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PREFACE.

Tae immediate design of this book is to fill a want
which has grown out of chang®s in the programme of
instruction at Harvard College. Professor Peirce’s trea-
tise on Analytic Geometry, which forms the first book of
the Curves and Functions, was written at a time when
this part of the mathematical course was confined to stu-
dents who pursued it of their own choice. Since that
time, Analytic Geometry has been included among the
required studies; and thus has arisen the need of a text-
book better suited than any we have been able to find to
the purposes of general instruction.

In respect of methods of treatment, Professor Peirce’s
work has gexierally been closely followed. While that
book, however, is designed as an introduction to the
higher mathematics, for students of special mathematical
taste, and is meant to be used in connection with lec-
tures, the purpose of this book is to close the mathemat-
ical course of general students, and it aims at a fulness
of treatment which will leave the necessity for only such
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explanation and comment as may suitably be given in
the recitation-room.

It will be seen that I have departed somewhat from
the common course of mathematical text-books in the
occasional introduction of illustrations drawn from Phys-
ics, and in sometimes following out to a considerable
length merely speculative views, such as the relation be-
tween the forms of the conic section. I cannot but think
it a mistake to confine the general student to the methods
of Mathematics, — to drill him in processes which are
to him dry technicalities, without calling his attention
either to its purely intellectual value, or to its importance
as an instrument in Physical Science. Whether I have,
in any dégree, succeeded in avoiding the consequences
of this course, which seems to me unjust to the powers
of the pupil and to the true character of the science,
experiment alone can show. :

I would- acknowledge, in closing, my obligations for
the aid and encouragement which I have received from
others. Professor Peirce has given me the benefit of his
advice in repeated instances. 'Whatever merit the book
may have is owing, in a great degree, to the assistance
of Mr. C. W. Eliot, who, besides many less definite, but
important services, has read and criticised a considerable
part of the manuscript before it was sent to press. To
other friends I am indebted for suggestions which have
added value to these pages.

CAMBRIDGE, February, 1857.
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REFERENCES.

THE references are made to Professor Peirce’s “ Course of
Pure Mathematics.”

Geom. signifies Geometry.
Tr. “ Plane Trigonometry.
Alg. « Algebra.

ERRATA.

!

In § 106, substitute the following values for those which are
there given: —

Ex. 6, tan)'=—3—}a/13.
Ex. 9, ¥ =1;

“ Ans. y = + tiTl/_5






ANALYTIC GEOMETRY.

CHAPTER. L
GENERAL REMARKS.

1. Tee modern mode of treating Geometry took its
beginning and has its foundation in the application of
the algebraic method of reasoning, first effected in a sys-
tematic form by Descartes, to the solution of geometrical
questions. Some of the merits of the algebraic method,
such as clearness and conciseness in statement, in opera- .
tion, and in result, and the exclusion from the process of
.all irrelevant and superfluous conditions, must have oc-
curred to you in solving the examples in Algebra; and
many other advantages are brought more clearly to light,
when it is applied to Geometry. Especially may be men-
tioned the property of generality, which enables us, by the
substitution of letters for numbers, to pass from the sep-
arate consideration of particular problems to the investi-
gation of questions which include the particular problems
as nothing but special cases, and which has given the
dignity and value of a science to a system originally pro-
posed as a convenient method of overcoming some diffi-
culties in the theory of curves.. Under the algebraic

1
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Analysis. Analytic Geometry.

treatment of Geometry, the study of details and of iso-
lated propositions becomes subservient to the comprehen-
sion of the profound and central principles of geometric
truth, and to the full and harmonious development of
our conception of the nature and the laws of space, its
parts, and its contents.

A good illustration of the manner in which Algebra may be
made to lead to general results, and in which these results are
often advantageously discyaged for certain marked and (so called)
singular cases, is afforded by Alg. arts. 126 (ex. 25, 81, 38, 39,
41, &c.) - 134.

| 2. The name AnaLysis is given to any method which
s applied to develop a mathematical science in a general
form, and on the basis of universal and fundamental prin-

‘ciples. This word, however, when not otherwise limited,

is commonly to be understood in a technical and con-
fined sense, for what is properly called Algebraic Anal-
ysis, or the species in which the instrument employed is
the algebraic process. Thus, ANaLyTic GEOMETRY is .
the Science of Space (that is, of Position and Extension)
as unfolded under the forms and by the operations of
Algebra.

It will be seen that the above definition of Analytlc Geometry
covers Trigonometry ; for there also the reasonings are principally
conducted, not, as in Elementary Geometry, by direct and, con-
stant reference to the figures, but through symbols and accord-
ing to algebraic rules. The scientific value of Trigonometry
consists in its method of denoting two simple but essentially dis-
tinct classes of quantities, namely, lines and angles, by symbols
which may be brought into the same formule, and by means of
which the fundamental properties of those quantities, considered
relatively to each other, may be investigated. Hence, Trigonom-
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Three Parts of an Algebraic Solution.

etry, when looked on as pure science (that is, not from the prac-
tical point of view), is an introduction to Analytic Geometry,
though it wants the characteristic features of the Cartesian
system.
3. The process of solving any problem by Algebra
. consists of these three parts: —
1. The putting of the question into equations ;
II. The solution of these equations ;
III. The interpretation of the results.

The first step is taken by representing the known and
unknown quantities by letters (or numbers), and express-
ing the conditions which affect them by means of equa-

- tions in terms of these letters (Alg. arts. 101, 102). The
second is exclusively algebraical, depending wholly on
the form of the equations, and not at all on the nature of
the problem.

The equations

ax=by, zty=c¢
will always lead to the result

xr = .

be ac

a+v YT ey
whether they arise from a problem in Geometry, or in Physics,
or in trade, whether the letters represent all one kind of quantity,
or different kinds, and whether lines, surfaces, dollars, or ounces,
whatever be their absolute or relative magnitude, and whether
the @®nditions which the equations express are accidental or
arise from the nature of the quantities. ~

The interpretation of the result of an algebraic process
requires only a knowledge of the notation adopted at the
outset of that process.

If in the above example the letters denote lines, those which
are unknown may be found by measuring a, b, and ¢, and substi-
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Geometric Construction.

tuting their numerical values in the expressions for = and y.
Thus, if @ denotes a line 2 inches long, 4 a line 4 inches long,
and ¢ a line 3 inches long,  and y will denote respectively lines
of 2 inches and of 1 inch.

Thus the algebraic method, by separating the reason-
ing on a problem from its subject-matter, becomes equal-
ly applicable to all classes of questions in which the con-
ditions can be reduced to the form of equations. Hence
we may say, in general, that whenever the first part of an
algebraic solution is possible, the whole is possible; for
though a problem in (for instance) Geometry may lead
to equations which cannot be solved by the ordinary
methods of Algebra, such difficulties do not arise from
the geometric nature of the problem, but are as likely to
be met with in one application of Algebra as another.

4. The mode of representing the quantities in any
problem by letters is, of course, arbitrary; but, for uni-
formity’s sake, a certain notation has been agreed on and
is used throughout Analytic Geometry. A peculiar
method has also been invented, by which the most com-
mon algebraic quantities may be interpreted without re-
gard to their numerical values; by which, for instance,
the lengths of z and y, in the case just mentioned, may
be found without measuring a, b, and ¢. This method
necessarily rests on the conventional system of notetion,
which is conveniently explained in connexion with it.
The interpretation of algebraic expressions is, in Analytic
Geometry, called the GEomETRIC CoNsTRUCTION of those
expressions.

5. It has already been pointed out (Alg. art. 139)
that some conditions which may limit the values of



§5.] GENERAL REMARKS. 5

Magnitude and Figure.

quantities cannot be expressed by equations, so that
analysis is unavailable in problems which depend on
such conditions. Some properties of geometric quan-
tities are apparently of this kind. We can easily ex-
press by an equation that a line is three inches long;
but that it is straight, or is the circumference of a circle,
cannot directly be put into algebraic language. The
quantities considered in Geometry have two funda-
mental and essentially distinct properties, namely, Mag-
nitude and Figure. Now, in Algebra, as the letters
denote only magnitudes, equations can express nothing
but relations between magnitudes; so that a difficulty
arises in the application of Algebra to those problems (the
most important in Geometry) in which Figure is con-
cerned, and it is felt in the attempt to put the problems
into equations. The method by which this difficulty has
been overcome is the remarkable invention of Descartes,
on which Analytic Geometry rests, and which has sug-
gested a new view of all those branches of Mathematics
which depend on Geometry. It will be explained, after ".
those problems which admit of direct algebraic treatment
have been considered.

1.
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Line.

CHAPTER II

THE GEOMETRIC CONSTRUCTION OF ALGEBRAIC
QUANTITIES.

- 6. Rule. In Analytic Geometry, every letter properly
jdenotes a line.

7. Scholia. a. Each Roman or Ialic letter expresses the
length of the line, without (primarily) any regard to its direction.
Thus, if AB (Fig. 1) be denoted by a, we may also take a (at
least when considered independently of its sign) to represent any
line of the same length as AB, whatever be its position, and
whether it be straight, broken, or curved. In a few instances,
however, which will readily be recognized when they occur, the
direction of a line is implied in the Roman or Italic letter the
value of which expresses its length.

5. The numerical measure of the line may, when known, be
substituted, at pleasure, for the letter which stands for the line;
but it must always be remembered that what the letter denotes
is not the number which measures the length, but the length it-
self. Thus, if AB (Fig. 1) is 2 inches long, and an inch is the
unit of length, we shall have @ = 2; but if half an inch is the
unit, a = 4. Here ¢ has two different numerical values, while
that which @ really represents, the actual length of the line, is in
both cases the same.

¢. Greek letters, on the other hand, denote lines, with refer-

" ence only to their directions. Thus, if the line O4 (Fig. 8) be
called o, any line parallel to O4, whatever be its length, may
also be denoted by a.

8_. Problem. To construét ab.
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Surface. Solid. Angle.

Solution. Draw (Fig. 2)

AB = a,
and perpendicular to it (Geom. § 133)

AC = b.
Through 4 and B draw any two lines parallel to each other, and
through C a line parallel to A5, and meeting the former paral-
lels at D and E respectively. ABED is, then, a parallelo-
gram; and, because the area of a parallelogram is the product of
its base by its altitude (Geom. § 247), it is one value of the expres-
sion @ b. Since, however, we may conceive a surface of any fig-
ure whatever, such as a triangle or a circle, which shall be equiv-
alent to this parallelogram (i. e. also equal to ab), and since
nothing but a surface can be equivalent to it, we may conclude,
in general, that the geometric construction of @ 4, and therefore of
any expression which may be resolved into two factors, each of
which denotes a line, is a surface.

9. Problem. To construct ab c. .

Solution. This.expression may be constructed by a parallelo-
piped of which the base is equal to ab and the altitude to ¢
(Geom. § 862). Hence, by reasoning similar to that used in § 8,
a b c represents, in general, a solid.

10. Rule. Ah angle is denoted by writing the letters
which represent its sides, one above the other. Thus,
AOB (Fig. 8) is #, which may be read, the angle which

8 makes with e, or, more simply, alpha-beta. Such sym-
bols must be carefully distinguished from fractions.

11. Scholium. Instead of measuring an angle by de-
. grees, minutes, &c., it is commonly measured, in Ana-
lytic Geometry, by the ratio of the arc which subtends
" it in any circle described about its vertex as a centre to
the radius of that circle.
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Measurement of Angles.

>

., To show that this method is legitimate, it must be proved that
any two angles are to each other as the ratios by which we pro-
pose to measure them, and that the proposed measure of any an-
gle has the same value in all circles described about its vertex as
a common centre.

Now, if, in any circle, we take two angles, ‘Z and ‘:I, wﬂich

ihave their vertices at its centre, and represent the arcs which
subtend them respectively by s and s/, and the radius of the cir-
cle by r, we shall have (Geom. § 97; Alg, art. 55)

ﬁ:ﬂ'=e:s',
o' a
g.0

a o
the first part of the required proof.

. .
. 3

8| %

$
r

Again, if we take a single angle ‘3 , but two different circles,
having their centres at its vertex, then, denoting the radii by »
and 7, and the arcs which subtend f respectively by s and s,, we

have, since similar arcs are to each other as their radii (Geom.
§§ 170, 234),

si18 =1r:n,

$:r = §:1;
so that the ratios corresponding to an angle in two circles of any
radii are equal, and the justification of the proposed method is
completed.

‘

12. Corollary. Using the notation of § 11, we may write

‘:=s:r;

since the principles of algebraic notation allow us to form an
equation between the symbol which represents a quantity and
that which represents its measure. Hence we have

’S=7'ﬂ;
o
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Construction of Angles.

that is, an arc may be denoted by the product of the angle which
it subtends at its centre by its radius.
If r is the unit of length, we have
r = 1,

B—s;

so that the measure of an angle may be said, in this system, to
be the length of the arc which subtends it in the circle whose
centre is at its vertex and whose radius is unity.

13. Corollary. In Analytic Geometry, » is commonly
used, as in Geom. § 237, to denote the ratio of the cir-
cumference of a circle to its diameter, or of the-semi-
circumference to its radius,* so that, by the rule of § 11,
= represents the angle subtended by a semicircumfer-
ence, that is, one of 180°, 4 = an angle of 90°, or a right
angle, 2 = an angle of 360°, &c.

14. Problem. To construct %.

Solution 1st. From any point C' (Fig. 8), with a radius equal
to b, describe an arc 4 B, making it equal to . Connect 4 and
Bwith C. The measure of the angle ACB is, by § 11,

AB _a -
[7 R
so that the angle 4 OB is the required construction.

The arc 4B may be made equal to @ in the following man-

ner : — Draw the straight line

A'B = a.
Divide it into very small parts, 4’ o/, a' ¥/, &' ¢/, &c. Describe the
indefinite arc 4D. From A as a centre, with a radius equal to

* This is an exception to the general rule of § 7, c. To avoid possibility
of mistake, 7 will only be used as directed in § 18.
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Trigonometric Functions.

A’ @, describe an arc cutting AD at a. Then from a as a centrg,
with a radius equal to @' %, describe an arc cutting 4D at 5. Go
on in the same manner, finding the points ¢, d, &c.; and the last
point thus obtained is the extremity of the required arc. For
if the chords 4 a, a b, &c., be drawn, the sum of these chords is,
by construction, equal to 4’B'. But there is no sensible differ-
ence between each of these small chords and its arc; hence the
sum of the small arcs, or the arc AB — A4’ B. This method is
only an approximative one; but the smaller we take the portions
A’ &y &ec., the higher will be the degree of accuracy. If it were
practicable to take the portions infinitely small, there would be
no error whatever, since (Geom. § 203) an infinitely small arc
is equal to its chord. In practice, it will be found best to make
A'dy a' b, &e. of the same length, laying off this length on 4’5’
as many times as it will go, and leaving the remainder f'B', be-
cause then it will only be necessary to adjust the compasses once
for measuring off all the equal arcs, 4 a, a b, &ec.

Solution 2d. Draw (Fig. 4)
’ AB = a,
BC =,
perpendicular to each other. Connect AC. The tangent of

the angie C or the cotangefit of 4 will then be equal to %. - (Tr.

§§ 6,9.) This construction is evidently possible for any values
of @ and b.

Solution 8d. A different construction, which we can illustrate
by the same figure, may be employed, if it is preferred. Sup-

pose we have
AB = q,
AC =b.

Then, %’ denotes the sine of C or the cosine of 4. (Tr. §§ 5, 9.)
It is evident that this construction is possible only when a <C &.
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Degrees of Quantities.

Solution 4th. We have also another solution for the case in
which @ >> b. Suppose (Fig. 4)
AC = q,
BC =b.

Then,% denotes the secant of C' or the cosecant of 4. (Tr.
§§7,9)

Hence, an expression of the form %
metrically by an angle or by a trigonometric function of an
angle.

Though, for convenience, the same figure has been employed
in explaining the last three constructions, it must carefully be
observed, that either the third solution or the fourth may always
be employed for the same values of @ and b as those assumed in
solution second ; and the student should draw for solution third a
right triangle having one leg equal to a and the hypothenuse
equal to b, and, for solution fourth, a right triangle having one

leg equal to b and the hypothenuse equal to @. (Geom. § 145.)

may be constructed geo-

15. Scholium. An examination of the preceding con-
structions (see §§ 6, 8, 9, 14) brings to notice a relation
"between the degrees of the algebraic expressions and the
nature of their geometric equivalents. Thus, a,ab, abe,
are examples of the simplest monomials of, respectively,
the first, the second, and the third degrees, or of one
(algebraic) dimension, two dimensions, and three dimen-
sions (Alg. art. 15); and they are constructed, respec-
tively, by a-line, which has one (geometric) dimension,
a surface, which has two, and a solid, which has three

(Geom. §§ 4,5,6). Also, 3, being equal to a 5~ (Alg. art.

38), is of the simplest form of monomials of the zero
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Sum of Lines.

degree, and it is constructed by an angle, a geometric
quantity which cannot be said to have any of the dimen-
sions of extension (being, in fact, only a geometric rela-
tion between two lines, as %is an algebraic one), or else
by a trigonometric function, which cannot properly be
called a geometric quantity at all, but is an algebraic
ratio of certain lengths. What has here been shown
to be true of those expressions which have been con-
structed, will be found to hold good for all monomial
expressions whatever, and therefore for polynomials as
well, since a polynomial is only the sum of positive or
negative monomials, and the sum or the difference of
lines is a line, of surfaces a surface, &c.; but as geo-
metric quantities of different kinds cannot be added to-
gether (e. g. a line and a surface, or a solid and an angle),
no polynomial can be constructed, unless it consists of
terms of the same degree, that is, unless (Alg. art. 16)
it is homogeneous. Hence the following

Rule. Every homogeneous algebraic quantity of the
zero degree denotes an angle or a trigonometric function ;
of the first degree, a line; of the second, a surface; of
the third, a solid.

16. Problem. 'To construct a -}~ b.

Solution. Measure off (Fig. 5)

AB =a,
BC=1b;

and we have, by inspection,
AC = AB 4 BC =a -+ b;
so that A C is the required value of @ - .
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Difference of Lines. Negative Line.

17. Problem. 'To construct a — b.
Solution. Lay off (Fig. 6)
AB = a,
and from B, in the opposite direction,
U.B = b;

AC = AB— OB =a—b;
so that 4 C'is the required value of a — &.

18. Corollary. If §§ 16 and 17 be compared, it will be seen
that the only difference between the algebraic expressions is in
the sign of b, and that the only difference in the geometnc con-
structions is in the direction of b.

Suppose that, in the expression @ - b, we take & of less and
less value, @ - b will differ less and less from @, and, in Fig. 5,
the point O will move towards 4, passing through the positions
0', C", &c., but keeping always on the right of B. At the
moment, however, at which 5 = 0, the point C will fall on B,
and

AC=AB=a+4b=a
Now, if 5 be taken still smaller than zero, i. e. negative, @ -} b
becomes of the form of § 17, and the point C approaches still
nearer to 4, and therefore necessarily passes to the left of B.

Again, if, in the expresswn a — b, we take @ = 0, the two
extremities of the line «, i. e. the points 4 and B, must coincide,
so that we shall have (Fig. 7) -

AC=B0=a—b=—0
Hence, the only difference between the line -|- and the line
—b, or between the line denoted by any letter and that de-
noted by the negative of the same letter, is that they point in
opposite directions to each other.

‘We deduce from the reasoning of this article, and universally

“adopt in Analytic Geometry, the following

Rule. The geometric construction of the negative
2
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Negative Angle. Motion of Point.

sign is opposite direction ; that is, direction opposite to
that which, in any case, we arbitrarily choose to call
positive.

19. Corollary. If, in the fraction of § 14, we change the nu-
merator from @ to — @, we must, by the rule of §18, alter the
first construction by laying off the arc AB" (Fig. 8), instead of
AB, equal in length to 4B, but in the opposite direction; and
therefore the value of the fraction will be the angle A4CBY,
which only differs from the angle A CB in being estimated from
the line 04 in the opposite direction. But, as the proposed
change in the fraction has no other effect than to reverse its sign,
ACB" is the tegative of ACB; so that the above method of in-
terpreting the negative sign may be applied to angles as well as -
lines.

20. Scholium. It is convenient to introduce and explain, in
connexion with the construction of the negative sign, a mode of
conceiving lines and angles which will also be found useful in
other parts of Analytic Geometry.

L a. The length of a line may properly be conceived as the
amount by which a point changes its place, in other words, the
distance which it traverses, in passing along the line from one
extremity of it to the other ; and this amount will be positive or
negative, according to the direction in which the point is supposed
to move. For example, the positive line 4 is drawn (Fig. 5) by
moving the pencil to the right from its starting-point B (to
which it had been brought from A by describing the line a), by
an amount equal to the length of &; and therefore, in order to
draw — 5, we must move the pencil to the left from B (Figs.
6,7), and by the same amount. Here the tip of the pencil rep-
resents the moving point.

b. Hence it appears that the same line may be conszdered either
as positive or as negative, according to the extremity from which
we concetve it to begin. Thus, if, when the line AB (Fig. 1)
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- is conceived to be generated by the motion of a point from A4 to
B, we call it positive, we must regard it as negative when it is
conceived to be generated by the motion of a point from B to 4.
For the sake of distinguishing these two cases, a line from 4 to
B is, in this book, indicated by 4B, and a line from B to 4 by
BA; so that, if AB = @, BA =—a. The starting-point from
which a line is supposed to be directed may be called its origin.

c. According to this notation, it is evident, even without a
figure, that, in all cases, it will be true, on any given line, that

AB+ BC = AC;
since, if a point moves in the given path from 4 to B (i. e. gen-
erates the line 4 B), and then from Bto C (i. e. generates the line
B(), the distance traversed is the distance, measured on the
same line, from 4 to C. In Fig. 6, where
BO = — b, -
the above equation becomes
: AB4 BC=a—b=A40. ,

Here, indeed, the actual change of place which the generating
point undergoes in moving from A4 to B, and then back to O, is
greater than if it had moved only from 4 to C. But all difficulty
is removed by considering, as we may, that the backward motion
from B to O undoes, or negatives, th&t part of the forward mo-
tion which is from C to B, so that the whole resulting motion, the
(reduced) sum of the component motions, is that represented by
A0.

IL:d. In like manner, an angle may be conceived as the
amount by which a line changes tn direction in turning from one
position into another ; and this amount will be positive or nega-
tive, according to the direction in which the line is supposed to
rotate. I shall go on to develop a few of the consequences of
this view, by reference to Fig. 8, in which

AOB = CO0A,
AOD = A'OD' = EO4;
and in which the straight arrows, with the accompanying Greek
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Forward and Backward Rotation. Inversion of Symbols.

letters, indicate the assumed directions of the several lines. Let
rotation in the direction indicated by the curved arrow 6 be
taken as positive. Then the arrow — @ points to negative rota-
tion. Now, if we suppose a line to turn in the direction of posi-
tive rotation from its original position OA4 by an amount meas-

ured by the angle g, it will come into the position OB, so that
the angle which OB makes with OA (or AOB) is g If the
line, however, be supposed to turn through the same amount,
but in the negative direction, it will assume the position OC, so
that the angle which OC makes with 04 (or A0C) is — B

o

e. If the line be supposed to turn from the position OB, which
we now take as its original position, to the position O4, and not,
as before, from OA to OB, the absolute amount of the rotation
will be the same, but its sign will be reversed, so that the change
. of direction which the line undergoes, that is, the angle which

0OA makes with OB, is —‘g , instead of g .~ Thus, the same angle
will be regarded either as positive or as negative, according as we
concevve the change of direction to begin from the one side or from
the other. 'These two views are, in this book, distinguished by

indicating the angle between 04 and OB by AOB, or ‘: , when
the change of direction is conceived to begin from OA, or «, and

by BOA, or z, when it begins from OB, or §; so that
40B =8, BOA="%=—F,
o 8

o

400 =7 = =%, 004 =%= 7,
o 7 4 [
Hence, if the symbol which denotes an angle be inverted

and its sign changed, the value of the symbol is not thereby
affected. ‘

The side of an angle from which its change of direction is ¢on-
ceived to begin may be called its ax?s.
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Composition and Decomposition of Rotations.

f- To find the sum of any number of angles, we must consider
what single rotation will be equivalent to the sum of the rotations
corresponding to the several angles, performed successively.
Thus we may write

a
iti+ity=5
For if a line rotate from § to ¢, then from { to «, then from « to
7, and lastly from y to 3, the composition of these rotations comes
to the same thing as if the line had turned immediately from g to
0. In general, if a polynomial, which consists of angular sym-
bols, can be so arranged that, when all its terms are made posi-
tive (by inverting them, if necessary), the upper letter of the first
term is the lower letter of the second, the upper of the second the
lower of the third, &c., the polymomial may, by the principles of the
notation, be constructed by the angle made by the upper line of the
last term with the lower line of the first. For example,
¢« o & g_1 a y B
t_y—t+y=6 +: +a+y=g'
g- By reversing the above rule, we may, at pleasure, decom-
pose any angle. Thus,
& 4 s ]
R AR AR it e L
k. If the line turn from OA by the amount denoted by =
(§ 18), it will assume the direction OA’, or — a (the reverse of
OA); so that —
v =
If this rotation be repeated, the line returns to its original posi-
tion ; and we have (see f)

2a=""4 % =%%\
o -0 [}
Indeed, since, at the end of a complete revolution, the position of
a line is the same as at the beginning, we may, in estimating the
angle which a line makes with ttself, suppose it to have returned to
its original position after making any arbitrary number of com-
2 *
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Complete Revolution.

plete revolutions, either in the positive or tn the negative direction.
Then, as a complete revolution is measured by 2 =,

::=O (=0mo0or=—0n),
or=2m,0r=—2a,
or=4mor=—4n,

or=2nnx;
in which » denotes any integer positive or negative (including
zero). .
?. Any angle, as ﬁ , may be decomposed in the following man-
ner:
o B __e - ;
« T o=t 40B=2nn+ AO0B;
where AOB is used to denote the positive concave angle of 8
with @. Thus, if AOB = 30°, the above becomes
B — 2nn 4 s0°.
If we take n = — 1, we have -
B e — 224 80° = — 860° + 80° — — 330°;

that is, if a line rotate negatively from the position & through
330° it will reach the position 8, as is also evident from the
figure.

Observe, however, that, since all the trigonometric functions
- of 22 4 AOB are the same as those of 40B (Tr. § 69), it
is unnecessary to distinguish between these different values of

’: in any case in which the result depends on the values of the

trigonometric functions, and not directly on that of the angle
itself.

j- If the revolving line turn from the direction 04, or a, to
OD, or — J, and then to D0, or 8, the whole rotation is

=m0
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Trigonometric Functions.

so that the sides of an angle always may and should be conceived
to radiate from the vertex. The negative of 40D is
é e
e @'
k. In determining the trigonometric functions of an angle
in a right triangle, the sides which include the angle must be
conceived to be directed from the vertex (as in j.), and the oppo-
site side to conform to the direction of the rotation belonging to
the angle. If, in Fig. 4, 4 is taken as BAC, the opposite side is
BO; if it is taken as CAB (= — BAC) the opposite side is
OB (= — BC(); but in both cases the including sides are the
same, namely, 4B and 4 C.
Hence, if AB = a, AC = §, we have

. p_BO cp_A(J
o . =Zd0’ osee .= B0’
8 BO 8 AB
-tana==-—lB, ootana=B-——0,
AB
secf==j—g’ 008 €=A0;
but
sin (—ﬂ)-—sin a=_6_'§ qu——-sm ﬂ,
g 4AC AC o
ﬂ) ‘ ¢ ig——- A0=—oosecﬂ
cosec(— ==eosecﬁ OB B0 '’
CB BC 8
tan (_IZ = = = — —— = —tan o’
6 4B 4B _ . P
cot (—-a)=cot OB B0 cot a,
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I. Since the angles of the lines of Fig. 8 are equal to those of
any lines parallel to them, the reasoning of arts. d. — k. is equally
applicable, if the lines do not proceed from a common point.

21. Problem. To construct 2;
Solution. If we put

we have

orc:a==0:z
Therefore, ?c—b is constructed by finding a fourth proportional to
the lines ¢, @, and 5. (Geom. §§ 165, 166.)

22. Problem. To construct any monomial of the first
degree, which does not involve radicals.

Solution. Since the monomial does not involve radicals, it
must be a fraction of which the numerator contains one dimen-
sion more than the denominator. It may then be represented by
the expression .

abed....&c. ab _c _d

a’b’c’....&c.=7x?x g...&c.

Construct first %{’- by § 21, and let m be the line which it repre-

. d

sents. The given expression becomes % X rIEEE &ec.
me

Again, construct v =m;
m'd .

then, o ™

and go on, and the last line thus obtained is plainly the result.
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23. Problem. To construct a homogeneous polynomial
of the first degree, which does not involve radicals.

Solution. If the polynomial consists of, or can be reduced to,
a series of monomial terms, each of these terms may be con-

structed by § 22, and then the value of the polynomial may be

found.

If the expression consists of or contains a fraction which can-
not be reduced to the form of § 22, it may be constructed by an
artifice which can best be explained through an example. Let

it be required to construct the fractxon

py f ; in which the
letters denote the same lines as in Fig. 9 Represent by o a
length which may be taken at pleasure. Divide the numerator
of the given fraction by that power of o which will make the

product of the first degree. Since abe is of the third degree,

we must divide by o®; and the result,

degree, denotes a line, and may be constrncted by § 22. Divide
the denominator by the next lower power of o, namely, in this

case, 0, and the result is {io_e —‘fi which, being also of the first

degree, may be constructed by § 22. The fraction has now been
abe abe

0 .
fg’ fg’ and may obvious-

reduced to the form

o )
. ly be restored to its original form by multlplymg by o; so that,
if we adopt the notation v
a b ¢ n == ‘Zﬁ — j~_g

m= —¢
0‘2’ 0 o’

we have _abe _ "-%2.' Hence, the value of the given frac-

de—fg
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Radical Quantities.

tion is obtained by finding a fourth proportional to », m, and o.
The whole construction is exhibited in a compact form in Fig. 10,
in which we have
AOQ =0,4AB=a, AC = b, AD = a_ob’
AE = ¢, AP =m 5

AG = d AH — ¢ Al = iof,

AK—'=ﬁAL =g, —_—’f-;—g,

AN =7 =% _f9_ 4,
o (/]

mo abe
A.P=T=m-

It is to be observed that the value of the line found by the '

above process is independent of the length assigned to o, which
is introduced only to facilitate the construction, and disappears
from the result.

24. Problem. To construct a/ab.
Solution. If we put
z = alab,

z?=al,

we have

-arx=2x:b;

so that Ma b is constructed by finding a mean proportional be-
* tween the lines @ and 5. (Geom. §§ 183 - 188.)

- 25. Corollary. Since

Aabcd = atbictdt = M (ab)t (cd)i,
this expression may be constructed by finding the values of
(a'b)t (= MaB) and of (cd)t (= Mcd), by § 24, and taking
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the mean proportiopal betweeen the lines thus obtained. A sim-
ilar construction may be applied to any radical monomial of the

first degree in which the index of the root is an integral power
of 2.

26. Problem. To construct o/ a* -} b*

Solution. Find the side of that square which is equivalent to
the sum of the two squares described on the given lines a and &.
(Geom. §§ 243, 256, 261.)

27. Problem. To construct o/ a* — ¥,

Solution 1st. Find the side of that square which is equivalent
- to the difference of the two squares described on the given lines
aand b. (Geom. § 262.)

Solution 2d. Since

NE=F=nW(aF0 (a—0),
it may be constructed as a case under § 24, by constructing a - b
and ¢ — b, and finding a mean proportional between them.

The following form of construction applies to either of the
above solutions: — From any point 4 (Fig. 11), with a radius
equal to a, describe a circumference. Draw any diameter BB ;
lay off on it from A a length AC equal to &; and at O erect a
perpendicular meeting the circumference at D and d. Then CD
or Od is the construction of & A/ a® — &. "Equal values, '
and (' d', would have been obtained, if 5 had been laid off nega.-
tively.

28. Corollary. If

b=0,
NG —F=aa =+ a;
and, in the construction, the point O' (Fig. 11) falls at 4, giving
AD" = a, and A d"" = — a, for the perpendiculars correspond-
ing to CD and C'd.
The greater the value of 3, if positive, and the less its value, if

/
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Imaginary Quantities.

negative, the greater will be the value of 5 (Alg. art. 194), and

the less the absolute value of A/ a* — &; and, in the figure, the

greater will be the length of 4C or A (¥, and. the less that of CD,

Cd, C'D', and O'd'.

r
: P =d,
ieif4+b=aor—b=a,
NT—F =0;

" and, in this case, O will fall at B or at B, and Dd and D'd'
become tangents to the circle, so that 0D, Od, C'D', and C'd'
are reduced to nothing.

If we increase b still more, making
® > a
which will be the case whenever b is absolutely greater than a,
then
@ — B < 0, i. e. is'negative,

so that A/ @® — &' is imaginary (Alg. art. 197). Now, in this
case, C falls without the circumference, on the diameter produced,
as at £ or E', and the perpendicular erected at either of these
points will evidently have no point of intersection with the cir-
cumference; so that there can be no length whatever correspond-
ing to OD. Thus, when the expression we are now discussing
becomes imaginary, we find a geometric impossibility in its con-
struction. Since, howevyer, all imaginary quantities may be re-
solved into the form A/ a® — &, it is true, in general, that

Rule. Imaginary quantities do not admit of geometric
construction.

29. Scholium. Throughout the Analytic Geometry, it
will be found of interest and advantage to discuss alge-
braic expressions, i. e. to trace (as in § 28) the changes of

value in them and their geometric equivalents, with spe-,

cial-reference to any values which exhibit algebraic or

\
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Polynomials of the First Degree.

geometric peculiarities. Remarkable cases in geometric
constructions are sometimes indicated by remarkable
forms of their algebraic expressions, as by the occurrence
of imaginary quantities; and sometimes no such indica-
tions exist. It is recommended to the student to mark
the difference between these classes of cases as they
arise.

30. Problem. To construct a homogeneous poly-
nomial of the first degree which involves no radicals
except those whose indices are integral powers of 2.

Solution. If the expression can be reduced to a series of
monomial terms, each term may be constructed by one of the
§§ 22, 24, 25; and thus the value of the polynomial may be
found. .

Otherwise, the form of the polynomial may be changed by the
introduction of a new line, as in § 23.

It is sometimes convenient to substitute the methods of §§ 26
and 27 for that of § 24.

81. Scholium. In some of the following examples, the length
represented by each letter is denoted by its numerical value, °
which expresses the ratio of the line to the standard length, or
untt, which may be chosen arbitrarily. Where the numerical
value of a letter is not given, it is to be constructed by the line
which it indicates in Fig. 9.

82. EXAMPLES.
¥ . -~
1. Construct V(ab-{--c- — d%),inwhicha =2, =38,c=1,
d=4.
Solution. If we take
3
m =/ @), m'=v(”;),
3 ' .
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Expressions of the First Degree.

