (by multiplying all terms of the latter by 2).

Thus, the system reduces to a single equation and has, therefore, an infinite

number of different solutions, which are found by assigning arbitrary values
to x and determining the corresponding values of y from the formula

1 3x
y -ZSZ- f

5. Consider, in particular, a system of two homogeneous
equations in two unknowns,

= '

()

that is, a system of equations whose constant terms are all equal
to zero.

Obviously, such a system always possesses the zero solution

x = 0, y = 0. If A + 0, this solution is unique; but if A =
0, the

homogeneous system has, in addition, an infinite number of solu-

tions other than the zero solution (since, for a homogeneous
system, the possibility of there being no solution at all is ruled

out). This can also be formulated as follows: The homogeneous
system (9) has a non-zero solution if, and only if, A = 0.

2. A Homogeneous System of Two Equations
of the First Degree in Three Unknowns

6. Let us solve the system of two homogeneous equations

in the three unknowns jc, t/, z. Suppose that

a b
^ a (2)

Rewrite the system (1) in the form
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and assume that some arbitrary value has been assigned here

to the unknown z. For a definite value of z, the system (3) has
a unique solution, which is obtained by applying formulas (8)
of 1:

c
{
z b

l

C2z b2

a
{ bi

a2 b2

a, Ciz

a2 c 2z

(4)

01 ^1

a2 b2

The numbers x, y together with the number z constitute a
solution of the given system (

1
) ;

to different values of z there

correspond different solutions of the system (1), which has an
infinite number of solutions (since z may be chosen at will).

Let us give formulas (4) a more convenient form. First of all,

note that

a
\

#2

a

hence, formulas (4) may be written as

b2 c2

a2 b2

Employing the notation

i- v
we rewrite formulas (5) in the form

A,-*y ...I . ...
* i _

A/ 7 i V ~"

a,
(6)

(7)

Denote -^ by the letter /; then 2 = A3 /, and, according to for-

mulas (7), x and y are expressed by the relations x = AI /,

y = A2 -/.

We thus get the formulas

x= b
l -t, y = ^-t, z= A

3 ./, (8)
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which determine all solutions of the system (1), each separate
solution being obtained by assigning some definite value to t.

For practical calculations it will be helpful to observe that the

determinants Ai, A2, As are obtained by deleting, in turn, each
column of the array

b,

7. The above derivation was based on the supposition that

A
3

= (see relation (2)).
If As = 0, but at least one of the determinants Ai, A2 is not

equal to zero, the derivation remains the same, except that the

unknowns interchange roles (for example, if A2 =
0, then we

assume that y is assigned arbitrary values, and determine the

corresponding values of A: and z from the equations of the system).
The ultimate result is the same, that is, all solutions of the system
are again determined by formulas (8).

If the three determinants AI, Az, As are all equal to zero, that

is, if

bcfi
== 0, CL\C<I CL^CI

= 0, d\b^ b^= 0,

then the coefficients of the equations (1) are all in proportion,
which means that one equation of the system is a consequence of

the other: one equation can be obtained by multiplying all terms
of the other by some numerical factor. Thus, if Ai = 0, A2 = 0,

As SB 0, the system reduces in fact to a single equation. Such
a system naturally has an infinite number of solutions; to get one
of these, it is necessary to assign arbitrary values to two un-

knowns and find the third unknown from the equation.

Example 1. Find all solutions of the system

Solution. By Art, 6 we have

A, =4, A2
= 44, A 3

= 29.

All solutions of the given system are determined from the formulas

Ar = 4/, y = 44*, *= 29*,

where t may assume any values.

Example 2. Find all solutions of the system
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Solution. We have AI = 0, A2
-

0, A3
= 0; the system contains, essentially,

a single equation (the second equation being obtained by multiplying the first

by 2). Any solution of the system consists of three numbers x
t y, z, where

x, y may be chosen at will and z = T .

