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PREFACE

Tais book is the result of several years of experience in
teaching mathematics to students of engineering and science.

Since at the outset, analytic geometry opens to the student
an entirely new method of approaching mathematical truth,
much stress is placed on the first two chapters in which the
student is building the concepts on which the future chapters
rest. Emphasis has also been placed on those portions of
analytic geometry in which experience has shown the student
of calculus to be most frequently deficient. In this con-
‘nection, in particular, polar coordinates have received more
than usual attention and transcendental and parametric
equations considerable space. The exercises are numerous
and varied in character, and the teacher will thus be enabled
to select from them those which best emphasize the points
which he considers important. ,

The book has been used for two years in mimeographed
form in the class room both by the authors and their col-
leagues, and many valuable suggestions arising from such
use have been incorporated into the final form of the text.

The material is so arranged that the first ten chapters
together with a portion of Chapter XIII include those sub-
jects ordinarily offered to such freshman classes as cover in
the first year the three subjects, college algebra, trigonometry
and analytic geometry. The addition of Chapter XIV will
round out a good course of five hours a week for a semester.
The entire book should easily be covered in a three hour
course throughout a year.

m
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The authors take pleasure in expressing their thanks to
their colleagues in the department of mathematics of the
.Jowa State College, for their assistance in reading proof and
solving problems as well as for their many helpful suggestions.

MARIA M. ROBERTS,

JULIA T. COLPITTS.
Awmzs, Towa, January, 1918,
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ANALYTIC GEOMETRY

CHAPTER I
CARTESIAN COORDINATES

1. Analytic geometry differs from other geometry mainly
by the introduction of two new ideas: first, that a point in a
plane is determined by its distances from two fixed inter-
secting lines in that plane, and second, that an equation in
two variables completely represents a geometric locus.

These inventions are due to René Descartes (1596—1650)
who published his discoveries in 1637. In honor of his
name, this branch of mathematics is often called Cartesian
geometry, and the system of coordinates here used, Carte-
sian coordinates.

2. Directed lines. — On a fixed line X'X, let a fixed point O,
_called the origin, be chosen from which to measure distances.

B’ 0 B

gl X
N A

It is customary to call distances measured to the right
positive, and those measured to the left negative.

Let some unit of length be applied to OX, and suppose
OB is 7 units long, then +7 is represented by OB. If the
same measure is applied to OX’, and OB’ is 6 units long,
then —6 is represented by OB’. Moreover, while OB meas-
ured to the right is +7 units, BO measured to the left is
—7 units.

1



2 . CARTESIAN COORDINATES

From the above definition, it is evident that if 4, B,
and C are three points on a line, then AB 4+ BC = AC.

A B v C
B C A
C A B

Construct three other figures also showing that AB 4 BC
= AC.

Locate four points 4, B, C, and D on a line and show in
three different figures that AB + BC + CD = AD.

3. Position of a point in a plane. Cartesian Codrdinates.
—If it is known that a point is located on a given line, it is
only necessary to know one number in order to locate the
point, namely, that number which represents the distance
and direction from the origin.

If the point is located anywhere in a plane, its position is
fully determined by two numbers.

Let X’X and Y'Y be two straight lines intersecting at O,
. and let the point P be the given

point. Draw NP and MP through
/‘ P parallel to X’X and Y'Y respec-
Y tively.

—-79 YLx'  The position of the point P is
,{:» fully determined if MP and NP
are known.

The line X’X (usually horizontal) is called the Z-axis.
The line Y'Y is called the y-axis and their point of inter-
section is called the origin.

z = OM = NP is the abscissa of the point.

The abscissa of a point 13 its distance from the y-axis meas-
ured parallel to the z-axis.

y = ON = MP is the ordinate of the point.

The ordinate of a point is its distance from tlw z-ax18 meas-
ured parallel to the y-axis.




NOTATION 3

The two intersecting lines are called the codrdinate axes
and the two numbers which locate the position of the point,
the Cartesian codrdinates of the point.

Abscissas are taken as positive or negative according as
they are measured to the right or left of the origin, and
ordinates as positive or negative according as they are
measured above or below the z-axis.

4. Rectangular codrdinates. — The coordinate axes may
intersect at any angle, but results are usually simpler if
the axes are perpendicular, in which case, Cartesian coor-
dinates are called rectangular coordinates. Cartesian
coordinates when not rectangular are called oblique cotr-
dinates.

Unless otherwise specified, rectangular coordmates will
always be used.

6. Notation. — The point whose coérdinates are z = aq,
and y = b, is usually written P = (a, b) or P (a, b). This
is read “ P whose coérdinates are a and b.”

Variable points are in general represented by P (z, y),
and fixed points by Py (1, ¥1), P2 (z2, ¥2), ete.

To plot a point in Cartesian codrdinates choose any con- °
venient unit of measure, lay off from the origin on the
z-axis a number equal to the abscissa, and from the extremity
of this line, and on a parallel to
the y-axis, a number equal to the
ordinate.

Thus to plot the point P (—4, 5),
lay off OM = —4 on OX and draw
MP = 5 parallel to OY.

The use of codrdinate paper will
be found to be of decided advan- -
tage in a rectangular system of codrdinates. Such paper is
constructed as in the figure in which the abave point has
been located.



4 CARTESIAN COORDINATES

EXERCISES

1. Plot accurately the points: (5, 6), (—2, —3), (0, 2), (—5, 0).

2. Let the axes OX and OY be inclined at an angle of 45°. Plot the
points given in Ex. 1.

8. Draw the quadrilateral whose vertices are (3, 2), (—4, 2), (—4, —1),
(3, —1). Prove the figure is a rectangle and find the lengths of its sides.

4. Where are the points whose ordinates are 0?7 Whose abscissas
are 0?7 Whose abscissas are 27

6. On what line will a point lie if its abscissa and ordinate are -

equal? If equal numerically but opposite in sign?

6. The origin is the middle point of a line one of whose extremities
is (—2, —3). Find the other extremity.

7. What are the coérdinates of a point half-wa.y between the origin
and the point (2, 4)? Ans. (1, 2).

8. In a rectangle whose sides are 4 and 3 one of the longer sides is
chosen as the z-axis and a diagonal as the y-axis. What are the coordi-
nates of the vertices and of the middle points of the sides?

9. An isosceles triangle has a base 6 and the equal sides each 5. The
base is taken as the z-axis and the perpendicular from the vertex to the
base as the y-axis. Find the coordinates of the vertices.

Find also the codrdinates of the vertices if the base and one of the
sides are chosen as axes.

10. What are the coordinates of the vertices of a square whose side is
2 a if the origin is at the center of the square and the axes are parallel to
the sides?

What are the codrdinates of the vertices if the origin is at the center,
one axis is parallel to a side, and the other is a diagonal?

11, What are the codrdinates of the vertices of an equilateral tri-
angle each side of which is a, the base being chosen as the z-axis and the
perpendicular to this base through a vertex as the y-axis?

12. Compute the lengths of the sides of the triangle whose vertices
are (2, 1), (6, 4), and (7, 1). Ans. 5, 5, V10. )

18. Plot the points 4 (—1, —2) and B (2, 3). Let the horizontal
line through A cut the vertical line through B in the point C. What are
the coordinates of C? Find the area of the triangle ABC and the length
of AB.

14. Plot the points A (3, 2) and B (6, 6) and compute the distance
between them. Ans. 5.

16. If two points A (21,0) and B (z3, 0) are located, show that
AB = 2, — 7, whether A and B lie on the same side of the origin or on
opposite sides.




DISTANCE BETWEEN TWO POINTS 5

6. Distance between two points. — The distance d be-
tween two points Py (z1, y1) and P (x2, ys) ts given by the
Jormula

d=VE—5"+ s =y 1)

Proof. Let P, and P, represent any two given points,
and let d represent the distance between them.

v
Fr
! N
n
X M / Mg—X
0 M; M, k 0 "
L N
- 1

Draw the ordinates M,;P, and M,P,;, and through P,
draw PN parallel to the z-axis, meeting at N the ordinate
M;P, (produced if necesary). ;

In the right triangle P,P,N, P\N = MM, = OM; — OM,
=y — x, and NPy = MyPy — M\P; = y2 — 41.

Substituting in P,P; = V P.N* + NP, we gethhe formula
d=V@—5)+ (¥ — N

Note. — The student should notice that the above demonstration
applies equally to the®two figures given, and should satisfy himself that
the proof holds good when the points are located in other positions.
Since results remain the same if the positions of the points are changed,
in future demonstrations points will be located in the simplest position
(usually in the first quadrant).

ILLUSTRATIVE EXAMPLES
1. Find the distance between the points A (—2, 2) and B (3, 4).
Solution. — Here 11 = —2, y1 = 2, 22 = 3, y» = 4. Substituting in
the above formula, we have

AB=V(@B+20+ (d— 28 = V2.
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-2. Find a point equidistant from the three points 4 (0, 1), B (5, 1),
and C (2, —3).
Solution. — Let Py (21, y1) be the required point.
From formula (1)
T PA=VO0—-z)+0-p)p
PB = V(5 —z)+ (1 —w)
PC =VQ2—-z)+@+uyr
a Since these distances are all
equal, we can make the two equa-
tions: .
/ Vep+yr—-2p+1=
- \/xl’ - 10z, + Y — 21[1 + 26,
(1Y Vai Fya =2y 1=
Vi — 42 +y1’+61[1+13.

>

X
1{

10

=0

Squaring each and collecting,
10 = 25,
2 T - 4 nh = 6.

Whence z; = §, y1 = —1.

It is evident that P, is the center of the circle passing through the three
points 4, B, and C..

After working each example, the student should examine his figure
carefully and satisfy himself that his answer is reasonable.

EXERCISES
1. Find the lengths of the lines joining the following points:
(@) (-1, —4), (2,1). Ans. V34,
(b) (3: 2): (0: "2)0
() (a, b), (—a, —b). °
@ (@ +1b,a), (b, a+Db).
2. Find the lengths of the sides of the following triangles:
(@ (1, 1), (=2, 2), (=8, =3).
(b) (4) 2); (_3: 4): (27 —6)'
(c) (ar 0), (0! _a)’ (a + by a).
(d) (c + d’ 0), (dy O), (d9 —C)- .
8. Prove that the points (—3, 1), (3, 1), and (0, 1 + 3 V3) are the
vertices of an equilateral triangle.
4. Prove that the points (4, 1), (—1, —4), and (3, 2 V2) are equi-
distant from the origin.
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6. Prove that (3,1), (2, 4), and (—2, 1) are the vertices of an isosceles
trinngle.

8. Prove that the points (4, —3), (5, 4), and (—2, 5) all lie on a circle
whose center is (1, 1). Find the radius.

7. Prove that (1, 1), (3, 4), and (—5, 5) are the vertices of a right
triangle. .

8. Prove that (1, 2), (—5, —3), (1, —11), and (7, —6) are the ver-
tices of a parallelogram.

9. Prove that (0, —1), @3, 2), (0 5), and (—3, 2) are the vertices of a
square.

10. Find a point on the y-axis which i is equidistant from (4, 0) and
(-2, —2). Ans. (0, 2).

11. One end of a line whose length is five is at (4, 2); the abscissa of
the other end is 1. Find the ordinate. Ans. 6 or —2.

12. Find the point equidistant from (0, 2), (3, 3), and (6, 2). Ans.
3, —2). -

13. The point (z, y) is eqmdxstant from (2, —1) and (7 4). Write
the equation which z and y must satisfy. Ans.z + y = 6.

14. Express algebraically that the distance of the point (z, y) from
the point (2, 3) is equal to 4.

16. The angle between oblique axes is 60°. Find the distance be-
tween the points (3, 5) and (5, 1). Ans. 2 V3.

Hint. — Locate the points, draw their coérdinates and apply the law
of cosines from trigonometry.

16. The angle between oblique axes is w. Find the distance between
the points Py (z1, y1) and P; (23, gs).

7. Inclination and Slope. — The angle which one line
makes with another is the angle not greater than 180° measured
counter-clockwise from the second to the first.

X

Thus, the angle which the line L, makes w1th another line
Ls is the angle ¢ in the figure.
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The inclination of a line vs the angle which it makes with
the z-axis. This angle is always measured from the posi-
tive direction of the z-axis. Thus ¢ in the figures below
represents the inclination of the line AB.

A\' 1

N
L

O

.

!

The slope of a line is the tangent of its inclination.
Formula for slope. — The slope m of a line joining the two
points Py (21, 11) and P, (z2, y2) 1s given by the formula

m =231, )
Xg — X1

Proof. — Let Py (z1, y1) and P; (z2, y2) be two points on
a line whose inclination is ¢. It is required to find m the
slope of the line.

Draw the ordinates M,P,

P and M,P; and through P, draw

P:N parallel to the z-axis cut-

B —IN  ting M,P; in N. Then angle
¢ = NP,P, (why?).

ol ™, M; X  From the figure, it is seen

/ that m = tan ¢ = tan NP, P,

NP =y,

PN »—m

Parallel lines. — If two lines are parallel, their slopes are
equal, and conversely.

\"4
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9

Proof. — Let ¢, and ¢; be the inclinations and m: and m,

the slopes of the parallel
lines L; and L.

Then ¢ = ¢2 (why?)
and therefore m; = mas.

The proof of the con-
verse is left to the stu-
dent.

Perpendicular lines. —
If two lines are perpendic-

e

Y

/t

}

7

¥l

ular, the slope of one ts the negative reciprocal of the slope

e
e

of the other, and con-

versely.
. Proof.—Let ¢ and
¢: be the inclinations

and m; and m, the
X glopes of the perpen-

0

/ dicularlines L and L.

Then ¢3 = 90° 4 ¢,
(why?).
Therefore

tangs=tan (90°+ ¢;)= — cot ¢ = ﬁ, whence m, = -;’—1-

A similar proof ap-

plies when ¢; is ob-

tuse. The proof of /

the converse is left to

the student. <

ILLUSTRATIVE EXAMPLE

Prove that the line A 2

joining A (—1, 1) and B X Q ~

(1, ) is perpendicular to ™ NS

the line joining C (—2, 3)

and D (2, 1). /
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Solution. — From formula (2), the slope of AB = 5-1_ 2, @d

_3 1 141
the slope of CD = 2_+—2 -5
Since either slope is the negative reciprocal of the other, the lines are
perpendicular.
EXERCISES
1. Find the slopes of the lines joining
(@) (2, 5) and (-3, —3);
®) 3,2) and (7, —7);
(¢) (4, 3) and (-2, 5);
(d) (a, b) and (—a, 20).
2. Find the inclination of the lines joining
(@) 3, 2) and (~1, -2);
() (V3,0) and (0, 1); -
(©) (0, 0) and (1, V3);
@ (=4, 0) and (=5, V3);
(e) (5, 6) and (4, 7).

8. Find the slopes of the sides of the triangle whose vertices are (3, 5)
(6, 2), and (5, 7). Ams. —1, 1, and —5.

4. The inclination of AB is 40°. If CD makes an angle of 20° with

AB, find the slope of CD. Ans. V3.

6. Solve Ex. 7 and 8 in Art. 6 by means of formula 2. . .

6. Prove that the diagonals of the square in Ex. 9, Art. 6, cut at nght
angles.

7. Prove that (6, —5), (2, —1), (—3, —4), and (—2, —5) are the
vertices of a trapezoid.

8. What is the slope of the line joining (2, 5) and (2, —4)? What
is the slope of any line parallel to the y-axis?

9. Prove that the line joining (5, 2) and (6, 4) is parallel to the line
joining (2, 5) and (4, 9) and perpendicular to the line joining (8, 1) and
(6, 2).

10. Prove that the tnangle whose vertices are (0, 0), (3, 1), and (2, 4)
is a right isosceles triangle.

11, Prove by means of slopes that the figure whose vertices are
(2, 1), (1, 3), (3, 4), and (4, 2) is a rectangle.

12. Prove by means of slopes that the three points (1, 1), (-2, —2),
and (3, 3) lie in the same straight line.

18. Three vertices of a parallelogram are (—1, —2), (2, 0), and (8, 6)
joined in the order named. Find the fourth vertex. Ans. (5, 4).
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14. A line with an inclination of 60° passes through the origin. If
the ordinate of a point on the line is 6, what is the abscissa of the point?
Ans. 2 V3,

1B6. A point is 4 units from the origin and the inclination of the line
joining it to (1, v/3) is 60°. Find its codrdinates. Ans. (2, 2V3) and
(-2, —2V3).

16. A point is equidistant from the two points (2, —4) and (4, 6),
and the slope of the line joining it to (—1, §) is —2. Find its codrdi-
nates. Ans. (§, ).

8. Point of division. —If the point P; is taken any-
where on the line P,P,, P, divides the line into two segments
P,P; and PyP,. It will be understood that the segment
P,P; starts at P, and terminates at P; and that the segment
P;P; starts at P; and terminates at P,. If both segments
extend in the same direction, the segments are said to have

P P, P,
P, Py Py

the same sign, if in opposite directions, opposite signs.
Thus in the first figure above, the ratio of P,P; to PP, is
positive, while in the second figure the ratio is negative.
The division is called internal or external according as the
wpoint P; falls between P; and P; or on the line produced.
Formula for point of division.— The codrdinates (xs, ys) of
the point' Py which divides the line joining the two points
Py (z1,41) and P, (23, y2) into segments such that the ratio

11;—;1% = ﬂ, are given by the formulas

Te
_ rixg+rox; _nys+ray:
Y8 = ritre 2 Thtre (i)‘

Proof. —Let P, and P; be the two given points, and P;
the point which divides the line joining P, and P, in the
ratio of r; to r2. It is required to find the codrdinates of Pa.
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"Draw the ordinates M,P,, M:P;, and MP;. Then since
the three parallels M,P;, M;P;, and M,P; are cut by the
p, twotransversals MM, and

Y p P,P,, the corresponding
segments are proportional.
r Therefore,
M1M3=P1P8=ﬁ.
x/ 3 M M M X M SM 2 P BPS Ts
1 '3 0 3
Whence
X3 — X1 = Ty
(’ Ty— T3 T3

Solving for z;, the abscissa of the point of division is
found to be
gy = T T
n+r

Similarly, by drawing the abscissas of the three points
P,, P;, and P;, the student is asked to derive

_ Ny 1oy
rntre

Cobrdinates of the middle point of a line.— The codrds-
nates (zs, ys) of the middle point, Ps, of the line joining the
two points Py (z1, 1) and P, (s, ys) are given by the formulas

PRl @

Proof. — These results are derived immediately from

formula (3) by substituting r; = 7..

ILLUSTRATIVE EXAMPLES
1. Find the codrdinates of the point dividing the line joining (—2, 5)
and (3, 0) in the ratio §.
Herezy = =2, 23 =3, =5, =0, = 3,and r; = 2,
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Substituting in for-
mula (3),

=3:3+2-(=2)
w="o¥3

_3:04+2:5 _ N
ya———2+3 =2,

2. Divide the line
joining the two points
(—2, 5) and (3, 0) in the
ratio 2 : —1,

Here 2, = =2, 23 =3, yn =5, p =0, n =2, 1y = —1.

Substituting in formula (3),

o 23D (=2) _

2-1
o 20F (D5
* 2 -1 =

The figure shows that P,P;is twice
P;P; and opposite in sign, or P.P; :
P;Pa 2 —1.

3. Prove analytically that the line
joining the middle points of two sides
of a triangle is parallel to the third side.

In examples of this class, all points chosen should be represented by
literal quantities so that the proof applies equally to all figures of the
class. The position of the origin and axes should be taken so as to
simplify the work as much as pos-
sible. B(o,b)

Let the base of the given triangle
be represented by a and the altitude D E
by b. Taking the side a of the tri-
angle as the z-axis and one extremity 0 A(a,0)
of this base as the origin, the figure '
is as shown, and the vertices are
(0, 0), (a, 0), and (¢, b).- Let D and
E, the middle points of OB and BA
respectively, be joined by the line DE. The coordinates of D, the

middle point of OB, are found by formula (4) to be (%, g), and those of
E, the middle point of BA, to be (c tad

4
'

L

(=]
x

8,

-5,

2 '2)
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The slope of DE is shown by formula (2) to be
b_b
2

a

(-]

m = =0

[4

+

o

[ ]
N

Whence DE is parallel to the z-axis which coincides with OA the base -
of the triangle.
: . BXERCISES
1. Divide the line joining (3, —5) and (6, 2)

(a) in the ratio of %; .

(b) in the ratio of —?2

Plot figure and discuss the position of points in the result.

2. Find the cobrdinates of the point C which divides the line joining
A (—3,4) and B (7,9) in the ratio 4. Check the work by showing that
the distance from A to C is 4 of the distance from C to B.

3. Find the middle points of the sides of the triangle (—1, 3),
(-3, —5) and (3, —1) and compute the lengths of the medians.

4. If the point P; divides the line joining the points P; and P; in a
negative ratio numerically greater than one, will the point P; be nearer
Py or P;? If the ratio is negative and numerically less than one, discuss
the position of P;.

Find the codrdinates of the point which divides the line joining
(=1,4) to 8, 1) in the ratio > Ana. (26, —5).

5. Prove that in the parallelogram whose vertices are (1, 2),
(-5, —3), (1, —11), and (7, —6) the diagonals bisect each other.

6. Prove that in the trapezoid whose vertices are (6, —5), (2, —1),
(—3, —4), and (—2, —5), the line joining the middle points of the non-
parallel sides is parallel to the bases and equal to half their sum.

7. Find the points of trisection of the line joining (—2, —2) and
(7,4). Ans. (1,0) and (4, 2).

8. In what ratio does the point (3, —2) divide the line joining (—1, 2)
and (5, —4)? Ans. 2:1.

9. The middle point of a line is at the point (3, —2). Oné extremity
is (—1, —4), what is the other extremity? Ans. (7, 0). -

10. The line joining (—4, —2) and (4, 6) is divided in the ratio —2 .

Find the distance of the point of division from (2, —3). Ans. 7 V5.
11, Prove that the lines joining the middle points of the adjacent
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sides of the quadrilateral whose vertices are (-3, —2), (-1, 4), (3, 6),
and (5, —4) form a pa.mllelogram

. 12. One extremity of a line is at the point (—2, 3) and the line is"
divided by the point (3, —2) in the ratio . Find the other extremity.
Ans. (7, —6).

18, Find the center of gravity of the triangle whose vertices are
(-1, —2), 3, 4), and (5, —6).

Hint.—The center of gravity is the point of intersection of the
medians and was shown in geometry to be two-thirds of the distance
from any vertex to the middle of the opposite side. Ans. (§, —4).

14. The line AB is produced to C so that BC is equal to twice AB.
A is (5, —4) and Bis (3, —2), what arethe codrdinatesof C? Ans.(—1,2).

16. The line joining P; (—1, 3) and P; (2, 4) crosses the y-axis at P;.
Find the ratio into which P; divides P,P;. Find the ordinate of P.
Ans. }; 3.

16. Three vertices of a para.llelogram are (-1, —-2), (2, 0), and
(8, 6), joined in the order named. Find the fourth vertex by drawing
the diagonals and applying the formulas of this article. Ans. (5, 4).

17. Prove analytically that the middle point of the hypotenuse of
any right triangle is equidistant from each vertex.

18. Prove analytically that the diagonals of any parallelogram bisect
each other.

19. Prove analytically that the line joining the middle points of the
non-parallel sides of a trapezoid is equal to half the sum of the parallel sides.

9. Area of a triangle. The area of a triangle whose vertices
are Py (z,, %), Ps (3, y2), and Ps (23, ys) 18 ywen by the formula
Area triangle P,PoPg = \ Py

,-.[xn(ys—ya) + x5 (ys — y;)
+ %3 (1 — ¥9)]. (6)
Proof. — Locate the triangle P,
whose vertices are P,, P,, and
P;, and draw the ordinates .
M1P1, Msz, and Ma.Ps 0o M, M: M, -
Then triangle P,P;P; =
M\P,P\M;— M,P,P;M,— MszPsMs— [Mle(M1P1+M3Pa)
- Mi\M,; (M\P, + M:P;) — M;Ms (MsP; + MsP;)] (why?)
=} [(@s— z) (1 + ) — (2 — 2) (W1 + 1) — (3 — 2) (42 + ).
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Expanding and collecting, this reduces to
(e — ) + 22 (ys — ) + 2 (11 — W)

ILLUSTRATIVE EXAMPLE
Find the area of the triangle whose vertices are (1, —1), (2, 3), and
(-2, 1).
Denote (1, —1) by P, (2, 3) by P;, and (—2, 1) by P;.

Then from formula (5),
y | o] [?] areaPPiPi=311(3-1)4+2(1+41)
-2(-1-3)]=17.
P /A It will be noticed that in passing
X o !/ %—| from P; to P, to P; we go in a coun-
ter-clockwise direction and that the
¢ ; A area lies on the left. In this case
Y the area is found to be positive.
If the same three points had been
lettered differently, thus, P, (1, —1), Ps(—2,1), -
and P; (2, 3), the formula would have given v N
the result in the form i
Area P,P;Py = }[1(1 —3) =23 +1) o /
o 42(-1-1]= -7 N o/ [ I,
That is, if we pass through the points in a " i
clockwise direction, keeping the area on the -1 A
right, the formula gives a negative value to Y §
the area.

In any example, in order to obtain a positive result, the points should
be taken in counter-clockwise order.

It is of decided advantage in remembering the formula

Area P\P2Py = 4 [z (s — 1s) + 22 (s — 1)
72 l + 23 (1 — )] '

'j to notice the cyclic order of the subscripts. If the

numbers 1, 2, 3 are arranged in a circle as shown in

the figure it will be observed that the subscripts of z

S in the formula follow the cyclic order, that is the order

. determined by following the arrow heads on the circle.

Also the three subscripts in each term follow this order, starting how-

ever with 1 in the first, 2 in the second, and 3 in the third.

— -
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EXERCISES
1. Find the area of the triangle whose vertices are
(a) (_1’ 1): (ly 2); (_19 3)- Ans. 2.
®) 0,0, (2, -1, G, 9.
(© (a,0), (a,b), (c, d).
(d) (61 6)9 (—2, 3)) (—5, —l)'

2. Find the area of the quadrilateral whose vertices are (2, 3),
(—4,1), (-5, —2), (3, —6). Ans. 42.

@ Prove by means of slopes that the quadrilateral whose vertices
are (2, 4), (3, 0), (5, 3), (4, 7) is a parallelogram and find its area.

4. Prove that the area of the triangle whose vertices are (2, 3),
(-4, —3), and (—1, 0) is zero and hence show that these points all lie
on a straight line. .

6. The vertices of a triangle are (—2, —2), (4, 7), and (4, —1).
Lines are drawn from the vertex (4, —1) trisecting.the opposite side.
Find the area of one of the three equivalent triangles formed. Ans. 8.

6. Are the three points (1, 3), (=1, —1), and (3, 7) in the same
straight line?

7. Prove that the lines joining the middle points of the adjacent
sides of any rectangle form a rhombus whose area is one-half the area of
the rectangle.

8. In a triangle whose vertices are (1, 2), (3, —4), (-5, 6), lines are
drawn joining the middle points of the sides. Prove that area of the
first triangle is four times that of the second.

9. Find the area of the triangle whose vertices are (-1, 5), (2, 1),
and (4, 5). '

Prove the triangle isosceles, compute the altitude, and determine the
area as one-half the product of the base and altitude, thus checking the
first result.

10. Find the area of the trapezoid whose vertices are (0, 0), (a, 0),
(, ¢),and (d, ¢). Show that this area is the product of the altitude by
one-half the sum of the parallel sides.



CHAPTER 1II
LOCI

10. Equation of a locus. — One of the most important
functions of analytic geometry is the application of algebra
to geometry.

The two fundamental problems are

(1) To find the equation of a locus, having given certain
geometric conditions.

(2) To plot and discuss the geometric figure or locus which
- corresponds to a given equation.

The first of these two problems will be considered in this
article.

The equation of a locus is an equation which is satisfied by
the coordinates of all points on the locus and not satisfied by
the coordinates of points not on the locus.

Sometimes the equation of a locus can be written imme-
diately fram the above definition.

Thus, if a line is parallel to the y-axis and 2 units to the
right of it, its equation is z = 2, for the equation is satis-
fied by the codrdinates of every point on the line and by the
codrdinates of no point off the line.

EXERCISES

1. What is the equation of a line parallel to the z-axis and 3 units
" above it? Parallel to the z-axis and 5 units below it?

2. What is the equation of the z-axis? Of the y-axis?

8. What is the equation of a line parallel to the y-axis and 4 units to
the left?

4. What is the equation of a line half way between the lines y =

- andy = 8? g

18
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8. Find the equation of the line half way between the lines z = —1
and z = 6.

6. Find the equation of a line parallel to y= —2 and 5 units above it.

7. What is the equation of the line joining (—2, 5) and (3, 5)? Is
the point (7,' 5) on the line?

From the definition of the equation of a locus, it is evident
that a point whose codrdinates satisfy the equation of a locus
lies on that locus, and one whose codrdinates do not satisfy the
equalion is not on the locus.

The steps in finding the equation of a locus are, in general,
as follows:

1st. Construct a ﬁgure in which all the given data are
located and let P (z, y) represent the coodrdinates of any
potnt on the locus.

2nd. From the figure or from given data, equate two
geometric magnitudes which are known to be equal.

3rd. Replace the geometric magnitudes by equivalent alge-
braic values expressed in terms of z, ¥ and given constants.

4th. Simplify the result.

5th. Discuss why the coor- T
dinates of all points on the
given locus satisfy the equation B
obtained and why the coordi-
nates of all points off the locus ||
fail to satisfy it.

ILLUSTRATIVE EXAMPLES
1. Find the equation of the . A ?’1'__
straight line through the points |y %
(4, 1) and (6, 7). ° /

1st. Plot the known points 4 -
and B and draw the straight line
through them. Choose P (z, y) any
point on the required locus. .

2nd. Since APB is a straight line, it is evident that

the slope of AP = the slope of AB.
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3rd. The slope of AP = Z — 1, formula (2).

The slope of AB = =% = 3, formula (2).

Whence, : — 1 =3.

4th. Clearing of fractions and simplifying,

3z—y—-11=0.

5th. Since the point P (z, y) was taken as any point on the desired
locus, it is evident that the first condition of the equation of a locus is
fulfilled, viz., that the equation is satisfied by the codrdinates of all
points on the loeus.

To prove the second condition, viz., that any point not on the locus
does not satisfy the equation, choose any point, P;, not on the locus and
draw its ordinate crossing the given line at P,. Since P; is on the given
line, its coérdinates satisfy the equation, 3 z — y — 11 = 0, and we have
after solving for y and substituting,

th=3n-11.
If the codrdinates of P, are substituted in the same equation we obtain
h =3n — 11

The second members of these two equations are equal since z; = z,,
while the ordinate y, is either greater or less than ys according as P, is
above or below the line. Hence the equation 3z — y — 11 = 0 is not
satisfied by the coordinates of P; (21, 11).

Since we have shown that the equation is satisfied by the coérdinates
of every point on the locus and by the coérdinates of no other points,

it is the desired equation of the locus. )
. 2. Find the equation of a

line through the point (3, —2)

and perpendicular to the line

"~ joining (4, 1) and (2, 2).

Y 1st. Plotthepoints 4 (4,1)

- q and B (2, 2), and draw through

% them the line AB. Plot C

(3, —2) and through it draw

| a line perpendicular to AB.
Choose P (z, y) any point on
this line.

2nd. Since the lines CP and AB are perpendicular,

the slope of CP = — W (Art. 7).

N

(e}
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3rd. Slope of CP = y + 2 , formula (2).

Slope of AB = ——‘ = —3, formula (2).

1/+ =9

Therefore

4th. Slmphfymg,
y—2z+8=0

5th. The proof of this step is left to the student, being in general
similar to that given in illustrative example 1.

8. Find the equation of the locus of the point which moves so that it
is always at a distance 5 from the
point (1, 3).

1st. Plot the point A (1, 3).

It is evident that the locus is
a circle with center A and radius
5. Let P (z, y) represent any
point on this circle.

nd. Then AP = 5.
3rd. By formula (1),

AP=VE -1+ -3,
whence .
V(z -1+ (y — 3)* = 5.
4th. Squaring, expanding, and collecting,
#—2zx+y2—6y—15=0.
5th. The proof of this step is left to the student.

EXERCISES

1. Find the equation of the locus of the point for which the ordinate
is always three times the abscissa.

2. Find the equation of the line through the point (2, 3) and with
inclination of 120°. Is the point (5, 6) on the line?

8. Find the equation of the line through (1, 2) and (—3, —4). Check
work by showing that the codrdinates of these points satisfy the equation.

4. A point moves so that its distance from the point (—1, 2) is
always equal to its distance from the origin. Find its equation.

6. Find the equation of the straight line passing through the middle
point of the line joining (2, —7) and (10,-5) and making an angle of 45°
with the z-axis.
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6. Find the equation of the straight line through the point (—1, 5)
and parallel to the line joining (1, 3) and (-5, 5).

7. Find the equation of the straight line perpendicular to the line
Jommg the two points (2, 1) and (5, 4) and dividing the distance between
them in the ratio of 2 to 1.

8. Find the equation of the straight line through the point (1, 2) and
with slope 3. Find the ordinate of the point on the line for-which the
abscissa is 0, and thus find where the line crosses the y-axis. Similarly,
find where the line crosses the z-axis.

9. Find the equation of the straight line perpendicular to the line join-
ing the points (—2, 1) and (6, —3) and passing through its middle point.

10. Find the equation of the locus of a point which moves so as to
be always equidistant from the two points (—2, 1) and (6, —3). Prove
that this is the perpendicular bisector by showing that its equation is
the same as that in Ex. 9.

11. Find the equations of the following circles:

(a) center (0, 0), radius 4;
(b) center (3, 2), radius 5;
(c) center (a, b), radius c.

12. Find the equation of the circle whose center is (2, 3) and which
is tangent to the z-axis.

18. Find the equation of a circle whose radius is 5 and whose center
is the middle point of the line joining (—1, —3) and (3, 7).

14. Find the equation of the circle in the first quadrant which is
tangent to both axes and whose radius is 2.

16. Find the equation of the circle whose center is (1, 3) and whose
circumference passes through the point (—3, 0).

16. Find the equation of the circle of radius 3 which is tangent to the
y-axis at the origin.

17. Find the equation of the circle whose diameter is the line joining
the points (5, —7) and (3, —1).

18. Find the equation of the circle whose center is the middle point
of the line joining (—1, 6) and (5, 2) and whose circumference passes
through (1, 1). '

11. The locus of an equation.—In the last article,
equations of loci were derived from geometric data given.

The second problem of analytic geometry, viz., to plot and
discuss the geometric figure which corresponds to a given
equation, will now be considered.
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" This second problem divides itself into two parts, plotting ‘
the locus of an equation and discussing an equation.

12. Plotting the locus of an equation. — A pair of coordi-
nates z and y locate definitely one point in a plane. If,
however, these two coérdinates must always satisfy a given
equation, then a series of points may be chosen, the coordi-
nates of each of which satisfy the given equation, for to each
value of one variable corresponds one or more values of the
other and hence an infinite number of points may be located.

22

2.

Thus, if in the equation y = z x’ we give to z a

series of values differing by 7

unity, we obtain \ ;
T=-2 y=4 \ /
z=-1, y=4% ]
z=0, y=0; \ 7
z=1, y=—1%; LN 4
z=2 y=0; J \Ff "
z =3, y=4; OY. N
z =4, y =4. -

Plotting, the points are as shown above.

It will be noticed that these points are not located indis-
criminately over the plane, but apparently all lie on a curve
as drawn. '

More points on the curve may be obtained by giving frac-
tional values to z, between those already used, and thus a

" more perfect approximation to the correct curve be obtained.

This curve is called the locus of the equation.
The locus of an equation is a curve which contains all the

points whose codrdinates satisfy the equation and no other points.

In examples like the preceding, it is generally best to
solve for y in terms of z, but in particular examples, it may
be convenient or even necessary to solve for z in terms of y.
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If two variables are so related that when the first is
given, the value of the second is determined, then the
second is said to be a function of the first.

That variable to which values are arbitrarily assigned is
called the independent variable and the other the dependent -
variable. "

If the two variables are connected by an algebraic equation,
that is, by one which contains functions which are the result
of a finite number of algebraic operations, such as addition, sub-
traction, multiplication, division, involution, and evolution,
either function is said to be an algebraic function of the other.

An illustration is given by y =2t — 822+ 1 or by
2P+ 2y =17,

In many cases of great importance, the equation con-
pecting the variables is not algebraic, in which case one
variable is said to be a transcendental function of the other.

Examples are, y =logz, y=¢%, ytan'z=3.

The present chapter will be concerned with plotting and
discussing algebraic equations only. Transcendental equa-
tions will be considered in a later chapter.

The locus is sometimes evident directly from its equation.
For example, find the locus of the equation z = 2. Since
no mention is made of y, the ordinate is unrestricted. Our
problem then is to find a locus for which z is always 2, while
y may have any value whatever. Such a locus is the line
parallel to the y-axis and 2 units to the right of it.

EXERCISES
What is the locus of y = 5?
What is the locus of z = —8?
What is the locus of y = z?
. What is the locus of y = —z?

In general, the locus of an equation will be determined by
the process called plotting. The steps are as follows:

popR
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1st. Solve for one variable in terms of the other.

2nd. Assign values to the independent variable and compule
those of the dependent variable, expressing the results in the
form of a table.

3rd. Plot the points thus obtained and connect with a smooth
curve.

ILLUSTRATIVE EXAMPLES
1. Plot the locus of the equation z 4+ 2y = 4.
1st. Solving for y in terms of z,

4—3:.
2

2nd. It is convenient when assigning values to z and computing the
corresponding values of y, to state the result in the form of a table.

: ’ z y Y
0 2 0 2 \
1 3 -1 &
2 1 -2 3
3 % -3 1
4 0 ete. ) = X
5 -3 0 N
3rd. Locating the points obtained ;
and connecting by a smooth curve,

the figure is approximately as shown.

It will later be demonstrated that every equation of first degree be-
" tween two variables represents a straight line, a fact which corresponds
with the appearance of this figure.

2. Plot the locus of the equation

422492 =36, -

1st. Solving for y in terms of z,
y==x1v9 -2

2nd. It will be noted that for values of  numerically greater than 3,
y is imaginary and therefore no points of the curve can be constructed
for which z is greater than 3 or less than —3. In making our table,
values are taken between —3 and +3, ”
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z v z v
/ N —
4 Y ||o]x2 02 _
P N ) T 1 iiﬁ = +1.8|[-1 :A:i\\;g =+1.8
2 |3 V5 =+1.4(|-2(+% =+14
N ﬁ// 30 -30
- vt .
. 3rd. Plotting the points and construc-

ting a smooth curve through them, the locus is approximately as drawn.
8. Plot thelocusof # — 2z —y = 0.
1st. While, in general, it is better to solve for y in terms of z, in this
example it is necessary to solve for z in terms of y. This gives

=Y 2— Y,
2nd. Assigning values to y and computing z,
v z v z
0 0 0 0
1 0 -1 0
2 3 -2 -3
3 12 -3 —12
ete. ete.

It will be noticed that in the table above there are three values of y
which give z = 0, and therefore three points are located on the y-axis.

In order to draw the curve more accurately in the vicinity of these
points it is advisable to give to y the fractional values —4 and +4. Two
additional points (%, —%) and (—%, 4) are thus determined.

3rd. Locating the points and drawing a smooth curve through them,
the figure is as shown,



DISCUSSION OF AN EQUATION 27

Sometimes, as in the equation 2* 4 y* + 15 = 0, there are no real
values which satisfy the equation. In this case there are no real points
on the locus. i

Again, an equation may be satisfied by the codrdinates of one point
only, in which case there is only one real point on the locus. Such loci
are called point-loci. An ﬂlustratlon is the equation 2® + 3 = 0, the

-locus of which is the origin.

EXERCISES

Plot the locus of each of the following equations:

1. y+2z-3=0 14. 22 =8y.

2. B4 <4, 15. 22 +2z—1=y.
8. -y =4 16. 42 — 92* = 36.

4 y=2 17, 422 = p,

6. 2 =2 18. 2* + 42 = 25.

6. 22+ 412 =16. 19. £+ 62 =0.

7. 22 — 42 =16. 20. 2y =28 — 2.

8 2+4y2=0. 21, *=(1-12)(z+3).
9 4224 8z=4y—5. 2. 2z24+5y+2=0.
10. 2z —y = 12. 28. =23 —2).
11, 2 =8z + 8. 24, =8 —8=z.

12, 22 4 32 = 16. 26. 2*+42xz+3+4y=0.
18. y=2*—2. 26, =28 —1.

13. Discussion of an Equation. — The method of deter-

mining loci by plotting separate points is in general satis-,

factory in simple examples, but in those in which the equa-
tions are somewhat complicated the work is often long and
the results more or less inaccurate. These difficulties are
lessened in many cases, by making a study of the properties
of the curve by means of the discussion of its equation.
The properties which will be discussed are as follows:

1. Intercepts.

2. Symmetry.
3. Extent.
4. Asymptotes.

Intercepts. — The intercepts of a locus are the distances
Sfrom the origin to the points wheve it cuts the axes
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Thus in the figure, the z-intercept is OA, which is the
abscissa of the point A, 7.e., of the point on the locus whose
ordinateis 0. It is then evident that to find the z-intercept,
v substitute y = 0 in the equation,
B and solve for z.