63
m'=ab m®= e

V @b+ T — &) = o (4t — D)

and if we take

we have

n = (m* — ),
7 = m” — d?,
V@b +Z = 4 )

so that the required length is the hypothenuse of a right triangle;
of which m and 7 are the legs.
In Fig. 12, where a quarter of an inch is the unit,

Cd=a, AB=1b AD= 4/ (ab) = m;
AE — ¢, AF — b, AH — AG =1 AI=~/<IL’><6 -y
c c

we have

IK = d AK=»/ (m"—d) =n;
AL = AK, LD = a/ (m® -} n’) = answer.
The given expression might also be constructed by assuming
any line o, constructing
il
Tt T o
which, being of the first degree, denotes a line, and finding a
mean proportional between the result and o, which will be

V@ +5E=7) 1=V (45— )

2. Construct the roots of the equation, * — 2dx — = 0.
Solution. The equation gives, by reduction,

z=d £ &/ (&4 ).
In Fig. 18,
BO=c¢, BA=d, AC=4a/ (&*4 ),
DA =AD = d,- x =D'Cor = OD.
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Expressions of the First Degree.

8. Construct a—}, in which @ = 4,5 = 8,¢c = 6.
4. Construct 4/ (a® — a d).

5. Construct o/ (ag + fe — g°).

ab

a N
6. Construct —-F + m, in whicha =1, = 2,

e="79=4.
7. Construct the roots of the equations,

ax=1by, zty=ec '
8. Construct the roots of the equation, 2 — 2ax 4 ¢* = 0.
9. Construct the roots of the equation, 2* — 2 ¢ x 4 a* = 0.
10. Construct the roots of the equation, 2* — 2 ax 4 a? = 0.
11. Construct the roots of the equation, x* — 2a x = 0.

33. Scholium. Since the numierical value of the ex-
pression of Ex. 3 is 2, the required construction might be
performed, more simply than by the method of § 21, by
drawing a line twice as long as the unit of length. In
the construction of the results of actual algebraic pro-
cesses, the student should in each case use the method
which is most convenient in that case ; but the examples
of this chapter are to be solved by the geometrical, and
not by the arithmetical, process.

34. Scholium. Expressions for which no geometric method of
construction has been devised may be interpreted by first obtain-
ing their numerical values. Thus, to construct 47/ @ b ¢; find, by
actual measurement, the numerical values of a, b, and ¢, multiply
them together, and draw a line the ratio of which to the unit is
equal to the cube root of their continued product.

85. Scholium. To construct a homogeneous expression of the
second degree, we may, if no simpler method occurs, divide the



28 ANALYTIC GEOMETRY. [en. m.

Expressions of the Second, Third, and Zero Degrees.

expression by some letter, as o (thus reducing it to the first de-
gree), construct the quotient, and find the surface which is equiv-
alent to the product of the resulting line and that represented
by 0. Homogeneous expressions of the third and of the zero de-
grees may be constructed in like manner.

36. EXAMPLES.

1. Construct the angle of which the cosine is

+g + g
Solution.” We might construct the line ?_-{——g” then draw
aright triangle having this line for one leg and o for the hypothe-
nuse, and the included angle would be the angle required, since
cgo __°9
(+g)o “+4
The following, however, is a somewhat more elegant construc-
tion. Let

its cosine is

cy
VEFHT™

then

cyg _ cy .

c+ g ~/(c“+9’)~/(c+9’) ~/(¢’+9’)
Then, in Fig. 14,

AB=¢, BC=y, A0='\/(02+92)’

p— H = M ) E ==

AD =g, AE : AD = AB: AC, A ~/(c+y’)

AF — A0 = o/ (& +g=),cosEAF=‘ﬁ._v(c L

m;

so that EAF is the required angle.

2. Construct the regular hexagon a_f’ ,in whiche =2, b =5,
c =4

Solution.. Find the parallelogram "Tb’; then, by Geom. § 214,
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draw any regular hexagon, ABC, &c. (Fig. 15) ; inscribe a cir-
cle within it by Geom. § 229; and the polygon drawn by Geom.

§§ 290, 202, 295, equivalent to the parallelogram %7 and similar
. c

to ABC, &c., will be the required hexagon. This method may
be abbreviated as follows : — Let m denote one side of the given
hexagon ; then 6 m will be its perimeter; and, if » denotes the
radius of its inscribed circle, its area will be (Geom. § 278) 3mr.
By Geom. § 268, the given hexagon and that required are to
each other as the squares of their homologous sides; i. e. if x is
one side of the required hexagon,
ab
Smr: T =m': 2,

or e 8 Bm* abm

Semr 8¢
abm
r= J—ﬁ cr
Then, taking a quarter of an inch for the unit, we have (Fig. 15),
HI— ¢, HK — a, HL = b, HM = .,

c
HM X HL _ ab’.
.HN=3XOG=31',HP_._HN =g
Q‘H'=AB=m,HR=~/(QHX HP)=4‘;6:Z’-'

HR is then the value of x; and AB C'D'E'F, whose sides
are each equal to HR, and parallel respectively to those of
ABCDEF, is the required regular hexagon. ,

8. Construct the right triangle o/(a* — '), in which @ = 5,
b=3.

4. Construct the square a §; also the regular hexagon a b.

5. Construct the angle of which the tangent is f + I;:

30
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Introduction of Unity.

6. Construct the angle of which the cosecant is a’.
(a® b o)t
ab—

7. Construct the angle
c=2.

,inwhicha=l,b=5,

37. Corollary. 1f, in an expression of the form of § 21,
¢ is equal to the unit of length, we have
- ab abd

.____—=ab,

c

so that the fourth proportional to c, a, and b, though ne-
cessarily a line, is represented by a b, an expression of
the second degree. .Thus, when the unit of length
(represented algebraically by 1) is so involved in the
conditions of any question as to enter into its algebraic
result as a factor or divisor, an apparent exception to
the general rule of § 15 arises; and, on the other hand,
when such an exception occurs, it may be explained by
supposing the disappearance of some (positive or neg-
ative) power of the factor 1. Hence, an expression of
any degree, even if not homogeneous, may be construct-
ed ag either an angle (or trigonometric functlon), a line,
a surface, or a solid, by introducing 1 as a factor or
divisor into each term as many times as may be neces-
sary to raise it to the zero, the ﬁrst, the second, or the
third degree.

38. EXAMPLES.
1. Construct the line a g.
Solution. If o is taken for the unit of length, we have

ag__a9
a = _
9= 1 e’
which, being of the first degree, may be constructed as a line.
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Heterogeneous Expressions.

If twice o is taken for the unit, we have
ag = ‘}._.g=ag=l.ag°

1 20 2 0o
so that the line now obtained is one half as large as the former
value of @ g. The same is also true if @ g is constructed arith-
metically.- Thus, if @ is twice as long as o, and g one third as
long, then, taking o asthe unit, we have
a=29g=%,a9g=2 X }=%,i. e. % of the unit, or § o.
But if 2 0 is the unit,
a=19g=3%a9g=1X} =14}, i. e }of the unit, or
tX20=3}0=1%(%0):
a —b
2. Construct the square P )
This expression, made homogeneous of the second degree,
at — b (1)°
becomes c() F &
8. Construct the line A/a, in which a = 10.

4, Construct the equilateral triangle 1
a

5. Construct the line o/(¢c — c*), first taking the unit greater
than ¢, then less than c.
6. Construct the angle of which the cotangent is

a — e,
-b—c+Vd € 6

389. Scholium. The principles of Analytic Geometry are
sometimes advantageously applied to the solution of problems in
Algebra and Arithmetic. Thus, the methods of §§ 24, 25, 26,
27, 37 may be used for extracting the square roots of numbers,
as in the examples of the following section. Observe that,
while in theory this method is perfect, it is practically only an
approximative one, since it is impossible to avoid some degree of
error in the drawing of the requisite figure.
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Roots of Numbers.

40. EXAMPLES.

1. Find the fourth root of 10 by geometric construction.
Solution.
V10 =/ (5X 2) =/ W5 X /2]
=~/WO—4 XN+ 1)
= [V (F—2) X V(1?4191
In Fig. 16, we have (taking half an inch for the unit)
AB=AC=1,BC=a/ (1) 41°) =/ 2;
DB=2,DE=3,EB=A/(3*—2%) =A/5;
BF = A/ (EB. BO) =a/ [/ 5 X A/2] = &/ 10.
The length of BF, applied to the scale of equal parts, is found
to be 1.775 ; and the fourth root of 10, extracted by logarithms,
is 1.778. ’
2. Find the square root of 2; of 5; of 6; of 19; of 27.
Ans. 1.414; 2.236; 2.449; 4.359; 5.196.

8. Find the fourth root of 6; of 27; of 15; of 21 ; of 19.
) Ans. 1.565; 2.279; 1.968; 2.141; 2.088.

N.B. Tt will be seen that the square root of any number may
be constructed as the third side of a right triangle, of which the
hypothenuse and one leg are respectively the halves of the num-
bers next above and next below the given number. Thus

ViV [(@ = ()] ve=v G- ()T
Iy - (5]

) =~/[(a’+2a,+l);-(a’—2a+l)]=~/a.
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Rectangle inscribed in Triangle.

CHAPTER IIL

DETERMINATE PROBLEMS.

41. WE have been led in Algebra to divide problems
into two classes: determinate problems, or those which
give as many equations as unknown quantities, and in-
determinate problems, or those which give fewer equations
than unknown quantities. (Alg. arts. 138, 143, 144.)

42. Determinate geometric problems are solved by the
ordinary rules of Algebra. Having adopted for each
problem a notation which is conformable to the prin-
ciples of the preceding chapter and to the usage of Alge-
bra, put into the form of equations the expressed condi-
tions of the question, and the implied geometric relations
which exist between its known and unknown quantities ;
solve the equations ; and construct the values of the un-
known quantities, choosing that form of construction
which is the most direct, the neatest, or the best adapted
to the particular case. The difficulties which occur are
chiefly practical and special ones, for which no general
rule can be given.

43. EXAMPLES.

1. To inscribe in a given triangle a recta.ngle, with its base
and altitude in a given ratio. /M

Solution, Let the triangle be 4ABC, a.nd HA its altitude;
let DEFG represent the required rectangle ; and let the follow-
ing notation be adopted :
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BC=b HA=h DE=nz,
m :n = the given ratio of the base of the required rectangle to .
its altitude.
Then we have

IA = HA — Hl = h — =,
(GD=FE): (DE=z) =m:n,
" FE="Z
n
ABC and AFE, being (Geom. § 172) similar triangles, give
(Geom. § 199)
BO:FE = HA: IA,
or b: "—'—f-c=lz th—x;
n
which gives for the value‘of
e bnh _ bk
bn 4+ mh b_’_?%’-l

Construction. Let ABC in Fig. 18 represent the same tri-
angle as in Fig. 17. Produce BC to K, making CK equal to
mTh, constructed by § 21. Draw AL and KZ, parallel respec-
tively to BK and 04. Drop on BK the perpendicular LM,
draw BL, and from F, its point of intersection with C4, drop
ZED perpendicular to BK. Then

BK_b-l-— ML =k,

and the similar triangles ZBK and EBC give
BK: BC = ML : DE,

or 54225 —h: D5,
b+

so that DEF G is the rectangle required.
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Scholium. In order to guard against any possible confusion
between the drawing of the rectangle required (that is, DEFG
in Fig. 1) and the drawing of a rectangle (that is, DEFG in Fig.
17) representing the required one, to aid in forming equations
between the known and unknown quantities, I have given sep-
arate figures for the Solution and the Construction. In future
problems only one figure will be used ; but the student must ob-
serve, that to suppose the required parts drawn, for the purpose
of effecting a solution, does not involve a knowledge of the
method by which those parts may actually be drawn, which is
the result of the solution. Indeed, it will be seen, on compar-
ing Figs. 17 and 18, that the rectangle in the former figure,
though it answers all the purposes of that figure, is not the
rectangle required.

Corollary. 1If m = n, the required rectangle is a square ;. and,
in that case, we have (Fig. 18)

CK—m—h=h—
n

Corollary. Since b and % are the only parts of the given tri-
angle which enter into the value of «, it follows that the rec-
tangles inscribgd in triangles of equal bases and altitudes are
equal. If, however, either of the angles at the base of the tri-
angle is obtuse (Fig. 19), the rectangle falls partly without the
triangle; so that, unless we give to the word ¢nseribe a larger
meaning than it commonly has, the problem has a limitation
which is not indicated in the algebraic value of . (Compare
§ 29.) This is because the value of x depends on the simi-
larity of AB( and AFE, and these triangles are still similar in
Fig. 19.

2. To divide a given straight line into two such parts that the
difference of the squares described on the two parts may be equal
to a given surface.
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Solution. Let AB (Fig. 20) be the given line, £ being its
middle point ; let the given surface be twice the square described
on AC'; and let D represent the required point of division. Let

. AE=EB=a, AC=10b, ED=ux.
‘We have then
AD = a + =, DB=qa—zx;
(e 42— (@a—2) = dax = 2F;
b
x = % .
Construction. Draw EB in any direction whatever, and take
EB — AB = 2a,
EC =EC =AC="t
Join B (', and draw C"'D parallel to it. Then we have
ED: EC = EC": EB;
ED =" — 2
» 2a
so that D is the required point of division.

Corollary. 'When the given surface is less than the square on
the given line, we have
28 < (2a)
ie. 280 < 44
i e. ® < 24,
. .oob
1. €. 3a < a,
i e. el a
i. e. the point D falls somewhere between X and B.
‘When the given surface is equal to the square on the given
line, -
20 = (2a)}
ie. T =a,
i. e. the point D falls at B, and the greater of the required parts
is the whole line, and the less is nothing.



§ 43] DETERMINATE PROBLEMS. 37

Division of Line.

‘When the given surface is greater than the square on the given

Line,
28> (2a)
ie z > a
i. e. the point of division falls beyond the extremity of the line,
at D, for instance. In this case, the required parts may be
taken to be AD' and 1B, the sum of which is, by § 20. c,
AD' 4+ D'B = AD' — BD' = AB;

and it is evident, from inspection, that the differenee of the
squares on AD' and D'B is greater than the square on the given
line.

8. To divide a given straight line into two such parts that the
sum of the squares described on the two parts may be equal to a
given surface.

Solution. Adopting for Fig. 21 the notation of the last ex-
ample, we have
@422+ (@—2)=2d4 22 = 27,
z =+ &/ (& —a).
Construction. Erect at E a perpendicular to AB; from 4 as
a centre, with a radius 4, describe an arc cutting the perpendicu-
lar at #'; EF is the value of x, and may be laid off positively or
negatively from E, giving two possible positions for D.

Corollary. 'When the given surface is greater than the square
on the given line, we have

28> (2a),
i e 28 > 44’
i e. B> 2a
i e. P—ad> d,
i. e. . 2> a

i. e. (absolutely) z > @,
i. e. the required point falls beyond the limits of the line. This
4
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case admits of an interpretation like that applied to the corre-
sponding case in the last example.

‘When the given surface is equal to the square on the given
line,

20 = (2a)’,
ie. 2 = d’,
ie z = + @,

i. e. the point of division falls at B or 4.

When the given surface is less the square on the given line,
but greater than twice the square on half of the given line,

2B < (20)%, 28 > 24}

i e P<2d, B> d
ie. Peat<la, B—a>0,
ie. 2 < ab, 2> 0,

i. e. (absolutely) x <C a, and is real,
i. e. the point of division falls between % and B or between &
and 4.

‘When the given surface is equal to twice the square on half of
the given line,

20 = 2d°,
ie a:‘==0,
ie. Z=:|:0,

i. e. D falls at E, and the parts of the line are its two halves.

‘When the given surface is less than twice the square described
on half of the given line,

2P < 24}
ie. <0, i e. isnegative,

i. e. x is imaginary, i. e. the problem is, by § 28, impossible.

4. To describe the circumference of a circle through two given
points and tangent to a given line.

Solution. Let A and B (Fig. 22) be the given points, and
OD the given line. If we can find the point of contact of the
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required circumference with CD, the problem can be solved by
Geom. §§ 148,149. Draw BA, meeting OD at E; let F repre-
sent the point of contact, and let
EA = a, EB= b, EF = z.
We have, by Geom. § 191,
EA: EF = EF: EB,
a:x = x:5
z =+ a/ (abd).

Construction. A construction better adapted to this case than
that of § 24 is the following. Describe any circumference
through 4 and B; through E draw a tangent EG to it, by
Geom. § 150. EG is a mean proportional between ZA and
EB, and F'is found by laying off EG on either side of E, so that
there are two circles which answer the required conditions.

Corollary. For all positions of the given points on the same
side of the given line, @ and b have the same sign, éither positive
or negative, and the problem admits of solution.

If A and B coincide (Fig. 23), the problem is reduced to draw-
ing a circumference through one given point and tangent to &
given line, and we have '

a =2},

r==*a(ad) =t a"=ta;
so that ZF must be taken equal to EA4, and the required centre
O will be at the intersection of perpendiculars to BE and CD,
erected respectively at B and F. But since the line B4 may
now have any direction whatever, the point Z may be anywhere
. in the line CD; so that, in this case, the problem becomes inde-
terminate, admitting of an infinite variety of solutions.

If either point, as 4, is in CD (Fig. 24), the problem is re-
duced to drawing a circumference through a given point and tan-
gent to a given line at a given point, and we have

- a =0,

2=+ A/ (ad) = + 0;
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8o that both the points F fall at E, i. e. at A4, and, in this case,
there is only one solution. The centre O is at the intersection of
perpendiculars erected to CD at 4, and to AB at its middle
point.

If the given points are on different sides of the given lme,
and b have opposite signs, so that their product is negative, and .
the value of = imaginary. In this case, therefore, the problem
is, by § 28, impossible.

5. To draw a common tangent to two given circles.

Solution 1st. Let the given circles be those described about
O and O (Fig. 25), and let M7 represent the required tangent.
If we find the point 7) the tangent can be drawn by Geom. § 150.
Let

OM=r, OM' =7, 00 =a, OT ==z
Since (Geom. §§ 120, 174) the triangles OM7T" and O'M'T are

similar, we have
OT: 0T = OM: OM',
T Xix—a=r:7,
ar
r—r’

Construction. Draw any two parallel radii, ON and O'N';
draw NN'T, and 7'is the required point. For if we draw N'D,
parallel to 0’0, and cutting ON at D, we have

DN'= 00 =a, OD=ON'=7r, DN=r —7,

DN : DN' = ON: 07T,
r—r:a=r: 0T,
0T=_2"_ —u
r

r —

X ==

Solution 2d. The common tangent may also be drawn, as in
Fig. 26, so that the points of contact shall be on dpposite sides of
O0'. Adopting the same notation as before, except that for r/
we will take M’ (Y, instead of O'M’, (because O'M’ is now op-
* positely directed to OM;) we have
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OT: T'0' = OM: M' 0%,

rz:g—x=1r'"7,

= 2T |

r—4
Construction. Draw any two oppositely directed radii, ON
and O'N'. NN’ will cut OO’ at the required point 7. For if
we draw N'D parallel to 0’0, and cutting NO produced at D,

we have
N! = 00’:0, DO=N’0’=1", DN==1'+1",
DN :DN'= ON: 07,
r4r:ia=r: 07T,

OT=r—|—r’
r4r>r,

we have, in the second value of z,

(:c=ar_;'_fl < a;=a);

so that, since z is, in this expression, necessarily positive, the
point must lie between O and /. 'When ' < 7, we have

r-}-r’<2r,

ar
r + r’>
z>ka;
sothat 7' will lie nearer to (¥ than to 0. Whenr' =r,z=1}1a;
so that*7" will lie half-way between O and (. When ~ > 1,
z < % a; so that 7 will lie nearer to O than to O'.
For the first value of z,

== X,

Corollary. Since

r—r

Then, when 7' < 7, so that » — #/ is positive,
ar
r—r’>_

40 z>a;
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so that 7" must lie beyond O'; and, the greater the value of 7

(r and @ remaining the same), the greater the value of z, till,
when 7 = r, so that r — ' = + 0, .

. ar ar

= T x>

that is, the distance OT becomes infinitely great. If, now,

is made still larger, so that 7 — 7/ becomes negative, - ar 7
or x, becomes negative ; i. e. 7" reappears on the left of O, and,
the greater the value of ' (r and @ remaining the same), the
greater the absolute value of r < 7/, and the less the absolute
value of z ; i.e. the nearer does 7" approach O. Thus, as r — ¢/
changes its sign by undergoing gradual diminution, and passing
“through the value zero, x simultaneously changes its sign, but by
undergoing gradual increase, and passing through the value
c’nﬁﬁity. It seems as if, during the increase of the circle round
0, the point 7" is moving off from O towards the right, till, when
# = r, it vanishes at an infinite distance on thé right, and, at
the next moment, reappears, still moving towards the right, but
from an infinite distance on the left (mark the force of the double
sign in = + o) and towards the centre O. This mode of
changing the sign is ‘frequent in Analytic Geometry. Its al-
gebraic explanation is that (Alg. art. 124)

+0=-—0,
therefore
+0 —o ’

In Geomelry, this leads to the inconceivable result that a point
which moves positively to an infinite distance reaches the same
position as one which moves negatively to an infinite distance ;
but when this paradox arises, it admits of ¢ndirect explanation.
Thus, in the present case (compare Fig. 25), it is evident that,
as 7' incréases, the mutual inclination of the lines MM’ and 00O’
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becomes less and less, and their point of meeting at a greater and
greater distance ; when 7/ = 7, these lines become parallel, and
may be conceived as meeting infinitely far off, either on the right
or on the left; and when # *> r, the tangent slants the other
way, and intersects OO on the left of O.

Corollary. Either value of z admits of construction for all
values of a, 7, and . But the drawing of the tangent is impos-
sible, if 7' falls within either of the circles. This is the case, for
the first method, when

rr,ande a7,

?>r,andx>—r,
and, for the second, when -
rr,andx >a—7,

or

or
o >r,andz <
The discussion of these cases is left to the student.
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Problems relating to Figure.

CHAPTER 1V.
INTRODUCTION TO INDETERMINATE GEOMETRY.

44. SucH problems as those of the last chapter readily
admit of solution by analysis, but, as it has been re-
marked in § 5, the most important problems of Geome-
try are of a kind to which Algebra cannot directly be
applied. Of this class of problems the following are ex-
amples: — To determine a line which is throughout at a
given distance from a given straight line; and, To de-
termine a line which contains the centres of all circles
which can pe drawn tangent to two given circles. What
is required, in each of these cases, is the form of a-
line, drawn under certain conditions; and, since this is
something which cannot (directly at least) be repre-
sented by the value of an unknown guantity, the first
step in the algebraic solution of either problem cannot
be taken. .

45. To solve the above problemé by Algebra, we
change their statement without altering their meaning,
so that they shall read as follows:— 7o find a point
which is at a given distance from a given straight line ;
and, To find the centre of a circle tangent to two given
circles. "'What is now directly required is not the form of
a line, but the position of a point which must lie in the .
line that was originally to be found, and by which, there-
fore, we can determine it. Then, supposing that we
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have the means of expressing in algebraic language the
position of a point, it will be found in the case of the first
problem {by methods presently to be explained) that the
.required point must be so situated that its direction from
any point at the given distance from the given straight
line is the same as that of this line itself; that is, (Geom.
§§ 17, 27,) that the line which we ultimately seek to de-
termine must be a straight line passing through a point
at the given distance from the given straight line, and
parallel to it. Likewise, the solution of the second prob-
lem will show that the/required centre must lie, accord-
ing to the relative position and magnitude of the given
circles, in some one or other of a class of curves hereafter
to be investigated, which, when the given circles are con-
centric, will be the circumference of another circle also
concentric with them'and of a radius equal to the arith-
metical mean (Alg. art. 252) of their radii.

46. Thus, all such problems as relate to the forms of
lines are, in Analytic Geometry, resolved into problems
relating to the positions of points. It is to be remarked,
however, that, while this change has no effect on the
meaning of a problem, it makes a difference in its char-
acter. Either of the above examples, as stated in § 44, is,
in a geometrical sense, determinate, since the line sought
is fixed by the conditions both in form and in position ;
but when the same problem is stated as in § 45, we are
required to find a point which is, indeed, restricted to a
certain line, but of which the position is not absolutely
fixed, since it may lie anywhere in that line, and so may
occupy any one of an infinite series of places. Thus, in
its final statement, the problem becomes, in a geometri-
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cal sense, partially indeterminate, and it will also be found
to be indeterminate in the technical algebraic sense of
giving fewer equations than unknown quantities. We
see, then, that Analytic Geometry renders indeterminate
those questions which concern the forms of lines; so
that, in this application of Algebra, the investigation of
indeterminate problems acquires a high degree of impor-
tance.

47. It appears from §§ 44 — 46 that it is a necessary in-
troduction to the study of Indeterminate Geometry (i. e.
of the Geometry of forms, as distinguished from magni-
tudes), _

L To expla.m the methods of denoting the position of
a point by the magnitudes of lines and angles, so that it
can be expressed algebraically ; .

II. To show how these methods enable us to deduce
from an indeterminate equation the line which must con-
tain every position of the undetermined point.

And I shall

IIL. Take up some general problems which it is con-
venient to bring together and investigate at the outset.

- L
POSITION.

48. We conceive of a point as having an absolute po-
sition, and also a position relative to that of other points;
but it is only when understood in the latter sense that
the position of a point is susceptible of algebraic expres-
sion. Moreover, all that is required, in the beginning,
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is to denote algebraically the positions of points as com-

“pared with some one assumed point, for this will enable
us to infer their positions as compared among them-
selves or with other points.

Thus, one ordinarily estimates and describes the position of
objects about him by their distances and directionsefrom him-
self; and the astronomer refers the positions of the heavenly
bodies to that of the sun.

49. The words Origin and Azis are used, in Indeter-
minate Geometry, somewhat as in § 20 ; the former word
denoting any assumed point to which positions are re-
ferred, the latter a line passing through the origin in any
fixed direction. The positions of points are referred to
the origin by means of certain lines and angles, the mag-
nitude of which varies for different points, and which
are called Coirdinates. Thus the position of a point, as
expressed in Analytic Geometry, depends partly on fixed,
or constant elements, namely, the positions of the origin
and axis or axes, and partly on variable elements, name-
ly, the cobrdinates ; and all these elements, in combina-
tion, constitute a Coordinate System.

‘We shall, at present, confine ourselves to points lying
in the same plane; and this plane we may regard as
given.

50. Polar Cobrdinates. If a straight line, indefinitely
produced from the fixed point which is taken as the
origin, be conceived to turn in a plane about that point,
it will evidently, in the course of its revolution, sweep the
whole plane, and strike every point in it. Now, if we
suppose that the line may, as it turns, be extended or
shortened at pleasure, we can muke its extremity coincide
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with any point in the plane, by turning the line from its
. primary position through the proper amount, and in the
proper direction, and giving to it the proper length.
Hence, the position of any point in the plane is deter-
mined, if we know the angle which measures this rotation
(compare § 20. d— ), and the distance of the point from
the origin. Thus, if A (Fig. 27) is the origin, and AR
the primary direction of the revolving line, the positions
of B/, B", and B" are fully determined and denoted by
the values of AB' and RAB', AB" and RAB", AB" and
RAB"; and these values are called the polar coérdinates
of B, B", and B".

The direction AR, from which the rotation is con-
ceived to begin, is called the axis, and denoted by .

The revolving line is called the radius vector, and is
denoted in general by ». The lengths which it has for
particular points are called the radii vectores of those
points, and are denoted by 7*, 7, 7, &c.

The angle : which the radius vector makes with the

axis is called the polar angle.

Positive rotation is assumed, as in § 20, to be that
represented by the hands of a watch, supposed to be seen
from behind.

51. Corollary. For a poind situated at the origin, we

have r = 0; for one in the axis, := 0.

52. Corollary. The coordinates of any point may be
conceived to have either of two sets of values. If, for
instance, B" (Fig. 27) is situated on the same straight
line as B’ and A, we hmay take for its-codrdinates,
either,
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! = ABIII’ :”= RAB" = » + :’
or, making B A the positive direction of ",
" = AB" = — B" A, '; "— RAB ="

@ But it agrees best with the conception of polar coér-
dinates, and it is, besides, most convenient, to denote
the direction of a point from the origin wholly by the
value of the polar angle, taking the radius vector to
express only the absolute value of the distance. Hence,

in polar coérdinates, negative radii vectores, and negative '

lines in general, admit of mo geometric construction.

This rule is generally construed so as even to exclude
the construction of negative values of » which result from
an algebraic process. In such cases, however, it will be
found of advantage to note what the corresponding
points would be if the rule were disregarded.

63. Corollary. The angle: may, for any point, have
any one of the series of values attributed to a single

angle in § 20. .

-

54. Corollary. The quantities r and : evidently come

under the definition of the wariable ; while the values
r, :', &c., which they have for particular points, are con-
stants. (Alg. art. 164.)

55. Problem. To find the distance between two points
in terms of polar cotrdinates.

Solution. Let B and B" (Fig. 28) be the two points, whose
5
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coordinates are respectively +/, ,./’ and 7, :/. The triangle
BAB" gives (Tr. § 87)
BB = 4AB -+ 48" —2AB.AB'.cos BAB'

— PR 2 i cos (,:'—:),

: l___ ” ] 7'”_7")
BB =& [z oos(o : ] @
56. Corollary. If B is in the axis, we have

~ . : = 0) .

and (1) becomes

BB = [ =2 rrrcos | @)

¢
57. Corollary. If B is at the origin, we have
r =0,

and (1) becomes
: BB = A/ =", (8)

58. Corollary. If the two points are on t];;a’same radius vec-
tor, we have : ) :
v

. ¢ e’
and (1) becomes (Tr. § 55) ,
BB = A/ [*— 27" 4 7] = ' — 1", “.)

§559. Corollary. If the two points are on opposite radii vec-
tores, we have

T
e e’
and (1) becomes (Tr. § 56)
’ BB = /[ 2 77 f r®] =1 41 (5.

60. Scholium. Formule (2) — (5) are readily seen to be
true, independently of (1) ; but they are here exhibited as special
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cases under the general problem of § 55. This illustrates the re-
mark of § 1, that the analytic treatment of Geometry, by taking
up questions in their most comprehensive forms, establishes gen-
eral relations between problems which would otherwise seem
unconnected, and thus leads deeper into the true principles of
the science. :

61. Scholium. If, in § 55, we attend to the ambiguous sign of
the square root (Alg. art. 197), we have (compare § 20. 8)
NBB'=+ BB'= BB'or B'B;
and (1) becomes

BB =t 4/ [#"4 #—2 e cos (:'_ ;')],

" epe o/ [P 77— 2 o cos (:”_;')]

This ambiguity, however, introduces no uncertainty into the
solution of the problem ; for it only expresses that the distance
between B’ and B’ may be measured by a line running from B’
to B', or by one running from B" to B, and that either of these
lines may be conceived at pleasure to run positively or nega-
tively ; but this sign may be neglected, since, in any case, the
distance detween the peoints (i. e. the absolute value of B'B") is
the same.

62. Rectilinear Coordinates. 'The method of Polar Co-
ordinates is the most natural one, because it denotes the
position of a point in terms of what are, in the simplest
view, the elements of its position (Geom. §8), its dis-
tance and direction from the origin. For some purposes,
this method is to be preferred to others; but, usually, a
_ method of denotmg position, not by a hne and angle, but
by two lines, is found, in practice, to be most elegant
and convenient. .

Let 4 (Eng 29) be the ongm of a system of coordl-

- "‘;n_

5.
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nates through which are drawn two axes, X'X and Y'Y,
at a certain arbitrary angle; and let the arrows denote
the positive directions of those lines and of all lines paral-
lel to them. It is evident that the position of any point
is determined, if we know the distance from the origin
at which each axis is cut by a line passing through the @
required point parallel to the other axis. Thus, B/, B,
B", BV are determined respectively by AP and AR/,
AP" and AR", AP" and AR", AP" and ARV. X'X
is called the axis of abscissas, or of z, and Y'Y the axis of
ordinates, or of y.
The distance on the axis of z, as AP, or its equal
- R'B', is called the abscissa, and is denoted, in general, by
2. The distance on the axis of y, as AR/, or its equal
P'B, is called the ordinate, and is denoted, in general, by
y. The abscissas and ordinates of particular points are
* denoted respectively by z/, 2", &c., and ¥y, y", &ec.; and
. they are called the rectilinear coérdinates of those points.
The positive directions of the axes must be taken so
that XAY shall be positive, and less than =; and, in
speaking generally of a rectilinear system, we commonly
imagine ourselves so situated that the axis of x points
. to the right, and then the axis of y points upwards.

63. Corollary. Since the coirdinates are measured on
the axes from the origin, points on the left of the axis of
ordinates, as B", B'%, have their abscissas, AP", AP",
negative; and points below the axis of abscissas, as B
B, have their ordinates, AR"; AR", negative. Thus, all
points in the first division of the plane, XA Y, have posi-
tive abscissas and positive ordinates; points in the sec-
ond division, YA X', have negative abscissas and positive

Tk
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ordinates; points in the third division, X'4AY’, have neg-
ative abscissas and negative ordinates; and points in the
fourth division, Y’AX, have positive abscissas and nega-
tive ordinates.

64. Corollary. For a point in the axis of y, as R', the
abscissa is

z= AA = 0;
for a point in the axis of z, as P’, the ordinate is
Y= AA = 0;

for a point in both axes, i. e. at their intersection, the
origin, both the above equations are true, and we have
z=0, y=0.

Thus, as a point moves towards the left, its abscissa
grows less and less; when it reaches the axis of y, z be-
comes 0 ; when it passes beyond the axis of y, 2 becomes
less than 0, i. e. negative. A similar change takes place
in the value of the ordinate of a point which moves
downwards.

65. Corollary. We may form a conception of rectilinear co-
ordinates similar to that of polar codrdinates presented in § 50.
Thus, suppose a line to move in such a manner as always to be-
gin in the axis of z, and to be parallel to the axis of y, and stp-"¥
pose that it may be lengthened and shortened at pleasure, (may
even become negative, i. e. may be directed downwards,) so that
it can be made to end in any point of the cosrdinate plane. The
moving line represents the ordinate, and is denoted by y, while
. the distance of its initial point from the origin represents the ab-

scissa, and is denoted by «; and it is evident, from the nature of
the case, that = and y are variables, but that =’ and g, particular
_ values which they must have to suit a particular point, are con-
. stants. ‘
5 *
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66. Scholium. It is generally most convenient to take’
rectilinear axes perpendicular to each other, and, in this
case, the axes and the coordinates are called Rectangular.
Rectilinear axes and codrdinates, not perpendicular, are

- called Obliqgue. Some particular system of oblique co-

ordinates is occasionally best suited to a particular prob-
lem; but where nothing is said to the contrary, z and y
are to be understood to denote rectangular codrdinates.

67. Projection. Connected with the subject of position
is the theory of Projections, by which, when we conceive
a point to be in motion, we refer its change of place to any
axis, with the view of ascertaining how much the point
advances or retrogrades in the direction of that axis.

By whatever course a point be conceived to pass from
C (Fig. 30) to D, it moves in the direction AB by the -
same amount, which, if CC' and DD’ are perpendiculars
to AB, is represented by C'D', and this amount is the
same for a point moving from any pesition on the first
perpendicular, to any position on the second.

C and DY are called the projections of C and of D;
and C'D' the projection of CD (i. e. of any line which
represents the motion of a point from C to D).

68. Corollary. 'The projection of a broken line is ob-
viously the same as the sum of the projections of the
straight lines which compose it. Thus (Fig. 30), the
sum of the projections of CG, GH, and HD is (compare
§ 20. ¢)

CG+ GH+ HD =CG@ + GH — DH = CD,
which is, by definition, the projection of CGHD.

