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PREFACE.

————

THIS WORK deals primarily with the geometry of
cycloids, curves traced out by a point in a circle roll-
ing on a straight line, or on or within another circle,
and ¢rochoids (or hoop-curves), curves traced out by a
point within or without a circle so rolling.

Although the invention of the cycloid is attributed
to Galileo, it is certain that the family of curves to
which the cycloid belongs had been known, and some
of the properties of such curves investigated, nearly
two thousand years before Galileo’s time, if not earlier.
For ancient astronomers explained the motion of the
planets by supposing that each planet travels uniformly
round a circle whose centre travels uniformly round
another circle. By suitably selecting radii for such
circles, and velocities for the uniform meotions in them,
every form of epicyclic curve can be obtained, including
the epicycloid and the hypocycloid. When the radius
of the fixed circle is indefinitely enlarged, or, in other
words, when the centre of the moving circle advances
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uniformly in a straight line, the curve traced out by
the moving point becomes a trochoid, and may either
be a prolate, a right, or a curtate cycloid, according as
the velocity of the moving centre is greater, equal, or
less than the velocity of the point around that centre.
Lastly, if the radius of the moving circle is indefinitely
enlarged, so that a straight line is carried uniformly
round a centre while a point travels uniformly along
the line, the curve traced out becomes a spiral of the
family to which belong the spiral of Archimedes and
the involute of the circle.

It is of these curves, which are all included under
the general name epicyclical curves, that I treat in
the present volume, though the cycloid, epicycloid,
hypocycloid, and trochoid are more fully dealt with,
in their geometrical aspect, than the epitrochoidal and
gpiral members of the epicyclic family.

Ancient geometers were not very successful in
their attempts to investigate any of these curves. It
is strange indeed to find a mathematician even of
Galileo’s force so far foiled by the common cycloid as
to be reduced to the necessity of weighing paper
figures of the curve in order to determine its area.
Pascal dealt more successfully with this and other

“ problems. Yet he seems to have regarded their rela-
tions as of sufficient difficulty to be selected for his
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famous challenge to mathematicians, to try whether a
priest who had long given up the study of mathematics
was not a match for mathematicians at their own
weapons. The argument, in so far as it was intended
to prove the soundness of Pascal’s faith, was feeble
enough. But the failure, or partial failure, of many
who attacked his problems, is noteworthy. We
find, for instance, that Roberval laboured for six
years over the quadrature of the cycloid, and only
succeeded at last in solving it by the comparatively
clumsy method indicated at p. 199, inventing a new
curve for the purpose. It will be seen that in the
present work this famous problem comes very early
(Prop. IIL., pp. 5, 6), and is made to depend on the
fundamental (and obvious) relation of the cycloidal
ordinates. The method—which so far as I know is a
new one—is extended to the epicycloid, hypocycloid,
trochoid, epitrochoid, and hypotrochoid. It will be
found that, in all, thirteen distinct methods of solving
the problem geometrically are either given in full or
indicated (seven of these methods being new so far as
I know), while seven independent methods are indi-
cated for determining the area of the epicycloid and
hypocycloid (of which five are new), besides one
method (see footnote, p. 50) derived from the properties
of the cycloid. After the first demonstration of the
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area, however, those methods only are given in full
which involve other useful relations.

The position of the centre of gravity of the
cycloidal arc, and of the cycloidal area, has been fully
dealt with geometrically in Section I. (so far as I know,
for the first time). It seems to me that the treatment
of such problems by geometrical methods usefully in-
troduces the student to the use of analytical methods.
For instance, Prop. XIV. is a geometrical illustration
—in reality, so far as my own mathematical studies
were concerned, a geometrical anticipation*—of the
familiar relation

‘/'ugz-dx= uv —f Z—%dz,
of the Integral Calculus.
Most of the propositions in the first three sections
were established in the same manner as in this volume,
in notebooks which I drew up when at Cambridge ;

* I may mention, as a circumstance in which some may perhaps
find encouragement and others a warning, that (owing chiefly to
my liking for geometrical studies) I knew very little of the Diffe-
rential Calculus,and scarcely anything of Astronomy, when I took my
degree. Possibly I owe to this circumstance no small share of the
pleasure derived from the study of these and other mathematical
subjects since. The hurried rush made at our universities over the
domain of mathematics has always seemed to me little ealculated
to develope a taste for mathematics, though it may not invariably
destroy it when it already exists. The withdrawal of the mind
during three years from other subjects of greater importance,~—
general literature, history, physical science, and so forth,—is still
more pernicious: yet it is practically forced on those who wish for
university distinctions, fellowships, and so forth.
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but the proofs have been simplified and their arrange-
ment altogether modified more than once since then.
In fact anyone who compares the first two sections with
recent papers of mine on the Cycloid, Epicycloid, and
Hypocycloid, in the English Mechanic, will perceive
even that in the interval since those papers were written
the subject-matter has been entirely rearranged.

In defining epicycloids and hypocycloids I have
made a change by which an anomaly existing in the
former treatment of these curves has been removed.
The definitions hitherto used run as follows :—

- The [Py cloid i3 the curve traced out by a
hypocycloid

point on the circumference of a circle which rolls with-

out sliding ‘on a fized circle in the same plane, the two

external

internal } contact.

circles being in {
For this I substitute :—

The {ZP ic_ycloz'd' is the curve traced out by a
ypocycloid

point on the circumference of a circle which rolls with-

out sliding on a fixed circle in the same plane, the rolling

circle touching the {g::;;’fe} of the fized circle.
That the latter is the more correct definition is
proved by the fact that, while the former leads to an

altogether unsymmetrical classification of the resulting
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curves, the latter leads to a classification perfectly
symmetrical. According to the former every epicy-
cloid is a hypocycloid, but only some hypocycloids are
epicycloids ; according to the latter no epicycloid is a
hypocycloid, and no hypocycloid is an epicycloid.

In the fourth section on motion in cycloidal curves
I have adopted a somewhat new method of arranging
the demonstrations to include cycloids, epicycloids,
and hypocycloids. The proof that the cycloid is the
path of quickest descent is a geometrical presentation
of Bernouilli’s analytical demonstration.

The section on Epicyclics was nearly complete
when my attention was directed to De Morgan’s fine
article on Trochoidal Curves in the Penny Cyclopedia,
the only complete investigation of any part of my
subject (except a paper by Purkiss on the Cardioid)
of which I have thought it desirable to avail myself.
I rewrote portions of the section for the benefit of
those who may already have studied De Morgan’s
essay, deeming it well in such cases to aim at
uniformity of definition, and, as far as possible, of treat-
- ment. It will be observed, however, by those who
compare Section V. with De Morgan’s essay, that
my treatment of the subject of epicyclics remains
entirely original, and that in some places I do not
adopt his views. For instance, I cannot agree with
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him in regarding the angle of descent as negative under
any circumstances consistent with the definition of
the epicyclic itself. The radius vector indeed ad-
vances and retreats in certain cases; but in every
case it advances on the whole between any apocentre
and the next pericentre. De Morgan has also misin-
terpreted the figures on p. 187, as explained, p. 186.
In two respects this treatise has gained from

my study of De Morgan’s essay. In the first place,
I had not . originally intended to devote a section
to the equations of cycloidal curves. Secondly, and
chiefly, I was led, by the study of the very valuable
illustrations engraved by Mr. Henry Perigal for Prof.
De Morgan’s article, to cancel all the drawings which
I had constructed to illustrate Section V., and to
apply to Mr. Perigal for permission to use his me-
chanically traced curves. A study of Plates II., IIL,
and I'V., and of other figures illustrating Section V., will
show how much the work has gained by the change.
For figs. 119 to 122, and two of those of Plate IV.,
also mechanically drawn, I am indebted to Mr. Boord.
I may add, to show the value of these illustrations,
that Prof. De Morgan, in his ¢ Budget of Paradoxes,’
says that without Mr. Perigal’s ¢ diagrams direct from
the lathe,” his article on Trochoidal Curves ¢ could not
have been made intelligible.” Yet even those cuts,
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and many others added to them in this volume, will
give the reader but inadequate ideas of the immense
number, variety, and beauty of the sets of diagrams
published by Mr. Perigal himself, in his ¢ Contributions
to Kinematics.” Inthese the curves are shown white on
a black background, and hundreds of varieties at once
instructive and ornamental are presented for study
and comparison. Even for the mere patterns thus
formed, and apart from their mathematical interest,
these sets of diagrams possess great value. (See
further the note, pp. 193-195.)

The portions of Section V. relating to planetary
motions, and the concluding section relating to the
graphical use of cycloidal curves for determining the
motion of bodies in elliptical orbits under gravity and
of matter projected from the sun, will be useful, I
trust, to students of astronomy. In some respects
cycloidal curves are even more closely related to
astronomy than the conic sections, If planets and
comets travel approximately in ellipses about the sun,
and moons in ellipses about their primaries, the planets’
paths, relatively to our earth regarded as at rest, are
epicyclic curves; while the cycloid and its companion
curves supply an effective construction for dealing
with Kepler’s famous problem relating to the motion
of a body in an ellipse round an orb in the focus
attracting according to the law of gravity.
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A treatise such as this is rather intended to afford
the means of solving such problems as may be suggested
to the student than of supplying examples. I have,
however, added a collection of about 150 examples. -
All except those to which a name is appended are
original. They are, in fact, a selection from among
those which occurred to me as the work proceeded.
Many which I had intended to present as riders have
ultimately been worked into the text among the co-
rollaries and scholia. If these had been included as
examples, the total number would have amounted to
about 300 ; but it seemed to me better in their case
to indicate the nature of the proof.

RICH. A. PROCTOR,
LoNDON : December, 1877,

P.S.—As the last sheets are receiving their latest
corrections for press, I receive, through Mr. Boord’s
kindness, the eight figures on p. 256. Of these, figs.
154, 158 represent orthoidal, figs. 155, 159 cuspidate,
and figs. 156, 160 centric epicyclics; while fig. 157 is
a transcentric, and fig. 161 a loop-touching epicyclic.

Errata.

On p. 59, line 11, for ¢ Area ABD,’ read ¢ Area OBD.’
» 129, ,, 17, , ¢D,’read ‘0.
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THE

GEOMETRY OF CYCLOIDS.

—_—C——

SectIioN 1.

THE RIGHT CYCLOID.

NoTE.—Any curve traced by a point on the circumfer-
ence of a circle which rolls without sliding upon either
a straight line or a circle in the same plane is called a
cycloid, but the term is usually limited to the right
cycloid, and will be so employed throughout this work.

DEFINITIONS.

The right cycloid is the curve traced by a point
on the circumference of a circle which rolls without
sliding upon a fixed straight line in the same plane.

The rolling circle is called the generating circle;
the point on the circumfererce the tracing point.
Similar terms are employed for all the curves dealt
with in this work.

Let AQB (fig. 1, Plate 1.) be the rolling circle,
KL the fixed straizht line. Let the centre of the

15
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2 GEOMETRY OF CYCLOIDS.

rolling circle move along the line ¢/ C ¢ parallel to
KL through C the centre of AQB, in the direction
shown by the arrow. Then it is manifest that at
regular intervals the tracing point will (i.) coincide with
the line KL, as at D’ and D (E’¢’D’ and E ¢ d being
corresponding positions of the generating circle), and
(ii.) will be at its greatest distance from KL, as at A
(AQB being the corresponding position of the genera-
ting circle), this distance being the diameter of AQB,
so that ACB the diameter through the tracing point is
at right angles to KL. It is clear also from the way
in which the curve is traced out that the parts AP’/
and APD are similar and equal. Therefore ACB is
called the azis of the cycloidal curve; D’D is the
base; and A the wertez. The points I’ and D are
called the cusps. The radius CA drawn to the tracing
point is called the tracing radius, the diameter through
the tracing point the tracing diameter. The radius of
the generating circle may be conveniently represented
by the symbol R. Where the tracing diameter coin-
cides with the axis, the generating circle is said to be
central, and AQB so placed is called the central gene-
rating circle. A diameter to the generating circle
parallel to ACB, that is perpendicular to D’D, is said
to be diametral. The line ¢’ C c is called the Zne of
centres.

The complete cycloid consists of an infinite number
of equal cycloidal arcs; but it is often convenient to
speak of the cycloidal arc D’AD as the cycloid.

It is clear that if D’E’ and DE be drawn perpen-
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dicular to D’D, the semi-cycloidal arcs on either side
of D’E’ and DE are symmetrical with respect to
these lines. Therefore D’E’ and DE may conveniently
be called secondary axes.

A straight line E’AE through A parallel to D’D
manifestly touches the cycloid at A ; for there is one
position, and ome only, of the generating circle (be-
tween D’E’ and DE) which brings the tracing point to
the distance AB from D'D. E’AE is called the

tangent at the vertex.

PROPOSITIONS.

Proe. 1.—The base of the cycloid is equal to the
circumference of the generating circle.

This is manifest from the way in which the curve
~ is traced out; for every point of the generating circle
AQB (fig. 1) is brought successively into rolling con-
tact with the base D’D ; so that necessarily

D’D = circumference of the circle AQB.

Cor. 1. BD’=BD =semicircular arc AQB.
Cor. 2. Drawing D’E’ and DE square to D’D and
¢ C ¢ parallel to D'D,

Area E’'D = 2 area AD = 4 area CD
= 4 rect. under CB, BD
= 4 rect. under CB, arc AQB
= 4 times area of generating circle AQB.,

B2
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Prop. IL.—If through P, a point on the cycloidal arc
APD (fig. 2), the straight line PQM be drawn
parallel to the base BD, cutting the central generating
circlein Q and meeting the axis AB in M ; then
QP = arc AQ.

Let A’PB’ be the position of the generating circle
when the tracing point is at P, C’ its centre, A’C'B’
diametral, cutting MP in M’. Draw the tracing dia-
meter PC’p. Then MQ = M'P ; MM’ =QP; and
arc AQ = arc A’'P. Now, since PC’p is the tracing
diameter, p is the point which had been at B when the

Fre. 2.

tracing point was at A; hence the arc p B’ = BB/,
for every point of p B’ has been in rolling contact
with BB’. But
Arc pB’=arc A'P=arc AQ; and BB’=MM'=QP.
‘Wherefore, QP =arc AQ.

Cor. 1. PM=arc AQ+MQ.

Cor. 2. Since BD=arc AQB=arc AQ+arc QB,
BD > PM; wherefore the whole arc APD lies on the
left of DE, perpendicular to BD.
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Cor. 3. Let MP produced meet DE in m. Then
Pn=Mm—PM=arc AQB—arc AQ—MQ
=arc QB—MQ.

Cor. 4. Arc A’P=BB’; and arc PB’=B'D.

Cor. 5. If through P’, a point on the arc PD,
P’gQ’ be drawn parallel to BD, meeting AQB in Q'
and cutting A’PB’ in ¢; then QP'=arc A’q, and
QP =arc A’P; wherefore
P (=QP—-Q¢=QP —QP)=arc A'¢g—arc A’P;
that is, gP' =arc Pyq.

Cor. 6. If through R, a point on the arc AP,sR S
parallel to BD meet the arcs AQB, A’PB’in S and s,
then

Ss= QP = A’P; and SR= arc A’s;
wherefore Rs=arcsP =arc SQ.