\ . Likewise to find the y-inter-
- m— A_x cept, substitute = 0 and solve
\ for y.
ILLUSTRATIVE EXAMPLE
Find the z and y intercepts of the curve 2y — 22 + 42z -3 = 0.
1st. Lety = 0,then2®* — 42 4+ 3 = 0.
Whence, z = 1 or 3. The z-intercepts are therefore 1 and 3.
2nd. Let z = 0,then 2y — 3 = 0, or y = §, the y-intercept.
Symmetry. — Two points are symmetrical with respect to
a line if that line is the perpendicular bisector of the line joining
the two points.
If A and A’ are symmetrical with respect to the z-axis,

then if the codrdinates of A are (z, y) A
the coordinates of A’ are (z, —y).

Similarly, the point symmetrical to 4 .

with respect to the y-axis is (—z, y). o

A curve 18 symnwtrwal with respect to
a line if the curve is made up of pairs of points symmetncal
with respect to the line.

If a locus is symmetrical with respect
tothez-axis, thereis a point (z, —y) onthe
curve corresponding to every point (z, y)

w—F. X onthe curve. The codrdinates (z, —y)
must therefore satisfy the equation of
o the curve, t.e., y can be replaced by —y

and the equation remain unchanged.

The equation of the curve here sketched is 3* = 4z.
Replacing y by —y in this equation, the result is (—y)? =
4 z, which is the same as the given equation, y% = 4 2.

@, Y




DISCUSSION OF AN EQUATION 29

By a similar discussion, it may be shown that whenever z
can be replaced by —z without causing any change in the equa-
tion, then the locus is symmetrical with respect to the y-axis.

In the equation 224 32 =9, x can -
be replaced by —z, and y by —y, |
therefore the curve is symmetrical
with respect to both axes.
~ The method of replacing = by —z Y
and y by —y applies equally well in testing for symmetry in
either algebraic or transcendental equations. It is evident,
however, that in case of algebraic equations, if there are no
odd powers of y, then y can be replaced by —y, and the locus
is symmetrical with respect to the z-axis, while if there are
no odd powers of z, then = can be replaced by —=z, and the
locus is symmetrical with respect to the y-axis.

Two points are symmetrical with respect to the origin if the
origin btsects the line joining the two points.

~ If A and A’ are symmet-
A rical with respect to the
2 origin, then when the co-

X 5 ordinates of A are (z, y)
. the cotrdinates of A’ are
q (—z, —y).

A curve 18 symmetrical
wtth respect to the origin if the curve is made up of pairs of
points symmelrical with respect to the origin.

From this definition, it is readily seen that the curve is
symmetrical with respect to the origin if the equation re-
mains unchanged when z and y are replaced by —z and
—y respectively.

An algebraic equation always represents a locus symmet-
rical with respect to the origin if each term is of odd degree
or if each term is of even degree. A constant term is con-
sidered of even degree.

X
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Discuss each of the following equations for intercepts and
symmetry and plot the loci:
1. y—z=3. 8 2*=4y+4.
2 y=4z. 4. y=12

Extent. — In order to find how far the curve extends
left and right from the origin, the equation is solved for y
in terms of z and the values of z which make y real are then
determined. If y is equal to an integral expression in x,
or if the radicals involved are all of odd index, y is real for
all values of z and the curve extends indefinitely left and
right from the origin.

For example, thelociof y = 2z + landy =5+ V5z: + z
extend indefinitely left and right from the origin.

When y involves a radical with even index, values of z
which make the quantity under the radical negative must
be determined, as for these values y is imaginary, and conse-
quently there are no points corresponding to such abscissas.

Similarly, the extent of the curve above and below the
z-axis may be determined by solving for « in terms of y.

The method of determin-
ing the extent of a curve is
made clear in the following.

N ILLUSTRATIVE EXAMPLES
1. Discuss for extent
0 N vr+2y+3z=3.
Solving for y,

y=-—-1+Vv4-3u2.
p It is often helpful to make
ad the coefficient of z in factors of
first degree either +1 or —1,
thus

y=-1+V3{F—2.

It can now be readily seen that if z is greater than 4, y is imaginary

and therefore there are no points on the curve to the right of the line
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2z = $. Since y is real for all values of z less than $, therefore the curve
extends indefinitely to the left of that line.
Solving for z in terms of y,

x=-ti§£.§.

Since z is real for all values of y, therefore the curve extends in-
definitely above and below the z-axis.
Plotting a few points the curve is found as shown.
2. Discuss for extent 32 + 422 — 16z + 12 = 0.
Solving for y, y = £2 V —2 4 42 — 3.
Factoring the expression under the radical,
y==x2vV@x-—-1) 3 —2).

It is evident that the first factor is negative when z is less than 1, and
positive when z is more than 1, also that the second factor is negative
when z is more than 3 and positive when z is less than 3.

The product then is positive when z is greater than 1 and less than 3
and therefore y is real for 1= z = 3. The product is negative when z
is less than 1 or more than 3 and y is then imaginary.

The whole curve therefore lies between the lines £ = 1 and z = 3.

Solving for z in terms of y,

Since zis real when —2 = y = 2 and is imaginary for all other values,
. therefore the whole curve lies between the lines y = —2 and y = +2.

A

x
x

In plotting points it is only necessary to use values of z from 1 to 3.
The figure is found to be as shown.

8. Discuss for extent 32 + 4y — 222+ 62+ 1 =0,

Solving for y, y = —2 £ V222 — 6z + 3.
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If the same plan were followed as in Ex. 2, the expression 2 2* — 6 z
+ 3 should now be resolved into factors. These factors are not evi-
dent. From a theorem in algebra, az® + bz + c =a (z — z1) (z — z),
in which z; and 2, are the roots of the equation az* 4 bz 4 ¢ = 0.

To apply this method here, solve 22* — 6 2z 4+ 3 = 0, obtaining

gm3 *2‘/§,= 2.3 4 or .64.

Whence, the factors are 2 (z — 2.34) (z — .6+), an expression
which can readily be seen to be negative for every value of x between
.6+ and 2.3+ and positive for all other values. Hence y is imagi-
nary when .6 + < z < 2.3 4 and real when z = 6+ orz = 2.34.

The fact observed here is universally true, viz.,, that a quadratic ex-
pression has the same sign for every value between its roots, and the
opposite for all other values.

This fact is of importance as by its use the process of determining the
sign of a quadratic expression may be shortened.

In order, then, to determine the sign of a quadratic expresgion, find its
roots, then substitute in it some value between the roots and determine
the sign. The expression has this sign for all values between the roots
and the opposite sign for all other values.

Thus, in the above problem, substitute in 22* — 6 z + 3 any number
between the roots .6+ and 2.3+ suchasz = 1. Thesignisfound tobe —.
Hence the expression is negative for all values of z between the roots.

Solving for z,

” —_—
N [ Y / z=3:§:\/2y'2+8y+ll.

\ 4/ The rootsof 292+ 8y +
) o / 11 =0 are found to be im-
X aginary. From a principle
in algebra it is known that
\' ! when the roots of the quad-
ratic equation az® 4 bz + ¢

N

x

= 0 are imaginary, the ex-
pression az® + bz + ¢ is posi-
\ tive for all values of z (if @
N is a pogitive number).
Y \ Hence z is real for every
value of y.
That 2 32 4 8 y + 11 is always positive can also be shown as follows:
2 +8y+1l=2(P+4y+3) =2[w+2*+4),
an expression which is always positive.
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Discuss each of the following equations for intercepts, symmetry, and
extent and plot the loci:

1. 2 44 = 36. 4 P —4z+4y—8=0.
2. 42t 494 = 36. 6. 2 —22+432—8y+1=0,
8. 428 — 9y = 36. 6. 2+ +22+2y—1=0,

~ Asymptotes. — If, as a point generating a curve recedes

indefinitely, the curve approaches coincidence with a fixed
straight line, the line is
called an asymptote to
the curve.

At this time, only
those asymptotes which
are parallel to the axes
will be considered. ¢

If OA = a, then the ° A
asymptotes in the ad-
joining figure are z = 0,
z=a,and y = 0. ,

It will be noticed that Y
as z approaches either zero or a, y increases indefinitely;
also, that as y approaches zero, x increases indefinitely.
This fact leads readily to the method of finding vertical and
horizontal asymptotes, v:z., solve for one variable in terms of
the other and determine those values of the second variable
for which the first is infinite.

Thus, find the vertical and horlzontal asymptotes of

zy+2z—-y=0.

\{ |

Solving for y, 2z
V=13
As z approaches 1, y approaches infinity, therefore z = 1
. is a vertical asymptote.
Solving for z,

T =

_Yv_.
y+2
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As y approaches —2, z approaches infinity, therefore
y = —2is an asymptote. '

In plotting the locus, care must be taken in determining
- points near the asymp-
) # totes. Thus one or

more points should be
1 plotted between z = 0
, ol/ | andz=1, also between
"]l xz=1and z=2. It
o will be observed that
in the locus of an alge-
/ braic equation, there
I can be no asymptotes
parallel to the axes,
unless when one variable is expressed in terms of the other
the result is a fraction with a variable denominator.

The process of determining intercepts, symmetry, extent,
and asymptotes involves the following:

x

Steps in discussion of an equation

1st. Let y = 0, solve for x, thus finding the x-infercept.

Let x = 0, solve for y, thus finding the y-intercept.

2nd. In an algebraic equation observe:

If no odd powers of y are present the locus is symmetrical
with respect to the z-axis. .

If no odd powers of x are present the locus ts symmetrical with
respect to the y-axis.

If every term is of odd degrée or if every term 1s of even de-
gree the locus is symmetrical with respect to the origin.

3rd. Solve for y in terms of « and find what values of z
make y tmaginary. Points having these values as abscissas
are excluded from the locus. Find what values of = make y
real. Points having these values as abscissas are on the
locus.
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Similarly, solve for x in terms of y and determine the values
of y which make x real or imaginary.

4th. Determine asymptotes parallel to the axes by finding
those finite values of either variable which make the other in-
Jinitely great.

ILLUSTRATIVE EXAMPLES

1. Discuss the equation 2 = (z 4 2) (z + 1) (z — 2) and plot the
locus.

1st. Lety = 0,then 2 = —2, —1, and 2, the intercepts on the z-axis.

Let z = 0, y is imaginary and hence the curve does not cut the y-axis.

2nd. No odd powers of y are present, hence the curve is symmetrical
with respect to the z-axis.

0dd powers of z are present, hence the curve is not symmetrical with
respect to the y-axis.

The terms are partly of odd degree and partly of even degree, there-
fore the curve is not symmetncal with respect to the origin.

3rd. Solving for y in terms of z,

y==2vV@E+2)(z+1)(x—-2).

Placing the quantity under the radical equal to zero, the roots are
found to be —2, —1, and +2. For values of z < —2, the quantity
under the radical is negative and hence y is imaginary. Points to the
left of the line £ = —2 are therefore excluded. For values of x more
than —2 but lessthan —1, the quantity under the radical is positive and
hence y is real. Part of the curve then lies between the lines z = —2
and z = —1. For values of z more than —1 but less than +2, the
quantity under the radical is negative and y is imaginary. Points be-
tween the lines z = —1 and z = +2 are therefore excluded. For
values of z greater than +2, y is real and the curve extends indefinitely
to the right of the line z = +2.

In attempting to solve for z in terms of y, it is observed that the
equation is of third degree in z. It is not usually convenient to solve an
equation of third or higher degree. By remembering, however, that
every equation of odd degree has at least one real root, it is seen that this
curve extends indefinitely~both above and below the z-axis.

4th. There are no asymptotes parallel to the y-axis, since the variable
does not appear in the denominator of the equation in the third step.

- In plotting the locus, it is noticed that the intercepts have already de-
termined three points of the curve on the z-axis. From the third step
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of the discussion, it is observed that it is only neoeésary to assign values
to z between —2 and —1, and values greater than +2.
Thus,

L 4

= 0.93 | {

i B X g N
+2 0

F3 | 44+ : k

4 +7.74+

)

In every problem of this article, care should be taken to see that the
locus agrees fully with the discussion.

2. Discuss the equation (z — 2) 3 = z and plot the locus.

1st. Let y = 0, then z = 0, the intercept on the z-axis.

Let z = 0, then y = 0, the intercept on the y-axis.

2nd. No odd powers of y are present, hence the curve is symmetrical
with respect to the z-axis.

0Odd powers of z are present, hence the curve is not symmetrical with
respect to the y-axis.

Terms are partly of odd and partly of even degree, hence the curve is
not symmetrical with respect to the origin.

3rd. Solving for y,

y==

z
z—2

It is seen that the numerator is positive when z is positive and nega~
tive when z is negative, also that the denominator is positive when z is
greater than 2 and negative when z is less than 2, and hence y is imaginary
for values of z between 0 and 2 and real for all other values. Therefore

no part of the curve lies between the lines x = 0 and z = 2.
Solving for z,

T=

F—1
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Whence z is real for every value of y.

4th. In the equation y = :h\/ﬁ,if z = 2, y = infinity, there-
fore z = 2 is an asymptote.

In the equation .z = %, if y = 1, z = infinity, therefore
y = —1and y = +1 are asymptotes.

Plotting the locus:
z . y z vy
2 %00 0 0
% +=VB -1 =V}
3 +V3 -2 +V}
4 +V?2 -3 +Vi
NS
X I
[0
I _
/\/
024 I )
EXERCISES
Discuss and plot the following:
1, 22=4y. 9. 2t =4y
2 2242 =6. 10. 2ty —y = 2.
8. y=22. 11, p=3z-09.
4. z-Dy=2 12, y=( —2)(z—3).
6. 252 + 922 = 225, 18. p=22+2
6. 92 — 1642 = 144, 14, =22 — 2
7. zy =16. 16, y=2—=z.

8. zt =09, 16. 2y -y +6=0.
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17. P22 —p =2 2. 2*4+2—42=0,

18. 2y —z,—~y =0. 30, 32 =12(4 — z).

19, y(z —2)*=1. 81. p=z(z—-1) (x—2)(z—3).
20. 12 =2(x — 3) (z — 5). 32. ©#+43 =6zy.

N B2=yly-—-1)(y—2). 83. 24+2z+y2+4y—20=0.
2. 2*+22+10y-8=0. 34, 42 —-42+4y—-10=0.
23. (y =12 =(z—2). 8. yz—1)(z—3)==z+1.
4. 22+ay+ 2 =3 36 22y —y+1=0.

26. yBz—2) =2z +4. 87. (442 =1,

26. yz—1)(z—4) =1 3. y=@—-1)(x—2)(z—3).
27. y+y* == 89, 2*—4y2—-224+8y—~T7=0.
28, 2* —4y2+42=0, 4. -2y +22—-9=0.

In some equations, the constants are represented by
letters instead of by figures. There will be a different locus
for each value given the constant, but it will be seen that
these loci have properties common to all.

Discuss the equation ay? = z (x — 2-a)? and plot the locus

1st. Letx = 0, then y = 0, y intercept.

Let y = 0, then £ = 0 and 2 a, = intercepts.

2nd. No odd powers of y are present, therefore the locus
is symmetrical with respect to the z-axis.

0Odd powers of z are present, therefore the locus is not
symmetrical with respect to the y-axis.

Terms are partly of odd and partly of even degree there-
fore the locus is not symmetrical with respect to the origin.

3rd. Solving for y,

y=:|:(a:—2a)\/§-

y is imaginary when z has a sign opposite to a, and real
when z has the same sign as a, therefore the curve is entirely
to the right of the y-axis when a is positive and entirely to
the left when a is negative.

It is not convenient to solve the third degree equation for
z in terms of y, but as every equation of odd degree has at
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least one real root, the curve extends indefinitely above
and below the z-axis.

4th. There are no asymptotes parallel to the axes.

In computing the coérdinates of the points, it is best to
assign to z values which are multiples of a, and to assign to
a any convenient length when plotting. The figure for a
positive and equal E.o 2 is shown.

z ]
0 0
a +a
2a 0
- 3a +aV3
4a +4a
. EXERCISES
1. Discuss the following equations and plot the loci:
(a) 2 = 4azx. (7) aYp = a*xt — 28,
() 422+ 932 =36a2 (k) yr(a® — 2?) = a2,
(c) ay® = 2. ) oyt =23(2a — 2).
@) 12 =4a(a —2). (m) a*z = y*(y — 2a).
(e) 12 = x*(a? — 2?). (n) *(2a — z) = 2%
) y+(@x—3ayp=0. (0) y(2* + 4a?) = 8ad.
@ 2*+ 2 =4a (p) 9ay? = (z — 2a) (x—5a)*.
(h) 22 — 12 =4a. (@ 27ay* =4 (z — 2a).
@) y=(=—2a)(xz—3a). -  (r) 2P(z* —a®) =a".

2. Show that the following equations either represent point-loci or
have no loci.

(@) ##+1=0. (e) (x—2)*+(y—38)*+1=0
® r£+4=0. ) E+12+@w+32=0.
() 2 +842+2=0. () #*+2 z+y2+6y+16=0.

@ #* + 4y =0, ®) (z—1)*+4 +4=0.
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8. Find the equations of the following loci, and discuss and plot them,

(a) A point moves 80 a8 to be always equidistant from the z-axis and
the point (0, 3).

() A point moves so that the square of its distance from the origin
is four times its ordinate.

(¢) A point moves so that its distance from the y-axis is equal to its
distance from the point (—2, —4).

(d) A point moves so that its distance from the line z = 2 is equal to
its distance from the point (4, 1). .

(¢) A point moves so that its distance from the point (—1, —3) is
twice its distance from the point (2, 1).

() A point moves so that the sum of its distances from (4, 0) and
(—4, 0) is equal to 10.

(9) A point moves so that the difference of its distances from (0, 5)
and (0, —5) is equal to 6.

14. Points of intersection of two curves. — If two equa-
tions are given, the loci will, in general, be two distinct
Y curves. These may
or may not inter-
sect. If the curves
intersect, they have
one or more points
in common. It fol-
lows from the defini-
tion of the locus of
an equation that a
point lies on two
curves if and only if
its coordinates sat-
isfy each equation.
In order then to
find the codrdinates of the points of intersection, it is neces-
sary to find those values of x and y which satisfy the two
equations, that is, the two equations must be solved simul-
taneously.

If there are no real roots, the curves do not intersect.

v
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For example, find the intersection of the curves x? —
4z+y*=0and 22 — 32 = 6.

Solving simultaneously, # = —1 or 3. Whenz =3, y=
+V3, when z = —1, y is imaginary. Thus, there are but
two real intersections (3, ++v3) and (3, —V'3). See figure
on opposite page.

EXERCISES

" Find the points of intersection and plot the following curves:

1. 24+ =100and2z — y = 4.

2. =4zand2? + 42 = 5.
. 4z2+y—5=0and72z-3y—4=0.
z+y=6andy =8z
zy = 12 and 2* + 32 = 25.
y=2andy = z.
422 — 2 =T7and3z 42y = 12.
2?=y+2and2z 43y = 10.
. 2+ =25and 32 — 22 = 30.

10 Yr=22—zrand 2y = z.

1. 2 =4azandz 4y =3a.

12. v + oy = a?b? and bz + ay =

13, Find the distance between the points of intersection of 28 =4 y+4-4
a.nd:c—y+l Ans. 4 V2,

14. Do the curves 2* + # = 9 and 2 = z — 4 intersect?

16. Find the points of intersection of the loci 22 + 42 = 9 and
y =2 + b. For what values of b are these intersections real and dis-
tinct? imaginary? coincident?

16. Find the area of the triangle whose sides have the equations
2y—-3z+4+1=0,4y+3z+11=0,andy+3xz—4=0. Ans. 9.

17. Find the area of the polygon whose sides have the equationa
z2=—4y=3,y=2z+1andy = —-2.

18. Show that the three loci 2? + 42 =25, y —z 4 1 =0, and
¥ — 2z = 2 pass through a common point.

19. Find the slopes of the sides of the triangle formed by the lines,
z=8z+y=3,z—-2y =6.

20. Prove that the quadrilateral whose sides have tfle equations
y=4,y=—-2,r—2y =6,and z — 2y = —6 is a parallelogram.

21. The equations of the sides of a triangle are 2z + 4y = 2,
2—3y=26,and 12y + z = 6. Find the lengths of the medians.

PP, 0
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16. Locus by factoring. — If an equation whose second
member 18 zero has for its first member the product of variable
factors, then the locus of the equation is found by setting each
Jactor equal to zero and plotting the resull.
Proof. — Let u and v represent any two functlons of
z and y. The given
" equation can be writ-
ten

X . w=0, (1)
and the equations
formed by setting the

°Ps

Y

x factors separately

X’

° equal to zero are
u=0 )
A and v=0. 3

Assume the loci of (2) and (3) to be the figures as shown
above.

To prove the proposition it will be necessary to show

1st. that the coordinates of any point on the locus of
equation (2) or (3) satisfy equation (1);

2nd. that the coordinates of no other points satisfy
equation (1).

Let P, (z;, 1) represent any point on the locus of (2),
then the coordinates (z1, ¥1) must satisfy the equation u = 0.
If the same codrdinates are substituted in the equation
uv = 0, the equation will be satisfied, since one of the
factors is zero and consequently the product is zero.

Similarly, the codrdinates of P, (2, y2) any point on the
locus of equation (3) can be shown to satisfy equation (1).

Let P; (3, ys) represent any point not on either locus. The
coordinates of this point will not satisfy equation (1) since
neither factor is zero and consequently the product is not,
zero. :
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It has therefore been shown that uv = 0 has.for its locus

the combined loci of 4 = 0, and v = 0, since the locus of an

- equation is the curve which contains all the points which
satisfy the equation and no other points.

ILLUSTRATIVE EXAMPLES

1. Plot the locus of the equa- 3
tion22*—3zy+z+y2r—y=0. ]

Grouping the second degree /
terms together, the equation can
readily be factored thus:
@z —-3zy+)+(z—p) =0, —l*' 5 %

- QRz—y)+(—y =0,
z—y)(2z—y+1)=0. ,

Plotting the loci represented
by the equations ¢ —y =0 and
2z — y + 1 =0, the locus is found \
to be as shown.

2. Plot the locus of the equa- -
tion22 —3zy — 2 + 5y —2 P
=0.

Since the factors of this equa-
tion are not readily found, the [X5
principle is used that az* 4+ bz + ¢
=a (z — 1) (x — 7s) where z; and
a2 are the roots of the equation Y
a* + bz 4+c=0.

Solving for z,

3y V252 —40y + 16
z = 1

—y+2,
2

=2y—1 or
The equation therefore may be written
2(x-2y+1)(z - f”2+2) =0,

or z—2y+1)QRz+y—2)=0.

Plotting separately the loci represented by t — 2y + 1 =0 and
2z 4+ y — 2 = 0, the figure is found as shown.
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EXERCISES

Plot the loci representeﬂ by the following equations:

1. 246y =0.
2 -9y =0
8. 2422y =0.

4. 422 —11zy—342 =0,

6. 2 -9 +22z—6y=0.

6. —zy—2pP4+3y—1=0.

7. @ -2y)y+2—-1)=0.

8, 22 —Tay+3pP+6y—2=0.

9. @+ —9 @@ +42-9) =0.

10. Write the single equation which represents:

(a) the two codrdinate axes;

(b) the two lines parallel to the z-axis and at distances 2 and 4
units respectively above it;

(c) the two lines which bisect the angles between the axes.

11. Show that the locus of 2* — 7z + 12 = 0 is a pair of parallel

lines.

12. Plot the locus of (3 — 2y — 8) (2* — 22 — 3) = 0, and show
that the lines enclose a parallelogram.

16. Loci through intersections of two given loci. — If an
equation whose second member is zero s mulliplied by any
constant and added to another equation whose second member
18 zero, the resulling equation represents a locus through all
points common to the two given loci and through no other points

o

P

Xe.

v

/.

l

~ on either locus.
Proof. — Let
u=0 (1)

and v=0 (2
represent the
equations of two
given loci, also let
P, (z1, y1) repre-
sent any point

common to the two given loci and P; (z,, y:) any pdint on
one of the loci but not on the other.
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To prave that A
v+ kv=0, 3)

in which %k represents any constant, positive or negative, is
satisfied by the coordinates of P, but not by those of Ps.

Since P, is a point on the locus of equation (1), its coordi-
nates must satisfy the equation » = 0. Since P; is a point
on the locus of equation (2), its coordinates must satisfy the
equation » = 0. Wherefore the equation w + kv = 0 is
satisfied by the codrdinates of P,.

The coordinates of P, will cause one term of u + kv to
equal zero, but not the other, therefore u + kv = 0 is not
satisfied by the codrdinates of P,.

Hence u + kv = 0 represents a locus through the points
common to v = 0 and v = 0 and through no other points
on either locus.

ILLUSTRATIVE EXAMPLE

Find the equation of a system of loci through all the intersections of
the two loci whose equations are 2* 4 32 = 18 and 422 — 32 = 27.
Find the particular curve of the system which passes through the point
(6,0). Check the accuracy of the result by plotting the curves.

Multiplying the first equation
by k and adding to the second,

(b +4)z* + (k — )2 = 18k + 27.
Since the point (6, 0) is on the
locus, its coordinates must satisfy
the above equation, whence
36k + 144 = 18k + 27.

Solving, k = —3f,

Substituting this value instead
of k in the equation of the system,
we get

2t 4 3y = 36.
The three curves are shown in the figure abeve,



46 LOCI

EXAMPLES

Find the equation of a system of loci through the intersections of the
following loci:

1. 242y+1=0 and 3z —-4y—-8=0.

Ans. (k+3)z+ Rk —4)y+k—-8=0.

2 P4+ =9andz—4y =8. )

8. 22— =Tand 2* 4+ 33 = 10.

4. Write the equation of a system of loci through the intersections
of ?+4z=0andy —2z=0.

Test the accuracy of the work by finding the codrdinates of the points
of intersection of the given curves and substituting in the resulting
equation. }

5. Write the equation of a system of loci through the intersections
of the curves whose equationsare 2* — 3 — 9 =0andz 4+ y = 6. So
determine k that the resulting curve shall pass through the origin. Fac-
tor the resulting equation and plot.

8. Write the equation of a system of loci through the intersec-
tions of the loci whose equations are 2* —4y =0 and y — 2z = 0.
Give k such a value that the resulting equation shall not contain y.
Ans. 22 — 4z = 0.

7. Write the equation of a system of loci through the points of
intersection of 2* + 4# — 4 = 0and 2* + 3 — 4z = 0, and by giving k
the value —1, determine the equation of first degree, the locus of which
passes through the common points of the two loci. Plot the loci of the
three equations.

8. Find the equation of first degree which represents a locus through
the intersections of 2* — 22+ y* =0and 2* + 2 = 1,



CHAPTER III
THE STRAIGHT LINE

17. This chapter will be concerned with a study of the
equations and properties of straight lines. Later chapters
will consider other well-known curves.

It was observed in plane geometry that a straight line
was fully determined if two conditions regarding the line
were known; for example, two points on the line or one
point and the direction.

Similarly, it is found that the equation of a straight line
can always be found if the two conditions which fix the line
are given. '

18. First standard equation of a line. In terms of point
and slope. — The equation of a straight line passing through
a given point Py (21, y1) and having a given slope m s

y—y1=m(x — xy). (6)

Proof. — Con- s
struct the given line
AB whose slope is
m and which passes
through the point
P1 (:B;, yl)~ Let the /

point P (z, y) rep- ¥ 0
resent any point on
‘the line. /

The slope of the
line PP, = m, by Y ,
. hypothesis. From formula (2), the slope of PP, =g

47

- yl'
—x
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Hence, y_—y'=mory—y1=m z — ).
r—x .

This is the equation of the line with slope m and passing
through the point P, (21, y1), since it fulfils the two require-
ments of the definition. For, P (z, y) was taken as any
point on the line, therefore the equation is satisfied by the
codrdinates of every point on the line. Moreover, that the
equation is not satisfied by the coordinates of any point
not on the line, can be shown in a manner identical to that
given in the first illustration of Art. 10. This step is so
similar in all examples that the student will not be required
to give it, unless called for, but he should neyer lose sight
of the fact that this is one of the esséntial conditions in the
determining of the equation of a locus. )

19. Second standard equation of a line. In terms of
slope and y-intercept. — The equation of a straight line of
slope m and y-intercept b is

y=mx+b. [¢))]

Proof. — Since the y-intercept determines the point whose
coordinates are (0, b), this is a particular case of equation (6).
Substituting in that equation z; = 0 and y;, = b, the equa-
tion becomes

' y =mx+b.

This equation can also be derived from a figure in a manner
similar to that used in deriving equation (6).

In deriving many equations, the student may either locate
his given data in a figure and derive the equation according
to the method outlined in Art. 10, or he may substitute the
data in any standard equation previously derived.

Since m and b may have any values, positive, negative or
zero, the equation y = mx + b represents any line which
cuts the y-axis, that is, the locus of this equation includes
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all straight lines except those parallel to the y-axis. The
equation of such a line has been shown in Art. 10 to be of
the form z = a, in which a represents the constant distance
of the line from the y-axis. The two equations y = mz + b
and z = a represent all straight lines.

ILLUSTRATIVE EXAMPLE

Find the equation of a line through the point (2, 1) and perpendicular
to the line joining (—3, 1) and (1, 5).

The slope of the line joining the two points is 1 by formula (2), there-
fore the slope of the required lineis —1. Substitutingm = —1, 2, = 2,
and g = 1in equation (6), the equation of the line through the point
(2, 1) and perpendicular to the line joining (—3, 1) and (1, 5) is

y—1l==1(@x—-2) or z+4+y =3.

EXERCISES
1. Find the equations of the lines:
() through (—2,—1), inclination 60°. Ans. y=V3z+2V3 -1,
() through (—3, —2), slope 2. Ans. y — 2z = 4.
(c) through (—2, 5), inclination 90°.
(d) through (2, —5), inclination 135°.
(e) through (—1, 1), parallel to the line joining (2, 3) and (5, 2).
(f) through (2, 6), and perpendicular to the line joining (5, 5) and
(-1, 3). .
(g) through (4, 2), with equal and positive intercepts on the axes.
(k) z-intercept 6 and slope —3.
(#) y-intercept —2 and slope —4.

2. Find the equation of the line with siope —2 through the inter-
section of the lines 2y +2—3 =0 and z—3y+2=0. Ans.
2z 4y =3.

8. In the equation y = mz + b, what is the relation between the
lines if b remains constant and m changes? If m remains constant and b
changes?

4. What is the sign of m if both intercepts on the axes are positive?
If both negative? If of opposite signs?

5. Find the equation of a line perpendicular to the line joining
(-1, —2) and (3, 6), through its middle point. Ans. 2y +z — 5 = 0.
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6. Find the equations of the perpendicular bisectors of the sides of
the triangle whose vertices are (—2, —1), (4, 1), and (0, —3). Prove
that these hisectors meet in a point.

7. Find the equation of the line parallel to the y-axis through the
middle point of the line joining (2, 3) and (4, —3). Ans. z = 3.

8. The vertices of a triangle are (5, —3), (3, 7), and (-3, 1). Find
the equations of the line through the vertices and parallel to the sides.

9. An isosceles right triangle has its hypotenuse along the z-axis and
its vertex at the point (2, 3). Find the equations of its sides.

10. The vertices of a triangle are (7, 1), (5, —3), and (~3, 5). Find
the equations of the perpendiculars dropped from the vertices on the
opposite sides. Prove these lines meet in a point. )

11. Two lines are drawn through (2, 4) with inclinations 30° and 60°.
Find the equations of the two lines which bisect the angles between the
two given lines.

12. If tan 6 = 3, find the equations of the lines through the origin
whose inclinations are :
(a) 6 — 45°;
®) 0 + 45°%

(c) 6 + 30°.

20. Third standard equation of a line. In terms of two
given points. — The equation of a straight line passing
through two given points Py (21, y1) and P; (s, y) is

ey =23 Y -
YN = T (x — xp). | 8)
Proof. — The slope of the line through the two given
points P (z1, ) and Ps (24, 9s) s, by formula (2),m = £=2;

also it is given that the line passes through the point
P, (71, y1). Therefore, applying equation (6), the result be-
comes . '
—y =Y
Yy-h=,—, @—=)
As an exercise, the student is asked to derive the equation
by the method outlined in Art. 10.
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21. Fourth standard equation of a line. In terms of the
intercepts. — The equation of a straight line whose z-infercept
18 a and whose y-intercept i3 b 18

x
;+%=1- ()]

Proof. — The intercepts determine two points (a, 0) and
(0, b) on the line. Substituting these results in (8), the
equation is

b—0
y—-0=0_a(x—a).
Simplifying,
+i-1

Z’.
a .
The student is asked to

the method of Art. 10.

derive this equation by applying

EXERCISES
1. Write the equations of the lines through the following pairs of
points:
(@) (3, 2) and (4, 5). 1) 1, 6) and (-2, 4).
®) (2, —3) and (-3, —2). (d)_ (a, 2 a) and (3 a, — a).

2. Write the equations of the lines which make the following inter-
cepts on the z and y axes respectively:
(a) 1 and 5. (¢) —4and —4.
(b) 8 and —3. (d) —a and +a.

8. Write the equation of the line through the points (5, —1) and
(-4, —2), and check the result by showing that the codrdinates of the
given points satisfy the equation.

4. Is the point (5, —6) on the straight line joining (2, 4) and (— 3
-2)? "

5. Find the equations of the sides of the triangle whose vertices are
(37 —1)7 (—4) 2): and (_ly —'1)-

6. Find the equation of the line whose y-intercept is —5 and which
passes through the intersection of the two lines 2z +y + 5 = 0 and
¢z—-y+7=0,
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7. The vertices of a triangleare (1, 3), (4, —3), and (—3, —2). Find
the equations of the lines from (—3, —2) trisecting the opposite side.
8. Determine whether the following sets of points lie on a straight
line:
(a) (2: 3)) (_l) _2)1 and (3; 2)-
(b) (2; 1), (1; 2)1 and (=2, —4).
9. Find the equations of the medians of the triangle whose vertices
are (4, 1), (2, —3), and (-1, 5).
10. Prove that the medians in example 9 meet at a point £ of the dis-
tance from any vertex to the middle of the opposite side.
11. Find the equations of the lines joining the middle points of the
sides of the triangle whose vertices are (—2, —3), (4, 1), and (2, —5).
12. Find the equation of a line whose z-intercept is 4 and which
passes through the intersection of the linesz + y = 6and3z — 2y=8.

22. Locus of equation of first degree. — It was shown in
Art. 19 that any straight line can be represented by either
y = mz + b, or by z = a, both of which are equations of

first degree. It will now be shown that the converse is . N

true, namely:
Every equation of first degree represents a stratght line.
Proof. —If A, B, and C may have any values, positive,
negative, or zero, then the equation Az + By 4+ C = 0 in-
cludes all equations of first degree. If B is not zero, the
equation may be divided by B, and afger transposing and

solving for y, the result is y = — BB

This equation is of the form y = mz + b, in which m =
~A/B and b = —C/B. Therefore the equation Az + By
+ C = 0 represents a straight line of slope —A/B and
y-intercept —C/B.

If B =0, the equation becomes Az + C = 0, and may
be written z = —C/A, a straight line parallel to the y-axis
at a distance —C/A from it.

Hence all equations of first degree represent straight lines.

The method just outlined of changing a general equation
to a standard form is one of great practical use in analytic
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geometry, not only for the straight line, but also for all the
other curves which follow. After an equation has been put
into one of the standard forms, it is only necessary to com-
pare the constants in order to write down many facts of

- importance regarding the locus which any given equation

*. represents.
Thus, given the equation 2z + 3y = 6.
Solving for y,
3 - y=—%4z+2.

This is in the form y = ma + b, in which m = —4$ = the
slope of the line and b = 2 = the y-intercept.
Again, dividing the given equation by 6,

T, _ N
gte=1

This is in the form = +~—l in which a =3 = :o-mter-

ceptand b = 2 = y-mtercept.

23. Plotting straight lines. — Since every equation of first
‘degree has been shown to be a straight line, therefore in
plotting the locus of a first degree equation it is sufficient to
locate two points and then draw the indefinite straight line
through them. The most convenient points are usually
those determined by the intercepts on the axes.

If the intercepts are both zero, the line passes through the
origin and it is necessary to locate another point on the line.

N

EXERCISES
~1. Find the slopes of the following lines:
(@) 2z —6y = 6. () 72+ 4y =8.
® xz+3y—5=0. d3y—z=12,

2. Find the slopes of the following lines and determine which of them
are parallel and which perpendicular to each other. Plot the loci.
@3z+y—-7=0. ()3y—z=2.
® 6z+2y—1=0. d) 2z—6y =4.
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8. Find the equation of the line through the point (—1, 5) and per-
pendicular to the line 2y — 32 =7. Ans. 2z 43y = 13.
" 4. Find the slopes of the two lines Az 4 By + C = 0 and A’z + B’y
+ C’ = 0 and show that if the lines are parallel,
A_B
A" B
8. Prove that if the lines in Ex. 4 are perpendicular, then A4’ =
—BB'.
6. Find the equation of a line through (z, %) parallel to Az + By
C'=0. Ans. Az + By — (Az, + By)) = 0.
7. The equations of two sides of a parallelogram arey — z = 2 ar
2z 4+ y = 4. What are the equations of the other sides if they interse
at the point (0, —4)? Ans. y+4=zandy+2x+4=0.

24, Normal equation of a straight line. — As has be«
previously stated, whenever two conditions which determi
a straight line are known, the equation of the line can }
found.

In the case now to be considered, the line is determine
by its distance from the origin and the inclination of tt
line perpendicular to the given line through the origin.

It will be recalled that inclination is always taken to be
less than 180° and consequently in Figs. III and IV, tb
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line OC must be produced through the origin before the
inclination can be determined.

The inclination « in Figs. I and III, in which the line AB
crosses the first and third quadrants respectively, is seen to
be acute, while in Figs. II and IV, in which the line crosses
the second and fourth quadrants, it is obtuse.

In each figure, OC = p and is positive when above the
z-axis and negative when below it.

The equation of the line which is determined by the con-
ditions of this article is called the normal equation of a
straight line. :

The equation of a straight line in terms of p; the length of
the perpendicular from the origin to the line, and a, the inclina-
tion of that perpendicular, 13

xcosa -+ ysina = p. 10)

Proof. — In each of the above figures, if a and b represent
the intercepts on the z-axis and y-axis respectively, then

from the triangle AOC, p = a cos a, and
from the triangle BOC, p = bsinf = bsin q,

since B is either equal to « or to 180° — a (why?) and there-
fore sin 8 = sin a.
P P

Computing the interceptsaand b, a = — and b = ——-
cos a sin o
Substituting these in the intercept form of the equation,
zL Y _
a t b 1,
the equation becomes,
x Y
—_— =1,
14 + 4

cosa Sina
Simplifying,
’ zcosa+ ysina = p.
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EXERCISES
1. Write the equations of the lines, having given:
(@) p =38, a = 120° () p=—4 a=230°
®) p=25 a=180° d) p =0,a = 60°

2. What system of lines is given by z cos a + y sin @ — p = 0, when
a is constant and p varies? when p is constant and a varies?

8. Given p = 5 and ¢ the inclination of the line = 120°. Compute
a-and write the equation of the line.

4. Write the equations of the lines, having given:

(@) ¢ = 135°, p = 5. ®) ¢ = 135° p = 5.

8. Draw each of the following lines, find p and a and write their
equations:

(a) intercepts each equal 3.

) ¢ = 120°, y-intercept = 3.

(c) intercepts each = —3.

(d) z-intercept = 3, y-intercept = —3.
(e) ¢ = 30° z-intercept = —5.

6. For what values of p and a will zcosa + ysina — p = 0 be
parallel to the z-axis? to the y-axis? pass through the origin?

7. Write the equation of the line
through the point (3, 0) if a = 60°.

AN 8. For the equation y — z = 4, find
B slope, inclination, « and p.
9. Derive equation (10) by the method
» of Art. 10, using the figure here given.

Hint. — p = OK + KC.

10. Derive equation (10) by computing
0 M A\ m and b in terms of p and a and substitut-
ing in equation (7).

26. Reduction to normal form. — It is required to reduce
the general equation of a straight line, Az + By + C = 0,
to the normal form -z cos a + y sin a = p.

Equating the z-intercepts in each,

_P__.—Z. Y




REDUCTION TO NORMAL FORM 57

Equating the y-intercepts in each,

p_ _=C

ginae B )
Dividing (1) by (2),

tan o= go

A .
Whence, cosa = == ViTD and sina = 4+ F——A’+B’.
This is readily seen by drawing a right _
triangle with leg B opposite angle « and 4 : IB
adjacent tq it. The hypotenuse is then :
VAT B

From (1), p= —chosa = :FW—C:F_—SP—'

Since a is always less than 180° sin « is always + and
therefore the sign of the radical is always the same as the
sign of B. o

Substituting these values of sina, cosa, and p in the
normal form, the general equation becomes,

A B —-C
VIt B CVELB' tVIiB

These results can be summarized as follows:

To reduce an equation in the form Az + By+ C =0 to
the normal form, divide the equation by == vV A* + B?, in which
the sign of the radical is the same as the sign of B. If B is
. missing, choose the sign of the radical the same as A.

Example. — Reduce 4z — 3y — 15 = 0 to normal form
and decide from the signs of sin , cos @, and p, which quad-
rant is crossed by the line.

A=4B=-3C=-15 +VA’+ B*= +V16+ 9 = 5.