69. Theorem. The projection of a straight line on an
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axis is equal to the product of the line and the cosine of
the mutual inclination of the line and the axis.

Proof. Let a denote the direction of the axis AX (Fig. 81),
and let the line be B'B’, denoted by n. Draw B'P and B'P'
perpendicular to AX and B'P, parallel to it. Then

PBB _",
and the projection of 7 on « is (§ 20. &; Tr. § 32)

PP/ — BP,—=ncos” = ncos *.
« n

70. Scholium. Observe that, since cos ": = cos :, it is indif-

ferent in which direction the angle is estimated ; and it is there-
fore called the mutual inclination of the line and the axis.

71. Corollary. If the projected line is parallel to the axis, the
whole motion of the point which generates it is in the direction
of the axis; and, in this case (Tr. § 55),

" 0, = cos ?—n
o [ ]
If the direction of z is with that of a, that is, if : is between

0 and } =, or between § = and 2 =, the projection n cos Z is
(Tr. § 67) positive.
Ift];e direction of n is transverse to « (Tr. §§ 55, 57),
:=§uor=§-n, ncos::=0.
n

If the direction of n is against that of a,

is between -} = and
n, and 2 cos _ is (Tr. §§ 62, 66 negative.
& t] «

If the direction of n is opposite to « (Tr. § 56),

n

n
=, necos = —n
a o
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72. Corollary. Let AX and AY (Fig. 81) be the axesina
rectangular system. Then, by § 20. g,

y_T y_y__n_ _n
n n+x z =z in z’
and R'R", the projection of BB’ on 4%, is, by §§ 69, 70, and
Tr. § 8, ’

! PI — y _ny _ . n
R'R" =ncos; = n cos (}n a:)\ ngin .

.78. Corollary. The projection of a line on either of two rec-
tangular axes is evidently equal to the difference of the abscissas
or of the ordinates of its extremities. Thus, if the coordinates
of B' and B" (Fig. 1) are, respectively, 2/, ¥/, and x", y", we
have

@' —z=mncos”, y' —y =nsn". (6)
x x
74. Corollary. Since (Tr. § 13) )
n\* . n\? ATy )
(ncosx) + (~ sin a:) =n’(cos’ g 8in? ) =,
the square of a line is equal to the sum of the squares of its pro-
jections on two rectangular axes.

75. Problem. 'To find the distance between two points
in terms of rectangular codrdinates.

Solution. Let the points be B and B (Fig. 31). §§ 78, 74
gve
BB = (noos ) 4 (nsin }) = (" — ) + (" — )%
BB = [@—2) + (¢ — )] )

_ 76. Corollary. 1If one of the points B’ is the origin, we

have
z' =0, 3/"‘_"0’

BB' = AB' = A/ (z'* 4 y?).

-
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77. Scholium. Formula (7) applies, even if B is so situated

that ' > z’,or y' > y'; for
@ —2)=F—2), ¢—y)=>¢—y)"

It applies, also, to two points, such as B’ and B, situated in
different quarters of the plane. For P" P is still the difference
of the abscissas of B' and B, since ="/ = AP'", so that

PP = PV"A 4 AP = — ' - ' = ' — 2.
(7), therefore, though obtained for two particular points, is per-
fectly general in its application.

78. ExaAMPLES.

1. Find the points of which the polar cosrdinates are
r=3 ;==-}7t, and 7 =4, ;—&n;
and calculate their distance apart.
Answer. Distance = 5.
2. Find the points of which the polar codrdinates are
r=8, ;=§n, and r =3, ;-:},}n;
and calculate their distance apart.
Answer. Distance == 7.
8. Find the points of which the polar cosrdinates are
r =23, :=§n, and r=3J, :=—§n;
and calculate their distance apart.
Answer. Distance = 8.
4. Find the points of which the rectangular cosrdinates are
] z=35, y=0, and z=0, y=—12;
and calculate their distance apart.
Answer. Distance = 13.

5. Find the points of which the rectangular cosrdinates are
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z=35, y=—10, and 2 =—1, y=—2;
and calculate their distance apart.
Answer. Distance = 10.

6. Find the points of which the rectangular cotrdinates are .

=20 y——3~/ab and z =a, y-——/\/ab
and calculate their distance apart.

Answer. Distance = a -|- b.

79. Scholium. A point is said to be given, when, in any sys-
tem, its coordinates are given, because, in that case, its position
can be found. The point whose coirdinates are r and :, or x
and y, is often designated as the point 7, :, or z, y.

IL
CONSTRUCTION OF EQUATIONS.

80. In either of the systems which have been explained,
two cotrdinates are necessary to determine the position of
a point in a given plane. This results from the fact that
a plane has two dimensions, and is true of any plane co-
ordinate system whatever. If, however, one cotrdinate
alone is given, since more is known of the point than
when neither is given, we shall find that its position is,
as we might expect, not indeed fully determined, but still
somewhat restricted. In a system of polar cotrdinates,

if a value is assigned to ’, we know the direction of the

corresponding point from the origin, and therefore the
straight line which contains it. Thus, in Fig. 32, where

A is the origin and AR the axis, if 7 0o = 1 @, the point
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must he some point, as 4, B, C, D, E, &c., in the line
AE drawn at an angle of 60° with AR, and may be any
point in it. But if r is giwem; we know the distance of
the point from the origin, and therefore that it lies in the
circumference of the circle which has the “origin for its
centre and a radius equal to the radius vector. Thus
(Fig. 32), if r = § = AF, the required point must be
some point, as F, G, C, H, I, K, &c., and may be any
point, in the circumference FG'C, &c. Again, in a rec-
tilinear system, a value assigned to z restricts the corre-
sponding point to a straight line parallel to the axis of g,
and at a distance from it (measured on the axis of z)
equal to the given abscissa; and a value assigned to y
restricts it to a straight line parallel to the axis of z, and
at a distance from it (measured on the axis of y) equal
to the given ordinate. Thus, taking A (Fig. 33) for the
origin, and X'X and Y'Y for the axes, if 2 =1 = AP,
the point must be some point, as B, C, P, D, &c., and
may be any point, in BD; or, if y=—1=AR, it
must be some point, as E, R, C, F, &c., and may be
any point, in EF. Hence, if one of the codrdinates of a
point is given, the point is thereby restricted to a certain
line ; and this is true of any system in a plane. We
may, then, conceive the position of a point to be deter-
mined by the intersection of the two lines which corre-
spond respectively to the values of, its two cotrdinates.

1

For example, if we have r = 3§, : =+4n, the point will
be C (Fig. 32), or the intersection of the circumference
FGC, &c. and AE. Or, if we have z =1, y = — },
the point will be C (Fig. 33), or the intersection of BD
and EF.
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81. Since questions can be solved by Algebra only when
they give as many equations as unknown quantities, a
problem regarding position which gives two equations
between the coordinates of the required point, without
other unknown quantities, is determinate, and is satisfied
by only one point, or, in case of equations of a higher
degree than the first, a definite number of points; but if
it gives only one equation between the cotrdinates, it is
indeterminate, and, by assuming different values of one
codrdinate, we can calculate different values of the other;
so that the problem is satisfied by any one of an indefi-
nite series of points. This series of points is, in general,
arranged in a line, the form of which depends on the al-
gebraic form of the equation.

Suppose that, in a system of rectangular cosrdinates (Fig. 85),
& line moves in the manner described in § 65, but that, instead of
being lengthened and shortened at pleasure, it so varies, as it
moves, that between its Jength and.its distance from the origin
a certain relation always exists, expressed by the equation
«' = 4 p y, in which p denotes a known length, as } inch. It is
obvious that, for every new position of the line (i. e. for every new
value of x), it will have a new length (i. e. a new value of g), -
determined by the equation, and, moreover, that, as it slips along
the axis of x, it will vary only gradually, as an abrupt change
would disturb the prescribed equation. Thus, let P M (Fig. 85)
and P'M" represent the variable ordinate for two values of =
which differ infinitely little from each other; and let the coordi-
nates of M’ and M" be x/, 3, and =", y". The equation gives

Yy —y = et w2 _di—at

ip 4p 4p
But since the difference between z'/ and 2’ is infinitely small,
the difference of their squares, that is, the numerator of the
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above fraction, is infinitely small, so that y’ — g is infinitely
small. P/'M" differs, therefore, infinitely little from P M, and
M' is infinitely near to M. In like manner, if PP ig infi-
nitely small, /" must be infinitely near M"; so that, if the value
of = be continuously increased by infinitely small amounts, i. e.
if the ordinate be shifted along the axis of x, y also will be
changed by infinitely small amounts, the end M of the moving
ordinate will pass successively through the positions M, M", M,
&ec., and these points, being contiguous, will form a line which
we may regard as representing and represented by the equation
r=4py.

82. The conclusions of §§ 80, 81 are summed up in
the following

Rule. One equation between cotrdinates in a plane
represents a line (or infinite series of points) ; two equa-
tions represent a point (or definite number of points), so
situated that its (or their) codrdinates shall satisfy both
equations, that is, at the intersection (or intersections)
of the two lines which they respéctively denote.

88. Scholium. Apparent exceptions -to the above rule occur,
because the line represented by an equation is sometimes reduced
to a point, in consequence of certain values attributed to,the con-
stants, or known quantities, in the equation. Thus, every point
for which r = 7/, where #' denotes any constant, i. e. fixed
length, is in the circumference of a circle having the origin for
its centre and # for its radius. But if the value zero be given
to 7, the equation becomes » — 0,and the circle is reduced to its
centre; so that » = O represents, as in § 51, a single point, viz.
the origin.

84. The curve of Fig. 85 is called the locus of the equa-
tion z* = 4 p y, which-is called the equation of that line. The
circumference F'GC, &c. (Fig. 32) is the locus of » = 3; and

6
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r = § is the equation of that locus. Also, the locus of the first
problem of § 45 is a straight line parallel to the given straight
line, and at the given distance from it.

Definitions. A locus is a place to which a point is
confined, and in any part of which it is allowed to lie, by
prescribed conditions.

. Any locus in a plane is called a curve.
— The equation of a locus is the equation which limits
the values of the codrdinates of every point of that locus.

-

85. Definitions. A curve is said to be continuous,
when its course is uninterrupted both in extent, (so that
we can conceive a point to move in the path of the curve
from any one position in it to any other,) and in the char-
acter of its curvature.

- Thus, a straight line, the circumference of a circle, and the
curve of Fig. 35, are continuous curves; but a broken line
(whether made up of straight or curved lines) is discontinuous ¢n
curvature. Again, in the equation y**= #* — @, for values of =
. between —a and @, y is imaginary and cannot be constructed ;
while it is real, and therefore admits of construction, for all val-
ues of # which are less than — a or greater than @. Hence, the
locus of the equation is wholly without these limits, and partly on
either side of them. It is, therefore, discontinuous ¢n extent, con-
sisting of two separate parts. There are other ways in which
discontinuity in extent may be indicated by the algebraic form of
an equadion.
A continuous part of a locus is called a branch.

Thus, the locus of §* = «* — o&* has two branches. A curve
which is continuous throughout may be said to consist of a single
branch.

‘When a branch comes round into itself, so that a point
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which moves in it from any given position whatever will
at last be brought back to that position, it is called an
oval.

Thus, the circumference of a circle is an oval; but not all
curves which enclose space (as.that of Fig. 86) are ovals.

‘When a branch consists of a single point, it is called a
conjugate point, and it may be regarded as an infinitely
-small oval.

‘When the substitution of any value for either coédrdi-
nate in an equation gives more than one value for the
other codrdinate, the different points which correspond
to these values are said to belong to different portions
of the locus. ‘

Thus, with reference to the axis of g, the curve of Fig. 85 con-
sists of two portions.

Two portions of a locus are symmetrically situated with
respect to either axis, inea rectilinear system, if their dis-
tances from it, measured on lines parallel to the other
axis, are equal throughout; and a curve which consists
wholly of such portlons is symmetrical with respect to the
former axis.

For example, the curve of Fig. 35 is symmetrical with respect
to the axis of y, because x — + 2 A/ py, so that every value of
y gives two équal values of z, with contrary signs.

86. Problem. To find the locus of a given equation.
- Solution. For an equation in terms of polar cosrdinates, if
any values of make r negative, and therefore incapable of

construction (§ 52), find the limits of those values. If the coordi-
nates dre rectilinear, find the limits of such values of x or y as
make y or x imaginary.

~

Fy

’-.
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Next, assume, between the limits for which the curve is possi-
ble, successive values of one of the coordinates, differing but lit-
tle from each other, and construct the corresponding values of the
other coordinate, as obtained from the given equation. Thus
may be determined as many points of the required locus as are
desired, and the line drawn through them, by the eye or with the
aid of the curve-ruler, cannot differ much from the required line.
If the points could be obtained infinitely near each other, the
locus would be fully determined. .

The arithmetical method of construction (see § 33) is generally
most convenient; but where the geometrical is employed, the
method of § 37 must be applied to heterogeneous expressions.

87. ExXAMPLES.

Note. — The drawings of the first eleven curves should be preserved for
fatare reference.

Construct the following equations : —

1. P?—6ryt+y—6x42y+5=0
Solution. First, to find the value of y: —
y—6bry+2y=9"—20Br—1)y=—2"4 6x—235.
Completing the square (Alg. art. 230),
y—2(Bz—1)y+ @z—1)
=y—2(3x—1)y+9a:’—6x+1—[y—(3:c—-1)]
=—2f6r—54+92"—6xrF1=_82a"—14;
g —@Br—1)==% 24/ @22 —1);
y=8z—1+24@22—1). .
Thus y has two real values for all values of 2 which make the
radical term real ;
i. e. if ’ 22 >1; N
i e if >
i, e. if = is between — oo and — a4/ 3, or between - 4/ 4
and 4 . But if x is between — o/ } and 4+ 4/ 3, y is imagi-
nary. Hence the curve consists of two infinite branches, and also

qz
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of two portions, each of which is partly in one branch and partly
in the other.

Beginning with the limits of the imaginary values of y, we have,
if z =a/ 3} =.707,

y=84/34—1=2121 —1= 1121
If z=—n%
y=—8a/3—1=—2121 —1 = — 3121
Taking (Fig. 834) AP = .71, PM = 1.12, AP, = — .71,
P,M, = — 8.12, we have two points, M and M, of the locus.
Taking values of z differing from each other by two tenths, we
find successive points of the locus, as follows * : —

z Y x y

8 246 or .34 — 8 — 2.34 or — 4.46
1. 4 or- 0. — 1. — 2. or — 6.
1.2 534 or — .14 — 1.2 — 1.86 or — 7.34
14 6.62 or — .22 — 14 — 1.78 or — 8.62
1.6 7.86 or — .26 — 1.6 — 1.74 or — 9.86
1.8 9.08 or — .28 — 1.8 — 1.72 or —11.08
2. 10.29 or — .29 — 2. — 1.71 or —12.29

: &e., &c.

* The following form of arranging the computation is recommended as a
convenient model in constructing subsequent examples. The squares,
square roots, &c. may be taken from tables, or fourid by means of logarithms.

z .8 —.8 . —1. &
3 64 .64 1. 1.
. 278 1.28 2
228 —1 - .28 L
+ J(@22—-1) + .5292 +1.
+2/(2 2 —1) 4 1.0584 + 1.0584 + 2. + 2.
3r —1 1.4 — 3.4 2. —_ 4,
y 2.46 — 234 . 4 =2
or .34 or—4.46 or 0. or — 6.

6'
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Thus, we are enabled to lay down, in Fig. 34, that part of the
required locus which lies between z = — 2 and = = 2.
This curve is called an Ayperbola.

— 2. 22842y —3x44y—1=0.
This locus is the circumference of a circle.
3. 82 —2zyt+y—4z4+2y—38=0.
This locus is an oval, and is called an ellzpse.
4. LAy
4 9
This locus is an ellzpse.
5. P—4zyt4y—4ax—2y410=0.
This locus consists of one infinite branch, and is called a parabola.
6. ?2+2xy—2y¥—4c—y410=0.

This locus is an Ayperbola.
7. zy =16,
This locus is an Ayperbola.
- 8. (x—a)}+2@—0 =0
This locus consists of a single point.
9. 288 —22y+y¥*—2x44=0.
This equation has no locus.
— 10. 28 —8zy+8ytax—2y=0.
This locus consists of two parallel straight lines.
N § 2 —zy—y*—38zxz41=0.
This locus consists of two straight lines which cross each other.
12. Y= 5,
This locus consists of one infinite branch, and is called a cubic
parabola.
18. =2

This locus has two infinite branches, and is called a semi-cubic
parabola. '
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14. y=a'— 2
This locus has three infinite branches.

15. - y’ = — I‘-
This locus consists of one branch. Is it an oval ?

16. y=2z'—2
This locus has two infinite branches and a conjugate point.

-17. §=a— 2 )
This locus is an oval. It is called a lemniscate.

18. Y=z —=a"
This locus is an oval.

19. =2a(1—2")"
This locus has two branches. Are its portions the same as its
branches ?

- 20. =2z (1—2"
Are the portions of this locus the same as its branches ?
21. ¥ =ax—2a.
This locus has two branches.
22. y=2a—2
This locus has two branches.
23. Y=2— (b—c)?—bcax.

This curve is referred to the parabolic class. It consists, in gen-
eral, of two branches, one of which is an oval. The equation
should be constructed for four different sets of values of 4 and ¢,
and the corresponding curves compared.

(1.) b= 3, c=1.

In this case, the curve should be drawn as far as = 5.
2) b=38, c¢=0;

when the oval is reduced to a conjugate point.
3. b=0, c=1;

when the two branches run together into one.
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(4) b=0, ¢=0;
when the branches unite, and the oval becomes a point, and the
locus becomes a semi-cubic parabola.

24, F=Q@—) (1 —a) G —2).
This locus consists of three ovals.

25. @+ —4r—y=0.
This locus consists of an oval and a conjugate point.

26. y = (@®*— a?) (@®— &°).
This locus has one infinite branch.

27. Py —2ry—a =0,

This locus has three infinite branches. It is called a redundant
hyperbola.
28. ay— gyt —16a' = 0.

This locus consists of two infinite branches.

— 29. Y4 (5 @) (x4 5= 0.
This locus consists of two infinite branches. It is called a con-
thoid, and its property is, that any line drawn through the origin
cuts the curve in two points, which are at the distance @ from the
points at which it cuts the line of which the equation is x = &.
Let the equation be constructed when ¢ < b, when @ = §, and
when a > b.

:c=‘R1:—-Rs_inp

a’
y= R—Rcos ﬁ ;
in which g denotes a variable angle. A single equation may be

obtained by eliminating f, but it is-not so convenient for use as

the combination of the given equations. The locus consists of an

infinite succession of finite branches. It is called the cycloid, and

is the locus of a point in the circumference of a wheel of the

radius R, which rolls in the coordinate-plane on the axis of .
_It is, with its various modifications, a very celebrated curve.
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31. y = log .

Since negative numbers have no logarithms, the curve will lie
wholly on the right of the origin. It will be below the axis of.x,
for values of x less than 1; when x = 1, it will cross the axis,
and afterwards continue above it. The curve is called a loga-
rithmic.

82. y=[a+ N(@—aD)]log[a+ /(@ —)].

This locus is an oval.
— 33. r=-a+sinm:..

(1.) Since the sine of an angle cannot be less than — 1, r is
positive, if @ > 1; and r will, by Tr. § 69, continually repeat the
series of values which it goes through as m ;passes from 0 to 2 n,
that is, as : passes from 0 to 2_":' Hence, when a > 1, the carve

returns into itself after as many revolutions of the radius vector
as there are units in the denominator of m. When m is an inte-
ger, this denominator is 1. First, let

a=2, m=3
The curve might be constructed geometrically. But it is better
to lay off values of : in degrees with the protractor, and find the
corresponding values of sin m : from the table of natural sines:
The curve is exhibited in Fig. 37.

(2.) aQ == 2, m =8,
3) a=2, m=3}%
(4.) a = 2, m == -}.
4.) a=2 m=4
(6) a=2 m=4%

7.) a=2, m=4}.
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B) Kae=1r = 0, whenever sin m” — — 1 so that the

curve returns to the origin as many times as there are units in
the numerator of m. Let

¢ a=1, m=1,

(9.) a == 1, m = 8.
(10.) . a=1, m= 3.
(11.) a=1, m=4%.
(12.) =1, m= 2.
(138.) a=1, m= 2.

(14) If a < 1, r is sometimes negative. It will be well,
however, to retain the negative values of r, indicating the cor-
responding parts of the curve by dotted lines. Let

a=1}, m=1.
(15.) a =3 m= 2.
(16°) a = é’, m = 3-
r
— 34 r=2R(1-|—cose).

This curve is called an epicycloid. It is the locus of a point in
the circumference of a wheel, of the radius R, which rolls around
another wheel. In this case, where the wheels are equal, the
curve is called, from its form, the cardioid.

~ 8b. 7 = a® cos 2 ;
This locus is a lemnsscate.
_ 36 Cor=—t
1—cos "
. e
This locus is a parabola.
37- r = 3 .
' : 2—cos T

This locus is an elipse.
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To Solve Equations by Geometric Construction.

88. Scholium. A curve is, in Analytic Geometry, said
to be given, when its equation is given.

89. Scholium. The principles of this chapter may be used to
find the real roots of equations which involve no more than two
unknown quantities. If two equations are given, containing two
unknown quantities, construct each equation by § 86, as if = and
y denoted the coordinates in a rectangular system; find, by
measurement, the values of x and y for the points of intersection
of the two lines thus obtained ; and these values are the required
roots (Alg. art. 108). For, since the codrdinates of every point
in a line satisfy the equations of that line, the coérdinates of the
points of intersection of two lines, i. e. of the points common to
them, must satisfy the equations of both lines, i. e. are the roots
of those equations.

If one equation, with one unknown quantity, z, is given, reduce
it as in Alg, art. 118 ; form a new equation by putting the first
member equal to y; construct the new equation ; and the abscis-
sas of those points at which the locus cuts the axis of abscissas
are the required values of z ; since, for every point on the axis
of z, y = 0, and, for every point in the constructed line, the first
member of the original equation is equal to y.

This method, of course, is, practically, only an approximative
one.

90. EXAMPLES.
1. Find the real roots of the equation
?—42? ¥4 62—3=0,
knowing that they are contained between — 1.5 and 3.5.

Solution. Fig. 89 shows the locus of the equation
y=o—4P+ 24 6x—38;
and the required roots are
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Solution of Equations.
@ = AP — —1.19, = AP = 56,
2 = AP" = 1.44, 'V = APV = 3.19.
If the equation had been

o — 4P 42t 6x—38 =aqa,

it might have been solved by finding the intersection of the curve
of Fig. 39 with the straight line determined by the equation
y = a; and since the equation is of the fourth degree, there
will ordinarily be four roots. But, if a = 1 = A4, the points
Py, P coincide, so that two of the roots become equal; and,
if @ >> 1, there are no points of intersection corresponding to
P, Py and two of the roots become smaginary.

2. Find the real root of the equation

2—38z+41=0,
knowing that they are contained between — 2 and 2.
Ans. —1.879, 0.347, 1.582.

’
8. Find the real roots of the equation
522 —6x+42=0,
knowing that they are contained between — 2 and 1.
Ans. —1.2345, 0.8785, 0.856.

4. Find the real roots of the equation .
P A4 — 62— 24 —24=0,
knowing that they are contained between — 8 and 3.

Ans. — 2, 1,817.
5. Find the real roots of the equations
x + y=wy
zty+2 4y =12

Ans. Fig. 88 gives

=2 z = 0.791 = — 3.791
y= 2’;} or {y - —3791;§ T {y =0791.
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General Design and Method of Transformation.

6. Find the real roots of the equations

z* +"f =3,
ey =2
x = + 1.581
Ans. { y = % 0707,
7. Find the real roots of the equations
2y 4z yf =4,
Pyt = 5.
t z = 13.046, z = — 9.846
Ans. {y - 9.846;} or {y — 13.046.
IIL

TRANSFORMATION OF COORDINATES.

91. Each kind of coérdinates is best suited to particu-
lar classes of problems; and, among systems of the same
kind, one position of the origin and of the axis (or axes)
may be convenient for one purpose, and for another pur-
pose a different position. Hence, it is often desirable to
change the form of a given equation, so as to obtain
from it the equation of the same locus referred to a new
system of codrdinates. This change in the reference of
position from one system of codrdinates to another, is
called the Transformation of Coérdinates.

92. Scholium. If it is desired to refer the curve of Fig.
35 to a certain polar system, this transformation may be
accomplished by finding expressions for the values of the
variables z and y, in the rectangular system of Fig. 35,

.7
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Polar Coordinates to Rectangular.

in terms of the variables  and " of the proposed polar
system, and then substituting these values in 2 =4 py;
and, after this, the equation may be reduced to its sim-
plest form. It is'evident that, in all cases, as in this,
the transformation of cotrdinates may be effected by
means of formulee which express the old cotrdinates in
terms of the new.

93. Scholium. Cobrdinates of the same kind, but be-_
longing to different systems, are sometimes distinguished
from each other by numbers placed below the letters.
Thus, if z and y are the cotrdinates in one rectilinear
system, those in another may be denoted by z, and .
These numbers, being used only to prevent confusion,
may evidently be dropped, when we cease to consider
the codrdinates of the former system.

94. Problem. To transform from a system of polar
codrdinates to a system of rectangular cotrdinates.

Solution. Let A (Fig. 40) be the polar origin, and AR the
polar axis. Let 4, be the rectangular origin, 4,X the axis of
abscissas, and A, Y the axis of ordinates. Let B represent any
point whatever, so that its codrdinates will be, in the first system,

AB=r, RAB = : y
and, in the second system,
AIP = w’ N P_B == y,
We are to find » and ” in terms of z and y, and of such con-

stant lines and angles as will determine the position of the new
system with reference to the old. These constants are the co-
ordinates of the new crigin in the old system, viz.




-

§ 94.] TRANSFORMATION OF COURDINATES. 75

Polar Coordinates to Rectangular.

0

Ad, =1+, RAA, — ;",

and the inclination ‘;’ of the axis of  td the polar axis.

By § 20. g,/, the inclinations of » and of #° ta the axis may be
decomposed as follows : —

-4+,
0+'

The projections of AAd,, lP, and PB on the axis of z are,
by §§ 69, 71,

'*oe\!
QHQH

7° cos r°=r°eos(r°-—m),- x, and 0;
z @ e
and their projections on the axis of y are, by § 72,
/ ,°
r° smz—r sm( _?) 0, a.ndy

The projection of 4B, or , on any line, is, by §§ 67 68, the same
as the sum of the projections on the same line of 44,, 4,P, and
PB; so that its projections on the axes of x and of y are

T Y
rsin£=rsin (:—‘:)=r°sin(:°-—z)+y.
The sum of the squares of these projections is (Tr. § 13)
1’=a:’+2r°a:cos(r°—x)+r°’cos’(r°—x)
+y’+2rysm( — )+r sin® (9 )

S Ny e +2 [:coos( )-|-ysm( — )]

r=~/(x°+y’+r°’+2r [xcos( ——‘:)

bm(=0) @
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Rectangular Coordinates to Polar.
Also we have (Tr. § 11),
. : . [r°
r sin (;_:) ~ tan (r_z) __.'/+r°_sm (e —‘;)
3 = = .
res =)~ T T ()
(9) and (10) are the required equations, but (8) is, in most of

the problems which are considered in this book, more convenient
for use than (10).

95. Corollary. If the new origin is in the polar axis, and the
axis of x has the same direction as the polar axis (Tr. § 55),

r°=0’ z_o,

) .
(=0, (=)=
and (8), (9), and (10) bgcome

r r
rcosz==reose=-=x+r°,

(10

o? ° r y (11.)
r=a @4+ +2), tane::c-l-r“
96. If the origins are the same,
i f°=0;

and (8) and (9) become
rm;=m(;_§)=x, r=N@E@+). (12)

97. Problem. . To transform from rectangular coérdi-
nates to polar.

Solution. Let AX and AY (Fig. 41) be the rectangular axes.
Let A, be the polar origin of which the codrdinates in the gld
system are

AA' = z°, and A4, =yg°;
and let the polar axis be 4,R.
-The values of the rectangular cosrdinates
' AP =z, and PB=y,




§ 98.] TRANSFORMATION OF COORDINATES. 77

From one Rectangular System to another.

are to be found in terms of the polar codrdinates
AB=r, and RAB=— ;,
and of z°, y°, and :
The inclination of 4,B to 4X is, by § 20. g, .
r_e r.,
z =z + e’
so that its projections on the axes of = and y are, by (6),
z —2° =17 cos (g-l—;), and y—y°=rsin(§+;);
whence, by transposition,
x=x°+roos(§+;), (18)

g =4 + rsin (g+:). (14)

98. Problem. To transform from one system of rec-
tangular codrdinates to another.

Solution. Let AX and AY (Fig. 42) be the old axes, and
A/X, and 4,7, the new. Let the cosrdinates of the new ori-
gin be ‘ :

AA' = 2°, and A'A4, =y°.

The values of the coordinates

AP =z, and PB=y,
are to be found in terms of the coordinates
AP, =z, and PB=gy,

and of 2°, y°, and z‘. '

The.inclination of P.Bto AX is, by § 20. g,
Ni__ T % x,
z =z +'xll =3n+.5
7 * .
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From one Rectangular System te another.

so that the projections of x, and g, on the old axis of x are re-
spectively (§ 69; Tr. § 63)

x, OOS;I,' .'/l cos (} B +zl) = "—vyl sin zl;
and their projections on the old axis of y are respectively (§ 72)
, sih:‘, 4, sin (§ ] -|-:') = g, cos :‘.
Hence, the projections of 4,P,B on AX and AY are respec-
tively (§§ 68, 738) .

o x, o Iy
X — x,; cos — 1n
= x Hr8m -,
) R 1 ;
— x,; 8In H
y—y=a ‘m+y,cosz,
whence

z =2+ coe:’;‘ — y 8in ;‘, (15.)
y=9+ i sin ] 4y cost. ~@6)

99. Corollary. If the origins are the same, -
=0, and g =0;
and (15) and (16) become

X == X; CO8 :l % sin :l, ’ (17.)
y = x, 8in :‘ —+ %1 cos :‘ . (18.)

100. Corollary. If the directions of the axes are the same, we
have (Tr. § 55)

. X x
1 =0, @in'=0, cost
x z z

and (15) and (16) become
=24z, y=9" +n (19.)




§ 101.] TRANSFORMATION OF COORBINATES. 79

From one Rectilinear System to another.

If, at the same time, the new origin is in the axis 4X
=0
and (19) becomes
. z=2a"+x, y=y. (20.)
But if the new origin is in the axis 4%,
z° = 0;
and (19) becomes )
z=m, y=y+n (21.)

101. Problem. To transform from any system of rec-
tilinear codrdinates to any other.

Solution, Let the original axes be 4X and AY (Fig. 43),
and the new axes 4,X, and 4,%,. Let the coordinates of the
new origin be -

A4 = z°, and AA4" =y°.

The values of the codrdinates '

AP = RB—=2x, and AR =PB=y,
are to be found in terms of the cosrdinates
AP =2z, ad PB=y,

and of the constants, z°, ¢°, 2‘, i‘, and z

x=z° 4 AP, y=y° + A"R.

To obtain the value of AP, we will find 4'P, the projection
“of A4,P.B on a line perpendicular to the axis A¥, and then, in
the right triangle P A'P, find A'P; and, to obtain 4”R, we will
find 4R, the projection of 4,P B on a line perpendlcular to
AX, and then solve the right triangle 4"R'R.

Let ¢ denote the direction of 4’7", and x that of A”R’, so that

y

x
‘==*1l, x=§n.
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From one Rectilinear System to another.

The inclinations of 4,P, and P, B to A'P are respectively, by
§ 20. g,

AN
YR (U0

and the mchnatlons of A’R' to AP, and P,B are respectively,
by § 20. g
X _ T g x_x_ T _, _ o
rn x + r =z :t:l n— o
ng “=K_y|= _y|.
n % te=z tn—g

Hence the projections of z;, and y, on . are respectively
(Tr. § 8)

e (o ) T )
out 2 [ynm (0 8)] < i (1 2):
and their projections on x are respectively (§ 70)

x,
X, COos = X, T — == in
1 x ,cos(} ) zls z?

y,cos " = g, Co8 (}n-—zl =y, sin -Z“;
so that the projections of 4,P, -} P.B are (§ 68)
A'P' = z, sin (y )-|—y sin (y y')

A'"R = =, sin % + ¥, sin y‘ .

In the right triangles A’P'P, A"R'R (§ 20. g, &5 Tr. §§ 7,
8, 10)

=YL *_Y_ Y __ 1.9
—;+y—a =¥
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b ¥
Rectangular to Oblique. Obliqud to Rectangular.
x_ T x_x_ Y _ 1 __ Y.
y_y+a: r =z da—ys
y AP
sec =cosecx=zl_ﬁ,
sec cosec ¥ 4"R
= x=AI/RI’
- (=2) o (=2)
A'P=A/P'cosec§=x'm(x )T o 27,
sin

. X A
Z sin ~+ yisin 3

A"R = A"R' cosec ¥ =
z

sin ¥ .
z
Whence ,
in (Y — & in (Y —%
:c,sm( — )+y,sm( — )
=24 z” =z z_z) 2.
sin g

sn L1 s Y
Z, n 81n
1 810, + % o

y=y+ : (23)

sin ¥
sin
x

102. Corollary. 1If the original axes are rectangular, then
(Tr. § 55)

. ‘z = } m, sin ‘Z =1;
and (22) and (23) become .
x=a:°+a:,cosz‘+ylcos"£, (24.)

y=y°+x, :sin;'-l-‘f/l sini‘. (25.)

103. Corollary. If the new axes are rectangular, then (§ 20.
g5 Tr. §§ 8, 63, 64)
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The Formul are of General Application.

$h_n yl_ Y x,
:a:l + in +x’ smz‘ 08 oo

wli2) sl —so2) o3
- —ifpr ()] = (2):

and (22) and (23) become

s Y __ T y__x
D) e ()
- :c==x+ : ’

sin ¥
z

(26)

x, sin :l ~+ g, cos ;‘ .
y=9 + — - (27)
sin 7 - .

104. Scholium. Tt is left as an exercise for the student to find
what (24) and (25) become when the new axes are rectanguldr,
and what (26) and (27) become when the original axes are rec-

gular. The resulting formule in each case should, of course,
be identical with (15) and (16).

105. Scholium. For simplicity’s sake, the new origin and
axes and the point B are, in Figs. 40— 43, supposed to be so
situated that each italic letter shall denote a pesitive line, and
that all the trigonometric functions which enter into the result
shall be positive. But the solutions, and therefore the formulse,
" depend on general reasoning, and are equally applicable to any
other case that can arise under their respective problems. Thus,
for the position of the axes and of B represented in Fig. 44,

where z° and y, are negative and 2‘ is between $ 7 and 2 =, so0
that (Tr. § 67) sin 2‘ is negative, x comes out negative in equa-
tion (15).
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Examples.

106. ExAMPLES.

L d
Note.—In the following examples, it is recommended to lay down the
new origin and axes on the previous drawings of the curves of § 87.

1.+Transform the equation of Ex. 1, § 87 to a new system of
rectangular coérdinates such that

20 °__ o
=0, y=—1, tan 1.