Prop. II1.—The area I’ AD (fig. 1, Plate 1.) between
the cycloid and its base is equal to three times the area
of the generating circle. ,

A, B, D, E, C, &c. (fig. 3), representing the same
points as in the preceding proposition ; take CL=CL/
on AB, and draw LP I, L/P’? parallel to BD, cutting
the cycloid in P and P’, and the central generating
circle in Q and Q’, respectively. Complete the ele-
mentary rectangles PN, P'N’, L Z, of equal width,
(PM=P'M’). Then

QP =arc AQ, and QP'=arc AQ = arc BQ;
therefore QP + QP = semicircle AQB = L/; and
the two rectangles NP and N’P’ are together equal
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to the rectangle L. Taking all such pairs of rectan-
gular elements as NP and NP, it follows that in the
limit area AQBDP = rectangle CE = circle AQB.
(Prop. L. Cor. 2.)

Hence the area between the cycloid and its base
(= 2AQBDP +circle AQB) = three times the area
of the generating circle. Q.E.D. ,

Another proof.—Let AP”D be a cycloidal arc
having A as cusp, D as vertex, and DE as axis. Let

Fie. 3.

{L cut AP”D in P” and be produced to meet the
circle AQB in Q”. Then
LP=arc AQ+LQ; and LP” =arc AQ — LQ
(Prop. II. Cor. 2). Wherefore
P’P=LP—-LP"=2LQ=Q"”Q; and the elementary
area Pm=the elementary area Q"”N.

Taking all such elementary rectangles, we bave in
the limit area AP”DP=circle AQB=rectangle CE.
Hence, taking these equals from the rectangle BE, it
follows that the equal areas ABDP” and APDE are
together equal to the rectangle CD, that is, to the
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circle AQB. Therefore AP”DB = the semicircle
AQB; APDB = three times the semicircle AQB ;
and the area between the cycloid and the base = three
times the generating circle.

Cor. 1. Rectangle Al=area AQP +area BQ'P'D.

Cor. 2. Rectangle Cl=area QPP'Q.

Cor. 3. If AE and BD be bisected in H and I,
and HI cut PQ and P'Q’ in % and ¢; then if, as in
the figure, P and P’ are on the same side of HI,

Ph+Pi=Ph+P'h = P'P = Q"Q=2LQ.

If P falls between AB and HI, as at p, then, com-
pleting the construction indicated by the dotted lines,
Pi—pK=p"k—pk=p"p=g¢=2g,j.

That is, if two points are taken on the cycloidal arc
equidistant from Ce, the sum or difference of the per-
pendiculars from these points upon HI will be equal
to the chord of the generating circle formed by either
perpendicular produced, according as the points on the
cycloid are on the same or on opposite sides of HI.
"This relation will be found useful hereafter in deter-

mining the centre of gravity of the cycloidal area.

Cor. 4. When the tracing point is at P, the gene-
rating circle passes through P”; for its chord through
P parallel to AE=QQ"=PP”.

Cor. 5. Area AQ’Q = area AP”P; and area
AQ’P"=area AQP. The latter relation, established
independently (by showing that QP = Q”P”), leads
to a third demonstration of the area.
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Prop. IV.—If P ( fig. 4) is a point on the cycloidal
are APD, A'PB the generating circle when the
tracing point is at P, A'C' B’ diametral, then PB' is
the normal and A'P is the tangent to the cycloid at
the point P.

Since, when the tracing point is at P, the generating
circle A’PB’ is turning round the point B’, the direc-
tion of the motion of the tracing point at P must be

Fic. 4.

A A G E

M Q

N ”

c P

C
T

B B D

at right angles to B’'P; wherefore PB’ is the normal
and A’P is the tangent at the point P.

Another demonstration.— The objection may be
raised against the preceding proof, that, by the same
reasoning, B’ would be proved to be the centre of curva-
ture at P, which is not the case. Although the objection
is not really valid, an independent proof may conve-
niently be added.

Take P’ a point near to P, and draw PQM, P’Q'N
parallel to BD, catting AQB in Q and Q’, and PPQ'N
cutting A’PB’ in ¢. Join PC’. Then ¢ P'=arc Pg
(Prop. IIL. Cor. 4), and ultimately PgP’ is an isosceles
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triangle, whose equal sides Pgand ¢P’ are respectively
perp. to the equal sides C’'P and C’B’ of the isosceles
triangle PC’B’; wherefore the third side PP’ is perp.
to the third side PB’.* That is, PB’ is the normal at
P, and therefore PA’ the perp. to PB’ is the tangent
at P,

Cor. 1. If Pr be drawn perp. to P’N, then the
figure PP’z is in the limit similar to the triangles
A’B’P, A’Pm, PB'm (m being the point in which
A’B’ and PM intersect).

Cor. 2. If B'P cut P'N in {, the triangle /P’P is
similar to the four triangles named in Cor. 1.

Cor. 3. Triangles P ¢!, P ¢ P’ are similar respec-
tively to triangles PC’A’ and PC'B’; and lg = ¢ P".

Cor. 4. AQ is parallel to the tangent at P.

Cor. 5. If AQ prod. meet P’N in r, QQ’ ulti-
mately = Q' ».

ScHOL.—A tangent may be drawn to the cycloid
from any point on the curve. For if we draw PQ
parallel to BD, the tangent PA’ is parallel to AQ.
To draw a tangent from any point A’ on the tangent
at vertex, we draw A’B’ perp. to base, and the semi-
circle A’PB’ on ADB’ intersects APD in the point
P such that A’P is tangent to APD.

* Thus, let the triangle P ¢ P’ be turned in its own plane round
the point P till P4 coincides with PC’'—that is, through one right
angle; the other sides ¢ P and PP’ will also have been turned
through a right angle, therefore ¢ P’ will be parallel to C' B/, and
¢ P’ being equal to ¢ P, P’ will fall on B’P (for any parallel to C'B’

will cut off an isosceles triangle from B'PC’); hence B’PP’ is the
angle through which PP’ has been turned, and is therefore a right

angle,
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Prop. V.—If PQ (fig. 5), parallel to the base of cy-
cloid APD, and above the line of centres C c, meets
the central generating circle in Q, and QN, PM are
perpendicular to Ce,

Area ARQP + rect. QM=rect. CF
(F being the point in which NQ produced meets the
tangent at the vertex AT).
If P'Q bea parallel to the base below the line of centres
QL, PM, perpendicular to C c,
Area ARQ P — rect. @ M’ = rect. CF*

(F" being the point in which L@ produced meets the
base BD).

Take p a point near to P, and let pn perp. to QN
cut arc AQQ’ in ¢; join AQ and produce to meet pn
Fia. 5.

in r; draw f¢ L, rK, pm perp. to Ce¢, and join Cq.
Then in passing from P to p,area AR QP +rect. QM

is increased by PpmM and diminished by Q¢LN, orin

the limit, increased by rect. Mp or N7 (since QrpP
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is a parallelogram, Prop. IV. Cor. 4) and diminished by
rect. N¢; wherefore total increase = rect. L. But
ng : ¢Q (=¢qr,Prop.IV. Cor. 5) :: ¢L : C¢(=NF),
.. rect. under ng, NF = rect. under ¢r, ¢L;
that is, rect. N f =rect. Lr,
orincrt. of rect. CF =incrt. of (area ARQP + rect. QM).

But these areas start together from nothing, at A,
.*. rect. ARQP + rect. QM = rect. CF.

Cor. 1. Area AQC'RP =square CT =square CT’,
TCT’ being the tangent to AC'B at C’ on the line of
centres.

Again, making a similar construction for the second
case (for convenience in figure Q'¢’ is so taken that
Q¢ and ¢ Q are perp. to Cc), we have ultimately

decrement of area (ARQP —QM)=L¢ +P'm’
=rect. L¢’ + rect. 2’ K’ (ultimately) = rect. N,

But since #'¢' : Q¢ (=¢'7):: ¢ N: C¢ (= Nyf),
rect. under »’ ¢/, N f* = rect. under ¢+, ¢’ N;

that is, rect. NF’ = rect. N7/, or
decrt. of rect. CF' = decrt. of area (ARQ'P'— Q'M").

But these areas begin together from the equal areas
AQC'R and square CT,
.*. area AAQP’ — rect. Q M’ = rect. CF".
Cor.2. Area AC’BDR=rect. CBD c=generating

circle, so that we have here a new demonstration of
the area.
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Pror. VI.—If from P a point on the cycloid APD
(fig. 6) PQ drawn parallel to the base, meets the
generating circle in Q,

arc AP = 2 chord AQ.
With the same construction as in Prop. IV., join

AQ and B’g; produce B'g to meet PP’ in £; and
draw C'K perpendicular to B’P. Then ultimately,

Fia. 6. (Join A'g.)

gk is perpendicular to PP, and the triangle P¢P’ is
isosceles ; ’

*. PP’ = 2P ultimately.
But PP’ is ultimately the increment of the cycloidal
arc AP; and P% is ultimately the increment of the
chord A’P (for A’q = A’k ultimately). Hence the
increment of the cycloidal arc AP = twice the incre-
ment of the chord A’P or of the chord AQ. There-
fore, since the arc and chord begin together at A,

Arc AP = 2 chord AQ.

Cor. 1. Are APD = 2 AB = 4R, and the entire

cycloidal arc from cusp to cusp = 4AB = 8R.
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Cor. 2. Since the square on AQ = rect. AB.AM,
sq. on st. line equal to arc AP = 4 rect. AB. AM,
and we have,
Arc AP = 2\/2_R .V AM,
that is, Arc AP « /AM.

Cor. 3. Arc AP :arc PD :: AL: LB.

Pror. VII. ProB.— 7o divide the arc of a cycloid
into parts which shall be in any given ratio.

Let a straight line ab (fig. 6) be divided into any .
parts in the points ¢ and d: it is required to divide the
arc APRD in the same ratio.

Divide AB in L and 7 so that

AL :Lil:IB ::ac:ed: db.
‘With centre A and radius AL and A /, describe circular

arcs LQ, / r, meeting the semicircle AQB in Q and 7.
Through Q, r, draw QP, rR, parallel to BD. Then

Arc AP = 2AQ = 2AL; and arc AR = 2A1
Therefore

Arc PR = 2L!; and similarly arc RD = 2/B.
Therefore
Arc AP:arc PR::arc RD:: AL:Ll: IB::ac:ed :db;
or the arc APD has been divided in the points P and
R in the required ratio.

Similarly may the arc APD be divided into any
number of parts, bearing to each other any given ratios.
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Pror. VIIL.—With the construction of Prop. IV.

Area APB’'B : sectorial area A’ B’ Ph
:t area PB'D : segment PFB’ :: 3: 1.

Let a P’b (fig. 7) be the position of the tracing
circle when the tracing point is at P’ near to P, on the

Fre.7. (JoinaP.)

A Ao L K E
i .
| |

D

gide remote from A ; acb diametral. Join 4P/, draw
P’q 1 parallel to BD meeting A’PB’in ¢ and PB’in ,
join ¢ B’, which is parallel to b P, because ¢ P’ =
Pg=DBb Then ultimately P’ ¢ = ¢l (Prop. IV.
Cor. 3), wherefore parallelogram ¢ b = twice the tri-
angle /¢ B’ and trapezium [P’0B’ =3 times the
triangle /¢ B’: that is, ultimately (when the triangle
! PP’ vanishes compared with { P’6B), the elementary
area
B’PP’ b = 3 times the elementary area PB’¢
= 3 (area A’B’gh — area A’B'P £)
= 3 (area a bP’ — area A'B'P).

Thus the increment of tﬁe area ABB’P = 3 times the
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increment of the area A’B’P, and the decrement of
area PB’D = 3 times the decrement of the area PFB’.
But the areas ABB’P and A’B’P commence together,
and the areas PB’D and PFB’ end together, as P
passes from A to D. Hence

ABB'P = 3 times sectorial area A’'B'P 4.
Area PB’D = 3 times the segment PFB’

and

Area APB’B : sectorial area A’B’P 4
:: area PB’D : segment PFB’ :: 3: 1.

Cor. 1. Area PFB'D = 2 segment PFB’. This
is easily proved independently. For any elementary
parallelograms ff and FF (having sides parallel to
BD), are manifestly equal; wherefore area ¢ F 4 F”
= parallelogram ¢b = twice triangle B’ ¢ ! = (ulti-
mately) twice the decrement of segment 5F"P”.

Cor. 2. Area AQBB'P (BQ straight) =2 sec-
torial area AQB.

Cor. 3. Area QsBDP = 2 seg. QsB + par. PB
= 2 geg. QsB + rect. BM'.

ScHOL.—Prop. VIII. affords another proof of the
relation established in Prop. III. The first corollary,
established independently, gives another proof.
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Prop. IX.—With the same construction as in the pre
ceding propositions.
Area APA' = segment A'hP.

Join PA’, ¢ A’, and P’a. Then A’PP’ is ulti-
mately a diameter of the parallelogram A’aP’q, and
the ultimate triangle A’PP’a is equal to the triangle
A’PP’q, or in the limit to the triangle A’Pq. But
A’PP’a is the increment of the area APA’, and A’Pg
is the increment of the segment A’AP. Since these
areas then begin together and have constantly equal
increments, they are constantly equal. Therefore

Area APA’ = segment A’RP.

Cor. 1. Draw PL, PM’M perp. to AE, AB respec-
tively, PM intersecting AB in M’. To each of the equal
areas APA’ and A’AP add the equal triangles A’PL
and A’MP. Then the area APL = area A’A PM’ =
area AQM. This may be proved independently. For
drawing P’K, P’N’ perp. to AE, A’B’, we see that
A’PP’ is ultimately a diameter of the rectangle N'K,
and therefore the rectangles PK and PN’, being com-
plements to rectangles about the diameter, are equal:
or ultimately the increment of the area APL = incre-
ment of the area A’h PM’; wherefore, since these areas
begin together,area APL =area A’APM’'=area AQM.

Cor. 2. Area AQP = rect. ML —2 area AMQ.

Cor. 3. Area QsBDP = circ. AQB — area AQP

= circle AQB — rect. ML + 2 area AMQ
=2 (semicircle AQB + area AMQ)— rect. ML.
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Cor. 4. Area AA’RP = 2 area AA’P=2 segment
A’hP. This may be proved independently, in the
same way as Cor. 1, Prop. VIIL. Area A’a P'qh,
ultimately equal to the area A’aP’Ph, is shown to be
equal to the area of the parallelogram A’aP’g, that is,
to twice the area A’PP’a or A’PP’g (the ultimate in-
crements of AA’P, A’ AP, respectively).

ScHOL.—Prop. IX. and Cor. 1 and 4 (established
independently) afford three new demonstrations of the
area of the cycloid. For they severally show that
area APDE = semicircle DQ'E, on DE as diameter ;
and since BE = twice the generating circle, the area
APDB = 38 times the semicircle AQB.

It will be noticed that the area AEQ'DP = area
A sBDP. This, which may easily be proved inde-
pendently, affords yet another proof of the area of the
cycloid. Thus let APD, AP’'D (fig. 8) be cycloidal

Fie. 8.

arcs, placed as in Prop. ITL.; A’'PB'P’ and ap b p/

adjacent positions of the tracing circle. Then, Prop.

II1. Cor. 4, P’P and p’p are both parallel to BD.

Hence ultimately area A’a pP = area A’ap’P’; but
c
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these are the increments of the areas AA’P,and AA'P,
which commence together. Hence area AA’P = area
AA’P’, wherever P and P’ may be. Wherefore
(taking P to D) area AEQ'DP = area AE ¢DP’' =
area AQBDP, Therefore the arc APD divides the
area AEQ'DBQ into two equal parts. But area
~ AEQ'DBQ = area AEDB = twice the generating
circlee. Hence area AQBDP = area APDQ'E = the
generating circle; area APDB = 3 the semicircle
AQB; and area AEDP = semicircle AQB.