Dividing by —5,

—$z+34y+3=0
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Comparing with
zcosa+ysina—p =0,

it is seen that cos « is negative and sin a positive, therefore
a is obtuse; also p is negative and thus the perpendicular
falls below the z-axis. The line then crosses the fourth
quadrant. Check by plotting the line.

EXERCISES

1. Reduce the following equations to normal form and determine p
and a:

(@) 3z — 4y = 25. (e) 3z + 4y = 25.
®) 3z+y—-10=0. Ny—-3z+4=0.
) y+2=0. @y—-2=0.
d) 3z—4y=0. () z—-2=0,

2. A line passes through (—2, —1) and is perpendicularto2 z + y -+
3 = 0. Find its equation and distance from the origin.

8. A line passes through (—4, —5) and has its mtewepts equa.l and
both negative. Find its equation and distance from the origin.

26. Perpendicular distance from a line to a point. — The
solution of a particular case of this problem will' be lllus-
trated in the fol-
/ lowing example:
P )% Find the dis-

7 7 tance from the
F\/ /’/ line3z — 4y 4
JV\ ) 15=0 to the

p _ .

v point P; (—4, 3).

W -] N Let L, in the

figure represent

L vd © the given line

- and P, the given
point.

Through Py, draw L, parallel to L, and RP; perpendicular
to L,. Then RP; is the required distance since it is meas~

~0

x
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ured from the line fo the point. Draw the perpendiculars
OB = p; to Ly and OA = p, to L,. Then from the figure,
RP,=0B — 0A = p;, — pr.

The slope of the given line L, is 4, whence the equation
of the line Lg through P; and parallel to L, is by standard
equation (6),

y—38=%(@x+4) or 3z—4y+24=0.
Reducing to normal form, the equations of L, and Ly become
respectively,
—32z+3y—3=0and —3z+%y—32=0.

Whence p; = 3 and p,=3%%, and therefore RP, = 3 —3=4§.

It is observed that this result is positive. This checks with
the figure as RP; has the same direction as OA which is posi-
tive. The distance from a line to a point is always positive
if the point is above the line, and negative if below the line.

The point and
the line may lie on [ ]
opposite sides of
the origin as in the ]
accompanying fig- A
ure. The same TN e
process as that used 4 LA ¢
in the preceding ex- AN 0
ample will lead to =) N )4
the correct result,
but care must be v
taken to give the
correct gigns to the
. perpendiculars.

Thus, find the distance of the point P, (—1, —3) from
the line L, of the preceding example.

Make the construction as before. The distance required

is RP,=AB=0B —0A =p. — 1.

x

=0 \

KN
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The equation of Ly is 3z — 4y — 9 = 0, or in normal

form, .
—$z+¢y+E=0.
Whence p; = —%, p1 = 3, as in Ex. 1.
RP,=p,—py=—§ —3 = —328,

The minus sign indicates that P, is below the line L,.
The general formula for the distance from a line to a point
will be determined in a manner similar to that used in the
examples above.

The distance d, from the line Ax + By + C = 0 lo the
point Py (21, y1), 18 given by the formula

Ax, + By, + C
-Zvere W
the sign of the radical being taken the same as that of B.
. Proof. Let L, rep-
\Y resent the given line
and P; the given point.
\ g Through P, draw La
' parallel to L, and let
p1 and p; represent
the perpendicular dis-
D tances from O to L,
and L, respectively.
0 \ Then d = p: — p1.
L Slope of L, = slope
—A

0fL1=-§-

Whence the equation of L, is
Yy—h= :Bi(“f )

or Az + By — (Az, + By:) = 0.
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Reducing equations of L; and L» to normal form,

-C
PhE I Varp
Az, + By
d - AntBy
an LRy ay

where the sign of the radical in each case is the same as that
of B.
Hence, g=4ntBy+C

VAL B
the sign of the radical being the same as the sign of B.

ILLUSTRATIVE EXAMPLE
Find the distance from the line 5 =
— 12y = 25 to the point (—1, 3).
Substituting in the formula, Py
—5-36—25_66
-13 T 13

. e . o 0 \ A X
This positive value of d checks with -
the figure since it is measured upward
from the line.

d=

\T

EXERCISES
1. Find the distance from the line 3z + 4y = 5 to the point
(-1, —-1).
2. Find the distance from the line 5 z 4+ 12 y = 13 to the point of
intersection of thelinesy —z+1 =0and2y —z = 1.
8. Find the altitudes of the triangle whose vertices are (1, 1), (-3, 4),
and (-3, —2). ’

27. Bisectors of the angles between two lines. — Since
the bisector of an angle is the locus of a point which moves
80 a8 to be numerically equidistant from the sides, the
equation may always be readily found as in the following
example.
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Find the equations of the bisectors of the angles between
thelines3x —4y=10and4z+4+ 3y =T7.
Draw the given

) [ lines L, and L.
\ Ly There are two bi-

/ sectors Lz and L,.
X g Let Py (z1, 1) be
A1 any point on the bi-

—x'=__° v [12 x| sector Ls.

= 1 Then the perpen-
Y11 XTI | diculars A,P; and
Ly I |.‘L! Blpl are equal in

length. They are
each positive, being measured upwards from L, and L, re-

spectively.
Then
A1P1 = B1P1. .
4P =322 10 gomula (1),
and B =tntdn-’t
Therefore,
3271—4'1/[—' 10_4x1+3yl—7
-5 n 5

Since P; (x1, y1) was taken as any point on the line Ls,
the subscripts may be dropped and the equatlon of Lj is
Tz—y—17=0.

Similarly, let P, (z2, ¥2) be any point on L. Then A3P3 =
—B,P,, since AP, is negative and B,P, is positive.

Then

3%—4'!/2 - 10 _ _4172+3y2—'7.
-5 5

Hence the equation of Lyisz+ 7y +3 = 0.
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EXERCISES

1. Find the equations of the bisectors of the angles between the lines
4z 4+ 3y = 6and 42 — 3y = 6 and show that they are perpendicular.
2. A line is drawn through (0,0) perpendicular to 3z + 4y = 6.
Find the equations of the bisectors of the angles between these two lines.

MISCELLANEOUS EXERCISES

1. How far from the origin is the line through (1, 6) parallel to
y+4z =1 Ans. 10/V17.

2. Show that « is the same for all parallel lines. ‘Find the equation
of a line parallel to 3 z + 4 y = 25 and nearer the origin by two units.
Ans. 3z + 4y = 15.

8. Find the equations of the lines halfway between the parallels

(@) 4z — 3y = 15, ®) 5z+ 12y =13,
4z -3y = —15. 5z+12y+39 =0.

4. Find the equation of a line parallel to 12z — 5y + 13 = 0:

(a) at a distance of 3 from it;
(b) at a distance of —3 from it.

8. Find the equation of a line with slope 2 at a distance of 5 units
from the origin.

6. Find the distance from the line to the point in the following
examples constructing a figure for each:

(@) 42 —3y+6=0to(2,1). (c) 5z—12y+6 =0to (3,4).
®) 3z+4y—5=0to(—1,-5). (d) 6z+2y+7 =0to(-1,5).

7. Find the area of the triangle whose vertices are the points (3, —2),
(4, 3), and (—2 1) by finding the lengths of a side and the corresponding
altitude.

8. Find the altitudes of the triangle formed by the lines y + z = 3,
y—6z=9andy = —1.

9. Find the point which is equidistant from the points (1, 3) and
(5, 5) and is at a distance of 2 from the line3z 4+ 4y — 10 = 0.

Find the equations of the bisectors of the angles of the following
triangles and prove that these bisectors meet in a point, the equations of
the sides being:

(@) 3z —4y=12,42+3y =12,3z+4y+12=0.
) 5z—12y =24,1224+ 5y =24,5y — 12z = 20.
C©y=42z=—-432z—4y =4,
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11. A triangle has sides 4z + 3y =24, 3y — 4z =24, and y =
—4. Prove that .
(a) the triangle is isosceles; -
(b) the bisector of the exterior angle formed by the first two sides
is parallel to the third side.

12. Given the triangle whose sidesare 4z + 3y = 24,4z — 3y +
12 =0andy + 4 = 0. Prove that the bisector of the angle formed by
the first two lines divides the opposite side into segments which are pro-
portional to the sides adjacent to the angle.

13. Find the locus of all points which are twwe asfarfrom3z — 4y
+12 =0asfrom 52z — 12y = 30.

14. Find the distances between the parallel lmes

(@) 3z+2y=13and3x+2y+26 =0.
®z+2y=5andz+2y+10=0.

28. The angle which a line makes with another line. —
"In Art. 7, the ange which one straight line makes with
another was defined as the angle less than 180° measured
counter-clockwise from the second to the first. }
Thus, in both figures 1 and 2, 6 is the angle which L,
makes with L,.

X

Fig.1

If my and mp are he slopes of two lines and 0 is the angle
which the first line makes with the second,
_mi —mg .
tang = LMo (12)
Proof. — Let ¢ and ¢» represent the inclinations of the
two lines L, and Ly respectively, then tan ¢, my; and
tan ¢ = my
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InFig. 1, ¢é1=¢2+0. (Why?)
Whgnce 0= ¢ — ¢

therefore  tan @ = tan (¢ — ¢s) = -——————ltaf:;n 5 tand:»g
1
But tan ¢; = m; and tan ¢3 = ms;
=M= M
therefore tan @ = I+ m

In Fig. 2, ¢z = ¢ + (180° — ).
Whence 0 =.180° + (¢1 — ¢3),
and therefore
— Mg

tan@ = tan [180° 4 (¢1.— ¢2)] = tan (¢ — ¢2) = m

‘ The student should not fail to fix in mind that the angle
0 is always measuged from the second line Zo the first.

ILLUSTRATIVE EXAMPLES
1. Find the angle which the line y — 3 z 4+ 2 = 0 makes with the
line2y —z =0.
Reducing each equation to slope form, m; = 3, ms = }.

Substituting in formula (12), tan g = 8-1 =1

T4

Therefore § = 45°.

2. Find the equation of the
line through (—1, —2) making Y
the angle tan™' 4 with the line
2z+y—3=0.

The facts given are sufficient
to determine the slope of the line. [y B X

In the formula N
m—m N
1+ mm,’
if any two quantities are known N
the third may be found. Here
tand=4. Sincetheangle (tan™1%)
is to be measured from the L
given line to the required line, (7 I
and the slope of the given line -
is —2, therefore my = —2.

tan 6 =

A

e,
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Substituting in formula (12),

%= lm_'_ ;:h’ whence m; = — %
The equation of L, may then be written by substituting in standard

equation (6) and is
y+2=-§@+1)

or 3z+4y+11 =0.

8. Compute the angles of .the triangle formed by the intersection of
the lines whose equations are £ — 5y =10, 2z 4+ 3y = 12, and
112410y +33 =0.

Since the angles
must always be
taken in a counter-
clockwise direction,
the angle A is meas-
ured from L, to Ly,
B from L, to L, and
C from L, to Ls.

The slopes of
Ly, Ly, and L, are
respectively 3, —1%,
and —H.

Substituting in
the formula
m — my
1+ mm,’

tanf =

being careful to use for m, the slope of the line from which the angle is
measured, the results are: .

tan A = -lii-—gs =1. Therefore A = 45°.

i e ol ¢ : I
tan B = T8 - 1. Therefore B = tan™ }.
tan C = :l-ﬂ;;—f = —4§. Therefore C = tan™ (—%).

EXERCISES

1. Find the tangent of the angle which the first line makes with the
second in the following:
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(@ 3z—y+4=0 and 2z+4y+5=0.
® y—22z=3 and y+3z=5. Ans. —1.
c)y—2=0 and z—y=1.

@ z2z+2y=3 and y—2z=4.

(¢) az +by =ab and az — by = ab.

2. Find the equation of the line passing through the point (—2, —4)
«and making an angle tan™ § with the liney — 2z =7. Ans. 11z +
2y +30 =0.

8. Find the equation of the line through the origin making an angle
of 120° with the line y = z/V3. Prove that the z-axis bisects the
angle between these lines.

4. Find equation of the line through (—2, —1) making an angle of
135° with the linez — y = 2. Ans. y = —1.

6. A right isosceles triangle has the extremities of the hypote-
nuse at the points (1, 2) and (—3, 4) and the vertex of the right angle
below the line joining the points. Find the equations of the three
sides.

6. Find the interior angles of the triangle whose sides are the lines
z+y=2y—z=2andy —2z =4

7. Given the triangle formed by the threelinesz — 2y =2,z + 3y
+3 =0, and y = 2. Prove that the exterior angle formed by the first
two lines is equal to:the sum of the two opposite interior angles.

8. The vertex of an isosceles triangle is (2, 3) and the base is
along the line z + y = 0. Given that the vertex angle is 120°, find the
equations of the other two sides.

9. Prove that the line through the origin which makes the angle
(tan™! §) with the line 2y = z + 3 bisects the angle between the co-
ordinate axes.

10. Two opposite vertices of a rhombus are (2, 1) and (-2, —3).
Find the equations of the sides if the interior angles at these vertices
are 60°.

11. Two opposite vertices of a squaré are (2, 3) and (—1, —3). Find
the equations of the sides. i

12, The base of an equilateral triangle lies in the line y — 3z = 6.
The opposite vertex is at (4, 3). Find the equations of the other twa
sides.

29. Systems of straight lines. — Each of the standard
equations of a straight line contains certain arbitrary con-
stants. An arbitrary constant is represented by a letten
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to which different values may be assigned. For example,
in the equation y = mz + b, m and b are arbitrary con-
stants.

Often a fixed value is given to one of these constants
while the other is left arbitrary. Thus, in the equation
y=2z+40b, bis an arbitrary constant and by assigning
different values to b, an infinite number of lines is obtained
each having slope 2. Such a set of lines is called a system
of lines, and the arbitrary constant is called the parameter
of the system. Other illustrations are y = mz 4+ 2 which
represents a system of straight lines whose y-intercept is 2,
and zcosa + ysina = 5 which represents a system of
lines each five units from the origin.

The equation of a straight line can always be found at
once if the two facts determining the line give the values
of the arbitrary constants in one of the standard equations.
Thus, if slope = 2 and y-intercept = 3, the equation of
the line, by substituting in equation (7), is y = 22 + 3.
When the two conditions determining the line do not give
the values of the arbitrary constants in any one standard
equation, either of two methods may be used.

First, from the data given, find the values of the arbi-
trary constants in some standard equation, then substitute
these constants in that equation; or second, write the equa-
tion of the system of lines satisfying one of the conditions
given. This equation will contain one parameter. Deter-
mine the value of this parameter from the other condition.

ILLUSTRATIVE EXAMPLE )

Find the equation of the straight line whose slope is —4 and which is
3 units from the origin.

It is given that the line L is 3 units from the origin, with inclination
¢ = tan™' (—4%). The problem will be first worked by finding the con-
stants for substitution in equation (10).

Let a represent the inclination of the perpendicular from the origin
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to the line. Then ¢ = « + 90° and tan ¢ = tan (¢ + 90°) = — cot @
= —34. Therefore tana = $,sin @ = #, and cos a = §.

Substituting in equation (10),
the equation of L is

$z+4y—-3=0
or 3z+4y =15.

The problem might also be _, e .
worked by finding the codrdinates ™ [9 A -
of the point A and substltutmg in \
equation (6).

In the triangle ARO, 04 =
3csc (180° — ¢) =3 cscp = 5.

Substituting in (8), the equation of L is y —0 = —% (z — 5) or
3z+4y =15,

The second method of solving problems of this class is to first write
the equation of the system of lines satisfying one of the given conditions.

Thus, in the equation .

‘ y=—-{z+p, )

which represents the system of lines with slope — 2, the parameter b must
" be 8o determined that the line shall be 3 units from the origin. Reducing
equation (1) to normal form, $§ z + 4y — 4b = 0. .
Whence, $b = 3, or b = 12, and the equation of L is found to be
3z+4y =15.
Another apphcatlon of the second method is to use
zcosa + ysina —3 =0, ‘ (2)

which represents the system of lines 3 units from the origin. Here
must be so determined that the slope of the line shall be —%. Reduc-

ing (2) ‘o slope form, y = —cot a z + = whence, —cot « = —4%,

sina = 4, and cos a = §. Substltutmg in (2) , the required equation is
found tobe 3z + 4y = 15.

EXERCISES
1. Write the equations of the systems of straight lines which satisfy
the following conditions:
(a) distance from the origin = 5. Ans. zcosa + ysma =5,
(b) z-intercept = 3.
(c) slope = 5.
(d) passes through (1, 4).
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(e) inclination of perpendicular from origin to line is 60°.
(f) slope of perpendicular from origin to line is .
() sum of intercepts on axes = 6.

2. Write the equation of the system of lines 3 units from the origin
and so determine « that a line of the system shall pass through the point
2, 3).

8. Find the equation of the line with slope 2 and which in addition
satisfies the following condition:

(a) distance from the origin = 5.
(b) z-intercept = 5.

(c) sum of intercepts = 6.

(d) distance from the origin = —3.

4. Find the equation of the straight line through (—4, —2) and sat-
isfying in addition the following condition:

() distance from origin =+/10.

(b) parallelto 2z — 5y = 6.

(¢) sum of intercepts = 3.

(d) inclination of perpendicular from origin to line = 45°.

(e) portion of line intercepted by axes is bisected by given point.

5. Find the equation of the straight line 4 units from the origin and
satisfying in addition the following condition:

(a) perpendicular to the line 2z — y = 3.
(b) through the point (2, 4).

(c) y-intercept = 5.

(d) product of intercepts = 32.

8. A line through the point (3, 1) intersects the z- and y-axes at A and
B respectively. The line AB is divided by the point in the ratio 3.
Find its equation.

7. Find the equations of the two lines through (1, 4) and making the
product of the intercepts 18.

8. Find the equation of the line through (—3, —4) and making the
y-intercept twice the z-intercept.

9. Find the equations of the two lines in which the inclination of the

perpendicular from the origin on the line is 45° and the product of the

intercepts 8.
MISCELLANEOUS EXAMPLES ON CHAPTER III
1. The equations of two sides of a parallelogram are 2z — y=3

and 3z + 2y = 1. Find the equations of the other two sides if they
intersect at (2, 5).
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2. Find the equations of the lines through the point (—1, —2) tri-
secting that portion of the line 2y + 6 = z which is intercepted be-
tween the axes.

8. A tangent to a circle with center (-3, 5)i83z — 4y — 6 = 0.
Find the length of the radius. Ans. 7.

4. One side of an equilateral triangle has its extremities at (3, —4)
and (3, 2). Find the equations of the other sides.

6. The line joining A (1, 3) and B (3, 0) is-cut by the liney — z 4+ 8
= 0. In what ratio does the point of intersection divide AB? Ans.
(-2/1). :

6. Find the center and radius of the circle circumscribing the tri-
angle whose vertices are (0, 2), (3, 3), and (6, 6). Ans. Center (-1, 10),
r = V5.

7. Find the center and radius of the circle inscribed in the triangle
the equations of whose sides are 3z + 4y =6, 4y — 3z = 6, and
y = —2. Ans. Center (0, —4), r = &,

8. An isosceles’ right triangle is constructed with its hypotenuse
along 4z — 2y = 3 and the vertex of its right angle at (—1, 3). Find
the equations of the equal sides and the codrdinates of the other vertices.

9. Find the equations of the following loci. Prove that they are
straight lines and construct the lines.

(a) A point moves so as to be always equidistant from the points
(—1,2) and (3,4). Ans. 2z +y = 5.
(b) A point moves so that the sum of its distances from y—2=0
and 5z + 12y — 26 = 0 is equal to 7.
(c) A point moves so that its distance from the line 3z + 4y —
; 6 = 0 is one-half its distance from the line 5z — 12y +
13 = 0.
(d) A point moves so that the square of its distance from (—2, 3)
- minus the square of its distance from (1, 4) is equal to 10.

N

10. A point moves so that five times its distance from the z-axis is
three times its distance from the origin. Find the equation of the locus
and prove it represents a pair of straight lines.

. 11, The base of an isosceles triangle is the line joining (—3, 2) and
(4,3). Itsvertexisontheliney = —2. Find the equations of its sides.

12, Show that 62 + 52y — 63y —z + 5y — 1 = 0 represents a
pair of perpendicular lines.

18. The sides of a quadrilateral are given by the equations 22 + 4 zy
+4y2+324+6y=0and 2 +y — 6 =0. Prove that the figure
is a parallelogram.
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14. Prove analytically that the perpendiculars drawn from the ver-
tices of any triangle to the opposite sides meet in a point.
15. Find what relation must hold among the coefficients in the
general equation of a line Az + By + C = 0 in order that
(a) the z-intercept shall = 3.
(b) the given line shall be perpendicular to 2z 4+ 3y = 5.
(c) the slope shall = 5. )
(d) the perpendicular from the origin to the line shall = 5.
(e) the line shall be parallel to the z-axis.
(/) the line shall pass through the point (3, 5).

16. Write the equation of the set of lines through the point of inter-
section of the twolines3z +2y 4+ 8 =0and z — 3y = 1 and so de-
termine the parameter of the system that the line shall pass through the
point (1, 2). i

17. Prove that the two lines whose equations are zy + 22z — 4y —
8 = 0 are the bisectors of the angles between lines whose equations are
P?—p—8z—4y+12=0. .

18. Find the equation of the line perpendicular to the line 2z + 3y

— 12 = 0 and bisecting the portion of the line intercepted by-the

 axes.

19. A vertical section of a weir (or dam) is in the form of an isosce-
les trapezoid, one of the parallel sides being 100 feet long and lying in
the surface of the water. The other parallel side is 60 feet long and
the height of the weir is 15 feet. Taking the origin at the mid-point
of the 100 foot side, find the equation of each of the non-parallel sides.

20. In aright triangle the sides are 6, 8, and 10. Find the equations
of the sides if the z-axis is parallel to the hypotenuse and the origin is
at the center of gravity.



CHAPTER 1V
POLAR COORDINATES

30. Definition. — A second method of locating a point
" in a plane is by means of polar codrdinates. These often
lead to simpler results than those obtained by rectangular
codrdinates. A comparison of the two systems of coordi-
nates is shown by the following illustra~ N N
tion. If in a country where roads follow '
‘section lines, the question were asked w—QlA—E
how to reach R from O, the answer s
would be of the form, go 4 miles east and 3 miles north.
If the same question were asked in an open country, the
direction would probably be pointed out and the questioner
‘told to go 5 miles in that direction. The first is an illus-
tration of rectangular and the second of polar coérdinates.
In order to locate a point in any system of codrdinates,
two fixed thmgs are necessary. In rectangular coérdinates

these are two intersecting perpen-
dicular lines. In the polar system
L—’ X a fixed directed straight line called
N 0 the polar axis or initial line and a
x  fixed point on that line called the

o° pole or origin are given.
' X In the figure, OX is the polar

4 C; axis or initial line and O the pole
P or the origin.

The line OP from the pole to the point is called the radius
vector and is represented by p. The angle which OP makes
with the polar axis is called the vectorial angle and is repre-
sented by 6. In the figure, OP = p = radius vector, XOP =

73 :
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0 = vectorial angle. Thesé two quantities are called the
polar coordinates of the point and the point is represented
by P (p, 6). The radius vector is positive when measured
on the terminal line of the angle and negative when meas-
ured on that line produced through the origin. The vecto-
rial angle is positive when measured counter-clockwise and
negative when measured in clockwise direction. As in trig-
onometry the angle 6 may have an unlimited number of
values differing by 2, since it is any angle whose initial
line is OX and whose terminal line is OP.

The position of a point in a plane is definitely deter-
mined if its polar codrdinates are given. The same point
may, however, be expressed in many different ways. Thus,
in the first figure above, if the least value of 8 = 30° and
p = 5, then P may be written (5, 30°) (5,—330°), (-5, 210°),
(-5, —150°), (5, 390°), etc.

The steps in plotting a point P in polar coérdinates are as
follows:

From the polar axis OX construct an angle equal to 6.

If p is positive, lay off OP = p on the terminal line of the
angle. If p is negative,
produce the terminal line
through O and lay off
on it OP equal to the
numerical value of p.

Thus, locate the point

P (—5,150°). The an-

gle XOR = 150° is first

constructed in a positive

direction from OX.

Since p is negative,’ the

terminal line of the angle is produced through O to P making
OP 5 units in length. P then represents the point (—35,
150°). Show that (—5, —210°) represents the same point.
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EXERCISES

1. Plot the points (-3, 30°), (3, —150°), (—5, 180°), (-2, i),
(=3, —4x), (—1, 330°).

2. Write three other pairs of codrdinates of each of the points
(-3; 200); (2 }f)y (-4; 2400); (3; 330°).

8. A side of a square is 3 inches. A diagonal is taken as the polar
axis and one extremity of that diagonal as pole. Find the codrdinates
of the vertices. )

4. Each side of a rhombus is 4 inches. One side is on the polar axis
and a vertex is at the pole. Find the codrdinates of the vertices if the
angle at the pole is 60°.

5. Prove that the three points (0, 0), (3, 30°), and (3, —30°) are the
vertices of an equilateral triangle.

6. Show that (2, 30°) and (2, —30°) are symmetrical with respect to

- the polar axis, that (2, 30°) and (—2, 30°) are symmetrical with respect
to the pole and that (2, 30°) and (2, 150°) are symmetrical with respect
to a perpendicular to the polar axis through the pole.

7. What point is symmetrical to (4, —30°)

(a) with respect to the polar axis?

(b) with respect to the pole?

(c) with respect to the perpendicular to the polar axis through the
pole?

8. What point is symmetrical to (p, 6)

(a) with respect to the polar axis?
(b) with respect to the pole?
(c) with respect to the perpendicular to the polar axis through the

pole?
9. Where do the points Le
(a) for which - = 45°? ~ (c) for which p = 5?
(b) for which ¢ = 0? (d) for which p = 0?.

10. Find the distance between the points (2, 30°) and (—3, 150°).
Hint. — Use law of cosines in trigonometry. Ans. V7.
11, Ifeisa pasitive angle less than 360°, in how many ways can the
following points be expressed:
(@) (3,30)?
(®) (-3, 240°)?
(c) the pole?
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31. The equation of a locus: polar codrdinates. — The
definition of the equation of a locus in polar codrdinates is
the same as that given in Art. 10, and the steps in finding
the equation are identical to those stated in that article
except that p and 0 are used instead of z and y.

Thus, find the equation of a line such that the perpen-
dicular from the pole upon it is p and the angle which the

perpendicular makes with
the polar axis is a.
1st. Given the line L such
that OR = p and XOR = a.
Let P (p, ) represent any
X_. point on the line.
OR

0 ‘
\L 2nd. Cos ROP = P from

trigonometry.
3rd. Cos (6 — @) = p/p, .
_4th. Clearing of fractions, the required equation is

pecos (0 — o) =

EXERCISES
1. Prove that the equation of a line
(a) perpendicular to the polar axis and at a distance of four units
to the right of the pole is p cos 6 = 4.
_(b) parallel to the polar axis and two units above it is p sin § =2,

2. Prove that the equation of a line through the pole with inclination
x/6is 0 == /6.

8. Prove that the equation of the cn'cle with center at the pole and
radius 5 is p = 5.

4. Prove that the equation of the circle which passes through the
pole and has its center on the polar axis a units to the right of the origin
isp =2acosé.

6. Prove that the equation of the circle which passes through the
pole and has its center on the perpendicular to the polar axis through
the pole and b units above it is p = 2 b sin 4.
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32. The locus of an equation: polar codrdinates. —It is
required to find a locus which contains all the points whose
codrdinates (p, 6) satisfy the equation and which contains no
other points.

As in the case of rectangular coordinates, this can always
be done by assigning values to one variable and finding the
values of the other, then plotting the points and connecting
by a smooth curve. It was found in that case, however,
that the work was greatly facilitated by combining with
the plotting a certain amount of discussion. The same is
true in the case of polar cosrdinates.

The points in discussion which are particularly helpful
are:

1. Intercepts on the polar axis.

2. Symmetry.

3. Extent.

Intercepts. — Placing 6 = 0 and solving for p, points

are found at which the curve intersects the polar axis.
Other intersections may be found by letting 6 = 180°, 360°,
etc., and finding the corresponding values of p.
, The coordinates of the pole are p = 0, 8 = any angle.
Even though the pole is on the curve not all such values
satisfy the equation. Placing p = 0, and solving for 6 the
particular angles are determined at which the curve pa.sses
through the origin.

Thus, in the equation p? = a?cos26, if 6 = 0, p = *a.
Two points on the polar axis are thus located. If § = 180°,
*360°, etc., no new points are found on the initial line. Plac-
ing p = 0, 0 is found to be 45° 135°, 225°, and 315°, which
shows the pole is on the locus.

. Symmetry. — The tests for symmetry ordinarily used,
correspond closely to those of rectangular codrdinates. It
can be shown that in polar codrdinates a curve is sym-
metrical with respect to
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(a) the polar axis if 8 can be replaced by —8 without
changing the equation. Why?

(b) the perpendicular to the polar axis through the pole
if 6 can be replaced by = — 6 without changing the
equation. Why? ’

(c) the pole if p can be replaced by — p or 8 by =0 with-
out changing the equation. Why?

In general, the test for symmetry with respect to the polar
axis will be the only one used. This is of particular prac-
tical importance, since any part of the curve determined by
giving 0 values from 0° to 180° can be reproduced from 0°
to —180° by the principle of symmetry. Points should be
plotted until it is certain that any further points found are
the same as those obtained by symmetry.

While the above tests (a), (b), and (c) are universally
true, their converse does not necessarily hold. A curve
may, for example, be symmetrical with respect 4o the polar
axis even though the equation is changed when 6 is replaced
by —6. This point is discussed in Art. 34.

The equation p? = a? cos 20 stands all the tests of sym-
metry mentioned in this article and hence the locus is sym-
metrical with respect to the perpendicular to the polar axis
through the pole, to the pole and also to the polar axis.

Extent. — Under this head will be considered:

values of § which make p imaginary;

values of 8 which make p infinite;

values of 6 which make p a maximum or minimum nu-

merical value.

In those problems in which p enters the equation in even
degree, it is possible that certain values of # may make p
imaginary. Such values of 6 are excluded.

In some examples, there are values of § which make p
infinite. Such values are important as they show that the
curve extends to infinity in that direction. In such cases
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it is well to determine values of p corresponding to values of
0 a little less and a little greater than those which render
p = o, as important changes often take place in the vicinity
of such points. )

Other important values of 6 are those which give to p
its maximum or minimum numerical values.

Consider again p? = a*cos 26 or p = £a Vcos 20.

It is seen that values of § between 45° and 135°, also be-
tween 225° and 315° make p imaginary, and therefore these
values of 0 are excluded. There are no values of 8 which
make p = o0, hence this curve has no infinite branch.

The greatest value of p corresponds to 8§ = 0° or 180° for
which cos 260 = 1 and p = =a.

It has already been shown that the curve passes through
the pole, hence the least numerical value of p is 0.

Taking into account symmetry and excluded values of 6,
the curve can be completely drawn by assigning to 6 values
from 0° to 45°. ' This curve is called the lemniscate.

[] 20 Cos26 ']
Degrees | Degrees | |

0 0 1 +a

15 30 .86|+£.93a

30 60 5 |+.7a

45 90 0 0

If 6 in the equation has coefficient unity, it is usually
sufficient in plotting to take values of @ differing by 30°. If
0 has an integer coefficient as in this problem, smaller inter-
vals should be used, and when 6 has a fractional coefficient,
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it is often sufficient to take much larger intervals between
the values of 6.

In plotting curves, the student is advised to use polar
codrdinate paper. Such paper is usually accompanied by
tables which facilitate the calculation.

ILLUSTRATIVE EXAMPLES
. 6

1. Plot and discuss p = m'
- Intercepts. —Xf 6 =0°% p = —6. If 9 =180° p=2. 9= 360°
540°, etc., give no additional values to p. No values of § make p = 0.
Hence the curve crosses the polar axis in two points only, one point 6
units to the left, and the other 2 units to the left, of the pole.

Symmetry. — The equation is unchanged if 8 is replaced by —8, hence
the curve is symmetrical with respect to the pola.r axis.

Eztent. — There are no excluded values of 6, smce the value of p con-
tains no radical.

When 1 — 2cos6 = 0 or cos§ = 4, p = ®, therefore the curve has
infinite branches corresponding to 8 = 60° and 300°.

p will have the least value when 1 — 2 cos 6 is greatest, which will be
when cos@ = —1. Then p = 2 is the minimum numerical value.

A table of values is here given in which the natural values of cos 6 are
used. The figure proves to be an hypetbola.

anv

0 Cos 8 P
Degrees

0 1 -6
30 .866 | — 8.2
45 707 | —-14.5
60 .5 ©
75 259 | +12.4
90 0 6
120 |- .5 3
135 |— .707 2.5
150 |— .866 2.2
180 . |1 2
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If values of 0 greater than 180° were used, the same points would be
obtained as those determined by applying the principle of symmetry
with respect to the initial line.

2. Plot and discuss the locus of p = a cos'%~

Intercepts. —If 6 =0, p =a; if 0 =180° p = a/8; if 0 = 360°
p=—a/8;if0 =540°%p=—a. Ifp=00=270°

Symmetry. — Since 6 can be replaced by —6 without changing ‘the
equation, the curve is symmetrical with respect to the polar axis.

Extent. — There are no excluded values of 8. p is never infinite. It
is greatest when @ = 0° for which value p = a. _

Making a table of values and plotting, the figure is found to be as
shown below, a being taken as 8.

It should be noticed that in this curve it is not sufficient to plot from
0° to 180° but that points up to 8 = 270° are necessary before the appli-
cation of symmetry can be applied to complete the figure.

] % Coa% P
Degrees | Degrees

0 0 1 a

45 15 .97 Ola

90 30 87 .65a

135 45 71 .35a

180 60 5 .13a

225 75 26 .02a

270 90 (0 0

EXERCISES

Discuss and plot the loci of the following:
1. p=5. 6. 0 = 10°.

2. p = 5cosé. T. o = cos (8 + 45°).
8. p =4sind. 8. p*=a?sin 20.
4. pcosd =4, 9 _ 8 X
5. psing = 4. * P =T+ 2coso

10. p%2cos 20 = at. 3

11, The parabola p= l-l-—sin?
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1.
1s.

M.
16.
16.

"83.

where k is any integer, are of frequent occurrence.

POLAR COORDINATES

The cardioid p = a (1 + cos 6).

The ellipse p = 5—_—-30—0;0

The limagon p = 4 (1 — 2 cos 6).

p =4(2 — cosé).
p=a(l+sind).

17. p = asin'%-
18, p?68in26 = a2,
19. p = acsc*o

2

20. p = as'm’2

Equations of the form p = a sin k0 and p = a cos k6,

A

sketch of these curves sufficiently correct for many pur-
poses can be constructed by making use of the following
discussion.

Draw a radial line corresponding to each value of 8 which
makes p = 0, also a radial line corresponding to each value
of 0 which makes p a numerical maximum. Discuss the
changes which take place in p as @ increases through each
interval determined by these radial lines.

Thus, plot the locus of p = asin 26.

If p = 0, 6 = 0°, 90° 180°, 270°.

p has a numerical maximum of +a when § = 45°, 135°,

225°, 315°

Therefore radial lines are drawn at intervals

of 45° beginning with the polar axis.

90°
Quad- 1387 (3
Asﬁ[n- p‘mvsnas' rant ‘23- 4
creases from m cupi J
byaurvel L RN AL LESSEA
L RRRINHAKS SN
Degrees ...SQQ ““‘\ /"“ lq‘éﬂ‘-
0to 45| Oto af 1st | [T T
45t0 90| ato O] st -=EE==E=~$:“ "/‘{22=§EE== ¢
- BPE=7 Ve
tolsy Oto-a 4h | RSN NG
180t0225| Oto d 3rd | OO TSNS
225t0270| ato 0| 3rd 'o"yf'/@,’h NSSRRAL
270t0 315 0to —a| 2nd C‘;O,Q:l,,;l'u nINNNEY
315t0360(—ato 0| 2nd »\10‘.!.lg‘4"l. X 0 f
v". ) “v
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The plan here used will often be of advantage in other
examples and should be kept in mind for use whenever
practicable.

EXERCISES
Construct the following loci:
1. p =acos20. 6. p =4sinb.
2. p = 45sin 34. 7. p = acosé.
8. p=acosbo. 8. p =5cos40.
4. p = 8sin 4. 9. p =458n60.
B. p=4cos30. 10. p = asin?é.

34. Difficulties arising from the multiple representa-
tion of points in the polar system.— The fact that the
same point may be expressed by more than one pair of co-
ordinates often leads to confusion and sometimes to error
unless great care is taken. In the rectangular system, where
each point has one pair of coérdinates, and each pair of
codrdinates corresponds to a single point, it is always safe
to conclude that if the coordinates of a point fail to satisfy
an equation then the point is not on the locus. This is not
always the case in the polar system, for it often happens
that if one pair of codrdinates fails to satisfy an equation,
another pair representing the same point may show the
point to be on the locus.

Thus, in the equation p = asin 20 if the pomt be taken
whose coordinates are (a/2, —15°) the equation is not sat-
isfied; but the same point when considered as determined
by (—a/2, 165°) is found to be on the curve.

Care must be taken to hold this multiple representation
of points in mind when considering the question of symmetry.
If the curve is symmetrical to the polar axis, then corre-
sponding to every point (p, 8) on the curve there must be a
point (p, —6) also on the curve. It has been shown, however,
that any point as (p, —6) may be on the curve even though
its codrdinates, in that particular form, do not satisfy the
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equation of the curve, and thus the locus is sometimes sym-
metrical with respect to the polar axis even though the
equation is changed by the substitution of —@ for §. This
is shown in the case of the curve p = a sin 26, drawn in Art.
33, which is found to be symmetrical with respect to the
polar axis, even though the usual test for symmetry fails.
Another case where confusion sometimes arises is that of
excluded values. It often happens that certain values of
6 make p imaginary and therefore these values of 6 are
excluded. It may be, however, that if the set of points
corresponding to these values of 8 were expressed by other
pairs of codrdinates, these codrdinates would satisfy the
equation, showing that the curve is found in that area from
which a too hasty conclusion would have excluded it. Thus,
in p? = 4sin 6, p is imaginary for values of 6 between 180°
and 360°. This might seem to indicate that there is no
part of the curve be-
low the polar axis. In
plotting points, how-
ever, it is found that
for every value of 6
in the first and second
quadrants, p has two
values, one positive
and the other nega-
tive, showing that the
curve is found in
each of the four quad-
rants.
Thus, when 0 = 90°, p = +2. The coordinates (—2, 90°)
satisfy the equation. Another pair of codrdinates for the
same point is (2, 270°). These do not satisfy the equation.
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EXERCISES

1. Show that the point (—4, 150°) is on the curve p = cos 20
although its codrdinates do not satisfy the equation. How may the
given point be written in order that its codrdinates shall satisfy the
equation?

2. Determine whether the point (1, 210°) is on the curve whose
equation is p = 2 cos 496.

8. Discuss and plot p* = 4 cos 6.

" 4. Discuss and plot p* = cos 34.
8. Discuss and plot p* = 1 — 25in 4.
6. Discuss and plot p = sin 46.

36. Spirals. — A spiral is a curve traced by a point
which, while it revolves about the pole, continually ap-
proaches or recedes from this point.

"There are five principal spirals as follows:
The spiral of Archimedes, p = aé.
The reciprocal or hyperbolic spiral, p = a/6.
The parabolic spiral, p? = af.
The lituus or trumpet, % = a/9.
The logarithmic spiral p = e® (e = 2.7184).

Plot the locus p = af (where a is positive).
It is seen that when 8 =0, p = 0, and as 6 increases
without limit, p also increases without limit. The curve

0 I}
0

*/2=1.57 1.57a
=3.14 3.14a
3x/2=4.71 4.7a
2r=6.28 6.28a
6x/2=17.85 7.85a
3r=9.42 9.42a
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thus starts at the pole and winds around the pole indefi-
nitely, receding from it with each revolution.

In plotting these curves, 6 is expressed in circular measure.
It is usually sufficient to determine only such points as
correspond to values of 6 differing by 7/2 radians. In
some examples it is more convenient to take the interval
between the successive values of 9 to be 1 radian.

The curve sketched in the figure with the heavy line cor-
responds to positive values of § and that with the dotted
line to negative values of §. These two spirals constitute
the complete locus of the equation.

Plot the locus p = e%.

Some definite value must be assigned to a. Supposea = 1,
the equation becomes p = ¢/. Assigning to 0 values differing
by 1 radian, the following table is computed.

P 0 P
.0 =1 0 @ =1
1 e = 2.72 -1 et= .37
2 et= 7.39 -2 e?= .14
3 e =20.1 -3 e3= .05
4 et=54.6 —4 et= .02

H
6/

It is seen that as 6 increases from 0 radians to 4 radians,
p increases from 1 to 54.6, also that as 6 increases indefinitely,
p also increases indefinitely.

As 0 decreases from 0 to —4 radians, p decreases from 1




INTERSECTIONS OF CURVES 87

to .02, and as 0 decreases indefinitely, p approaches 0 as a
limit. Hence the curve winds around the pole indefinitely,
coming closer and closer to it with each revolution, but not
reaching it until an infinite number of revolutions in clock-
wise direction have been made.