Solution. A, (Fig. 34), determined by the values of z° and y°
is the new origin, and 4, X, and 4,1, determmed by the value

of tan :c,’ are the new axes.
Tr. §§ 10, 11, 14, give

ec:'==~/(l+tan’ ;‘)=:i:~/2,

’

. 1
cos ! = =44/}
x x,
sec
x
’
xl

sin ==tan ! cos ==:F~/,},

in which, if AIX,, and not A X1, is taken for the direction of the
axis of x, we must make (Tr §§ 64, 67) cos 1 z Positive, and sin ot
negative. Then (15) and (16) become

x=0+xl'\/}+!/1‘\/ﬂ'=‘\/}(zl+yl)’
y=—l—awNt+uNit=—1—3}(@—y)
Whenoe
3(@+9)=2@+ 209 4 4),
zy=—a/3} (@ +4) —3% (e —3),
—6zxy =64/3 (2. +35) + 3 (@1 — )
¥=[—1—a3 (2i—un)]*
=1 “"';2'\/§ (2 — ) + 3 (51 — 22,9 4 40),
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Examples.

—6z=—643 (2 -+ ),
29=—2—2N/§' (xl—".'/x)3
and the given equation becomes, by omitting the numbers below
the letters (§ 93),
1@+ 229+ )+ 63 (49 + 30—
+1+24/3@—y) + 3@ —22947)
—6N/ 3+ —2—2Mt(x—y) +5=0;
which becomes, by reduction,
4 —29y%+4+4=0.

Dividing by 4, and transposing, we have
y_%_1,

2
which is the required equation.
2. Transform the equation of Ex. 2, § 87, to a new system of
rectdhgular coordinates, such that z° = §, y° = —1, :j =0.
. Ans. 24 =3 -
3. Transform the equation of Ex. 3, § 87, to a new sys-

tem of rectangular coordinates, sugh that 2° = 4, y° = — %,
w2 (3) = —1. A S

Ans. (Tr.§51.) 2(2—~/2>,,'+w¢= 1.

4. Transform the equatlon of Ex. 4, § 87, to a system of oblique
cobrdinates for which z° = 0, y° = 0, tan ™! 2 = tan .'/1 — _/3,
2
| A rﬁ%
5. Transform the equation of Ex. 5, § 87, to a ystem‘o rectan-
gular coordinates for which z° = 2, y° = 1, tan :1 - §.
dns. y'=wt.2
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6. Transform the equation of Ex. 6, § 87, to a system of rectan-
gular codrdinates for which

=4 =3 tan ”"=(——}+§vw-)
s, (2V13+2)x’ (2;\/13——2)3/'

7. Transform the eqnatlon of Ex. 7, §87, to a system of rec-
tangular coordinates for which z° = 0, y° ==0 ={1r

Ans. a:’ ¥ =382
8. Transform the equation of Ex. 8, § 87, to a system of rec-

tangular ooiirciinates for which 2° = a, y° =}, :1 =0
9
4dn 4 ¥ =0
2 + 1
9. Transform the equation of Ex. 10, § 87, to a system of rec-
tangular codrdinates for which 2° = 0, y°'="— & tan x, _

dns. y = + 'y «( 5
10. Transform the equation of Ex. 11, § 87, toa system of
rectangular codrdinates for which

=% §°=—4 tan =84/ 10.
Ans. (1 —a/10) 2 = (1 4 A/ 10) ¢~
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Straight Line.

CHAPTER V.

EQUATIONS OF LOCIL

107. We may now use the methods of the last chap-
ter for the purpose for which they were invented, — the
application of Algebra to those problems of Geometry
which relate to the forms of lines. The object of this
chapter is to begin the study of some of the more impor-
tant lines by finding their equations, referred to various
systems of codrdinates; and some immediate conse-
quences and applications of these equations will be
pointed out in passing. The equation of each locus will
first be found in terms of some polar system, and then
transformed to such other systems of codrdinates as
chance, in the case of that locus, to have a special in-
terest.

L

THE LOCUS OF A POINT WHICH MOVES IN A GIVEN DIREC-
TION, AND SO AS TO PASS THROUGH A GIVEN POSITION.

108. Scholium. This locus is, by Geom. § 12, the
stnght line which is drawn through the glven position
in the given direction.

109. Polar Equation. Let A (Fig. 45) be the given position,
and let it be the origin of a system of polar coordinates of which
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Polar Equation.

the axis is 4X. Let « denote the given direction. By the defi-
nition of the locus, either a or — « is always the direction of the
moving point from the origin. Then, for any position, as M,
which the point assumes after it has passed through A4,

r — a

e e
If we neglect the rule of § 52, this equation is also true of any
position, as N, which precedes 4 ; but if we exclude negative
values of r, we have for &V (§ 20. g, %)

T -—¢_a, - o
e= et a2y
Since, however (Tr. § 65),

a a
tan (7 4 (’) = tan o’
while no other angle between 0 and 2 = has the same tangent as

‘;, the two equations for M and N may be combined into one, as
follows : —

r o
ta = tan H 28.
n? e’ (28.)

so that (28) is the polar equation of the straight line
which has the direction « and passes through the origin.

110. Corollary. The origin 4 may evidently be at any point
of the line, since the value of r does not enter into (28). By

giving different values to ?, the. axis may be drawn in any re-

quired direction. Thus, if it has the same direction as the line,
(Tr. §§ 55, 56)

-0
tan ’ = tan * 0,
¢ e
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Rectangular Equation.

111. Rectangular Equation. Equation (28) may be trans-
formed to rectangular codrdinates. Suppose the new origin to be
in the polar axis, as at 4, (Fig. 45), and the axis of « to have .
the same direction as the polar axis. Then

o a
e

and (11) gives
s —tan =t —tan 7,

y=ztan 4 r°tan 7. (29.)

Dividing by tan _ and transposing, we have (Tr. § 10)

0

z=ycot ) —1r°;

or, if we take
= A A=— A4 =—1r°,

 w=yeot  + . (30.)
Or (29) may be reduced as follows. Let
-Al H == y’ ’

o
then tan = 73:’5’,

°tan : =9
and (29) becomes ' 4
y=ztan 4y (81.)
Thus, either (30) or (31) may be used as the rec-
tangular equation of the straight line, « denoting its
“direction, 2’ the abscissa of the point at which it cuts
the axis of z, and g’ the ordinate of the point at which
it cuts the axis of .

112. Scholium. Xt appears from 4 110 that the polar system
of § 109 may be so taken that the origin shall be at the intersec-
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The Line determined by its Arbitrary Constants.

tion of the straight line and the axis of z in any rectangular
system whatever, and the axis have the same direction as the
- axis of z. Thus the system to which (28) is transformed in
§ 111 represents any rectangular system which we may choose
to adopt. Even if the proposed axis of x is parallel to the line,
they may be conceived to meet at an infinite distance from the
rectangular origin ; and this infinitely distant point of intersection
will be the origin of the polar system from which the transforma-
tion of § 111 is effected. ’

113. Corollary. In equations (30) and (81), /, ¢/, and :

evidently denote constants ; but since they have different values
for different lines, they are called arbitrary constants; and as no
two lines can have the same values for more than one of these
quantities, a straight line is determined by the values of its arbi-
trary constants. Thus (Fig. 46), KH and K"H have the same

value of ¥/, but different values of ' and :; KH and KH" have
the same value of /, but different values of g/ and ; while
KH" and K"H, though they have the same value of ;, have
différent values of ' and y'.

114. Corollary. The equations of KH, K'H, K'H', and
KH' (Fig. 46), which have the same absolate values of z/, g’

and tan %, are distinguished by the difference in the signs of
. guished by g

these quantities.
For KH, z'is negative, g is positive, tan : is positive ;

K'H, ¢ positive, « “ “  negative;
K'H, « « “ negative, “ positive;
KH', < negative, “ “ negative.

115. Corollary. For a straight line which passes through the
origin,

8'
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Special Positions. Locus of (31). ¢

2=0, g =0,
and (30) and (81) become

x=yeot;, y=ztan;. (32.)

For a straight line parallel to the axis of z (Tr. § 55),
: 2=0, tan7=0,
and (31) becomes
y=y; (83.)
and, since (33) is evidently (compare § 80) the equation of every
point of a straight line parallel to the axis of z, and at a distance
from it equal to , the remark of § 112 is confirmed, and the
case in which the axis of z is parallel to the straight line is in-
cluded in the general case of § 111.
If the line also passes through the origin, (33) becomes
Yy = 0. (34-)
For a straight line parallel to the axis of y (Tr. § 55),

: =4m cot : = 0, °
and (30) becomes
z =z ' (85.)
If this line passes through the origin, (35) becomes
z=0. (86.)

116. Theorem. The locus of every equaﬁon of the
form (31) is a straight line having the direction o, and
cutting the axis of y at a distance 3’ from the origin.

Proof. Refer the given equation to a new rectangular system,
of which the axis of abscissas has the direction , and the origin
is in the axis of y, at a distance y' from the origin. We have
then, in § 98,

x; _
x z’

and (15) and (16) become

=0, y=y;
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z = x, c08 ; — g, sin 7,
y=y + @ sin 4 g cos .
Substituting these values in (31), we have (Tr. § 11)
¥+ @ sin 7 4 g cos = x,oos:—y,sin:)tan;-]—y'
=:c,oos;tan;—y.sin;tan;+_o/
«

: +y-

cos *
z

sin®

= x. sin : — yl
Transposing and cancelling,

sin? ¢
yl(“’s;"’_ :>=0’
z

cos

LA (co's2 :+ sin® ;) = 0’
which gives (Tr. § 18)
‘ % =0.

Now, it is evident, from the principles of rectangular coérdinates,
that the locus of this last equation is necegsarily the axis of z, ;
and since it can have no effect on the character of a line to
change the system of coordinates to which it is referred, the locus
of the given equation must also be the axis of z,, i. e. a straight
line which has the direction a, and cuts the axis of y at a distance
y' from the origin. .

117. Scholiu¥. The force of § 116 is to show that not only
may every straight line be represented by an equation of the
form (81), but every locus represented by such an equation is a
straight line. But since any positive or negative value is possi-

ble for tan : (which is not restricted, like the sine and cosine, to
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Construction.

values between — 1 and 1, or, like the secant and cosecant, to
values greater than 1, or less than — 1), and also for g/, an
equation of the form

y=azx-} b

in which @ and b denote any constant numbers, is properly con-
structed by a straight line, @ being constructed as the tangent of
its inclination to the axis of x, and & as the trdinate of the point
at which it cuts the axis of y.

118. Problem. To construct an equation of the form
(31)- ,

Solution. Find in the axis of y a point whose ordinate is equal
to the constant term ; and, through it, by §14, Sol. 2, draw a
straight line inclined to the axis of z by an angle whose tangent
is the coefficient of z. It will, by § 116, be the locus required.

119. Scholfum. A theorem corresponding to § 116 may be
proved, in like manner, for an equation of the form (80); and
such an equation may be constructed by a method similar to that
of § 118.

120. ExXAMPLES.

Construct the following equations: —
L y=—38=z-42.
Solution. In Fig. 47, we have AR = 2 = g’; RB, parallel

to AX, of any length; and CB, parallel to the axis of y, = 3 RB;
so that (§ 20. k; Tr. §§ 61, 64) tan BRD — tan (n — CRB) —

0 «

Hence, CR, supposed to be produced to infinity in both direc-
tions, is the required locus.

2. y=4z 4 1.

3. y=—3xz—3.
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Polar Equation.
4. ye==—zx—35.
5. y==z
6. Y= —2.
7. ‘z=—2y-438.
8. :c=—-8y.
9. Lx=1,
10. z = 0.

1L

THE LOCUS OF EVERY POINT IN A GIVEN PLANE WHICH
IS AT A GIVEN DISTANCE FROM A GIVEN POINT IN THAT
PLANE.

121. Scholium. This locus is, by Geom. § 85, the cir-
cumference of a circle, described about the given point as .
a centre with a radius equal to the given distance.

122. Polar Equation. Let the given point 4 (Fig. 48) be
taken as the origin of a system of polar coordinates ; and let B
denote the given distance. Then the definition of the locus gives
for each point of it, as M,

AM = R,

r =R; (87.)
so that (37) is the polar equation of the circumference
(or, as we commonly say, of the circle) whose radius is
R, and centre at the origin.

128. Corollary. Since (37) does not involve the valueof ”, or
in any way depend on it, it is the equation of this locus in any

or
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Rectangular Equation, referred to Centre.

polar system which has its origin at the centre, whatever be the
direction of the axis.

124. Rectangular Equation, referred to the Cenire. Equation
(87) may be transformed, by § 96, to any rectangular system, as
that of AX and 4 Y (Fig. 48), which has its origin at the centre.
Substituting (12) in (37), we have

r=~/(13+y2)=R,
2yt = Ry (38.)

and (38) is the rectangular equation of the circle whose
radius is &, and centre at the origin. _

or

125. Corollary. The points at which the circumference cuts
either axis may now be found, since the coordinates of such
points must satisfy both (38) and the equation of that axis.
Thus, for the point at which the circumference cuts the axis of
x, we have

y= 0,
and (38) becomes
xt = R,
r =+ RB;

gmng two points, one on each side of the origin, and at a
distance from it equal to the radius. For the point at which the
circumference cuts the axis of y, we have
z =0
y=+ R;
giving two points, one above and one below the origin, and at a
distance from it equal to the radius.
(38) gives, by transposition,
2= R —y
z = £ N (B —3); (89.)

so that, for every value of y, we have two (absolutely) equal -
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Discussion of Rectangufzir-Eqﬂ;tion.

values of x, with opposite signs, and therefore two points of the
- locus, equally distant from the axis of g, and on opposite sides of
it. Hence the curve is symmetrical with respect to the axis of .
In like mannner, (38) gives

y==x (B —2); (40.)
so that the curve is symmetrical with respect to the axis of x.

If, in (89), we first make y = 0, and then increase its abso-
lute value, i. e. if we trace the curve from the axis of z either
upwards or downwards, and on either side of the axis of y, the
absolute value of x in (39) becomes smaller and smaller, and

both portions of the curve gradually approach the axis of g, and
therefore each other ; till, when

y==R, or =—R,
(39) becomes
=4 (R*— R*) = + 0;

so that the two portions meet, and the curve closes up, at the
distance R from the origin both above and below. If y is taken
absolutely greater than R, the quantity under the radical sign in
(89) becomes negative, and = imaginary ; so that no points of
the locus correspond to such values of y.

In the same way it may be shown from (40) that, as we trace
either the upper or the lower portion of the curve from the axis
of y in either direction, it approaches the axis of z, till, on both
sides of the former axis, and at distances from it equal to R, it
intersects the axis of x and returns into itself, and that no points
of the locus lie beyond these intersections. Hence the curve is
an oval, of one branch, and wholly included within a square
whose sides are parallel to the axes and at the distance R from
them.

This corollary shows how the general properties of the form of
a line may be developed by the discussion of its equation.

126. General Rectangular Egquation. Equation (38) may be
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General Rectangular Equation.

transformed by § 100 to & system of parallel axes, having their-
origin at any desired point; and since the axes of (38) may
have any direction without disturbing the equation, these new axes
may have any direction, and therefore the new system will rep-
resent rectangular systems in general. Let the new axes be
4, X, and A4, Y, (Fig 48), and let the coirdinates of the old ori-
gin referred to the new system be z°, == 4, 4/, and y°, = 4' 4.
Then § 98 gives
2= A4 = — A A= —2°,
Y =A4' = — A'4A = —y°;
and (19) becomes
T=2,—2% Y=y —y";
which, substituted in (38), give
@ —2") 4 (h— ") = B
or, since the numbers under the letters may, by § 93, be omitted,
=2+ @G—9)=F; (41)
which is the equation of the circle, referred to any sys-
tem of rectangular codrdinates, R being the radius, and
the point 2°, 3° being the centre.
127. Corollary. Equation (41) is perfectly general, including
even (38). For, if 4, is at the centre,
z° = 0, Yy =0,
@4y =K
which is identical with (38). -
128. Corollary. 1If the new origin is at A;, for which
z° = R, ¥ =0,
(z— Ry o = B,
?—=~2Rz+4 R4y =R,
Y¥=2Rx—a'; (42.)

and (41) becomes .

(41) becomes
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which is the rectangular equation of the circle whose
radius is R, the origin being on the circumference, and
the axis of z being a diameter drawn from it.
129. Corollary. Equation (42) gives
¥=@2R—2)x,
z:y=y:2R—zx;
thus affording an algebraic proof of Geom. § 186. .
© 130. Theorem. The locus of every equation of the
form (41) is a circle whose radius is R, and centre at the
point 2°, °.
Proof. The distance of any pomt z, y from x°, y° is, by § 75,

equal to
N @—=)+ y—9")]

But if z, y is a point of the locus of (41), its coordinates must
satisfy (41), so that

ViE—2)y+@G—y)]=E
that is, the distance of any point of the locus of (41) from z°, y°
is equal to R ; and, therefore, the locus is the circumference de-
scribed about z°, °, with R for a radius.

131. Problem. To construct an equation of the form
(41). .
Solution. Find the point x°, y°, and about it as a centre, with
a radius equal to R, describe a circumference, which will be, by
§ 130, the required locus.

132. ExamprEs.

Find the loci of the following equations, and their points of in-
tersection with the axes.
1. z+4)+ @y—1) =4
~ Solution. 2°=—4, ¢ =1, R=aA4=2;
and the circle of Fig. 49 is the one required.
9 ,
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Examples. Ellipse.

For the points at which the locus cuts the axis of z, y = 0;

and, substituting this value in the given equation, we have
E+H+(—1)'=4
(z + 4)2 =38,
r=—4 4+ A/83=—227 or = — 5.78.
For the points at which the locus cuts the axis of y, z = 0 ; and,
_substituting this value in the given equation, we have
y=1+a/—12;

and, this value being imaginary, the locus does not cut the axis
of y. -

2. ' 24y =09.
Ans. Ify=10, z= 4+ 3; ifx=0, y= + 3.
3. (x—2)*+ (y 4 4)* = 86.
Ans. y=0,x =2+ 24/5; ifc =0, y—=—4 1+ 44/ 2.
L @+14 g+2r=4
dns. fy =0, o =—1; ifx=0,y=—2+ /3.
5. @+5)+ @ — 9 =9
Ans. There are no points of intersection.
6. (x — 38+ (y — 4)* = 25.
Ans. fy=10, x=60r0; ifzx=0, y—8oro.
7. . 24 (v 6)* = 42}

Ans. Ify =0, x'= + 2}; ifx =0, y=—123 or= }.

3

IIT1.

THE LOCUS OF EVERY POINT IN A PLANE, SUCH THAT
THE SUM OF ITS DISTANCES FROM TWO GIVEN POINTS
IN THAT PLANE IS EQUAL TO A GIVEN LENGTH.

133. Scholium. This locus is called the ellipse, the
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Drawing of the Ellipse. " Notation.

given points are called its foci, and the middle of the
line which joins them its centre.

An ellipse may be described as follows :— Drive two pins
into the paper at the points which you mean to make the foci, as
at F and F" (Fig. 50) ; tie together the ends of a thread, put it
over the pins, and, placing a pencil-point inside the thread, as at
M, move it about # and F", keeping the thread tight. Here the
given length is F M4+ MF’, and it is evident (Geom. § 18)
that

FM+MP >FP.

The following is another way of drawing an ellipse: — Let
AB (Fig. 51) be the given length, and F and F" the foci. From
F as a centre, with any part AD of 4B as a radius, describe
an arc; from F¥ as a centre, with a radius equal to DB, describe
an arc cutting the former arc at M, which will be a point of the
ellipse. In like manner, find, conveniently near together, other
points, such that the sum of the distances of each from ¥ and F"
shall be equal to AB; and the curve drawn through them will be
the required ellipse. It will be observed that each set of radii,
as AD and DB, determines four points.

In treating of the ellipse, the following notation will be
used: —

¢ == half the distance between the foci,
A = half the given length,

B=~/(A’— 'z);
and since
2¢< 24, or c< 4,
B is always real.

134. Polar Equation, referred to Focus. Let F (Fig. 50) be
the origin, and F#” the axis, of a system of polar cobrdinates.
The cobrdinates of F” are

> r=2¢, T = 0;
e
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Polar Equation, referred to Focus.

so that (2) gives for the distance of anyfpoint M from P
MP = ~/(4c’+r’—4c,:cos ;)
But if M is a point of the locus, we have, by the definition
FM 4+ MP =24 — r+~/(4c’+r’—4crcos:),

;\/(40’-]—1"—401'003 ;) =24 —r,
4 4 —4dercos :=4A’-——-4Ar+r',
. 4Ar—4crcos:=4A’-—4c’,

(A—ccos:)r=A’—c’,

A — )
r=——— 43.
A—ccos; (43

which is the polar equation of the ellipse, the origin
being at one focus, and the axis directed towards ,the
other focus. - :

135. Corollary. Since A 7> ¢, the numerator of the second
member of .(43) is positive ; and, since there is no angle which

has a cosine greater than 1 (Tr. §§ 5, 55, 61, 65), 4 > ¢ cos :,

go that the denominator is also positive ; and therefore  is posi-
tive, and, by § 52, admits of construction, for any assumed value

of : Hence, the curve extends all around the origin.
‘We may conceive this locus to be described by the extremity

of a radius vector which revolves about the origin and at the
same time changes its length so as to satisfy (43). When it has

made a complete revolution, that is, when cos " has passed through
the series of values corresponding to all the values of : between




§ 136.] THE ELLIPSE. 101
Polar Equation discussed.

0 and 2 7, this same series of values 'will be repeated (Tr. § 69)
and the extremity of the radius vector will return into its former
path. Hence, the curve is an oval.

At the beginning of this revolution, that is, when : =0,

coer-=1,
e

r=A-4e

As 7 increases from 0 to m, its cosine decreases (Tr. §§ 62, 70,

71), and therefore the denominator of (43) increases, and the
value of r decreases, that is, the curve approaches the origin;

till, when; =a=,

and (43) gives

cosr=—l,
e

and (43) gives

r=A4—ec

As” passes from n to 2 m, its cosine goes through the same
series of values, but in reverse order, so that the curve contin-
ually recedes again from the origin. 4 -}-¢ and 4 — ¢ are,
therefore, respectively the maximum and mintmum distances of
the curve from the focus F.

186. Corollary. If we suppose the curve to begin at (', in-
“stead of C, that is, if we take for the polar axis F'(’, which we
will call g, we have (§ 20. g; Tr. §§ 61, 64) -

r=9 r
» o en+e’
cos:=cos(:l—gl)=cos(;—n -=—008';;
and (43) gives
(43) gt p_g
,"=—“_‘—_‘-'o
.A-}—ccos:;l . (44)

9.



102 ANALYTIC GEOMETRY. [ca v.

Cirocle. Equation in Terms of the Eccentricity.

137. Corollary. Since the ellipse is evidently, by the defini-
tion, situated in the same way with regard to both foci, (43)
will be its equation, if ' is made the polar origin and #* (' the
axis ; and (44) will be its equation, if F" is the origin and F7C
the axis. ‘

138. Corollary. For an ellipse, we may take ¢ of any length
less than A. If ¢ = 0, F and " coincide, and both (43) and
(44) become

2
r= % = A;
which is the equation of a circle of which the centre is at the
. origin and the radius is 4. Hence, the eircle may be considered
as an ellipse in which both the foci are situated at the centre;
and it is, indeed, evident that it satisfies the definition of the
ellipse. ’

189. Equation in Terms of the Eccentricity. It is sometimes
convenient to introduce into the equation of the ellipse a quantity
called its eccentricity, such that, if it be denoted by e,

Ze ¢
*=34~ 2"
‘We have
) c=Ae,
which, substituted in (43), gives
, A — A% & A* (1 — ¢ ) 4(1—¢)

A— Aecos .4(1—ecos;) 1—ecos
40—+

r
1 ecose

And, if we take
pP=C0F=FC0=A4A—c=A4(1—y),
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Diameter. Transverse and Conjugate Axes. Vertices.
_ 2t
1 —ecos ;’ (45.)

which is another form of (43).
In like manner,

p(+e)

r=— -

14ecos” (46.)

is another form of (44).
140. Corollary. Since 4 > ¢
e 1..

‘When the ellipse is a circle,
e = g- = 0 H
so that the circle has no eccentricity.

141. Definitions. A diameter of an ellipse is a line
drawn through the centre and terminated at each end by
the curve ; and, since the curve is an oval and surrounds
the centre, a diameter may be drawn in any direction.

The diameter which passes through the foci of an

dlipse is called the fransverse axis. The diameter per-
endicular to the transverse axis is called the conjugate
ris. 'These are also called the principal diameters.

The extremities of a diameter are called its vertices.

w0se of the transverse axis are called the vertices of the

pse.
42. Eguation, referred to Principal Diameters. (43) may,
95, be transformed to a system of rectangular coérdinates, in
1 the origin is at the centre and the axes of x and y have
‘rections respectively of the transverse axis and of the con-
3 axis of the curve. We have
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Equation, referred to Principal Diameters.

° = FA = ¢,

\

‘and (11) gives :

| r=n (@ 4+ 4 202),
7 Co8 ; =zxz-tec

‘When (43) is freed from fractions, it becomes

Ar——crcos.:;=A’—c’.

Substituting the above values of r and r cos :, we have

AN @+ y¥+E+2cx)—cax—ct = A2—
Transposing, squaring, and reducing,
AN (@E 474 2c2) = £} cx :
A2 ALyf AL 2L c2=4"F24cx| P,
A2 Ay A=A+
(M — &) 2 - A1y = 4 (£ — &,
B2+ £g — 4B, (47

f .
. ath=n (48)
and either (47) or (48) is the rectangular equation of the

ellipse, referred to its transverse and conjugate axes.
143. Corollary. In the case of the circle, we have
B=A'"—c= A4,
and (48) becomes £ g
Zg + i 1’
or 2 + ya = A%;
which is of the same form as (38).
144. Corollary. If the conjugate axis of the ellipse be taken
for the axis of abscissas, we have in § 99

x,
a:l=i’7"
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so that (17) and (18) become (Tr. § 55)
T=—Y, Y==2

Substituting these values in (48), a.nd removing the numbers
below the letters, we ha.ve

——+ y—1; (49.)

which is therefore the equatlon of an ellipse which has
its foci in the axis of y.

145. Rectangular Equation, referred to Vertex. (47) may be
transformed by § 100 to a system of rectangular cotrdinates in
which the origin is at the left-hand vertex, and the transverse
-axis is the axis of z. In this case,

X xo = —— A, y° = O,
.spnd (19) becomes .
r=x—A4, y=y.

© Substituting these values in (47), and removmg the numbers un-

der the letters, we have .
B —2ABz + A'B | £ = 4B,
- 2TB””— B, (50.)

146. Polar Egquation, referred to Centre. (47) may be trans-
formed to a polar system in which the origin is at the centre, and
the polar axis coincides with the axis of . In this case, § 97
gives

z°=0, =0, i=0’
and (13) and (14) become
r; o r
x = 7r Cos e, Y r sin 9,
which, substituted in (47), give
r (B’ cost " - A¥sint ) = 4B,
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Length of Semidiameter. Conjugate Diameters.
,— AB .
2T 2 327 : (51')
V(B‘cos o T 4% sin g)

147. Corollary. For two oppositely directed radii vectores,
' and 7'/, we shall have (Tr. § 65)

<o ” r o .
=a-4 ", cos =—cos gin | = — sin
+e’ e e’ e ’
!
oos“rl = cos® rl, sin’: =sin’:;

go that (51) will give equal values for +/ and for #/; that is,

Every diameter of the ellipse is bisected at the centfe,
and (51) gives the length of the semidiameter which has
the direction 7.

Ife =0, (51) becomes (Tr. §55)

r=-———A.

N B

If : = } n, (51) becomes (Ibid.)
_4B _ p
=JE .

Hence, A is equal to the semi-transverse axis of the ellipse,
and B to the semi-conjugate axis.

148. - Definition. If « denotes the direction of the
transverse axis, and «, and B, those of two diameters
which satisfy the equation

tan % tan & — — %, (52)

these diameters are said to be conjugate to each other.

149. Corollary. Since the second member of (52), being the
negative of the quotient of two squares, is necessarily (Alg. art.

194) negative, tan z‘ and tan ‘: ! must have -opposite signs; so
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Principal Diameters, Conjugate. Conjugate Diameters of Circle.

that of two conjugate diameters, .one must make an acute angle |
with the transverse axis, and the other an obtuse angle.

If @, is taken in the direction of the transverse axis, we have
(Tr. §§ 55, 57)

al==0, tan :1== + 0,

«
ioxmn’f,'=——§:,
B _ B _

tan =% g £
‘:‘=éu, or =g m;

and, therefore, the principal diameters of an ellipse are
conjugate to each other.

150. Corollary. For the circle, B =-4, so that (52) gives

(Tr. § 63) .
tan 8 tan i — — L,

mn‘:‘=—mmnz‘=mn(}u+z‘),

B o,

a 3nt o
that is, any two conjugate diameters of a circle are per-
pendicular to each other.

151. Equation, referred to Conjugate Diameters. (47) may
be referred to conjugate diameters by § 102, if we make z° = 0,
y° = 0. The substitution of (24) and (25) in (47) gives, by
reduction,

2 2
B a:loos:‘-{-y,coszl —|—A’(:cl sin:‘—l—y,sin'g;)
=B2(:v°,co'ssz'—|-2xly, coszlwszl-i—y’lmgil).

A (2 s - 2 2, gy Y 94 g8 int )
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Equation, referred to Conjugate Diameters.
= (Broos T sn? 2) 4 (Broost % - £ e )

+2 (B" cos :‘ cos 3:: + 4? sin :‘ sin ';/c‘) z, 4 = A*B. (58.)

If the sémidiameters which have the directions of z, and y, are
denoted respectively by 4, and B, (51) becomes

4, = f-B x\’
~/( Bg cos® zl + A* sin? xl)
B— AB ;
W (Broost Y4 47 sin ¥1)
or b
2
Broos T Arsint B A Af' i (54)
Broostdt - Argint ¥t — A;f’ : (55.)

(52) gives (Tr. §11)
z Y
A® tan " tan V! = — B?,

Ag s Xy . yl _ T, .'/1
sin ! sin ' = B’oosxcosx,

B*cos Tt cos ¥t 4 Asin Tt sin ¥ = 0. (56.)
Substituting (54), (55), and (56) in (53), we have
A*B*z?® A'B'y’ 2
Al’ = _Bls e .A .B’ )
or, dividing by 4*B? and omitting the numbers under the cq-
ordinates, '

z
_‘:,4_.1.'/?_’1,__. 1; (7.)
which is of the same form as (48), and, indeed, since the princi-
pal diameters afford a case of conjugate diameters, includes it.

152. Corollary. (57) gives, by reduction,
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Discussion of Equation, referred to Conjugate Diameters.

y=+ D4z —a); (58,

so that each value of x gives two values of y, which differ only

in their signs; and hence the curve consists of two portions

which are symmetrically situated with respect to the axis of .
If x = 0, the above value of ¥ becomes

y=:b§‘\/-‘41’= + B.
1

This is the maximum value of y; for, the more z differs from 0,
the greater is_the value of % and the less the absolute value of
y; that is,"both portions of the curve approach the axis of z, as
they recede either to the right or to the left from the axis of g,
till, when x = + A4,,.

y=iip—:~/(Axa_Alz)= +0,

and the portions meet at the extremities of the diameter 2 A4,.
If x is made absolutely greater than A4,, y becomes imaginary.

Hence, if lines be drawn through the extremities of each of
two conjugate diameters, parallel to the other, the parallelogram
so formed will include the whole ellipse. If the conjugate diam-
eters taken are the principal ones, this parallelogram is a rec-
tangle.

153. Theorem. The locus of every rectangular equa- -
tion of the form (48), in which A > B, is an ellipse
which has its centre at the origin and its foci in the axis
of z, and for which ¢, 4, and B have the same meanings
asin § 133.

Proof. We are to prove that 2 4 is equal to the sum of the
distances of any point of the locus of the given equation from two
points of which the codrdinates are respectively

r=¢ y=20; z=—¢, y=0.
The distance 7, of any point x, y from the former of these points

is, by (7), 10
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Locus of (48), necessarily an Ellipee.

o=@ — ) 9] =& (F — 2oz 4 & 4 5).

If x,y is a point of the locus of (48), its coordinates satisfy
(48), or

Ba?
yq F—_g-

Substituting this value of y* and also
¢ = A — B,

- we have

r,=~/(:c’—2c:t+A’—B'+B’—%{‘)

._V(_——,— :c*—2c:c—|-A’)

—V( v —2ca:+A’)

=i(%:i—A).

The distance 7, of the same point of the locus from the other
supposed focus is by (7) and a similar reduction

ro= [z + of + 7]
°—_’§ +2cx A’)
cx -
T+4).

Now, since the distance between two points is properly denoted

by a positive quantity, we must interpret the double signs in such
a way as to make r, and 7, positive. But we have

x‘=A'—‘%£, A =A—B,
i e. x’<A’, 02<A-2:
e |z <A4, ¢ < 4,

whenee
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Locus of (48); of (49); of (48).

cx < A, %(43

in which z has its absolute value, so that fAi — A is negative,
even when x is positive, and ?-} — A is positive, even when x is
negative. Hence '
cx cx
7 = — (I—A) ﬁA— j 3
=4 "I’”+A) -44,
ntnrn=24. .

154. Corollary. By interchanging A and B together and x
and y together in the above proof, it may be shown that the
locus of every rectangular equation of the form (48), in which
A < B, is an ellipse which has its semi-transverse axis equal to
B, its semi-conjugate axis equal to 4, its centre at the origin,
and its foci in the axis of y, at a dijstance from the origin, on
either side of it, equal to 4/ (B* — 4°). Such an equation
may also be described as an equation of the form (49), in which
4> B. :

155. Corollary. Any equation of the form (43) in which
A > ¢, will give, by transformation, an equation of the form (48)
in which 4 > B; and since, by § 153, the locus of the latter
equation is always an ellipse, the locus of the former equation is
always an ellipse.

156. Problem. To construct an equation of the
form (48).

Solution. Draw an ellipse, by one of the methods of § 133,
which, if 4 > B, shall have its transverse axis (or given length)
equal to 2 4, and its foci at the points for which
z=N(L'—B), y=0; z=—a(4£'— B), y=10;
but if 4 < B, take the transverse axis equal to 2 B and the
foci at the points for which '
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Construction.
2=0 y=a/(B—4); z2=0, y=—a/(B— 4.
It must, by §§ 153, 154, be the required locus. ‘

_157. ExampLEs.

1. Construct the equation

422 | 2Z= 1.
Solution. If we write the equation
. A g
| Tte="
it becomes of the form (48), so that
B=a/2=1414;

go that 4 < B. ’

In Fig. 52, we have

OA=AC=13},

BA=AB= OF = CP =4a/2,
AF or AP = + &/ (B*— 4%) =¢;
and F and F" are the foci of the ellipse.
2. Construct the equation

@< ¥
6 + = 1.
8. Construct the equation
o
g +y=1

4, Construct the equation

s
rts=1
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Drawing of Hyperbola. Notation.
5. .Construct the equation
z Dl .
%5 + 25 = 1.
/
IV.