Pror. X.—The radius of curvature at P (fig.9)is
equal to twice the normal PB’.

With so much of the construction of fig. 7 as is con-

Fre. 9. (For 0', O read o, 0°; and join ¢ d’)

A A 3
—
P
o
o
.
4,
B g D
4
(4
V4 " e

tained in fig. 9, produce P’d, which is parallel to ¢ B’,
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to meet PB’ produced in o’. Then since ultimately
{P"=21q; 10 ultimately =2 IB’. So that if the
normals at the adjacent points P and P, intersect ulti-
mately (when P’ moves up to P) in o (which, there-
fore, is the centre of curvature at P),

Rad. of curvature P 0 = 2 normal PB’,

Cor. The radius of curvature diminishes from the
vertex, where it has its maximum length, to the cusp,
where the radius vanishes or the curvature becomes
infinite.

Prop. XI.—The evolute of the cycloid APD (fig. 9)
is an equal cycloid D o d, having its vertex at D, and
its cusp d on AB produced to d so that Bd = AB.

Complete the rectangle DBde, produce A’B’ to
d,and join o @’. Then in the triangles A’'B’P and
a’B’o the sides A’B’, B'P, are equal to the sides a’'B’,
B’o, each to each, and enclose equal angles; therefore,
the triangles are equal in all respects, and the angle
a0 B’ (= the angle B’'PA’) is a right angle. Hence a
circle described on B’a’ as diameter will pass through
0. Again, in the equal circles A’B’P and a’B’o, the
angles A’B’P and o’B’o at the circumference are
equal. Therefore the arc oo’ = the arc PA’= BB’
(Prop. II. Cor. 4) =da’. Wherefore o is a point on
a cycloid having d e for base, a cusp at d, and B'o o’ as
tracing circle. Since de = BD = arc B'od/, De is
the axis and D is the vertex of the evolute cycloid.

Cor. oP = 20B’ = arc o D (Prop. VL.); so that,

c2
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if a string coinciding with the arc d o D and fastened
at d be unwrapped from this arc, its extremity will
always lie on the cycloid APD,which may, therefore, be
traced out in this way as the involute of the arc doD.

Pror. XII.—If APD ( fig.9) be a semi-cycloidal arc,
do D its evolute, and o B’ P the radius of curvature
at any point P on APD, cutting the base BD in
B, then the area APB'B = three times the area
d BBo.

If P’o’ be a contiguous radius of curvature cutting
BD in b, and P’l parallel to BD meet PB’ in /; then .
in the limit 0/ = 2 0 B/, and therefore the area of the
ultimate triangle o / P’ = 4 times the area of the ulti-
mate triangle 0 B’6; or ultimately the area B'1P'6 = 3
times the area 0 B’d. But these areas are the element-
ary increments of the areas APB’B and d BB’0, which
begin together from AB d. Wherefore the area APB’B
= 3 times the area d BB’o.

Cor. 1. Area ABD =3 times aréa d BD = 3 times
area AED=§rect. BE =3 times the generating circle.
We have here another demonstration of the area.

Cor. 2. Area 0 B’'D =1 area B'DP =segm. P¢ B’
{Prop. VIIL.). This may be proved independently ;
for triangle o B’ b = triangle B’ !¢ = (ultimately) tri-
angle B’P ¢; but triangles 0 B’5, B'P ¢, are decre-
ments of area ¢ B'D and segment P ¢ B’ which end
togetheratD; ... o B'D = seg. P ¢ B".

Hence, dB’D = } generating circle. We have
here, then, yet another demonstration of the area.
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_Prop. XIIL.—If G (fig. 10) is the centre of gravity
of the cycloidal arc APD, then GK, perp. to AE
(the tangent at the vertex A) = } AB.

Let PP’ be an element of the arc APD and let
PM, P'N perp. to AB intersect the semicircle AQB
in Q and Q. Join AQ cutting MQ in n. Then
ultimately PP’ is parallel and equal to Q' (Prop. IV.).

Fia. 10.
A K E

- \h

MO N

A

B8 & [

0

Now, representing the mass of element PP’ by its
length, the moment of PP’ about AE ultimately
=PP. AN=2Q . AN
= MN.AQ
(sincen Q : MN:: AQ : AN)
and may be represented therefore by the elementary
rectangle MN ¢'m, of which the side N¢ = AQ.
Thus the moment of the arc APD about AE may
be represented by the area A ¢’5 B obtained by draw-
ing the curve A ¢’b through all the points obtained as
¢ was. But since square of N¢’ = square of AQ’
= rect. under AB, AM; A¢b is part of a parabola
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having A as vertex, AB as axis and parameter (focus
at S, such that AS= } AB). Therefore area AB
= § AB. BJ; and moment of arc APD about AE

(= arc APD .KQG) = 2—A11£é =ucAr).00 AI;D -Bb

or KG=34Bi=4AB.

Cor. 1. Moment of PP’ about AE = MN. AQ'.

Cor. 2. Still representing the mass of arc by its
length, that is, taking for unit of mass the mass of one
unit of length of the arc,

Moment of arc APD about AE = § (AB)%.

Cor. 3. Momt. of AP about AE is represented by

area AMg =% AM /AB. AM = £ AMt, AB},

Pror. XIV.—If G (fig. 11) is the centre of gravity of
the cycloidal arc APD, then GL perp. to the axis

AB = BD — § AB.
With same construction as in Prop. XII.,
Fre. 11. (AQ' and NQ intersect in n.)

=]
A €
N L 4 7
M %
/ /
L "
G -~
8 3 )

momt. of PP’ abt, AB=PN. PP’=2PN. inct. of AQ
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(Prop. VI.). Draw P a, P’a’ paralle] to AB and equal,

respectively, to AQ, AQ’; complete the rectangles N a,

Ma’; and produce a P to meet MP” in & Also join

BQ’ and let NP, MP’ prod. meet a cycloidal arc BE

having B as vertex and E as cusp in p and p’. Then,
rect. M « ultimately exceeds rect. N a by

rect. under PN,(P’a’—P a) + rect. under a’P’. k P/,

That is,
inct. of rect. N a = PN. inct. of AQ + AQ. A P’
= } momt. of PP’ about AB+BQ' . MN
(since AQ : BQ AP : EP)
= } momt. of PP’ about AB + momt. of p p”about BD
(Prop. XIII. Cor. 1). '

Wherefore, taking all increments from A, where rect.
N a has no area, to D, where N a=rect. AD, we have

2 rect. AD=momt. of arc APD about AB
+ 2 momt, of B p E about BD ;

that 1s,
DE
arc APD. GL =2 AB.BD — 2arcBpE. -5

or 2AB.GL=2AB.BD —* AB.DE;
.+.GL = BD — § AB.

Cor. Draw GH perp. to DE. Then GL + § AB
=BD = GL + GH. Therefore GH = § AB.
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Pror. XV.—If G (fig. 11) is the centre of gravity of
the cycloidal arc APD, and GH, GJ be drawn perp.
to DE and BD, JH is a square, whose sides are
each equal to § AB.

From Prop. XIII. EH = 3} AB;.-. DH=$% AB.
From Prop. XIV. Cor., GH = § AB. Therefore,
the rectangle JG is a square having each of its sides
= $AB.

Pror. XVI.—If G’ (fig. 12) is the centre of gravity
of the area APDE, then G'K perp. to AE=}AB.

Take PP’ an element of the arc APD; draw P’ »
perp. to AE, and PQM, P’Q’N perp. to AB, inter-

Fia. 12.
A ” K E
N . |,
G
[
[ >

secting AQB in Q and Q. Complete rectangles P,
QN. Then from Prop. IX. Cor. 1,
rect. Pn = rect. QN.
Now momt. of element P z about AE, ultimately
=43P n.rect. Pn
=4 AN.rect. NQ
= } momt. of NQ about AE.
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Taking all such elements, we have
Momt. of area APDE about AE = } momt. of area

AQB about AE.
That is, G’K.area APDE =} AC.area AQB.
But, area APDE = area AQB;

+GK=13AC=}AB.

Pror. XVIL—If G’ (fig. 13) is the centre of gravity
. of the area APDE, HI paraliel to AB through H
the bisection of AE, and G'L perp. to HI, then
4
G'L:A4B :: AB: 3B1, or G'L = 3 AB.
Take elements MN and M’N’ equal to each other
and equidistant from A and B respectively ; draw

Fie. 13.

A H » »n E
) F o )
N L -
P
o )
N
") V R &

MQP, NP, N'R, and M’q R’ parallel to BD, meet-
ing APD in P, P’, R and R’ (Q and ¢ being points on
circle AQB). Draw P’z and R’ #’ perp. to AE, and
complete the elementary rectangles Pz, R2’, QN and
¢ N’.  These four rectangles are equal. Now, sum of
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moments of Pz, R 2’ about HI
= Han.rect. Pn+ Hn' rect. R#’
= (H=z + H#2') rect. QN
= 2QM. rect. QN (Prop. I1I. Cor. 3)
= 2 moment of rect. QN about AB.

[This relation holds whether P z and R »” lie on
the same side as in fig. 13 or on opposite sides of HI;
for in the latter case, the moments being in opposite
directions, their difference is the effective moment, and
instead of (H n’ + H 2) rect. QN, we get (H»'— H )
rect. QN ; but when »’ and = are on opposite sides of
HI, Hn' — Hrn =2QM. Prop. IIL Cor. 3.]

Wherefore taking all the elements such as MN,
M’N’, from A and B to the centre C, we get

Momt. of area APDE about HI = 2 momt. of semi-
circle AQB about AB;

that is, LG’. area APDE =2 Cg.area AQB
(g being the centre of gravity of the semicircle AQB
and C g perp. to AB). And since area APDE =area
AQB, LG'=2Cy.
But we know that
Cg:AB :: AB: 3 arc AQB* (= 3BD);
2AB
(or Cg=—3—):
wherefore LG’ : AB: 2AB : 3 BD :: AB : 3BI;
4AB

(or LG/ = 5~

* If the reader is unfamiliar with this property, he may esta-
blish it thus :—First show that projection of any element of semi-
circle on tangent at the middle point of the arc has a moment about
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Pror. XVIIL—If G and G ( fig. 14) are the centres
of gravity of the areas APDB and APDE re-
spectively, O the centre of gravity of the rectangle
BE (that is the point in which HI, drawn as in last
proposition, and CC', the line of centres, bisect each
other), dnd GK, G'L are drawn perp. to HI, then

T

Since O is the centre of gravity of the rectangle
BE, that is, of the area APDB + the area APDE, the

Fie. 14,
A H [3
I
—‘X ,
L ¢
c .
[+ K
F B I D

moments of APDB and APDE about COC’ are
equal; that is,

diameter equal to the moment of the element; therefore moment
of semicircular are, or r rad. x dist. of C.G from diameter =diameter
xrad.; that is distance of C.G from diam.=diameter «- . Now a
semicircular area may be supposed divided into an infinite number of
equal small triangles having centre for apex,and each triangle may
be supposed collected at its C.G. at a distance from centre = § rad.
Hence C.G. of semicircular area lies at a dist. from diameter =
2 diameter
3 :
Cg: 2r :: 27 : 3 arc of semicircle.

That is to say Cg:47r::1:3x 27 :3xr, or
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3 area APDE. QK =area APDE.OL;
or OK=10L=;AB=1AC.
Similarly, '
GK = {LG'= .AB=84C
9z
Cor. 1. Since LG’ : AB:: AB : 3BI
(Prop. XVIL.),
’ GK: AB:: AB: 9BL
Cor. 2. G, O, and G’ lie in a straight line, and
0G’=30G.-
Cor. 3. Since moment of area AQBD about BD
= (moment of ABDP —moment of AQB) about BD

=(3.3AC — AQ) EAQ’_%EJ x AC?; it follows

that the C.G. of area AQBD lies at a distance=3AC
from BD.

ScHOL.—The position of G may be thus ob-
tained : —

Take OK =1 AC. Also, take BM =4 AB;
join MI, and let MF' perp. to MI intersect DB pro-
duced in F': draw KG perp. to OI and equal to BF.
Then G is the centre of gravity of the area APDB.
For OK = LAB; and

KG (=FB): BM::BM : BI;
that is, KG : 1AB:: }AB : BI:: AB: 3 BI,
or KG: AB:: AB: 9 BL ‘
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Pror. XIX.—If from G (fig. 15), the centre of gravity
of semi-cycloidal arc APD, GL be drawn perp. to
AB, and G | making with AB produced the angle
GlA =the angle ADB ; then the surface gene-
rated by the revolution of the arc APD about the
aris AB is equal to eight times the rectangle having
sides equal to AB and Ll.

By Guldinus’s First Property (see note following
this Proposition), the surface generated by the revolu-

Fia. 15.

K

tion of APD about AB=rect. under straight lines
equal to APD and circumference of circle of radius
LG. But APD=2AB, and since GL [ is similar to
ABD, and BD = } tbe circumference of circle of
radius AB, it follows that L /= } circumference of
circle of radius LG. Hence the surface produced by
the revolution of APD about AB
= rect. under 2 AB and 4 L/

= 8 times the rectangle under AB and L7
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Cor. 1. Inrevolving round AB through half a right
angle, APD generates a surface equal to rectangle
under AB and L L.

Cor. 2. Since GL=BD—2AB (Prop. XIV.),

Li=(BD—2AB) 2'2_ and the surface generated by re-

volution of APD about AB =4AB (BD — £AB)~»
=8AC (». AC—4AC) r =7 (»—4) (AC),
= 8 (v — 4) generating circle.

NoTE.—Guldinus’s properties, usually demonstrated by the in-
tegral calculus, are essentially geometrical. His First Property
masy be stated and established as follows :—

If a plane curve revolve through any angle a about an axis in its
omn plane, the curve lying entirely on one side of the axis, the area
generated by the curve is equal to a rectangle having its adjacent sides
squal in length to the curve and to the arc described by the centre of
gravity of the curve, in revolving about the awxis through the angle a.

Let APB (fig. 16) be a curve lying in the same plane as OX, and
entirely on one side of OX, and let it revolve around OX through

F1o. 16.

an angle a to the position @ p . Then PI’, an element of the are
APB, generates a conical shred of constant breadth PP’ and of area
ultimately = PP'. arc Pp = PP'.PM .a = a. moment of PP’ about
OX. Taking all the elementary arcs of APB in this way, the sur-
face generated by the arc APB = a. moment of arc APB about OX
= a.GN.arc APB; (G being the centre of gravity of the arc APB,
and GN perp. to 0X).

Or, if length of curve APB = L, GN = &, and the area of the
surface generated = A. then

AmL.q.a
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If the axis intersect the curve, then the two portions of the
curve lying on either side of the axis must be separately dealt with,
It is easily seen that if the curve APB is not plane, or if (whether
plane or not) it is not in the same plane as OX, a similar property
may be established. Let the curve be carried once round OX, and
" let a plane through OX intersect the surface thus generated in a
curve A’P'B’ (any parts of A'P'B’ through which more than one part
of APB may have passed being counted twice or thrice or so many
times as they may have been traversed in one circuit of APB). Let
L/ be the length of A'P'B’ (thus estimated); G its centre of gravity
(correspondingly estimating the weight of its various parts), and a’
the distance of G’ from OX. Then the surface generated by the
revolution of APB round OX through the angle a = L'. Z'. a (any
part of the generated surface traversed more than once by the
generating curve being counted as often as it has been so traversed).
Again, if APB 8o move as to generate a cylindrical surface either
right or oblique, and two planes through OX intersect the surface
thus generated, the portion of this surface intercepted between
those planes may be thus obtained :—through 0X take a plane perp.
to the axis of the cylindrical surface and intersecting that surface
in a curve A’'P'B’ of length I/ and having centre of gravity G’ at
distance 4’ from OX; let the portion of a straight line through G'
parallel to the axis of the cylindrical surface, intercepted between
the boundary planes = % ; then the surface intercepted = L'. & &.