3. Determinants of the Third Order

8. Consider a square array of nine numbers, ai, a2 ,
a3 , b^ b 2 ,

*i

(1)

The determinant of the third order associated with the array
(

\ ) is the number denoted by the symbol

a, ft, <

and determined by the relation

a
l

b
l

c
l

The numbers ai, a2 ,
a3 , 61, 62, 63, (?i, c2 ,

c3 are called ^/ie elements

of the determinant. The diagonal containing the elements a it b2t

c3 is called the principal diagonal of the determinant; the ele-

ments 3 ,
62 , 1 form the secondary diagonal.

The reader should observe that the first three terms in the

right-hand member of (2) are the products of the elements taken

three at a time as shown by the various dashed and dotted lines

in the left-hand diagram below.

\a/
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The remaining three terms are obtained by multiplying the ele-

ments three at a time as shown by the various lines in the right-
hand diagram, and then changing the sign of each product.

This mnemonic rule, called the rule of triangles, not only
facilitates writing out formula (2), but also permits us to eval-

uate a third-order determinant with numerical elements, without

having first to write formula (2).

Thus, for example,

3 2

-2 1

1

-2
= 3 1 (2)+ (2) 3 2+ (2) 1

2-1- 1 3-0-3
( 2)-( 2)-( 2)

= -12.

9. Determinants are widely used both in pure and applied math-
ematics. We shall presently show how determinants of the third

order are employed in analysing and solving a system of three

first-degree equations in three unknowns. But we must first become
familiar with certain properties of determinants. Some of their

more important properties are considered in the next article, with

determinants of the third order serving as illustrations throughout;
the properties discussed are, however, equally valid for determi-

nants of any order (the concept of a determinant of an order

higher than the third is treated in the last section of this Appen-
dix).

10. Property 1. The value of a determinant is unchanged if all

its columns are changed into rows so that each row is replaced

by the like-numbered column, that is,

a, b, c
l

a
l

b\ (3)

The same property may also be formulated as follows: // the

elements symmetrical with respect to the principal diagonal of

a determinant are interchanged, the value of the determinant

remains unchanged.
To prove this, we have merely to expand both the left and

the right member of (3) by using the rule of triangles, and to

compare the results.

Note. The property 1 means the interchangeability of the rows
and columns of a determinant; it will therefore be sufficient to

prove the validity of the properties that follow (and that apply

equally to rows and columns) for the rows or the columns only.
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Property 2. The interchange of two columns or two rows of
a determinant is equivalent to multiplying the determinant by 1.

For example,

a

a3

a

(4)

To prove relation (4), apply the rule of triangles to both the

left and the right member of (4) and compare the results (the

proof of analogous relations corresponding to the interchange of

other columns is carried out in the same way).

Property 3. // a determinant has two identical columns or two
identical rows, the value of the determinant is zero.

Let A be a determinant having two identical columns. If these

columns are interchanged, the determinant changes its sign in

virtue of the property 2. On the other hand, since the interchanged
columns are identical, the interchange cannot alter the value of

the determinant. Hence A ~ A, that is, 2A = 0, or A == 0.

For example,
3 3 17

5 5

7 7

= 0.

Property 4. Multiplying all elements of a column or row by

any one number k is equivalent to multiplying the determinant

by this number k.

This property may also be phrased as follows: A factor com-
mon to each element of a column or row can be taken out of that

column or row and prefixed to the determinant.

For example,

#! b
}

<

#2 ^2 <

a3 3 <

This is proved by simply observing that the expansion of a

determinant is the sum of terms, each of which contains as a

factor one element from each row and each column (see formula

(2) of Art. 8).

Property 5. // all elements of a column or row are zerof the

determinant is zero.
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This property constitutes a special case (in which k = 0) of

the preceding property.
For example,

1 5

308 =0.

7 2|

Property 6. If the corresponding elements of two columns

(or two rows) of a determinant are proportional, the determinant

is zero.