THE LOCUS OF EVERY POINT IN A PLANE SO SITUATED
THAT THE DIFFERENCE OF ITS DISTANCES FROM TWO
GIVEN POINTS IN THAT PLANE 18 EQUAL TO A GIVEN
LENGTH.

158. Scholium. This locus is called the kyperbola, the
given points are called its foci, and the middle of the
line which joins them its centre. -

An hyperbola may be described as follows: — Let AB (Fig.
53) be the given length, and ¥ and #” the foci. Produce 4B and
take on it a point D such that AD > AB and AD 4 BD > FF'.
Find (Geom. § 128) a point M at the distances AD from ¥, and
BD from F'; also a point M" at the distances 4D from #, and
BD from F. In like manner, find other points, near together,
such that the difference of the distances of each from # and F'
shall be equal to AB; and the curve drawn through them will
be the required hyperbola. '

It is evident, from Geom. § 130, that the construction is im-
possible when

FP < AB.

In treating of the hyperbola, the following notation will be

used ¢ = half the distance between the foci,
A = half the given length,
B=a/ (¢ — 4Y);

and we have

10%
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Polar Equation, referred to Focus.
2¢>24, or ¢ > A4,
which makes B always real.

159. Polar Eguatioh, referred to Focus. Let the focus F
(Fig. 54) be the origin, and FF the axis, of a system of polar
coordinates. The codrdinates of the focus F” are

r=2c¢, : =0;
so that (2) gives, for the distance of any point M from F,
FM'-=V(4¢’+r’—4cr cos :)

If M is a point of the locus, we may suppose either that
FM > P'M, or that PM > FM. In the former case, we have

FM—FM=2A-r—V(4c‘ +1’—4crcos:),
V(4c’+r’—4crcos :)=r—2A,
4c’+r’—4croos:=r’-—4Ar—|-4A’,
4.Ar——4crcos:=4A’—4c’,

(A—c cos :)r==A’—c’,
A — ¢ ¢ — A

r == o

A——ccosz_ccos;'—A. (9.
If, however, F'M > FM,
FM-—FM=2A=~/(40°+r’—4crcos ;)-—-r,

V(4c°+13—-4crcos;)=r+24,

4c’+r’—4croos: =r*444r 444
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Discussion of Polar Equation.

A g
¢ cos ; +4° (60.)

r =

(59) and (60), in combination, are, therefore, the polar
equations of the hyperbola, the origin being at one focus,
and the axis directed towards the other focus.

160. Corollary. Since, in the hyperbola, 4 < ¢, the numera-
tor of the last member of (59) is always positive, so that » will
admit of construction for all values of : which make the denomi-
nator positive.

If

so that , ,
. . A— A4
r == c_A—c+A=F0.

As r.increases, 'its cosine decreases (T;;. §§70,71), and there-
fore the denominator of the last member of (59) decreases, and
the value of r increases; that is, the curve recedes from the
origin, till, when the radius vector assumes a direction 3’ for which

LA |
cos 0 = _(,.:
T |
(which is always a possible direction, since =< 1), we have

r cA
¢cos o= = 4,
A — A -4
» r=A__A= 0 = .
If we take:>: we have
r A
p 0050<?’
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Form of the Curve.

¢ cos ; < 4,
and the denominator of the last member of (59), and therefore
the value of 7, become negative ; so that, by § 52, the curve has
no corresponding points. But when T passes the value 7, cos ©
begins to increase, till, when r takes a direction ¢ such that
"

1=2"_1I’

we have (Tr. § 68)

.‘I

T cos (2 11) cos
Cco8s == T e == ?

0 = "
r= ;
and then, as r turns from 3" to g, cos . goes through the same
values, but in reverse order, as when r turned from ¢ to z'; so
that, when: == 2 =, we have again r — ¢ - 4.
Thus, the locus of (59) consists of one infinite branch which is
limited by the lines 7"/ and <.

161. Corollary. Again, since the numerator of (60) is posi-
tive, 7 admits of construction when the denominator is positive.
If

r=0, 008’==1,

0 e
and we have
é—4
r == c_—l—j=c—A=F0.

As” increases, the denominator of (60) decreases, and the

curve recedes from the origin, till, when r assumes the direc-
tion — 1’ ’ . '
co8 ’ cos (7: t/) v :1-
¢ ¢) =T W=7
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Negative Values of r.

If : is made still larger,
‘ ' o Y. |
g < — 3
r
ccose<—A,

and r becomes negative and cannot be constructed; till, when
takes the direction — 7/,

r 7 A
cos e=005(n+;,)=-—0089 =—-;,
r=o0;
and then, as » turns from — 7’ to g, cos T goes through the same

. e
series of values, in reverse order, as when r turned from g to

—1”,till,who.=,n;=2’:,~ r=c—A again.

The locus of (60) consists, therefore, of a single infinite branch,
no part of which is contained between the lines — 7/ and — 7';
“and the hyperbola is a curve of two infinite branches.

162. Corollary. Let us see what will result from considering
the negative values of r in (59). When r takes the direction v/,
r 7 A

COS = COS = —, @
e . [ ¢’ - .

=4 -4 + o
TNA—4~ xo0 TF %
which gives two points, in the directions ¢/ and — 7/, infinitely
distant from the origin.
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Whole Curve included under one Polar Equation.

If we take ; > :, the last member of (59) becomes negative ;
and the corresponding absolute value of r, if laid off in the direc-
tion opposite to that indicated by the value of :, determines a

certain point . Now, in the common system, the polar angle
of M would be (§ 20. g, %)

OFM' —_ - — r -r - r
=t r=rt,
and (59) gives (Tx. §§ 61, 64)

-
r’

c— A A — 4

y = == =

- — =, ,» (6L)
—c co8 e—A coose-I—A

= (=)
COS == COS -_ = — cos
e @

which is the same absolute value of r as that which (60) gives, if
we take ;in (60) equal to ': in (61), that is, equal to F"FM';
and the negative sign in (61) means that the point is to be taken
in the direction ' from the origin, which is indicated in (60)
by the positive sign. Hence the same point M’ is determined by
(60) and by (61); so that the series of points determined by the
negative values of 7 in (59) is the same as that detérmined by
the positive values of » in (60) ; and, i# the rule of § 52 is disre- .

garded, (59) may be taken for the equation of the whole hyper-
bola. )

Suppose, for example, we take : = m, (59) becomes

Ad—A' e A4 — 4°
T = cesn—A4 —c—A- 4
which gives the point C'.
In like manner, it may be shown that, if the rule of § 52 is
disregarded, (60) is the equation of the whole hyperbola.
If (59) be compared with (43), it will be seen to be identical

R (c—;d),
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Equation in Terms of the Eccentricity. Definitions.

with it, and to answer to the analogous case, that, namely, in
which the curve is supposed to begin at 0. The absolute value
of 7 in (60) is also the same as that in (44); and here again,
for each equation, we suppose the curve to begin at (. In
the ellipse, however, we have 4 >> ¢, and in the hyperbola,
A<e.

163. Corollary. 1t is evident, as in § 137, that, if F is made
the origin, (59) is the equation of the left branch of the hyper-
bola, or (in the system of § 162) of the whole hyperbola, sup-
posed to begin at (Y, and (60) is the equation of the right branch,
or of the whole hyperbola, supposed to begin at C.

. 164. Equation in Terms Qf the Eccentricity. The eccentricity
of the hyperbola is

- 20 2 ‘l’ ec.'ll
c=—2A==A= sece=8 e,
Then, if we take

p=FC=CF =c—A=A4Ae—A=A(—1),
(59) becomes v

L£e— 2 £ —1)
Aécos;—.A A(ecos —1)
_AC=De+D _ 20 +e)

r =

62.
e cos —1 - e cos -1 (62
In like manner, (60) becomes
1
r=2049 (63.)
1+ecos,

165. Corollary. Since A ¢, e > 1.
166. Definitions. That part of the line joining the foci
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Equation, referred to Principal Diameters.

of the hyperbola which is contained between its branches

is called the transverse axis.
The extremities of the transverse axis are called the

verticés of the hyperbola.

The conjugate axis is a line which passes. through the
centre of the hyperbola, at right angles with the trans-
verse axis, and has on each side of it the length B.

Thus CC is the transverse axis of the hyperbola of
Fig. 54, and B'B its conjugate axis,

167. Equation, referred to Principal Diameters. The hyper-
bola may be referred, by § 95, to a system of rectangular coor-
dinates in which the origin is at the centre and the axes have the _
directions of the transverse and conjugate axes. In this case, we

have, as in § 142,
7r° = C, N

r=a (@4 g+ &+ 2ca),
rcos;=a:+c.

Then, since (59) is of the same form with (43), the substi-
tution of the above values must lead in both cases to the same

result, namely, :
(42 — ) 2® + A2yt = A* (4 — c’): (64.)

* Freeing (60) from fractions, and substituting, we have
crcos: F+Ar=c7F— 4

cxt+E+ AN (@49 +E+ 2cx) =2 — 4,
AV@+F+Et20a)=— (& Foz);
which, by squaring and reducing, also gives (64). If we sub-
stitute B?in (64), it becomes
— B Ly =— AP, (65.)
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Equilateral Hyperbolas. Conjugate Hyperbolas.

2 __¥_q,

FE- (66.)
so that either (65) or (66) is the rectangular equation of
the hyperbola, referred to its transverse and conjugate

axes.

168. Corollary. If it be remembered that B? in the hyper-
bola is the negative of B in the ellipse, it will be seen that (65)
and (66) are in truth the same as (47) and (48); but the B
which is real in the ellipse is imaginary in the hyperbola.

- 169. Equilateral Hyperbola. If B = A, (66) gives
@ _ 9
4@ =r
& —y =A% (67.)
Such an hyperbola is called equilateral.

_—..1’

170. Conjugate Hyperbolas. 1If an hyperbola be drawn having
the same foci as that of Fig. 54, but having 2 B for the given

length, then, since
& B— o (& — 49,
A+ B =,
A=/ (¢ — B);
so that B takes the place of 4, and A the place of B; and (66)
becomes
2 P 1

. ‘Bﬂ _Aﬂ
Now, if this new- hyperbola be turned about its centre till its foci
come into the axis of y, or, what comes to the same thing, if its
conjugate axis be taken for a new axis of x, we have in § 99

2 =1m
so that (17) and (18) become

T=—Y, Y=2.

11
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Vertical Rectangular Equation. Central Polar Equation.

Substituting these values in the preceding equation, and remov-
ing the numbers below the letters, we have

2 .
— =L 68.
_Bj Aﬁ ( )
The loci of (66) and (68), if constructed for the same
codrdinate axes, are said to be conjugate to each other.

Fig. 55 affords an instance of such hyperbolas.

171. Rectangular Equation, referred to Vertex. (65) may be
transformed, by § 100, to a system of rectangular cosrdinates in
which the origin is at the right-hand vertex, and the axis of « on
the transverse axis. In this case,

z° = A, y° = 0,
and (19) becomes
X =2 + A, y =%
Substituting these values in (65), and removing the numbers
below the letters, we have
—B’x’—2AB’x—A’B’+A’y’= — 4B

¥=x + vk (69.)

172. Definitions. A line drawn through the centre of an
hyperbola, and terminated by the curve, is called a diam-
eter either of that hyperbola or of its conjugate. Thus,
B/B, is a diameter of either of the hyperbolas of Fig. 55.

The extremities of a diameter are called its vertices.

178. Polar Equation, referred to Centre. 'The hyperbola may
be referred to a polar system in which the origin is at the centre,
and the polar axis coincides with the axis of . In this case, we
have, as in § 146,

a:==reos:, y-=rsin:,
which, substituted in (65), give
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Po‘lnr Equation, referred to Centre.

r‘(—B”cos':—l- £5int7) — — £
P

'\/(B" cos? ;-— A sin® ;) (70.)
In the same way, (68) gives
» (B oo " — A'sint :) = — 4B,
AB
s T r\ (71.)
V(A' sin®" — B cos® t,)
174. Corollary. The value of r in (70) is real when the de-
nominator of the second member is real ; that is, when

A’sm’r < B? cos® r’

(i) <5

On the other hand, r is real in (71) when

r=

A’sin’r>B’oos’:
B
tan”' 5

Now, if through the centre of the hyperbola two lmes, 7 and 7/,
be drawn, such that
B 7

'3 B

4 ¥ B
tan’ = tana =
4 e 4
then, for any direction of r between 1"/ and 1/, or between — 3"

and — 7/, tan? : < B’; and for any direction of r between '

4
and — 1/, or between — ¢’ and 3", tan? " > ‘3:, while, if r has

or
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Length of Semidiameter. Principal Diameters. Asymptotes.

the direction of 3, 1", — 1/, or — z tan® : = ﬁ;:,andr becomes

w both in (70) and (71). Hence, the whole of the first hyper-
bola is contained between the lines 7/ and 1/, — 7"/ and — ¢/, and
meets them at an infinite distance from the centre; and the
whole of the conjugate hyperbola is contained between 1’ and
— 7'/, — 7/ and 7", and likewise meets them at an infinite dis-
tance from the centre.

175. Corollary. It may be shown, by the same rea-
soning as in § 147, that every diameter of the hyperbola
‘is bisected at the centre ; so that half the length of a diam-
eter included between 1" and ¢ is given by (70), and half
that of a diameter included between +' and — " by (71).

For the semi-transverse axis of the first hyperbola, ; = 0, and

(70) becomes (Tr. § 55)
r=vBp—*4
For the semi-transverse axis of the conjugate hyperbola, ; =3,
and (71) becomes (Id.)
r=vaz=-2
which is the semi-conjugate axis of the first hyperbola ; so that,
If two hyperbolas are conjugate to each other, the trans-
verse axis of the one is the conjugate axis of the other.
The transverse and conjugate axes of an hyperbola are
called its principal diameters.

176. Definition. The lines +' and 7", determined by
(72), are called the asymptotes of either of the two hyper-
bolas which they limit.

177. Corollary. The asymptotes of an hyperbola may be

drawn as follows: — At C (Fig. 55) erect a perpendicular,
E' CE, taking
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Drawing of Asymptotes. Curve referred to Asymptotes. i

CEor CE = + B;
connect AE and AE'. Then
B

tan CAE =_,
A

B

tan 0AE’=—Z;

so that AE and A, indefinitely produced, are the required

asymptotes. .
178. Corollary. The triangles ACE and ACE give

AE = AR = o/ (4* 4 BY) = ¢,

. 008 CAE = cos CAE — ‘;1.
Hence 7/ and " in § 176 denote the same directions as in § 160.

Also

so that

sec CAE = sec 0AE=§—¢;

so that the greater the angl® between the asymptotes, the greater
the eccentricity (Tr. § 70).

. 179. Corollary. For the equilateral hyperbola, .B== A, so’
that (Tr. §§ 59, 64)

m§=z=‘1’
i

tan? = —1,
P =—tm

/
A B PR
180. Equation, referred to the Asymptotes. (65) may be trans-
formed by § 102 to a system of cosrdinates in which ¢ is the axis

of abscissas, and ¢’ that of ordinates. In that case,
11*
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Conjugate Diameters.

x°=0, y°=0,

. B . B
cos;‘=i:, sm:‘=—?, oosi‘='_§, sm%’=?,
and (24) and (25) become
A B
x=?(xl+yl)’ .'/=—c-(3h-—xn),
which, substituted in (65), give
AQBQ 2 2 AIBQ
o [ @+’ + G —a)]=— )
@+9)— G —n)=4ny=7,
or, by dividing apd removing the numbers, .-
é
=, 73.
Ty = (73,

In like manner, by substituting the above values of z and g in
(68), we should have, for the equation of the conjugate hyperbola,

c’&

xY=— 7. , (74.)

181. Definition. If a denotes the direction of the trans-
verse axis and « and g, those of two diameters which
satisfy the equation

oy B __ B x
tan  tan = —. (75.)
these diameters are said to be conjugate to each other.
Thus, C)/C; and B/B, (Fig. 55) are conjugate to each other.

182. Corollary. Since the B* of the hyperbola is the negative
of the B’ of the ellipse, the condition of (75) is the same as that
of (52).

183. Corollary. Since the second member of (75) is neces-
sarily positive, the two factors of the first member must have the

-
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Principal DTameters, Conjugatei

same sign ; so that the angles made by two conjugate diameters
with the transverse axis must be both acute or both obtuse.

If o, is taken in the direction of the transverse axis, we have
(Tr. §§ 55, 57)

g‘=§7r, or =3m;

and, therefore, the principal diameters of an hyperbola are
conjugate to each other.

184. If

o 7
e <a’
then (Tr. § 70)

oy 14
tan < tan ,

tan “ tan ' tan % tan O
« o« o o

tan & tan'l ’
o o
6. B B
tan o > 7 +
B
tanu>z,

and, since g ! is acute, by the last section,

ﬂ1>t'.

o
If z‘ is obtuse, and if

o -1/
o < a’
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Relation of Conjugate Diameters to Asymptotes.

then (Tr. §§ 70, 71)
tan al<(tan a//—_ﬂ
m____
fan >A‘ ( 9
B
tan al > - —'r
and, since g‘ is obtuse, by the last section,

B~

al > a’
Hence, of two conjugate diameters of an hyperbola, one
terminates in that hyperbola, the other in its comjugate

hyperbola.
If
P ="
e —a T = 4o
o ﬂl
tan
tan & ¢ - 2 =§=m )
tan
«
ay ﬂx
tan ta.na o
or =—T=—z=m «’
o
/ "
Aan i or =-;’

that is, if one of two conjugate diameters coincides with
an asymptote, the other coincides with the same asymp-
tote.

185. Corollary. In the equilateral hyperbola, B = A4, so
that, if we denote the direction of the conjugate axis by p, (75)
gives (Tr. §§ 8, 10)
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Conjugates of Equilateral Hyperbola. Curve referred to Conjugates.

tan M tan B — 1
o a ’
tan ™ — cot & — tan (&n—’g‘),
o o a

O yaB_B_bi_e  B_
a i ml a a f + a6’
so that two conjugate diameters of an equilateral hyper-
bola make equal angles respectively with the principal
diameters.

186. Equation, referred to Conjugate Diameters. (65) may be
referred to conjugate diameters by § 102, if we take z° = 0,
y° = 0. (65) will, evidently, give an equatxon differing from
(53) only in the sign of 5% namely,

(42 sin? :1 — B cos® :1) x3 4 (A’ gin® il — B cost Zl) g3
+-2 (A’ sin ::' sin 1‘ — B?cos z‘ cos g‘) x, gy =— A*B% (76.)

If the semidiameters which have the directions of z, and ¥,
are denoted respectively by 4, and B, and if the axis of x, is

taken on that diameter which cuts the hyperbola, (70) and (71)
give, by § 175,

A — AB
l Ve (B° cos? Tt — A2 gin? x,) ’
x x
B AB
1 = H
2 Y
A (A"’ sin? xl B? cos? a:l)
or
2
A? sin’ :‘ — Bcos? :‘ ‘i,Ba, (77.)
Aot Y — B oo ¥ BT (78)

(75) gives, as in § 151,
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Equation, referred to Conjugate Diameters.

4% sin 7 sin ¥ — B2 cos 71 cos Z- =0. (79.)

Substituting (77), (78), and (79) in (76), we have
A'B*z?  A'B*y?
— T T = 4B
or, dividing by — 4*B?% and omitting the numbers under the
codrdinate letters,

@2 _ 9
A" Bla =
which, since the principal diameters are conjugate to each other,
includes (66).

187. Corollarj. In like manner,
z
—_"/B%, —n = 1, (81.)

is the equation of the hyperbola conjugate to that of (80), refer-
red to the same axes.

1; (80.)

188. Corollary. (80) gives, by reduction,
A4
2=+ 3 ¥ @+ B, (82.)

y=i%~/(x*—,4.*); (88.)

go that the curve is symmetrical with respect to either axis.

Any value of y in (82) makes x real ; but y is imaginary in

(88), if, in absolute value,
xz < 4,.

Hence the curve extends from — o to -} o in the direction
of the axis of y; but no part of it is included between two lines
drawn parallel to the axis of g and cutting the axis of = at the
distances 4, and — 4, from the origin.
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Locus of (66) necessarily an Hyperbola.

189. Theorem. The locus of every rectangular equa-
tion of the form (66) is an hyperbola which has its centre
at the origin and its foci in the axis of z, and for which
¢, 4, and B have the same meanings as in § 158,

Proof. We are to prove that 2 4 is equal to the difference
of the distances of any point of the locus of the equation from
two points of which the coordinates are respectively

z=¢ Yy=0; zx=—¢ y=0.
The distance of =, of any point x, y from the former of these two
" points is, by (7),
n=a[—c)+yl=w(—2cz++y).
If z, y is a point of the locus of (66), that equation gives
y=2Z—p
The substitution of this value of 3 and also of ~
¢ = A* 4 B,
gives, by a reduction like that of § 153,

n=a Aﬂt”w’—?ew—}-ﬁ.’ Y ?Ix_A)

.

4
Again, the distance 7, of the same point from the other supposed
focus is A
n=v L@+ +s1= £ (2 +4)
The double signs are to be interpreted in such a way as to make
r, and r; positive. Now,

22 2 42 !/, 2
=4 +—F‘—.’ = A"+ B,
e, >4 &> 43

so that, if we attend only to the absolute value of x,

x> 4, c> A4,
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Locus of (66); of (68); of (59); of (60).
cx > A’,‘ c.Ai> A.
Hence, the positive values of r, and 7, are, if x is positive,
n—t(F—a)=F—a
ro=4 ch'i_A) =°:1§+A;

but, if « is negative,
(A==

cx cx
= (tZ A) - _ 4
2 7T 4
In the former case, then,
rg—r,=2A4;
and, in the latter case,
r—ry =2 4.

190. Corollary. By interchanging x and y together and A
and B together in the above proof, it may be shown that the
locus of any equation of the form (68) is the conjugate to the
hyperbola of (66).

191. Corollary. Any equation of the form (59) or (60), in
which 4 < ¢, will give, by transformation, an equation of the
form (66) ; and since, by § 189, the locus of the latter equation
is always an hyperbola, the locus of either of the former equations
is always one branch, or, if taken as in § 162, both branches, of an
hyperbola.

192. Problem. To construct an equation of the form
(66) or (68).

Solution. In the first case, draw an hyperbola, by § 158, having
its transverse axis (or given length) equal to 2 4, and its foci at
the points for which
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Construction of Hyperbolas. Parabola.
z=a(L+B), y=0; z=—a/(4+B), y=0.

It must, by § 189, be the locus required.

By interchanging = and y together, and 4 and B together, in
this solution, it applies to an equation of the form (68).

193. ExAMPLES.

1. Find the locus of z-, — 321, = 1, and draw its asymptotes.

Solution. 'The equation is of the form (66), and
A=a/4=2,

B=a/2 = 1414
In Fig. 56, take

C4=A4A0=2,
EC= CE = 1414,
FA=AF=AE—V(A’+R)=0;
and F and " are the foci of the hyperbola, and AE and AE' its
asymptotes.
2. Find the locus of ng —9 ¢ = 1, and draw its asymptotes,

3. Find the locus of { —_ fgg = 1, and draw its asymptotes.

4. Find the loci of 2® — 3 = 4, and of §* — 2 = 4, and
draw their asymptotes.

V.

'l
THE LOCUS OF EVERY POINT IN A PLANE WHICH IS
EQUALLY DISTANT FROM A GIVEN POINT AND A GIVEN
STRAIGHT LINE IN THAT PLANE.

194. Scholium. This locus is called the parabola, the
given point its focus, the given line its directriz, and the
12
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Polar Equation, referred to Focus.

line drawn through the focus, perpendicular to the direc-
trix, its axis.

The parabola may readily be drawn from its definition.

In the treatment of the parabola, the followmg nota-
tion will be used : —

2 = half the distance of the focus from the directrix.

195. Polar Equation. Let F (Fig. 57) be the focus, and DE
the directrix, of a parabola. Let F be the origin of a system of
polar coordinates in which the axis has the same direction, #/P,
as the axis of the parabola. If M is a pomt of the locus, the
definition gives (Tr. § 32)

FP=r<;os;,
r—=FM = QM = DP=DF+FP=2p—|—rcos:,
r(l—cos;)==2p, : )

r= __21’_; (84)
: 1—cos”
e
which is, therefore, the polar equation of the parabola,
the origin being at the focus, and the polar axis being the

axis of the parabola.

196. Corollary. As the numerator of (84) is positive, » will
be positive when the denominator is positive, and this will be the
case for all directions of 7, since the cosine of an angle cannot ex-
ceed 1, in absolute value. The curve, therefore, extends on all
sides of the origin.

If T—=0, cos
so that r==23£=oo.

At the moment, however, that the rotating radius vector begins
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to turn from the direction of the axis, cos ; becomes less than 1,

and 7, in (84), becomes finite. As " increases, cos : decreases, 7,
in (84), decreases, and the curve approaches the origin; till,
when 7 = n,cosr=—1,and

4 e

2p
T+1 7

P =

As : passes from n to 2 &, cos : goes through the same series of

values, but in reverse order, as when :; passed from 0 to =, so
that the curve recedes from the origin at the same rate at which

it approached it; till, when : = 2 &, we have again cos : =1,

r = o ; and then, for any greater increase of z,.cos : repeats

the same series of values as before, that is, the curve is an oval.
Since, however, it is infinitely long, it does not przictica.lly return
into itself. ' .

197. Corollary. 1If the curve is conceived to begin at C", that
is, if we take for the polar axis g,, in the direction opposite to g,
we shall have (Tr. § 65)

r=el r=1|’ r,
[ e+ex +en’

cos” = —cos ",

) ¢ 'y

and (84) becomes !

- 27
1 4 cos z:

198. Corollary. If, in (45) and (46), we take e = 1, which

is the maximum value of e for the ellipse, those equations be-

come identical with (84) and (85). If; again, in (62) and (63),

(85.)

\
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Vertex. Rectangular Equation, referred to Vertex.

we take ¢ = 1, which is the minimum value of e for the hyper-
bola, these equations give the same (absolute) values of r as
(84) and (85).

199. Definition. The point at which the parabola cuts
its axis, which is at the distance p from the focus and
from the directrix, is called the verfex of the axis or of
the parabola.

200. Rectangular Equation. The parabola may, by § 94, be
referred to a rectangular system in which the origin is at the
vertex, and the axis of x is the axis of the parabola. In this

case

0
o r x
r° =p, = 7, = O,

so that
0
sin(ro—x)=0,cos(r—x)=—1,cos(r—w)=cosr;
e e e e R e e 0
and (8) and (9) become
r o
rcose=:c—r=a:—p,

r=n @474 —2pa).

(84), freed from fractlons, gives by the substitution of the above
values,

r—rcos ,\/(y!+x’—-2px+p")-—x-|—p_2p,
~/ @+ —2pz+p)=2+p,
Yt+ad—2prtp=a+2pa+p,
- P =4pa. (86.)
(86) is, therefore, the rectangular equation of the pa-

rabola, the origin being at the vertex, and the axis of
on the axis of the curve.
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Parabola on the Axis of y. Diameters.

201. Corollary. In the above section, it is supposed that the
positive direction of the axis of x is the same as g, that is, as the
direction from the vertex to the focus, If the directions of the
axes be reversed, all the values of x and y are thereby changed
in sign, but not otherwise affected ; so that (86) will become

y=—4pux

But this form is included in (86), if p be taken to denote the dis-
tance of the focus from the vertex ; for then p becomes negative,
when the focus is in the negative direction from the vertex.
(86), therefore, applies to a parabola which curves towards the
left. .

202. Corollary. If the axis of the parabola be taken for that
of ordinates, we have, in § 99, (Tr. §§ 55, 64,)

X,
x

and (17) and (18) become
=Y, Y=—=2o,.

which, substituted in (86), give, after the omission of the subja-
cent numbers,

x,

=—1im, sin

U
=—1, cosx'——-O;

P=4py; (87)
which ‘is, therefore, the rectangular equation of the pa-

rabola, the origin being at the vertex, and the axis of y
on the axis of the curve.

203. Definitions. Any line, as C, X, (Fig. 57), which
is drawn perpendicular to the directrix from a point of
the parabola, is called a diameter of the parabola.

The point at which it cuts the curve, as C, is called
the vertex of the diameter.

The axis of a parabola is its principal diameter.

204. Corollary. If p, denotes the distance of the vertex of
12* '
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Conjugate. Conjugate of Axis. Curve referred to Conjugates.

any diameter from the directrix, and if z° and g° are the.coordi-
nates of the vertex,

p=p+2° (88.)

205. Definition. If a line is drawn from the vertex of

a parabola, so that, if its direction is denoted by 8,, and
that of the axis by a, and if y° is used as above,

2
tan & — 2, (89.)

it is called the conjugate of that diameter.

206. Corollary. If the diameter considered is the axis, y° = 0,
and (89) gives (Tr. § 55)

| o =i
so that the conjugate of the axis is perpendicular to .

207. Parabola referred to Conjugate Axes. (86) may be
transformed, by § 102, to a system of coordinates in which the
axis of x is on any diameter, and the axis of y on its conjugate.
In this case, -
£ (1 -

xl 3 =
g =0, sin =0, cos =1,

and (24) and (25) become
' a:=a:°+a:,+y,cos‘zl,
y=9+ysn?;
which, substituted in (86), give
Ui sin"'a/:' +2y°y,sin£'—|—3/°’= dpx,+4py cosZ‘—{— 4pa°,

yfsin"z'—l—2 (y° sin’a/;— 2p cos':{:l n+yt—Ldpr’=4paz, (90.)
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Equation, referred to Conjugate Axes. -

But (89) gives

sin J1
ho_ z 2
tanz

cos{} Y

y°sinz'=2pcosg;,

y° sini‘—-—2pcosi‘=0. (91.)

Again, since the origin is in the parabola, its coordinates must
satisfy the equation of the parabola ; so that

P=4p2°,
yP—4pa®=0. (92.)
The substitution of (91) and (92) in (90) gives

glsint = 4pa,
9 = 4 p x; cosec? Z'. (93.)

Tr. §§ 10, 12, and 14 give, together with (88) and (89),

cos? 1
cosec"z"= sec’z"cos’z‘cosec’z‘ = sed I —;yi = sec? i‘eot’i‘

x L
smx

R Nl gy aptipe pde
tan* ¥t tan?¥s 4p° 4p ?

pwseé:yc'ép+x°=px,

and (93) becomes, by the omission of the numbers below the
coordinate letters,

y=4p x; (94.)
which, by § 206, includes (86).

208. Corollary. For all real values of y, y°, and therefore

-



140 ANALYTIC GEOMETRY. [cH. v.

Conjugate Equation discussed. Locus of (86).

4 p, x, must be positive; so that  must have the same sign as
21, that is, the whole curve is on the same side of the axis of y.
For each value of x, (94) gives two values of y, viz. :

y==%2 A (p1 ),
which only differ in respect to their signs. The parabola vs
therefore symmetrical with respect to the axis of y.
But for each value of g, (94) gives one value of z, viz. :

-5
| z = 7
Hence, any straight line which is perpendicular to the directriz of
the parabola will cut the curve in one point, and only one.

If x =0, y= 4 0; and, as z increases, y increases ; till,
when z =, § =, y=4a/ 0=+ o; so that, as the
curve recedes from the vertex, it constantly recedes from the axis.
This result is in conflict with that of § 196. It arises from the
infinite lgngth of the oval, which even goes to an infinite distance
from the vertex before it reaches its maximum point, at which it
turns back towards the axis. The discrepancy will be more fully
explained hereafter.

209. Theorem. The locus of every rectangular equa-
tion of the form (86) is a parabola which has its vertex
at the origin, its axis on the axis of z, and its focus at the
distance p from the origin.

Proof. We are to prove that the distance of every point of
the locus from the point
r=p, y=0,
is equal to its distance from the straight line drawn parallel to
the axis of g, at a distance — p from it.
The distance of any point z, y from the axis of y is =; so that
its distance 7, from the supposed directrix is

rn=x-+4p.

»
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Locus of (86) necessarily a Parabola.

Its distance 7, from the supposed focus is, by (7),

re= o/ [(e—p) + 41
If the coordinates of the point satisfy (86),

n=wa[E—p)+4ipz]l = (@ —2pz+p+4pa)
=V @+2pztp)=ztp=n.

210. Corollary. By interchanging the letters = and y in the
statement and proof of the above theorem, it applies to any rec-
tangular equation of the form (87).

211. Corollary. Any equation of the form (84) will give, by
transformation, an equation of the form (86); and since, by
§ 209, the locus of the latter equation is always a parabola, that
of the former equation is always a parabola.

212. Problem. 'To construct an equation of the form
(86) or (87).

Solution. Draw a parabola, having its focus and vertex sit-
uated as in § 209 or § 210. It must, by those sections, be the
required locus.

A simple method of drawing the parabola is glven in the so-
lution of the first example of the next section.

\

213. EXAMPLES.
1. Construct the rectangular equation &* = — 2 y.

Solution. This is an equation of the form (87) in which

=—3
d In Fig. 58, in which X’CX and Y'CY are the axes, take
GO = 4p = —2. From a point on the axis of 'y as a centre,
describe such a circumference as will cut the axis of y at G and
any other point R, and the axis of z at any two points . The
point 3, of which the coordinates are »' = CP, ' = OR, is a
point of the required locus ; for by Geom. § 186
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Similar Loci. Corresponding Points.
i 2p:x =o'y,
t=4py =—2y.

By continuing this process, other points of the curve may be
found.

2. Construct the equation 3* = 12 .

8. Construct the equation 3 — — 3 z.
4. Construct the equation #* = y.

5. Construct the equation 5 2* = — 4 ¢.

VL
SIMILAR LOCIL

214. Definitions. Two loci are said to be similar, if
they can be regarded as loci of the same equation con-
structed on different scales, that is, with different values
of the unit length.

The corresponding points of similar curves are those
for which the ratio of the abscissas and that of the ordi-
nates are each equal to that of the units of length.

Thus, if the equation of § 87, Ex. 1, be constructed on a scale
of half an inch, its locus will be similar to the curve of Fig. 34,
in which the unit of length is a quarter of an inch; and the
corresponding points will be those whose abscissas and ordinates
have the same numerical value.

215. Corollary. The abscissa of any point of a curve
is to its ordinate as the abscissa of the corresponding
point of a similar curve is to its ordinate.

216. Corollary. If two ellipses or two hyperbolas are
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Similar Ellipses and Hyperbolas.

similar, the values of 4, B, and ¢ are proportional. For,
by § 214, the units of length may be so taken that 4, B,
and c shall have the same numerical values for the two
curves, and then they will be to each other in the com-
mon ratio of the units.

217. Corollary. Since, for the asymptotes of the hy-
perbola

&

3! B

o tan L= ——,

4
tan = z )
these angles are equal for two similar hyperbolas; so that,
if the hyperbolas are drawn, as in Fig. 67, with their
centres at the same point and their transverse axes on the
same line, they will have the same asymptotes.

218. Theorem. If the semi-axes of two ellipses or of
two hyperbolas are proportional, the curves are similar.

Proof. Let the values of 4 and B for the two curves be
A’ and B, A" and B'.
Express A’ and B in numbers on a scale in which o is the unit
of length, and 4” and B’ on a scale in which o is the unit, o/
and o” being so taken that
o:0'=A":4"=B:B"
Then
"Al o = A 0",
B:o = B':o"

But the ratio of a quantity to its unit is its numerical value,
Hence the numerical values of A’ and A” are the same; and
also those of B’ and B’; and the substitution of A’ and B’ in
(48) or (66) gives the same equation as the substitution of 4"

and B’. The curves, therefore, come under the definition of
§ 214.
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All Parabolas Similar.