The proofs of this and the preceding extensions of Guldinus’s
first property depend on the same principle as the proof of the pro-
perty itseif given above. In fact, the student who has grasped the
principle of that proof will perceive the extensions to be little more
than corollaries.

It may be of use to note that the two extensions require two
lemmas. The first requires this lemma :—If an element of arc PP’
be projected orthogonally on a plane through OX and P into the
elementary arc P p, then PP’ and P p in rotating through any angle
round OX generate equal surfaces. This is obvious, since they
generate equal elementary surfaces in rotating through an elemen-
tary angle round OX. The second extension requires this lemma :—
If two planes through OX cut two parallel lines Pp, Py’ in P, P
and p,7’, the lines PP’ and pp’ being elementary, then two other
planes through OX near to these last cutting Pp and P’ in R, R’
and 7, 7, such that PR=p r, intercept equal areas PRR'P’ and prr/p'.
These areas are in fact ultimately parallelograms on equal bases and
between the same parallels.
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Pror. XX.—If from G ( fig. 15), the centre of gravity
of the semi-cycloidal arc APD, G H be drawn perp. to
ED, and G h making with ED produced the angle
Gh H = angle ABD, then the surface generated by
the revolution of the arc APD about ED as an
axis is equal to eight times the rectangle under AB
and H h.

The demonstration is in all respects similar to
that of Prop. XIX.

Cor. 1. In revolving through half a right angle,
APD generates a surface equal to the rectangle under
AB and H#x.

Cor. 2. Since GH = 2 AB (Prop. XIV. Cor.),

Hi= ’i%? ; and the surface generated by the revo-

B

lution of APD about ED=8. AB. AT =% (aBy

= 92.‘_” (AC)? = 32 . generating circle.

Prop. XXI.—If from G ( fig. 15), the centre of gravity
of the semi-cycloidal arc APD, GK be drawn perp.
to AE, and G k parallel to AD meet AE in k, then
the surface generated by the revolution of the arc
APD about AE as axis=eight times the rectangle
under AB and Kk.

The demonstration is similar to that of Prop. XIX.
Cor. 1. In revolving through half a right angle
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APD generates a surface equal to the rectangle under
AB and K&,

Cor. 2. Since GK = 1AB (Prop. XIV.), K% =
-’é AB; and the surface generated by the revolution of

APD shout AE=8sAB . AB_%7sms =167 (acy

16 o
=3 generating circle,

Pror. XXIIL—If from G (fig. 15), the centre of
gravity of semi-cyclvidal arc APD, GJ be drawn
perp. to BD, and Gj parallel to AD to meet BD
produced in j, then the surface produced by the revo-
lution of the arc APD about BD as axis=-eight times
the rectangle under AB and Jj.

The demonstration is similar to that of Prop. XIX.
Cor. 1. In revolving through half a right angle

APD generates a surface equal to the rectangle under

AB and Jj.

Cor. 2. Since GJ = 2AB (Prop. XV.), Jj=

7; AB; and the surface generated by the revolution of

APD about BD = 8_3’.' (AB) = §§’f (ACH.

= 332— generating circle.
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Prop. XXIV.—If from G (fig. 17), the centre of
gravity of the cycloidal area APDB, GL be drawn
perp. to AB, and Gl making with AB produced the
angle G 1A= angle ADB, then the volume gene-
rated by the revolution of the area APDB around
the axis AB is equal to six times the volume of a
cylinder having the generating circle AQB for lase
and height equalto L 1.

By Guldinus’s Second Property (see note following
this proposition) the volume generated by the revolu-

tion of surface APD around AB=volume of a right
cylinder having APDB as base and height = circum-
ference of circle of radius LG. But area APDB=
3 generating circle; and, as in Prop. XIX., LiI=
} circumference of circle with radius LG. Hence the
volume generated by the revolution of area APD
around AB is equal to ($ x 4 times, or) six times the
volume of a cylinder having circle AQB as base and
height = L .

Cor. 1. The volume generated by the revolution of
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APDB through one-third of two right angles about
AB is equal to a cylinder having circle AQB as base
and height=L L

Cor. 2. Since LG =0

= SAC ,Li= (4 AC -~ ‘:”C) #; and the sur-

face generated by the revolution of APDB about AB
_ of T _ 47A_q _ (3=® _ 8= 3
—6x (AC) (4AC e ) "= ( ) (ACY.

Cor. 3. Since the rectangle BE in revolving
around AB generates a cylinder whose volume
= AB.x.(BD)!)=2AC . » (rAC)?*=2#*. (AC)? it
follows from Cor. 2 that the volume generated by
APDE in revolving around AB

=213 (AC) (3"3— 3 )acy= (’§+ 2) (aop.

c-— 4AB 8 (Prop. XVIIL)

NorE.—Guldinus’s Second Property may be thus stated and es-
tablished :—

If a plane figure revolve through an angle a about an axis in its
own plane (the figure lying entirely on one side of the axis), the volume
of the solid generated by the figure is equal tothat of a cylinder having
the figure for base and its height equal to the are described by the
centre of gravity of the surface in revolving through the angle a.

Let AQB (fig. 18) be a plane figure, and let it revolve through
an angle a about an axis OX in the same plane (AQB lying en-
tirely on one side of OX) to the position of agd. Then PP, an ele-
ment of the figure's area, generates a ring of constant cross section
PP’ and of volume ultimately = PP.Pp = PP.PM.a = a. moment
of PP about OX. Taking all the elements of area of AQB in this
way, the volume generated by the surface AQB = . moment of the
area AQB about OX = a.GN . area AQB, G being the centre of
gravity of the figure AQB, and GN perp. to OX.

Or if area of AQB = A, GN = &, and the volume of the solid
generated = V,

’ V=A.d.a
D2



36 GEOMETRY OF CYCLOIDS.

Prop. XXV.—If from G (fig. 17), the centre of
gravity of the cycloidal area APDD, GH be drawn
perp. to BD and G h parallel to AD to meet BD in
L, then the volume generated by the revolution of the
area APDB about BD as axis is equal to siz times
the volume of a cylinder having the gevzerhting circle
AQB for base and height equal to H h.

The demonstration is in all respects as in Prop.
XXIV.

Cor. 1. The volume generated by the revolution
of APDB through one-third of two right angles about

It is easily seen that if the figure AQB is not plane, or if,
whether plane or not, it isnot in the same plane as OX, a similar

Fia. 18.

property may be established. Let the figure AQB be carried
once round OX, and let a plane through OX intersect the surface
thus generated in a curve A'Q'B’ (any parts of the plane figure
A'Q'B’ through which more than one part of AQB may have passed
being counted twice or thrice, or so many times as they may have
been traversed in one circuit of AQB). Let A’ be the area of
A'Q'B’ (thus estimated), G’ its centre of gravity (correspondingly
estimating the weight of its various parts), and &’ the distance of
G’ from OX. Then the volume generated by the revolution of AQB
round OX through the angle a = A’.&'. a (any part of the volume
generated which is traversed more than once by the generating
curve being counted as often as it is so traversed).
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BD is equal to a cylinder having the circle AQB as
base and height=H A.
Cor. 2. Since GH=2AC (Prop. XVIIL), Hh=

f;rAC; and the volume generated by the revolution of

APDB about AB=#.(AC)?. $rAC=42? (AC).
Cor. 3. Since the rectangle BE in revolving
around BD generates a cylinder whose volume=
BD.» (AB)2=%AC.47 (AC)? =442 (AC)?, it follows
from Cor. 2 that the volume generated by APDE in
revolving around BD .
= 422 (AC)® —422 (AC)® = 32 (AC) .

Again, if AQB so move as to generate a cylindrical surface either
right or oblique, and two planes through OX intersect the surface
thus generated, the portion of the volume of this cylinder inter-
cepted between these planes may be thus obtained :—Through OX
take a plane perp. to the axis of the cylindrical surface, and inter-
secting that surface in a curve A’Q'B/, enclosing a figure of area A’,
and having its centre of gravity G’ at a distance a' from 0X; let
the portion of a straight line through G’ parallel to the axis of the
cylindrical surface intercepted between these bounding planes = 4;
then the volume intercepted = A’. &'. k.

The proof of this and the preceding extension of Guldinus’s
second property will be found to require the two following lemmas:
First, if an element of area PP’ be projected orthogonally on a
plane through OX and P into the elementary area P p', then PP’
and Pp' in rotating through any angle around OX generate equal
elementary solids. This is obvious, since they generate equal ele-
mentary solids in rotating through an elementary angle around OX.
Secondly, if two planes through OX cut a parallelopipedon of ele-
mentary cross section in the parallelograms PP’ and pp’, Pp and
P'p’ being two opposite edges of the parallelopipedon, then two
other planes through OX near to these last, cutting Pp and Pp’ in
R, R’, and 7,7/, such that PR = p », intercept equal elementary solids,
PRR'P’ and pr#p'. These solids are, in fact, ultimately parallelo-
pipedons on equal bases and between the same parallel planes.
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Pror. XXVL—If from G’ (fig. 17), the centre of
gravity of the cycloidal area APDE, G'K be drawn
perp. to AE and G'k parallel to AD tomeet AE ink,
then the volume generated by the revolution of the area
APDE about AE as axis is equal to twice the volume
of a cylinder having the genmerating circle AQB for
base and height equalto K k.

The demonstration is as in Prop. XXIV., except
that the area APDE = a third only of the area
APDB.

Cor. 1. The volume generated by the revolution
of APDE through two right angles about AE = a
cylinder having circle AQB as base, and height equal
to K 4.

Cor. 2. Since G’K=31AC (Prop. XVL), K&=

ZAC; and the volume generated by the revolution of

APDE about AE = = (AC). %AC=’;_’(AC)3.

Cor. 3. Since the volume generated by the revolu-
tion of rectangle BE around AE=4#? (AC)® (see
Prop. XXYV. Cor. 3), it follows from Cor. 2 that the
volume generated by APDB in revolving around AE

== (ACy—7 (ACy= " (AC).
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Prop. XXVIL—If from G’ (fig. 17), the centre of
gravity of the cycloidal area APDE, G'J be drawn
perp. to DE and G’j parallel to AD to meet DE
in j, then the volume generated by the revolution of
the area APDE around DE as axis is equal to twice
the volume of a cylinder having the generating circle
AQB for base and height equal to Jj.

The demonstration is as in Prop. XXIV., modified
asin Prop. XXVL
~ Cor. 1. The volume generated by the revolution
of APDE through two right angles about AE = a
cylinder having circle AQB as base, and height equal
to Jj.

Cor. 2. Since G'J _éE—_ 8» AC (Prop. XVIL)

7!'
=(5-5 )AC Jj= (-—--) AC; and the volume
generated by the revolutxon of APDE arouxid DE
=m(ACy (T —3) AC= ( =) (AC)

Cor. 3. Since the volume generated by the revo-
lution of the rectangle BE around DE=22* (AC)?
(Prop. XXIV. Cor. 3), it follows from Cor. 2 that the
volume generated by APDB in revolving around DE

=222 (ACy — (-%7) (acy= (32+%) (aoy.
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SECTION II.
THE EPICYCLOID AND HYPOCYCLOID.

DEFINITIONS.

The Epicycloid is the curve (as D’ AD, fig. 19, Plate 1.)
traced out by a point on the circumference of a circle
(as AQB) which rolls without sliding on a fived
circle (as BDB') in the same plane, the rolling circle
touching the outside of the fixed circle.

The Hypocycloid is the curve (as 1LY AD, fig. 20, Plate
L) traced out by a puint on the circumference of a
circle (as AQB) which rolls without sliding on a
fixed circle (as BDB’) in the same plane, the rolling
cirele toucling the inside of the fized circle.

‘What follows applies to both figures unless special reference is
made to one only, and in every demonstration in this section two
figures are given, one illustrating a property of the epicycloid, the
other illustrating the same property of the hypocycloid, but the de-
monstration applying equally to either figure, unless special refer-
ence is made to one only. The student will do well to read each
proof twice, using first one figure, then the other. For convenience
the word ¢ cycloidal ’ throughout this section is to be understood to
signify either epicycloidal or hypocycloidal according to the figure
followed.

[NotE.—It will be shown in Prop. I. of the pre-
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sent section that if two circles AQB and AQ'B/,
touching at B, touch a fixed circle BDB’ at the ex-
tremities of a diameter BOB’, then the same curve is
traced out by the point A on the circle AQB rolling
in contact with the circle BDB’, as by the point A on
the circle AQ'B’ rolling in contact with the same circle
BDB’. We may therefore, in what follows, limit our
‘attention to cases in which the centre O lies outside
the rolling circle. According to the definitions given
above, the curve traced out by A, fig. 19, is an epi-
cycloid whether AQB or AQ'B’ is the rolling circle.

It may be well to mention that it has hitherto been
customary to regard the curve traced out by A on
AQB, fig. 19, as an epicycloid, and the same curve
traced out by A on AQ'B’ as an external hypocycloid.
Instead of defining the hypocycloid as the curve ob-
tained when the rolling circle touches the outside of
the fixed circle, it has hitherto been usual to define it
as the curve obtained when either the convexity of
the rolling circle touches the concavity of the fixed
circle, or the concavity of the rolling circle touches the
convexity of the fixed circle. There is a manifest
want of symmetry in the resulting classification, see-
ing that while every epicycloid is thus regarded as an
external hypocycloid, no hypocycloid can be regarded
as an internal epicycloid. Moreover, an external hypo-
cycloid is in reality an anomaly, for the prefix hypo’
used in relation to a closed figure like the fixed circle
implies interiorness.]