This follows from the properties 4 and 3. For, if the elements

of two columns of a determinant are proportional, then the ele-

ments of one column are obtainable by multiplying all elements

of the other by some number. After factoring this number out,

we get a determinant with two identical columns; by the property

3, the value of this determinant is zero.

For example,

847
10 5 9

6 3 11

447
559
3 3 11

= 0.

Property 7. If each element in the nth column (or the nth row /

of a determinant is the sum of two terms, the determinant may be

expressed as the sum of two determinants, of which one has in Its

nth column (or row) the first of the above-mentioned terms, while

the other determinant has the second terms; the elements of the

remaining columns (or rows) are the same for all the three de-

terminants.

Thus, for example,

a

a'

To prove this relation, we have merely to expand the determi-

nants on both sides of it, applying the rule of triangles, and to

compare the results.

Property 8. // to the elements of a column (or row) of a deter-

minant are added the corresponding elements of another column

(or row) f multiplied by any one number, the value of the deter-

minant remains unchanged.
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This property follows from the properties 7 and 6, as will be

made clear by an example. Let the elements of the second column,
each multiplied by some number k, be added to the elements of

the first column. Then, by the property 7, we have

a
l -f- kb

l
b

l

The second of the resulting determinants has two proportional
columns. Hence, by the property 6, its value is zero, so that we
obtain the relation

a
\ 4~ kb\ b\ c

which expresses the property 8 in the present case.

Further properties of determinants are connected with the

concept of cofactors and minors.

4, Cofactors and Minors

11. Consider the determinant

By definition (see Art. 8),

A = ab

(1)

(2)

Let us enclose in parentheses all terms containing any one ele-

ment of this determinant, and factor the element out; the quantity

remaining within the parentheses is called the cofactor of that

element. We shall denote the cofactor of an element by the capital
letter and subscript corresponding to the letter and subscript of

the element; for example, the cofactor of the element ai will be

denoted by A\, the cofactor of b\ by B\, etc.

Property 9. A determinant is equal to the sum of the products

of the elements in any column (or row) by their cofactors.
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In other words, we have the following relations:

A= a
v
A

} -f- a2A2+ a3Aj, A= a^ } -f b
l
B

} + c,^, (3)

A= b.B,+ 6252+ 6A, A= a2A2+ 62fl2+ r2C2 , (4)

A= c
l
C

l+ c2C2+c& A= azAs+ 3
5

3 -f c3C3
. (5)

To prove, say, the first of these relations, it is sufficient to rewrite

the right-hand member of (2) as

A= <* 6c 6

where the quantities in the parentheses are the respective cofactors
of the elements a 4 ,

a2 , as, that is,

Hence the above equality becomes

as was to be shown. The remaining relations (3 through 5) are

proved in a similar fashion. The representation of a determinant

according to any one of the formulas (3 through 5) is referred to

as the expansion of the determinant in terms of the elements
of a column or row (thus, the first of those formulas gives the

expansion in terms of the elements of the first column, etc.).

12. The determinant obtained from the given determinant by
deleting the row and the column, in the intersection of which
a particular element lies, is called the minor of that element. For

example, the determinant A
2 2

is the minor of the element a\
^

of A; the determinant
C2

is the minor of b\, and so on.

The cofactor of any element of a determinant is equal to the

minor of that element taken with its sign unchanged if the sum
of the position numbers of the row and column in which the

element lies ts even, or taken with opposite sign if this sum is

odd. To verify this statement, the reader should compare the co-

factors of all elements of a determinant with their respective
minors.

The fact just stated greatly facilitates the use of formulas

(3 through 5), since it enables us to write at once the cofactors
of the elements of a determinant (by mere inspection of this de-

terminant). The following diagram will also be of help:

17 -521
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the plus signs mark here the positions of those elements whose
cofactors are equal to the minors taken with their signs un-

changed.

Example. Evaluate the determinant

246
A= 5 12 19

3 9 17

by expanding it in terms of the elements of the first row.

Solution.