219. Theorem. All parabolas are similar.

Proof. Let the values of p for two parabolas be p’ and p".
Express p’ and p” in terms of the units of length o’ and 0", so
taken that

o' ol = sz P
Then

P/ o = P" : o',
Hence the numerical values of p’ and p” become the same ;
and the equations of the parabolassof the form (86) become iden-
tical. .
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Equation determines Curve. Two Conditions of Identity.

-

CHAPTER VL

" THE ELLIPSE, THE PARABOLA, AND THE HYPERBOLA :

RELATED CASES UNDER THE SAME GENERAL LAW OF
FORM.

220. Ir has been seen, in the last chapter, that the
general characteristics of the form of a curve may be de-
duced from its equation. Thus, we have found that the
~ circle and the ellipse are finite ovals, that the hyperbola
is an infinite curve of two branches, that the parabola
consists of a single branch which may be regarded as an
infinitely long oval. It is, indeed, evident that, since a
curve may be completely drawn from its equation alone,
that equation must determine it in every respect. It
ought, therefore, to lead by algebraic processes to the
development of the figure and of all the properties of the
locus; so that, if two equations are identical, their loci
must have precisely the same properties, and, if con-
structed for the same origin and axes, they will coincide.

221. In order to the identity of two equations, they
must agree in two respects: (1.) in their algebraic form
(that is, they must express the same relation between
their constant and variable quantities) ; (2.) in the values
of the constants which enter into them. But of these
conditions the first alone is necessary to make the loci of
two equations curves of the same kind. It has been
shown, for instance, in §§ 153, 154, that any equation of

13
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Law of Form.

the form (48) is an ellipse, whatever be the values of A
and B. Are we, then, to conclude that, in all cases, the
loci of two equations which have the same algebraic form
are, however unlike in apparent figure, nothing but dif-
ferent examples of the same curve?

222. An equation is a sentence, and, as sucl, the ex-
pression of a thought. The equation of a locus affirms
through its algebraic form a certain relation between the
arbitrary constants and the codrdinates, which vary for
different points of the locus; and this relation constitutes
an algebraic idea, just as the definition of the curve con-
stitutes a geometric one. If, then, two equations are the
same in form, their loci, though they may differ widely
in outward characteristics, are the same in idea, at least-
in algebraic idea, and their particulars of resemblance and
of dissimilarity can be brought under one law, — a law
which is expressed in the common form of their equa--
tions, and which may be called the Law of their Form.
In answering the question of the last section in the af-
firmative, the mathematician, therefore, will only follow
the example of the naturalist, who classifies animals and
plants according to the intellectual principles of their
structure, not to their superficial resemblances.

9293. It is the object of this chapter to deduce from the
equations of the ellipse, the parabola, and the hyperbola,
the result that these curves may be regarded as different
species belonging to the same class; to show that they
arrange themselves in an unbroken series which com-
prises all the possible cases under their general law of
form ; and to trace this series of curves from beginning
to end, so as to unfold their relations to each other.
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The Form as depending on the Position of the Foci.

224. Scholium. In the use of polar codrdinates in this chap-
ter, the rule of § 52 will be so far disregarded as to allow the
construction of those negative values of the radius vector which-
arise from particular values given to the constants in a general
algebraic expression for . Such values of » are to be con-
structed in the direction opposite to that which is indicated by
the corresponding value of the polar angle.

225. Discussion of (43). Let us begin by tracing the series
of forms which the locus of (43) assumes, as 4 and ¢ pass con-
tinuously through all possible modifications of their value. It is,
however, liecessary to consider only changes in the relative value
of these quantities; for as long as their ratio remains the same,
nothing is altered but the scale on which the curve is drawn
(§§ 214, &c.). We may, then, take 4 as fixed, and suppose ¢
- alone to vary. Let the length of 4 be AC' = ("4 (Fig. 59).
Since ¢, being an absolute length, cannot be negative, we have

only to suppose it to pass continuously from the value O to the -
value o.

If c=0,
=0, B—a/(4—¢) = 4,

and the locus is a circle, as shown in § 138.

As ¢ increases from 0, the foci separate and move away from
the origin, and the curve becomes an ellipse ; e increases, B di-
minishes, and the ellipse gradually flattens; till, when

Cc = .A.,
the foci fall on €' and (, and
’ € == 1, B = 0,
po A—A4 A—4 0 ;
: A—-Acos; l—oos: l—éos’e'

so that r is zero, and determines only the origin, unless it has
such a direction that the denominator of the above fraction be-
comes zero ; that is, unless




148 ANALYTIC GEOMETRY. [cH. VI

Ellipse: — Straight Line: — Hyperbola.

008:=1, ;=0,
+ 0
7'_:!:0,

" in which case,  is indeterminate, both in amount and in sign, and
corresponds to any point in the line of the transverse axis.
If the foci are conceived to move beyond the extremities of the

transverse axis,
e>4, e>1,

B of § 133 becomes imaginary, and B of § 158 becomes real, and
the locus is, by § 191, an hyperbola. As ¢ increases, ¢ and B in-
, crease, and the angle between the asymptotes, determined by

08 ? = cost = A,
e e c

also increases, so that the hyperbola gradually opens ; till, when,

¢ = 0,
= 2 .'I 1//
e=oo, B=a/(0—A4)=wo, cosp=cose=0,

so that (Tr. § 55) the asymptotes become perpendicular to the
transverse axis. In this case, the two branches of the hyperbola
become straight lines parallel to the asymptotes. For the verti-
ces of an hyperbola are its points of greatest distance from the
asymptotes, and of least distance from the conjugate axis. Hence,
when the asymptotes and the conjugate axis coincide, no points
of the hyperbola can be farther from this line than are the verti-
ces, and none can be nearer to it ; that is, all the points are equi-
distant from it.

Thus we are led to regard the ellipse and the hyper-
bola as only different parts of a continuous series of forms,
which variously embody one law ; the ellipse gradually
approaching the hyperbola, as it flattens, and at last
changing into it, so to speak, by momentarily becoming
the straight line. :
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Ellipse and Hyperbola in Combination.

226. Corollary. When the ellipse receives its utmost flatten-
ing, at the moment when ¢ = 4, we should expect that it would
coincide with its own transverse axis, and that the locus of (43)
would become the finite straight line ¢'C. If, on the other hand,
we should trace the series in reverse order, from ¢ = o to¢ = A4,
we should begin with the hyperbola, each branch of which would
gradually close up, till, when ¢ = A, the two branches ‘would
come to coincide with those parts of the straight line which are
outside the extremities of the transverse axis. But the true locus
of (43), in this case, is the whole straight line, which may, there-
fore, be regarded as made up of an ellipse and the two branches
of an hyperbola. This result may lead us to conceive that (43)
has, ip all cases, for its complete locus the combination of an
ellipse and an hyperbola; but that, if ¢ < 4, the part which is an
hyperbola is impossible, or imaginary ; and if ¢ >> A, the ellipse
is imaginary, so that it is only when ¢ = A4, that both parts of
the ideal locus can actually coexist.

This view is supported by the equations of the ellipse and the
hyperbola referred to their principal diameters. For if, in (47),
we take values of x absolutely greater than A, the values of y
are imaginary, and may be conceived to correspond to an imagi-
nary curve. Moreover, as x increases, y* so varies, that if, by
undergoing a change of sign, it were made positive, y would give
an hyperbola, and therefore the imaginary curve will be an hyper-
bola. In like manner, if, in (65), we take values of x absolutely
less than A, the values of y are imaginary, and may be conceived
to correspond to an imaginary ellipse. If, however, ¢ = 4,
B = 0, both for the ellipse and for the hyperbola, and the sub-
stitution of this value in either (47) or (65) gives

Ay =0,
0
Y iA

which is the equation of the axis of x, indefinitely produced.
13*
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The Form as depending on the Eccentricity.

227. Discussion of (45). The relation between the ellipse
and the hyperbola is presented in a somewhat different light by
the discussion of the polar equation of the ellipse in the form (45).

Instead of supposing the transverse axis to be fixed and the
foci to change their places, as in § 225, we will now suppose that
one focus and its nearest vertex are fixed, thereby making p,
their distance apart, constant, and that the other focus and vertex
are shifted along the transverse axis, their distance being the
constant p, the form of the curve always accommodating itself to
their new position, and its centre being the middle point of the
transverse axis.

a. Suppose that the left-hand focus and vertex of an ellipse
are fixed at # and (! (Fig. 60), and, in the first place, let F*
coincide with 7, in which case,

¢=0, e=§=0,

r P(+e) —-p;

l— r
eoose

which is the equation of a circle of which p is the radius, and the
centre at the origin F.

As P moves towards the right, ¢ and 4 increase both by the
same amount ; so that, as ¢ is smaller than A, sts ratio o A, that
is, e, increases (Alg. art. 135) ; or, to obtain the same result in a
different form,

c=A4—p,
¢c _A—p 4 _ p P
so that, as A increases (» being constant), g diminishes, ¢ grad-
ually approaches unity, and we shall have a succession of ellipses
of greater and greater eccentricity.
When F' has moved off to infinity,
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The Parabola, the Ellipse of Maximum Eccentricity.

¢ = oo, A= >,
e=1_§=._—=1—0=n

in other words, the difference between ¢ and A4, though a finite
quantity, p, is now infinitely small in comparison with either of
them (Geom. § 205), and their ratio, e, becomes the same as that
of two equal quantities. The substitution of this value of e in
(45) gives (84); so that the locus becomes a parabola; and the
parabola may, therefore, be regarded as an ellipse of an infinitely
long transverse axis, and with its foci infinitely far from the
centre.

b. Suppose, now, that the right-hand focus and vertex of an
hyperbola are fixed at #" and ('. For the ellipse, p = 4 — ¢,
and for the hyperbola, p = ¢ — 4 (§§ 139, 164); and, as
these values are negatives of each other, the second members of
(45) and (62), though in form they have opposite signs, are
really the same fraction ; for p in (62) has the same value as in
(45), if its sign is reversed, and this operation makes the two
equations identical. Hence, and by § 163, (45) is the equation
of both branches of the hyperbola, if the origin is at # and the
initial point at C, the vertex farthest from #. Again,

c=A4+p,
c A4p 4, p P
—i= 4 —ZATi='t%

which is the same value as that given above, since p is the nega-
tive of the p in the ellipse. Let us suppose C and F* to move
towards the left from their extreme position on the right.

C cannot be farther to the right than (.. When C coincides
with C, (Tr. § 55,)

A=0, c¢=p.
e==1+0£=1—|—oo==oo=sec:l,
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The Parabola, the Hyperbola of Minimum Eccentricity.

'/ tII
a =}, a =—13}n

Now, no point of the hyperbola can be farther than its vertices
from the asymptotes. But in this case the vertices are at the
centre, and therefore on the asymptotes. Hence the two branches
of the hyperbola and its two asymptotes all coincide in a straight
line drawn perpendicular to the transverse axis through the

centre. .

As/O' and ' move towards the left, 4 increases, and g, e,
and : (Tr. § 70) decrease (p being constant) ; that is, we have
a succession of hyperbolas of less and less eccentricity.

When C and # have moved to infinity,
A= )

e=l+£ ———1+0=1=cos::,

4 1

P =T =0;
a o

and the substitution of this value of e in (45) gives, as before,
(84), the equation of the parabola, which may, therefore, be re-
garded as an hyperbola of an infinitely long transverse axis, and -
with its asymptotes parallel to the transverse axis.

228. Corollary. In the last step of the above discussion,
there is a difficulty which deserves a moment’s notice. The polar
axis was taken to be directed from #-towards C, that is, towards
the left; but as the polar axis of (84) is directed towards the
right, it would seem as if the vertex of the parabola obtained
from the hyperbola by moving C off to infinity on the left, must
be on the right of the origin. But the p of (45) being for the
hyperbola negative, all the values of r, which are positive for the
absolute value of p, become negative, and each is to be laid off in
the direction opposite to that indicated by the corresponding
value of the polar angle. This reverses the position of the pa-
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rabola, and makes it identical with the curve obtained by length-
ening the-transverse axis of the ellipse to infinity.

229. Corollary. 'We have for the ellipse, by (95) and § 1383,

P
- 4 I1—¢’

and the square of the ratio of the semi-axes is

§=piijszlW=h+»u—q={—f

‘When e == 0, which is the case of the circle, the above equa-
tions give
A = p, .B = p,

B
Z=V0—=1=1

As e increases (p remaining the same), 4 increases, because
its denominator is diminished ; B* (and therefore B) increases,
because its numerator is enlarged and its denominator diminished;

and g = A/ (1 — ¢*) decreases. In gther words, both axes in-
crease, but the conjugate axis more slowly than the transverse.
When e = 1, which is the case of the parabola,

A=£= oo,

0
2
B’=p26-=®’ B=~/oo==°°,

eV a—a=n0o=0;

that is, both axes become infinitely long, but the transverse axis
tnfinitely longer than the conjugate.
When ¢ > 1, the denominator of 4 becomes negative; but as its
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Orders of Infinity.

numerator changes its sign simultlaneonsly, A remains positive,*
B* becomes ;Jegative, and B therefore imaginary, and galso
imaginary. -

But if for p and B? we substitute — p and — B°, these let-

ters will represent the p and B? of the hyperbola, and the above
equations become

1—e™ e—1"

— B == d+q=p1E,

B=(c—4) (44 o) =pd+o=pt],

e—1
B ., B

When e = 1, we have, as before,

4=, B= o, ‘—§-=0.

As ¢ increases (p being constant), the denominator of 4 is en-
larged, and therefore A.is lessened ; ¢ likewise decreases, since
¢=A - p, so that B? and therefore B, decreases; and the
ratio of the conjugate axis to the transverse increases.

230. Scholium. We have before (Geom. §§ 203 —205)
met with quantities which are ‘not only infinitely small,
but which are so in comparison with other infinitesimals,
so that the latter infinitesimals are infinitely large in com-
parison with the former. We are now led to remark,
that there are, on the other hand, quantities which are
infinitely large even in comparison with other infinite quan-

* This change is, however, regarded in a different light in § 249.
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titz:es, so that these latter are infinitely small in compari-
son with the former. )

That the existence of such-quantities is possible, however hard
to conceive, may be shown by a simple geometrical example.
The rectangles AD and AF (Fig. 61), having the same altitude,
are to each other as their bases (Geom. § 244) ; so that, if 4B,
the base of 4D, is made infinitely long, the rectangle AD will be
infinitely larger than AF'; and this is, obviously, true, whatever
be the common altitude of the two rectangles. It is true, therefore,
if the altitude is taken infinitely large ; but, in this case, the rec-
tangle AF contains an infinite amount of surface; so that the
surface of AD will be infinitely large in comparison with another
infinite surface. '

Again, algebraically, if any quantity is multiplied by infinity,
it is thereby infinitely increased; so that infinity itself is in-
finitely increased by being squared. Indeed

o 0= w:1;

8o that we have infinite quantities of a higher or lower order, ac-
cording as they involve as a factor a higher or lower power of
infinity. Thus, the area of the larger of the above rectangles is
of the second order of infinity, being the product of its base and
its altitude, which are each infinite ; and it is therefore infinitely
large in comparison with the smaller rectangle, the area of which
is the product of the infinite altitude and the finite base, and
therefore of the first order of infinity. So, in the parabola, which
this scholium is meant to explain, B? is of a lower order of
infinity than A° and therefore infinitely small in comparison
with it.

281. Corollary. By § 177, the asymptotes of the parabola,
when regarded as an hyperbola, are drawn from the centre of the
hyperbola, the distance of which from the vertex, on the left of
it, is

A=,
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Ellipse: — Parabola : — Hyperbola.

80 as to cut off, on a line perpendicular to the transverse axis at
the vertex on’ either side of it, the length

B=w.
Then

tan « = Z = 0,

T =03

o
as has been shown in § 227. Therefore, though the asymptotes
of the parabola diverge from the transverse axis, at the centre,
at an infinitely small angle, yet, when they are drawn to the in-
finite distance 4, they become separated from the axis by the
infinite distance B (which is however infinitely smaller than 4),
and so run outside of the parabola, parallel to the axis.

232. Corollary. It results from the discussion of
§§ 227 — 231, that, as e in (45) is supposed to change con-
tinuously from the value 0, the lower limit of its possible
values, up to @, the higher limit, we may conceive that
the locus of that equation, without deviating from its
law, passes gradually through a series of forms; begin-
ning with the circle, or the ellipse of equal axes; going
on, through ellipses in which the transverse axis becomes
greater and greater in proportion to the conjugate, to the
parabola ; changing, through the parabola, ‘into the hy-
perbola ; then proceeding through hyperbolas in which
the asymptotes diverge more and more from each other,
up to that extreme form in which they take precisely
opposite directions. We must conclude, then, in accord-
ance with what has been said at the beginning of this
chapter, that the ellipse, the parabola, and the hyperbola,
though they have been taken up as distinct curves, va-
riously defined, and though they differ widely in apparent
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figure, are, in this view, to be regarded as only the sevs
eral embodiments of one thought, the several manifesta-
tions of one essential form ; that they occur, not at ran-
dom, but in a fixed order in an unbroken series, the
parabola being ‘intermediate between the other two,—
the single form, incapable of variety (except that which
arises from changing the scale on which it is drawn),
which the locus momentarily assumes in passing from
the series of ellipses on the one hand to the series of hy-
perbolas on the other ; and, moreover, since all values of
e are contained between 0 and o, that no form is in-
cluded under the law of (45) except one of these three,
in their various modifications.

233. Scholium. While the above series of forms has
been spoken of as unbroken, because it answers to a
gradual alteration in the value of e, there is in the geo-
metrical representation of the change-of the locus, in
Flg 60, an apparent interruption of continuity ; fory as
e inereases in the ellipse, the points F’ and C move off on
the right till they reach infinity, and then, as e still in-
creases and the locus becomes an hyperbola, they sud-
denly appear on the left, moving up from infinity towards
the origin.. But it has been shown, on page 42, that this
abrupt change in the position of a moving point from in-
finite remoteness on one side to infinite remoteness on
the other, without going through any intermediate posi-
tions, is not to be regarded, at least in the algebraic
treatment of Geometry, as a breach of the continuity of
its motion.

It may be worth while to insert an ingenious geometrical
fiction which has been invented to explain this difficulty ; and

14
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the studgnt may attach to it whatever value he thinks proper.
Suppose that the apparent plane in which the figure is drawn,
instead of being really a plane, is the surface of a sphere of in-
finite radius, and that the so-called straight lines in the plane are
not straight lines, but arcs of great circles of the sphere. Then
any finite portion of the surface, being infinitely small in compar-
ison with the whole surface, will be, in fact, a plane ; and any
finite arc of a great circle, being an infinitesimal arc of the cir-
cumference, will be a straight line; so that on this supposition
the figure, as far as it can actually be drawn, is unaltered. Now
if two points be conceived to move in the line C'F from F as an
origin, in opposite directions, they will, as long as they keep
within g finite distance from F, move in a straight line, and be-
come farther and farther apart. But if both go half-way round
the circumference of which (*F' is an arc, they meet and coin-
cide ; and if then they pass each other and still keep on in their
respective directions, they will at length reappear, the point
which went off on the right coming in on the left, and that which
went off on the left coming in on the right, and both will have
changed sides by retiring to infinity, that is, by making half the
circuit of a circumference of infinite radius. This fanciful hy-
pothesis is useful as enabling us to represent to ourselves how that
can be which finite minds cannot really comprekend. It may
also show us that there is nothing in the mere incomprehensibil-
ity to us of what relates to infinity, or in its apparent inconsist-
ency with former knowledge, to hinder the perfect harmonizing
of all these truths to a higher intelligence, who sees the whole;
since even to us, by modes within the scope of our invention,
these seeming absurdities, though still inconceivable, may be
represented as logically possible.

234. Corollary. 1If the locus of (45) be referred to a rectan-
gular system in which ¢’ (Fig. 60) is the origin, and C'F the
axis of z, its equation is, as in § 145,
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Rectangular Equation, referred to Vertex.

2B B
y = e—h * (50)

Now, if the locus undergoes the changes supposed in § 227, then,

as in §§ 227, 229, 4 and B increase, and % decreases. Also,
by § 229, '
2B 24p (e _ .

so that, as e increases, this fraction also becomes greater. Hence,
for any given value of z, the positive term of the above value of
o increases, and the negative term decreases (in absolute value),
so that y* and therefore the absolute value of g, increases.

When e = 1,

B 2 B*
Ti=0 - =2p(l+e)=4p;

and (50) becomes

y¥=4pz,
which is the equation of the parabola, referred to its vertex as
origin, and to its axis as the axis of z.

‘When ¢ becomes greater than 1, 4 and B? pass through infin-
ity and become negative ; so that the vertex C begins to come in
on the left of C”. If, now, we take 4" and B’? equal to the ab-
solute values of 4 and B?

 (— A’
AP = A’,
B”? — — B%;
80 thatl A" and B"? are positive, and (50) becomes
2 2 BI/? _Bllﬂ .
y'="grtgme

which is, by § 171, the rectangular equation of the hyperbola
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Case of the Parabola discussed.

whose semi-axes are 4" and B”, the origin being ‘at the right-
hand vertex, and the axis of z being on the transverse axis.

285. Corollary. An explanation can now be given of the in-
consistency which has been pointed out in § 208 between the re-
sults of (84) and (86). The full form of (86) is given in (50),
in which the last term is dropped, because for the parabola

2
% == 0. But this does not cause the term to vanish, when
x = oo ; for then

%x’ =0 X o = 9—,
which is indeterminate. If, in (50), x — A4, then (whatever be
the value of 4),

y= =t B;
fz>A4, < B fz=2A4, y=+0; ifz>2A4,
¥ is imaginary.

236. Corollary. In § 284, when ¢ > 1, we suppose 4 to be-
come negative ; while, in the same case, in § 229, 4 was sup-
posed to remain positive and p to become negative. This is
accounted for well enough by observing that, in polar coordi-
nates, lines are not negative merely because they point to the
left, but, on the contrary, they become so only when the negative
sign belongs to their algebraic values (as, for example, p=A4 —e¢
becomes negative, when ¢ < 4) ; while, in rectangular coérdi-
nates, a line is necessarily negative, if its direction is opposite
to that of either axis. ’

237. Corollary. If the parabola is referred to its centre and
principal diameters, its equation, according as the curve is re-
garded as an ellipse or an hyperbola, is

o x
Zi+§=l’ or ——-_%:-——1;

inwhich 4d=w, B=ow, —=0,
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238. Scholium. If the ellipse, the parabola, and the hyper-
bola are only different forms of one and the same curve, it ought
to be possible to bring them all under one definition. It will now
be shown that such a definition can, in fact, be given.

239. Theorem. The locus of (45) may be defined as
a curve every point of which is equally distant from one
of its foci and the circumference of a circle described
about the other focus, with a radius equal to the trans-
verse axis (the latter distance being measured on the line
of a radius, since, by Geom. §§ 119, 120, a radius meets
the circumference perpendicularly).

Proof. a. For the Ellipse. Let Fig. 62 represent an ellipse,
and a circle ‘described about F" as a centre, with a radius equal
to 2 4, the transverse axis. Since

i C'F' = 0'C, l
C'C'=F'C=p.

Let M be a point within the circle, and let it satisfy the condi-

tions. It is impossible that MM" — MF'; for
FF' 4+ F'M > FM,
M"F' > FF',
M'F' 4+ F'M > FM.

. MM = MF,
FM+4+ MF=FM+MM =FM=2A4;
go that any point within the circle, if it satisfies the conditions,
satisfies the definition of the ellipse.
No point without the circle, such as B, can satisfy the condi-
tions ; for neither BB’ nor BB" can be equal to BF, since.
F'F+ FB>F'B
F'B'>F'F
FB>F'B— F'B, or B'B;
14*
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The Three Curves brought under One Definition:

and
B'F' > FF',

B"B, or B'F' 4+ F'B > FF' 4 F'B > FB.

Any point, therefore, which satisfies the conditions, is, when
FF' < 2 A, a point of the ellipse described about F and F" as
foci, with 2 4 for a transverse axis; and, conversely, any point
of this ellipse satisfies the conditions ; for, if M is such a point, the
definition of the ellipse gives

FM4MF=2A4A=FM=FM4{| MM,
MM — MF.
b. For the Hyperbola. Let Fig. 63 represent an hyperbola,

and a circle described about F” as a centre, with a radius equal
to 2 A, the transverse axis. Since

Fon = CC,
Q! = F'C = .
Let M be a point within the circle, such as to satisfy the con-
ditions. It is impossible that MM' — MF'; for
FM+MG>FG,
© MG>F'G—F'M,
FG=FM,
MF > MG > MM
If MM" = MF, -
MF — MF' = MM" — MF' — F'M" = 2 4;
and M satisfies the definition of the left branch of the hyperbola.
For any point N outside the circle, such that
NN" = NF,
NF — NF'= NN"— NF' = F'N" =2 4;

so that V must be in the left branch of the hyperbola.
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For a point P outside the circle, so placed that
PP = FP,
FP—FP=FP—PP=PFPP =2A4;

so that P must be in the right branch of the hyperbola.

Any point, therefore, which satisfies the conditions, is, when
FF > 2 A, apoint of the hyperbola described about # and #”
-as foci, with a transverse axis equal to 2 4 ; and the converse of
this is easily shown.

¢. For the Parabola. 'When the ellipse becomes a parabola,
F' retires to an infinite distance on the right; and when the
hyperbola becomes a parabola, # is removed to an infinite dis-
tance on the left. Therefore, the circumference becomes in-
finitely great, since its radius becomes so, and any finite part
of it, being an infinitely small arc in comparison with the cir-
cumference, is a straight line, which, since ("' = p, coincides
with the directrix of the parabola. Hence, the theorem, as stated
for the parabola, becomes identical with the common definition of
that curve. '

240. Corollary. The above definition of the ellipse,
the parabola, and the hyperbola may be used to illustrate
the relation between them. As,in Fig. 60, e increases,
P being constant, ' moves off to the right, and the cir-
cumference gradually curves less and less, because its
radius 2 A increases; till at last, when the locus be-
comes a parabola, it has no curvature, and becomes a
straight line. Then, as the locus passes through the
form of the parabola into that of the hyperbola, the cir-
cumference bends over towards the left, and, afterwards,
it curves more and more on that side, as e increases, and
P approaches from the left. In this change of curvature,
it will be seen, there is perfect continuity.
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The Importance of the Elliptic Curves.

CHAPTER VIL

THE ELLIPSE, THE PARABOLA, AND THE HYPERBOLA IN
ANCIENT GEOMETRY AND IN MODERN PHYSICS.

241. Ir may be well to point out a few particulars in .
the history of the study of the ellipse, the parabola, and
the hyperbola, in order to show why a very important
place should be given them among other curves. We
have, indeed, seen that they have simple and symmet-
rical figures, and that they are naturally united, by a
curious relationship, into a series, which includes even
the circle, the figure which, from its simplicity and fre-
quent occurrence in the forms of bodies around us, de-
serves our study next after the straight line. Still, this
relationship seems to have a merely speculative exist-
ence; and it is troubled with difficulties the solution of
which requires much refining, and, sometimes, is beyond
our comprehension. Some may feel that the truth which
the mind beholds by turning in on itself has a value of
its own, and that, if the study of these curves leads to a
deeper insight into geometric truth, it needs no further
justification. But to all it will be acceptable to know
that the objects of their study have, for ages, and in many
forms, presented themselves to the observation as well as
the thought of men ; that, far from having originated in
human ingenuity, or from having an accidental existence
in nature, they are, by the necessity of physical law,
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Cone and its Nappes. Cone cut by a Plane.

embodied and illustrated in the outward creation, so
that, in studying them, we enter into the thought which
is there revealed.

L
THE CONIC SECTIONS.,

242. Definition. If the indefinite line BB’ (Fig. 65),
which crosses OO’ at A, revolve about OO’ as an axis,
the whole surface generated, indefinitely produced in
both directions, is called, in the higher Geometry, the
surface of a cone.

The two parts into which the surface is d1v1ded at the
vertex A (and which would be regarded, in Elementary
Geometry, as the surfaces of two distinct cones) are
sometimes called the nappes of the surface.

243. .Sections of the Cone. Suppose the cone of Fig.
65 to be cut by a plane which is perpendicular to that of
BAD, and which enters the cone at C'.

If the plane has a greater inclination to the axis
OO’ than DD, the side of the cone, has, it must cut
DD’ at some point below 4, as C;. In this case, the
intersection of the plane with the surface of the cone is,
evidently, an oval ; and it is, in fact, an ellipse, of which
C' G, is the transverse axis. If the plane is perpendicular
to the axis, this ellipse is (Geom. § 378) a circle.

If the plane has the same inclination to OO’ as DD,
it is' parallel to DI’ and does not cut it; so that the
curve is, evidently, a curve of one branch, which goes off
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The Conic Sections and their Relation.

to infinity without coming round inte itself. It is, in
fact, a parabola, of which the axis takes the direc-
tion C'E.

If the plane has a less inclination to OO’ than DD’ .
has, it will cut DD above A; as at C;; and the curve
consists, evidently, of two infinite branches, in neither of
which the two portions ever cease to recede from each
other. In fact, the curve is an hyperbola, of which C' C; is
the transverse axis.

All sections of the cone made by parallel planes are
similar curves.

24. Defindjjon. The ellipse, the parabola, and the
hyperbola aré bften included under the generic name of
the conic section.

245. Corollary. If the cutting plane be supposed to turn from
the position in which it is perpendicular to the axis, in the direc-
tion of positive rotation, it will give a succession of ellipses of
greater and greater eccentricity ;- till, when it becomes parallel to
the side of the cone, the section becomes a parabola ; and, if it
turns still farther, the section is an hyperbola. The relation be-
tween the three curves is here exhibited in a form analogous to
that of Fig. 60. :

246. Corollary. If the cutting plane be supposed to turn from
the position in which it is perpendicular to the axis of the cone,
in the direction of megative rotation, the section increases in
eccentricity, and the ellipse is gradually flattened. When the
plane is turned so far as to coincide with B'B, it becomes tangent
to the cone along that line, and the straight line, B'B, is, in this
case, the section. If the plane turns still farther, the section be-
comes an hyperbola. Here the section undeygoes a series of
- changes analogpus to those of Fig. 59. :

.,
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Ancient and Modern Study of the Elliptic Curves.

247. Corollary. It appears from §§ 245, 246, that the
same relation which has been previously established be-
tween the ellipse, the parabola, and the hyperbola is
found to exist when those curves are treated as the sec-
tions of a cone ; but here this relation is presented from
a wholly new point of view, as a mere matter of fact.

IL

LAWS OF MOTION AND OF FORCE.

\

" 248. It is as the conic sections that ellipse, the
parabola, and the hyperbola enter into ancient Geom-
- etry. As the conic sections, they were first conceived by
Plato or his immediate disciples; and it was not till
‘within two centuries of the present time that their study
* was takeri up apart from that of the cone. These curves
formed a favorite subject of speculation with the geom-
eters of antiquity. Apollonius, one of the greatest of
them, wrote an elaborate treatise on the subject, the
first four books of which he devoted to what was before
known concerning the conic sectionsy and the last four
he filled with his own discoveries.

249. In modern times, however, the interest which
attaches to the ellipse, the parabola, and the hyperbola
has ceased to be purely geometrical. Indeed, the ancient
mathematicians seem to have nearly exhausted by their
discoveries the properties of these curves, which would
probably, therefpre, have sunk from an unnaturally prom-
inent position if it had not been for a discovery which

»
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Kepler's Laws of Motion.

has not only given to them a new importance for the
future, but has thrown light back on the past, by show-
ing that, while the old geometers were studying these
insignificant figures, — so remote from actual experience,
so0 incapable, as it seemed, of leading to a higher knowl-
edge of Nature, — in these very curves the great law of
force was manifested, — the stars were tracing them in
the heavens; so that the full mastering of their proper-
ties was no profitless play of the intellect, but the ne-
cessary introduction to the Philosophy of the Physical
Universe.

250. Kepler’s Laws of Motion. XKepler, a German
astronomer, wLo was born in 1571, and died in 1630,
was distinguished by a fondness for whimsical specula-
tion about analogies and harmonies in different parts of
Nature. This passion led him to the invention of many
fanciful theories, and it led him also, early in the seven-
teenth century, to the detection of three great laws of the
planetary motions, the most important of the discoveries
which immediately prepared the way for that of the law
of gravitation. These laws may be stated as follows : —

I. The radius vector of any planet, drawn from the
sun, sweeps over equal areas in equal times, and, in any
case, the areas are proportional to the times.

JIL Each planet moves in an ellipse, which has the sun
at one of the foci.

IIL. The squares of the periods of revolution of differ-
ent planets are to each other as the cubes of their mean
distances from the sun, that is, of the semi-transverse
axes of their orbits. '

251. Corollary. If the ellipse of Fig. 64 represents the orbit
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Newton’s Law of Force.

of a planet, and ¥ the sun, the time in which the planet moves
from M to M is to that in which it moves from M to M as
the area of M F'M" is to that of M'FM".

252. Newtow's Law of Force. Kepler proposed his~
laws as mere matters of fact, resting on observation. It
was left for Newton to show the principle which con-
nects them. When Newton, half a century after Kepler’s
discovery, first conceived a force acting according to the
law of gravitation, he naturally asked himself what sup-
port Kepler's laws gave to such an hypothesis. By a
mathematical examination of the first law, he found that
it proves the existence of a force which acts along the
line joining the planet and the sum, in one direction or
the other. He deduced from the second law, that this
force acts towards the sun, with an intensity inversely
proportional to the square of ‘the distance between the
two bodies. The third law shows that this force is the
same for all the planets. On this basis, Newton assumed
the existence of a force which acts on a body with an
intensity proportional to its mass, and inversely propor-
tional to the square of its distance from the centre of
action; and he showed that, if the planets are bodies
which move under the action of the supposed force, their
motions must conform to Kepler’s laws, except that their
orbits, instead of being necessarily ellipses, may be any
one of the conic sections.

253. Scholium. The expression for the square of the velocity
of a body which moves about the sun under the influence of

gravitation is .
’ vi=m (g -1 ) 3
\r 4)°

in which » denotes the velocity, m the measure of the force at

15
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Motion under the Law of Gravitation.

the distance of the unit of length from the sun,  the distance of
the body from the sun, and 4 the semi-transverse axis of the
orbit, A being, as in § 234, positive for the ellipse and negative
for the hyperbola. The greater 4 is taken, if positive, in the
above formula, the greater will be the velocity, for equal values
of 7, that is, when the bodies compared are at equal distances
from the sun. If the orbit is a parabola

A = ®,
P 21
r
If the orbit is an hyperbola, —%{ is positive, and
> ?ri";

and the less the absolute value of A, the greater the valye of ¢*

254. Scholium. The planets have a velocity so small that
they all move in ellipses. The satellites also move in ellipses,
described_about the primary as a focus. Of comets, some move
in ellipses, some in parabolas, and it is supposed, but not satisfac-
torily ascertained, that others move in hyperbolic orbits. Ifa
comet returns to the solar system, this fact, of course, shows that
it moves in an ellipse. Comets are, however, sometimes said to

_have parabolic orbits, when, in fact, they move in ellipses of ex-
ceedingly great eccentricity.
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Ellipse: — Point: — Locus Imaginary.