Let BDB’ (radius F) be the fixed circle, AQB
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(radius R) the rolling circle. If the centre of the
latter circle move in the direction shown by the arrow,
it is manifest that at regular intervals the tracing
peint will coincide with the circumference BDB’, as
at Y, D, &c. (E'¢’D’ and Eg¢D being the correspond-
ing positions of the rolling circle), while midway be-
tween two such coincidences the tracing point will be
at its greatest diametral distance from D’'BD as at A
(A QB being the corresponding position of the rolling
circle), ACB the diameter through the tracing point
passing when produced through O, the diameter of the
fixed circle. It is clear also from the way in which
the curve is traced out that the parts AP’D and APD
are similar and equal. Wherefore AB is called the
azis of the cycloidal arc D’AD. The circular arc
D’BD is the base, A the vertez, and the points D’
and D are the cusps. It is convenient to call the
radius to the tracing point the tracing radius, and the
diameter through the tracing point the tracing diameter.
The tracing circle in the position AQB is called the
central gemerating circle; and straight lines passing
through the centres of both the fixed aud rolling circles
are said to be diametral. The arc Cc is called the are
of centres, and the circle of which it is part the circle
of centres. ‘

Let a circle E’AE be described with centre O and
radius OA, and let OD’ and OD (produced if neces-
sary) meet this circle in E and E’; then it is clear that
D’d’ and Dd, the parts of the cycloidal curve on either
side of D’E’ and DE, are symmetrical with regard to
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these lines respectively, which are therefore secondary
azes. Also E’AE touches the curve ID’AD in A.
The complete curve, either of an epicycloid or of
a hypocycloid, consists of an infinite number of equal
cycloidal arcs, but when the radii F and R are com- -
mensurable in length, the curve is re-entering, and
may be described as consisting of a finite number of
arcs.* Thus if R = F the rolling circle will make one
complete circuit of the fixed circle between each suc-
cessive coincidence of the tracing point with the fixed
circle ; hence D and D’ will coincide, and there will be
but one cusp. (No hypocycloid can be traced with
these radii.) If R =4F, each base as DD’ will be
equal to half the circumference of the fixed circle, and
there will be but two cusps. Similarly if R = 3F, {F,
1F, &c., there will be 3, 4, 5, &c., cusps, respectively.
In these cases the complete cycloidal arc will consist of
a number of equal arcs, standing on equal parts of one
circuit of the fixed circle’s circumference. Again, if
mR = nF, where z and m are integers prime to each
other, then m circumferences of the smaller circle
will be equal to z circumferences of the larger. Con-
sequently there will be m cusps in the complete cy-
cloidal curve, and the base of each cycloidal arc will
be equal to one mth part of » circumferences of the

fixed circle, that is to the Zth part of the circumfer-

* Theoretically it consists in that case of an infinite number of
arcs, occupying a finite number of positions, and consequently each
arc coinciding with an infinite number of other arcs belonging to
the curve.
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ence of this circle. Wherefore if n > m, the base is
greater than the circumference of the fixed circle,
but if » < m the base is less than this circumference.
If m = unity, that is R =z F, then the base of each
cycloidal arc = n times the circumference of the fixed

circle.
PROPOSITIONS.
Prop. I.—If a circle ¢ D q (figs. 21 and 22), having
Fia. 21.

radius De, roll in contact with a circle KDb, having
radius OD, ¢ and O lying on the same side of D,
then the point D on ¢'D q will trace out the same
curve as the point D on a circle @ D Q having radius
DC equal to ¢ O (measured in direction ¢ O), rolling
in contact with the circle K D b.

Let b be the point in which the rolling circle ¢'D ¢
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touches KD b, when the tracing point is at P, ¢’ being
the centre of ¢’D ¢ (¢, O, and b lying in the same
straight line). Through O draw OC’, equal and
parallel to ¢ P, meeting KD in B’; and join PC'.
Then PC’O ¢ is a parallelogram; PC’'=c/0=DC;
also, since OC'=c¢P=c¥, and OB’'=00, CB'=0¢
=DC. Hence a circle equal to QDQ’, touching KD&
in B’ (on the same side as QDQ’), has its centre at C’

Fia. 22,

and passes through P.

Moreover, since arc P b =arc D b,
LPcb(=2C0b=LPCB): £tDOb::0b: ¢'d,
<..PCB: LDOB ::0¢ : 05:: DC : OD.
Therefore arc PB’=arc DB’, and P is a point on the
curve traced out by D on the circle QDQ’ rolling in

contact with the circle KD 8.
ScHOL.—It is manifest that when P arrives at the
vertex of the curve the rolling circles are. placed (re-
latively to each other) as in figs. 19 and 20.
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Prop. I1.— The base of the epicycloid or hypocycloid
is equal to the circumference of the generating circle.

This, as in the case of the cycloid, needs no demon-
stration.

Cor. 1. Arc D’B (figs. 19 and 20) = arc BD
=half the circumference of the generating circle.

Cor. 2. Arc Cc : arc BD :: CO : BO.

Or for the epicycloid,

_F+R _F+R
arc Cc_——R . arc BD_—-R— arc AQB,
and for the hypocycloid,
arc Ce= FER .arc BD = FI_{R. arc AQB.

Cor.3. Area E’AEDBD’=2 AED'B
=4 rect. under AC,Cc*

=4 co rect. under AC, BD

BO’

_4CO .
=50 .circle AQB

for the epicycloid =4 (EI':—R) circle AQB

for the hypocycloid =4 (E_E.—IE) circle AQB.

* The relation here employed is almost self-evident. It may be
thus demonstrated: Divide the area AEDB into a series of ele-
mentary areas by drawing radial lines from O : each element is in
the limit a trapezium whose area = rectangle under AB and half
the sum of those elementary arcs of AE and BD which form (in
the limit) the parallel sides of the trapezium. Therefore the area
AEDB = rectangle under AB and half the sum of the arcs AE,BD
= rectangle under AB and the arc Ce.
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Prop. II1.—If through P, a point on the epicycloidal
or hypocycloidal arc APD ( figs. 23 and 24), the erc
PM be drawn concentric with the base BD, cutting the
central generating circle in @ and meeting the azxis
AB in M, then arc QP: arc AQ:: OM : OB,

Let A’PB’ be the position of the generating circle
when the tracing point is at P; C’ its centre; A’C’B’O
diametral, cutting PM in M. Draw the tracing dia-

Fig. 23. Fio. 241

X

meter PC’d. Then it is manifest that arc QM = arc.
M'P; arc MM’ = arc QP; and arc AQ = arc A’P.
Now b is the point which was at" B when the tracing
point was at A ; and since every point of the arcd B’
has been in rolling contact with BB/, the arc » B’ = the
arc BB’. But arc 5 B'= arc A’'P = arc AQ; and
arc MM’ (= arc QP) : arc BB’::OM : OB;
..arc QP :arc AQ::OM : OB.
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Cor. 1. Arc MP = g%l- arc AQ+arc MQ.

Cor. 2.
Let arc MQ prod. meet OE(drawn as in figs. 19,20)in m

then arc Mm=%1% arc BD= %I arc AQB.
[But arc BQ > QK perp. to AB; . gll\;l arc BQ >

ML, perp. to AB and meeting OQ produced in L (for
OM: OB > OM : OK). But ML >arc MQ. 4

fortiori, then, oM .arc BQ>arc MQ.]*

OB’
*. since arc Mm = %%{ arc AQ + g—lg arc BQ,

while arc MP = % -arc AQ + arc MQ,

arc M m > arc MP, and P falls between OA and OE;
that is, the whole arc APD lies betyveen QA and OE.
Cor. 3. The arc Pm = arc M m — arc MP

= g}\;{ arc AQ — Og arc AQ — arc MQ

= (())—1\1;[ arc BQ — arc MQ.
Cor. 4. If through P’, a point near P, arc PpQ’
be drawn concentric with the base BD, meeting
AQB in Q and cutting A’PB’ in ¢, then in the limit

* The part in [] fails for hypocycloid. Substitute the follow-
ing :—Let OQ pr \duced meet arc BD in H, draw BF perp. to OH and
describe § © BFO. Then, arc BH=arc BF (of half rad. and double

£ at centre); but arc BF < arc BQ, *.° chd. BF < chd. BQ (BFQ
being a rt. angle) while seg. BF contains a larger angle than seg.

BQ'Q. Hence a.chQ>arc BH > 0_;31 arc MQ; i.e. OM.arc BQ

OB
> arc MQ
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(when P’ is very near to P),arc P'Q'= %% arc A’g;

~and arc PQ = 8—1];1 arc A’P; therefore,

arc P’Q —arc PQ (=¢P)= 3—1]\34 (arc A’q —arc A’P)

M
=% arc Pg; or, in the limit,

gP :arcPg::OM : OB.

Pror.1V.—A4, B, C, D, E, §c. (figs. 25 and 26, p. 51)
representing the same points as in the preceding propo-
sition, the area APDBQ = half the arca ABDE;
or area APDBQ : generating circle:: OC : OB.

Take CL=CL/,on AB; and LK, L'K’ equal ele-
ments of AB, both towards C. Draw LQ, K¢, K'¢,
and 1/Q’ at right angles to AB to meet AQB; and
about O as centre describe arcs QP, ¢ p, ¢'p’, dnd -
Q'P, meeting APD. Let O g, produced if necessary,
meet QP in n; draw Q% perpendicular to Kg¢; join
C ¢, and draw C m perpendicular to O ¢, produced if
necessary. Then ultimately the triangles Q%g¢ and
¢ KC are similar, as are the triangles Qg and ¢Cm
(for Q ¢ C being ultimately a right angle, Q ¢  is ulti-
mately the complement of Cgm and therefore equal
to ¢ Cm). Hence the quadrilateral Q ¢ % is similar

to the quadrilateral gm C %, and

gn: Qi(=LK)::Cm :Kg::CO:¢q0
(triangles CO m and ¢ OK being similar). Hence
E
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Area QP p g (ult.=rect. n ¢, QP) : rect. LK, QP
1:C0:¢40;
but, rect. LK, QP :rect. LK, Ag:: QP : A g
: ::¢ O : BO(Prop. IL.);
.. ex @q. area QPpg'rect LK Ag:: CO : BO

2Cec:
mmllarly, area Q'P'p’q’ : rect. L’K’ A ¢ (or LK, Bg)
~1:Cec:BD;
. QPpg+ QP p'q : rect. LK,Aq—-i-Eq—(or LK, BD)
::Cec:BD;

wherefore QPpg+QPp'¢ =rect. LK, Cec.

*. summing all such elements between AE and BD,
Area APDBQ=rect. under AC, C c=14 area ABDE.
or, area APDBQ : gen. @ :: OC: OB.

Cor. 1. Since, for epicycloid, C ¢ = I‘ﬂ-AQB,

ares APDBQ= 5. AC. AQB="1X  gen. ©

and the area between»eplcyclmdal arc and base

F+R 3F+2R
= (2. —F—-+1) gen. © = —F gen. Q.

" For the hypocycloid, area APDBQ = F-R .gen. O;

and the area between hypocycloidal arc and base
3F-2R
=—7fF -&en ®.
Cor. 2. If AB is the axis of a cycloid (A the ver-
tex) and LQ produced meet this cycloid in R, then
Area AQP : area AQR::OC: OB.*

* This relation, which follows directly from the proportion on
the fifth line of this page, might have been employed to establish
the main proposition. I preferred, however, to give an independent
proof.
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Cor. 3. Epicyc. area APDE = APDBQ — AQB

F+R F+2R
=\"§ —-%) gen. @ = 5[ gen. Q.
. —-2R
Hypocycloidal area APDE = ——4+ gen. ©.
Fig. 25. Fie. 26.

Cor. 4. Area AQP +area BQ'P’D=rect. AL, Cc;
and, area QQ'P’P = rect. under LC, Ce.

Propr. V.—If P is a point on the epicycloidai or hy-
pocycloidal arc APD (figs. 27 and 28) A'PB’ the
generating circle when the tracing point s at P,
A’ C B’ diametral, then PB’ is the normal and A P
is the tangent at the point P.

Since, when the tracing point is at P, the generat-
ing circle A’PB’is turning round the point B’, the
direction of the motion of the tracing point at P must
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be at right angles to PB’;—wherefore PB’ is the
normal and AP is the tangent at P.

Another Demonstration, (See p. 8.)

Take P’ a point near to P and draw PQM, P'Q’
concentric with BD; PQM meeting AB in M and
cutting AQB in Q; and PPQ'N cutting AQB and

Fre. 27. (Join PC', AQ.) Fre. 28. (Join AQ.)

A’PB’ in Q and ¢. Join PC’, PO, and let C’s pa«
rallel to PO meet PB’ (produced in case of epicycloid)
in s. Then (Prop. III. Cor. 4)

arc ¢P’ :arc P¢::PO : B'O::C’s : OB’ (= C'P)3
or the sides about the angles P ¢ P’, PC’s are propor-
tional ; but these angles are ultimately equal, for P ¢
is ultimately perp. to C’'P, and P’g to PO, that is to C’s.
Therefore the triangles P g P’ and PC’s are ultimately
similar ; and the third side PP’ of one is perp. to the
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third side P s of the other. Thatis PB’ is the normal
at P, and therefore PA’ perp. to PB’ is the tangent at P.

Cor. 1. If PB’ intersect QP in /, and s C’ pro-
duced meet PA’ in %, the triangle PP’7 is ultimately
similar to the triangle s P %. '

Cor. 2, If B’q be joined and produced to meet PP’
in n, then ¢ z is ultimately perp. to PP’; wherefore if
C’N be drawn perp. to B’P, the figure P’g P’ is' ulti-
mately similar to the figure PC’s N & ; whence

PP :Pnr::Ps:PN.
ScHOL.—As in Schol. p. 9 (obviously modified), a

tangent may be drawn to APD from any point on
APD or AA’E.

Prop. VI.—With the same construction as in Prop. V.,
Are AP : chord AQ::2CO : BO.

Since ¢ n is ultimately perpendicular to PP/, P =
is ultimately equal to the excess of chord A’q over
chord A’P. Now from Cor. 2, Prop. V.,

PP :Pn:sP:NP: 2sP:BP
:2C0:B0:2C0:BO,
or, inct. of AP :inct. of ch. A’P (or AQ)::2CO: BO.
But arc AP and chord AQ begin together, wherefore
Arc AP : chord AQ::2CO : BO.

Cor. 1. Arc APD : AB::2CO : BO.
Cor. 2. For the epicycloid,

Arc APD = AB. 2 (FBTR) =4 R(IF'R).
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For the hypocycloid,
Arc APD = g 2EZR) 4 R(E-R)
Cor. 3. PY : Pa::2CO : BO.

Cor. 4. PP’ : 2P ::2C0O : 2CO-BO
:2:2C0O: AO.
Cor.5. Pr:2nP ::BO: AQ.

Prop. VIL.—PRoB. To divide the arc of ar epicycloid
or a hypocycloid into parts which shall be in any
given ratio to each other.

Let a straight line a b (figs. 27 and 28) be divided
into any parts in the points ¢ and d : it is required to
divide the arc APD in the same ratio.

Divide ABin L and K, so that

AL : LK :KB:ac:cd:db;

with centre A and radii AL and AK, describe circular

arcs LQ, K r, cutting the semicircle AQB in Q and 7;

through which points draw the arcs QP, » P, concen-

tric with BD. Then

Arc AP : chord AQ (= AL)::2CO : BO.

Similarly Arc AR : AK::2CO : BO;
Therefore Arc PR : LK ::2CO : BO.
Similarly Arc¢ RD : KB::2CO : BO,

therefore

Arc AP : arc PR : arc RD:: AL : LK : KB
cac:ed:db;
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or, the arc APD is divided into the points P and R in
the required manner.

Similarly may the arc APD be divided into four,
five, or any number of parts, bearing to each other any
given ratios.

Pror. VIIL.— With same construction as in Prop. V.,

Area ABB’'P ( figs. 27 and 28) : sectorial area A’ B'P
:t area B'PD : segm. PFB’ :: 2 CO + BO: BO.

Let b be the point of contact of tracing and fixed
circles, when tracing point is at P’; join 5 P’, BQ, and
BQ’; and draw b¢ perpendicular to Ps. Then triangle
b B’i is similar to B’C’N, therefore to PC’N, and
therefore (Prop. V., Cor. 2) to Pgn; and B’b=Pyq:
therefore P ¢ » and b B’z are equal in all respects; and
Pr=bi. Now elementary area PP’5B’ is ultimately
equal to trapezium P P,

=half rect. under P 7 and (PP’ + 67¢)
= half rect. under PB’ and (PP’ + P ) ultimately
~ and elementary area QBQ’ is ultimately equal to tri-
_angle PB’¢
= half rect. under PB’ and P #, ultimately.
o.area PP'6B’ : areaQBQ’ :: PP’ + Pn: Pa
::2C0 + BO : BO (Cor. 3, Prop. VL).