12

9
4

12

9

Note. The evaluation of a determinant by expanding it in terms of the

elements of a column or row can be simplified if the determinant is first trans-

formed on the basis of the property 8. Namely, if we multiply the elements
of a column (or row) by any factor and add them to the corresponding ele-

ments of another column (or row), we obtain a new determinant equal to

the original one; by a judicious choice of the factor, one of the elements of

the new determinant can be made zero. Repeating this procedure once again,
we can obtain a determinant (equal to the given one) with two zero ele-

ments in a particular row or column. When evaluating the last determinant by
expanding it in terms of the elements of this particular row (or column), we
shall have to compute only one minor, since the other two minors will be

multiplied by elements equal to zero. Thus, for instance, to evaluate the de-

terminant A of the above example, it should first be transformed as follows:

multiply the elements of the first column by (2) and add them to the ele-

ments of the second column; next, multiply the elements of the first column

by (3) and add them to the elements of the third column; this will give

200
524
338

Expanding this determinant in terms of the first row, we find

0- = 8.

13. The propositions contained in this article are of importance
in solving and investigating a system of first-degree equations
in three unknowns *>.

Consider the determinant

(1)

*) Analogous propositions referring to determinants of higher orders are

used in solving and investigating a system of first-degree equations in any
number of unknowns.
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Expand it in terms of the elements of a row or column, say of

the first column:

A= a^j+ a2A2 -f a3
^3

. (6)

Replace the numbers a\ 9 a2l a3 in the right member of (6) by
any numbers AI, A2 ,

A3 ; then the right member of (6) will be the

expansion, in terms of the first column, of the determinant
obtained by replacing the elements of the first column of A by
the numbers AI, h2y h3 :

,
c

l

b2 c2 (7)

Now let the elements of the second or the third column of

the given determinant be chosen as AI, A2 ,
A3 (that is, let AI = 6 lf

A2
=

&2, h3
= b 3 \

or let AI = c4 ,
A2

== c2 ,
A 3
= c3 ). In each case the

determinant (7) will have two identical columns and will, there-

fore, be zero; we thus obtain

3
= Q> (8)

and

dA l+ c2A2+^= 0. (9)

Expanding the determinant A in terms of its second column
and using the same procedure as before, we obtain

^5!+ 02^2+ 03^3= 0, (10)

2+^3= 0. (11)

Expanding A in terms of its third column gives the relations

0, (12)

o. (13)

Six similar relations can also be written for the rows of the

determinant.

According to these results, we may formulate the following

property of determinants:

Property 10. The sum of the products of the elements in any
column (or row) by the cofactors of the corresponding elements

in another column (or row) is zero.

17*
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5. Solution and Analysis of a System
of Three First-degree Equations in Three Unknowns

14. Consider the system of three equations

(1)

in the unknowns x
j y t

z (the coefficients a\, b\, . . ., 3 and the

constant terms /i 4 ,
/i2 , /is are assumed to be known).

The three numbers x
, yo, z are sa^ to be a solution of the

system (1) if these numbers satisfy the equations of the system
(1), that is, if each of equations (1) becomes an arithmetical

identity after substituting the numbers *0f t/o and z for x, y and

z, respectively. Let us find all solutions of the system (1); at the

same time, we shall analyse the system, namely, we shall deter-

mine the cases where the system (1) has only one solution, more
than one solution, and no solution at all.

The determinant

a2

a3

(2)

formed from the coefficients of the unknowns is called the deter-

minant of the system-, it plays a basic part in the discussion that

follows.

Let the symbols AI, A 2 , ... denote, as before, the cofactors

of the elements ai, a2 , ... of the determinant A. Multiplying the

first equation of (1) throughout by A^ the second equation by A 2t

the third by ^3, and adding them, term by term, we obtain

+ (Mi+ V*2+Ms) y H-

+ c2A2+vy z= (Mi 4-M2+Vy
Hence, by virtue of the properties 9 and 10 (see the first of

relations (3) in Art. 11, and also relations (8), (9) in Art. 13),

we have

A - x=Mi+M2+ Ma- (3)

In like manner, we find

(4)
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Denote the right members of (3), (4) and (5) by the symbols
A*, Ay ,

A2 , respectively. Then equations (3), (4), (5) will take

the form

where, according to Art. 13 (see, for example, formula (7) of

Art. 13),

A
y #2 (7)

It will be helpful to note that the determinants Ax , Ay , A2 are

obtained from A by replacing its first, second and third column,

respectively, by the column of the constant terms of the given
system.