CHAPTER VIIL
SPECIAL FORMS OF THE CONIC SECTIONS.

255. T ellipse, the parabola, and the hyperbola as-
sume, for special values of the constants, forms which it
will be of interest to discuss in a separate chapter.

256. The Ellipse. If, in an equation of the form (48), any
real values whatever are given to A and B, the locus is, by
§§ 153,154, an ellipse, which we may suppose to be represented
by the largest of those in Fig. 66. Now, if the values of A* and
B are gradually diminished, but in such a manner that their
ratio remains unchanged, we shall, by § 218, have a succession of
similar ellipses. If we reduce A% to zero, B* must also become
zero ; and (48) gives, if we multiply by B?

Aty —B—o.
Both terms of the first member of this equation, being squares,
are positive; so that, as their sum is equal to zero, each term

must be equal to zero, and therefore, since i not zero,

z=0, y=0;
which are the equations of a single point, the origin.
If A% is made less than zero, or negative, then, in order that

the ratio % may be un(!istgrbed, B must also be made nega-
tive ; and, if we take ~
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Forms of the Ellipse, as seen in the Plane Sections.
AR = A, B'=—B,

(48) becomres

in which, since the second member is positive, the first member
must also be positive, which can only be the case when either «*
or g is negative, that is, when either 2 or y is imaginary. In
this case, therefore, the equation has no locus, or its locus may be
said to be imaginary.

Hence, the poin may be regarded as an ellipse, with
its axes equal to zero, similar to any given ellipse, and
the limit of all real forms of the curve.

257. Scholium. If a succession of planes, parallel to that of
¢ C,, be passed through the cone of Fig. 65, the sections which
they make will, by the last paragraph of § 243, be ellipses similgr
to that of (" C,. These ellipses will be smaller as they approach
the vertex of the cone, and the plane which passes through the
vertex itself gives only a point, which appears therefore among
the conic sections as an ellipse, similar to any given ellipse.

258. Scholium. 1If a plane, parallel to the previous planes, be
passed above the vertex of the cone, it cuts the upper nappe and
gives an ellipse similar to the former series of ellipses. The
ellipse, when considered as a conic section, does not, therefore,
pass through the form in which it is a point into its imaginary
form.

This last change is, however, exhibited in the case of the ellip-
tic sections of some other surfaces. All the plane sections of the
-sphere, for instance, are circles. The nearer the cutting plane is
to a parallel tangent plane, the smaller will be the circle. If it
coincides with the tangent plane, the circle becomes a point. If
it passes outside of the tangent plane, it no longer cuts the
sphere, and the circle becomes imaginary. -
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Positive Parabola: — Parallels: — Negative Parabola.

259. The Parabola. If, in an equation of the form (86),
p = 0, the equation is, by § 209, a parabola, similar, by § 219,
to any other parabola. Baut, in this case, (86) becomes

y’ =0 Xz
which gives, if « is finite,

y==0,

the equation of the axis of z. But,if z = o,
0
y== ks

so that y has two indeterminate values.

The parabola becomes, therefore, in this case, the combination
- of two straight lines which pass through the vertex at an in-
finitely small angle With the axis, one on one side of it and one
on the other, so that they will coincide with the axis for a finite
distance from the vertex, and form a single straight line; but
when produced to an infinite distance from the vertex, they may
become separated from the axis, so as to appear as two straight
lines, parallel to it.

The case in which p = 0 is intermediate between those in
which p is positive and those in which p is negative, so that

The straight line, or the combination of fwo parallels,
may be regarded as a parabola, intermediate between the
parabolas which curve in the positive direction from the
vertex gnd those which curve in the negative direction.

960. Scholium. - The locus of any equation of the form (48),
in which B: 4 = 0, is, by §§ 218, 287, similar to the parabola,
and therefore it is a parabola. B: A = 0,if B is finite and 4
infinite ; and, in this case, (48) becomes

15*
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Case of the Parallels.
a® ¥
= tE=1

which gives, if « is finite, so that = _ 0,
®
o,
y== B,
the equation of two straight lines parallel to the axis of x at the

distance BB above and below it. If, however, # — 4 or — — A,
(48) becomes

]:+%=1’

y')

-B:='.
y=20;

0,

-~

go that, at the infinite distance A on either side of the origin, the
two parallels meet in the axis of . .

For the ellipse,
p=A_c=A’—c’ - B
Ad4c¢ — dF¢’
so that, in this case,
=2 o
®

Hence, the case of the parabola discussed in this Section is the
same as that discussed in § 259 ; but the origin is here placed at

the centre, so that the parallels appear separated from each
other.

If B — 0, the parallels actually coincide throughout.

261. Scholium. Any section of the cone made by a plane par-
allel to that of (" (Fig. 65) is a parabola. If the plane pass
through the vertex, it becomes tangent to the cone along its side
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Forms of the Parabola, as seen in the Plane Sections.

D'AD, and the section becomes a single straight line. If the

plane be passed above the vertex, it cuts the upper nappe of the .

cone, and the section is a parabola which curves upwards, msbead
of downwards. .

262. Scholium. The case in which the parabola becomes the
combination of two parallels does not occur among the sections of

the cone proper. It is given, however, by a peculiar form of the -

cone. Let the circular section 5’1’ be spoken of, for the mo-
ment, as the base of the come. Suppose that, without any
change in this base, the vertex 4 of the cone is moved farther
and farther away from it; the sides will make a more and more
acute angle with each other; and, when 4 is removed to an
infinite distance, they become parallel, and the cone becomes a
cylinder.

Now, if a plane cuts a cylinder, parallel to the side, the section
of the convex surface consists of two parallel straight lines ;
these parallels approach each other if the plane is passed farther
from the axis; and if it coincides with the side of the cylinder,
the parallels become one straight line. The last case corresponds
to that in which B = 0.

263. Corollary. It will now be seen that there is no essen-
tial difference between the series of forms given to the locus of
(43), by the discussion of § 225, and that given to the locus of
(43) in the form (45) by the discussion of §§ 227 -232. The
locus passes from the ellipse into the hyperbola, in the latter case
through the parabola, in the former case through the straight
line, which is a special form of the parabola.

264. The Hyperbola. 1If, in an equation of the form (66),
we assume any real values whatever for 4 and B, the locus is,
by § 189, an hyperbola, which we may suppose to be represented
by that which has 0”C for its transverse axis, in Fig. 67. By
gradually diminishing the values of 4* and B but in such a
manner that their ratio is'unchanged, we shall, by § 218, have a
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X-Hyperbola: — Crossing Straight Lines: — Y-Hyperbola.
succession of similar hyperbolas, which, by § 217, will all have

the same asymptotes. If A4* is reduced to zero, B* also becomes
zero ; and (66) gives, if we multiply by B%

Bi
e —y=B=0,

which is equnivalent to a combination of the two equations,

_x,

.’/=A
B
y=—zxa

But these are, by § 116, the equations of two straight lines which
pass through the origin at angles with the axis of x of which

the tangents are gand — g But
14 B
mx =z,
2 B

so that the above straight lines coincide with the asymptotes of
the previous series of hyperbolas.
Next, if A* is made less than zero, that is, negative, B? also
becomes negative ; and, if .
A® = — 42, B*=—PB,
(66) becomes
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which is, by § 190, the equation of an hyperbola described on
the axis of y as a transverse axis, and having the same asymp-
totes as the previous series of hyperbolas.

Hence, two straight lines which cross each other may be
regarded in combination as an hyperbola, with its axes
equal to zero, similar to either of the sets of hyperbolas
of ‘which they are the asymptotes, and intermediate be-
tween them.

265. Corollary. If the two straight lines of Fig. 67 are re-
garded as belonging to the set of hyperbolas of which the trans-
verse axes are on the axis of z, its two branches will be Z/AE
and E/'AE,. On the other hand, if it is regarded as belonging
to the set of which the transverse axes are on the axis of g, its
branches will be £ZAZ, and E'AE/.

266. Scholium. If a succession of planes, parallel to that of
C'"C;, be passed through a cone, the sections will, by § 243, be
hyperbolas similar to that of C’C;. The axes of these hyper-
bolas will be smaller, according as they are nearer to the vertex

~ of the cone, and the plane which passes through the vertex gives
for its section the combination of two crossing straight lines. .

267.- Scholium. The section made by a plane, parallel to the
former planes, and beyond the vertex, will be an hyperbola
similar to the previous hyperbolas, and having its transverse axis
parallel to C"C;. The hyperbolic section of the cone, therefore,
does not pass, through the form in which it is the combination of
two straight lines, into a series of hyperbolas conjugate to the
‘previous series. This change does, however, take place in the
hyperbolic section ef the hyperboloid of one nappe, a remarkable
surface which has a curious relation to the cone, and of which,
indeed, the cone may be regarded as a special case.
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Degree of an Equation unchanged by Transformation.

CHAPTER IX.
ORDERS OF LOCL .

268, Theorem. The degree of the equation of a lo-
cus, expressed in terms of rectilinear cotGrdinates, is not
changed by the transformation of the equation to any
new system of rectilinear codrdinates.

Proof. Tt will be enough to show that the degree of the equa-
tion is unchanged, first, if the locus be referréd to a new recti-
linear system in which the origin is the same as in the original
system, while the axes are altered, and, secondly, if the new axes
have the same directions as those of the original system, while
‘the origin is otherwise placed. For if the equation of a locus
be transformed, first to a system in which the directions of the
axes are alone changed, and then to a third system in which the
axes have the same directions as in the second system, the result
must be the same as if the equation had been transformed imme-
diately from the first system to the third, which may be any rec-
tilinear system whatever ; so that if the first two transformations
do not affect its degree, their combination cannot affect it.

The proof will refer only to (22) and (28), since these are
the general equations, which apply whether the coordmates are
rectangular or oblique. .

a. If the origins are the same,

=0, Y¥P=0;
8o that the values of « and y given in (22) and (23) become, in
respect to the variable coordinates «; and g,, homogeneous poly-
nomials of the first degree; and, therefore, the expression for
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any power, as the nth, of z or g, is (Alg. art. 34) homogeneous
of the nth degree. Then, in transforming to the new system, we
shall substitute for each term of the equation a homogeneous ex-
pression of the same degree. Moreover, it is impossible that all
the terms of any given degree in the new equation should cancel
each other, so as to leave no terms of that degree ; for the aggre-
gate of these terms is equal to the aggregate of the terms of the
same degree in the original equation ; and, if the latter aggregate.
is not equal to zero, the former aggregate cannot be equal to
zero.
b. If the directions of the axes are the same,

o N_Y,

. Lz x x?
go that (22) and (23) become (Tr. § 55) -

=242 y=n+y"
If, then, the expression for any power, as the nth, of = or y be
developed according to the binomial theorem, the first term will
be z." or 3", and the remaining terms will be all of a lower de-
gree than the nth, with reference to z, and g,. Suppose, now,
that the given equation is of the nth degree, and represent the
term which involves 2* by 4 2”. The value of this term, in the
new system, is
Axr=Ax"+na® 4" &e.

Now, A ;" cannot be cancelled by any other term in the equa-
tion ; for, since no other term in the original equation involves 8o
high a power of z as the nth, no other can give so high a power
of x; as the nth. In like manner, the term which involves g will
give a term involving y", and the only such term; the term
which involves z*—'y will give a term involving x,"~'y,, and the
only sueh term ; and so with &ll the terms of the nth, or highest,
degree. But the degree of an equation is the same as that of
the term which, with reference to the variables, has the highest
degree (Alg. art. 106) ; so that, in this case, the new equation is
of the same degree as the old.
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Orders. Linear and Quadratic. General Equation:

269. Scholium. The proof of § 268. b does not apply to terms
of a lower degree than the nth. The term which involves z"—!
gives a term involving x;" !, and the term which involves x" also
gives a term involving z,°~!; and these terms may cancel each
other.

270. Scholium. The degree of an equation, being in-
dependent of the particular system of rectilinear coprdi-
nates to which its locus is referred, is naturally taken, in
Analytic Geometry, as a basis of classification. A locus
is said to be transcendental, if its equation is transcen-
dental (Alg. art. 107). All other loci are called algebraic,
and are divided into orders, according to the degree of
their equations.

- Thus, the straight line is a locus of the first order, because
(81) is of the first degree ; the circle, the ellipse, the hyperbo-
la, and the parabola are loci of the second order, because (38),
(48), (66), and (86) are of the second degree ; while the curves
of §87, Ex. 30 and 31, are transcendental loci, because their
equations involve trigonometric and logarithmic functions.

271. Definitions. Equations of the first degree and
their loci are sometimes called Linear; those of the
second degree, Quadratic.

272. Definition. The General Equation of any degree
is one in which all the terms that can enter into an equa-
tion of that degree are represented, and the constants are
denoted by letters, which can-have any positive or neg-
ative values, including zero. .

Thus,

APt A1z =1y A137 =3 L Koo - A=V g gp =1 | A g
B Bty & eu s n .. Boou gt
Y
4+ M—0
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General Discussion.

is the general equation of the nth degree; and, by giving the
proper values to A4, 4', B, &c., it may be made identical with’
any given equation of the nth degree.

273. Scholium. Every equation which involves two
variables may be constructed, as in § 86, by a curve. The
general equation of the nth degree may be regarded as
the equation of the general locus of the nth order, which
will take different actual forms according to the particular
values given to the constants. From the discussion of
the general equation of any degree we may determine
the character of its locus, the special forms which it may
assume, and their relations to each other. As a prelimi-
nary to this investigation, it is best to reduce the.equa-
tion to its simplest form by transforming it to a new
system of codrdinates so ‘taken as to diminish as far as
possible the number of the terms. This chapter will
contain a general investigation of the loci of the first
and second orders, supposed to be referred to rectangular
coordinates.

I -
LOCUS OF THE FIRST ORDER.

274, The general form of the equation of the first
degree is ‘

Az+4+ By -+ M=0. (96.)

275, Problem. To reduce the general rectangular

equation of the first degree to its simplest form, and to

determine its locus.
16
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Determination of Locus of the First Order.

Solution. If (96) is referred to a new rectangular system by
the substitution for 2 and g of their values given by (15) and
(16), it becomes

A(x" -+, cos :‘—y,sin:‘)-i-B(y" + sini‘—l—g}wosi‘)
7 (A cos ™ - Bsin zl) x,-l—(Bcos:‘-—Asin:‘ W
F A2+ By 4+ M=, e

Let the new origin be so taken that the ¢onstant terms shali can-
cel each other ; that is, that .

A2*+ By + M=0. (98.)
This is always possible ; for between two undetermined and un-
limited'quantities we can, in general, by the principles of Alg.
arts. 143 — 145, assume arbitrarily two equations ; and, since
(98) is of the first degree, real values of z° and y° can be found
to satisfy it.
Let the directions of the new axes be so taken as to make the
coefficient of a, vanish; that is, let

A cos’t + Bsin 7t =0; (99.)
which gives
tan? = — 2 (100.)

which is always possible, since a tangent may have any real
value.
(97) becomes, by the substitution of (98) and (99),

(Beos:‘ — Asin Z‘) g1 =0. (101)

If a product is equal to zero, one of its factors must be equal to
zero. But, since the coefficient 2; in (97) is equal to_zero, that
of y, cannot be equal to zero; for, in this case, the transforma-
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Direction of Line. * Intersections with Axes.

tion of coordinates would cause all the terms which are of the
first degree with reference to the variables to disappear ; which
is, by § 268, impossible. Hence (101) gives

9=0; . (102.)
which is the equation of the axis of x;. A

The locus of (96) is, therefore, a straight line, drawn
through any point.of which the codrdinates, 2° and »°,
satisfy (98), and at an angle with the axis of z of which
the tangent is given by (100).

276. Corollary. 1t is evident from the very form of (98)
that the new origin must be a point in the locus of (96); for,
since (98) is of the same form as (96), any values of x°, and g°
which satisfy (98) must be values of x and y which will satisfy
(96), and must, therefore, be coordinates of a point in the locus
of (96). )

277. Corollary. If A and B have the same sign, the angle
which the line makes with the axis of « is, by (100) and Tr.
§§ 62, 67, between 4 = and =, or between 3 & and 2 n.

If A4 and B have opposite signs, this angle is, by Tr. § 66, be-
tween 0 and # =, or between x and § =.

If A — 0, the line is, by Tr. §§ 55, 56, parallel to the axis
of z. i
. If B = 0, the line is, by Tr. §§ 55, 57, perpendicular to the

axis of z. 4

278. Corollary. H

(98) gives
: x® = ——g; . (108.)

which is the abscissa of the point at which the line cuts the axis
of x. ‘
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Position of the Line, as depending on the Signs of the Constants.

If, then, A and M have the same sign, this point is on the left
of the origin; if they have opposite signs, it is on the right of
the origin.

A= 40, 2°=.4 co; and this is, by § 277, the case in
which the line is parallel to the axis of x. '

If M = 0, the line passes through the.origin.

279. Corollary. If

(98) gives
M
o . R
Yy =— F H (104.)
which is the ordinate of the point at which the line cuts the axis
of y; and this expression admits of a discussion like that of
§ 278. ‘

280. Corollary. If A, B, and M have the same sign, the
general position of the line will be represented by that of KH'
(Fig. 46).

If A and B have the same sign, which is opposite to that of
M, the general position of the line is represented by that of K'H
(Fig. 46). .

If A and M have the same sign, which is opposite to that of
B, the general position of the line is represented by that of KH
(Fig. 46). :

If B and M have the same sign, which is opposite to that of
A, the general position of the line is represented by that of K'H'
(Fig. 46).

281. Corollary. By transposition and division, (96) becomes

A M
y=—B"" B’
which is, by (100) and (104), identical with (81).

282. Problem. To construct an equation of the first

degree.
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Construction of Equation. Angle of Lines.

Solution 1st, Reduce the equation to the form (96). Denote
the coefficient of = by 4, that of y by B, and the sum of the con-
stant terms by M. Assume, at pleasure, any convenient value of
z° or of y°, and find, by (98), the corresponding value of 3° or of
z°. Lay down the point 2° y°, and draw through it, by § 14,
Solution 2d, a straight line, so that the tangent of its angle with

the axis of x shall be — g It will, by § 275, be the required

locus.

Solution 2d. Find, by (108) and (104), the points at which
the straight line cuts the axes, and draw a straight line through
them. .

283. Corollary. Since the direction and whole posi-
tion of a straight line are determined by the values of the
arbitrary constants in (96), the line is given, if those con-
stants are known. Practically, however, it is necessary
to find only the ratios of any one of the constants to the
other two, or the reciprocals of those ratios. If the equa-
tion be divided by B, the coefficient of y in the reduced
equation is the known quantity, 1, and the only undeter-
mined constants are the ratios, A: Band M: B. So, if
the equation is divided by either of the other constants.

284. Problem. To find the angle of two straight lines
in a plane,. '
Solution. Let the equations of the lines be
A x4+ B y4+ M =0, (105.)
A"z 4 B'y + M'= 0; (106.)
and let o' and &'’ denote the directions of the lines. Then (§ 20.
g; Tr. § 52)

'z 4 U

m o«
z/"=:/+x =‘; ’_‘:;’ (107'X
16*
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Conditions of Parallelism and of Perpendicularity.

N ‘ tan ¢’ — tan ¢
o x z

tan o = 1 + tan P tan o (108.)
x x

But (100) gives
al AI all AII
tan x B’ tan r = F’;

. the substitution of which values in (108) gives
o A'B! — AR
o T A4 F BB

285. Corollary. If the lines are parallel, then (Tr. § 55)

tan (109.)

-0
tana7=0;
[/ 3

so that either the numerator of (109) is zero, or the denominator
infinite. But the denominator, being the sum of two products of
finite quantities, cannot be infinite. Hence

A'B' — A"B =0, (110.)

or
. A A"

either of which equations expresses the condition of the parallel-
ism of two lines.

286. Corollary. If the lines are perpendicular, then (Tr.
§ 55)

all
o = u
'
tan :, = w;

go that, since the numerator of (109) cannot be infinite, its de-
nominator must be zero ; that is,
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A'4" 4 BB = 0; J(u2)
which expresses that two lines are perpendicular to each other.
987. Problem. To find the cobrdinates of the point of
intersection of two straight lines in a plane.
Solution. Let 2" and y' be the covrdinates of the point of in-
tersection. Since this point is in both loci, its cosrdinates must

satisfy the equation of each locus; so that, if the equations are
represented by (105) and (106), we shall have
A 4By 4+ M=0,
A"+ B'y + M' =0,
These two equations are enough to determine the values of the

quantities =’ and g in terms of the arhitrary constants. The
values so determined are '

BM' — B'M
Y= AF T B’ (113,
\ _ AUM — A M

=25 =25 (114)

288. Corollary. Since (113) and (114) give only one set.of

values for ' and g/, two straight lines can cross each other in

only one point. Thus, this simple property of the straight line

appears, in Analytic Geometry, as a consequence of the fact that
its equation is of the first degree.

289. Corollary. If the lines are parallel, the substitution of
(110) in (113) and (114) gives
x’ = j: a0, y’ = :!: @ 3
so that two parallel lines may be conceived, as we have already

conceived them, as meeting at an infinite distance from any part
at which we choose to consider them.

290. Corollary. The last corollary is, however, modified, if;
the lines are both parallel to either of the codrdinate axes; for
then, by § 277,
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Equation of Line passing through Given Point; Two Giyen Points.

A= 4" = 0,

or .
B =DB'= 0.

The student should examine this case.

291. Problem. To find the equation of a straight line
which- passes through a given point.

Solution. Let the required equation be represented by an
equation of the form (96), in which 4, B, and M are unknown ;
let « denote the direction of the line, and let the cosrdinates of
the given point be z’ and y. Since 2/, & i8 a point of the re-
quired line, its codrdinates must satisfy the equation of the line;
so that .o

Az 4+ By + M=0. (115.)

Subtracting (115) from (96), we have
Ad@z—2)+Bly—y)=0,
A
which may also be written

y—y = (z—)tan . To117)

Since — %, or tan :, is undetermined, there is an infinite
number of lines which satisfy the condition.

292. Problem. To find the equation of a straight line
which passes through two given points.

Solution. Let (96) represent the equation of the line; and
let the given points be o, y’and z, . The coordinates of each
of thése points will satisfy the equation of the line, and will give
(115) and

Ax"+ By'4- M= 0, .
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Line passing throngh Given Point and inclined to Given Line.

Subtracting this equation from (115), we have
A@—z)+ By —y) =0,

A — !
“‘“:‘_‘—Tg=§;_§'; (118.)

and (116) becomes by substitution
=y =4=Le—; )
. g ’ '
which determines the line, since all the constants are known
quantities.

293. Corollary. If 2/ and y are both greater or both less than
z' and y" respectively, tan“x is positive, and: is between 0 and
% m, or between x and § . If 2’ < «" while y >y, or if
' > 2", while y < ¢, tan 7 is negative, and \_ is between # % _
and =, or between § » and 2 .

Ity — g,

«_y—y_ «_ o,
tan =i =% 5 =0;

8o that the line is'parallel to the axis of z.
Ifz = a2,

—yl «
‘a“;=§‘__—§f=°°’ 2= 373

so that the line is perpendicular to the axis of . .

The geometric interpretation of these results must be carefully
attended to.

204. Problem. To find the equation of a straight
line which passes through a given point and makes a
given angle with a given straight line.

Solution. Let the given point be «/, ' ; and let the direction
of the given straight line be o’.

7
e o a,
a:_a:+a”

4
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Construction of Linear Equations.

and (117) becomes, by substitution,
/
g —y = (z— ') tan (; 4+ z,). (120,
295. Corollary. 1If the required line is to be parallel to the
given line
-
and (120) becomes
y—y = (z—=) tan :l. (121.)

296. Corollary. If the required line is to be perpendicular to
the given line, then (Tr. § 63)

e
y—y = (z—) cot %, (122)

297. EXAMPLES.

1. Find the loci of the equations,
—4y4-11=0,
22z43y—7=20;
find their inclination to each other, and their point of intersection.

Solution. We have
A'=0, - =—14, M = 11;
A" =2, B'=3, M= —1.
The ordinate of the point at which the first line crosses the
axis of y is, by (104), 1

— =23,

and, by § 277, the line is parallel to the axis of . Therefore,
to construct the first equation, we may take on the axis of y
(Fig. 68)
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Examples.
AR = 23,
and draw through it a straight line parallel to the axis of g. .

The ordinate of the point at which the secongd line cuts the
axis of y is, by (104),

— -
and the abscissa of the point at which it cuts the axis of z is, by
(103),
——=T_ 3
2
Take
AR" = 2%, AP' = 3};
and the straight line drawn through P’ and R" is the locus of
the second equation.
The substitution of the above values of the constants in (109)
gives 8
all
gy =—p——*%
log & = 9.82391 = log tan 146° 18’ 35",
o' _ 146° 187 85
o

the obtuse angle being selected because tan ot is negative.

al
(113) and (114) give for the point of intersection
28 —.83
x” E 8 o — .g.,
22
=22 =23
y=2_9

2. Construct the following equations, and find the inclination
and the points of intersection of their loci : —

S5z+42y=0.
Ans. ::’=93 21/ 59/ x/__‘j;. y,=_10
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Examples.

8. Construct the following equations, and find the mchnauon
and the points of intersection of their loci : —
8z—4y+46=0,
3z4+2y—8=0.

Ans. ::'= 86°49/187; 2/ = 0; g = 13

4. Find the equation of a straight line which passes through
the point of which the cobrdinates are =’ = 5, y' = 2, and
makes the angle } = with the locus of the equation

2z+43y—18 =0.

Solution. By (100),

tan : = — &
By Tr. §§ 52, 59
ta.n = tan * T == 1

ta +tan _
i;’m( + )_I:ta.n“'ta.n i—}—g 5

which, substituted in (120), gives for the required equation
y—2 =14 @—5),
or x—205 Yy + 5=0.
5. Find the equation of a straight line which passes through
the point of which the coordinates arez’ =1—a/8,y =1
-+ 4/ 8, and makes the angle § & with the straight line of which

the equation is
22—2y+5=0.

Ans. 1+ a/38)x—(1—a/8)y=0.
6. Find the equation of a straight line which passes throagh
the points of which the cotrdinates are, respectively, =’ — 4,

y=1landzx'=3,y'=—4
Adns. 5z 4+ y—21 =0.
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Reduction of Quadratic Equation.

IL
LOCUS OF THE SECOND ORDER.

298. The general equation of the second degree is

Az +Bzy+ Cy*+Dz+Ey+M—=0. (123)

299. Problem. 'To reduce the general equation of the
first degree to its simplest form.

Solution. Instead of transforming (123) directly to that sys-
tem of coordinates for which it has the simplest form, it is best,
for reasons which will presently appear, to transform it first to a
system in which the axes have the desired directions, while the
origin is unchanged, and afterwards, without changing the direc-
tions of the axes, to a system in which the origin has the desired
place ; and the result of these two transformations must obviously
be the same as if we transformed immediately to the last system.

a. If the origin is unchanged, the equations of transformation
are (17) and (18), which, substituted in (123), give

2 oog? ¥t — 9 L XX A
— 1n s
A x,,cos’x zysin_Fcos “+ z

2%y

PP S | s2Zi) e Zr o T
+ B x‘smzcosx—l—x,y,[cosm—smx] H'sin_"cos

+ 0 x,’sin’z‘-|-2x,y1 sin:‘eos':'—l—yl’cos’:‘
A .

+D x; o8 —-ylsmx)

+E x,sin:‘-l—yl:cosz‘)

+M
17 -
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Reduction of Quadratic Equation.

- (A cos* ™ 4 B sin %t cos ¥ - O'sin? :c;) 22
+(pro—A1nZ oo+ Bloot Tt Z])
(45— B T e T - Ot T 2

+(Dcos:‘ + Esin :‘)2:,

+(Ecos:_‘—1) sin:‘) "

+H4=0. (124.)

Let :‘ be taken of such a value that the coefficient of x; y; shall

vanish, and denote the coefficients of x?% ¥, x,, and g, by 4,,
B,, D,, and E, ; so that

4, = A cos* 7!+ Bsin 7' cos 7' Osin® 7, (125.)
B, = A sin*}' — Bsin 7! cos '+ Ocos'’?, (126.)
D, =D cos™t 4 Esin 71, (127.)
E— —Dsin® 4 Heos ™, ‘ - (128)

2 (0'— 4) sin ™ cos 7 - B(cos* P _ gint :l) —0; (129)
and (124) becomes
-Al xxa + .Blylg + Dl X + -El N + M= 0. (130.)

5. The origin may now be changed by (19), in which, how-
ever, the old codrdinates, there denoted by a and y, must be de-
noted by x, and g, and the new codrdinates, there denoted by x,
and y;, must be represented by x; and g,. (130) then be-
comes, by substitution,
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Previous Reduction always Possible.

4 @+ 22° n+2)+ B @+ 29° %+ 9
+ D (@t 2°) + B (n+9') + M
=A1%2+Bx.'/ag+(2-‘413’|°+-p1) xs+(2Bx.'/|°+1’71) Y
+ 4,2+ B y°' + Dy x° + B y° + M= 0. (181.)

If the coirdinates of the new origin be taken so as to satisfy the
.equations

24,2°+D, =0, . (182.)
2By’ +E =0, (133.)
and if M, denote the sum of the constant terms, so that
M, = 4, 9310, 4+ B yx°2 + D2+ Ey° 4 M, (134)
(131) becomes
Adix'+By'+M=0; (185.)
which is the simplest form of the equation of the second degree.

300, Theorem. The reduction of § 299 is always pos-
sible.

Proof. Tt is to be shown that any given equation of the second
degree can be transformed to a new system such that :_‘ shall

satisfy (129), and then to a third system in which x,° and g,° are
determined by (132) and (183), and that none of the coefficients

of the equation, thus transformed, become i 1magma.ry
By Tr. § 49,

2smx‘cos ‘_sm2( ) ’x‘ sm’z‘—oos2(x’)
which, substituted in (129), gwe
(0 — A) sin 2 @) +Beos 2 (:1) —o,
)

the value of which is necessarily real ; and, since tangents may

B__.
— (136.)
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A Different Reduction sometimes Preferable.

have any real values, it is always possible to take 2 (‘;‘) 50 as to
satisfy (136), that is, to take " s0 as to satisfy (129). Again,.
since, as has just been shown, sin ;‘ and cos :‘ have real values,

the values of 4,, B,, D,, and E,, given by (125) — (128), must
be real ; and the first transformation is always possible.
Formule (132) and (133) give '

D,

X = — 2—2; N (137-)
o E .
Hh =— 2B’ (138.)

so that these quantities are necessarily real; and, if they are -
substituted in (134), they give a real value for #;,. Hence the

second transformation is always possible ; and every equation of

the second degree can be reduced to the form (135).

301. Corollary. If A, = 0, (137) gives
z° =+ ®,
exc.ept in the special case in which D, = 0. This intro-
duces two infinite terms into the value of M given by (134).
Hence, if 4, = 0, while D, is not zero, it will be best to trans-
form the equation to a system of cotrdinates different from
that of (135). None of the coefficients of (130) can be infinite ;

for, since the values of cos 2‘ and sin 2‘ must be less than 1,

none of the terms of the second members of (125) — (128) can
be infinite. There is, therefore, no difficulty with the transfor-
mation of § 299. a; and (130) becomes

B, y' 4 D, +Ey+M=0. )
The condition (133) may be retained ; But, instead of (182),
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Determination of Forms of Quadratic Locus.

we may take z,° 50 as to make the constant terms in (131) can-
cel each other, that is, so as to satisfy

B y1°’ + Dy x® + Ey+M=0; (189.)
whlch is possible, since it gives for x,° the real and finite value
o — B y° — M
z° = 97 D L 90 (140.)
(131) is thus reduced to the form,
By'+ Doay=0. (141.)

802. Corollary. If B, = 0, while Z, is not zero, x,° may be
taken to satisfy (132), and g,° to make the sum of the constant
terms in (181) equal to zero; in which case, (131) is reduced to
the form,

A 2+ E, 4, =0. (142.)

803. COorollary. A, and B, cannot both equal zero; for, by
§ 268, the transformation cannot cause all the terms of the second
degree to vanish.

304. Problem. 'To determine the forms of the locus of
the second order.

Solution. Either A4, and B, represent quantities which have
the same sign, or they represent quantities which have opposite
signs, or one of them is equal to zero. These three cases may
be treated separately.

(1.) If A, and B, have the same sign, let

4=v(x3) B-v(+F) sy

in which that sign is to be taken which will make the quantities
under the radical sign positive, that is, which will make A4,
and B, real; and this sign must be the same in both cases.
Equations (143) give
4, 1 B _ 1,
T4y m T B
17*

(144)
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The Elliptic Form.

so that, dividing (135) by M;, and substituting the above values,
we have, .

2 2
:tj’?:!: %}+1=o. (145.)

a. If M, has the sign opposite to that of A, and B,,the lower
sign must be used in (143) ~ (145); and (145) becomes, by
‘transposition,

x5t .1/2’ 1.

Lt
the locus of which is, by §§ 153, 164, necessarily an ellipse
which has its centre at the origin, and its semi-axes equal
to A; and B,, and laid off respectively on the axes of 2,
and Y.

b. If M, = 0, equations (143) give
4, = 0, B,=0; .

so that, in this case, the ellipse is by § 266 reduced to a
single point, namely, the origin.

c. If M, kas the same sign as A, and B, , the upper sign must
be used in (143) — (145) ; and the first member of (145) is the
sum of three positive quantities, and cannot be equal to zero, un-
less either ;' or g’ is negative, that is, except for points for
which either x; or g, is imaginary.

In this case, therefore, the locus of (123) is imaginary;
in other words, it has no locus.

(2.) If A, and B, have opposite signs, let

4-v(+3) B-v(zF) e

in each of which equations that sign is to be taken which will
make the quantity under the radical sign positive ; so that, ob-
viously, the sign must be plus in one case and minus in the other.
Equations (146) give

4, _ . 1 B _ 1.

i ;R?’ 3




§304] QUADRATIC LOCUS, 199

The Hyperbolic Form.

so that, dividing (135) by M, and substituting these values, we
have

+ A,," :F&,—l—l.—o (148.)
a. If M, has the same sign as B, , the lower sign must be used
in (146) — (148); and (148) becomes, by transposition,

x,’

.A,”
the locus of which is, by § 189, an hyperbola which has
its centre at the origin, its semi-transverse axis equal to
A, and laid off on the axis of z;, and its semi-conjugate
axis equal to B, and laid off on the axis of g,.

b. If M, = 0, equations (146) give
-A2 = D’ -Bﬂ = 0;
so that, in this case, the hyperbola is, by § 264, reduced
to the combination of two straight lines which cross eack

other at the origin and at angles with the axis of z, of
which the tangents are

B[+ B+ (s () o

which is real, since A, and B, have opposite signs.

yﬂ_l

c. If M, has the same sign as A, , the upper sign must be used
in (146) — (148) ; and (148) becomes, by transposition,
2 2
o B g,
BTl
the locus of which is, by § 190, necessarily an Ahyperbola
which has its centre at the origin, its semi-transverse axis
equal to B, and laid off on the axis of ¥ , and its semi-

conjugate axis equal to A, and laid off on the axis of z,.
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The Parabolic Form.