Thus the increment of arez; ABB’P, or the decrement

of area B’PD, bears to the increment of area A’B'P,
or the decrement of area PFB’, the constant ratio
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(2CO+BO): BO. But the areas ABB’P and B'PD
commence together, and the areas A'B’P, PFB’ end
together, as P passes from A to D ; hence

Area ABB'P : sectorial area A’B’P
:: area B'PD : segment PFB’ :: 2CO + BO: BO.

Cor. 1. Prn=1b:;
and PP :5:::PP :Pn:2CO: BO.

Cor. 2. Area B'FPD : seg. BFP :: 2CO : BO.
This can be proved independently, in the same manner
a8 the corresponding relation for the cycloid, Cor. 1,
Prop. VIIIL., Cyecloid.*

ScroL.—The above affords a new demonstration
of the property proved in Prop. IV. Cor. 2 also, if
independently established, gives another proof of the
area.

* The proof may be effected in two ways, both analogous to the
proof for cycloid,—viz., either by making the sides of elements
such as ff’ and FF' concentric with BD, or by making them perpen-
dicular to A'B’. In the former case we find the decrement of space
PFB'D = P'q B'D, that is (ultimately)=P'n B'd, and the rest of the
proof is like the above. In the latter case we find the decrement of
PFB'D = arect under C'¢’ (¢’ centre of bF'P’) and projection of
B'qg on A'B’; and decrement PFB’ = triangle PB'd = } rect. under
B'd and projection of B'g on A’B’; therefore )

decrement of PFB'D : decrement of PFB’ :: 2C'¢' : B'd;
that is, area PFB'D : area PFB’ :;: 2C¢’: B'd :: 2C0O : BO.
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Prop. IX.—If P ( figs. 28 and 29) be a point on the
epicycloidal or hypocycloidal arc APD, and OP, OA,
OD be joined, and PM be drawn perp. to A'B’, the dia-
metral of the generating circle A’ PB’ through P, then

Area APO : rect. 0C (arc A P+ PM) :: OA : 2BO.

The area APO = sector OBB’ + AOB'P =* area
ABB'P (taking the upper sign for the epicycloid, and
the lower sign for the hypocycloid, throughout) ;

Fic. 29. F1e. 30.

therefore,
2 area APO = OB. arc BB’ + OB’. PM
+ 299480 (5 rea A'B'P);
=O0Barc A’P + OB. PM
+ %).(AC. arc A’P+ AC.PM);
= (OB = AC)arc AP + (OB + AC) PM
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2 CO.AC . 2C0.AC
t———m——arcAPi T.PM;

=(c0 = 2°358C ure ap
i(CO+2CO AC) PM;

= 00 (P25:249) Gare 4P + PM);

= gg .CO.(arc A’P + PM); therefore,

area APO : rect. OC (arc A’P + PM):: AO:2 BO.

Cor. 1. Area APDO : rect. OC, BD:: AO: 2 BO.
Cor. 2. Area DPO : rect. OC (arc B’P — PM)
:: AO: 2BO.
Cor. 3. APDO : sect. OBD:: AO. CO : (BO).
Cor. 4. APDO : sect. OC c (figs. 25 and 26)
::sect. OAa: APDO:: AO: CO.

Nore.—The above demonstration might have been readily made
geometrical in form as it is in substance ; but it would have been
more cumbrous and not so easily followed. The student should,
however, note the following independent demonstration (which
occurred to me after the above had been corrected for press) :—

In figs. 27, 28, p. 62, let OP intersect P/ in A; draw PH perp.
to sk and PM’ perp. to A’B’. Then the ultimate increment of area
APO = jrect. OP, 2 P'; while the corresponding increment of rect.
OC (arc A'P+PM’) =rect. OC, inct. of (arc AP+ PM’). Therefore,
former inct. ; latter inct.:: 3 OP. AP ; OC,inct. of (arc A'P+PM").

Now, AP :Pg::sH:CP

and Pg : inct. (arc A'P+PM")::CP : B'M’
L6z @, AP : inct. (arc AP+PM')::sH : B'M’
But OP: (0):3 18C' I CB

OP.AP: OB'. inct. (arc AP+ PM')::sH.sC : BM' . C'B’
::sP.sN:BP.BN (since C', P, H, P, N, lie on a ().
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‘Wherefore, increasing OB’ in 2nd term to OC, and B'P in 4th to s P
(or both in the same ratio, since triangles s B'C, PB’'O are similar),

OP.AP: OC.inct. (arc A'P+PM")::8P.2N:sP.B'N
::sN:BN::CB+{B0:}B0O
::AO: BO;
or, inct. area APO : inct. rect. OC (arc A’P+PM')::A0: 2BO
Area APO : rect. OC (arc A’P+PN') :: AO : 2 BO,

Cors. 1, 2, 3, and 4, follow as before.

ScHOL.—We have here an independent demonstration of the
area of the epicycloid and hypocycloid, since

Area APDO = area ABD z area APDB,

Pror. X.— With the same construction as in former
Propositions ( figs. 31 and 32),
Area APA’ ; segment A h P :: AO: BO.

Let a P’B be the position of the tracing circle when
tracing point is at P’ near to P; acd O diametral.
Draw ¢ P’ concentric with BD and AE, join A’ ¢g,a P,
A’P’; also producing A’ato T and ¢P to ¢, draw P'T
and A’ ¢ perp. to A’T and P ¢ respectively.

Then A’PP’a, the increment of AA’P=1} rect.
under A’a, P’T ultimately; and A’P g, the increment
of segment A’k P=14rect. under P ¢, A’t ultimately.
But ultimately the right-angled triangles A’tzq and
P'T a are equal in all respects (since A’¢=a P, and
angle A’qt = angle at circumference on segment A’q
= angle at circumference on segment a P’ = angle
Pat) therefore Pt = A’T, and

increment of AA’P : increment of segment A’k P
2 Aa: Pg(=DBd):: AO: BO;
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or since these areas begin together,
area AA’P : segment A’AP :: AO : BO.
Cor. Area AA’hP:seg. A’RP :: 2CO: BO
(:: AO+BO: BO). This may readily be established
independently—by showing that ultimately
area A'al’ P’Ph: AA'Pg::2Cc:Bb::2CO: BO.*

Fre. 31.

Fia. 32.

ScHOL.—Since it follows that
area APDE : } gen. ¢ :: AO: BO,

* A line from %, perp. to A'B, to meet A'AP=C'¢; and a line
from P, perp. to A'B’, to meet A’g=P¢g=B'b.
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we have here another demonstration of the area of
APDE. Further, since
4 gen. © : area ABDE:: 1 CB,BD:2.CB,arc C¢
2 BD:4C¢ :: BO:4CO,
it follows, ez @quali, that
area APDE : area ABDE :: AO:4CO.
Yet agajn, from the corollary we see that

Area APDQ'E : } generating circle :: 2 CO : BO
:: 3 area ABDE : } generating circle,
..area APDQ'E = 1 area ABDE,
which is the relation established in Prop. IV. If
established independently, as explained above, this
leads to another demonstration of the area.
NoTE.—Arc APD divides the area AQBDQE
into two equal areas.,

Prop. XI.—1If PB'v (figs. 33, 34) is the radius of
curvature at P, and PB’ the normal, then

Po: PB ::2C0: A0.

With so much of the construction of figs. 27, 28
as is shown in figs. 33, 34, produce P’ to meet PB’
produced in o', then o is the limiting position of o’ as P’
moves up to P, Now since PP’ is ultimately parallel
to b i, therefore ultimately

Po:Bo :: PP:bi::2CO:BO
(Prop. VIIIL., Cor. 1), wherefore
Po:PB ::2C0::2C0-B0::2C0O:CO + AC, -
or ultimately Po:PB :: 2CO: AO.
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Cor. 1. For the epicycloid,

2 R
radius of curvature = —Fg%ﬁ-) . normal ;

and for the hypocycloid,
—R
radius of curvature = 2—15‘1“_ 2R) . normal.
Fia. 33. Frc. 34.

Cor.2. PB’: B0 :: 2CO - BO: BO :: AO: BO
 F + 2R : F for the epicycloid ;
:: F — 2 R : Ffor the hypocycloid.

ScHOL.—We see from Cor. 1 that when F = 2R

the radius of curvature of the hypocycloid is infinite,
or the hypocycloid degenerates into a straight line.

See further the Appendix to this section, pp. 66 to 68.
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Prop. XIL— The evolute of the epicycloid or hypocy-
cloid APD (figs. 33 and 34) is a similar epicycloid or
hypocycloid, do D, having its vertex at D, and its

- cusp d so placed on OA (produced if necessary), that

dB:BA: OB: 0A4;
or, which is the same thing, Od: OB :: OB : OA.

Join OD and describe the arc da’e with O as
centre and radius Od. Produce A’B’ to O, cutting (fig.
33) or meeting (fig. 34) de in @/, and join 0a’. Then

B'A’:dB ::BA:dB:: AO: BO:: PB': Bo

(Prop. XI., Cor. 2);

that is, the sides about the equal angles 0 B’a’, PB’A’

are proportionals ; therefore the triangles o'B’d,

PB’A’ are similar, and the angle oo B’ (= the angle

B’PA’) is a right angle. Hence a circle described

on B’d’ as diameter will pass through o. Again the

angles A’B’P and &’B’o at the circumferences of the

circles A’B’P and a’B’o being equal,

arc oa’ : arc PA’ (=arc BB')::a’'B’: B’A’:: OA: OB

:: OB:0d:: arc da’ : arc BB,

Therefore, arc 0 @’ =are d o', and o is a point on an
epicycloid (fig. 33) or hypocycloid (fig. 34) having de
for base, its cusp at ¢ and B'oa’ as tracing circle.
Since de: BD::od: OB::Bd: AB

:rarc B'oa’ : arc A’PB’ (=BD);
therefore de=arc Bod;
so that eD is the axis and D the vertex of the epi-
- cycloid or hypocycloid do D. :
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Cor. If ¢ is the bisection of ¢ D,
oP:0B ::2C0: AO0::2¢0:DO;
therefore (Prop. VI.),
oP=arcoD.

If, then, a string coinciding with the arc doD and
fastened at d, be unwrapped from this arc, its extremity
will always lie on the arc APB, which may thus be
traced out as the involute of the arc d o D.

ScHOL.—A convenient construction for finding the
base, &c., of the evolute d o D is indicated by the dotted
lines in the figures: thus, join AD, then B e parallel
to AD gives O e (on OE, produced if necessary), the
radius of the base e d.

Pror. XIII.—If do D (figs. 33, 34) be the evolute of
the epicycloid or hypocycloid APD, and o B'P, the
radius of curvature at any point P on APD, cut the
base BD in B', then

area APB'B : area d BB'o
:: rect. under AO (AO + 2BO) : square on BO.

If P’'o’ be a contiguous radius of curvature cutting
BD in b, and b7 is drawn perp. to o B'P, then in the
limit

oP:0i:2C0O: BO;
therefore
ult. area Po P’ : ult. area 075 :: 4(CO)*: (BO)?,
whence, ultimately
area PB'bP : area 0 B’d :: 4(CO)? — (BO)?: (BO)?
:: rect. (2CO — BO) (2CO + BO): sq. on BO
iz rect. AO (AO + 2BO) : sq. on BO.
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But the areas PB’0 P’ and 0 B’d are the elementary
increments of the areas APB’'B and 4 BB’v, which
begin together. Therefore,

area APB’'B : area d BB'o-
:: rect. under OA (AO + 2BO) : sq. on.BO.

Cor. 1. Area APDB : area do DB
:: area PB’D : area o B'D
:: rect. under OA (AO + 2BO) : sq. on BO.

Cor. 2. Since
area do DB : area APDE :: (BO)?: (AO)?,
it follows (ex eq.) that
area APDB : area APDE :: AO (AO+2BO): (AO)
2 AO +2BO: AO
A 2 (3F + 2R) : (F + 2R) for the epicycloid
it (3F — 2R) : (F — 2R) for the hypocycloid.
ScroL.—It follows from Cor. 2 that

Area APDE : area ABDE :: AO: 2(AO + BO)
:: AO: 4CO,
which is one of the relations established in the scho- .
lium on Prop. X. Hence we have in Prop. XIII.
another method of demonstrating the area of the epi-
cycloid and the hypocycloid.



66 GEOMETRY OF CYCLOIDS.

APPENDIX TO SECOND SECTION,

There are many forms, both of the epicycloid and
of the hypocycloid, which possess interesting proper-
ties. For the most part the general properties esta-
blished in the preceding section will suffice to enable the
student to deduce the properties of special forms of
these curves. For this reason, and also because of the
requirements of space, I shall only touch briefly here
on a few points in connection with the forms assumed
by epicycloids and hypocycloids for certain values ot
the radii of the fixed and rolling circles. I do not
make set propositions of these points, but present them
in such sequence as appears most convenient and suit-
able.

THE STRAIGHT HYPOCYCLOID.

The hypocycloid becomes a straight line when the
diameter of the rolling circle is equal to the radius of
the fixed circle.

This in reality has been already demonstrated, be-
cause we have seen in the scholium to Prop. XI. that
the radius of curvature of the hypocycloid becomes
infinite when F = 2R. Also the relation is involved
in the demonstration of Prop. I. For when the two roll-
ing circles (figs. 21 and 22) are equal, each having its dia-
meter equal to the radius of the fixed circle, the curve
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traced out by each must be a straight line. Thus,—
let BOB’ (fig. 35) be the diameter of the fixed circle,
and its halves BO, OB/, the diameters of the two equal
rolling circles; then by what is shown in Prop. I. of
this section the point O on BQO will trace out the
same curve as the point O on B’Q’O, but since the
circles BQO and B’Q’O are equal, this curve, regarded

F1a. 35.
B

as traced out by O on BQO, must bear the same re-
lation in all respects to the axis OB that the same
curve regarded as traced out by O on B’Q’O bears to
the axis OB’, and the only line which can possibly
fulfil- this condition is the diameter D’OD at right
angles to BOB’. This then must be the path traced
out by the point O in each case.

Let us proceed, however, to an independent de

monstration,
¥ 2
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When the circle OQB has rolled to the position
Op5 (0 cb its diameter), let p be the point which had
been at B, so that drawing the diameter p c P, P is the
position of the tracing point. Then the arc p b is equal
to the arc B 5; and therefore, since F=2R, the angle
BO b is equal to half the angle ¢ p, that is to the
angle 5Pp: but BOp and O 5 P are alternate angles;
wherefore P is parallel to BO; and OP, which (OP%
being a semicircle) is perpendicular to P, is perpen-
dicular to BO. P therefore lies on the diameter D’OD
at right angles to BOB’; which was to be shown.

Cor. The point p lies on OB (the angles ¢ O p and
¢ OB being each equal to half the angle b ¢ p).

USEFUL GENERAL PROPOSITION.

The following property is worth noticing. It is
true of course for the cycloid also.

A diameter of the generating circle of an epicycloid
or hypocycloid constantly touches the epicycloid or
hypocycloid which would be generated by a circle of
half the diameter, alternate cusps of this epicycloid or
hypocycloid falling on successive cusps of the former.

It will suffice to demonstrate the property for the
epicycloid.