Suppose that A + 0; from equations (6), we then find

A
'

IL
A

'

A
' (8)

These formulas obviously give the solution of the derived

system consisting of equations (6). They also give the solution

of the original system (1). To prove this, expressions (8) must be

substituted for x, y, 2 in the equations of the system (1) and
shown to satisfy each of equations (1). Making these substitutions

in the first equation, we obtain

A

U -4- /hA>) -4- ~r b\ (h\B\& I u o/ I A * \ 1 1

-fx *i (
A

i
C

i+ A2Q+ A3C3)
= ~

A! (a^!+ *!5!+ ^Cj)+
1 1

"4" "T ^2 (^1-^2 ~F" ^1^2 "4" ^1^2) "4~ "A

Now, by the property 9 of determinants,

and, by the property 10,

Thus,

^ ~f- ^^2= 0,

+ CC = 0.
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that is, the numbers jc, y, z, determined by formulas (8), satisfy
the first equation of the given system; in exactly the same way,
they can be shown to satisfy the other two equations.

From all this, the following conclusion may be drawn: If

A =
0, the system (1) has a unique solution determined by for-

mulas (8).

Example. Find all solutions of the system

3*

Solution. Let us evaluate the determinant of the system.

1 2 1

7 1

= 33.

Since A=0, the system has a unique solution given by formulas (8). From
formulas (7), we have

= 33,

Hence x ~ 1, y = 1, z = 1.

15. Suppose now that the determinant of the system (1) is

zero: A = 0.

// A ~ and at least one of the determinants A*, Ay ,
A z is dif-

ferent from zero, the system (1) has no solution (the equations
of the system are said to be inconsistent).

For, if A = 0, but at least one of the determinants A*, Ay , A2

is not equal to zero, then at least one of equations (6) is

impossible, which means that the system (6) has no solutions.

But then the system (1) does not possess any solutions

either, since the system (6) has been derived from the system
(1), and hence each solution of (1), if any such solution should

exist, would also be a solution of the system (6). For example,
the system
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has no solutions, since A = and Ay
= 1 + 0. The fact that these

equations are inconsistent can also be verified directly; in fact,

adding the first two equations, term by term, and subtracting the

result from the third equation, we obtain 0=1, that is, an incor-

rect equation.
There remains for consideration the case where A = and

also A* = 0, Ay
=

0, Az = 0. Before taking up this case, we shall

first discuss the so-called homogeneous systems.

16. A homogeneous system of three first-degree equations in

three unknowns is a system of the form

= 0, (9)

that is, a system of equations whose constant terms are all equal
to zero. Clearly, such a system always possesses the solution

x = 0, y = 0, z = 0, which is called the zero solution. If A =0,
this solution is unique.

We shall now prove that, if A =
0, the homogeneous system

(9) has an infinite number of non-zero solutions. (In this event,

one of its equations is a consequence of the other two equations,
or else two of its equations are consequences of the third.)

Let us first carry out the proof for the case where at least one
of the minors of the determinant A is different from zero; let, for

instance,

#2
=0.

Under this condition, the first two equations of the system (9)
have an infinite number of simultaneous non-zero solutions deter-

mined by the formulas

x
b,

(10)

for any value of / (see formulas (8) of Art. 6). It can easily be

verified that, if A 0, all these numbers also satisfy the third

equation of the system (9). For, substituting them for the un-

knowns in the left-hand member of the third equation of (9), we
find

"a,
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As a result of the substitution, we get zero since, by hypothesis,
A = 0. Thus, formulas (10) determine, for any value of t, the

solutions of the system (9), which will be non-zero solutions when
t + 0. In the case under discussion, the system consists, essential-

ly, of two equations only, the third equation being a consequence
of the first two.