EXERCISES

1. Plot the spiral p = a/8.
2. Plot the spiral p* = ad.
8. Plot the spiral p* = a/0.

36. Intersections of curves. — As in rectangular coordi-
nates, .if two equations are solved simultaneously, points
are found whose coodrdinates satisfy both equations and
hence such points are the intersections of the two loci. In
polar codrdinates, this process does not always give all the
common points, for since the coodrdinates of a point may
be written in a number of different ways, it may happen
that one equation is satisfied by one pair of codrdinates of
the point of intersection, and the other equation by a differ-
ent pair of coordinates of the same point.

To make sure that all intersections are obtained, the
curves should always be drawn. These will show any addi-
tional common points. Care must always be taken to make
sure whether the pole is on both curves.

ILLUSTRATIVE EXAMPLE

Find the points of intersection of the two curves p = —1 — cos 6
and p = 1 4 cosé.
Equating the two values of p,

—1 —cos@ =1 4 cosb.
Hence 2c086 = —2, cosd = —1,0 = 180°.

Substituting in either equation, p is found to be 0. The pole then

is & common point. \
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Plotting the loci, taking account of symmetry, the figure is as shown
below.

p=—1-—cos@ p=1+cosb

[] ' ] P
Degrees| Degrees

0 (-2 0] 2 1w

45 | -1.7 4 | 1.7

90 | -1 90 |1

135 |- .3 135 .3

180 0 180 | O

The point marked A in the figure has codrdinates (1, 90°) for the
right hand curve and (—1, —90°) for the left hand curve.

The point marked B in the figure has codrdinates (1, —90°) for
the right hand curve and (—1, 90°) for the left hand curve.

The curves then intersect in three points.

EXERCISES

Find the points of intersection of the following pairs of curves and
plot the loci.

1. p =a. 4 p="V3,
p =acosl. p = 2gind.
2. p* =a*sin20, 5. p =sin 24,
p =asgind. : p =gind.
8. p=1+cosl, 6. p =1+45ins,
2p=see’%0. p(2 —sinf) =2.
7. p =25in30,

p =2sin0. Ans. (0,0), (V2 45°), (V2, 135°).
8. p* =2a*cos 20,

p=a. Ans. (a, +30°), (a, £150°),
9. p* =a'cosd,

p=a.



10.

14,

16.

INTERSECTION OF CURVES

p(8—2co80) =1,

p=1—cosd. Ans. (1, 60°), (4, 300°).
p =06 —cosd,

p (1 —2cos0) = 6.

p =2 — 2gin0,

p =2co820.

' p = ab,

p =a/l.
p =2asmbtand,
p =asinf.

Show that # = 60° and p = a. intersect in two points.

MISCELLANEOUS EXAMPLES

. Discuss and plot the following:

(Hint. Change to sine and cosine when calculating for 8 = 90°.}
9 »p

10.
11.
12.
13.
14.

16.

1e.

p = 28ech.
p = atan? 9 sec§ (semi-cubical parabola),
p =a?sin 40.
p = 2asindtané (cissoid).
p = asec®l.
p=1+458in26.
p =a(sin20 4+ cos 20).
- 2asect
P =1+ tano

=3atan03ec0
1 4 tan®é

P =a*(l — cosb).

p = 28in0 4 cosd.

p* = cos 40.

ptcosl = a?sin 3 6.

p =4sinb50.

A= e
a?sin? 9 + b? cos?

6, .80
p=009_§+!ln§'

(folium of Descartes).

89



CHAPTER V
TRANSFORMATION OF COORDINATES

37. If a point is referred to a given system of axes, its
" coordinates are fixed. If the axes are changed, the coérdi-
nates of the point are also
Y Y ] changed. Thus, if the
point P when referred to
OX and OY is (5, 5), it is
seen that if refdrred to the
/ parallel system, O’X’ and
57

O0'Y’ through O’ (3, 1) the
coérdinates of P are
° changed to (2; 4). Simi-
' larly, the equation of the
" line O’P when referred to
OX and OY is y = 2z — 5, and when referred to 0’X’ and
0Y isy=2z.

This example illustrates that an equation of a locus is
sometimes simplified by a change of axes and it is therefore
often desirable to find the equation of the curve in a new
system. To do this it is necessary to determine the laws
which connect the codrdinates of a point in the given system
with the codrdinates of the same point in the new system.

Transformation of codrdinates is the operation of chang-
ing the axes. There are two principal transformations
in rectangular coérdinates. When the new axes are re-
spectively parallel to the old through a new origin the
transformation is called translation of axes. When the
origin is unchanged but the axes are each rotated through
a given angle, the transformation is called rotation of axes.

. 90

x %




TRANSLATION OF AXES 91

38. Translation of axes.— If x and y are the coordi-
nates of any point before translation to a new origin (h, k) and
z' and y’ the coordinates of the same point after translation,
then

x=x"+h,
ey h (13)
Proof:— Let OX and OY be the given set of axes. Through
0’ having codrdinates (k, k) Y v >
when referred to the given
axes, draw a new set 0'X’ o Ml

and O'Y’ parallel respec-
tively to OX and OY. Let
P be any point in the . .
plane. Its coordinates in ; N - M X
the given system are rep-
resented by z and y and’
in the new system by 2z’

and . Draw the ordi-
nate MM'P and extend O'Y’ to meet the z-axis in N.

Then

z=0M, ' =0'M, h=ON,

y=MP, y =M'P, k= NO'.
From the figure it is seen that

OM =ON + NM =ON +0'M’
and MP = MM' + M'P = NO' + M'P,
whence z=2"+h
yv=y+k.

In recalling all formulas of transformation it is well to
hold the figure in mind as an aid to the memory.
To transform an equation referred to a given system of

.axes to another system parallel to the first through the

point (h, k), replace z in the given equation by ' + k and y by
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¥’ + k and simplify the result. This gives the new equation
of the given locus in which z’ and ¥’ are the variable coérdi-
nates in the new system. It is customary to drop the primes
when the work of transformation is finished.

. EXERCISES

1. What are the new codrdinates of the points (3, —3), (—4, 2),
(0, —2), (4, 0) referred to parallel axes through (1, 2)?

2. Transform the equation 3z 4-2y = 12 when the axes are
translated to a new origin (—2, —3). Construct the two sets of
- axes and plot the locus of each equation, showing that they represent
the same line. Ans. 3z +2y = 24.

8. Transform the equations y —z =3 and 3y 422z = 4 when
the axes are translated to a new origin at their point of intersection.

4. Transform the followihg equations to a new set of axes parallel
to the old, the new origin as indicated. In each case draw both sets
of axes and the curve.

@2 -2z—p+dy=4, 1, -2 o
() 422 -8z 492 —36y+4=0, (1,2). Ans. 42*4932=236.
€ 2—2hz4+r—2ky+h+k =0, (hk). Ans. 2 4+32=0.
@y+2=(=+1)p (-1,-2). Ans. y=2%

(e #+4y=(=-1p% (@1 -2).

5. The equation of a curve after translation to a new origin (—1, 2)

is 2* 4 32 = 9. What was the original equation?
Ans. (z+ 10+ (y -2 =9,

39. Rotation of axes.— If z and y are the codrdinates
of any point before rotation through an angle 6, and =’ and y'
the coordinates after rotation, then

x=4x"cos® — y'sin 0,
y = «'sin 0 + y' cos 0.

Proof. — Let OX and OY be the given set of axes, and let
OX'’ and OY’ be the positions of the axes after they have
been rotated about the origin through an angle 8. Take-
P any point in the plane whose coérdinates in the given

(4
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system are z and , and in the new system 2’ and y’. Draw
the ordinates M P and M'P.

Then OM = z, MP =y,
OM' =2z and M'P =y p
Draw through M’ the lines
RM' and NM’' parallel to

Y \4

the x and y axes respec- R X
tively. The angle RPM' 0 5 .
is equal to 6. (Why?) M N7

It is seen from the figure - :
that

2 =0M = ON — MN = ON — RM’ = 2’ cos 6 — y'sin 6,
y = MP = MR + RP = NM' 4 RP = z'sin 0 + ¢/’ cos .

EXERCISES
1. Find the codrdinates of the points (3, 1), (=5, 0), and (0, —2),

.after the axes have been rotated through 45°, also through 90°.

2. Transform the equation 2* 4 §* = 16 when the axes are rotated
through 60°. Ans. 2* + 32 = 16.

8. Show that the equation 2* 4 3 = a* will be unchanged after
rotation of the axes through any angle 6.

4. Transform the following equations when the axes are rotated
through the angle given. Construct both sets of axes and the curve.

(0) zy = 4, =/4.

(®) 12 =4z, /2.

() #+2zy+y—2—y =0, ~/4
d) 32* — 42y +82—5 =0, tan— 2,
(e) z/a +y/b =1, tan—a/b.

) 3 +8ay—3at =0, tan— §.

5. The equation of a locus after the axes have been rotated through
—45°is y — z = 1; what was the equation before rotation?

6. Through what angle must the axes be rotated in order that the
new z-axis shall pass through (3, 4)?

7. Transform the equation zy —y +2z — 6 =0 to new axes
whose origin referred to given axes is (1, —2) and which make an angle
of 45° with those axes. Ans. 2* — 32 = 8,

Hint. — First translate to the new origin, then rotate the axes.
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8. Three sides of a trianglearez —~y =4,z +y =6,andy + 2z
= 20. If the first two lines are chosen as axes, what will be the equa~-
tion of the third? Ans. 3z —y =9 V2,

40. Degree of equation not changed by translation and
rotation. — Since in each of the formulas of transforma-
tion the values of z and y are of first degree in 2’ and 7/,
therefore the transformed equation will never be of higher
degree than the given equation. That it cannot be of lower
degree is shown by the fact that if this were the case, a
transformation back to the original system of axes would
have to raise the degree in order to give the original equa-
tion. This has been shown to be impossible.

41. Simplifications by transformation. —One of the
principal advantages obtained from transformation is the
simplification of equations. Some of these simplifications
are best accomplished by translation, others by rotation.

By translation to a proper new origin it is often possible
to remove the first degree terms, to make the constant
term disappear, or to eliminate one first degree term and the
constant term. _ '

The methods by which these results are usually accom-
plished are illustrated in the following examples:

1. Simplify the equation 22 — 2z + 3> — 6 y 15 by
translation to a new ongm

Substituting £ = 2’ + h and y = ¥’ + k in the equation

—2z4+9y2—6y=15 - (1)
and collecting terms, the equation becomes

224+ y?+ Qh—2)2'+ 2k —6)y

+hr4+E—-2h—-6k—15=0. (2)

It is readily seen that it is possible to so choose & and %

that the coefficients of 2’ and y’ shall be 0. Thus
2h—2=0, h=1, 3)
2k—6=0, k=3, 4)
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Substituting these values back for k and k, the equation
becomes
24y =25, - 5)
One advantage gained by the transformation is that the
new equation shows that the locus is symmetrical with re-
spect to both axes since there are no odd powers of z or y
in the equation.
Another method of accomplishing the same result is to
complete the squares of all z terms and of all y terms, thus

@—-2z+1)+@—6y+9 =15+14+9, (2)
or -1+ (y — 3)r=25. , 3)

It is readily seen that if the axes are translated to a new
origin at (1, 3) the equation will have no first degree terms.
Although often desirable, it is not always possible to re-
.move the first degree terms. This is illustrated in the
second example. v
2. Simplify by translation >+ 4y — 8z — 4 = 0.
Substituting z = 2’ 4+ h and y = y’ + k, in the equation
y¥*+4y—8x—4=0 1)
and collecting terms, the equation becomes
y: 4y 2k+4) -8z +k*+4k—8h—4=0. (2

It is evident that the coefficient of =’ cannot be made
equal to zero. The quantities h and k£ may, however, be
determined so that the coefficient of y and the constant
term shall be zero.

Thus 2k+4=0 3)
and k+4k—8h—4=0. 4)
Whence k=-2,h=—1.

The equation then reads y? =82 5)

This locus is symmetrical with respect to the new xz-axis
and passes through the new origin.
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This problem can also be solved in a manner similar to
the second method used for the first example.

By rotation through a proper angle it is possible to re-
move the zy-term from an equation of second degree as is
shown in the following example.

3. Remove the :cy-term from 3 22 + 10 my +3y*=8.

Substituting z = 2’ cos@ — y’'sinf and y = z'sinf +
¥’ cos 0 in the equation .

322+ 10zy + 3y =8, 1)

z'2 (3 cos? 6 + 10 &in 8 cos 6 + 3 sin? )

+ 2'y’ (10 cos? 8 — 10 sin?§)
+ y"2(3sin%0 — 10sin 6 cos 6 + 3 cos?) = 8. (2)

-The coefficients of all the terms can be changed to func-
tions of 20. The equation then becomes

2" (3+5s8in20)4 2’y (10cos 20)+ y2 (3—5sin260)=8. (3)

Since the new equation is to contain no z'y’ term, there-
fore 10 cos 20 = 0, whence cos 26 = 0,26 = 90°, and § = 45°.

Substituting § = 45° in equation (3),
8z — 2y =8, 4)

EXERCISES
1. Simplify the following equations by translation of axes. Plo$
both pairs of axes and the curve.
(@) 2*+4z+9y—18y+4=0. Ans. 22 4+92 =9.
®) 24+22-9yP —36y=44. Ans. 2 —-912 =9.
() #—6z+4+p2+6y=17..
d y»—-8y+6x—-2=0.
() *+42z=2y+6.
2. By rotating the axes, remove the zy-term from the following.
Plot both pairs of axes and the curve.

(@) #+2zy+9y* =9.

(b)) zy = 4.

) 1184+24zy+4y2 =20
d 8z*+42y+51 =36
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8. In the following, remove the ry-term by rotation of axes. Cons-

struct the two sets of axes and the curve in each example.
(@) 2 —2y+p+5z—y=1
®) 22y —2V2y =4

4. To what new origin must the axes be translated in order that
the two lines 2z —y —3 =0 and 2 + 2y 4+ 1 = 0, when referred
to the new system, shall have no constant term? Find the equations
referred to the new axes.

5. Through what angle must the axes be rotated in order that the
new equation of the line z — y = 4 shall have no z-term? Check
from the figure. Ans. 45°.

8. Transform the equation z — y = 6 to the form y=0.

" Hint. — First translate the axes to a new origin located anywhere
on the given line and then rotate the axes.

42. Transformation from rectangular to polar cobrdi-
nates and vice versa. '

- If x and y are the coordinates of a point in a rectangular

system and p and 0 the coérdinates of the same point in a polar

system, the origin and the x-axis coinciding respectively with

the pole and the polar axts, then

x = pcoso,
y = psin®.

Proof. — Let OX and OY represent the rectangular axes,
then O and OX are the pole and initial line respectlvely.
Let P represent any point whose
codrdinates in the rectangular
system are z and y and in the
polar system p and . Draw
MP perpendicular to OX.
Then z=0M, y=MP, p=0P,
0 = angle MOP.

It is readﬂy seen from trigonometry that z = pcosé
and y = psind.

(6)
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It is seen from the following figures that if P is located
in any other quadrant than the first, the proof is identical
with that given above.

If p and 6 are the codrdinates of a point in a polar system
and z and ¥y the coordinates of the same point in a rectangular
system, the pole and polar axis cmnczdmg respectively with
the origin and z-axis, then

v
p = £Va®+y
0 = tan—! y/x. (19)

Proof. — These results can be read directly from the
figures. It is also seen that

coso=£=—_z__ sino=y=__.__y___.
P Vet P Vit

It is particularly helpful in this set of formulas, as has been
suggested before in this chapter, that the student keep the
figures in mind when recalling formulas of transformation.
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EXERCISES
1. Find the polar coérdinates of the points (0, 3), (-3, 3), (—3, —4),
5, —12).
2. Find the rectangular codrdinates of the points (3, /4), (4, r),
( s "/6); (2 5'/4)
8. Transform the following equations from rect,a.nguln.r to polar
codrdinates. Plot each curve.

() x =a. Ans. pcosd = a. ) zy = 4.

®) y=6. (y)w'+y'+4z-0.

() y== . () P R2a—2)=

@) P+ =a. Ans. p* =a (i) (w’+y')’==a’(z’ ¥,

(e) 2*— g2 =6. _ G) 2*+1+26x =a VD + 8.

4. Transform the following equations from polar to rectangular
codrdinates. Plot each curve.
(a) 6 = 45°,
®) pcosd =2,
() p =2acosé.
Hint. — In (c) and similar examples it is sometimes best to multi-
ply by p before transforming,.

(d) p*sin20 = 4, (k) p = a (cos 26 + sind).
(e) p* =atcos20. (Z) p =2atanfsind.

(f) p=acosd 4 bsiné. () p =2+ 3coso.

@) p =a(l — coso). (k) p = a (1 + cos 20).

5. Translate axes to new origin and then transform to polar codrdi-
nates:
(@) @+ + 42+ 8y — 20 = 0, new origin (—2, —4).
®) #—1p+2z+ 6y = 24, new origin (-1, 3).



CHAPTER VI
THE CIRCLE

43. A circle is a locus traced by a point which is every-
where equidistant from a fixed point, called its center.
The distance of any point from the center is called the
radius.

A circle, therefore, is determined, and its equation can be
written if its center and radius are known.

First standard equation of a circle. Center and radius
known. — The equation of a czrcle whose center 18 C (h, k) and
whose radius 18 r 18

G-R -k = an

Proof. — Let P (z, y) represent any point on the circle.

By the definition of a circle, PC = r. From the formula

~ for the distance between two points,
formula (1),

PC= V&= + W= b,
whence V(@ —h)?*+ (y—k)?=r.
0 N M X Squaring, (z—hP+(@—kr=1
Second standard equation of circle. Center at origin,

radius r.— The equation of a circle whose center is at the
origin and whose radius is r is

Bty =r (18)

Proof. — Substituting » = 0 and k = 0, in equation (17),
it reduces to equation (18).

100
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EXERCISES
1. Write the equations of the circles whose centers and radii are
as follows:

(a) C (1, 4), radius 5. @) C(—4,0), radius 2.
() C(0,0), radius 2. (e) C(—1, —2), radius 7.
() C (-3, 4), radius 5. () C (5, —1), radius 3.

2. Write the equations of the circles, having given:
(a) Center at the intersection of the lines 2z —y — 3 = 0 and
z+ 3y — 5 =0, and radius 5.
(®) Center at origin and passing through the point (5, 6).
(c) Line joining (1, 5) and (—3, 1) as diameter.
(@) Center at (5, 6) and tangent to z-axis.
44. General form of equation of circle. — Equation (17)
when expanded becomes

2+ P —-2hz—-2ky+r+E—-1r2=0. 1)
It is thus seen that the equation of a circle is of second

degree. If the constants are collected, equation (17) is
seen to be of the form '

*+y*+Dx+Ey+F=0. @

It will be shown that every equation of this form repre- -

sents a circle.
Completing the squares of the z-terms and of the y-terms,
equation (2) becomes

(+3)+(+3) -ZEE=L o

from which it is seen by comparison with (z — k)24
(y — k)? = r* that equation (2) represents a circle whose
center is at (—D/2, —E/2) and whose radius is

' 4 VD + E2—4F.

If D*+ E*—4F <0, the radius is imaginary snd no
circle is possible. If D* 4 E* — 4 F = 0, the equation rep-

NN
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resents only one point, the center. The foregoing may be
summarized as follows:

The equation x*+y*+Dx+ Ey+F=0 (19)

represents a circle whose center is (—D/2, —E/2) and whose

radius 184 VD? + E* — 4 F, provided D*+ E* — 4F > 0.
It should be noticed that equation (19) is not the most

general form of the equation of second degree, this being

Az*+ Bxy+Cy*+ Dz +Ey+F = 0.

If, in this equation, B = 0 and C = A, it is possible to
divide through by A and thus reduce it to the form of the
general equation of the circle 22 +y* + Dz + Ey + F = 0.
Whence:

The general equation of second degree Az* + Bzy + Cy* +
Dz + Ey + F = 0 represenis a circle tf B = 0and A = C.

In plotting loci of equations of second degree, the student
should look for the presence of the conditions which make a
second degree equation a circle, as when these exist, he can
save himself all the work of discussion and of plotting
points, since a circle can be readily drawn as soon as its
center and radius are known.

In determining center and radius, he can either complete
the square of the z-terms and of the y-terms or can make
use of the facts learned in connection with the general
equation.

Thus, plot the locus of 222 + 242 — 18z + 16 y + 60 = 0.
Since the coefficients of 2 and y? are equal, this can be put
in the form of the general equation of a circle by dividing
by 2, giving

2 +yt—9z+8y+30=0. @)
Completing the squares, ,
@—-8+@+4r =@ €)
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Whence by comparison with standard equation (17), the
center is (§, —4) and radius §.
Or, comparing (2) v

with the general equa-
tion (19), :, : %
h=-D/2 =% °
k=—-E/2 = —
r=3V8l+ 64 — 120
=4,
whence the circle is as
shown. v/

45. Radical axis. — In Art. 16, it was learned that if
an equation is multiplied by any constant and added to any
other equation, the result represents a locus through the
points of intersection of the two given loci. If the equation
of a circle is multiplied by & and added to the equation of
another circle the resulting equation represents a system.of
circles, since for every value of the constant multiplier &
the coefficients of x? and y? are the same.

If the equations of the two circles are put into general
form (19), the terms of second degree will be eliminated
if- the constant multiplier is —1, or if the equations of
the two circles are subtracted. This result being of first
degree represents a straight line. When the circles inter-
sect, this line is their common chord. When the circles
touch at one point only, it is their common tangent.
Whether the circles have any common points or not this
line is called the radical axis.

This radical axis is the locus of points from which tangents

- to the two circles are of equal length as will be proved in

Ex. 16 of the list which follows.

In finding the intersection of two circles, it is best to first
find the radical axis and then find the intersection of this
with either of the given circles.
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Exercise. — Find the intersections of the circles: '
(@ z*+y*—62x+4=0and 22+ y*—4z—4y=0.
) ?*+y¥*~y=0and 222+2¢y2+2=0

46. Circle determined by three conditions. Since the
equation of the circle in either of the two forms

@-hm+@Y—-kr=r
or 2*+y*+Dx+Ey+F =0,

" has three arbitrary constants, therefore three conditions are
necessary in order to determine its equation. '

Sometimes it is best to use the data given to obtain three
equations in &, k, and r and sometimes in D, E, and F. From
the three equations, the three constants can be determined,
and the required equation obtained by substituting their
values back in the corresponding standard equation.

In other examples, it is better to determine more directly
the center and radius by using the given data in connection
with equations and formulas already derived. Thus, the
center is often at the intersection of two lines whose equations
can be found, and the radius the distance between two known
points. Whenever the codrdinates of the center and the
radius are known or have been found, it is only necessary to
substitute in standard equation (17).

ILLUSTRATIVE EXAMPLES
1. Fmd the equation of the circle through the three points (4, 6),
(=2, —2), and (—4, 2).
Let the required equation be
24y +Dr+Ey+F =0, 1)
in which D, E, and F are unknown constants. Since each of the
points is on the circle, therefore the codrdinates of the three given
points must satisfy equation (1), whence
164364+4D+6E+F =0, 2)
44+4—-2D—-2E+F =0, ®
164+4—4D+2E+F =0, @
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Solving (2), (3), and (4), for D, E, and F, Y
D=-2,E=—4, F=-20. .
Whence the equation of the circle is \.
BHPp—22-4y—20=0 (5

Changing to form (17), (z — 1) + (y — Py *C

2)1 = 25, from which it is seen that the X 5 X
center is (1, 2) and the radius is 5. The \L__/

figure is as shown. P .

This problem may also be solved by
finding the equations of the perpendicu-
Iar bisectors of the lines joining two pairs of the points. The intersection
of these bisectors will be the center, and the distance from this center
to any one of the given points will be the radius of the required circle.
Substitution in standard equation (17) will give the equation of the circle.

2. Find the equation of the circle whose center lies on the line
y — z = 1, and which is tangent to each of the lines 4z — 3y = 15
and 3z + 4y = 10.

Represent the three lines in t.he order given by L, Ls, and Ls.

It is seen from the figure that there are two circles which fulfil the
conditions mentioned, and from geometry it is known that the center
of each lies on one of the bi-
L Ly gectors of the angles between
Ly and L;. Let the bisectors
be represented by L and L.
The equation of that circle

_e=m=Y whose center C lies on the bi-

/7 sector L, will first be deter-

¥ N A0 % x mined. By the method of Art.

: 27, the equation of Ly is found

‘\ . tobe7z+y =25. The in-

tersection of this line with L,

SS-— determines the center, C (3, 4).

La The radius is the distance from

either Ly or L3 to C, and by

Y Art. 26 thisis . Substituting

the coordinates of the center

and the radius in standard equation (17), the equation ef the eircle in

the first quadrant is found to be (z — 3)* + (y — 4)* = 9. The equa-

tion of the other circle canbefoundmasumlar manner tQ be (% + 2
+ (v +1)* = 16.

Y

I
-
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8. Find the equation of the circle tangent to the line 4z 43y .
= 15 and passing through P, (7, 4) and
Py (1, 4).

Let C (h, k) represent the center of the
required circle and r the radius. Also let
L represent the given line. The three
given conditions lead to three equations
in k, k, and r. Since L is tangent to the
circle, the distance from line L to C is r.

, By formula of Art. 26, this distance is

—
: 4h4+3k—1
YI \ . ———-—+ 5k 5=-r. (])

The points (7, 4) and (1, 4) are on the circle. Therefore their
codrdinates must satisfy the equation -
@—m2+@y—kr=r.

‘Whence (T—=h2+(A—k2=1 @)

(1I—=h24+@4—Fkp =1, 3)
Subtracting (2) from (3), h =4. 4)
Substituting in (1), ' r = > ";3". : ®)

Combining (4) and (5) with either (2) er (3),k =8 or 3% andr = §
or 4%, The equations of the required circles then are

: (@ — 47 + (y — 8)* = 25,
and (z — 9+ (y — %)t = %22

EXERCISES
1. Find the codrdinates of the center and the radius of each of the
following circles: -
(@) 2+ —4z+8y+4=0.
®) 3224+3p—6z+12y =1,
) B2t yp =4z
@) 222422 +42+8y=0.
(e) 22+ +10ax — 24ay =0.
N 2+2@+bz+r+2@—Db)y=4ab
@) 222 +2y2=3y.
() *+4z+2 -6y +13 =0.
2. Find the equation of a circle through the three points (3, 1),
6,0), (=1, =7). Ans. 2* + 32 — 6z + 8y = 0.
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8. Find the equation of a circle

(a) center at (—1, 4), tangent to 5z + 12y +9 = 0.

(b) center on y-axis, passing through the points (3, —1) and (3, 7).

(c) center on z-axis, passing through (0, 0) and (1, 5).

(d) passing through (5, —5), having the same center as 2 22 4 2 2
+4z—-12y4+3=0.

(¢) having line joining (—1, 6) and (5, 2) as diameter.

(f) passing through (1,0) and (6, 1) and having center on line
2z+y+4=0.

(9) radius 4, tangent to z-axis at (3, 0) and lying above it.

4. Find the equation of that diameter of the circle 3 z* 4 3 3®
412z — 12y — 1 = 0 which makes an angle of 45° with the z-axis.
5. A diameter of the circle 2* + i + 4z 4+ 6 y = 3 passes through
(1, —1). What is its equation and the slope of the chords it bisects?
6. Find the equation of that chord of the circle 2* 4 # = 25 which
is bisected at (2, 3).
7. Prove that a circle can be drawn through the four points (0, 2),
@3, 3), (6,2), and (—1, —5). Find its center and radius.
8. Find the equation of the circle
(a) radius 10, passing through (—2, —2) and (0, —4).
(b) in the first quadrant, of radius 3, and tangent to both axes.
(c) tangent to both axes, center on the liney — 2z = 3.
~(d) passing through (1, —3) and (2, —2) and tangent to3z — 4y

=15.
(e) center on 2z 4+ y =4 and tangent to y — 3z =6 and
3z+y+6=0.

(f) tangent to both axes, distance from center to origin = 4,
and lying in the fourth quadrant.

9. Find the equation of the circle inscribed in the triangle whose
gides are the lines y —3 =0, 12z — 5y =21, and 12z 4+ 5y + 21
=0. Ans. 22+t — 2y = 3.

10. Find the equation of the circle circumscribed about the tri-
angle whose sides are the lines y +2z =0,3y +x =0,and 2y + z
—-1=0.

11, Find the equation of the circle tangent to the z-axis, through
the point (4, 1) and center on the line y = 5 z. .

12. Find the equation ef the circle whose center is on the y-axis
and which passes through the points of intersection of the two circles
2+ —56z—Ty+6=0anda*+p—4z—-4y +3 =0.
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18. Find the equation of the common chord of the two circles
z:’+y'+6:c—4y+3 0 and z’+y’—2:c+4y—5=0 and
prove that it-is perpendicular to the line of centers.

14. Prove that the square of the length of the tangent from P; (21, 11)
tothecircle 22 + 2+ Dz + Ey+ F =0is 22 + y* + Dzy + Eyy + F.

Hint. — Join the center with the point P; and with the point of
contact. These lines with the tangent form a right triangle.

16. Prove that the point (—1, —1) is on the radical axis of the
twocircles 22 + 6z + 2 —4y+9=0and 2+ 2 — 42— 2y +1
= 0, and show that the tangents from this point to the two circles are
equal. -

16. Find the equation of the locus of the point which moves so
that the lengths of the tangents from this point to the two circles
24+ +Dr+Ey+F=0 and z’+y’+D,:c+E'1y+F1 0 are
equal. Show that this locus is the radical axis of the two circles.

17. Given the three circles 2 + 6z + 2 — 4y + 9 =0, 22 + 3
—4z—2y+l =0, and 2+ -3z —-y+4=0. Takmg the
circles in pairs, find the equations of the radical axes and prove that
they meet in a point. -

18. Prove analytically that .every angle inscribed in a semicircle
is a right angle.  ~

Hint. — Take the extremities of the diameter as (—a, 0) and (a, 0),
thus making the equation of the circle 2* + 3* = a?.

19. Prove analytically that if a perpendicular is drawn from a
point on a circle to a diameter, the length of the perpendicular is a
mean proportional between the segments it cuts off on the diameter.

20. Prove that the following loci are circles and find the ra.dms
and the codrdinates of the center in each:

(a) A point moves so that the sum of the squares of its distances
from (3, 0) and (—1, =4) is always 40.

(b) A point moves so that its distance from (1, 3) is twice its
distance from (—2, —3).

(c) A point moves 8o that the square of its distance from (2, 3)
is equal to its distance from the line 4z — 3y — 15 = 0.

21. Prove that the following loci are circles:
(a) A point moves so that the sum of the squares of its dlst.ancea
from two fixed points is constant.
Hint.—When no mention is made of axes or codrdinates, it is
always advisable to choose these in such a way as to make the work
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as simple as possible. Thus, in the above problem take the z-axis
through the two points with the origin halfway between them.

(®) A point moves so that the sum of the squares of its distances
from the four sides of a square is constant.

(¢) A point moves so that the square of its distance from the base
of an isosceles triangle is equal to the product of its dis-
tances from the other two sides.

(d) A point moves so that the square of its distance from a fixed
point is proportional to its distance from a fixed line.

22. A point moves so that its distances from two fixed points are
in a constant ratio K. Show that this is a circle excepting when
K =1, in which case it is a straight line,



CHAPTER VII
THE PARABOLA

47. Conic sections. — The three curves next considered
belong to a general class called conic sections. This name
arises from the fact that each of these curves can be ob-
tained by passing a plane through a right circular cone.

Many of the properties of these curves were known by
the early Greek geometers among whom the principal in-
vestigators were Archimedes and Appolonius about 200 B.c.
The former computed the area of a parabolic segment and
.of an ellipse. The latter discovered that all three curves
can be cut from the same cone and investigated many
problems peculiar to the hyperbola.

That the knowledge of conic sections could be made of
great practical use in studying the laws of the universe was
not learned until after the passage of many centuries.
About 1600, Kepler in Germany discovered their importance
in the study of the motion of the heavenly bodies, and, about
the same time, Galileo in Italy discovered that the path of
a projectile is a parabolic curve. The field of their useful-
ness has spread until a large group of problems in physics,
mechanics, and architecture are now known to depend upon
a knowledge of these curves for their solution.

Although these conic sections differ very much in appear-
ance, it is found that they can all be generated by the same
law, viz., A conic section is the locus traced by a point which
moves 8o that its distance from a fixed point bears a constant
ratio to its distance from a fixed straight line.

The fixed line is called the directrix, the fixed point the
focus, and the fixed ratio the eccentricity, represented by e.

110 -
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Equation ‘of a conic section.—Take the directrix as the
y-axis and the perpendicu-
lar through the focus on-

the directrix as the z-axis. . D p
Let P (z, y) be any point ’
on the curve. Draw PD

Y

perpendicular to YY’. Call * -0 F -
the distance OF = 2 p.
... FP ,
By definition, §7) Y

By formula (1), FP=V(zx—2p)?+ 3y}, DP=uz.
YE=2p+y_,

Therefore, o
Clearing of fractions and collecting,
1—e*)a®—4px+4p*+y°=0. (20)

From this equation it is seen that the curve is symmet-
rical with respect to the »-axis which is the perpendicular
from the focus on the directrix. For this reason the line
is called the principal axis of the curve.

By letting y = 0, the intercepts on the principal axis can

2p 2p
befoundtobe1+ and =2

When e = 1, the curve is called a parabola. It culs the
principal axis in one finite point, halfway between the focus
and the directriz.

When e < 1, the curve 13 called an ellipse. It cuts the prin-
cipal axis in two points on the same side of the directrix as
the focus.
 When e > 1, the curve is called an hyperbola. It cuts the
principal axis in two points on opposite sides of the directriz.

48. Equation of the parabola. — Since, in the parabola,
* e = 1, the definition of this curve can be stated:
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A parabola vs a locus traced by a point equidistant from a
JSized point called the focus and a fized line called the directriz.

It was seen in Art. 47 that the parabola passes through
a point halfway between the focus and directrix. This
point is called the vertex. It is found that the simplest
form of the equation is obtained when this point is taken
as origin and the z-axis coincides with the principal axis.

First standard equation of the parabola. — The equation
of a parabola whose vertex is at the origin and whose axis ©8

the z-axi8 18 ¥ = 4 px, | 1)

p being the distance from the vertex to the focus.
T Y Proof. — Let DD’ be the
Al—l8 / directrix and F the focus.
Through F draw the z-axis
perpendicular to the direc-
trix, meeting it in C. At O
X halfway between C and F .
erect the y-axis. Let
P (z,y) be any point on
the curve and draw AP
perpendicular to the direc-
Loy trix, meeting the y-axis in
B. Let CF be represented as before by 2p. Then the
codrdinates of F are (p, 0), also CO = OF = p.
By the definition given above,

.
[¢)
o

FP = AP.
From formula (1),
- VG TV

AP = AB + BP =p + x.
‘Therefore, ViEz—-p?+yt=p+a=.

Clearing of radicals and simplifying,
= 4 pz.
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The equation shows, as has been previously discovered,
that the curve is symmetrical with respect to its axis and
passes through the origin, that is, through a point half-
way between the directrix and the focus. It also shows that
when p is positive, the curve extends indefinitely to the
right, while no part lies to the left of the origin. When p is
negative, the curve extends indefinitely to the left, while
no part lies to the right of the origin.

A chord through the focus of any conic section is called
a focal chord.

The latus rectum is that focal chord parallel to the
directrix.

The equation of the latus rectum is £ = p. Solving this
simultaneously with the equation of the parabola y? = 4 pr,
the ordinates of the intersections are y = & 2 p. Whence
the length of the latus rectum is 4 p.

It is helpful in sketching a parabola, to locate the vertex
and focus, then erect the latus rectum equal to 4 times the
distance from the vertex to the focus. The parabola passes
through the extremities of this latus rectum and the vertex.

The second standard equation of a parabola. — The
equation of a parabola whose vertex is at the origin and whose
axis 18 the y-axis ts v

x* = 4py, (22)

p being the distance from the vertex
to the focus.
Proof. —Rotating the axes
through (—90°), equation (21) be-
comes X 0

[z sin (—90°) + y cos (—90°)]? v
= 4 p [z cos (—90°) — ysin (—90°)],

or 22 = 4 py.
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This equation may also be obtained directly from the
figure by taking steps similar to those used in deriving
equation (21). '

The third standard equation of a parabola. — The
equation of the parabola whose vertex i3 at the point (h, k)
and whose axis 18 parallel to the z-axis is

(y — k) = 4p (x — h), (23)

p being the distance from the vertex to the focus.
Proof. — Let the figure be drawn as indicated with the
vertex V having coordinates (h, k) and principal axes VN

v parallel to X’X. The.

equation of the parab-

_ the origin and VN as
v N the z-axis, is y% = 4 pz.

>

0 ~*_  known, and the equa-
, tion with the origin at
v O is required. The

problem then is to translate the axes to a new origin. The .

codrdinates of the new origin 0 with respect to the old axes
through V are (—h, —k). Hence the equation’becomes,
after translation of axes to 0,

-k =4p(@—h).

The fourth standard equation of a parabola. — The
equation of a parabola whose vertex is at (h, k) and whose axis
18 parallel to the y-axis is

(x—h?=4p(y — k), (24)

p being the distance from the vertex to the focus.
The proof is identical with that used in deriving (23).

ola, considering V as

The equation with
the origin at V is.
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ILLUSTRATIVE EXAMPLES

1. Find the equation of the parabola with axis parallel to the
y-axis, vertex at (—1, 2), and passing through the point P, (1, 3).

The equation of a parabola whose vertex is at (—1,2) and whose
" axts is parallel to the y-axis is (3 + 1)* = 4p (y — 2) by equation
(24). Since the point (1, 3) is on Y -
this locus, its codrdinates must
satisfy the equation, whence

(1+12=4p(3—-2), or p=1.

The equation of the parabola then 5B
@+1p=4@-2) g .

or 2#4+2z—4y+9=0 X o

2. An arch is in the form of

a parabola with vertical axis. Its Y
highest point is 18 feet above the base which is 36 feet wide. Find the
length of the beam horizontally across the arch, 10 feet above the base.
Let A’BA represent the given arch. If the origin is taken at the
center of the base, the codrdinates of the vertex are (0, 18), and the
equation of the parabola is
2t = 4p (y — 18), by stand-
ard equation (24). The

8 point A (18, 0) is on this
, parabola and its coordi-
D = D nates must satisfy the equa-

tion, whence (18)? =4p
(0 —18), or p = —§. The
T (o) X equation then becomes 23
= —18 (y — 18).

Let \D’CD represent the
position of a beam 10 feet
above the base. Then the ordinate of D is 10. Substituting 10 for y
in the equation of the parabola,

22 = —18 (10 — 18) = 144.
Whence &= %12 or D'D = 24 feet.
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EXERCISES

1. Find the codrdinates of the focus, the equation of the directrix,
and the length of the latus rectum for each of the following parabolas
and plot the curves:

(a) 2 = 8=. (c) = —4z. () 2* = —6y. °
() 322 =5y. d) z+4yp=0. 0 24 = =5z

2. Find the equations of the parabolas satisfying the following .
conditions:
(a) vertex (0, 0), axis y = 0, a point on curve (—1, 3).
(b) vertex (—2, —2), focus (-3, —2).
(c) focus (0, 0), vertex (0, —3).
(d) directrix y = —2, focus (1, 4).
(e) vertex (0, 1), axis parallel to z-axls, and: the pomt (1, 3) on.
curve.
() focus (1, —2), directrix 3z —y 4+ 6 = 0.
Hint. — Use the definition of a parabola.

8. Find the equation of the line joining the vertex and the upper
extremity of the latus rectum of the parabela 32 = —8z.

4. The equation of a parabola is 3 = 8 z. With center at the
origin, and diameter equal to three times the distance from the vertex
to the focus, a_circle is described. Prove that the common chord of
circle and parabola cuts the z-axis halfway between the vertex and the
focus.

5. Find the equatlon of the circle through the vertex and the
ends of the latus rectum of 2 = 4y. -

6. Find the equations of the parabolas with the axes parallel t.o
the y-axis and satisfying in addition the following conditions:

(a) vertex (2, —5) and a point on curve (6, —1).
(b) three points on curve (0, 3), (4, 3), and (—2, 6).

7. Find the equation of the focal chord of the parabola 32 = 6 z
through the point on the curve whose ordinate is 4.

8. A parabola has its vertex at the origin and axis along the y-axis.
A focal chord has one extremity at (3, —3). Find its equation and

- the codrdinates of the other extremity.

9. A trough whose cross section is a parabola with vertex down-
ward is partly filled with liquid. The width of the trough one foot
above the vertex is 4 feet and the width at the surface of the liquid is
8 feet. Find height of liquid, A4ns. 4 feet.
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10. An arch has the form of a parabola with vertical axis. The
width of the base is 36 feet and the height above the base at a point
12 feet to the right of the center of the base is 10 feet. Find the height
of the arch at its highest point. Ans. 18 feet.

49. Construction of the parabola. — Having given the
directrix and the focus there are two principal methods of con-
structing the parabold mechanically..

First method. — Let DD’ be the
given directrix and F the focus. Place
a right triangle ABC with one leg BC
on the directrix, the other leg lying
on the same side of the directrix as
the focus. Fasten one end of a string
of length CA at A and the other end
at the focus. With a pencil point
against the triangle at P, keep the
string taut and move the triangle
along the directrix. The pencil point
will describe a parabola, since CP = FP, and therefore P is
equidistant from the focus and the directrix.