Let AQB (fig. 36) be the generating circle of an
epicycloid when the tracing point is at A, the vertex
of the epicycloid. When the circle has rolled to posi-
tion aPb,let pcP be the position of the diameter

-which had originally been in position ACB. Draw
b P’ perpendicular to p P, and on ¢ describe the semi-
circle cP’b, having ¢ as its centre and passing through
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P’ because ¢ P’b is a right angle. Then because the
angle P’c’'h = twice the angle P’cd, and ¢’d = half
cb, the arc P’b=arc pb=arc Bb. Wherefore P’
is a point on an epicycloid traced out by the rolling of
¢P’b on BD, B being a cusp. D is the next cusp, be-
cause the base of the smaller epicyloid being equal to
the circumference of generating circle ¢ P’d = circum-
ference of semicircle AQB=BD. AlsopP’cP isthe
tangent at P’ by what has been already shown respect-
ing the tangent to an epicycloidal arc.

The student will find it a useful exercise to prove
the property established in Prop. I. of the present

Fia. 36. (Draw in epicycloid on base BD, touching ¢p in P".)

section in the manner illustrated by figs. 37 and 38,
where APB is the arc traced out by point A on each
of the circles AQB, AQ'B’. The construction and
proof for the epicycloid (fig. 37) run as follows:—
ABOB’ being a common diameter of all three circles
at the beginning of the rolling motion, let P be the
position of the tracing point of the smaller rolling
circle when its centre is at e. Draw the diametral line
acbOf, and the diameter Pcp. Join P& and pro-
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duce to meet the circle BDB’ in ¥, produce &0 to ¢/,
taking O ¢’ = R, so that 4’ = F + R, and join P ¢’;
then since

bP:0V :iab:bf::R:F::0c:00¥
P ¢ is parallel to O 3, and the triangle &'¢'P, like tri-
angle 6’0 b, is isosceles (¢'t’ = ¢P). With centre ¢/
and radius ¢'P or ¢ (= F + R) describe the circle

Fre. 87

VP a’; produce P ¢’ to meet this circle in p’. Now,
arc Bb =arcdp;

.c.angle pcd:angle BOb :: F: R;
but angle pch=2anglecd P = 2 angle 03 ¥’
=angle ¥O f
.c.angle 0O f (= angle 6’¢p’) : angle BOb :: F: R;
and L ¥cp’: £ YOB' :: F: F+R:: B'O:¥¢.
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Whence it follows that arc ¥’p’ = arc ¥’B’; and P is,
therefore, a point on the curve traced out by A (on
the circle AQ'B’), rolling so that its inside touches the
outside of the fixed circle BDB’, ABOB’ being ori-
ginally diametral. The same curve APB is traced
out, then, by the point A on each of the circles AQB
and AQ'B’.

Fie. 38.
Q b
D
£,
PR
78N \
/, \\\ A\l
"4 y: ~
c Q
P
f

Cor. If we produce 5O to meet the circle 5P o’ in
a’yand join Pa’, then a P and Pa’ are in the same
straight line.

The construction and proof for the hypocycloid
(fig. 38) are similar, writing only — R for + R.

The curve enveloped by a diameter of the gene-
rating circle of an epicycloid produced by the rolling
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of a circle larger than the fixed circle, and touching
this circle internally, will be an epicycloid if the radius
of the rolling circle exceeds the diameter of the fixed
circle; but if the rolling circle has a radius less than
the diameter of the fixed circle, the curve enveloped
by a diameter of the rolling circle will be a hypocycloid.
The proof for both cases is easily derived from the
demonstration in pp. 68, 69, the dotted line and circle
of fig. 37 showing the nature of the construction.

* The curve enveloped by a diameter of the gene-
rating circle of a hypocycloid is shown .by reasoning
similar to that in pp. 68, 69, to be the hypocycloid
traced out by a generating circle of half the diameter,
alternate cusps of the smaller hypocycloid agreeing with
successive cusps of the larger. The dotted line and
circle in fig. 38 indicate the requisite construction when
the rolling circle has a diameter greater than F.

THE FOUR-POINTED HYPOCYCLOID.

It follows from the property indicated in the preced-
ing paragraph that the diameter OB of the rolling circle
BQO (fig. 35) constantly touches a hypocycloid having .
four cusps, at B, D, B’, and D’. As the extremities
p and P of the diameter lie always on BB’ and DD
respectively, we have in this result the solution of the
problem ¢ o determine the envelope of a finite straight
line pcP, whose extremities slide along the fixed straight
lines BOB’ and DODY at right angles to each other.
The direct proof is simple, however. Thus let p P be
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- the straight line in any position. Complete the rect-
angle O p b P, whose diagonals O b and p P are equal
and bisect each other in ¢. 'With centre O and radius
O b, describe the circle BoDB’, and draw 5 P’ perpen-
dicular to pP. Then a circle on ¢, as diameter, passes
through P’. Let ¢’ be the centre of this circle; then
b = }Ob: but £ 6P’ =2 £ be P =4, 50B;
therefore arc 5P’ =arc pB. Hence P’ is a point on
the hypocycloid traced out by circle 5 P’ ¢ rolling on
the inside of the circle BDB’, the cusps lying at B,
D, B, and D’.*

THE CARDIOID.

The cardioid, or epicycloid traced by a point on
the circumference of a circle rolling on an equal circle,
has some interesting properties. Here, however, space
cannot be found for more than a few words about the
chief characteristics which distinguish this curve.

Let AQB (fig. 39) be the rolling circle, B5 S the
fixed circle, A the tracing point when at the vertex,
8o that ACBOS is diametral. Now let aPb be another

* The four-pointed hypocycloid BDB'D' is interesting in many
respects. It bears the same relation to the evolute of the ellipse
that the circle bears to the ellipse. Its equation may readily be
obtained. Thus, let DOD’ be axis of #, BOB' axis of y, and a, y
co-ordinates of P'; put BOd =60; OB =a; then,

@=pPsin@=pb sin?=qa sin?6;
y=PP cos0=bp cos? 6=a cos®0;
R z§+ y§=a§, the required equation.
2 2
The equation to the evolute of the ellipse (S’ + g—, = l) is

(;)§+ (g)%=l;wherea'=a—£2,and b’=‘;f— b.
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position of the rolling circle, a ¢ 4 O diametral. Draw -
the common tangent b m, meeting ABS in m; draw
also mp ¢ P through ¢, the centre of circle a P 4; join
PS, cutting md in n; bk perpendicular to AS; and
join 5P, 5S. Then, since ¢b=250, and bm is perp.
to ¢ O, triangle ¢ bm =: triangle O b m in all respects;
and arc bp=arc 6 B. Wherefore, P is the position
of the tracing point; P a is the tangent to the cardioid

Fia. 39. (Produce Pb to meet @ 6BS in g; join pb, &' P.)
A

at P, P is the normal. The curve will manifestly
have the shape indicated in the figure, the only cusp
being at S, and the tracing point returning to A after
tracing the other half SP’A. AS divides the curve
symmetrically.

Note first that Pn=nS; or the cardioid is similar
to the curve obtained by drawing perpendiculars from
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S (as Sn) to tangents at all points of a circle B4 S.
‘We might then obtain the cardioid P’APS, by draw-
ing a circle on AS as diameter, and from S letting
perpendiculars fall on tangents to this circle. This
property is expressed by saying that the pedal of a
circle with respect to a fixred point on its circumference
s a cardioid. :

Secondly, £ nPb=alt. £ Pbe= 2 tPm =
£bSm; hence Sn=S8k. So that if we draw any line
S# from S, and from b, in which the bisector of BS =z
meets the circle on SB as diameter, draw bz per-
pendicular to S =, the locus of n is a cardioid. [The
larger cardioid, P’APS, would be similarly described
by producing S»n and Sb, and from point in which
Sb meets circle on AS as diameter, letting fall perpen-
dicular on Sz (meeting Sz in P).]

Or, thirdly, we may obtain a cardioid by taking
any finite line as SB, drawing B b square to bisector
of any angle BS 2, and from b drawing b n square to
Sa: the locus of » will be a cardioid.

Fourthly, draw circle OGD about S as centre cut-
ting S7 in e, and draw el perp. to SB; then Sa=
Skt=80+0*%k=SD+ S (because S ¢ is parallel and
equal to O 5)=D L Thus the cardioid may be obtained
by drawing radii as Se to a fixed circle OGD, and on
S e, produced if necessary, taking » 8o that Sn =D
This is the usual definition of the cardioid.

Fifthly, let P2 S cutcircle B4S in f.  Then pro-
ducing P b to meet circle 5 BS in g, we have b P =5,
and rectangle P 5 . P g (= 2P %) = rectangle Pf, PS
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=2rect. Pf. Pn. Hence PV*=Pn.Pf,andPb f
is & right angle. Wherefore pbf is a straight line,
and (P b bisecting angle p P f) P f=P p = SB. Hence
the cardioid P’APS may be obtained by drawing
straight lines as Sf to circumference of circle BfS,
and taking on S f produced P f= BS. (The cardioid
18 therefore a limagon.) *

Cor. If we draw 'S s tangent to circle Bf'S at S,
and take S's= S¢'=BS, then s, s’ are points on the car-
dioid. We see that $'s=SA; and it is easily seen that if
P’SP is a straight line through S, PP'=SA. For,
according to the definition just obtained, we should
have P’ on a point on the curve if fFSP'=BS=/P;
therefore P'SP = SA. It may be well, however, to
show how this can be directly proved when the cardioid
isregarded as an epicycloid. For this purpose we have
only to notice that if on ab O produced we set centre
of generating circle as at ¢/, then 3P, the arc of the
generating circle to tracing point P’, must equal ¥S,
whérefore P’S is parallel to ¢’O, and in same straight
line with PS. But since PSP’ is parallel to ¢’ joining
centres of equal circles a P 4, 3’P’d’, a P is parallel to
b'P’, and therefore PP’ =Va=26a=SA. This pro-
perty gives a method of tracing out the cardioid me-
chanically. For if there be a circular groove as Bf'S,
and we take a ruler of length SA (twice diameter of
groove), having a vertical pencil point at each extremity

* The limagon is the curve obtained by drawing radii vectores to
a circle from a point on its circumference, and producing and re-
ducing all of them by a constant length,



THE EPICYCLOID AND HYPOCYCLOID. 7w

and a point at its middle point moving in the groove,
while the rod itself always passes through S (either
through a small ring there or by having a projecting
point at S and a groove along the rod), the pencils at
the extremities of the rod will trace out the cardioid.
While one pencil moves over AP s the other will move
over SP’s’, and while the former passes on from s to S,
the latter passes on from s to A, completing the tracing
of the curve,

The evolute of the cardioid A sS¢ is a cardioid
SO, having its vertex at S, cusp at d, on OB, such
that O d=1 OB, and linear dimensions equal to one-
third those of the cardioid A s ¢~

S, the cusp of the cardioid, is also called the focus.
Since P 4 is the normal at P and angle SP b= angle
bPm, we perceive.that if S be a point of light, and
the arc of the cardioid reflect the rays, P m will be the
course of the ray reflected from P. Hence the caustic
or envelope of the reflected rays will be the curve
constantly touched by the diameter P p in the tracing
out of the cardioid. This curve, as shown at pp. 68,
69, will be the epicycloid traced out by a circle whose
diameter = CB, and which has S as one of its cusps.
The other cusp will be at B, and the curve will have
the position shown by the dotted curve BRS and its
companion lobe in fig. 39.

Let us now determine how far the cardioid ranges
in distance from the diameter AS, and beyond ss.
We note that (i.) when P (fig. 39) is at the greatest
possible distance from AS, the tangent P a must be
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parallel to AS; and (ii.) when P’ is at its greatest
distance from ¢ S s, the tangent at P’ must be parallel
to s ¢, and therefore P’)’, the normal, must be parallel
to SA. Wherefore, since P’4’ has been shown to be
parallel to P a, we see that when P is at its greatest
distance from SA, P’ is at its greatest distance from
s&#. Now, when P a is parallel to AS, so also is p b f,
and as the arc bf=arc B b, the position of bf is at
once assigned : for if a chord b f (fig. 40) is parallel to

Fie. 40.

BS, arc Bb=arc Sf, and since arc bf=arc Bl =
Sf, we have B b= }rd the semi-circumference B& S,
and the angle BS f'= two-thirds of a right angle.

K Sf=80=SP’; and SP=3S0. Also,

Pn=3bn=-3—;/—3:SO; and P’ =%).

_S0. _ V3
On= 5} and Sm-——2— SO.

It follows from the parallelism of the tangent Pa
and the normal P'4’, that when the cardioid is being
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‘described by the continuous motion above indicated, one
end of the rod is always moving in a direction at right
angles to that of the other end of the rod. Thus the
tangents and normals at P and P’ (fig. 39) intersect
on the circle which has PP’ for its diameter. The
normals also intersect on the circle B g % (at g), and the
tangents on the circle having centre O and radius OA.

Cor. The curve cuts s ¢ at equal angles, each equal
to half a right angle.

THE BICUSPID EPICYCLOID.

The epicycloid with two cusps (the dotted curve of
fig. 39, which, from its shape, we may call the nephroid)
presents also many interesting relations. I merely
indicate, however, in a few words the chief points
to be noticed at the outset of an inquiry into the re-
lations of the bicuspid epicycloid.

Let P (fig. 41) be a point on the epicycloidal arc
traced by the rolling of AQB on the circle DBDY,
whose radius BO= AB.* |

Let a P b be position of rolling circle through P.
Draw common tangent 4%, meeting OA in ¢; and join
ta, cutting a P b in p. Then, since Ob=b«, angle
tOb=angle ta O, and arc pb=arc Bb; wherefore
pcP is a diameter of circle APb. Angle caP=
compt. of cap=compt. of £0b=angle 56OD’. Hence
TOa is isosceles, and ¢4 T is a straight line. Draw

» The curve has been omitted from fig. 41. The student should

trace it in pencil from the cusp D through A and P (touching PT)
to D'—forming a branch like either half of the dotted curve of fig. 39.
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b n perpendicular to OT, and join 2P, 5P, bp; then
triangle p b P=triangle O z b in all respects, 5 P=0n,
and Pm=mn. Wherefore the bicuspid epicycloid
may be described thus: draw from any point 4 on

Fra. 41. (Join & p.)

A

c

D [}

circle DBD’, 6n perpendicular to fixed diameter,
DOD’, and nm perpendicular to tangent at &; then
if »m is produced to P so that m P =ma the locus
of P is a bicuspid epicycloid.

THE INVOLUTE OF THE CIRCLE
REGARDED AS AN EPICYCLOID.