(8.) w. If A, = 0, while D, is not zero, let
D,
4p=—t; 150.
r=—xp (150.)

and (141) becomes, by division, substitution, and transposmon,
¥ =4pz;

the locus of which is, by § 209, necessarily a parabola

which has its vertex at the origin and its focus in the

axis of z; at the distance p from the origin; and, by

§ 201, the locus curves to the left or to the right, accord-

ing as D, and B, have the same sign or opposite signs.

In like manner, if B, = 0, while E, i3 not zero, by taking

E,
4p = — A—:-, (151.)
we reduce (142) to the form .
x=4py.

b If A, =0, and D, = 0, z,° becomes indeterminate in
(137) ; and (185) gives

By’ + M =0;
Y2 = ﬂ:‘\/(—%),

the locus of which is, in general, the combination of {wo
straight lines, parallel to the axis of z., and at distances
from it equal to & 4/ ._%[_‘ . If M, is of the same
1

sign as B,, these lines are imaginary; if M, = 0, they
coincide with the axis ,, and the given equation of the
second degree is only the square of an equation of the
first degree, which is the equation of the straight line in
question ; if M, differs in sign from B,, the parallels are
real and separate.
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Confirmation of Previous Results.

If B, = 0, and E, = 0, the locus is the combination of two
straight lines, parallel to the axis of y,.

805. Corollary. The results of the last section may be ex-
hibited in a tabular form. Since 4, and B, cannot both equal
zero, we may suppose B, > 0; for if it is negative, i. e. less than
zero, it can be made positive by changing all the signs of the
equation

B> 0.
M; > 0, No Locus;
4,>0; = 0, Point;
{M < 0, Ellipse.
D, > 0, Negative Parabola ;
4, =0 {D, == 0, Two Parallels;
D, < 0, Positive Parabola.
M, > 0, X-Hyperbola ;*
A4, << 0; {.M, = 0, Two Crossing Straight Lines;
M, < 0, Y-Hyperbola.

306. Corollary. It is evident that the analysis which
has been given of the quadratic locus completely ex-
hausts all its possible forms ; for since every equation of
the second degree can be reduced to one of the forms
(135), (141), (142), every such equation can be brought
under one of the heads of the above table, and will
therefore be constructed by either an ellipse, a parabola,
or an hyperbola, or one of their modifications. The gen-
eral equation of the second degree may, therefore, be re-
garded as expressing that general law of form (§ 222)
which is differently manifested in- these several curves.:
Moreover, the results of the preceding sections confeym
to and sustain, not only the identity of the law of the

* That is, the hyperbola which has its transverse axis on the axis of z.
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Computation of Constants.

ellipsg, the parabola; and the hyperbola, but that mutual
relation of their special forms which has already been
established between them, both by means of the equa-
tions drawn from these definitions, and also by taking
them as the sections of a cone. For the lines of the
second order, when classified, as above, according to the
algebraic conditions which affect their coefficients in the
equation, arrange themselves in a series, in which the
parabola appears as an intermediate form between the
ellipse and the hyperbola, and as belonging to the class
of ellipses, if A, is considered as being equal to + 0, or
infinitesimally larger than zero, or to the class of hyper-
bolas, if A, = — 0, or is infinitesimally smaller than
zero. -

307. Corollary. In the table of § 305, the special
forms of the conic sections arise as in Chapter VIIL
The point occurs as the limit of real ellipses ; the com-
bination of two parallels, as intermediate between pa-
rabolas which curve in the positive direction from the
vertex and those which curve in the negative direction
from the vertex; and the combination of two straight lines
which cross each other, as intermediate between hyperbo-
las which have their transverse axes on the axis of z and
those which have their transverse axes on the axis of #.

308. Problem. 'To find the positions of the origin and
the axes of (135), and to compute the values of the con-
stants in that equation.

Solution. We may find 7' = 7% by (136), and, by substitut-
ing its value in (125) - (128), find 4,, B,, D,, and E,, then
get x,° and y,° by (187), (138), and M, by (134). It is possible,
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Computation of Constants.

however, by simplifying some of the above equations, to shorten
this process somewhat.

a. To find A,. Adopt the notation

L=24cos '+ Bsin 7, (152.)
I/ =2 Csin ;' 4 Beos 7. (153.)

The double of (125) is
X, P 2 X, o X Z, o X
(2Acosx‘—|—Bsmx‘)cosx‘+(2 Gsmw‘—|-Bcosx')smx‘
=24, = Lcos ;} 4 L' sin ;. (154.)

" Also (129) may be written in the form
P X x, X P o
(2 C'sin x‘-{-Bcosx‘)cosx‘— (2A cos x‘—]—Bsmx‘) sin !
=0 =1Llcos ;' — Lsin 3'. (155.)

. If (154) be multiplied by cos 7 and (155) by sin >, and the sec-

ond product subtracted from the first, the remainder is (Tr.
§ 13)

x, 9 Ty e o) a2 X1 Xy P a1
= sm —
24, cos’ L (cos > -+ +L (smx cos !—sin - oosx)

xr
X o X .
=L=2Acos '+ Bsin |; (156.)
which gives
2 (4, — 4) cos 7' — Bsin 7 — 0. (157.)

So, the product of (154) by sin :‘ added to that of (155) by
cos 7! gives (Tr. § 13)

2 4, 6in %=1/ =2 Osin ;' Beos 3!,  (158.)
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Computation of Constants.

or
2 (4,— 0) sin ;' — B cos 7' = 0. (159.)

From (157) and (159), sin :‘ may be eliminated, by multiplying
(157) by 2 (4, — 0), its coefficient in (159), and (159) by B,
the negative of its coeflicient in (157), and adding the products
together. The sum, divided by cos :‘ ,i8

4 (4, — A) (4, — 0) — B* = 0. (160.)
If we put X in this equation instead of 4,, we have

4(X—4)(X—0)—B'=0; ., (16l1.)
the roots of which are

X=3A+0)£3V[B+A—-0)]; (162)

80 that 4, is equal to either of these values of X.

b. To find B,. If, in the second member of (125), 4 is
changed to C, O to 4, and B to — B, that expression becomes
identical with the second member of (126), and gives the value
of B,, instead of 4,. If the same changes be made in (152)
and (153), and L and L’ changed to Z, and Z/,

L, =2 Ccos i' — Bsinyt, (168.)
L/ =2 Asin ' — B cos 33 (164.)

so that, instead of (154), we have
2 B, = Lycos ;' + L/ sin 7. (165.)
Again, if the same changes be made in (129), they only reverse

the sign of the first member, which, being equal to zero, is not
thereby affected ; so that, instead of (155), we have

0 = L cos ' — L, sin ;. (166.)

-
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Computation of Constants.

(165) and (166) are of the same form as (154) and (155). If,
therefore, similar operations are performed on the two sets of
equations, they will lead to similar results; for the form of an
algebraic result depends only on the forms of the expressions
from which it springs, and not on the particular meanings which
may be attached to the letters. Hence, instead of going through
the process of art. @, we have only to make the above changes
in (160), which gives .
4(B,—0)(B,—4)— B*=0. (167.)

If X is put in this equation instead of B,, it becomes identical
with (161) ; so that B, is equal to either of the values of X given
by (162).

Further, 4, and B, are not the same value of X, but its two
values. For the sum of the two values of X is 4 —|— C; and
the sum of (125) and (126) is (Tr. § 13)

4, + B, = A(cos’x'+s ’x‘)—}—C’(sm" ‘-}—co’x‘)
=A4A40C.

The sum of 4, and B, is, therefore, equal to that of the two
values of X, and each of these quantities is equal to one of the
values of X; so that it must be that Al and B, are the two roots
* of (161).

e. To find :‘. (157) gives, by transposition and division,
z _ 24 —4)
z = B :
This value may be constructed by § 14, Solution 2, and will give
the positions of the axes of x, and y,.
d. To find D, and E,. By Tr. §§ 10, 11, 14,
x, 1 1
= = ’ 169.
T seed W (14tatd) (169.)
18

tan (168.)

Co8
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Computation of Constants.

. @ @, @
sin ! = cos _ ' tan . (170.)

The values of cos :‘ and sin z‘ may be computed by these for-

muls and substituted in (127) and (128).

e. To find x,° and y,°. Substitute the values of 4,, B, D,,
and %, in (137) and (188). The new origin may then be found,
and the axes of x; and y; drawn through it parallel to those of
x, and y,.

f. To find M,. (137) and (138) give

it = 2 o m
4, % =IDIZ:, B g = E};;
and (134) becomes :
4Al+l iﬁf—ig}:*‘”
=_%_%+M ' (171

309. Problem. 'To find the position of the origin and
the axes of (141), and to compute the values of the con-
stants.

Solution. The eonstanfs ', 4,, By, D,, E,, and g,° may “be
found as in § 808 ; and x,° may be found by (140).

810. Corollary. The positions of the origin and axes, and
the values of the constants, may be found for (142) in like
manner.
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Case of the Parabola.

811. Corollary. For the case in which 4, = 0, while D, is
not zero, (171) becomes

in which, since D)? is necessarily positive, the sign of M is op-
posite to that of A4,.

If the zero value of A4, is supposed to be of the same sign as
B,, the case comes under § 304. (1.) a ; and (143) gives

M, ©
A} = A1 g — ® X ®=0o
2‘—— = e——— =
Bl = F :‘:-Bl @,

A2 : Bl = 0:1=1:0;
so that the locus is an ellipse of which the conjugate axis is in-
finitely long and the transverse axis infinitely longer ; and this
ellipse has been shown, in § 229, to be a parabola.
If the sign of 4, is supposed to be opposite to that of B,, the
case comes under § 304. (2.) @; and (146) gives

M, ©
2 ___l___= 2
A= — ==
M, ®
2——‘=-———-=
B=3~xB~>
2

so that the locus is an hyperbola of which the conjugate axis is

infinitely long and the transverse axis infinitely longer ; and this

_ hyperbola has been shown, in § 229, to be a parabola.

. 812. Corollary. If we free (161) from parentheses and divide
by the coefficient of X%, we have

X—(A44+0)X+43(440—B)=0;
in which } (4 A0 — B?) is (Alg. art. 275) the product of 4,
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Form determined by Constants.

and B,, the roots of the equation. Hence 4, and B, have the
same sign, or have opposite signs, or one of them is equal to
zero, according as the above product is positive, negative, or
equal to zero.

813. Corollary. The locus of (123)is

an ellipse, if 440 — B> 0;
a parabola, if4A0— B = 0;
. an hyperbola, if 44AC— B, < 0;

the special forms of these curves, as given in § 305, being in-
cluded.

814. Corollary. By (136) and (162), the values of " and of

A, and B, depend only on those of A4, B, and C. Also, for the
ellipse, by (143),

-2 (-2 o

and, for the hyperbola, by-(146),

43 ( M) ( » =‘_%_ (173.)

Hence, the cha.racter of the locus (whether an ellipse, a parabola,
or an hyperbola), its form, or amount of eccentricity, and the di-
rections of its principal diameters, are determined wholly by the
coefficients of those terms which are of the second degree; and
the other constants in the equation affect only the position of the
centre, and the scale on which the curve is drawn.

315. Problem. To construct a rectangular equation of
the second degree.

Solution. Find the values of A4,, B, :1, D,, and E, by

§ 308 ; and draw the axes of x; and ,. Unless 4, = 0, while
D, is not zero, or B, = 0, while E, is not zero, find z,°, ¥,°, and
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M, by § 808, lay down the axes of z; and y,, determine the form
of the locus by § 304, and draw it by previous methods.

In the excepted case of the parabola, find z,°, %,°, and p by
§§ 304, 309, 310, lay down the axes of x; and y;, and draw the
curve as in § 213, Ex. 1.

316. ExAMPLES.

1. Construct the equatxon of § 87, Ex. 1, by the methods of
this chapter.

Solution. The comparison of the given equation with (123)
gives
A=1 B=—6, (=<1, D=—6, E=2, M=05.

4A0— B =—32<0;
8o that, by § 313, the curve belongs to the hyperbolic class.

The substitution of the above values of 4, B, and O in (162)
gives -
r=3X2+3A/36=11+83=40r—2..

A, may be taken equal to either of these values, and B, to the
other. We will take

A, =4 B—=—2 X
(168), (169), (170), (127), (128), (137), (138), and (171) give
tanr:‘ = —_6—6 = —1;
3= guFn TV
= Fa3};

=TF6NM3EF243=TF84};
B =F6AM3t24=F 44/ };

we=—E =2 s
18°
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o 4
w=—I V= FV;
.D,!=32; .E|2=8;
’ 32 , 8
M=—2Z24=-+5=4
' 68T
The equation comes, therefore, under § 304. (2.) ¢, and is con-
structed by an hyperbola which has its foci in the axis of y,, and
of which the semi-transverse and semi-conjugate axes are respec-
tively 4
B=v—timwve sH=vi-1
Fig. 72 exhibits the required locus.

Scholyum. The value of tan :‘ gives the axis of z, on the line
X,'4 X,, the positive direction being taken either way (Tr. § 65).

This doubt corresponds to the ambiguity in the sign of cos :‘.

If that sign is taken positive, 4X, and AY, are (Tr. § 64) the
positive directions of the axes of « and y; but if that sign is neg-
ative, 4X" and AY/ are (Tr. § 62) the positive directions. In
the former case, x,° is positive and g,° negative; in the latter
case, the signs of these codrdinates are reversed; but, as the di-
rections of the axes are reversed at the same time, the position of
the origin is not thereby affected. Hence, the double sign be-
longing to the square root in (169) may be disregarded ; but it
will be found a good practical rule to take cos :‘ always positive.
If we should take .
. 4,=—2, B=4,
this would have no other effect on the above solution than to in-
terchange the axes of x; and g, together, and those of x; and g,
together, and to bring the equation under § 304. (2.) a; so that
neither the form nor the position of the locus would be changed.

2. Construct the equation of § 87, Ex. 2, by the methods of
this chapter.
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Ans. A=2; B—2; tm%_?;
z 0

. 3 33

(takmgz‘= 0)3'1°= =5 M= —=

3. Construct the equation of § 87, Ex. 8, by the methods of
this chapter.

Ans. 4, =2—a/2; B =2+ 4/2; tan} =14 4/2;

o 1—a/2 _ 3+2~/2 9

WE—VY " = T oo T TA/2) 7

4. Construet the equatlon of § 87, Ex. 4, by the methods of
this chapter.

1

.Am. Al=*; B‘=§-; tan:l=0;
2’ =0; $°=0; M—-—1.

5. Construct the equation of § 87, Ex. 5, by the methods of
this chapter.,

Ans. 4, =05 B =15; tan:‘=§;
z°=a/5; 3°=0; 4p=a/%.

6. Construct the equation of § 87, Ex. 6, by the methods of
this chapter.

Ans. A= —3} (144/18); Bi=—3(1—a/13);
S . —5-1-a/13

tan = — 4 B+ 18); & 24\/(65:]*:17#13)’

_—S—w13

T4/ (184 2413)° ‘_T

7. Construct the equation of § 87, Ex. 7, by the methods of
this chapter.

9’

Ans. A4, =%; B =—3; tan;‘=1;
2°=0; °=0; M=_16.
8. Construct the equation of § 87, Ex. 8, by the methods of
this chapter.
dns. A, =2; B =1; tani‘=oo;

'’ =b; y'=—a; M=0.
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9. Construct the equation of § 87, Ex. 9, by the methods of
this chapter.

Ans. 4, =3 (B4-WN5); Bi=3(3—a5); .

®_ _ . o _ 1 .
Mg ===V 5= ome—v’
o 1_‘\/5 —_—

= Vo tsvey A

10. Construct the equatxon of § 87, Ex. 10, by the methods of
this chapter.

Ans. A, =10; B, =0; ta_m:‘=2;
m=— iV =0 Mi——i¢

11. Construct the equation of § 87, Ex. 11, by the methods of
this chapter.

dns. A =3(1—a/10); Bi=}(1+4/10);
1 o 3
m:=3+V10; =

9484710 :
W =T (170 F 58 4/ 10)] }

[2(0—384710)]°
M, =o0.
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Tangent and Point of Contact. Generation of Tangent.

CHAPTER X.

TANGENTS AND THEIR PROPERTIES.

317. Definitions. A tangent to a curve is a straight
line which meets or crosses the curve and has the same
direction with it at the common point.

The common point at which the curve and its tangent
have the same direction is called the point of contact, or
of tangency. .

318. Corollary. If the position of a straight line which
cuts a curve in more than one point be shifted till two or

more of the points of intersection coincide, it becomes a’

tangent. For, at the moment that two points of inter-
section run together, the straight line cuts the curve in
two adjacent points, and, therefore (Geom. § 11), has the
same direction with the curve at that part.

Thus, if PP (Fig. 39) is moved up till the points of inter-
section which correspond to P’ and P coincide, it becomes tan-
gent to the curve at P or P/, Also, if MM" (Fig. 69) be
turned in the plane of the curve around the point A till the in-
. tersection-point which corresponds to M” coincides with A, it
becomes tangent to the curve of that figure at M.

319. Corollary. Only one tangent can be drawn to a
curve at any point; for only one straight line can be
drawn through a given point in a given direction. Hence
the tangent which is obtained by revolving a straight line

>
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Number of Points at which a Straight Line cuts a Curve.

about a point which it has in common with a curve, as
in § 318, is the only tangent which can be drawn to the
curve at that point; so that any tangent may be con-
ceived as a line which cuts a curve in two or more points
which coincide.

820. Corollary. The number of distinct points which
a tangent has in common with a curve is at least one less
than the greatest number of points in which a straight
line can cut the curve.

Thus, P,/P,'Y cuts the curve of Fig. 89 in only three points,
while PPV cuts it in four points.

321. Problem. To find the number of points in which
a straight line can cut an algebraic curve.

Solution. Suppose the curve to be of the nth order. Then
its equation, referred to any rectilinear system whatever, is, by
§ 268, of the nth degree, and it is represented by the equation
of § 272. For the points in which the curve is cut by the axis
of z,

y=0; . ‘
and the substitution of this value in the equation of the curve re-
duces it to the form
Az 4 Bar—'+4 Cx*—? 4 &c. =0, (174.)

This equation, being of the nth degree, has (Alg. art. 269)
n roots, each of which gives a point common to the curve and
the axis of . But the axis of 2 represents any straight line
whatever, so that, in general, a straight line cuts an algebraic
curve at as many points as there-are units in the exponent of the
order of the curve.

322. Corollary. If two or more of the roots of (174)
are equal, the corresponding points of intersection coin-



§ 324.] TANGENTS AND THEIR PROPERTIES. 215

Direction of Tangent.

cide in one point, at which the straight line is a tangent
to the eurve. .

If any of the roots of (174) are imaginary, the corre-
sponding points of intersection disappear. If all the

"roots are imaginary, the straight line does not cut the

curve.

If A =0, in (174), the equation is of the (n — 1) de-
gree and gives only # — 1 roots.

Hence, the rule of § 321 only gives the greatest number
of points at which a straight line can cut a curve.

323. Corollary. A straight line cannot cut a curve of
the second order in more than two points.

A tangent to a curve of the second order will have only
one point in common with the curve.

324. Problem. To find the direction of a tangent to a
curve of the second order.

Solution. Let the tangent be taken for the axis of x in a sys-
tem of rectangular cosrdinates, and the point of contact for the
origin. Let (123) represent the equation of the curve, referred
to this system. Since the origin is a point of the curve, (128)
must be satisfied by its coordinates, namely,

z =7, y=0;

which reduce (123) to

M=0.
The substitution of this value in (123) gives

A4+ Bzy+ Oy +Dx+4 Ey=0. (175.)

For the points at which the axis of x cuts the curve,

y=0;
and (175) gives for those points
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Direction of Tangent.
A4+ Dx=z(Ax+ D)=0.
If a product equals zero, one of its factors must be zero? so that
either

or .

Baut, since the axis of « is a tangent, these two roots must, by
§ 322, be equal to each other; that is,
D =0.
If, now, the curve is referred, as in § 299. a, to a system in
which the axes are parallel to the principal diameters, and the

origin is still at.the point of tangency, the equation assumes the
form (130), and (127) and (128) become

D,—Esn?;, E==FEcs;
which give, by division,
tan 71 — L (176.)

But (182) and (183) give

Dl=—2-Alxl°s =—2Bly.°;
in which 4, and B, denote the coefficients of 2* and y* in the
equation of the curve referred to its principal diameters, and z,°
and y,° the coordinates of the centre, referred to the system of «,

and y,. If the principal diameters are taken for the axes of «
and y, and if z denotes the direction of the tangent, the angle

which is called 7" in (176) becomes ¥ ; so that (§ 20. %) -

mt=_mm=_&= 2 4, z° _A,x,:.
4 -Bl.'/l

x El - 2 .B‘ ylo

N
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Direction of Tangents to Conic Sections.

If 2° and g° denote the codrdinates of the point of contact, re-

ferred to the principal diameters,
2 = —x ¥ =—9";
and, substituting these values in the above expression for tan ;,

we have

A, 2°

T 1T

tan z = — Bl y°-’

and (177) expresses the condition that a line.is tangent to a
curve of the second order.

(177.)

325. Corollary. For the ellipse of which the semi-axes are
A and B, (172) gives :

_4_ B
B4V
and (177) becomes
B? x°
== )

826. Corollary. [For the hyperbola of which the semi-axes
are A and B, (173) gives

4, B
— 5=
and (177) becomes
Bz
t —
tan‘x e (179.)

327. Corollary. If, for the parabola, its axis is taken for the
axis of x, and its vertex for the origin, (133) gives, as above,
E =-2By°=2By;
and (176) gives, by (150), .
A _ -Dl . Dl _ 2}’
tan —— L= 3By v (180.)
19 .

N
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Equation of Tangent.

328. Corollary. The condition of (180) is the same as that
of (89); so that, if y° is taken of the same value in both cases,
zand 8 must denote the same direction ; that is, the conjugate
to any diameter of a parabola is a tangent to the curve at the
vertéx of the diameter.

329. Problem. To find the equation of a tangent to
a curve of the second order.

Solution. If xz° and y° denote, as in § 324, the codrdinates of
the point of contact, (117) gives for the equation of the tangent

y—y° =tan ; (x — x°) . (181.)

Substituting (177) in this equation, we have, by reduction,
4, x° 5
— o m— xr—
Yy yo . -Bl yo ( ) ’
A+ Byy— A2 — B y?*=0.
But, since the point of contact is a point of the curve, its coordi-
nates satisfy the equation of the curve ; so that, by (136),
—A1x°9—Bxy°’=-Mi§
which, substituted in the above equation, gives for the equation
of the tangent, referred to the principal diameters of the curve,
A, °x+ By y-++ M =0. (182.)
830. Corollary. If (182) be divided by + M, it gives for
the ellipse, by § 299. (1.) a, if 4 and B, instead of A, and B;,
denote the semi-axes,

x°x °

Tt %5,_3/ =1; (188.)
for the hyperbola which has its transverse axis on the axis of x,

TE_YY_q; (184.)

A? B!
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Tangent and Subtangent.

for the hyperbola which has its transverse axis on the axis of y,
Yy =z

y O 1. (185.)

331. Corollary. TFor the parabola, (180), substituted in (181),

gives .

o 2p
y—y 7 ( ®)s

Yy=2px+y'—2pa
Since z° y° is a point of the curve,

i =4pa°;
and the equation of the tangent, referred to the system of
§ 200, is -
Yy=2p (+=2°). (186.)

© 332. Definitions. 'When a tangent is spoken of as
having a definile length, the patt which is included be-
tween the point of contact and the axis of z, as MT
(Fig. 69), is meant.

The subtangent is the projection of the tangent on the
axis of z, as PT (Fig. 69).

If «° denotes the abscissa of the point of contact, and '
that of the point at which the tangent cuts the axis of z, the
length of the subtangent is, by § 73,

! — z°.

333. Problem. To find the length of a subtangent of
the ellipse or the hyperbola. .

Solution. For the point at which the tangent cuts the axis of
x, y = 0, and the substitution of this value in either (188) or
(184) gives for #, the abscissa of the point at which the tangent
cuts the axis of z, '

2
2 —é : (187.)
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Tangents to Ellipses and Hyperbolas of same Axis.

The substitution of the same value in (185) gives _
o=, (188.)

Hence, the expression for the subtangent of the ellipse or of the
z-hyperbola is

2 2 __
x’—x°=143—-x°==£—-o—x°n; (189.)
X x
and that for the subtangent of the y-hyperbola is .
2 2 ]
z’—x°=—é;—x°=—£—|:—x—. (190.)

334. Corollary. Since (189) and (190) involve only 4 and
#°, the length of the subtangent is independent-of the length of
the axis which is laid off on the axis of y and of the ordinate of the
point of contact. Thus, the tangents which are drawn to the
ellipses of Fig. 79, which haVe the common axis 2 4, from points,
M, M/, M/, in the same straight line parallel to the axis of y,
cut the axis of x at the same point P ; and the tangents drawn
to the hyperbolas of that figure from M", My, in the same straight
line parallel to the axis of g, likewise cut the axis of « at the
common point /.

835. Corollary. In Fig. 79, let x° be the abscissa of M",

M, &e. ; let f = AP’ be the abscissa of M, M{, &c., and also
of the points at which the tangents to the hyperbolas drawn from
M, &ec. cut the axis of z; and let "/ = AP be the abscissa
of the points at which the axis of x is cut by the tangents to the
ellipses drawn from M, &c. (187) gives

go that AP is the abscissa of M, &ec.
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Method of drawing Tangents.

Hence, if from the point of contact of an hyperbola
with its tangent a perpendicular be dropped on the trans-
verse axis produced, and if from the point at which the
tangent cuts the transverse axis a perpendicular to the
transverse axis be erected, the latter perpendicular will
meet any ellipse described on the transverse axis of the
hyperbola at its point of contact with the tangent drawn
sthrough the foot of the former perpendicular.

336. Problem. To draw a tangent to an ellipse at a
given point.

Solution. On either axis, C'C (Fig. 79), of the ellipse, as a
diameter, describe a circle. Through the given point, ' or M,
drop a perpendicular to the diameter, cutting the circumference
at M. By Geom. § 150. a, draw through M, a tangent to the
circumference, cutting C’C produced at P'. P'M' or P'My
is, by § 334, the required tangent.

337. Problem. To draw a tangent to an hyperbola at
a given point.

Solution. On the transverse axis, (' ' (Fig. 79), of the hyper-
bola, as a diameter, describe a circle. From the given point, M,
drop a perpendicular on (' produced. From P, the foot of
the perpendicular, draw a tangent to the circle, by Geom. § 150. 5,
touching it at M. From M drop on C'C a perpendicular,
meeting it at 7. P M" is, by § 335, the required tangent.

338. Problem. To find the length of a subtangent of
the parabola.
Solution. The substitution of y = 0 in (186) gives, if 2’ de-
" notes the abscissa of the point at which the tangent cuts the axis
of x,
2pal =—2pa°,
19* '
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. Supplementary Chords.
& = —a° (191.)
o —a=—22 (192.)

339. Problem. To draw a tangent to a parabola at a
given point.
Solution. From the given point, M (Flg 71), drop a perpen-
dicular, MP, on the axis. Take
CT' = PC=—2°
and 7'M is, by § 838, the required tangent.

340. Definition. If two straight lines are drawn
through the vertices of the transverse axis of an hyper-
bola, or of either axis of an ellipse, to a point of the
curve, they are called supplementary chords.

Thus CM and C'M are supplementary chords of the
hyperbola of Fig. 70.

341. Problem. To express the condition that two
chords of an ellipse or an hyperbola are supplementary.

Solution. Let the diameter from which the chords are drawn
be taken for the axis of x and denoted by 2 4 ; let =’ and ¢ be
coordinates of that point of the curve at which the chords meet ;
and let o' and «' denote the directions of the chords drawn
through the left-hand and right-hand vertices respectively. The
coordinates of the right-hand vertex are

T = A, y=0;
so that (118) gives
) <o ,yl
tan , = —>—. (193.)

The coordinates of the left-hand vertex are
x=—2A, y=20;
so that (118) gives '
'
tan ¥ = Y (194.)
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Method of drawing Conjugate Diameters.
The product of (193) and {194) is
tan * tan ¢ — (195.)

z B0y =@

If the curve is an ellipse, x' and y' satisfy (48), which gives
B
= T (@ A

which, substituted in (195), reduces it to
o a' B

tan , tan , = — . (196.)
If the curve is an hyperbola, x and y' satisfy (66), which

gives .
=T (@ — ),

! 7
ta.n: tan: = j;: (197.)

(196) and (197) are the required equations of condition.

842. Corollary. The conditions expressed in (196) and (197)
are identical with those expressed in (52) and (75); so that, if
o' in (196) or in (197) denotes the same direction as e, or g, in
(52) or in (75), o in (196) or in (197) denotes the same direc-
tion as B, or o, in (52) or in (75).

Hence, if one of two supplementary chords is parallel
to a diameter, the other is parallel to the conjugate of
that diameter.

343. Problem. To draw a diameter of an ellipse or
an hyperbola conjugate ta a given diameter.

Solation. Let O/ G (Fig. 70) be the given diameter. Draw
through either vertex of the transverse axis the chord ("f paral-
lel to C/C,, also the supplementary chord CM, B/B,, drawn
through the centre parallel to OM, is, by § 842, the required
diameter.
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Method of drawing Tangents.

344. Scholium. This method gives only the direction of the
diameter ; so that, in Fig. 70, the length of B/B, is undeter-
mined.

345, Problem. To express the condition that a diame-
ter is drawn to a point of tangency.

Solution. Let o, denote the direction of the diameter, and let
z° and y° be used as before. Since the cotrdinates of the centre

are

z =0, y= 0,
(118) gives ‘
. o £
tan ;! = & (198.)
346. Corollary. For the ellipse, (178) and (198) give

' o g T B

tan a:ltanx=—j?‘ (199.)
For the hyperbola, (179) and (198) give

a T B i
tan 'tan = = (200.)

847. Corollary. The conditions expressed in (199) and (200)
are identical with those expressed in (52) and (75) and also in
(196) and (197). .

Hence, a tangent drawn at the extremity of a diameter
is parallel to the conjugate of that diameter; also, if the
tangent is parallel to one of two supplementary chords,
the diameter is parallel to the other.

348. Problem. To draw a tangent to an ellipse or
an hyperbola, parallel to a given line.

Solution. Let the given line be KL (Fig. 70). Draw two
supplementary chords, OM and (', one of which, O/, is parallel
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Equality of Angles with Lines drawn to the Foci. .

to the given line. Draw the diameter C/C, parallel to (',
Either C/7" or 7C,, drawn parallel to KL, is, by § 347, the
required tangent.

849. Scholium. Observe that the solutions of §§ 343, 348
apply to the ellipse as well as to the hyperbola.

850. Corollary. § 847 gives also a simple method of draw-

ing a tangent to an elhpse or an hyperbola through a given
point.

351. Theorem. The ellipse makes equal angles af

every point with the lines drawn from that point to the
foci.

Proof. It is to be proved (Fig. 73) that the angle " M# and
F' M m are equal.

Let m be a point of the ellipse infinitely near M. Draw F m
and F"m. From F" as a centre, with a radius #'m, describe an
arc, cutting "M at a ; and from ¥ as a centre, with a radius #'m,
describe an are, cutting FM produced at & M m, a m, and b m,
being infinitely .small, may be regarded as straight lines; and

Mmband Mm a are triangles, right-angled, by Geom. § 120,
at b and a.

FM 4+ MF — FM+-aF + Ma;
Fm4+mP =Fbt+al =FM+taPF 4 Mb.
By the definition of the ellipse,
FM+ MF' = Fm - mF;
Ma= Mb;
50 that the right-triangles-having M/ m common are (Geom. § 64)

equal, and the angles m M b and "M m are equal. But O'MF
is vertical to m M b, and therefore also equal to 7'M m.

852. Theorem. The hyperbola makes equal angles at-
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Equality of Angles with Lines drawn in the Parabola.

every point with the lines drawn from that point to the
foci.

Proof. The constructxon in Fig. 74 is similar to that of the
last section.

FM—MP =Fb+bM—Ma—alF
=FFm—mP =Fb—alkh,;
bM— Ma=0;
b M—Ma;
so that triangles M m a and Mm b are equal, and therefore
angles ’
FMm=mMF = GMm' = m' MG.

853. Theorem. The parabola makes equal angles at
every point with the axis and with the line ‘drawn from
that point to the focus.

Proof. QM and ¢ m (Fig. 75) are parallel to the axis, and
m b to the directrix. 'lthe rest of the construction is similar to
that of § 351.

FM=Fa+t+aM=QM=Qb+ b M;
Fm=Fa=qgm= Qb;
aM=5bM;
so that triangles Mma and Mm b are equal, and angles
mMF = QMm= X, Mn'
354. Corollary. By § 317, a tangent drawn at M will make,

in Figs. 73, 74, equal angles with MF and MF', and, in Flg. 75,
equal angles with MF and MX,, or CX.

855. Corollary. '§ 354 gives a simple method of drawing a
tangent to a parabola at a given point, M (Fig. 71). Take
FT = FM. TM is the required tangent; for, since 7FM is

igosceles,
FTM — TMF.
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Elliptic, Hyperbolic, and Parabolic Reflectors.

356. Scholium. The above theorems are illustrated by the
properties of reflectors. The law of reflection is, that the angle
of reflection s equal to the angle of tncidence ; the angle of re-
flection being the angle which the reflected ray makes with a
perpendicular to the reflector at the point at which it is reflected,
and the angle of incidence being the angle which the same per-
pendicular makes with the ray before it is reflected.

If the ellipse of Fig. 73 be supposed to revolve about its trans-
verse axis, it will generate a surface which is called the surface
of an ellipsoid. Suppose that this surface is made a reflector,
and that FM is a ray of light which falls on it from the focus #';
then C'MF is the complement of the angle of incidence, and, if
M a is the direction of the reflected ray, a Mm, the complement
of the angle of reflection, must be equal to O'MF'; so that M a
must point towards the focus F7.

If the hyperbola revolve about its transverse axis, it will gen-
erate the surface of an Ayperboloid ; and if this surface be made
a reflector, rays F M and ' M, which fall on it from the foci, will
be reflected respectively in the directions ' & and FG.

If the parabola of Fig. 75 revolve about its axis, it will gen-
erate the surface of a paraboloid ; and, if this surface be made a
reflector, a ray, F'M, which falls on it from the focus, will be
reflected parallel to the axis.

If, therefore, a lamp be placed in either focus of an elliptic re-
flector, the light is reflected to the other focus, as in Fig. 76 ; if
in either focus of an Ayperbolic reflector, it will be reflected from
the other focus, as in Fig. 77 ; if in the focus of a parabolic re-
flector, it will be reflected parallel to the axis, as in Fig. 78.%

857. Corollary. The properties of reflectors illustrate in a -
new way the relation of the conic sections. In the case of the

* The law of reflection is a general one, though it has been explained in
the language of optics. Thus, F, in Figs. 76, 77, 78, may be a centre of
sound or of undulations in water.
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Properties of Various Reflectors.

elliptic reflector, the rays converge afler reflection ; in the case of
the Ayperbolic reflector, they diverge ; while the parabolic reflect-
or gives the intermediate case, in which they neither converge
nor diverge, but are parallel, and may be conceived to be directed

towards an infinitely distant focus on the right, if the parabola is
conceived to be an ellipse, or from an infinitely distant focus on

the left, if the parabola is conceived to be an hyperbola.

THE END.
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