Second method. — Lo-

D Ky Ko K'<P cate the focus and direc-
2 : trix as in the first case.

PZ B Draw OX through F per-

! pendicular to the directrix,

on it lay off a number
of points,' as Ml, Mg, Ms,
cl_of F MMs Ms _y etc. and erect ordinates
M\K,, M:K,, MK; at
these points. With F as
a center and a radius equal
(g to the distance from the

(%(&, directrix to the foot of
any ordinate as CM;, de-
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scribe an arc cutting the ordinate in two points as P, and
R,. Similarly, locate the points P; and R, P; and R;, etc.
These points all lie on the parabola since they are equidistant
from the focus and the directrix. Connect by a smooth
curve and the figyre is approximately a parabola.

60. General equation of a parabola, axis parallel to one
of the codrdinate axes. — When equation (23) is expanded,
it takes the form

Y —2ky—4pr+k*+4ph=0. n
Similarly, equation (24) hecomes
22— 2hx—4py+h2+4pk=0. 2)

These results show that every equation of a parabola with
axis parallel to a codrdinate axis contains one and only one
term which is the square of a variable and no zy term. It
will be shown that every equation of the form

v+ Ds+By+F =0 B¢
or 22+ Dz+Ey+F =0 4)

represents a parabola.
Completing the squares and collecting, equation (3)

T L

which is in the form of equation (23) if D is not 0.
Similarly, (4) becomes

T

which is in the form of equation (24) if E is not 0.

Comparing the general equations of the parabola (3)
and (4) with the general equation of second degree Az?
+ Bzy + Cy* + Dx + Ey + F = 0 it is seen that:
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The general equation of second degree represents a parabola
with axis parallel to a coordinate axis if B = 0, and if there is
only one second degree term, either x* or y?, provided the first
degree term in the other variable is present.

ILLUSTRATIVE EXAMPLE

Determine the vertex, focus, latus rectum, equation of the direc-
trix, and of the axis for the parabola whose equation is 22 + 6z + 8y
+1=0.

Completing the squares of the z-terms,

(z+3)2=-8(y—1.
This is in the form of the fourth standard equation of the parabola,
(x—h2=4p@y—FK).
Whence the vertex is at (—3, 1), p the distance from the vertex to
the focus is —2, and the length of the latus rectum is 8.

The facts just deter-
mined are sufficient to
roughly sketch the figure. '

Since the vertex bisects )
the distance from the focus

[

\
to the directrix, that line S )
. V) SR N
can now be drawn and its N < v
o v " <
equation is seen to be 3

y = 3. The equation of
the axis VF can likewise
be read from the figure, ;
andis z = -3,

EXERCISES

Determine the codrdinates of the vertex and focus, length of latus
rectum, and equation of the directrix and of the axis for the following
parabolas. Also sketch the figures.

‘1. 44z —-6y—8=0. 4. 422 +82 48y =3.

2 yp—6y+8zxz=15. b p—-by=z-1.
8. 322 +6z+5y="17. 6. 32 —6y =4z



CHAPTER VIII
THE ELLIPSE

61. The ellipse has been defined as that conic section
which is traced by a point which moves so that the ratio of
its distance from a fixed point, called the focus, to its distance
. from a fixed line, called the directrix, is constant and less
than 1.

It was shown in Art. 47 that the ellipse cuts the principal
axis in two points, both on the same side of the directrix |
as the focus. The simplest form of the. equation of an
ellipse is obtained by taking the principal axis as the
z-axis and the point halfway between the two intersec-
tions as origin. This point is called the center of the
ellipse. ' .

The first standard equation of the ellipse. — The equa-
tion of an ellipse whose magjor axtis is on the z-axis and whose
v center is at the origin is

Z+5-1, @
in which a and b are the
semi-major and semi-

\ oy x. manor azes respectively.
- 4 ~ P ’ Proof. Let the direc-
= trix of the ellipse be DD’
_ and take the z-axis on
the principal axis which is perpendicular to DD’ through
the focus F, meeting it at Z. Let A and A’ represent the
two points at which the curve cuts the principal axis.

These two points are called the vertices of the ellipse.
120 :
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At O midway between 4 and yg erect the y-axis. Call
the distance AO = OA’ = a. Take P (7, y) any point on
the ellipse and drop PB perpendicular to the directrix, cut-

ting the y-axis at E.

From the definition of an ellipse, - .

FP
FP =ée. : (1)

In order to compute the values of FP and BP, it is first
necessary to find the distances from the directrix to the

center and from the focus to the center. In finding these -

lengths; use is made of the fact that A and A’ are on .the
ellipse. Applying the definition,

AF

7A =6 0))
and A’

727 =ée. _ (3)

Clearing (2) and (3) of fractions and adding,
AF + FA' = e (ZA + ZA').
-Substituting from the figure,

AA’ =¢e[(ZO = a) + (ZO + a)).
Whence 2a = ¢(2Z0) and ZO = a/e.

The distance from the directrix of an ellipse to the center

is a/ e. ’
Similarly, by subtracting (2) from (3),

FA’ — AF = ¢ (ZA' — ZA4).
Whence (FO+a) — (a — FO) = e (AA") and FO = qe.

The distance from the focus of an ellipse to the center

(26)

is ae. , , @n
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The cobrdinates of F' are (—ae, 0), whence

= V(z + ae)® + ¢, by formula .
BP = BE + EP = a/e+ 2.

Substituting in equation (1),

a/e+ z

Clearing of fractions and collecting,

#?(1l-e)+y=a(1-¢) @

22 Y _
or Ezj-'- m =1, (5)

If =0, y = 4a V1 — ¢ hence the ellipse cuts the
y-axis in two points equidistant from the center. This dis-
tance will be represented by b. The equation of the ellipse
then is

yz
a’ + B 1, (6)
where =a*(1 - €. @

This relation also shows that ae = Va® — b®. (28)
The portion of the principal axis cut off by the ellipse

is called the major axis. It is represented by 2a. The

portion of the perpendicular to the principal axis through
the center, cut off by the ellipse, is called the minor axis.
It is represented by 2 b.

From the form of the equation, it is readily seen that the
ellipse is symmetrical with respect to both axes.

When the equation of the ellipse is solved for y,

y=£|:% a? — 77,
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D M

between the lines z Y
= —a and z = +a.
entirely between the
lines y = —b and
of the center and siniilarly situated with respect to the center.
In the figure locate a second focus F’, making OF’ = FO
o v has F’ for focus and MM’
© for directrix has the same

from which it is seen that y is imaginary for values of z

Similarly, by solv-

ing for z in terms of
y it can be shown ‘% A\o
y = +b. v/

When points are plotted and the curve drawn, it is found -

to be as here shown.

62. Second focus and directrix. — It will now be proved
= ae. Also draw a second
directrix MM’ parallel to

[—~RF K DD’ meeting the principal
c F o F:\N axis at N and making ON
equation and therefore is the same ellipse as the one hav-
ing F as focus and DD’ as directrix.
Let P (x,y) represent any point on the ellipse whose
focus is F’ and whose directrix is MM’. Draw PK perpen-

numerically greater than a, and hence the curve lies entirely
that the curve lies

that an ellipse has a second focus and directrix on the right

\/ = CO = a/e. It will now be

shown that the ellipse which

dicular to the directrix meeting it in K and meeting the

’
y-axis in L. Then by the definition of an ellipse, ?—}; =g,

but F'P = V{z — ae)* + , from formula (1),
and PK =LK — LP =a/e — z,



124 ' THE ELLIPSE

VE—ar T _
afe —z
Clearing and collecting,

FA-)+yr=ar(l-e),

which is the same as equation (4) of the previous ari;iéle, in

which F is the focus'and DD’ the directrix.

. B3. The latus rectum of the ellipse is the chord through
either focus parallel to the directriz. Its length is 2 b*/a.
Proof. — The equation of this chord is z = Zae.

. A 2
Solving simultaneously with the ellipse z—:+g—, =1, 9=
+bV1 — e = +b*/a,since b = a® (1 — €?). Therefore the
latus rectum, which is twice the ordinate at the focus, is

equal to 2 b*/a.

64. The second standard equation of an ellipse. — The
equation of an ellipse whose major ax¥s 8 on the y-axis and
whose cenler is at the origin is

L+g-1, @)

where a and b are the semi-major and semi-minor azes, re-
spectively.
Proof. — Rotating the axes through 90° equation (25)
becomes
(xz cos 90° — y sin 90°)’ (x sin 90° 4 y cos 90°)?
a? b?
y!

or : __1

=1’

The third standard equation of an ellipse. — The equa-
tion of an ellipse whose major axis is parallel to the x-axis
and whose center 13 at the point (h, k) is

—h)® (v —Ek)®
L (30)
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where a and b are the semi-major and semi-mz'nqr azres re-
spectively.

Proof. — The proof is identical to that given in deriving
the third standard equation of the parabola.

The fourth standard equation of an ellipse. — The equa-
tion of an ellipse whose major axis s parallel to the y-axis
and whose center 18 al the point (h, k) <8 :

— 2 — h ]
LR B, @
where a and b are the semz-major “and semi-minor azes re-
spectively. )

Proof as above.

ILLUSTRATIVE EXAMPLES
1. An ellipse with semi-minor axis equal to 5 and passing through
the point (6, 4) has its center at the origin and its major axis on the
z-axis. Find the equation of the ellipse, the codrdinates of the foci
and the equations of the directrices.
Substituting the value of b'= 5 in standard equation (25),

2 ¢

This is the equation of a family of ellipses all having 5 as semi-
minor axis.

This ellipse must pass through the point (6, 4) whence the codrdi-
nates of this point satisfy equation (1).

36 , 16

Therefore, ats=1 _ (2
Solving, a* = 100.
Substituting back in equation (1),
g
00t~

. Since b = a* (1 — &%), therefore 25 = 100 (1 — ¢*) and hence ¢ = -‘;—5-

The distance from the center to the focus is ae = 5 V'3 and from
the center to the directrix is a/e = 20/V/3.
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The codrdinates of the foci are, therefore, (45 V3,0) and the
equations of the directrices z = +-20/V/3.

2. Find the equation of the ellipse one of whose foci is at (0, 2),'

the equation of whose corresponding directrix is ¥ = 5 and whose
eccentricity equals 4.
The data given shows that the ellipse is in the fourth standard form

kP, @—hr_

Y a2 b2
D E >}

Locate the focus F at (0, 2) and draw
the directrix DD’ 5 units above the ori-
gin meeting the y-axis at E. Then CE
= a/e, CF = ae, whence by subtraction,

F 8 4 =FE=3.
c e
X o X Substituting e = 3, a is found to be 2.
\_/ L P=a(l-e)=4(1-1 =3
Yy’ OC = OF — CF. Since OF =2 and CF

= ge = 1, therefore OC = 1.
The codrdinates of the center then are (0, 1) and the equation is
y—12 =

4 t3=t

EXERCISES

1. Determine the vertices, foci, equations of directrices, and length
of latus rectum for each of the following ellipses. Plot each curve.

(@) 928 + 254 = 225. d) 428+ 948 = 36.
() 32 + 44 = 48. (¢) 428 + 34 = 108.
(€) 164 + 2528 = 400. 0 3%+é’%=1.

2. Find the equations of the following ellipses which have their
centers at (0, 0), major axis along the z-axis. Construct the figures.
(a) Semi-major axis =6,¢ = }.
(b) Distance between the foci = 6, ¢ = §.
(¢) Minor axis = 12, a focus at (8, 0).
(d) Equation of a directrixis z = 6, ¢ = .
(e) A focus at (3, 0), the equation of the corresponding directrix,
z=%.
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(f) Major axis = 16, and (4, 3) is a point on the curve.
(9) Minor axis = 4, and (3, 1) is a point on the curve.
(k) The two points (4, 2) and (V'6, 3) are on the curve.
(3) Latus rectum = 3, e = 3.

() Latus rectum = 9, one vertex (8, 0).

8. Find the equations of the following ellipses, the coérdmates of
foci and vertices and length of latus rectum. Draw each curve.

(a) Center (—1, —2), major axis =6 and parallel to y-axis,
minor axis = 4.

(b) Center (—4, —2), major axis = 10 and parallel to z-axis,
minor axis = 8.

(c) Center (0, 5), one vertex (0, 0), e = $.

4. Find the equations of the following ellipees:

(a) Center (—1, —2), major axis = 12, latus rectum equal to
one half of minor axis, principal axis parallel to z-axis.

(®) Major axis = 10, foci at (—1, 3) and (—1, —5).

(¢) Minor axis = 6, foci (—3, 4) a.nd (5, 4).

(d) Center at (2, 1), major axis = 8 and parallel to z—am, and
the center twice as far from the vertex as from the focus.

5. By translation of axes reduce each of the following equations
to standard forms (25) or (29). Draw both sets of axes and the curve.

(@) 2 —2z+2)P—-4y+1=0.
() s*—6z+42—8y—3=0.

6. Prove that in the ellipse 3 + ¥ = 1, the line joining the posi-

tive ends of the axes is parallel to the line joining the center to the
upper end of the left hand latus rectum.

7. Find the equation of the circle whose diameter is the majar-
axis of the ellipse 9 z* + 25 32 = 225 and whose center is at the center
of the ellipse. Find the codrdinates of the points where the right
hand latus rectum produced, cuts theé circle.

8. Find the equations of the lines through the left hand focus of -

: .
;—5+{% =1 and the extremities of the right hand latus rectum.

Find the distances of these lines from the origin.

9. Find the equation of the locus of a point which moves so that
the sum of the distances from the two points (0, 4) and (0, —4) is
equal to 10. Prove that the locus is an ellipse.
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.66. Construction of an ellipse. — A proposition which

readily leads to the construction of the ellipse is as follows:
The sum of the focal distances of any point on an ellipse is
constant and equal to the major axis. ,
. Proof.— Draw the

0 M ellipse with foci F
P > K and F’ and direc-
B / : trices DD’ and MM’.
, From P (z, y), any
F/'o il - - point on the ellipse,
~+ draw PK perpen-
dicular to the direc-
trices meeting them
o’ v  in B and K respec-

' tively.

From the definition of an ellipse,
F'P=e(BP)=e(g+z)=a+ex. 1)
Similarly,

FP=c(PK)=e(g—:c)=a—ex. @)

Adding (1) and (2),
FP + F'P = 2 a = major axis.

This fact leads to a second and important definition of an
ellipse: - ‘

An ellipse 13 the locus of a point which moves so that the sum
of its distances from two fixed points is constant.

From this definition, an ellipse can be constructed as
follows, if the foci and the length of the major axis are
given:

In a drawing board, fasten a tack at each focus F and F’.
Tie about the tacks a string equal in length to the distance
FF' + 2a and with a pencil point hold the string taut
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while describing the curve. The locus will be an ellipse
since the sum of the focal distances is always 2 a.

By use of this property, it can be shown that the foci are
at a distance a from the extremities of the minor axis.
Hence, to locate the foci, take an extremity of the minor
axis B as center and with a

B
radius equal to the semi-
major axis describe an arc | N
cutting the major axis in * F' 0 F "
two points F and F’'. These :
points are its foci.
66. General equation of an ellipse, axes parallel to
codrdinate axes. — When equatlons (30) and (31) are
expanded, they become
b — 2 b*ha + a%? — 2 a’ky + b*h? + a’k? — a?b? = 0
and
by? — 2b%y + a%? — 2 a*hz + a?h? + b — a%? = 0.
Either of these equations is of the form A2* + Cy* + Dz
+ Ey + F = 0, in which A and C are positive and different.
It will be shown that every equation of the above type

represents an ellipse:
Completing squares and collecting,

A(@+D/2A)*+C(y+ E/2C)* =

CD*+ AE* — 4 ACF
4AC

After dividing by the second member, this becomes
(z+D/24)* _ 4 (y+E/20) -1,
CD*+ AE* —4ACF ' CD* + AE* — 4 ACF
4 A%C 4 AC?

which is of standard form-(30) or (31).
. Whether the major axis is parallel to the z-axis or the
y-axis will depend upon whether the first or second denomi-




130 THE ELLIPSE

nator is the larger. If A and C are equal, the axes of the
ellipse are equal and the figure is a circle. If the denomi-
nators are negative, the axes are imaginary and the ellipse
impossible; if zero, it is a point-ellipse.

It is seen from the foregoing that:

The general equation of second degree, Ax* + Bxy + Ciy?
+ Dz + Ey + F = 0, represents an ellipse with axes parallel
to the coirdinate axes, if B = 0, and if A and C have Uike signs
but different numerical values.

ILLUSTRATIVE EXAMPLE
Determine for the ellipse 92?2 + 253 + 18z — 50 y = 191, cen-
ter, foci, vertices, semi-axes, latus rectum, and equations of directrices.
Completing the squares,
9 (z + 1) + 25 (y — 1) = 225.

Dividing by 225,
E+ip G-,
25 9 '

On comparing with standard equation (30), it is seen that the center
is at (—1, 1), the semi-major axis is 5 and the semi-minor axis 3.
The principal axis is parallel to the
z-axis. Sketching in a figure and us-
ing all the data obtained, it is seen
that the vertices are at (4, 1) and
(=6, 1).
Since b = a2 (1 — ) and b = 3 and
a = 5, therefore e = 4. The distance
from the center to the focus is ae = 4.
The coérdinates of the foci then are (3, 1) and (-5, 1).
The latus rectum = 2b?/a = 4. The distance from the center
to the directrix is a/e = 2%. Hence the equations of the directrices
are z = 4% and x = —22,

EXERCISES
1. Determine for the following ellipses, center, foci, vertices, semi-
axes, latus rectum, and equations of directrices.
(@) 422 + 16z + 342 — 6y = 29.
() 712+ 14y + 1622 — 64z = 41.



GENERAL EQUAFION OF AN ELLIPSE 131

(c) 4* — 82 +8y* — 64y + 68 =0.¢
@ 2*+4y*+6x—8y =87,

(e) 322+ 6z + 412 + 24y = 69,

() 92+ 54z + 82 — 16y = 199,

2. Find the equation of an ellipse whose foci are at (3,0) and
(=3, 0) and the sum of whose focal radii is 10.

8. Prove that the point (4, 1) is on the ellipse 25+ ¥ = 1. Find

the focal distances of the point and prove that their sum is equal to
the major axis.



CHAPTER IX
THE HYPERBOLA

67. The hyperbola is that conic section traced by a point
which moves so that the ratio of its distance from a fixed
point called the focus to its distance from a fixed line called
the directrix is constant and greater than 1.

It was shown in Art. 47 that the hyperbola cuts the prin-
cipal axis in two points on opposite sides of the directrix.
The simplest form of the equation of an hyperbola is
obtained by taking the principal axis as the z-axis and a
point halfway between the two intersections as origin.
This point is called the center of the hyperbola.

The first standard equation of an hyperbola. — The equa-
tion of an hyperbola whose transverse axts t8 on the z-axis
and whose cenlter is at the origin is .

2 .
Z-%=1, 39)
¥ o tn which a and b are the
e E— semi-transverse and semi-
conjugate axes respectively.
: Proof. — Let the direc-
N zZ| A x trix of the hyperbola be
< 0 DD’ and take the z-axis
. on the principal axis which
, b is perpendicular to DD’
P through the focus F, meet-
ing it at Z. Let A and A’ represent the two points at which

the hyperbola cuts the principal axis.
: 132
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These two points are called the vertices of the hyperbola.

At O, midway between A and A’, erect the y-axis. Call
the distance A’0 = OA = a.

Take P (z, y), any point on the hyperbola, and drop PB

perpendicular to the directrix, cutting the y-axis at E

From the definition of an hyperbola,

FP
FP =e. ) (1)

The values of FP and BP are found in a manner almost
identical to that used in the case of the ellipse, use being
made of the fact that the points A and A’ are on the hyper-
bola, and hence

AF :
7A=¢ , S ¢)
A'F
and A—,Z =e. (3)
Whence A'F+ AF =¢(A'Z+ ZA)

or (a 4+ OF) + (OF — a) = 2ae and OF = ae.

The distance from the center of an hyperbola to the
focus is ae. ‘ (33)
Similarly, A'F — AF = ¢ (A'Z — ZA)
or 2a=¢[(a+ 0Z) — (a — 0Z)] and OZ = a/e.
The distance from the center of an hyperbola to the
directrix is a/e. (34)
The codrdinates of F, then, are (ae, 0),
whence FP = V/(z — ae)? + 42, by formula (1).
BP = EP — EB = z — a/e.
Substituting in equation (1),

VE—wl T ¥

z— afe =&
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Clearing of fractions and collecting,
22— 1) —yt=a?(e - 1).
If =0, y = +a V1 — ¢, which since ¢ > 1, is imagi-
nary, and the curve does not cross the y-axis.
It is found convenient to make the substitution
=qa®(e? — 1).

2
The equation of the hyperbola, then becomes :c

b2

The portion of the principal axis which is cut oﬂ‘ by the
hyperbola is called the transverse axis. It is represented
by 2 a.

The segment on the perpendicular to the principal axis
through the center such that its length is 2b = 2a Vet — 1
is called the conjugate axis.

Since b* = a® (¢ — 1), it is readily seen that

ae = Va® + b (35)

From the form of the equation, it is evident that the
hyperbola is symmetrical with respect to both axes.

' When the equation of the hyperbola is solved for y,
Y= :tf—;v 2? — a, from which it is seen that y is imaginary

for all values of z numerically less than a, and hence no part
of the curve lies between the lines x = —a and z = a.
For all values of = numerically greater than a, y is real,

- , showing that the curve extends

\‘ ' V indefinitely both right and left.

% 5 Similarly, by solving for z in

X X

/] % terms of y, a:=:|:§\/b2+ 2,

\s from which it is seen that for

every value of y, = is real and hence the curve extends in-
definitely above and below the z-axis.

When points are plotted and the curve drawn it is found
to be as shown.
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It can be proved, as in the case of the ellipse, that the
hyperbola has a second focus at (—ae, 0) and a second
directrix whose equation is z = —a/e.

68. The latus rectum of the hyperbola is the chord through
either focus parallel to the directriz. Its length is 2 b*/a.

Proof. — The equation of this chord is z = +ae.

Solvmg simultaneously with the equation of the hyperbola
D Y y=xbVEa—1 e
FoE-bLy== = =+b*/a, since b* = a?(e* — 1).

Therefore the latus rectum, which is twice the ordinate at
the focus, is equal to 2 b%/a.

59. The second standard equation of an hyperbola.
The equation of the hyperbola whose transverse axis i3 on the
y-axis and whose center vs at the origin 18

G-h-1, (38)

where a and b are the semi-transverse and semv-conjugate
azxes, respectwely

The proof is left to the student. It is identical to that
used in the case of the ellipse.

The third standard equation of an hyperbola. — The
equation of an hyperbola whose transverse axis 18 parallel to
the z-axis and whose center 13 at the point (h, k) is

— 2 — 2
Copr_ Gt

@7

where a and b are the semi-transverse and semi-conjugale axes,
respectively. The proof is left to the student.

The fourth standard equation of an hyperbola. — The
equation of an hyperbola whose transverse axis is parallel to
the y-axts and whose center 18 at the point (h, k) i

— k 2 — h 2
e ! (38)
where a and b are the semi-transverse and semi-conjugate axes,
respectively. The proof is left to the student.
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ILLUSTRATIVE EXAMPLE
An hyperbola in which the distance between the foci is 10 passes
through the origin, has one focus at (1, 0), and its transverse axis on the
z-axis. Find its equation. )
Locate in a figure the center C, the focus F, and the vertex 0. It is
seen from the data given that the equation is in the form of the third
standard equation,
(—=h2 (-2
e
Here CF =5 and OF
=1, therefore CO = 4 = a,
and the coGrdinates of C
¢ A are (—4, 0).
Since, CF = Va 4 b,
then b = 3.
. The equation then be-
comes
@+ ¥ _
16 9

EXERCISES
1. Determine lengths of axes and latus rectum, codrdinates of ver-
tices and foci and equations of directrices for each of the following hyper-
bolas.  Plot each curve.

(a) 928 — 2532 = —225, (d) 252 — 1632 + 400 = 0.
(b) 322 — 442 = 48, (e) 422 — 342 = 108.

- z_¥_
(c) 912 — 422+ 36 = 0. N p-g=1

2. Find the equations of the following hyperbolas having their cen-
ters at (0, 0) and their transverse axes along the z-axis. Construct the
curves.

(a) Transverse axis = 4 and conjugate axis equal to one-half the
distance between the foci.

(b) Transverse axis = 6 and (5, 3) is a point on the curve.

(c) Latus rectum = 10 and e = §.

(d) Transverse axis = 12 and a focus is at (8, 0).

(e) Distance between the foci = 8 ande = 4. -

(f) Latus rectum = 2 anda = 2b.

(9) e = 2 and distance from focus to nearest vertex = 1.



EXERCISES 137

8. Find the equations of the following hyperbolas which have their
centers at (0, 0) and their transverse axes along the y-axis. Construct
the figures.

(@) Latus rectum = 3 and one vertex at (0, 2).
(b) Conjugate axis = 8 and (4, 6) is & point on the curve.
~ (¢) e = 2 and the equation of a directrix is y = 3.
(d) One focus at (0, 6) and the equation of the correspondmg
directrix is y = 4t.
(e) The two points (3, 4) and (6, 7) are on the curve.

" 4. Find the equation of each of the following hyperbolas, determine
the cobrdinates of foci and vertices and length of latus rectum:
(a) Center (—1, 3), transverse axis = 8 and parallel to y-axis,
conjugate axis = 10.
‘(b) Center (—2, —3), transverse axis parallel to z-axis and = 8,
conjugate axis = 12.
(c) Vertices are (—1, —1) and (—1,7) ande = 2.

5. Find the equations of the following hyperbolas:

(a) Center at (2, 1), transverse axis = 6 and parallel to the z-axis
and the center twice as far from the focus as from the vertex.

(b) e = 2, one focus at (—1, —2) and the corresponding directrix
y =4

(c) 2a = 6 and foci at (—2, —4) and (-2, 6).

(d) Center (—1, —3), transverse axis = 8 and parallel to the y-
axis and the latus rectum equal to one-half of conjugate axis.

(e) Transverse axis = 4, one -directrix is z = 6 and the corre-
sponding focus (3, —1).

(f) Vertices at (2, 5) and (2, —1) and latus rectum = transverse
axis.

6. Prove that the elhpse-z—z; +%. = 1 and the hyperbola%‘- - !,’;- =

have the same center and foci. Construct each curve.
7. By translation of axes reduce each of the following equations to
standard forms. Draw both sets of axes and the curves.
(@) 92 — 362 — 492 — 24y = 36.
O r+6z—-—p+2y+12=0.
8. Find the equation of the locus of the point which moves so that

the difference of its distances from the two points (6, 0) and (—6, 0) is
equal to 8. Prove that the locus is an hyperbola.
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9. Prove that the foci of the hyperbolas 32/9 — /16 = 1 and 2?/16
— 32/9 = 1 are equidistant from the center.

10. By rotation of axes, remove the zy-term from the equation zy =
18. Show that the curve is an hyperbola and construct both sets of
axes and the curve.

11. Prove that the latus rectum of an hyperbola is a third propor-
tional to the transverse and conjugate axes.

12. Find the polar equation of the hyperbola 2?/a? — 32/b* = 1.

18. Prove that the point (4, 1) is on the hyperbola 22/8 — 2/1 =1
and that the difference of its focal distances is equal to the transverse
axis.

60. Construction of an hyperbola. — A proposition which
readily leads to the construction of the hyperbola is as
follows:

The difference of the focal distances of any point on an
hyperbola is constant and equal to the transverse axis.

Proof. — Draw the hyper-
bola with foci at F and F’ and
directrices DD’ and MM'.
From P (z, y), any point on the
hyperbola, draw PK perpen-
dicular to the directrices and
meeting them in B and K re-

spectively.
From the definition of an hyperbola,
FP = ¢ (KP) =e(z — a/e) = ex — a. (¢))
Similarly,
F'P = ¢ (BP) = ¢(z + a/e) = ex + a. )

Subtracting (1) from (2),
F'P — FP = 2 a = transverse axis.
This fact leads to a second and important definition of an
hyperbola:

An hyperbola is the locus of a point which moves so that the
difference of its distances from two fixed points is constant.
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From this definition, an hyperbola can be constructed as
follows, if the foci and length of the transverse axes are glven

In a drawing board fasten a tack at
each focus F and F’. Let a pencil be tied
to a string at P. Let one end of the
string pass beneath F and then both ends
over F’ das shown. Adjust the string so
that F'P exceeds FP by 2a. By holding
the strings together below F’ and pulling
them in or letting them out, the point P
will, if held firmly against the string, trace
an hyperbola, for at each position F'P —
FP = 2a.

By reversing the process, the other branch may be drawn.

61. General equation of an hyperbola, axes parallel to
coordinate axes. — When equations (37) and (38) are ex-
panded, they become

b%2? — 2 b%hx + B*h? — a%y? + 2 a’ky — a?k? — a?b? =
by — 2 b%ky + b — a%c® + 2 a*he — a*h? — a?b? = 0.
Either of -these equations is of the form
A4+ Cyp2+Dx+Ey+F =0,

in which A and C have opposite signs.

It will now be shown that every equation of the above
type represents an hyperbola.

Completing the squares and collecting,

CD*+ AE — 4 ACF.

A+ D/2A»+C@y+ E/2C) =

4AC
After dividing by the second member, this becomes
(x+D/2A) (y+ E/2C)?

CD' T AR —4ACF T CD + AE —44CF ~ 1

4A4%C 4AC?
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which is of standard form (37) or (38), since A and C have
unlike signs and hence the denominators have unlike signs.

Whether the transverse axis is parallel to the z-axis or to
the y-axis will depend upon whether the first or second
denominator is positive.

It is seen from the foregoing that:

The general equation of second degree, Ax® + Bxy + Cy?
4+ Dx+ Ey+ F =0, representsanhyperbolasz—Oand
- if A and C have unlike signs.*

EXERCISES

1. Determme for each of the following hyperbolas, the center, semi-
axes, foci, vertices, and latus rectum. Construct each curve.
(@) 922 — 182 — 432+ 16y — 43 =0.
(b) 42 — 24z — 1632 — 64y +.36 = 0,
(¢) 2 —6z—92—18y+9=0.
d) 3p+6y—22+4+22+11=0.
(¢) 822 — 8x — 282 — 28y = 61.
(f) 2592 —422 — 50y —39 =0.

2. Find the equation of an hyperbola with e = .\/ 2, thelinez —y = 4
as one directrix and the corresponding focus at (—1, —1).

8. By rotation of axes, reduce the equation zy + 50 = 0 to one of
the standard forms of the equation of an hyperbola. Draw both sets of
axes and the curve.

4. Find the equation of an hyperbola whose foci are (0, 8) and
(0, —8) and the difference of whose focal radii is 10.

6. Find the equation of the hyperbola whose center is at (1, 1),
whose transverse axis is parallel to the z-axis and which passes through
(6, 5) and (=7, =7).

62. Asymptotes to the hyperbola. — The two lines rep-
resented by the equation

2 g2
@ B
2
have a very important relation to the hyperbola = — Y1

b2

* The general equation of second degree will under these same con-
ditions sometimes take the form of the difference of two squares, in
which case it will represent a pair of straight lines. This will be the
case when CD® + AE* — 4 ACF in the equation above is zero.
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It will now be shown that as a point on the hyperbola
recedes indefinitely, the curve approaches coincidence with
these lines and therefore these are the asymptotes to the
curve.

Let L, and L, be the two
lines represented by the equa-
tion z%/a? — y?/b* = 0, and take
Py (x, 1), any point on these
lines, such that a perpendicular
from it on the axis of x meets
the hyperbola z?/a? — 42/b? = 1
in the point Py (21, ys).

x

Then. th==% g 2,

= :hg V2 — a
Subtracting,
— Y= :b (x; vzt — a?).

Rationalizing the numerator,

Y=y =:hl_>[x1’—~(x1’—a’.)]= +-ab ’
o ¢ pn+Vat—-a@ un+Vad-ad
which approaches zero as z, recedes to infinity.

This shows that as the curve recedes to infinity, it ap-
‘proaches indefinitely close to the lines

2 _y
e B0

which are therefore the asymptotes to the hyperbola.

= _¥_g,

a b



142 THE HYPERBOLA-

If the distances A’O = OA = a and B'O = OB = b are
laid off on the z-axis and y-axis respectively, and parallels
. to the axes through A, B, A’, and B’ are drawn, the diago-
nals of the rectangle thus formed will be the asymptotes.

It is often found convement in constructing an hyper-

v .. bola to first con-
g ’ struct this rec-
tangle and the
A > A , asymptotes and
Eh " then draw in the
B hyperbola touch-
, ing the rectangle
¥ at A and A’ and
approaching the asymptotes as it recedes to infinity.

63. Conjugate hyperbolas. — If in two hyperbolas the
transverse axis in each is the conjugate axis in the other,
the hyperbolas are said to be conjugate.

Thus, in the figure, if A’A (= 2 a) is the transverse axis
and B'B (= 2b) the conjugate axis, then the equation of
the hyperbola is

z2_v_,
at b

If another hyper-
bola is constructed in
which B'B is the
transverse axis and
A’A the conjugate axis, the equation is

2
¢_2_

b a
In either case the equation can be written
(Distance from conjugate axis)?
(Semi-transverse axis)?
_ (Distance from transverse axis)? _
(Semi-conjugate axis)? -
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If the eccentricity of the first hyperbola is represented
by e, and of the conjugate hyperbola by es, then

e = .L-i—bz and e = M,
a b
hence, ae, = bes = Va?+ b2

This shows that the foci of the two hyperbolas are equi-
distant from the center and thus the foci of an hyperbola
and its conjugate lie on a circle about the center with a
diameter equal to the diagonal of the rectangle constructed
as in the last article.

The asymptotes to the conjugate hyperbola y2/b* — 2*/a?
= 1 are found to be y = =+ (b/a) z, from which it is seen
that the hyperbola and its conjugate have the same asymp—
totes.

64. Equilateral or rectangular hyperbola. — If b = a in
the equation

£’_y_’_1
a b
it becomes 22— =al

The equation of the conjugate hyperbola is 32 — 2? = at.
These are evidently equal hyperbolas.

The asymptotes of these hyperbolas are y = +z, two
lines ‘making angles of 45° and 135° with the z-axis and
therefore at right angles with each other.

‘Since the semi-axes a and b are equal, these hyperbolas
are sometimes called equilateral; since the asymptotes
are at right angles to each other, they are sometimes
called rectangular hyperbolas.

EXERCISES
1. Given the hyperbola 92 — y* = 36, find the equations of the
asymptotes and of the conjugate hyperbola. Construct the hyperbolas
and the asymptotes.
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2. Find the equations of the asymptotes to the hyperbola 9 z* ~
16 32 = 144 and the tangent of the angle between them.

8. Write the equation of an hyperbola conjugate to the hyperbola
423 — 932 = 36 and find the lengths of its axes and latus rectum, the
codrdinates of its foci and the equations of its directrices.

4. Prove that the distance from an asymptote to a focus is egual to
the semi-conjugate axis.

8. Find the equation of an hyperbola whose foci are at the
points (5, 0) and (—5, 0), the inclination of one of whose asymptotes
is 30°.

6. Find the equation of an hyperbola whose transverse axis is along
the :o-mns, which passes through the point (5, 8) and whose asymptotes
are given by the equation 32 = 4 22,

7. Write the equation of an hyperbola conjugate to the hyperbola
»*—-2x—4yp—-8y=1.

8. Show by the method of Art. 62, that the equation of the asymp-
totes to the hyperbola 4 2? — i# = 4is 42 = 32,

- 9. Find the equation of the rectangular hyperbola 2t — 3# = a? re-
ferred to its asymptotes.

10. Find the equation of the asymptotes to the hyperbola 22 —32=9.
Prove that any line para.llel to an asymptote meets the curve in only
one finite point.

11. If ¢ and e; are the eccentricities of two conjugate hyperbolas, .

prove that + —;,- =

12. In an hyperbols, if the value of e is very little more than unity,
how does the value of b compare with that of a? Discuss the slope of
asymptotes and form of curve. As e increases, what is the effect on the:
slope of the asymptotes and the form of the curve?

13. Prove that the distance of any point on the rectangular hyper-
bola 2* — y* = a? from the center is a mean proportional to its distances
from the foci. ‘

14. Prove that the product of the distances of any point on an hy-
perbola from its asymptotes is constant.

16. Find the codrdinates of the foci of the hyperbola 2t — 32 = 9.
By rotating the axes, find the codrdinates of the foci and the equation of
the hyperbola when its asymptotes are taken as axes.

16. Find the equation of an hyperbola whose transverse axis is glong

the z-axis, which passes through the point (5 2) and has the same asymp-
* totes as 4 2* — 932 = 36.
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17. Prove that an asymptote and the perpendicular from the focus
upon it meet upon the corresponding directrix. .

18. Prove that the directrices of an hyperbola and the circle whose
diameter is the line joining the foci intersect on the conjugate hyperbola.

19. Prove that the portion of the asymptotes intercepted between
the directrices is equal to 2 a.

20. Through the point P, on the hyperbola /et — p/B =1, a
straight line is drawn parallel to the transverse axis cutting the asymp-
totes. Prove that the product of the distances of P, from these points
of intersection is equal to a2. .

21. If the crack of a rifle and the thud of the ball on the target.are
heard at the same instant, prove that the locus of the hearer is an hyper-
bola.



CHAPTER X
TANGENTS AND NORMALS

66. A line which cuts a curve is called a secant. The
line P,P; in the figure is such a line.

If one of the points of intersection, as P,, is made to
move along the curve and approach the other point P,
the line P, P, will approach a limiting position P,R. This
line is called the tangent to the curve. The point P, is
called the point of contact of the tangent line. The follow-
ing definition may then
be stated: A tangent to
a curve at a given point 18
the limiting position of the
secant line connecting the
given point with a second
point on the curve, as this
second point moves along
the curve and approaches -
coincidence with the given
point.

The line which is perpendicular to the tangent at the point
of contact is called the normal to the curve. The line PK is
the normal to the curve at P;.

The equations of the tangent and normal to any curve
at a given point on the curve. — A point on the tangent line
is given. If the slope of the tangent can be determined, its
equation can be readily found by substitution in the stand-
ard equation,

Y

xl

Y=y =mc—z).
146
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‘The method of finding this slope will now be illustrated.
Let it be required to find the slope of the tangent to the
curve y? = 2® at the point P, (z,, 1) on the curve.

Let P; (z1 + h, y1 + k) represent a second point on the

curve. Then by the formula

m =YY
T2 — T
the slope of PP, is found to
k
be B

If the point P; is now made to
approach Py, the values of h and
k each approach 0, and the slope
takes the indeterminate form of
g. This difficulty arises from

having failed to make use of the

YI

fact that the points P, and P, lie on the curve and thus
their coordinates must satisfy the equation of the curve.
Substituting these in the equation y* = 3,

yt = xd, 6))
W+ k)* = (21 + B)> )]
Expanding and subtracting (1) from (2),

2 yik + k* = 3 z.%h + 3 z.h? + RS, 3)
or kQuy+ k) =h@Bz?+ 3zh + h2). (CY)
Whence the slope of the secant,

k_3z+3mh+ R ®

h 2y +k
If now h and k are made to approach 0, the slope of the

tangent =

3$12+3x1h+h2) _ 31,2

. o [k . .
LA
bl-lﬁlfo (h) A-lalfo ( 2tk

B 2%
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Consequently, the equation of the tangent is
2 -
y—y1=%(x—xx),
or 3z;’x'—2y1y=3x13—2y1’,
or " 8xmPz — 2y = 8 (since Y = x,%). ‘

Answers will, in general, be simplified by collecting all
the variable terms in the first member of the equation and
the constants in the second, and then reducing the second
member to simpler form by making use of the fact that
Py (x, y1) is a point on the curve.

The steps taken may be summarized as follows: To find
“the slope of the tangent to a given curve at a given point Py (x, 1),
choose @ second point P: (z, + h, y1 + k) on the curve.~ Sub-
stitute the coordinates of Py and P, in the given equation and
subtract. Find the value of k/h, the slope of the secant. The
limiting value of this slope as h and k approach zero s the
slope of the tangent. :

Where the point of contact P, is given by numerical
coordinates, the substitution of the coérdinates of the
second point P, gives sufficient_data ffom which to deter-.

mine the value of k/h.
This is illustrated in the
following example. Find
the equation of the tan-
gent to the circle 22 + 2 2
+ 92 —4y =20 at the
point (2, 6). .
Let P; (2, 6) and P, (2
+ h, 6 + k) be two points
on the given circle. '
i The substitution of
Py (2 + h, 6 + k) in the given equation gives
44+4h+h+44+2h+364+12k+ k2 — 24 — 4k = 20;
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from\_which 4
K48k = —(h’+6h) or k(k+8)——h(h+6)

- Lc __h+6 .
Whence the slope of the secant % P+ 8 Lettmg h

and k approach 0, the slope of the tangent is found to be
—%. Therefore the equation of the tangent is

y—6=—-4@-2).
or " 4y +3z=30.

Since the normal to a curveis a line perpendicular to the
tangent at the point of contact, therefore the slope of the.
normal is the negative reciprocal of the slope of the tangent
at that point. The equation of the normal may then be
determined by substitution in the equation

y—wh=m(x—z).