Suppose now that the minors of the determinant A are all

equal to zero; then any two equations of the system (9) have

proportional coefficients, so that (no matter which two equations
of the system are chosen) one of them can be obtained by multi-

plying all terms of the other by some common factor (in this

connection, see Art. 7). Hence the system (9) will consist,

essentially, of only one equation, the other two equations being
its consequences. Such a system obviously has an infinite number
of non-zero solutions (since we can assign any numerical values

to two unknowns and then determine the third unknown from the

only essential equation of the system). This completes the proof.
The result can be formulated as follows:

The homogeneous system (9) has non-zero solutions if, and

only if, A = 0.

Example 1. The system

3* = 0,

has the zero solution only, since

Example 2. The system

A = 33 = 0.

y+ * =

has infinitely many non-zero solutions, since

1 1 1

A= 2 3 2

454
= 0.

All the solutions are given by formulas (10), according to which

x = t, y = 0, z = t
t

for any value of t.

Example 3. The system

3^+ 3^4-3^
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also has an infinite number of non-zero solutions, since A 0. In the present
case, the minors of the determinant A are all equal to zero and the system
reduces to the single equation x + y -I- z 0. Any solution of the system con-

sists of three numbers x, y, z, where x, y are chosen at will and z ~x y,

17. Let us return to our arbftrary non-homogeneous system

(1)

We shall now prove that, if A= and the system (1) has at least

one solution, then the system has an infinite number of different
solutions.

Let the numbers x , z/o> 2o constitute a solution of the system
(1); substituting XQ , J/o, o f r the unknowns in equations (1), we
obtain the arithmetical identities

(11)

Subtracting identities (11), term by term, from the corresponding

equations (1), that is, subtracting the first identity (11) from the

first equation of (1), the second identity from the second equation,
and the third identity from the third equation, we have

a
} (x *

z )=o,

yo)+ci(z z )=o. .

Introducing the notation

x X = u

we can rewrite relations (12) as

&\u>+ bi*v+ = 0,

(12)

(13)

(14)

This is a homogeneous system of three first-degree equations
in the unknowns u, v, w, with the same coefficients of the un-

knowns as in the original system (1). The system (14) is referred

to as the homogeneous system corresponding to the given non-

homogeneous system (1).
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Since, by hypothesis, A =
0, it follows from Art. 16 that the

homogeneous system (14) has infinitely many different solutions.

Hence the given system (1) also has infinitely many different

solutions; namely, to each solution a, u, w of the system (14)
there corresponds in consequence of relation (13) a solution

of the system (1). The proof is thus complete.

Accordingly, we can immediately formulate the following

proposition:

// A = and also A* = A^ = Az
=

0, the system (1) has either

no solution, or infinitely many solutions (in the latter case, at

least one equation of the system is a consequence of the other

equations; such a system is called an indeterminate system).

Example 1. The system

x+ y+ z=

(satisfying the conditions A =
0, A* = 0, A y

=
0, A* = 0) has no solutions.

In fact, even the first two equations of the system are inconsistent since,

multiplying the first of them by 2 and then subtracting it, term by term, from
the second equation, we obtain the impossible equality 0=1.

Example 1. The system

5* 4- 2y 4- 3^ =

8*4- 3y+ 2* =

(satisfying the conditions A = 0, A* = 0, A y
=

0, Az
=

0) has infinitely many
solutions. For, the third equation of the system is a consequence of the first

two; namely, it can be obtained by adding them, term by term. Thus, the

given system consists, essentially, of only two equations,

To find all simultaneous solutions of equations (*), rewrite the system as

=l + z, \

= 2 3z, j
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and suppose that some value is assigned here to the unknown z. Applying
formulas (8) of Art. 2, we get

3 1

5 2

= 1 14*.