Thus, the slope of the normal to the circle given in the
preceding example at the point P, (2, 6) is +4% and the
equation of the normal is y — 6 =$§(zx —2) or 4z -3y
+ 10 = 0. " '

EXERCISES
1. Fmd the equation of the tangent to each of the followmg curves
at the point (1, 31): .

(@) 2y =4. Ans. iy +yz = 8
®) # =4pz. Ans. m=2p(z+zx)
(c)z’+y’ =1 Ans. 2z + ypy =12 .
1/’ ot hy
(d) .l. An'a. o + B 1
(e) y’+ay+ba:+c =0, Ans. (2y,+a)y+bz+am+bx;+2c’=0.
2. Find the equations of the tangent and normal to each of the fol-

lowing curves at the indicated point. Draw the curve, tangent, and
normal in each case.

(a) y =2*at (1, \1) .
o =2
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(¢) »* =22%at (2, 4).

@) yzr =1at (—1,1).

(e) 9zt + 2532 = 225 at the positive extremity of the right hand
latus rectum. -

(f) y = 2* — 4z + 8 at the point whose abscissa is 2.

(@ y = 2 (x — 2) at the point (3, 9).

(k) y* = z* at the point whose abscissa is 8.

66. The equation of the tangent to the curve represented
by the general equation of second degree.— The most gen-
eral equation of second degree is

Az + Bry +Cyp+ Dz + Ey+F = 0. (1)

In order to find the tangent at the point P; (z;, ) on -
this curve, the same steps are followed as in the preceding
article. Let a second point on the curve be P; (z, + h,
% + k). Substitute the codrdinates of P, and P; in equa-
tion (1).

Then Axz?+ Bxyy + Cy2+ Dxy+ Ey,+ F = 0, 2)
and A(n+h?+B@+h) (h+k)+C @+ k)2

+D@+h+Ewm+k)+F=0 (3

Expanding and subtracting (2) from (3),

2 Azh + Ah? + Byh + Bxik + Bhk
+2Cyk+Ck*+Dh+Ek=0, (4)

which, on collecting, becomes
k(Bz,+2Cy1+Ck+E) = —h(2 Ax,+ Ah+By,+Bk+D). (5)

k_ _ 2As+Ah+By+Bk+D,
Then F=—-"—"p T20n+Ch+E (6)

Letting A and k approach 0

2Ax; + Byl + D

‘the slope of the tangent = — Br+2Cy + B )
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The equation of the tangent is therefore
y-u=-r bt Re_a. @
Clearing this of fractions and placing the variable terms
in the first member and the constant terms in the second,
2 Axzix + Bywx + Bry + 2Cyyy + Ey + Dz
= 2Ax? +2 Bx;y; +2 Cyl’ + Dz, + Eyl. (9)
From equation (2), the first three terms of the second
member equal —2 Dz, — 2 Ey, — 2F.
Substituting this value in (9) and transposing,
2 Aziz + Bywx + Bry + 2 Cyy
+D(x+x1)+E(y+y1)+2F=0. (10)

-

Dividing by 2,
Axix+ 5 (x;y+ y1%)+Cyiy + 5 2 (x+n)
+3 (y+y1) +F=0, (39)

which is the equation of the desired tangent at P, (z1, y:)
on the curve Aaz?+ Bxy + Cy*~ Dz + Ey+ F =0. This
result is very important and should be remembered. '
A convenient statement is as follows: The tangent to the
curve represented by any equation of second degree is found by

replacing o by 7z, y* by y, 2y by 2L tue zby + % and
y+yx

y by —5—

ILLUSTRATIVE EXAMPLE
Find the equation of the tangent to 22+6 zy+32—2 z+4 y+6=0 at

(zl: ”l)
Applying the above rule, the tangent is

zlt+6('aL-;yﬁ)+ ny -2(#)4‘4(%&)4'6 "0:
or
@+3p—z+@u+n+2y=u—2n—06
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A very convenient check on the correctness of the equation of the
tangent at the point Py (21, 1) is to drop the subscripts in the equation
of the tangent and to notice that the result should be identical with the
equatlon of the given curve.

67 Lengths of tangents and normals, subtangents and
subnormals. — The tangent and normal lines are indefinite
in extent, but it is customary to speak of that portion of
the tangent between its intersection with the z-axis and the
point of contact as the tangent length and that portion of
the normal between the point of contact and its intersec-
Y tion with the z-axis as

the normal length. In
P, the figure, TP, is the tan-
gent length and P, N is
the normal length.
1 N The projection of the
/ Mo N X tangent length on the
z-axis is called the sub-
tangent and the projec-
Y . tion of the normal length
on the z-axis is called the subnormal. In the figure, TM is
the subta.ngent and MN the subnormal.

There is little occasion to use the sign of the tangent and
normal lengths and they are usually treated as positive,
but in the case of the subtangent and subnormal the signs
are important. The subtangent is always measured from
the point where the tangent crosses the z-axis to the foot
of the ordinate of the point of contact, and the subnormal
from the foot of this ordinate to the intersection of the
normal with the z-axis. These lengths are easily computed,
for, from the figure, :

subtangent = TM = OM — OT,
subnormal = MN = ON — OM.

~

X 0
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The abscissa OM of the point of contact is given, and
OT and ON can be found since they are the intercepts of
the tangent and normal respectively on the z-axis.

The tangent length is the hypotenuse of the right triangle
of which the legs are the subtangent and the ordinate of
the point of contact. The normal length is the hypotenuse
of the right triangle of which the legs are the subnormal
and the ordinate of the point of contact.

ILLUSTRATIVE EXAMPLE

Find the equations of the tangent and normaltoa® + 2z + 3y = 17
at the point (2, 3), and determine the lengths of the subtangent, sub-
normal, tangent, and normal. Sketch
the figure.

Rearranging terms and collecting,
the equation 22 + 2z + 3y = 17 be-
comes (z + 1)* = —3(y — 6), which
shows that the figure is as here sketched.

From the rule in paragraph 66, the
equation of the tangent to z* + 2z +
3y =17 at P, (2, 3) is found to be
y+2z =7. Thenormal, which is per-
pendicular to the tangent at P; (2, 3),
has for its equation 2y —z = 4.

OT, the intercept of the tangent on the z-axis = .

ON, the intercept of the normal on the z-axis = —4.

OM, the abscissa of P, = 2,

The subtangent = TM =OM —OT =2 — { = —§.

The subnormal = MN. = ON — OM = —4 -2 = —6.

The tangent length = TP, =\ TM" + MP,' = VI + 9 = } V5.
The normal length = PN =\ MP,' + MN' = V9 + 36 = 3 V5.

EXERCISES

1. Determine the equations of the tangent and normal, and lengths
of subtangent and subnormal to the following curves at the point given.
Draw the figure in each case.
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(@) y=22*at (1,2).

) 2* + 2 = 25 at (3, 4).

(c) 2* — 4z =4yat (4,0).

(d) zy = 4 at point whose abscissa is 1.
(e) 222 — 2 =14 at (3, —2).

(6)) %'+ il; = 1 at positive end of the upper latus rectum.
(@ yr—6y—8x=231at (—3,7).

2. Find the equations of the tangents to 2 = 4z — 4 at the ex-
tremities of the latus rectum. Prove that they are perpendicular and
meet on the directrix.

8. Find the equations of the tangent and normal to 2* 4+ 4z + 3 +
6y =12 at (1,1) and prove that the normal passes through the
center.

4. Write the equations of the tangent and normal to each of the fol-
lowing conics at the point given. Draw each figure.’

(a) 422 — 16z + 932 — 18y = 11 at (2, 3).
) 2*~4z—-2y—1=0at (1, —-2). ’
(c) 83z + 10zy + 332 = 3at (=32, 1).
d) a*—2zy+1p=4z+ 4yat 4,0).

6. Prove that the tangents at the extremities of a latus rectum of
the curve 7 2* + 16 42 = 112 meet on the corresponding directrix.

8. Prove that the tangents at the extremities of the latus rectum
intersect on the directrix in the case of: (a) any parabola; (b) any
ellipse; (c) any hyperbola.

7. How far from the vertex are the tangents at the extremities of the
latus rectum of z* + 4y + 4 = 0? '

8. Find the angle formed by the tangents at the extremities of a
latus rectum of the hyperbola 9 22 — 16 32 = 144.

9. Prove that the normal at one extremity of the latus rectum of a
parabola is parallel to the tangent at the other extremity.

10. Given the ellipse %’ + 2—% = 1. Find the equations of the tan-

gents whose intercepts on the axes are numerically equal.

11. Prove that the tangents at the extremities of the latus rectum
of a parabola are twice as far from the focus as from the vertex.

12. Prove that the tangent at any point of the parabola i = 4 pz,
the perpendicular from the focus upon it, and the tangent at the vertex
meet in a point.
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18. Prove that the subtangent of the ellipse 2’: + ¥ 1 at (z1, 1)

b
is f':x—jaz and that the subnormal is (e — 1)z;.

14. What is the point of contact of that tangent to the parabola
§? = 4z, whose intercepts on the axes are numerically equal and (a) of
same sign; (b) of opposite sign.

16. Prove that the perpendicular from the focus of an ellipse upon
any tangent and the line joining the center to point of contact meet on
the corresponding directrix.

68. The equation of the tdngent when the slope is
given. — The process used in finding the equation of tan-
gents to curves of second degree, when the slope is given,
will be illustrated by the following example.

Let it be required to find for the circle 22 — 6 z + 3*
— 6y + 10 = 0, the equations of the tangents of slope — 1.

Let y = —x 4+ b represent any one of the system of
parallel lines of slope —1.

It is evident from the following figure that some of these
lines such as AB cut the
curve in two distinct
points, and that if this
line is moved parallel to’
itself, the two distinct in-
tersections will approach
each other and eventually
coincide as at P, and P,.

In this position, the line

y = — z + bis a tangent

to the curve. The prob-

lem then is to so determine b that the line y = —z+ b
shall meet the curve in two coincident points.

If the equation of the line '

y=—z+bd
and the equation of the circle
2*—62z4+yy*—6y+10=0
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are solved simultaneously, in order to determine the co-
ordinates of the intersection, the result, after eliminating y, is

B?—6z+(—2+b!—-6(—z+b)+10=0,
or when expanded,
222 —2bz+ 02— 6b+10=0,

from which the abscissas of the intersections of any line of
the system y = —z + b with the given circle may be
determined.

It was shown in the theory of equations, that an equation
in the form

Az*+Bx+C =0

has equal roots if B2 — 4 AC = 0.

Applying this principle here, the equation

222 —-2bs+b02—60+4+10=0

has equal roots if
4*—-8(B*—6b+10) =0,
or if b*—12b+20 = 0.

This last equation is true if b = 2 or 10, whence a line of
the system y = —z + b meets the given circle in two coin-
cident points if b = 2 or 10.

Therefore, y=—z+2
and y=—2z+10

are the equations of the desired tangents.

EXERCISES
1. For each of the following curves, find the equations and points of
contact of the tangents whose slopes are as given:
(a) z* + 32 = 25, slope = —#%.
) =4z + 4, slope = 1.
(c) zy = 4, slope = —4.
(d) 2* -4z -y —4y =3, slope =2,
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2. For each of the following curves, find the equation of the tangent
with slope m:

(@) ¥* = 4pz. Am.y=mz+£'
(b) +£=1 Ans. y = mz + Vaim? 4 b,
(c);-—%=l- Ans. y = mx £ Vam? — b3,

8. Find the equation of the tangent to 4 2% + 25 32 = 100 parallel
to3z 4+ 10y = 60.

4. Find the equation of the tangent to z‘ = 4y + 4 perpendicular
to2y+z-7

. Find the equations of the.tangents to the elhpse y’

which are parallel to the line joining the positive extremities of the axes.
6. Prove that the line 52z — 2y — 11 = 0 is tangent to 52* —20 =
-2y +4y+15=0
7. Find the equations of the tangentsto92* + 42 + 62+ 4y =0
parallel to 3z + 2y = 7, and the equations of the normals at the points
of contact. .



CHAPTER XI -
POLES, POLARS, DIAMETERS, AND CONFOCAL

CONICS
69. Harmonic division. —If a line AB is divided in-
A P B P,

ternally by the point P and externally by the point P, in
such a way that
ar - _4an &)
PB~ PP

the line is said to be divided harmonically.

Theorem. — If two points P and P, divide a line AB har-
monically, then conversely, the points A and B divide the line
PP, harmonically.

Proof. — If the proportion (1) above is taken by alter-
nation, it becomes

AP __PB _PB
AP1 PlB BPI

. PB PA
From the proportion BP,~ ~ APy it is seen that the

line PP, is divided harmonically by the points A and B.
1568

I VSRR
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EXERCISES
1. Find the codrdinates of the point P which together with P, (2, 3)
divides harmonically the line joining A (-1, 4) to B (8, 1). Ans.
(-10, 7).
2. Show that the points A and B in example 1 divide harmonically
the line joining P; and P.

70. Pole and polar. — If through a fixed point P,, out-
side, inside, or on a conic, a secant is drawn to the conic
meeting it in the points A and B, and if P is so chosen on
the secant that the points P and P, divide the line AB
harmonically, then the locus which contains all positions
of P as the secant revolves about P, is called the polar of P,
with regard to the conic, and the point P, is called the pole
of that locus.

Equation of the polar for the elhpse-;; + ﬁ =1,—Given

the ellipse 53+F =1, and the fixed point P, (:vl, Y1),

Through P, draw any secant meeting the ellipse in the
points A and B, and so locate P (z, y) upon it that the line
AB is divided harmonically Y

by the points P and P, Py
It is required to find the Pﬁ<
equation of the locus which = X

contains P in all of its °.
positions.

By the theorem in Art.
69, since AB is divided harmonically by P and P,, then PP,
is divided harmonically by A and B, and hence

PB_ _ P4
- BP, AP,
Let the segments PB and BP, be in the ratio r; : rs (n
and r; will vary as the secant is revolved).
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The codrdinates of A and B can now be found by formulas
(3), Art. 8. They are respectively

(rm — 7% T — rzy) (rm +rz o+ rzy)
) and , .
T — T3 TN— 73 r+r r+nr

The points A and B are on the ellipse and their coordi-
nates satisfy the equation

b’z? + a*y? = a® ¢))
Therefore, rz\t rgh — 1y
¥ (_‘-"'11——7‘:) +a ( non ) =% @
and . .
ot (2 e @

Expanding equations (2) and (3) and clearing of fractions,

b2 (ridm? — 2 rirsmiz + r2x®) + a® (ri2y? — 2 rrayny + )
=a(rnt—2rn+nd) @

b? (ri2x?® + 2 rinaix + ra¥?) + a? (1 4 2 rrayy + rey?)
=ab? (réd+2rm+rd). (5)
In addition to the variables z and y, equations (4) and (5)
contain r, and r; which also vary as the secant is revolved.
It is desired to find an equation, containing no variables
other than z and y, which will be true for any position of P
as the secant revolves. Therefore such equation must be

independent of r, and rs.
Subtracting (4) from (5),
b (4 riremiz) + a2 (4 rirgyy) = a?h? (4 ryry). (6)
Dividing by 4 riry, -
b2z + a*yy = atb?, )
or ,
25 y l.‘Y =
a4 ®)

which is the desired equatlon of the polar. Sl.noe it is of
ﬁrst degree, the polar is a straight line.
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It will be noticed that equation (8) is of the same form as
the equation of the tangent to the ellipse found in example
1(d) of Art. 65. In the polar, however, P may be inside,
outside, or on the conic.

If P, is outside the ellipse, P must be inside the ellipse in
order that the secant may be divided harmonically, there-
fore only that portion of line (8) which lies inside the conic
fulfils this condition. If P, is inside the ellipse, P; and any
point P on line (8) will divide AB harmonically, therefore
the whole line fulfils the condition. If P, is on the ellipse,
the polar line is the tangent, the point of contact is the pole,
and no point other than the point of contact itself fulfils the
condition.

By the same method, the equation of the polar of the

hyperbola(?—%= 1 is found to be

¥X1_Yn_ 4
a % 1’ ©)
and the equation of the polar of the parabola y* = 4 pz is
yy1=2p(x+m). (10)

The proof of the properties which follow is based upon
the equation of the polar of the ellipse, but can be shown to
hold for the hyperbola and parabola by using equations
(9) and (10).

Important properties of poles and polars. —

1. If the polar of the point P, passes through the point P,,
then the polar of the point Py passes through the point P,.

Proof. — The equations of the two polars for the ellipse are

L1 - xo
and

T, Yy

v = 1. 2
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Since by hypothesis P, lies on the polar of P,, the coérdi-
nates of P, satisfy (1), and, therefore,

2711: _’_‘.lhy: 1 3)

If, however, the coérdinates of P, are substituted in
equation (2), the equation is identical to equation (3).
Therefore the codrdinates of P, satisfy equation (2) which
shows that P, lies on the polar of P,.

2. If the pole P, is outside the conic, the polar ts the chord
Jjoining the points of contact of the two tangents drawn from
P, to the conzc. ’

It is evident from the figure that as the secant revolves
about P, there will be two positions, P,C and P,D, in which

it will be tangent to the

c K P conic. As the secant ro-

P 2 tates toward the position

A P,C, the points A and B

5 x approach each other and
)&j‘l\ come into coincidence at
C. But P lies between

A and B, therefore P

comc1des with C and hence the point of contact C is on the
polar. Similarly, the point D is on the polar, and the polar
passes through the two points of contact of the tangents
drawn from P;.
EXERCISES
1. By the method of this article, find the equation of the polar of
P (21, 1)
(a) with respect to the hyperbola 28/a®* — 12/b* = 1.
(b) with respect to the parabola y? = 4 pz.
2. Find the polar of the point
(a) (—1, —3) with respect to the conic 2* 4 43* = 16.
(b) (2, 4) with respect to the conic 32 = z.
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8. Prove that the directrix is the polar of the focus
(a) for the parabola y* = 4 pz.
(b) for the ellipse z2/a? 4 32/b* = 1,
(c) for the hyperbola a8/a? — 33/b* = 1.
4. Find the pole of 3z 4 4y = 4 with respect to the ellipse 6 2* 4
8y = 16. .

'Hint. — Let Py (21, y:) represent the pole of 3z + 4y = 4. The
polar of (71, %) is 6 2z1.+ 8 yyn = 16, but 3z + 4y = 4is also the polar
of (z;, 1n). Since these equations represent the same line, they will be
. identical if their second members are made equal.

6. Find the pole of 5 z + 6 y = 3 with respect to the conic 15 22 —
3y =09

8. Prove that the line joining any point P; (z,, %) to the center of the
circle 2 4 32 = 18 is perpendicular to the polar of the point with respect
to the circle.

7. Prove that the radius of a circle is & mean proportional betwegn
the distance from the center to the point P; (21, ) and the distance from
the center to the polar of P;.

8. Prove that the polar of (—1, 2) with respect to the parabola
1 = 4 z passes through (2, 1). Verify the first property of this article
by showing that the polar of (2, 1) passes through (—1, 2).

9. Find the polars of the vertices of the iyperbola 22/a® — 38/b® = 1
with respect to its conjugate hyperbola.

10. Find the equations of the tangents to the circle a® 4 32 = 25
through the external point (10, —5).

Hint. — Find the equation of the polar of the given point, then find
the points of contact by use of the second property of this article.

71. Diameters. — The locus of the middle points of
any system of parallel chords of a conic is called a diam-
eter of the conic.

The method of finding the equation of a diameter is
illustrated by the following examples:

1. Find the equation of the diameter of the ellipse 2%/a?
+ 92/b? = 1 which bisects all chords of slope m.

Let y = mz + &, in which m is fixed, represent a system
of parallel chords. The constant k will have different values
for different chords.
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Let P; and P; be the points in which any one of these
chords cuts the ellipse and let P (z, y) be the center of this
; chord.

P ' To find the abscissas of
P P, and P,, y must be elimi-
nated between the equations

)7” #/@+ /B =1 (1)
and

y = mz + k. 2

The resulting equation is
(a*m? + b?) 22 + 2 a*kmz + a?k® — a?b® = 0. 3)
Similarly, the ordinates of P; and P; may be found from
the equation ,
(@m? + ) o — 2%y + b%* — a?b'm?® = 0. @)
It was found in the study of theory of equations that the

sum of the roots of the quadratic equation Az®* + Bz + C
= 0 is —B/A, therefore, fromn equation (3),

—2a*km

Tt 2= o+ (%)
and from equation (4),
2 b’k
ntwn=goTy ()
But by formula (4), Art. 8,
x= ?l;-—x’ and Yy = WQ.
Therefore,
—a*km
T == Ezm_’:l-—b-" (7)

bk ,
L ®
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In addition to the variables z and y, equations (7) and (8)
contain k which also varies as P moves along the diameter.
It is desired to find an equation, containing no variables
other than 2 and g, which will be true for any position of P.
Therefore, such equation must be independent of k.

Dividing equation (8) by equation (7), the equation of the
diameter of the ellipse bisecting chords of slope m i3

; b )
y=- mx. (9)

2. Let the student show that the quim of the diam-
eter of the hyperbola which bisects chords of slope m is
bﬂ
y = . - (10)

From the form of equations (9) and (10), it is evident
that every diameter of an ellipse or hyperbola passes through
the center. .

3. Find the equation of the diameter of the parabola
1? = 4 pz which bisects chords of slope m.

Using a process identical with that used in example 1, the
intersections P; and P; can be determined from the equa-
tions

miz?t — (4p — 2mk) z + k?* = 0 N

and my* —4py+4pk=0. 2)

Whence T+ x5 = gp_—m?_mk &)

and htp=22 @

Therefore, T= 2—’%-": | ®
2 ' .

y ==L ©)
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Following the plan of example 1, the next step would
be to find from equations (5) and (6), an equation independ-
ent of k. (6) is such an equation and therefore the equation
of the diameter of the parabola which bisects chords of slope
m 18 .

y=%f° ™

Its form shows that the diameter is parallel to the axis of
the parabola.

Properties of diameters of central conics —

1. Any line through the center of an ellipse or hyperbola is
a diameter bisecting some set of parallel chords.

Proof. — Let y = muz represent any line through the
center of the ellipse z?/a® + y2/b* = 1. The equation of
the diameter of this ellipse which bisects chords of slope m

is b
y= - a@m x.
These lines are identical if
™= =

For a given ellipse, a and b are fixed, while 'm may have
any value. Therefore, it is always possible to so choose m

that m,; shall equal — a;—b:n. Hence y = myx always bisects

some set of parallel chords.
A similar proof holds for the hyperbola.
2. If one diameter bisects all chords parallel to a second
diameter, then the second bisects all chords parallel to the first.
PfOOf. — Let y=mz (1)

be a diameter of the ellipse 22/a? + 32/b* = 1 which bisects
all chords parallel to the diameter y = mx
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The diameter which bisects chords of slope m has for its
equation

b2
v=—Ggn | 2
Therefore m=— L 3)
’ 1 a*m’

The equation of the diameter which bisects all chords of
slope m, is
b2
V= o 4)

from which it is seen that the slope of this diameter is
—bz/ a’ml.
Substituting the value of m; from equation (3), this slope

becomes
-5(-%)-=
a? )

and, therefore, y = mz is the equation of the diameter bisect-
ing chords of slope m;.

A similar proof holds for the hyperbola.

72. Conjugate diameters. — If each of two dlameters
bisects all chords parallel to the other, the diameters are
said to be conjugate.

\V
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From equation (3) above it is seen that for the ellipse
the relation which holds between the slopes of two conju-

gate diameters is
bﬁ .
mm;= — —3* 1)

In the case of conjugate diameters of the hyperbola, the
relation between the slopes is
bﬂ
mm, = g 2)

The equation of the hyperbola conjugate to :—:— yb_: =1
is %: - :g: = 1. If the diameter bisecting chords of slope m
a
for the second hyper-
‘bola is found by the
process of Art. 71, it is
seen to be y = bz as
a*m
X" x in equation (10) of that
article. _
It is thus seen that
the same line is a di-
ameter of each hyper-
bola, and bisects a sys-
Y tem of chords in each.

EXERCISES

1. Find the equation of the diameter of the ellipse 4 2* + 9 32 = 36,
bisecting chords of slope 2.

2. Prove that the lines 2y + 3z =0 and 2y + z = 0 are conju-
gate diameters of the hyperbola 3 22 — 432 = 12.

8. Find the equation of the diameter of the parabola 3* = 8 z bi-
secting chords parallel to the polar of (3, 4) with respect to the parabola.

4. Prove by means of equations (1) and (2), Art. 72, that a pair of
conjugate diameters of the ellipse lie in different quadrants, and that a
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pair of conjugate diameters of the hyperbola lie in the same quadrant
and on opposite sides of the asymptotes.

6. Lines are drawn joining the extremities of the major and minor
axes of an ellipse. Prove that the diameters parallel to these are con-
jugate.

6. Find the equation of the diameter of the parabola y* = 4z
through the point (1, 2). Also find the equation of the chords which it
bisects. .

7. Given an extremity of a diameter of the ellipse 2* 4 2 3® = 24is
(4, 2). Find the extremities of the conjugate diameter.

8. Find the equation of the chord of the hyperbola 22 — 22 = 4
through (3, 1) which is bisected by the diameter 2y = «.

9. Find the equation of that chord of the ellipse 2 4 43* = 16
which is bisected at (1, 1).

10. Prove that the tangent at the extremity of a diameter of an
ellipse is parallel to the conjugate diameter.

Hint. — Let Py (21, 1) be the extremity of a diameter. Find the
equation of the tangent and of the conjugate diameter.

11. Prove that the polar of any point P, (z:, 1) on a diameter of
an ellipse is parallel to the conjugate diameter.

12. Write the equation of the diameter of the parabola 3 = 4 pz
which bisects chords of slope m. Prove that the tangent at the ex-
tremity of this diameter is parallel to the chords.

13. In the rectangular hyperbola 2? — 3® = a?, a diameter passes
through the point P; (z;, 3) on the hyperbola. If P, is the point in
which the conjugate dm.meter cuts the conjugate hyperbola, prove
OP; = OP;.

73. Confocal conics. — Consider the equation

Z ¥ W

m+x+w+x‘

in which \ is an arbitrary constant and a > b

1st. If \ is positive, or negative and > —b? equation (1)
represents an ellipse.

From equation (28), Art. 51, the distance from the center
to the focus is

V@+N - O +N=Va—
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Therefore the ellipses have the same foci for every value of A.
Y If X\ is positive, the
ellipses lie without
x| oy P
pr + = 1, and if it
is negative, they lie
X within.
2nd. If A\ is nega-

tive and is such that
—-b2> A > —a? equa-

v tion (1) represents an
* hyperbola.
Let A = —A,, then equation (1) may be written
2
z? Y 1,

a’_xl —kl_b’=
and the distance from the center to the focus is
V(@ —N) + (= b)) = Vi — b

It is therefore seen that the equation

z? ¥
FtEa-!

represents a set of ellipses and hyperbolas all having the
same foci.

The curves of the system represented by this equation are
called confocal conics.

'

EXERCISES
1. Show that through the point (2, 1), two conics of the system

F 1A - . . .
Y + Y 1 may be drawn. Find their equations and plot the

curves. Ans. §+%-landa:’—y'=3.

2. Find the equations of the tangents at (2, 1) on the conics found in
exercise 1. Prove that these tangents are perpendicular.




CHAPTER XII
THE GENERAL EQUATION OF SECOND DEGREE

T4. The general equation of second degree
A® +Bxy + CyY* +Dx+ Ey+F =0 (03]

represents a conic section whose axes are inclined at an angle
0 with the axes of coordinates, 0 being the positive acule value
determined from the equation
_B .
A-C
Proof. — It will first be shown that it is always possible
to so rotate the axes as to cause the zy-term to vanish.
Making the substitutions from Art. 39, x = &’ cos 6 —
y' sinf, y = z'sin 6 + y’ cos 0, equation (1) becomes
A (z' cos 0 — y'sin 6)® + B (2’ cos § — y' sin 6)
(2’ sin 6 + y' cos 8) + C (z' sin 6 + y’ cos 6)?
+ D (2’ cos § — y'sin ) + E (2" sin 6 + 3’ cos 6)
+F = 0’ (2)
which when expanded and collected is
22 (A cos? 0 + B sin 0 cos 8 + C sin?6)
+ 'y’ (—2 A sin6cosf — Bsin®6 + B cos?d
+ 2 C sin 6 cos 6) + y'* (A sin? @ — B sin 0 cos §
+ C cos?0) + =’ (D cos 6 + E sin 6)
+ 9y (Ecos@ — Dsinf) + F =0. - 3)
The z'y’ term will vanish if its coefficient is 0, that is, if

—2Asinfcosd — Bsin?6 + Bcos?d + 2Csinfcosd = 0, (4)
171

tan20 =
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or if B (cos?0 — sin?6) = (A — C) 2sin @ cos 6, 5)

or Beos26 = (A — C)sin 20, - (6)
B

or tan20=m- ‘ (7)

Since the tangent of an angle may have any value from
—w to 4o, it is therefore always possible to rotate the
axes through such an angle that the zy-term shall vanish.

Moreover, since any number may be the tangent of an -
angle in the first or second quadrant, there is always a value
of 26 < 180° and a corresponding value .of § < 90° which
satisfy equation (7). The positive acute value of 6 will
always be chosen.

The zy-term having been removed, the general equation
becomes

A2+ Cy+D'z+E'y+ F' =0. -8

An equation of this form represents

(a) a circle if A’ = C’ (this case never arises when
B 5 0 in the general equation).

(b) a parabola if A’ and E’ are present with C’ absent
or if ¢’ and D’ are present with A’ absent.

(c) an ellipse if A’ and C’ are positive and unequal,

(d) an hyperbola if A’ and C’ have unlike signs (except
where the equation can be resolved into first
degree factors).

(¢) a pair of straight lines. When A’ and C’ have
unlike signs, the equation can frequently be
factored and thus represents a pair of straight
lines. When A’ and D’ each equal 0, or C’ and
E’ each equal 0, the equation always represents
a palr of parallel lines, distinct, coincident, or

imaginary.
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ILLUSTRATIVE EXAMPLE
By first removing the zy-term, determine the nature and position of
the curve whose equationis 16 2* — 242y +93* — 85z — 30y + 175
= 0 and plot the locus.
Rotate the axes through an angle 6, by substituting z = 2’ cos § —
¥’ sin6 and y = 2’ sin 6 + ¥’ cos 6, in the equation
162t — 242y + 03 — 852 — 30y + 175 = 0. 1)
This gives
16 (2’ cos @ — 3’ sin 0)* — 24 (2’ cos 6 — y' sin 0) (2’ sin 6+ ¥’ cos6)
+ 9 (2'8in @ + y’ cos8)® — 85 (2’ cosd — ¥’ 8in 6)
— 30 (2’ sin® + ¥’ cos8) + 175 = 0. (2)
Collecting,
2’ (16 cos* 0 — 24 8in 0 cos 6 + 9sin?6)
+ 2y’ (—24 cos? 0 + 24 sin? 6 — 14 8in 6 cos 6)
+ "2 (16 8in? 0 + 24 8in 6 cos 8 + 9 cos?6) — z’ (85 cos 0 + 30 &in 6)
+ ¥’ (85s8in6 — 30 cos ) + 175 = 0. 3)
The z'y’-term will vanish if
—24 cos?0 4 24 sin? 0 — 148in 0 cos 9 = 0,
or if 24co820 = —T7gin20,
or tan 20 = —3p,

If tan20 = —3A, then sin260 = 44 and cos20 = —%.

. l—cos20_\/1+,7;=5.
Whence smo-\/ 2 = 2 5

l+cos20_\/l—,75_§'
cosf =y —5——=Y =" =3

Substituting in equation (3) and
clearing of fractions,

42y =32 -1, @
or @+1r=3@E-2). ()

This is seen to be a parabola which
when referred to the new axes has its
vertex at (2, —1), principal axis par-
allel to the z-axis, and distance from
vertex to focus §. Constructing both
sets of axes and the curve, the figure
is as shown.
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76. Test for distinguishing the type of conic when the
equation contains the xy-term.— Comparihg equations (3)
and (8), Art. 74, it is seen that

A’ = A cos?0 + Bsin 6 cosd + Csin? 9, 9)
B’ = Bcos20 — (A — C)sin 26, (10)
C’ = Asin?0 — Bsinfcosd + C cos? 6. (11)
Adding (9) and (11) and applying frigonometry,
A+C=4+C. 12)
Subtracting (9) and (11) and a;.pplying trigonometry,
A'—C' =(A—C)cos20+ Bsin24. (13)
Squaring (10) and (13) and adding,
(A'-C)+B?=(4A—-0C):+ B (14)

Squaring (12) and subtracting from (14),
B®—44'C' =B*—-44C. (15)

If 6 is so chosen that tan 260 = then B’ = 0 and

—4A'C'=B*—4AC.

It was shown in the previous article that if the given
conic is a parabola either A’ or C’ = 0. Therefore B?
—4AC=0. :

If the given conic is an ellipse, A’ and C’ have the same
sign, therefore B2 — 4 AC < 0.

If the given conic is an hyperbola, A’ and C’ have oppo-
site signs, therefore B — 4 AC > 0.

A + C and B? — 4 AC can be shown to remain unchanged
when the equation is translated to a new origin. Since
these combinations of coefficients are unchanged by both
rotation and translation, they are called invariants.

_B
i-c
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EXERCISES

1. Simplify the following equations by removing the zy-term. Plot
both pairs of axes and the curve.

(@) 928 — 242y + 16 — 80z — 60y + 100 = 0,
®) #+4zy+4Pp+r+2y—2=0.
() 7y — 482y — 722+ 30z — 40y =0.

2. By rotation and translation, reduce the following equations to
their simplest form. Plot the three sets of axes and the curve. Check
the result by finding the nature of the conic by the method of this
article.

(@) 52 — 62y + 52 —2V2(z.+y) —6=0.
) 72* —48xy —7y* + 702 4 10y + 100 = 0.
() 2224+ 32xy—212+3z+y+1=0.

d) 422 — 42y + 2 +8xz— 4y =5.

(€) 1628 — 242y + 932 — 45z — 60y — 400 = 0.

76. Conic through five points. — Since the general equa-
tion of second degree, Az*+ Bxy + Cy*+ Dz + Ey + F
= 0, has six constants any one of which can be divided out,
it is seen that only five of these are independent. There-
fore five conditions are sufficient to determine the equation
of a conic. In particular, this fact makes it possible to
write the equation of a conic through five given points.
ILLUSTRATIVE EXAMPLE .

Write the equation of the conic through the 5 points (0, 0), (0, 1),
1,2, 1, -2), (,0).

The general equation Az* + Bzxy + Cy2 + Dz + Ey + F = 0, after
dividing by A, takes the form

2+ byt +dr+ey+f=0.

Substituting the codrdinates of the given points, five equations result

as follows: fm0

.ct+e+f=0,
142b+4c+d+2e+f=0,
1—-2b+4c+d—-2e+f=0,

25+5d+f=0.
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Solving these equations simultaneously, b =1, ¢ =1, d = -5,
= —1,and f = 0. Therefore the equation of the conic is

2t+ay+yp—5z—y=0.

If the equation of the conic through five given points is such that a?
is not present, it would not be permlsslble to divide the general equation
by A in the first step of the solution, and if such step is taken, the equa~
tions determined lead to contradiction. This difficulty can be avoided
by dividing by some other eonstant. This is illustrated in Ex. 2 which
follows. ‘

EXERCISES .
1. Find the equations of the conics through the following points:
(G) (0) 0)) (01 1)) (l’ 0)’ (l: 1)) (—11 2)-
® O 1, (21,10, (20,1, -
() (—4,0), (0, —2), (1, 0), (=5, —2), (1, 5).

2. Find the equation of the conic through (0, —2), (0, 3), (=2, 0),
1,3), (1, =3).

Hint. — Divide the general equation by C.

8. Find the equation of the conic through the point (3, 2) and
through the points of intersection of z* + y' = 25 and zy = 12. Plot
all loci.

Hint. — Use Art. 16.

4. Find the equation of the conic through the point (—1, 1) and
through the points of intersection of 42 + 4y +y* — 4z -2y =0
and 2 + 3 — 42z — 3y = 0. Plot all loci.

6. What relation must hold between the coefficients of z’ + bzy +
¢ + dz + ey + f = 0 in order that its locus shall be tangent to the z-
axis. Find the equation of a conic passing through (3, 2), (—1, 2), (3, 8),.
and tangent to the z-axis at (1, 0). -

6. Find the equation of the conic through (—1, 0), (9, 0), (-1, 6),
and tangent to the y-axis at (0, 3). Plot all loci.

Hint. — Use ax® + bzy + 3 + dz + ey + f = 0 as the equation of
the conic.

7. Find the equation of the parabola through the four points (0, 0),
1, 0), (0, 1), and (2, 1). Make use of the fact that in the parabola
B* = 4 AC.



CHAPTER XIII

TRANSCENDENTAL AND PARAMETRIC
’ EQUATIONS

T7. Loci of transcendental equations. — Thus far the
discussions have been largely concerned with algebraic
equations, that is, with equations involving variables
raised to constant powers. In this chapter, attention will
be given to other forms of equations .such as y = a2,
y=3s8inz, y =Ilogz, etc.. Such equations are called
transcendental equations.

Many of the steps taken in the discussion and plotting of
such curves are the same as those used in algebraic equa-
tions, but there are some respects in which they require
different treatment. A few examples will illustrate the
- method to be used.

78. The exponential curve y = a®, where a is,a positive
constant. In the following discussion, a will be taken as
greater than 1. A similar discussion would result from
taking a less than 1, in which case the figure would be
changed in position, but not in character.

1st. Intercepts. — Let x = 0, then y = a® = 1, whence the
curve cuts the y-axis at the point (0, 1). Let y = 0, then
T = —o0.

. 2nd. Symmetry. — If y is replaced by —y, the equation
is changed, therefore the curve is not symmetrical with
respect to the z-axis. If z is replaced by —z, the equation
is changed, therefore the curve is not symmetrical with
respect to the y-axis. If x is replaced by —z and y by —y,
the equation is changed, therefore the curve is not symmet-
rical with respect to the origin.

177
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3rd. Extent. — It is seen that y is real for all values of z
from —oo to 4+, also that as « increases from 0 to 40,
y increases from 1 to + o0, and as z decreases from 0 to — o0,
y decreases from 1 to 0.

Solving for z in terms of y, £ = log, y, from which it is
seen that z is real for all positive values of y. All negative
values of y are excluded since there are no logarithms of
negative numbers.

4th. Asymptotes. — In the equation y = a?, it is seen that
no finite value of z will make y infinite, therefore there are
no asymptotes parallel to the y-axis. In the equation
z = log, ¥, the only finite value of y which makes z infinite
is y = 0, therefore y = 0 is the only horizontal asymptote.

In plotting the curve, it is necessary to assign some value to
a. The following table of values is computed for a = 3, from
which the curve y = 3+ is plotted. -

z v z 1

0 1 0 1

1 3 -1 .33+
2 9 -2 114
3 27 -3 .03+

The exponential curve of most frequent occurrence is
Y = €% in which e = 2.718+4. This number, 2.718+, is of
great importance in all higher mathematics.

The student is asked to plot the three curves y = 22,
y = €%, and y = 37 using the same set of axes. Discuss
the effect of an increase in @ on the form of the curve. (Use
e = 2.7.) Plot the locus y = ()=
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79. Relation between natural and common logarithms.
— A system of logarithms in which the base is 10 is called
a system of common logarithms.

A system of logarithms in which the base is e is called a
system of natural logarithms.

The common logarithm of a number N is the exponent
of the power to which 10 must be raised to give N. If
£ = common logarithm of N, then

logoN =2 or N =10~ 1)
The natural logarithm of a number N is the exponent of

the power to which e must be raised to give N. If y = nat-
ural logarithm of N, then

logg N=y or N=ev. @)
Equating the values of N from equations (1) and (2),
< ev = 107, @A)
- Taking the common logarithm of each member of (3),
~ylogwe = zlogy 10 : 4)
or y= longe = 2%4 = (2.302) z.

Therefore the natural logarithm of a number is equal to -
the common logarithm of that number multiplied by 2.302.

For rough calculations of natural logarithms, a table of
common logarithms may be used and each logarithm mul-
tiplied by 2.3. ,

In all higher mathematics when no base is expressed, the
base e is understood.

80. The logarithmic curve, y = log, x.—

1st. Intercepts. — When ¢ =0, y = —o0; when y =0,
z = 1, therefore the curve cuts the z-axis at the point (1, 0)
and has no finite intercept on the y-axis,
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2nd. Symmeélry. — As in the exponential equation, it can
be shown that the curve is not symmetrical with respect to
the z-axis, y-axis, or origin. .

3rd. Extent. — Solving for y in terms of z, y = log, z,
from which it is seen that y is real for all positive values of
z, but that all negative values of z are excluded, since there
are no logarithms of negative numbers.

Solving for z in terms of y, * = e, from which it is seen
that z is real for all values of y from —o to + o0, also that
as y increases from 0 to + 0, z increases from 1 to + o0, and
as y decreases from 0 to — oo, z decreases from 1 to 0.

4th. Asymptotes. — In the equation y = log. z, it is seen
that = 0 is the only finite value which makes y infinite,
while in the equation z = ev, there is no finite value of y
which makes z infinite. z = 0 is then the only asymptote
parallel to the axes.

Computing a table of values, and plotting the points, the
figure is as shown.

z logi z log, z
0 —o0 —o0
5 |— .301f — .693
1 0 0
2 .301 .693
3 477 1.098
4 .602 1.386
10 1 2.302
100 2 4.604

It will be observed that the logarithmic equation y = log, z
or z = e is the same as the exponential equation y = * with
z and y interchanged. Hence the curve in this article might
have been constructed in a manner identical with that used
in Art. 78, except that values would have been assigned to y,
and z computed.
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These curves are of very frequent occurrence in expressing
the laws of physics, and especially in problems of electro-
motive force.

EXERCISES

1. Construct the curves y = ¢* and y = ¢~* with the same axes and
show that these curves are symmetrical with respect to the y-axis.

2. Plot the locus of ¥ = logs z by changing to an exponential equa-
tion and assigning values to y to find the codrdinates of points on the
curve.

8. Discuss and plot the loci of the following equations:

(@) y=e’=.z ® y = 3¢,
(c) 1/'—‘9-;- @) y =2logw (z + 1)..
(e y=2l;>g.(z+1)- N y=1te=
@y=e ' (#) y = 2logo (1 + 32).
(%) y = loge (1 — 22). @Dy=%4EE—e2).
k) y = e @) y = log. (1 + €.
(m) y =} (e + ). ‘o v=3(5..7).
(0) z =4 (v + ). ® y =logs (1 —2%).
(@) z = logs (¥ + 2). (r) y=losae,—:_1-~

81. The sine curve, y = sinx.—

1st. Intercepts. —When z =0, y=0. When y =0,
z=sn?!0=0, =, 2x 3, etc.,, —m, —27x, —3, etec.
Therefore the curve intersects the y-axis at the origin only,
but intersects the z-axis at an infinite number of points at
intervals of . . '

2nd. Symmetry. — When y is replaced by —y, the equation
is changed, therefore the curve is not symmetrical with re-
spect to the z-axis. When z is replaced by —z, the equation -
is changed, therefore the curve is not symmetrical with re-
spect to the y-axis. When z is replaced by —z and y by —y,

* The locus of equation (n) is of frequent occurrence. It is called a

catenary and has the form assumed by a heavy flexible cord suspended
between two points.
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the equation is unchanged, therefore the curve is symmetri-
cal with respect to the origin.

3rd. Extent. — Solving for y in terms of z, y = sin z, from
which it is seen that y is real for every value of z from — o to
+o. Moreover, it is seen that as z increases from 0 to } =,
y increases from 0 to 1; as z increases from 4 = to =, y de-
creases from 1 to 0; as z increases from = to § r, y decreases
from 0 to —1; as z increases from § r to 2, y increases
from —1 to 0.

Since sin (z + 2 nr) = sin z, where n is a,ny integer, posi-
tive or negative, it follows that if the curve is plotted from
z = 0 to 2 = 2, the remainder of the curve can be obtained
by moving the portion already plotted, right and left along
the z-axis through successive multiples of 2 .

Solving for z in terms of y, z = sin~! y, from which it is
seen that z is real for all values of y between —1 and +1, but
that points whose ordinates are > 1 or < —1 are excluded.

4th. Asymptotes. — Since no finite value of either variable
will make the other infinite, there are no asymptotes parallel
to the axes.

In plotting curves of this type, it is customary to measure
z in radian measure, using # = 3.1416 when laying off abscis-
sas on the z-axis.

Plotting points in this way, the curve is found to be as .
follows:

z v ' z v
0 0 x=3.14 0
’3'= .52 5 }r=3.66 - 5
§=1‘04 86 *f=4.18 - .86
§=1.57 1.00 Fr=4.71 —1.00
$»r=2.09 86 J‘l’=5.23 - .86
jr=2.61 5 =575 - 5
=314 0 27 =6.28 0
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.YI

82. Periodic functions. — The sine curve, discussed in
the last article, is an illustration of a class called periodic
functions. They are marked by the characteristic that
when a definite constant is added to the variable, the function
is unchanged. In the case of the sine function just discussed,
this constant was 2 nr where n was any integer. The least
positive value of this constant is called the period of the
function. In this case the period is 2 .

In plotting periodic functions, it is necessary to construct
only that portion of the curve belonging to one period. The
entire curve can then be sketched by use of the fact that its
values are repeated in each successive period.

83. The curve y = a sin kx.— Since sin kz = sin (kz + 2x)

=sgink (x + 2—’; ), therefore the period is 27:—'

The values of sin kz vary between —1 and +1, hence the
values of y vary between —a and +a.

It is seen that the factor k divides the penod and the factor

a multiplies the function.
Letting k = 2 and a = 3, the following table is computed:

z gin2z ¥ z sin 2z ¥

[ 0 0 i 0 0

in 707 2.121 T - 707 -2.121

x 1 3 ™ -1 ~3 -
4 707 2.121 - - .7 -2.12¢

T 0 0 T 0 0
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This table, together with a discussion similar to that used
in the sine curve, shows the locus to be as follows:

Y

Yl

Exercises. — Plot y = sm-, y = sin z, y = sin 2z, using

2
the same set of axes for the three curves,

Plot y = }sinz, y =sinz, y = 2sm:v, using the same
set of axes for the three curves.

84. The tangent curve, y = tan x. — Since tan z =
tan (r + z), therefore the period of this curve is =

1st. Intercepts. —If =0, y=0. f y=0, 2=0, =,
2x, 3r, ete.; —m, —27, —3 =, etc. Therefore the curve in-
tersects the y-axis at the origin only, but intersects the z-
axis at an infinite number of points at intervals of .

2nd. Symmetry. — When y is replaced by —y, the equation
is changed, therefore the curve is not symmetrical with respect
to the z-axis. When z is replaced by —z, the equation is
changed, therefore the curve is not symmetrical with respect
to the y-axis. When z is replaced by —z and y by —y, the
equation is unchanged, therefore the curve is symmetrical
with respect to the origin.

3rd. Extent. — Solvmg for y in terms of z, y = tan z, from
which it is seen that y is real for every value of z from — o0 to
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+o. Moreover, it is seen that as z increases from 0 to »/2,
y increases from 0 to + o0 and as x increases from /2 to =, ¥
increases from —oo to 0. Since the period of this curve is r,
the values of the
function are re-
peated beyond this
point.

Solving for z in ., _A/1 |/ % .
termsof y,z=tan"'y,
from which it is seen
that z .is real for
all values of y from
—o0 to 40,

4th. Asymplotes. — y = o0 when 2z = =4x/2, +37/2,
+57/2, etc. These lines are asymptotes to the curve.

Y . F

i
]

YI

EXERCISES

1. Discuss and plot the loci of the following equations:
(a) y = cos z. ®) y=cotz. . (c) y =secz.
@y=toT  @y=anF () y=ae
@ y = sintz. (k) 4 = tan z. (i)y-oot!-;'

2. (@) Plot y = cos2zorz = cos y.

(b) In example (a), rotate the axes through —/2 radians and show
that the equation becomes y = cos z. Plot the locus of y = cos z
referred to the new axes and show that the same curve is obtained as
in (a). '

8. Prove that the sine curve differs from the cosine curve only in
position by finding the equation of y = sin 2 when the axes are trans-
lated to new origin (x/2, 0).

4. Plot the locus of y = cscz. Draw ordinates at z = »/8 and
z = 3 /8, and thus compute the cosecant of »/8 and 3x/8. Check
results from a table of natural functions.

6. Find the equation of y = sin (z — x/4) when the axes are trans-
lated to new origin at (x/4, 0). Draw both sets of axes and the curve.
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6. Find the period and the greatest value of the function in each of
the following equations. Plot each locus.
(@) y=28in2z. (b) y=4cos3z. (c)y=3tan2z.

T,

(d)y-‘lsing. (e)y=cot.3 (f)y=cos(z—§).

(a)y=-5oos?—;- () y =sec2z. (@) y = tan z+§)-
7. Discuss and plot the loci of the following equations:

(@) y = tan~' 2. b)) y=sectz. ° (o) y = cot(x +§)

(@) y = logsec z. (¢) y =logescz. (f) y =zsinz.

85. Loci of parametric equations. — It is sometimes con-
venient to express the coérdinates z'and y in terms of a third
variable, thus z = &, y = £

The third variable in such cases is called the parameter and
the two equations are called the parametric equations of the
curve. It is often possible to eliminate the parameter and
thus derive the equation of the curve in rectangular coérdi-
nates. Thus, in the above example, from the first equa-~
tion ¢ = Vz. From the second equation, ¢ = V', whence
Vy=Vzory =2 It is not always possible, however,
to eliminate the parameter, and even when possible it is not
always desirable.

To plot the graphs of such equations, values are assigned
to the parameter and the corresponding values of z and ¥
computed. The points on the curve are then located from
the corresponding values of # and y. The parameter does
not appear in plotting the graph. Thus in the preceding
problem, if values are assigned to ¢, the following table of
values of z and y is obtained:

¢ z '] t z v
0 0 0 0 0 0
1 1 1 -1 -1 1
2 8 4 -2 -8 4
3 27 9 -3 —-27 9
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The parameter usually represents time or some geometric
magnitude, but may be any quantity whatever.

It is often possible to obtain equations of curves by means
of a third variable which connects x and y, when it would be
extremely difficult to derive the equation directly, without
use of this variable. A number of important equations will
be derived by this method in Art. 86.

JILLUSTRATIVE EXAMPLES
1. Plot the locus of

z=a(p—sing), y=a(l—cose).

¢ Sin ¢ Cos ¢ z v

(] (] 1 0 0
§= 52 5 .02a l4a
~§=1.o4 86 5 .18¢a 5a
’-;=1.57 1 0 .57a a
x=2.00 .86 -5 1.23a 1.5a
= 2.6l 5 — .88 2.11a 1.86a
»=3.14 0 -1 3.14a 2a
}r=23.66 -5 — .86 4.16a 1.86a
r=4.18 — .86 -5 5.04a 1.5a
r=4.71 -1 0 5.7a a
=523 ~ .88 .5 6.09¢ 5a
=575 -5 86 6.25a 14a
2r =6.28 0 1 6.28a




188 TRANSCENDENTAL AND PARAMETRIC EQUATIONS

This is a periodic function of period 2 , since when the values of ¢ in
the above table are increased by 2, z is increased by 2 xa, and y re-
mains unchanged. There are therefore an infinite number of arches
like the one shown below.

Y

!

2. If a projectile is thrown with initial velocity V ft. per second,
at an angle ¢ with the horizon, it is found that the equation of its path
is (resistance of air neglected), z = V¢ cos ¢, y = Visin ¢ — 16 &, where
¢ represents the time in seconds. If V' = 640 ft. per sec. and ¢ = 30°,
plot the locus traced by the projectile and show that the equation of
its path in rectangular codrdinates represents a parabola.

The parametric equations are
z = 320 V31 ¢))
y =320t —167 =16¢ (20 — ). (2)

Compute a table of values and locate points as in the preceding
problem.

¢ z ¥ :

5 | 2,768( 1260 |yt "
10 | 5,536 1600 o A
15 | 8,304] 1200 R4

20 |11,072] ©

Since y = 0 when ¢ = 20, the greatest value of z is at the end of 20
seconds and is equal to 11,072 ft. This is called the range. The
greatest height is when ¢ = 10, and is equal to 1600 ft.
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In equation (1) above, ¢ = 5-320%5 . Substituting this value in (2),
= __ 2
¥=73" 19,200’
or (z — 3200 V3)* = — 19,200 (y — 1600),

a parabola with vertex at (3200 V'3, 1600), and passing through the
origin.

In finding the locus corresponding to a pair of parametric equations,
it is often convenient to eliminate the parameter before plotting.

EXERCISES

1. Plot the loci of the following equations by assigning values to 2
and computing z and y:

(@) z=48,y =2t Gz=t—1y=10
Cz=t—1,y=30—-6t dz=68y=143Lt
() 4z =18, 4y =0. () x=5cost,y =5sint.
(g) ¢ = 2sint, y = 3 cost. (h) z =sect, y = tant.
() z =sint, y = 8in 2¢. G 2=t y=1log(t—9).

(k) z =sing, y = cos 2 ¢. D z=1+cos¢, y=2cos4¢.
(m) z =ap,y =a(l —cose). (n) z =loget, y =48

2. Eliminate the parameter in Ex. 1 (¢), (d), (), (9), (&), (k), and
(1). Name the curve and reduce to a standard form in each case.

8. A projectile leaves a gun with a velocity of 800 feet per second,
the barrel of the gun being elevated at an angle tan—!  with the horizon-
tal. Find the equation of its path, using the equations in illustrative
example 2. Eliminate the parameter and show that the curve is a
parabola. Find the range and the highest point reached.

4. Prove that 2z=3t+%, 3y-=3t—%,and z=38ech, y =

2 tan 0 represent the same curve. Plot the curve.
6. Plot the loci of the following equations:

(@) 2=a (@ +sind), y=a(l — cosb).
®) r=a(2cost — cos2t), y =a (2sint — sin2¢).
(c) x =acostt, y=asindt.
@z = 3at y = 3 a2
1+ 148
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86. Derivation of parametric equations. — Many equa-
tions of great importance in their applications, as well as
in historical interest, are most readily derived in the form of
parametric equations. In some cases this parameter can in
the end be easily eliminated, while in others the parametric
is the only practicable form of the result. A few illustrations
will show the value of the parameter in finding the equations
of curves often used in higher mathematics.

87. The Cycloid. —If a circle rolls along a straight
line, the locus traced by a fixed point in its circumference is
the cycloid.

\ R
X
[o]

Y

x
~

The equation is derived as follows:

Let the given straight line be taken as the z-axis, and let
P (z, y) represent any point on the rolling circle of radius a.
Take as origin the fixed point on the z-axis from which P
started to move. From the z-axis erect perpendiculars NC -
to C, the center of the circle, and MP to P, any position of
the generating point. Let 6 represent the angle NCP.
Then

z = OM = ON — MN = arc PN — PR = a6 — asin6,
y=MP =NC—RC =a— acosé.
Therefore, the parametric equations of the cycloid are

x = a (0 — sin0),
y =a(l— cos@).
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88. The epicycloid. — If a circle rolls upon a fixed circle,
a point on the circumference of the rolling circle generates a
figure called the epicycloid.

Let a circle of radius b roll upon a fixed circle of radius a,
and let P, a point on the rolling circle, generate the epicycloid.
Take as origin the Y
center of the fixed cir-
cle and as z-axis OA, :
A being the point at \
which P coincides with
the fixed circle. From
C the center of the REYE
- rolling circle and from '
P (z, y), any position- X 5 N M
of the generating point,
draw NC and MP per-
pendicular to OX, also-
RP perpendicular to
NC. Let angle NOC Y
= 0 and OCP = ¢. It can be seen from the figure that
NCP=¢— (90°—0) = ¢+ 6 — 90°.

Therefore, - sin NCP = —cos (¢ + 6)
and cos NCP = sin (¢ + 6).

Bu;o by hypothesis, arc AK = arc PK or af = b¢, whence
=5
b

Therefore, sin NCP = —cos (%0+ 0) = —cos g -lla- b 0

and cosNCP=sin(‘lb-"+o)= i “‘I')'b 6.

Therefore,
2 =0M =ON + NM = 0OC cos 6 + CPsin NCP

= (a4 b) cos 9 — bcosa-;-b
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y=MP = NC — RC =0Csind — CP cos NCP

= (a+b)sin6 — bsin 2+

b

0.

The equations of the epicycloid therefore are

a+b

x = (a+ b) cos® — bcos 6,

b
a+b

y = (a+b)sin® — bsin =3

ol

When a and b are equal the curve is called a cardioid.

Its equation is
x=2acos® —acos20,

y=2asin® — asin20.

89. The hypocycloid. — If a circle rolls within a fixed

\ circle, a point on the
circumference of the
rolling circle generates
a figure called the hy-
pocycloid.

x From the adjoining
figure, the equation can
be derived in a manner
similar to that used in
the preceding article, or

, the result may be ob-

tained from the equa-
tions of the epicycloid by substituting —b for b. In either
case the results are

Y

x = (a — b) cos 8 + bcos (a;b) o,

y = (a — b)sin@ — bsin ("; b) 0.
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90. Hypocycloid of four cusps. — A particular case of
the hypocycloid in which b = } a is of frequent occurrence.
Making this substitution in the equation just obtained,

3
z=

a
4acosl9+ zcos30,

Y =%asin0— gsin30.

Changing sin 3 6 and cos 3 9 to terms of 6, these become

z= % acosf +g (4 cos®6 — 3 cosb) = acos®o,
y = % asing — % (3sin0 — 4sin*6) = asin's.
From the foregoing,
2t = al cos?o,
y¥ = alsin?0.

Adding, the result is
x* + yg = aj'.

91. The path of a projectile. — The path traced by a
body which is projected at a given angle and with a given
velocity is a curve of much im-
. portance.

Let O, the initial position of ‘
the projectile, be taken as the
origin and take OX and OY in
horizontal and vertical posi-
tions, respectively. Let V, de-
note the initial velocity, ¢ the
angle which the initial direction
of the projectile makes with the horizontal, and ¢ the time.

If there were no force acting other than that which origi-
nally projected the body, the path would be the straight line
OR, the distance OR being V.

4

—t | ——.

\7,
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The principal force tending to deflect the body from a
straight line is the action of gravity which tends to pull it
vertically downward. Let P represent the position of the
body after ¢ seconds, gravity alone being considered.

The ordinate of the point at which the body is found after
t seconds is M P instead of MR, the difference being PR which
is proved in mechanics to be 16 2. Then '

2z =0M = ORcos ¢ = Vil cos ¢,
y=MP = MR — PR = V¢sing — 16 2.

Eliminating ¢, the curve is found to be the parabola

16

In the preceding problem, no account has been taken of the
resistance of the air or of other forces of which careful aceount
is taken in figuring the paths of projectiles in military prac-
tice.

Exercise. — Find the path of a body which is projected
with an initial velocity of 300 feet per second, in a direction
inclined 45° with the horizontal.

92. The witch of Agnesi. — A circle of radius a lies be-
Y tween two paral-

lel tangents OX
R Q ¢ and RS. A chord
SNALe ) is drawn through

the point of tan-
gency O to the
X . other tangent,
0O NM ™ meeting the circle
at K and the tan-

\d gent at Q.
Perpendiculars are dropped from @ to OX and from K to
OX and MQ. The locus of the intersection P is the witch.
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Let 0 = the angle X0Q. Then

z=0M=RQ =2a

cot 6.

y = MP = NK = OKsin6 = 2asin?6 .
(since the angle OKR is inscribed in a semi-

circle).

. 3
Eliminating 6, y = 8a

2+ 4at

93. The cissoid. — A circle of radius a passes through

the origin and has its center
on the line OA which is taken
as the axis of z. A chord OR
meets the tangent AN in the
point N. If the point P on OR
is sp chosen that OP = RN,
the point will describe the cis-
soid. Let 6 = the angle AON
and draw MP and QR per-
pendicular to OX, and RS
perpendicular to AN. Then

z=0M=QA = 0A —0Q
y=MP =8N = AN — A8

=2a — 2acos?d = 2 asin?6.
=2atand — 2asinf cosé
= 2asin 6 (sec § — cos 6).

The parametric equations of the cissoid are

x = 2asin® 0,

y=2asin®

(sec @ — cos 0).

Solving the first, for sin 6, sin 6 = \/ 2—””‘1-

Substituting in the second, y* =

2a—x

Exercise. — Extend the vertical diameter CD to E mak-
ing CE = 2CD, and join E to A. Let F be the point where
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AE cuts the curve, and draw the ordinate GF. By means of
the equation of the curve and similar triangles, prove
GF' = 20G".

This fact makes it possible to duplicate a given cube. For
if a, represents the side of a given cube, and a fourth propor-
tional a; is found to OG, GF and a,, then a; will be the side of
the cube of double volume.

The cissoid was invented by a Greek mathematician named
Diocles about 150 B.c. His purpose was to solve the famous
problem of duplicating the cube.

- EXERCISES
-7 1. Find the parametric equation of the
g circle with radius a and center at origin, in
_— MX terms of 9, the angle between the z-axis

and the radius to any point P.

2. A radius is drawn from the center
O of two concentric circles, cutting the
inner circle at @ and the outer circle at R.
Perpendiculars are dropped from R to OX
and from Q to OY. Find the equation of
the locus traced by the intersection P in terms of the angle 6 = XOR,
Prove this locus is an ellipse. .

Hint, — Draw the perpendicular NQ.

12




CHAPTER XIV
SOLID ANALYTIC GEOMETRY

94, Rectangular codrdinates in space. — If a point is
located in a plane, its distances from two fixed perpen-
dicular lines in the plane are determined. If a point is
located in space, its distances from three perpendicular
planes are determined. In each case these distances are
called the codrdinates of
the point. TR

Construct three mutu- V4
ally perpendicular planes, o/
intersecting in the three Vi
perpendicular lines XX’, / 2
YY’, and ZZ'. Xommo-m Y Z N

The three perpendicu- -
lar planes are called the L
coordinate planes; the
lines of intersection, the
cobrdinate axes; and
the common point of intersection of the coérdinate planes,
the origin.

Let P be any point in space. Through P draw planes
parallel to the coordinate planes forming with them the
rectangular parallelopiped OLMN — P. The edges, ON
=z, NM =y, MP = 2, are the rectangular codrdinates
of P. These edges measure the distances of P from the
yz-, zz-, and zy-planes, respectively. It is often convenient
in locating a point to draw only the lines ON, NM, and
MP, taking x = ON on the z-axis, y = NM parallel to

197

x

N
~

v
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the y-axis and z = M P parallel to the z-axis. Coérdinates
measured to the right, forward, and upward will be con-
sidered positive and those measured to the left, backward,
and downward, negative. The eight equal parts into
which space is divided by the codrdinate planes are called
octants. That octant in which all codrdinates are positive
is called the first octant. There is no established order in
numbering the other octants. ' '

The following suggestions are helpful in constructing
figures on cross-section paper. Draw the z- and z-axes at
right angles to each other and lay off units as indicated on
such paper. Draw the y-axis making equal angles with the
other two, and lay off units equal to one-half the diagonal of
a square whose side is the unit on the z- and z-axes. This
foreshortening of y-units aids in giving the figure the appear-
ance of a solid.

EXERCISES

1. Plot the points (0, 1, 2), (2, 3, 4), (-1, 4, =3), (1, 0, —5), and
2, -2, -3).

2. Where are the points for which £ = 0? y =0? z = 0? What
are the equations of the codrdinate planes? Where are the points for
which both z and y = 0? .

8. Where are the points for which z = —1? y = 2? 2z = a?

4. Write the codrdinates of the points symmetrical to the following
points with respect to each of the axes and with respect to the origin:

@ (-L,23. ) @bo.  © (-1,0,6).

8. Find the codrdinates of the feet of the perpendiculars drawn from
the point (2, —1, 3) to each of the coérdinate planes.

6. From a point (z1, 41, z1) perpendiculars are drawn to each of the
codrdinate planes. Find the feet of these perpendiculars.

96. Distance between two points.— The distance between
two points Py (2, y1, 21) and Py (2, ya, 2) ts given by the
Jormula

d=V(x; — x9)® + (1 — 52)® + (&1 — 29)°. (40)
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Proof. — Let P, and P; represent any two given points,
and let d rep-
resent the dis-
tance between :
them. Through !
P, and P, pass
planes parallel
to the codrdi- PR
nate planes ~
forming the Y
‘rectangular - ol Ny Ng
parallelopiped i
@S of which the E
required dis- S/ 1
tance P 1P 2 is Y i' ’
the diagonal.

Since PyQP; is a right triangle,

PP, = VPQ +QP;,
also since P;QR is a right triangle,
P,Q P,R +RQ NgN, + LM,
Substituting this value of P;Q’,
PPy =V NN; + LM + QP;-
In terms of the coordinates of P; and P,,
PPy=d= V(@ —2)+ (1 — 1) + (21 — 2)%

As a particular case, let p equal the distance from the origin
to any point P (z, y, #), then p = Va2 4 32 + 2%

]

’
]

x

1. Prove that the points (3, 3, 2), (6, —1, —3), (—2, 3, 7) are the
vertices of an isosceles triangle.
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2. Prove that the points (5,1, 5), (0, —4, 3), (7, —2, 0), and
(-3, 3, 5) lie on a sphere whose center is (1, 2, —1).

8. Prove that the points (1, 2, 3), (—1, —2, 1), and (3, 6, 5) are on
the same straight line.

4. Prove that the points (6, 7, 3), (3, ll 1), and (0, 3, 4) are the ver-
tices of a right triangle.

96. Point of Division. — If the point P; divides the line
joining the two points Py (z1, ¥, z,) and P, (z2, y2, 2) tnio

segments such that the ratio II;I;B —, the coordinates are given

by the formulas .
_ N +ren yg= D18 trays _nsstrem (41)

)

X3

y 8
rn+rg ri+re rn+rg

Proof. — Let P, and P; be the given points and let P; be
the point which divides the line joining them in the ratio
7 : . Draw the lines MPy, M,P,, and M3P; perpendicular
to the zy-plane. By plane geometry,

M 1M s _ PP; n

The line M, M, lies in the zy-plane and the z and y coérdi-
nates of M; which are also the z and y codrdinates of P are

found, as in Art. 8, to be
2 = 1Ty + 1ol ys = Tys + ey
n4nr’ : n+r




ORTHOGONAL PROJECTIONS 201

By dropping perpendiculars from P;, P,, and P; on either
of the other coordinate planes, the z-coordmate of P, may be
found.

EXERCISES

1. Find the cotrdinates of the point which divides the line joining
(-1, 4,3) and (-5, —8, 7) in ratio 1 : 3.

* 2. One extremity of a line is at (—3, 2, 7) and the middle point is
(-1, 4, 2). What are the coordinates of the other extremity?

8. In what ratio does the point (2, 3, 4) divide the line joining
(-1, 4, 5) and (8, 1, 2)?

4. Find the lengths of the medians of the triangle whose vertices are
2, 5, 6), (38, -7, 4),a.nd( -1, 1, 2).

6. In what ratio is the lme joining (5, —1, 4) and (2, —4, —2)
divided by the zy-plane? Find the coordinates of the point of inter-
section with this plane.

6. The line joining A (1, 2, 2) and B (-1, 3, 1) is produced to C so
that BC = 3 AB. Find the coérdinates of C.

7. Two vertices of a triangle are (2, 3, 0) and (—2, —3, 4) and the
center of gravity is (0, 2, §). Find the third vertex.

8. Prove that the lines joining the middle points of the opposite
edges of the tetrahedron whose vertices are (0, 0, 0), (a, 0, 0), (b, c, 0),
and (d, ¢, f) meet in a point.

97. Orthogonal projections. — If through a point, a
plane is passed perpendicular to a given line in space, the
point in which the line pierces the plane is called the
projection of the point on the line.

If through the extremities of a directed segment of a
line, planes are drawn perpendicular to a given line in
space, the portion of this line measured from the projection
of the initial point of the segment to the projection of its
terminal point is called the projection of the segment on

- the line.

Thus, in the figure of Art. 95, the projection of PyP; on the
z-axis is NoN1.
The angle between two lines which do not intersect is the
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angle between two intersecting lines respectively parallel to
the two glven lines.

Thus, in the ﬁgure of Art. 95 the angle between the hne
PP, and the axis OX is the angle RP,P;.

Theorem I.— The projection of the segment of a directed
line upon another line in space 18 the product of the length of the
segment by the cosine of the angle between the two lines.

Proof.— Let

X P,P; be a directed
T~ a\' segment making

y an angle 6 with

P!// N___] ___q AB,anyotherline

A o _ g inspace. The

M - My . planes KL and RS

— \ through P; and P,

‘ perpendicular to
AB determine the projection My\M,. It is desired to prove

Mle = P1P3 cos 0.

Draw P,Q parallel to AB, piercing the plane RS in N and
join NP;. By the definition above, the angle QP,P; = 0.
The triangle P\NP; is right angled at N and hence, by trigo-
nometry,

Mle PxN P;Pg cos 6.

Theorem II.— ¢
The sum of the
projections on any
straight line, of the
segments of the .
broken line joining A 8
the point A to the g
point B, 18 equal to
the projection of the segment AB on that line.

Given the broken line AEDCB and the straight line AB

D" A B C’ 8’
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joining the point A to the point B. Let the projections of
the points 4, B, C, D, and E on RS be A’, B’, C’, D', and E’.
It is evident that A'E’ + E'D’' 4 D'C’ + C'B’ = A'B/,
that is, the sum of the projections on RS of the segments of
the broken line AEDCB is equal to the projection of the
straight line AB.

98. Polar codrdinates. — Using the same coérdinate axes -
and origin as in the rectangular system, the line OP from
_ the origin to the point P is called the radius vector and is
represented by p. The
angles which O P makes
with the axes of z, y, W
and z are called the
direction angles of the

line OP and are repre- Xe-- X
sented by «, 8, and v,
respectively. p, a, B,

and vy are called the
polar coordinates of the point P. The cosines of these
angles are called the direction cosines of the line OP.
The direction cosines of a line are not independent but are
connected by a very important relation, viz.:
The sum of the squares of the direction cosines of a line is
unity, or

z

cos® a + cos® B + cos®y = 1. (42)
Proof.— From theorem I, Art. 97, it is evident that
T = pcosa,
Yy =pcosp, .
2= pcosy.
Also by Art. 95, 2!+ y*'+ 22 = g%
Squaring and adding,

ptcos?a + p*cos? B + pPcosty = 2 + 3 + 22 = o,
whence cos®a + cos?B + cos®y = 1. .
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The direction cosines of the line joining the poinis Py (21, 41, 21)
and P; (73, ys, 22) are given by the equations :

Xg— X ol By — &
cosa = ’d L} cosp=&7-&, cosy=—°—d—‘, (43)

tn which d is the length P,P;.
This is evident from the figure of Art. 95.

ILLUSTRATIVE EXAMPLES
Find the direction cosines of a line if they are proportional to 1, —2,
and 3.

It is given that | Cosa _CcOSB _ oSy,

1 -2 3
Then
cos?a + cos’f + cos’y _ costa _ cos?8 _ cos'y
124 (=224 3 1 4 9
But the numerator of the first fraction equals 1, hence
cm’a=Ilzs
CcoBa = :I:—l-
vid'
Co8f = + —— 2
\/_4
cos =:!:——-.
and 4 Vii
EXERCISES

1. What are the projections of the point (3, 1, —6) on each of the
axes?

2. A line makes an angle of 60° with the z-axis and of 30° with the
y-axis, What angle does it make with the z-axis? :

8. The direction cosines of a line are equal. Find their values.

4. The direction cosines of a line are proport.lonal to3, —1,and 2.
Find their values.
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6. Find the direction cosines of the line joining (6, 3, —1) and
(=2, —1, 0), and the projegtion of the line upon each of the axes.

6. What are the direction cosines of a line parallel to the z-axis?
to the y-axis? to the z-axis? of a line perpendicular to the z-axis?

7. Abroken line joins (3, 1, —2), (3,4,6),(~1,2,3),and (2, —5, =7).
Find the projections on the z-axis of the closmg line and of each of the
segments. Verify theorem II, Art. 97.

8. Find the polar and rectangular codrdinates of a point, given
p =4, a =120° and § = 135°. How many solutions?

9. Where do all the lines lie which pass through the origin and

(a) make an angle of 45° with the y-axis? with the z-axis?

(b) make-.an angle of 45° with both the y-axis and the z-axis? Is
there any line making an angle of 45° with each of the coor-
dinate axes?

10. What are the direction cosines of a line if @ = 8 = 90°? Where
are all the points for which cos y = 0?
11, In which octant is a point found when
(a) cosa >0, cosp <0, cosy > 0?
®) cosa <0, cosp <0, cosy <0?
(c) cosa >0, cosg >0, cosy <0?

Name the octant by indicating the signs of the axes.

12. If the projections of P,P; on the axes are respectively 4, 2, and
—4 and the codrdinates of P, are (6, —3, 2), find the codrdinates of P;.

13. Given 8 =30°% y =2, z = —1. Find the codrdinates of the
point in both rectangular and polar codrdinates. How many solutions?

14. Prove by means of direction cosines that the points (1, 2, 3),
(-1, —2, 1), and (3, 6, 5) are on the same straight line.

2

99. The angle between T
two directed lines. — The 0
costne of the angle between
two directed lines is equal to
the sum of the products of

cosines.
Let ay, ﬁl, Y1 and g, 52;
v: represent the direction

- angles of two given lines
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and let OP, and OP, be two lines through the origin parallel
to those lines. Also let 6 equal the angle P,OP;. Construct
ON, NM, and MP,, the coordinates of P;.

If the broken line ONMP; and the straight line OP,; are
projected on OP;, from theorem II, Art. 97,

Proj. OP;, = Proj. ON + Proj. NM + Proj. MP;,
or by theorem I, Art. 97,
OP; co8 8 = ON cos a; + NM cos 83 + MP; cos vs.

But ON = 0P1c08a1, NM = 0P100831,
MP1=OP100671.

Substituting and dividing by OP;,
€08 0 = cos a, COS ag - cos B, cos By + cos y; cos yg. (44)

It is evident that if two lines are parallel and extend in the
same direction, a; = as, f1 = Bs, ¥1 = 7va; if parallel and ex-
tending in opposite directions, ay = v — a3, B1 =7 — S,
N=7T— 7

If two lines are perpendicular, cos § = 0 and, therefore,

€08 oy €08 ag + €08 B co8 B + cos y; cos ys = 0.

EXERCISES

1. Find the angle between two lines whose direction coeines are
%, —4% $and §, §, 1, respectively?

2. Find the angle between two lines whose direction cosines are pro-
portional to 1, 2, 5 and —1, 3, —2, respectively. .

8. Prove that the lines whose direction cosines are §, §, §; —4%, —13,
{; and §, —4%, — % are mutually perpendicular.

4. Find the direction cosines of the line joining (—1, 2, 4) and
(6, 5, —3).

5. Find the length of the projection of the line joining (1, 1, 2) and
(2, —1, 4) upon the line joining (2, 1, —2) and (4, —5, 1).

100. The equation of a locus. —If a point moves in
space according to some law, it traces a locus which will, in
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general, be a surface. To find the equation of this locus, the
same steps will be followed as in plane analytic geometry,
viz., the discovery of some law which applies to the moving
point in all of its positions and the translation of this law
into an algebraic equation between the codrdinates of the
point.

Thus, to find the equation of a sphere of radius 5 and center
at the origin, it is seen that if P (z, y, #) represents any point
on the surface of the sphere, OP = 5. Whence 2? + y? + 2
= 25 is the equation of the surface of the sphere.

Again, the equation of a plane parallel to the yz-plane and
three units to the right of it is £ = 3, since every point in the
given plane is at a distance 3 from the yz-plane.

EXERCISES
1, Find the equation of the plane which is
(a) parallel to the yz-plane and 4 units to the left of it.
(b) parallel to the zz-plane and 3 units in front of it.
2. Find the equation of the locus of a point which is equidistant from
the points (1, 0, —2) and (2, -3, 0).
3. Find the equation of the locus of a point which is equidistant from
the zy- and yz-planes.
4. Find the equation of the locus of a point
(a) whose distance from the z-axis is equal to 5.
(b) whose distance from the y-axis is equal to its distance from the
zz-plane.
(c) whose distance from the z-axis is equal to its distance from the
z-axis,
8. Find the equation of the locus of a point whose distance from the
point (3, 1, 0) is equal to its distance from the y-axis.

101. Cylindrical surface with elements parallel to one
of the codrdinate axes. — The method of finding the equation
of such a surface is illustrated by the following example:

Find the equation of the cylindrical surface whose directing
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curve in the zy-plane is 2* — 4 z 4 4 y* = 0, and whose axis
is parallel to the z-axis.

Let P (z, y, ) be any point in this surface. The z and y
codrdinates of P on the surface are the same as those of M
on the directing curve, and therefore the coordinates of P
satisfy the equation 22 — 4z
+4y?=0. (Since z does
not appear in this equation, it
may have any value.) This
equation therefore is the
equation of the surface of the
P cylinder.

In general, the equation of a
Pl N cylindrical surface whose axis
0 N x is parallel to one of the azes‘is
\1‘” the sgme as the equation of the
generating curve in the plane of

the other two axes.

102. Spherical surface. — The equation of a sphere whose
center is at C (h, k, ) and whose radius 3 r 18

R+ G -K+E-D=r" 4
This equation results immediately from Art. 95.

EXERCISES

1. Describe the following surfaces: (a) 22 =22 =4, (b) 2* + 1 =
4z. () y=-cosz. (d) 42 +22+8y=0.
2. Find center and radius of each of the following spheres:
@ #—22+p—6y+2A+22—5=0.
®) 422+ 41 +42 -4+ 12y —202=1.

8. Find the equation of the sphere whose center is on the z-axis,
whose radius is 7, and which passes through the point (2, —3, 4).

4. The axis of a cylinder is parallel to the z-axis and its directing
curve is a circle in the yz-plane with radius 5, with center on the z-axis
and tangent to the y-axis. Find the equation of the cylinder.
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‘8. Find the equation of the sphere whose diameter is the line joining
(2, 4, —3) and (2, —2, 1).

6. Find the equation of the sphere whose center is at (—1, 8, —5)
and which passes through the point (—3, 6, 1).

7. Find the equation of a sphere through the four points (0, 0, 0),
(-3,0,3), (0, 3, 11), and (0, -8, 0).

8. Find the equation of the sphere of radius 7 whose center is in
the yz-plane and which passes through the points (—2, —3, 3) and
(-3,6, —1).

9. Find the equation of the sphere with center at the origin and
which is tangent to the sphere 22 — 12z + )2+ 4y + 22 —62+24 =0.

10. Find the equation of the sphere concentric with 2* — 2z + 32 +
6y + 2 — 8z + 1 = 0 and passing through the point (5, 1, —3).

, 11. Prove that if a point moves so that the sum of the squares of its
dlsta.nces from (0, 0, 1) and (—1, 1, 0) is 7, its locus is a sphere. Find
its center and radius.

12. Find the equation of the locus of a point which moves so that its
distance from (—3, —8, 3) is twice its distance from the origin. Prove
that the locus is a sphere and find its center and radius. -

18. Find the equation of the locus of a point which moves so that its
distance from the z-axis is equal to its distance from the point (1, 0, 2).
Describe and construct the surface.

103. A surface of revolution is formed by revolving a
plane curve about an axis in its pla.ne If the equation of a
curve in one of ;
the coordinate
planes is given,
and if the axis
of revolution is
one of the codr- *
dinate axes, the
equation of the
surface is readily
found. ,

Thus, find the “
equation of the surface formed by revolving the ellipse
42® + 9y* = 36 about OX.
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Let the ellipse ABA’B’ be revolved about OX. In order
to avoid confusion of the codrdinates of any point on the
surface with the codrdinates of the points on the generating
curve, let P (z/, 9/, 2’) represent any point on the surface.
Then 2’ = ON, y' = NM, 2 = MP. Pass a plane through
P perpendicular to OX. This section PKRS is evidently a
circle. 1n the triangle NMP,

FF+W=W0ry”+z”=W=W=y’.

It is now required to express 2 in terms of the codrdinates
of P. From the equation of the generating ellipse,
P=t@- =402
Hence Y*+ 22 =49 - 2"
or, dropping primes and simplifying,
v,z 2_\
1 + i + g = 1.

Again, find the equation of
the conical surface formed by
revolving the line z = 2 z about
0Z.

Let P («/, y', #/) be any point
on the surface of the cone.
Then z' = ON, y = NM, 2 =
MP. Pass planes DEFG and

x-- -X MNRP through P perpendicu-
lar to OZ and OX respectively.
Then CR = ON = 2/, RP =
. NM =y
ButﬁI—Z’-{-'R_PB=C_-P’»orx"+y"=E'I_”=FD_Q=z*.
From the equation of the generating line, z =} z = § 2;

hence z? + y” =} Pt
or, dropping primes and simplifying,
422449y =22
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EXERCISES
1. Find the equations of the surfaces of revolutlon generated by re-
volving
(a) y = z about the z-axis.
() 42* + 12 = 16 about the y-axis.
(¢) 2t = 4z about the z-axis.
(d) 2* — 28 = 4 about the z-axis.
(e) y — = = 1 about the y-axis.

2. Find the equation of the surface generated by revolvmg the ellipse

/et + /b =1
(a) about its major axis. This surface is called a prolate spheroid.
(b) about its minor axis. This surface is called an oblate spheroid.

8. Find the equation of the surface generated by revolving about the
z-axis, the line z = 4 in the zz-plane.

4. Show that the surface obtained by revolving the parabolay? = 4 z
about the z-axis is the same as that obtained by revolving the parabola
2 = 4 z about the z-axis.

5. Find the equation of the surface generated by revolving the circle
2 4+ 1 = a? around the y-axis. What curve in the zz-plane would
generate the same surface when revolved about the z-axis?

6. A circle in the zz-plane of radius 4, with center on the z-axis at a
distance 7 from the origin, is revolved about the z-axis. Find the
equation of the surface generated.

104. Equations of a curve. — Two surfaces intersect in
a curve. The equations of two surfaces when considered
simultaneously define the curve of intersection, since the
codrdinates of any point on this curve of intersection satisfy
both equations.

If the equations of the two surfaces are combined so as to
obtain a third equation, this equation represents another
surface through the curve of intersection, and this together
with either of the given equations defines the curve of inter-
section. It is thus seen that the same curve may be repre-
sented in an infinite number of ways. In particular, if one
of -the variables is eliminated between the equations of the
surfaces which define a curve, the resulting equation, con-
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taining but two variables, is a cylinder with elements parallel
to one of the axes, and passing through the given curve. This
is called a projecting cylinder.