The numbers x, y, together with the number z, constitute a solution of the

given system; the system has infinitely many solutions since the unknown z

may be assigned any value at will.

6. The Concept of a Determinant of Any Order

18. The general problem of solving and analysing systems
of first-degree equations in many unknowns (and a large number
of other computational problems of mathematics) has to do with

determinants of the nth order (n = 2, 3, 4, ...). The theory of

determinants of any order is built along the same general lines

as the above-presented theory of determinants of the third order;
a detailed development of the theory of determinants of any order

would, however, involve a number of new auxiliary propositions
and would thus offer certain difficulties. This theory, as well as

the theory of systems of first-degree equations in many unknowns,
is given in textbooks on higher algebra.

We shall confine ourselves to stating the following:
1. A determinant of order n is associated with a square

array of numbers (elements of the determinant) arranged in n

rows and n columns; the notation for a determinant of order n

is analogous to that used for determinants of the 2nd and the

3rd order.

2. The minor of an element in a determinant of order n is

defined as the determinant of order n 1 obtained from the given
determinant by striking out the row and column in which that

element appears.
3. The cofactor of an element of a determinant is the minor

of that element, taken with its sign unchanged if the sum of the

position numbers of the row and column in which the element

lies is even, or taken with opposite sign if this sum is odd.

4. A determinant is equal to the sum of the products of the

elements in any column (or row) by their cofactors. This reduces

the evaluation of a determinant of order n to the evaluation of n

determinants of order n 1.

5. All these properties of determinants hold for determinants
of any order.
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Example. Evaluate the determinant

2446
_ 4 2 5 7~

3 2 8 5

2873
Solution. Expanding this determinant in terms of the upper row, that

is, writing out the determinant as the sum of the products of the elements in

the upper row by their cofactors, we find

:296.

Note. The evaluation of the determinant can be simplified by using first

the property 8 (see Art. 10 and the note at the end of Art. 12)



INDEX

Abscissa, 17, 18, 132

Amplitude, 21

Angle, between two lines, 59

between two vectors, 161

of inclination, 55, 136

polar, 21

of a segment, 25

Applicate, 132

Area of a triangle, 28

Associative property, of multiplica-
tion of a vector by numbers, 147

of the scalar product, 158

of the vector product, 166

of vector addition, 145

Asymptote, 94

Axes, coordinate, 17, 131

of an ellipse, 81

of a hyperbola, 95

Axis, of a parabola, 106

polar, 20

semi-major, 81

semi-minor, 81

B

Basis, 154

Branch of a hyperbola, 88

Canonical equation, of an ellipse, 76

of a hyperbola, 87

of a parabola, 103

of a second-order curve, 117, 120

Cartesian coordinates, left-handed

system, 40

oblique, 90

rectangular, 16, 132

right-handed system, 40

Centre, of an ellipse, 81

of gravity, 34

of a hyperbola, 95
of a second-order curve, 119

Circle, equations of, 44, 48, 49
relation of, to the ellipse, 81

Cofactor, 236, 247

Commutative property, not valid for

the vector product, 165

of the scalar product, 158

of vector addition, 144

Components of a vector, 154

Cone, circular, 214

imaginary, 215

quadric, 214
Conic sections, 115

Conjugate hyperbolas, 97

Construction of an ellipse, 76, 83

Coordinates, current, 43 179

oblique cartesian, 20

of a vector, 139

on a line, 14

polar, 20

rectangular cartesian, 16, 131

relations between rectangular and

polar, 21

Curve, algebraic, 53

equation of, 42

Cylinder, circular, section of, 85

degenerate, 220

imaginary, 220

projecting, 182

quadric, types of, 219

Departure of a point, from a line, 70

from a plane 191

Determinants, of the second order, 225

of the third order, 232

properties of, 233, 247
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Diameters, conjugate, 113
of a conic, 109