106. The locus of an equation. — It is evident from
Art. 100 that every equation in one variable represents a plane
or series of planes parallel to one of the coordinate planes.

Also from Art. 101, it is evident that every equation in two
variables represents a cylindrical surface, the equation of yhose
directing curve in one of the cosrdinate planes is the same as the
given equation and whose elements are perpendicular to the plane
of this curve.

In determining the loci of most other equations, a discus-
sion somewhat similar to that used in plane analytic geometry
is helpful. The principal points in such a discussion are:

1st. Symmetry.

2nd. Intercepts on the coérdinate axes.

3rd. Intersections on the codrdinate planes.

4th. Intersections on planes parallel to the coordmate
planes.

Symmetry. — A locus is symmetrical with respect to

(a) one of the codrdinate planes, if the variable corre-
sponding to the axis perpendicular to that plane
can be changed in sign without changing the
equation.

(b) one of the codrdinate axes, if the variables correspond-
ing to the other two axes can be changed in sign
without changing the equation.

(c) the origin, if all three variables can be changed in
sign without changing the equatlon

The proof is similar to that in Art. 13.

Intercepts on the cotrdinate axes. — These are found
by setting two of the variables equal to zero and solving for
the third.
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Intersections of a surface with the codrdinate planes. —
These intersections are found by treating the equations of the
coordinate planes z = 0, y = 0, and z = 0 simultaneously
with the equation of the given surface. These curves are
called the traces.

Intersections of a surface by planes parallel to the
codrdinate planes. — Represent these planes by z =k,
y = ki, 2 = k2. These taken simultaneously with the equa-
tion of the given surface determine the curves of intersection.
By giving &, ki, k. different values, the general form and
limits of the surface are determined.

Frequently it is sufficient to discuss the set of planes parallel
to but one codrdinate plane.

ILLUSTRATIVE EXAMPLE

Discuss and construct the locus of 22 — 32 — 22 = 4,
1st.. This surface is evidently symmetrical with respect to the cosrdi-
nate planes, the coordinate axes and the origin.
2nd. Intercepts '
on z-axis are =+2.
There is no inter-
cept on y-axis or
z-axis.
3rd. Let z =0,
then g2 4+ 22 = —4.
Therefore the sur-
face does not inter-
sect the yz-plane.
Let y=0, then2® —
22 = 4. Therefore,
the trace is an hy-
perbola QARQ'A’R’
in the zz-plane. Let 2 =0, then 22 — 2 = 4. Therefore, the trace is an
hyperbola BACB’A’C’ in the zy-plane.
4th. To find the intersection of the plane z = k with the surface,
substitute z = % in the equation of the surface. The resultisy? + 2* =
k* ~4, which is a cylinder whose trace in the yz-plane is the circle
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12 + # = k* — 4 and whose elements are parallel to the axis of z. The
curve of intersection of the surface by the plane is the same as the curve
of intersection of the cylinder by the plane, that is, a circle of radius
Vi - 4. If -2 < k < 2, the radius is imaginary and there is no in-
tersection andif ¥ > 2or < -2, themtemechonmammlewhosemdms
increases without limit as k increases without limit.

Wlthmtoonadenngphnespan,l]eleotheothetooﬁrdmteplanes,
the surface can be sketched as above.

108. Quadric surfaces. — The general equation of second
degree in three variables is Az* + By* + C2* 4+ Dzy + Eyz
+ Fzz+ Gx+ Hy + Kz+ L = 0. The surface repre-
sented by this equation is called a quadric surface. Some
special forms of this equation which are of frequent occurrence
will be discussed here.

107. The eltipsoid 23 + 3+ 55 = 1.

1st. This surface is
symmetrical with respect
to the origin, the codr-
dinate planes, and the
codrdinate axes.

2nd. The intercepts on
the axes are z = a,
y = =xb, 2= ¢

3rd. The traces in the
coordinate planes are the

¥ _ - v, z2_
elhpsesa,+ a’+c' 1, a: ndb,+— 1.
4th. The intersection with the plane z = k is the ellipse

2 at-—-k
Fta=—a o=k

7 ¥ + zZ =1 z=kF
@ —F) ,(a’ k)

or
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It is seen that as k increases numerically, the semi-axes
b V at — k? and £v/a* =~ k* decrease from b and ¢ respectively

when k=0 bo-O when k = a. If k> a or < —a the
ellipse is imaginary. The ellipsoid then lies between the
planes z = =+a.

A similar discussion shows that the sections made by planes
parallel to the other coordinate planes are also ellipses, and
that the figure lies between the planes z = 4c and y = +b.

108. The hyperboloid of one sheet

Sef-5-u

1st. The surface is symmetrical with respect to the origin,
the cobrdinate planes,
and the coordinate axes.

" 2nd. The intercepts
on the axes are z= =+a,
y = xb. There is no
intercept on the z-axis.
3rd. The traces in the
codrdinate planes are

2
the ellipse %,+1—’-2 =1,

the hyperbola :c’ i:
—la.ndthehyperbolab,—g= 1.
4th. The intersection with the plane z = k is the elhpse
z* v _ =
+ 7 =1 =z=k

a!
@+ GE+m

It is seen that as k increases numerically from 0 to «, the
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semi-axes of the ellipse increase without limit, and therefore
the surface extends indefinitely in the direction of the z-axis.
The intersections in planes parallel to the other coérdinate
planes are hyperbolas. .
109. The hyperboloid of two sheets

X

1st. The surface is symmetrical with respect to the origin,
the codrdinate planes, and the codrdinate axes.

2nd. The intercepts on the z-axis are a. There are no
intercepts on the other axes.

3rd. The traces in the coordinate planes are the hyperbolas

2

¥ =1 and 5-5 =1 There is no trace in the
yz-plane.

4th. The intersection with the plane z = k is the ellipse

5 ¥ +cz"-z’ =1 z=k
K —a) 5 (¢ —a?)

If —a <k < a, the ellipse is imaginary. If k increases
numerically from a to oo, the semi-axes increase indefinitely.
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The intersections in planes parallel to the other coordinate
planes are hyperbolas.

110. The elliptic paraboloid 2:+%; = ¢3.

1st. The surface is symmetrical with respect to the yz-plane
and to the zz-plane, but not to the zy-plane. It is sym-
metrical with respect to the z-axis only. It is not sym-
metrical with respect '
to the origin.

2nd. The surface
intersects the three il
axes at the origin
only. . ’4__,-_
3rd. The traces in I N 7od
the codrdinate planes
are the point ellipse

2 P
a—z-l‘F—O, and the X

~ao
-d

~

x

parabolasg-: = czand
2

- _

4th. The intersection with the plane z = k (where k has

the same sign as ¢) is the ellipse

z? ¥y

ke T bke

As k increases from 0 to o, the semi-axes increase from 0
to o and therefore the surface extends indefinitely in the
direction of the z-axis, lying entirely above the zy-plane when
¢ is positive and entirely below if ¢ is negative.

The intersections in the planes parallel to the other codrdi-
nate planes z = k; and y = k, are parabolas whose vertices
recede from the zy-plane as k; and k; increase in numerical
value,

N

1, z=k.
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111. The hyperbolic paraboloid 25 — ¥

The following discussion considers ¢ positive.

1st. The surface is symmetrical with respect to the yz-
plane and to the zz-plane, but not to the zy-plane. It is
symmetrical with respect to the z-axis only. It is not sym-
metrical with re-

z spect to the ori-

2nd. The sur-

\ face intersects

< ---‘:---- x the three axes at
Y the origin only.

R o 3rd. The traces

’ in the coérdi-

2 . nate planes are

Y the intersecting
straight lines z*/a? — 3?/b* = 0 and the two parabolas z*/a?
= cz and y2/b* = — c2.

4th. The intersection in the plane z = k is the hyperbola

2 _ ¥ _y
ack bk

If k is positive, the hyperbola in the plane z = k has its
principal axis parallel to the z-axis and its vertices on the

parabolaaz—: = cz. These vertices recede indefinitely as k in-

z=k.

creases from 0 to +-o0. If k is negative, the hyperbola in the
plane z = k has its principal axis parallel to the y-axis and its
vertices on the parabola %; = —c2.

In a similar manner, the intersection of the surface by the

2 ]
plane z = ki is the parabola% = —cz+ ,;—‘,,z = k;, which has
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its vertex on the pa.ra.bdla. z—:= cz. The intersection of

the surface by the plane y = k; is the parabola §= c+

2
’%’;, y = ks, which has its vertex on the parabola %,—'= —cz.

The surface extends indefinitely along all axes.
x® x; z°

112. The cone ?+b —=5=0.

1st. The surface is symmetrical with respect to the origin,
the coordinate planes, and the co-
ordinate axes. .

2nd. The surface intersects th
three axes at the origin only.

3rd. The trace in the zy-plane is

. . T
the point ellipse E*+ = 0, and
in the z-plane the intersecting

. . 2 22 .
straight lines pr i 0, and in the

x.

yz-plane the intersecting straight

4th. The intersection with the plane z = k is the ellipse
z? ¥ _
aEtpp=l =k
e ¢

As k increases numerically, the semi-axes of the ellipse in-
crease and the surface extends indefinitely in the direction of
the z-axis.

The intersections in the planes z =k, and y = k; are

hyperbolas with vertices on the straight linesz—: - z—: = 0and
v_2

B E= 0, respectively.
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EXERCISES
1. Discuss and construct the surfaces represented by the following
equations:
(@) 422 + 932 + 2 = 36.
(®) 422 — 932 + 2 = 36.
(c) 422+ 22 =4y.
@ p-22-2=4¢
(e) 422 — 22 = 4y.
) 9y — 422 — 2 = 36.
(g) 422 —-9p - 422 =0,
(h) 2/b* — 22/at — 2/ = 1,

2. Find the equation of the locus of a point which moves so that the
sum of the squares of its distances from the z- and z-axes equals 4.
Discuss and construct the locus.

8. A point moves so that the sum of its distances from two fixed
points is constant. Prove that the locus is an ellipsoid.

Hint. — Take the straight line through the two points as z-axis and
the point halfway between as origin.

4. A point moves so that the difference of its distances from two fixed
points is constant. Prove that the locus is an hyperboloid.

5. Find the equation of the locus of a point which moves so that its
distance from the zy-plane increased by 1 is equal to 1/V2 times its
distance from the point (0, 0, —4).

8. Prove that the sections of the paraboloid z%/at 4 $2/b* = cz by
planes parallel to the yz-plane are equal parabolas; also those parallel
to the zz-plane.

7. Discuss and constmctthelocusofg+$ —::,= 1. Show that
sections parallel to the zy-plane are circles. What curve revolved about
the z-axis would generate this surface?

8. A point moves so that the sum of the squares of its distances from
two perpendicular lines is constant. Prove that the locus is an ellipsoid.

113. The normal form of the equation of a plane. — A
plane is determined in position if the length of a perpen-
dicular from the origin upon the plane and the direction
angles of this perpendicular are known. This perpendicu-
lar from the origin to the plane is called the normal to the
plane.
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. The normal form of the equation of a plane s
' xcosa + ycosp +zcosy = p, (46)

where p 18 the perpendicular distance from the origin to the plane,
and o, B, and v the direction angles of that perpendicular.

Proof. — Let ABC be any plane and let the perpendicular
from the origin upon it be the line 0Q which makes the angles
a, B, and v with z
the axes of z, y, '
-and 2, respec-
tively. The di-
rection 0Q from
the origin to the
plane is always
taken as posi- .
tive, also «, B,
and v are con-
sidered positive
angles.

Let P (z,y, 2)
represent any
point in the plane and draw its coordinates ON = z,
NM =y, and MP = 2.

Project ONMP and OP on 0Q. By theorem II, Art. 97,
projection ON -+ projection NM + projection MP = pro-
jection OP. By theorem I, Art. 97, this becomes

zcosa+ ycosB + zcosy = p.

This equation is seen to be of first degree.
114. The general equation of first degree °

Ax+ By +Cz+D =0 '

represents a plane.
Proof. — Consider the equations

Az +By+Cz:+D=0 4))
and zcosa+ycosf+zcosy —p=0. @)
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Equation (2) represents a plane. Equation (1) also rep-
resents a plane if it differs from equation (2) only by a con-
stant multiplier as K. If, then,

KA = cosa, KB =cosB, KC =cosy, and KD = —p,

it is desired to show that K can be determined.
By Art. 98, cos?a + cos?B + cos?y = 1 and, therefore,

1

K’A*+ K'B*+ K*C*=1 or K =

+VA L B + C*
This shows that equation (2) represents a plane in which
A C
cosa = , COBy = )
+ VA* 4+ B 4 C? + VA*+ B*+ C?
cosf = — B = —-D .
EVETBETC T EVETBRTC

Since p is always positive, the sign of the radical will be
opposite to that of the constant term.

116. Plane determined by three conditions. — Of the
four coefficients in the equation

Az +By+Cz+D=0 1)

only three are independent, and therefore three conditions
are sufficient to determine three of them in terms of a
fourth. After substituting these values, the equation can
be divided by the fourth coefficient.

116. The equation of a plane in terms of its mtercepts.
— The equation of a plane in terms of a, b, and c, the intercepts
on the axes, 18

_+x+_= : _(47)

Let the intercepts of a plane on the axes of z, y, and z be ~
a, b, and ¢, respectively. The three points (a, 0, 0), (0, b, 0),
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and (0, 0, ¢) on the plane are therefore known and the method
suggested in Art. 115 applies.

Substituting the coérdinates of these three points in equa-
tion (1) of 4hat article,

Ae+D=0, Bb+D=0, Cc+D=0.

Whence
A-_D p__D _D
a b c
Substituting in (1),
Dx Dy _
—a " "o tP=0

Dividing by D and transposing,
z Y2
a+b+c 1.

117. The angle between two planes. — The cosine of
the angle between two planes whose equations are of the form
Az + By+Cz+ D =0 and A;:c+B,y+C;z+D;— 0
18 given by the equatum

Ady + BB, + cG .
VA* + B® + C* VA2 + B® + C®

The angle between two planes is evidently the same as the
angle between their normals. Substituting in the formula
of Art. 99, the values of cos e, cos 8, and cos v found in Art.

114, the above formula results immeBdlateg

If two planes are parallel, — A_B_ —C—; and if they are
perpendicular, A4, + BB, + CC; = 0. The proof is left
to the student.

118. The distance from a plane to a point. — By finding
" the equation of a plane parallel to the given plane and pass-
ing through the given point, and computing the difference of

cos® = (48)
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the distances from the origin to the planes, it is found that
the distance from the plane Az + By + Cz+ D = 0 io the
point Py (zy, 1y, 21) 18

Ax, + Bxx~+ Cs, + D
VLB T O “

tn which the sign of the radical is opposite to the sign of D.

1. Reduce the following equations to intercept and normal for:ns:
@ 7z2—-2y~2z+14 =0,
®) 2z4+6y—3z—42=0.

2. Find the equations of the planes which satisfy the following con-
ditions:

(a) passing through the points (1, 1, 0), (—2, 1, 2), and (4, 0, 1).

(b) parallel to the plane 7z 4+ 2y 4 10z 4 25 = 0, and passing
through (3, 1, —2). .

(c) perpendicular to the plane 3z + 2y — z + 11 = 0 and pass-
ing through the points (1, 0, 1) and (-1, 1, 1).

(d) z-intercept = 5, y-intercept = 3, and z-intercept = —7. - )

(e) distance from origin to plane = 5, cos @ = {, and cos 8 = —4.

(f) passing through the point (1, 5, 6) and perpendicular to each
of the planes 4z — 5y +2z2=5andz —y +2 = 3.

(9) passing through the points (1, —2, 3) and (5, 0, 3) and at a

- . distance of 3 from the origin.

(h) at a distance of 2 from the origin, the normal making equal
angles with the axes.

(3) perpendicular to the line joining the points (4, 3, 1) and (1, 3, 5)
at its middle point.

() containing the z-axis and the point (z;, 1, z1).

(k) passing through the line of intersection of the planes 4 z + y +
2z2=3 and 2z + y + 2 =1, and perpendicular to the
plane3z + 4y — 2z =7.

Hint. — The equation of the plane through the line of intersection of
the two given planesis4z+y+2z2—-3+22x+ y+2—-1) =0,

(!) perpendicular to the line through the points (4, 3, 1) and
(2, 4, —1), and five units from the origin.
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8. Prove that the planes z4+y+2—-1=0, 224y -2 =0,
24+ 6y+4z4+1=0,and 5z + y — 4 = 0 meet in a point.
4. Prove that the four points (8, 15, 4), (2, 1,0), (0, 3,2), and (2, 3, 1)
lie in a plane.
5. Find the distance from the origin to the plane through (0, -3, 2),
(2, 1,2),and (5, 3,0). In which octant does the foot of the normal lie?
6. Find the angles between the following planes: .
(@) 4z—T7y+4z2=>5and 3z+4y =17.
®) 3z—2y+6z=7and 42— 3y +12z2=0.
7. Find the equations of the planes bisecting the angles between the
planes 4z — 7y + 424156 =0and22 -y —2z2 -5 =0.
8. So determine K that the plane 3 z + Ky + 12z = 26 shall be
(a) two units from the origin.
(b) perpendicular to the planez + 9y — z = 5.

119. The general equations of a straight line. — Two
planes intersect in a straight line. It has been shown that
the locus of an equation of first degree is a plane and that the

- curve of intersection of two surfaces is defined by considering
their equations simultaneously, hence:

The locus of two equations of first degree

Ax+By+Cx+D=0, Ax+By+Cazs+D,=0
18 a straight line.

120. The equations of a straight line through a given
point and in a given direction. — The equations of a straight
line passing through the given point Py (21, 31, 21) and having
direction angles a, B, and v are

oHm_ Yo 3., (50)
cosa cosB  cosy

Proof. — Let P (z, y, £) be any other point on the line, then
by Art. 98,
— T Yy—n z2—2

cCoOBa = d ] cos d ) ‘Y— d .
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Solving each of these equations for d and equating, .

z—zl=y—y;=z—zl.
cos cosf  cosy

If instead of cos «, cos 8, and cos vy, numbers a, b, and ¢
proportional to them are given, it is readily seen that the
equation will take the form

x_xl_y_yl 33— (51)

121. The equations of a straight line through two given
points. — The equations of a straight line through the two
poinds Py (31; %, 21) and P, (xm Ys z’) are

x—x1=y—y1=z—zl. (52)
Xg— % Ys—)1 B~ .

Proof. — Substituting cos a = 2 ; % cosp =1 - v

cosy = z%zl, in equation (50), and dividing by d, the re-

sult is

x—-xl_y—yl_z-—a.

To— T Yo—Uh &—2

122. The projection form of the equations of a straight
line. — A plane through a line perpendicular to one of the
coordinate planes is called a projecting plane of the line.

If between two equations in the form Az + By + Cz + D
= 0 and A1z + By + Ciz + D, = 0, one of the variables is
eliminated, an equation in two variables results. This from
Art. 101 is a cylindrical surface with elements parallel to that
axis which corresponds to the variable eliminated, and with
its trace in the plane of the other two axes. The equation is
of first degree and the cylindrical surface is therefore a plane.
This plane is the projecting plane of the line. Two such
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planes will determine the line. By eliminating z, y, and z in
turn, the projecting planes of the line z + 2y + 32z = 6,
2z—y—3z=>5arefoundtobe5y+92=7 5z —32
= 16,and 3z + y = 11.

123. Direction angles of a line. — If the equations of a
line are given in the form Az + By + Cz+ D = 0, Az +
By + Ciz + D, = 0, the direction cosines of the line may be
found by a process illustrated in the following example.

Find the direction cosines of the line x + 3y — 22 = 2,
3z —2y—42=>5. Having determined two of the pro-
jecting planes to be.z —~ 8y =1 and 11y — 22z = 1, the
values of y may be equated, giving '

z—1 y 2z+1 z—1_y_2z2+%

8 1 11 -8 1 -1

This is in the form of equation (51) and therefore the direc- |
tion cosines are proportional to 8, 1, and 4. Dividing by
V8 + 12 + (3)* = § V381, the difection cosines are found

2 11
to be 2 _
\/38 V381’ V381

EXERCISES

“1. Find the equations of the lines through the followmg pairs of
points: (a) (0, 0, 0) and (1, 2, 2). (b) (1, 4, 0) and (3, —2, 3). (c)
1, 5, 1) and (—6, 1, 5).

2. Find the codrdinates of the points in which each of the above lines
cuts the cobrdinate planes.

. Find the equations of the lines determined by the followmg con-~
dmons
(a) passing through the point (3, 0; 1) and having cosa = 37_
3. '
3vs :
(b) passing through the point (5, —3, 1) and perpendicular to the
plane3z — 6y +32—-7=0.

and cos 8 =
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(c) passing through the point (3, 0, —1) and parallel to the line
z—5_y+ll_L.
3 4 12
(d) passing through the origin and perpendicular to the lines
x—;4--y——':'6--lz—land:c+3y—z—3-0,3.1:+5y+
z—1=0.

4. Prove that the following pairs of lines are perpendicular:
”"l-l-""z z+l_y—3_z+6

@ === ad = 7~ -1

®2z-—y+2z-2=0,4z2+y—4z—4=0andz+7y —
t+8=0,z+3y+3z+4=0. '

6. Find the angle between the following pairs of lines:
z_y+l _z+2 z_y_2=1,

@3= —z »dg=1=T3

b)z—4y—32—-4=0,22-2y+3z+1=0and 4z +
4y4+32—-4=0,424+y—62z—-1=0,

6. Prove that thelines5x +8y —2+4+20=0,5z -8y +32z —
32=0and4zxz+y+2—-2=0,42+4+2y+3z2—1=0meet in a
point and find the angle between them. ]

7. Prove that the points (1, 0, —3), (4, 1, —1), and (7,2,1) lieon a
line. .

8. Prove that theline2z 46y +2—-2=0,22~-3y —-22z-2
-0isps.mllel§otheplane2x—3y—2z-l.

Hint. — Prove that the line is perpendicular to the normal to the
plane.

9. Prove that the three planes 4z +y —2+3=0,122 —y — z
—5=0,and 4z — 3y + 2z — 11 = 0 meet in a common line. Find
its equation and direction cosines.

10. Find K such that the lines z -3y +3=0,z+y~-2—-1=0
and 7+ K)z -7y +72—-28—-K=0,6x+ 72z — 6 =0 are per-
pendicular.

11. Find K such that (4, 15, K), (1, K, 2), and (-2, —1, —3) are col-
linear.

12. Prove that theline2z +6y+2—-2=0,22 -3y —22—-2
= 0 is perpendicular to the plane 3z — 2y + 62 = 1.

18. Find the projecting planes of the ine 3z + 2y +2 =1,z —
4y —2z2=3, .
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14. Find the equations of the planes satisfying the following con-
, ditions: : )
| (o) determined by the parallel lines 271 = L3 = 2 4ng
z+1 _y—38_z+1

-2 3 —1
®) determinedbytheimersecﬁngnnes’;‘-l%?-ém

z+2_y+4=z+l

3 2 1

(c) containing the points (1, —1, 2) and the line
x—l_y+2_z—[
2 4 2
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Art. 10. Pages 21 and 22.

y+v%x-3+2v”
-4y =2z =5

z=-y=1

z+3y =14,

T z+y=1.

9 22—y =25.

11, (b) 2* — 6z + 12— 4y =12,
r—4z4+p—-6y+4=0.
2 —-2z+4p —4y =20.
B=-2z+12 -6y =15,
#2—-8z4+y+8y+22=0.
B—-4z+1 -8y +10=0.

pore

BREEE

Art. 13. Page 40.
8. (@ ®*=6y—9.
(© v»*+8y+4z4+20=0.
d -2y —42x+13 =0.
(€) 322 +3y2 — 18z — 14y 410 =0,
) 922+ 2532 = 225,
(9) 162 — 9x* = 144,

Art. 14. Page 41.

(6,8) and (—14, —48),
1, +£2).

(4,3), (=4, —3), 3, 4), (-3, —4).
(2, 3) and (—4#, 142),

(2, 2) and (-4, 48).

10. (0, 0), (‘/. ‘/‘_*) and ( V3 _‘_/_-)

4
11. (a,2a) and (94, —6a).
17. #l

LB

231
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19,
11

PRSoor

Lol off

7.
9.
1L

“e P

b}

i,—l,w.
5 V8 5ViE
¢ 2’ ¢

Art. 19. Pages 49 and 50.

@z+3y=2 ()3z+y=12. (g z+y=86.
p—y =28, z4+2y =17, and Bz4y+14=0,
z24+y=56 and y—z=1.

z—y=6  bxr—2y=3l, and z+2y=7.
y—z=2 and z+y=6.

(@) 2y ==.

®) 2z+y=0.

© y@-v3) +2(3v3+1) =0.

Art. 21. Pages 51 and 562,

(@) 3z—y="17.
3z+7Ty=2, z4+y+2=0, and y= -1,
2z24+y+5=0.
z—6y=9 and 3z-5y=1,
y=1 12z4+y=21, and 3z+2y =17
2z2-3y=12, 3z—y=4, and z+4+2y+1=0.
z =4

Art. 24. Page 56.
y+2zv3=10
@ z+y=56V2 () z+y+5vV2=0,
®) y+zV3=3.
z+yVv3=3

Art, 26. Page B8,
z—2y=0, p=0.
z+y+9=0, p-—*\/ﬁ'

Art. 26. Page 61.
Ty 2 2 8. 4,38 W

Art. 27. Page 68. ,
2z =3andy =0. : 2 7z4+y=6and7y~z=@6,
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Miscellaneous Exercises. Pages 63 and 64.

8 (@) 42—-3y=0.

®) 6z+12y+13 =0.

4 (@) 5y — 12z =52,

7
8.

10.

Rk o

10.

() 12z -5y = 26.
y—2z=5V5. .
14.
m — .
\/—2_6,3\/2,md5.

4, 2). )

@ z+y=0, 7Tz—y=24, and y = -3.

® 172 —-17y = 4, 7x+l7y=0 and 6z =1.

() 2+y=0, 32—9y+16=0, and 2z—y+4 =0.

11z — 68y = 456.
(a) 3\/1—3. () 3V5.
Art. 28. Page 67.

3z+y=-5 3y—=z=5 and z4+2y=35.
90°, tan—t §, and tan—1 3,

y—3 (z 2) and y — 3 V3+1(z 2).
_ =,1+\/‘ _ _ V3— _
y—1 \/5_1(3 2), y—1= l+\/—(3 2),
1+ V3 s/s
y+38= Vi (z+2), v+3= ( +2).

" Art. 29. Page70. -
(@ y=2z+5V5.

() y =2z +12.

@) y=2z-3V5.

(a) y—3z =10,

® 2z—-85y =2

© y-— 2:-6andz—4y-4
@Dz+y+6= 0

(¢) z+2y+8=
(a)z+2y-4\/5.

() 4z +3y = 20.

() 4y—3x=20 and 4y + 3z = 20.
@ z+y=4V2

233
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6 z+y=4

7. y+2z=6and y 48z = 12.
8 2z+y+10=0

9 z+y==x2V2

Miscellaneous Mples on Chapter III. Pages 70, T1 and T73.
1 3z+4+2y=16andy =2z + 1.
2 z—8y=9andy+2=0.

4. The equations of two sides of one trianglearey — 2 = ——— (z -3)

and y+4-7(z 3), and of the other,y — 2=7.(z—3)a.nd

y+4-——(:c—3).

8 z-3y+10 Oand3z+y=0 (5, —1%) and (35, $}).
9. (b) 5z+25y = 143.

(c) 103z + 44y = 91.

@ 3z+y=1.
1, 4y —72+16=0,29y + 282+ 26 = 0and7n:—y=l7
16. (@) C = -3 A.

(d) C* =25 A* + 25 B,

() 34+5B+C=0.
18, 3z —2y =5. )

Art. 39, Page 98,
& () V2t —2=0.
@) —522 4202 +8V5z —16Vhy = 26.
6. yvV2=1

Art. 41. Pages 96 and 97.
2 (o) 220 =09.
(c) 42 — 2 = 4.
8 (0) ?+3y+4zV2—-6yV2=2
b ®—p—22—-2y=4.
4 (1, -1),22 -y =0,andz+2y =0.

Art. 42. Page 99.
tgd)):g;;;)’ 2 (22 — o).
e =
@ 2+ =a(VE+y—2).
@) z(@ 4+ =2a
8. (a) p* = 40.
(b) p*cos26 = 16,
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Art. 43. Page 101,
(@) 2 —4z+ 2 — 2y = 20.
© 2+2z+p—6y+2=0.
@ r*—10z4+»—-12y +25=0.

Art. 46. Pages 106 to 109,

(@) *+2z+1y*—-8y+1=0.
Xb) 22432 — 6y = 16.

@ #*+2z+y*— 6y =90.

(f) 322 — 44:v+3y’+112y+41=
(9) 2 —=6z+p—8y+9=0.

4. z—y+4=0.

[}
by

2z -3y =5; —4.

2z 43y =13.

(@) * =12z 432 — 8y=48and:c’+l6z+y'+20y+64 =0.
() *+6z+1p+6y+9=0and2*+2z+9p2—-2y+1=0.
@ 22+4z+y*—2y=20.

() 52+ 54" +20x — 80y +308 =0and 52 — 20z + 52 = 52.
N 2+ +4@y—2)V2+8=0.

2 —6z+y*—8y=0.

- 2x+y’—10y+l—0andx’ 34x+y'-l70y+289 =0,
4+ +8y=09.

Art. 48. Page 116.
(@) ¥ = —9=z.
® pP+ay+4z+12=0.
(c) 2* =12y + 36.
d) 2*—2z—12y+13=0.
() (y—1)2 =4z
) 2+92+6zy—56z+562y+14=0.
y=—2z.
2+yp—-5y=0.
(@) * —4x =4y +16.
) »r—4z=4y—12
Ty =24z — 36.
4y+3z+4+3=0; (-4 —%).

Art. 0. Page 119,
(-2, -2); (=2, —-1); 6, y=—-% z+2=0.
(3,3); (1,3); 8 z=5; y=3.
(-1,2); (=1, ); § 12y = 29; z = —1.
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-Ld; (-LP; 2; 8y=1l;z=—1,
& Q4,8;1; 2z2=1; 2y =8,
(-4 1); (1,14 122+13=0; y =1,

Art. 54. Pages 126 and 127.

(a) (&5, 0); (&4, 0); 4z = £25; 4.
®) (£4,0); (£2,0); z = +8; 6.
(©) (0, £5); (0, &3); 3y = £25; .

@ 2+L=1 O E+L-1 O HtL-1
@z " 9—”‘-1. © §-5+£- .o+l -
) 1—2+’§-1. W Z+¥L-1. o F+¥-1

@ S GEF_, ) CEY "’;';2)’=1.

@ (.1:+1)’+(1/+2) L ® (x+l)’ @-2'-51)"’1

2+ =25 (4, +3) and (—4, £3).
15y —8z=24and 15y + 8z + 24 = 0, 4.
25 2% + 91 = 225.

Art. 56, Pages 130 and 181.

(@) (-2, 1); (~2, 3) and (=2, —1); (—2, 5) and (-2, —3); 4
and 2 V3; 6; y=9andy = -7,

.0 @ -1); (2 2) and (2, —4); (2, 3) and (2, —5); 4 and v7;

2

$;,3y=13and 3y = —19.

(© 1, 9; (1x£2V?2, 4); (5, 4) and (~3, 4); 4 and 2V?2; 4;-
:c-l:t:4\/_

@ (=3,1); (-3:4:5~/§ 1); (7,1) and (—13, 1); 10 and 5; 5;
3z=—9+20V3, .

(€) (-1, =3); (2, —3) and (—4, —3); (5, ~3) and (—7, —3);
6and3\/3-; 9; z=11and z = —13.

O (=3, 1); (=8, 3) and (=3, —1); (~3,7) and (-3, —5); 6
and 4 V2; 32; y = 19and y = —17.

16 2% + 25 32 = 400.
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Art. 59. Pages 136 and 187.

9
(a)Ga.nle,s,(O +3); (0, £V31); y = =n=7-§_4
(b) 8and 4 V3; 6; (£4,0); (£2V7,0); z = :l:v..
' ® 3P . : A 164
(a)Z—T-l’ (b)—_T 1;
2 ¢
®_¥ 2 _¥.
@ F-7=1b ODie—g=b
0F-f
2_ .. LB AP
@§-5-1 OF-F-1 O F-G-u
$ o2 P 112
@ F-7=U @ F— =L

@ (y 3)' (z;-51)’_1;(_1,3ivﬁ);_(_1,7)md(-l—l):&‘-

36
( 6 -3); 18.

@ QB _ @Dy 1 11) and (-1, -5 2.
(@) (3—2)’_ @;71)’- 1; ®) (1/ 6)’ (xj'sl)’-l;
© (y—l)’ (z-l|;2)’_1; @ (y+3)’ (z-:l)’_l;
© (3-4-7)'_(11;&;1)",1;' ) ¥ 92):_(::;2):_1
z2_¥_
16 20~
Hoote _ ainte _

a® b *

Art. 61. Page 140.

(@) (1, 2); 2and 3; (1 £ V13, 2); (3, 2) and (-1, 2); 9.

®) (3, —2); 2and 4; (3, —2+2VE); @, —4) and (3, 0); 16.
(&) (3, —=1); 1and 3; (3, =14 V10); (3, 0) and (3, —2); 18.
@ @, —-1); 3and\/- (1¢2V‘ 3,—1); (4, —1) and (=2, ~-1);2.
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() 0,4-;); V7and VZ; (}, —3) and (—§, —=); 3 £ V7, ~§);

77. .
) ©,1); $and 4; (0, 1 = $ V29); (0, 4) and (0, —); 20

2 2y+52-3y="T.
3. 4 — 28 =100.
v_2_
Ll
5.(-2'—1)’ By—-1)2_
2 102
Art. 64. Pages 143 and 144.
Ly=2352L_7_ 2 4y = +3z; 3
i3z~ L 3 M.
8. 947 — 420 = 36; 4and 6; 9; (0, £VI3); y = *%13'
B. 428 — 1242 = 75. 8. 423 — 8 = 36.

T 4P 4+8y -2 +22-1=0. 16 42 — 92 = 64,

Art. 65. Pages 149 and 150.

2 (@) 3z—y=2;3y+z=4.
®) y+4z=13; 2 —4y+18=0.
) 3z—y=2;z2+3y = 14.
@y—22=3;z+2y=1.
() 4z + 5y =25; 252z — 20y = 64
Ny=42z=2
(9) 162 —y =36; z 4+ 15y = 138.
(h)a:—3y+4=-0;3a:+y=.28.

Art. 67. Pages 164 and 155.

L (@4z-y=24y+2=9; 48
) 3z+4y =25; 42— 3y =0; —48; 3,
) z—y=4,2+y=4;0;0.
@) 4z+y=8z—4y+15=0; —1; —16.
(€ 3z+y=72-3y=09; % 6.
(f) 4z+3y =16; 16y — 122 = 27; —1; —4.
(g)y—x-lo,y+x-4 7 7.

2 y=z;y= -z

8. 3244y =7;42-3y=1.
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@ y=3;z=2.
®z+y+1=0z—-y=3.

(c) 15z 4+41y=—9; 1232 - 45y + 456 = 0,
d)z2-3y=4;3z+y=12.

1. , 8. tan—1 (—42).

V2

z+y= :l:\/.‘?i; T—-y= +V34,
(@ @,-2. & @2).

Art. 68. Pages 1566 and 167.

(a) 4z + 3y = £25; (x4, £3).

® y=z+2; (O,2).

(c) 4z +y = £8; (%1, +4).

@y=2z-3; y=2z-9; (0, -3); (4 —1).

3z 4+ 10y = £25.

2z -y =05.

bz + ay = +abV2.

3242y =0;3z+4+2y+4=0;22=3y; 6z—9y = 8.
Art. 70. Pages 162 and 163.

(@) z+12y +16 =0. 4 (2, 2). 5. (1, —6).

z = *a. 10. y+5=0; 4z+ 3y = 25.
Art. 72. Pages 168 and 169.

9y+2z=0. 3. y=4. 6. y=2;y—z=%.

(£2Vv2,F2Vv2). 8. z—y=2 9 4y+z=5.

Art. 76. Page 176.

(@ —4z+4=0. ®) 5224 Vbz =2,

(c) #+2y—yp=0. '
@§+%=L (w§-§=L © #p—yp =0,
@ 542 =09. (&) 1 =3z.

Art. 76. Page 176.

@ 2—yp—2z+y=0,

®) 2+ay+2p—-3z—4y+2=0.
(€) 722 —Tay+3y2+ 21z — 8y = 28,
2y+yP—38z—y=6,
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B—-2zy4p=1.
3z*+4zy+y=0.

422 -8z 4+~ 10y +4=0.
ypr—6y—224+8z+9=0.
48 —42y+Pp—4z—y=0.

Art. 96. Page 201.

(-2,1,4). 2. (1,6, —3).
1:2. 6. 2:1; 8, —3,0)..
(17,6, =2). 7. (0, 6, 0).
Art. 98. Pages 204 and 2085.
+} V3.
3 1 2
*7m T v Vi

ﬂ:“r i*) :FB _8’ -49 1.
(4, 120°, 135°, 60°) or (4, 120°, 135° 120°); (—2, —2V'2, 2) or
(-2, —2V?2, -2).

(10, —1, —2).

"Art. 89. Page 2086.

5
. 2. cos! —peo

00rl'l“ 3 7 izm |
* Vo Vi T vim T

Art. 100. Page 207.
z—-3y+2z2=4. 6. »—2y—6z+10=0.

Art, 102." Pages 208 and 209.

(@ (1,3, -1); 4 ® &G -4 3

PP +24+42=45 and P+ P42 —20z+451 =0.
r+2-10z=0.

B—dz 4 —2y+2+22="1

B+2z2 4+ —-6y+2+10z =14,
2?—8z+1+4+8y+2—-142=0,

B+ +2+62=40 and 2+ (y — )+ (2 — 49R)* = 40,
BHyp+A=4

?—-2z+pP+6y+22—8z=255

B —2z4+Pp—4y+2+22=18; (1,2 ~1); 2VE.

-2z —-4z4+5=0.
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Art. 108. Page 211, -

(6 P+2=2. ®) 4224+ 92+ 42 =16.
(€) 2 42 =4z @ B2+p-—2=4
(e)z‘+z‘—y'+2v-l
@Z+L+5=1 ®Z+L+5-1
P +2=16 6. z’+y’+f—l4z+33-0.
Art. 112. Page 220.
B2+ A2 =4, 6. 24+yp—~-2+442414=0.
Art. 118. Pages 224 and 226.
(@) 2z+9y +32z=11.
® 7z+2y+10z2=3.
() z+2y+T72=8.
@) 21z+ 35y — 152.= 105.
(e) 2z —y 22z =15.
() 3z+2y—2z=1.
@ 2=3 and 3z—6y+22=21,
®) z+y+2z=+2V3
(@) 82—62=09.
G) 2y —zy = 0.
%) 2z—y+2z2=3.
{1
(a) cos™ }§.
() cos §¢.
z2+2y—5z=15 and 6z—5y —z=0.
‘(@) K = +4.
® K=1.
' Art. 128, Pages 227, 228 and 229.
zﬂyaio 3—1_1{_—4=£.
@i=3=3 ®) —— 3
(c)z;l_yzs-z:;.
(b) (1 40); (;’10)2)» (0)7; -*)-
:c—3 _¥V_ z—l. z—5=y+3_z—l
@ =5~ x4 ® = —2 1
z—3 vV z+1 z
@ =3 =1=""13" @F=5==1

12
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0 lo .
8. (a) 45°. ®) oorl7vm
10. 2.
11 7.
18. 7z =514y 472 +8=0.

i (@) 2z+y=1. ® z+y—-5z+1=0.
. () 11z=-6y—z=14.
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Abscissa, 2.
Angle, between two lines, 7, 64,
205.
between two planes, 223.
Area of a triangle, 15.

Asymptote, 33.
of the hyperbola, 140.

Bisectors of angles, 61.

Circle, equations of, 100.
Cissoid, 195.
Cone, 219.
Conic sections, 110.
rectangular equation of, 111.
Conic through five points, 175.
Confocal conics, 169.
Conjugate diameters, 167.
Conjugate hyperbolas, 142.
Cobrdinate planes, 197.
Coérdinates, Cartesian, 2.
rectangular, 3.
polar, 73.
rectangular in space, 197.
polar in space, 203.
Cyecloid, 190.
Cylindrical surface, 207.

Diameter, definition, 163.
of parabola, 165.
of ellipse, 163.
conjugate, 167.
properties of, 166,

Directed lines, 1. ~
Direction angles of a line, 227.
Direction cosines, 203.
Directrix of conic, 110.
Discussion of equation,
rectangular codrdinates, 27.
polar codrdinates, 77.
in space, 212.
Distance, between two points, 5,
198.
from a line to a point, 58.
from a plane to a point, 223.

Eccentricity of a conic, 110.
Ellipse, equations of, 120-125.
" construction of, 128,
Ellipsoid, 214.

. Elliptic paraboloid, 217.

Epicycloid, 191.

Equation of a locus,
rectangular codrdinates, 18.
polar codrdinates, 76.
in space, 206.

Exponential curve, 177.

Extent, 30, 78.

Focal chord, 113.
Focus of conic, 110.
Function and variable, 24.

General equation of second de-
gree, 171,
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