Directed segment, 11

Direction cosines, 141, 199

Direction parameters, 199

Direction vector, 198

Directrix, of an ellipse, 99
of a hyperbola, 100

of a parabola, 103

Distance, between two points, 25, 142

of a point from a line, 70
of a point from a ,plane, 191

Distributive property, of multiplication
of vectors by numbers, 147

of the scalar product, 158*

of the vector product, 167

Hyperbola, 87

degenerate, 122

equilateral, 97

optical property of, 114

Hyperboloid, of one sheet, 209
of two sheets, 209

I

Identity, fundamental, 12

Incomplete equations, of planes, ^1

of straight lines, 63

Intercept, 57, 65

Intercept equation, of a plane, 189

of a straight line, 63

Intersection, of curves, 50
of lines, 66

of surfaces, 180

Eccentricity, of an ellipse, 81

of a hyperbola, 98
of a parabola, 103

Ellipse, 75

degenerate, 122

imaginary, 122

optical property of, 114

Ellipsoid, 207

imaginary, 209

of revolution, oblate, 209

prolate, 208

Focal radii, of an ellipse, 75, 82
of a hyperbola, 88, 98

Focus, of an ellipse, 75
of a hyperbola, 87
of a parabola, 103

Function, linear, 58

quadratic, 127

G

General equation, of a plane, 186
of a second-order curve, 117

of a straight line, 62

Graph of a function, 42

H

Half-planes, 18

Half-spaces, 133

Homogeneous equations, 213

system of, 229, 242

M

Midpoint of a segment, 33, 143

Minor, 237, 247

Modulus, 12

of a vector, 136, 140

Motion, equations of, 51, 200

N

Negative of a vector, 148

Normal, to a line, 68

to a plane, 190

Normal equation, of a plane, 190
of a straight line, 68

Number axis, 16

O

Octants, 134

Ordinate, 17, 132

Origin of coordinates, 17, 131

Parabola, 103

degenerate, 125

optical property of, 114

Paraboloid, elliptic, 215

hyperbolic, 216

Parallel lines, 60, 67, 203

Parallel planes, 202

Parallelogram rule, 144

Parameter, 41

focal, 108

of a parabola, 103



Index, 251

Parametric equations, 51

of an ellipse, 83
of spirals, 52
of a straight line, 200

Pencil, of lines, 71

of planes, 197

Perpendicular lines, 60, 203

Perpendicular planes, 202

P4ane, 185

through a line, 195

through a point, 186

through three points, 201

Polar coordinates, 20

Polar equation, of a circle, 45
of a conic, 107

of a straight line, 50

Pole, 20

Principal value, 21

Projection, of a segment, 23

of a vector, 136, 148, 155, 162

Product, of a vector by a number, 143

scalar, 158

triple scalar, 172

vector, 163

Quadrants, 19

Quadric surfaces, 207

Radius vector, 24, 140

Ratio of division, 31, 142

Rectangle, fundamental, 96

Rectangular coordinates, in the plane,
16

in space, 132

Removal of #*/-term, 118, 120

Rotation of coordinate axes, 36

Ruled surfaces, 220

Scalar, 134

Shukhov structures, 224

Slope, 55

Slope-intercept equation of a straight
line, 56

Spiral, hyperbolic, 46

logarithmic, 47
of Archimedes, 45

Straight line, 55
in space, 194

through a point, 58, 199

through two points, 58, 201
Subtraction of vectors, 147

Sum of vectors, 143, 145

Surface, algebraic, 184

equation of, 178

quadric, 207

System, of two first-degree equations,
224
of three first-degree equations, 240

Transformation, of coordinates, 21,35,
36, 37
of equations, 116

Translation of coordinate axes, 35
Triad of vectors, 173

Value of a segment, 11

Vertex, of a cone, 214
of an ellipse, 81

of a hyperbola, %
of a parabola, 106

of a paraboloid, 216, 218

Vector, 134

direction, 198

free, 136

geometric, 134

normal, 186

Vectors, collinear, 135

coplanar, 173, 177

equal, 135

perpendicular, 161

Volume of a tetrahedron, 177
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