. Thecurve traced by a point on a straight line which
rolls on a circle in the same plane may be regarded as
an epicycloid whose generating circle has an infinite
radius. The curve is the involute of the circle. Thus,
let DQB (fig. 42) be a circle, T'DT a tangent at D,
and let this tangent roll without sliding over the circle
DQB (DOB a diameter), the point D tracing out the
curve DP. Then when the tangent has the position
PB’p, having rolled over the arc DQB’ once only, B'P
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having been in contact with every point of the arc
B’QD is equal in length to this are. Therefore the
point P lies on that involute of the circle DQB’ which
commences at the point D. But T'DT may be re-
garded as part of a circle of infinite radius touching
the circle DQB’ in D, and the arc DPR therefore as
an epicycloid. In fact this arc is the extreme case of
the epicycloid when the radius of the rolling circle is
indefinitely enlarged, precisely as the right cycloid is
the extreme case when the radius of the fixed circle is
indefinitely enlarged. The part of the curve near to'
DQB manifestly has the shape shown in the figure, D
being the cusp. The branches of the curve extend
without limit outwards. It is obvious that if the line
B’P be produced to meet the next whorl of DPR (not
the curve D p R), the portion of this line intercepted
between P and that whorl will be equal to the circum-
ference of the circle DQB. Again, if PB’ produced
meet the branch D p R in p, PB’p is also equal to the
circumference of DQB’; for B'P = arc B'QD, and
B’p = arc B’'B”D. The straight line » DR, perp. to
T'DT, passes through all the points of intersection of
the two branches, for the curve must necessarily be
symmetrical on either side of OD from the way in
which it is traced out. Q¢, the tangent parallel to
OD, and equal to the quadrant QD, determines the
greatest range of the branch D ¢P above DT, for the
curve is perp. to Q ¢ at ¢; also, if Q ¢ be produced both
ways indefinitely, its intersections with the prolongation
of D¢P above DT determine the greatest range of
G
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each successive whorl of that branch above DT, while"
its intersections with the branch DpR below DT
determine the greatest range of each whorl of that
branch below DT. Similarly of the tangent to DQB
parallel to Q¢, and of the tangents perp. to DOB.
Many other relations of a similar kind exist which the
student will have no difficulty in discovering for him-
self. Both branches manifestly approach more and

Fia. 42.

more nearly to the circular form as their distance from
the centre increases; for from the manner of generation
the normals to the curve touch the circle DQB, and
for branches at an indefinitely great distance the di-
mensions of DQB are relatively evanescent, wherefore
the normal at any remote point of the curve is inclined
at an evanescent angle to the line joining that point
with O. Or, a whorl of the spiral may be regarded as
changing its distance from the fixed point O during one
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complete circuit by a distance, as p'R’, p”R”, &ec.
(these lines being diametral), equal to the circumfer-
ence of DQB, and this distance vanishes compared with
the radius vector of the spiral in its remote parts, so
that the radii vectores of a single whorl, though differ-
ing by a finite quantity and therefore not absolutely
equal, are yet in a ratio of equality; and in that sense
“the whorl corresponds with the definition of a circle.

The circle DQB is the evolute of the curve RpDPR,
&c.; but we have seen (second section, Prop. XII.)
that the evolute of an epicycloid is a similar epicycloid :
hence we must regard the circle DQB as consisting of
an infinite number of infinitely close whorls, similar to
the remote whorls of the curve Rp DPR.

The rectification and quadrature of the epicyecloid
in the preceding section manifestly fail for the involute
of the circle regarded as an epicycloid. But it is easy,
as follows, to compare the length of any arc D¢P with
the corresponding arc DQB’ of the fixed circle, and
the area D¢PB’Q with the area of the sector DQB’O.

ARC OF THE INVOLUTE OF THE CIRCLE.

Let PP (fig. 42) be an elementary arc, PB’, P'B”
the corresponding positions of the tracing tangent, then
since OB’ is perp. to B'P and OB” to B”F”, the angle
B’OB” = the angle PB”P’, in the limit. Hence
Arc PP’ : arc B’'B” :: B’'P: OB’ :: arc DQB’: DO.

Now in Dr take Dd = OD; and in DT take DM =
Q2
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arc DQB’, and MM’ =arc B’'B”. Complete the rect-
angles Dd NM, NM’. Also draw MK = DM, perp.
to DM, and complete the rectangle KM’. Then if
we represent the arc B'B” by the area NM’, the arc
PP’ will be represented by the area KM’, for
KM: NM’ :: P'P: B'B”.

But since KM = DM, K lies on a straight line, DK,
bisecting the angle DT ; and every element of arc as
PP’ has a corresponding representative element of
area, a8 KM’, in the space KDM. Therefore the

length of the arc D¢P is represented ultimately by
the area DMK ; or

ArcD¢P:arc DQB’ :: area DMK : area dM
:: 4 DM.KM: DM.OD
:: 4 DM : OD (since DM=KM)
:: 4} arc DQB’ OD
::arcDQB’ :
That is, the arc D¢P is a third proportlonal to BD
and the arc DQB'.
This is the relation required. It may conveniently
be replaced by the following :—
Cor. Rect. under arc D¢P and BD=square on B’P,

/ 2
or, Arc DtP = (]';]I))) .

AREA BETWEEN CIRCLE, ITS INVOLUTE, AND
THE NORMAL TO INVOLUTE.

Take Dz = 4 OD and complete the rectangle n M.
Draw ML perp. to DM, cutting z N’ parallel to DM
in N’, and take L so that '
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ML : MN’ (= Dn=) :: (PB’)*(= DM?): (OB")%.
Complete the rectangle LM’. Then by construction
Area N'M’ = triangle OB’B” ultimately ;

and ultimately
A BPP: A OB'B” :: (PB')*: (OB’)?
:: rect. LM’ : rect. NM'.
Therefore ~ Rect. LM’ = triangle B'PP".

Now from the construction L is a point on a parabola
DIL, having D as vertex and n as focus, or BD as
parameter. Hence, every elementary triangle as B’ PP’
has a corresponding representative elementary rect-
angle LM’. Therefore
Area DtPB’Q = parabolic area DILM
= } rect. under DM . LM.
Now DM=arc DQB’;

and by property of parabola,
.. LM . BD=(DM)*= (PB')*;
or LM is a third proportional to BD and PB’,
and therefore, as shown in last page,
LM=arc D¢P,
.. area DtPB’Q=4. rect. under arcs DQB’ and D¢P.

/P)3
Cor. Area DtPB’'Q = igg%) .

CENTRE OF GRAVITY OF EPICYCLOIDAL AND
HYPOCYCLOIDAL ARCS AND AREAS.

There is no simple geometrical method for de-
termining the position of the centre of gravity of an
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_epicycloidal or hypocycloidal arc or area; and there-
fore, strictly speaking, these problems do not belong to
my subject. But it may be as well to indicate the
analytical method of solving them, which has not
hitherto, so far as I know, been discussed in any
mathematical treatise. I shall consider the case of
the epicycloid only. The solution for the hypocycloid
is similar, and the result only differs in the sign of R,
the radius of the rolling circle.

Fia. 43.

Fro. 44.

First, then, to determine the ordinates #, 7 of the
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centre of gravity of the arc APD, fig. 43 (fig. 44 for
the hypocyeloid), O being taken as origin, OX perp.
to OA as axis of z, and OA ag axis of Y.

Let LA'CP=0; LPCq=d\. Then,

arc PP’ = m#—l-{—) COS. — dﬂ

Algo, if P = is perp. to OA, then ultxmately,
moment of arc PP’ about OA = P, PP/

oos (F+2R)
2F

{(F +2R)sm— 6 +2R sin é
2R(F+R) ¢

= m) m,df, say;
and similarly,
moment of arc PP’ about 0X=0n. PP’

—{(F+2R) cos%ﬂ +2Rsm2£ sin F+2R

< 2R(F+R)
______.__F . CO8 2d6
_ 2R(F+R)
F

m, d, say.

We have to integrate these two expressions between
the limits =0, and 8=, to obtain the moments of the
. arc APD around the axes OA and OX.

: _ (" TF+2R . F+2R
Now fm,,do_f[ 5 — 80—

_F+R . F-2R R . 3F+2R
3 sin By 0+§sl 0]d0
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f° m,d6=2Fsin’F+2FRr

_2F(F+R) . ,F—2R
F—2R "2 —2F *
2FR .. ,3F+2R

typraR S —gF "= Mesay.
Similarly f° m, d 0 =TF sin F;i}‘,
LF(F+R) , F-2R_
F—2R 2F
FR . 3F4+2R__
t3Feer " T2F "= Moy
. ._2R(F+R) M,
E=""7F  ‘mcAPD ~ M
and similarly 7g=M,.

To determine X and Y, the coordinates of the centre
of gravity of the area APDE, we have,—

F+2Rpg . 4 0 ;..
¥ R sin? 2 di;
and if g be the C. G. of this element, ultimately a

triangle, A’g=4 A'P'= E{ gin 2 3 ultimately.

Area of element A’P'a=

Also if gm is perp. to OA,
moment of element A’P’a about OA=gm . area A’P’a,

_ : 2R . 0 F+2R
_{(F+2R)sm10+ =3 sing cos 210}
F+2R p, . ,0
x_F_.R sln.2_d0

= (_F.‘_"'F_?B-) R2. a; db, say;
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and similarly,
moment of element A’P’a about OX =0 m . area A'P’a,

R 2R 9 F4-2R
{(F+2R)cos 6+——sm—28m 5T 9}
F+2R 5, .,
X —5 .R.sxn_2d0

_[[2F—3R_. R, F+R _. F+R
ﬁ,do_f[ 3 smFQ R 9
+3F;—5R§in F;Ro_% 213;‘+Ra]d0;
R __o.,F+R
-— -~ 2 —_— 2
ﬁ,do (2F—3R) ¥ g ot T r—Fem DER
(3F+5R)F ., F—R
t3F-r) ™ ZF "
_ FR . ,2F+R__
3(2F+R)sm 3T x =A,, say.

Similarly
© 0 om_amy F . R~ F . F+R
[:z,do_(2F 3R)2Rsm i
8F+5R)F . F-R_

S (F—R) F
FR . 2F+R__
~§@T<E) 8D —— ® = A,, say.
< (F+2R)p, A, _2A,
F ‘area APDE~ « °’

since area APDE = F';; B x R?;

and similarly ¥ = 2A
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It is easy to obtain in a similar manner X’ and Y7,
the coordinates of the centre of gravity of the area
APDB, though the expressions are rather more cum-
brous. We take such elementary areas as PP'5 B’ in
fig. 27 (fig. 28 for hypocycloid), and find,

Moment of element about QA= [(3 F+2R)sin ]E' 8

5F+4R R ! gin ——~F+2E d]R’ ooa’o de.

RN Sl

Moment of element about OX = [(3 F +2R) cos % 0

5F+4R R cos ocos F+2R

iy 5 o] R*cos _do

These expressions can be easﬂy mbegrated. It will,
however, be more convenient to proceed as follows :
Moment of area ABDE about OA

=4 [(F+2R)*— F?] sin? Q%‘ == B3, say.
Moment of area ABDE about OX

=3 [(F+2 Ry —F*] sin ¥= B, %, say.

Moment of APDB about OA = B?, — Ein_R RUA,.

Moment of APDB about OX = B?, — F_*i?_l_‘ RiA,,

- F+2R 3F+2R
. - ¢ S . 2 2
..X—(B, —F RA:)-L- T = R,
_F + 2R 3F+2R
= 3 2 2
(B R A ) D = R,
ScaOL.—It should be noted that these solutions

might be presented geometrically, if it were worth
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while; but only at great length and with complicated
diagrams. The student will observe that all the rea-
- soning in each demonstration, up to the point where the
integral calculus is employed, is manifestly capable of
being presented geometrically, the ratios dealt with
(including the trigonometrical ones) being those of
lines to lines, areas to areas, or solids to solids (in deal-
ing with moments of areas). Again, the only relations
derived from the integral calculus, are these—

fo sin a d6=l (1 —cos a)=2sin’3
a a 2

0 l .
/ cosa9d0=£sm o,

These (which are in effect one) are both capable of
easy geometrical demonstration, and are in fact de-
monstrated further on in the quadrature of the ¢ com-

panion to the cycloid.’ ‘
. The student not familiar with the integral calculus,
will find no difficulty in proving by trigonometrical
series,* that the sum of the series whose general term is

:;sin an (r taking all integral values from O to n), is
2 sin’%when n i8 indefinitely increased ; and that the

. . a r .
sum of the series whose general term is = cos ~Z, issin a.
non

These summations (or such as these) suffice for sum-
ming the elements dealt with in the above demon-
stration.

* See the chapter on the Summation of Tngonometncal Series
in Todhunter's ¢ Plane Trigonometry.’
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SEctioNn III
TROCHOIDS.

NOTE.—Any curve traced by a point, within or without
the circumference of a circle, which rolls without
sliding upon a straight line or circle in the same
plane, is a trochoid ; but the term is usually limited
to the right trochoid, and will be so employed through-
out this section.

DEFINITIONS.

The right trochoid is the curve traced out by a
point either within or without the circumference of a
circle, which rolls without sliding upon a fixed straight
line in the same plane.

If the tracing pointis within the circle, the trochoid
is called a prolate or inflected cycloid. The shape of
such a trochoid is shown in fig. 45, Plate I.

If the tracing point is outside the circle, the trochoid
is called a curtate or looped cycloid. The shape of
such a trochoid is shown in fig. 46, Plate I.

An epitrochoid is the curve traced out by a point
either within or without the circumference of a circle
which rolls without sliding on a fixed circle in the same
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plane, the rolling circle touching the outside of the
fixed circle. )

A hypotrochoid is the curve traced out by a point
either within or without the circumference of a circle
which rolls without sliding on a fixed circle in the
same plane, the rolling circle touching the inside of
the fixed circle.

It may readily be shown that every epitrochoid
can be traced out in two ways—viz., either by a point
within or without a circle which rolls in external con-
tact with a fixed circle, or by a point without or within
a circle which rolls in internal contact with a fixed
circle of smaller radius. Also every hypotrochoid can
be traced out either by a point within or without a
circle which rolls in internal contact with a fixed
circle of radius larger than rolling circle’s diameter, or
by a point without or within a circle which rolls in
internal contact with a larger fixed circle, but of radius
not larger than rolling circle’s diameter. Instead,
however, of giving a demonstration of these relations,
after the manner of Prop. I., Section II., I leave the
point for more general demonstration in Section V.

In what follows, reference is made to right trochoids,
unless special mention is made of epitrochoids and
hypotrochoids. Either fig. 45 or fig. 46 may be fol-
lowed. The reader is recommended to read the follow-
ing remarks twice over—once with each figure, and to
adopt the same plan with the demonstration of each of
the following propositions.

Let AQB (radius R) be the rolling circle, KL
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the fixed straight line. Let the distance of the tracing
point from the centre be r, so that the tracing point
lies on the circumference of the circle a ¢b, of radius
r, and concentric with AQB. This circle, agd, is
called the tracing circle. Let D’D be the fixed straight
line, touching the circle AQB in B. Let the centre
of the rolling circle move along a line ¢’ C ¢, parallel
to D’D through C, the centre of AQB, in the direction
shown by the arrow. Draw ¢ ¢ and & d parallel to
¢ C ¢, and touching the tracing circle agd. Then it
is manifest that at regular intervals the tracing point
will fall upon the straight lines ¢ ¢ and &'d. When
at a on the straight line ¢ e, the tracing point is turn-
ing around the centre of the rolling circle in the direc-
tion in which this centre is advancing, and is at its
greatest distance from the fixed straight line. When
at @’ and d, the tracing point is turning round the
centre of the rolling circle in the opposite direction,
and is at its greatest distance from ¢’c on the side
towards which lies the fixed straight line KL. The
curve will manifestly be symmetrical on either side of
the diameter ¢ Cd, perp. to KL. Therefore ab is
called the axis of the trochoidal curve : &' d is the base ;
and a the vertex. The radius Ca, drawn to the
tracing point, may conveniently be called the tracing
radius. ID’AD is called the generating base. The
rolling circle AQB is called the generating circle,
and when in the position AQB, is called the central
‘generating circle. The circle a ¢ bis called the tracing
circle, and when in the position ag¢bd, is called the



TROCHOIDS. . 95

central tracing circle. The complete trochoid consists
of an infinite number of equal trochoidal arcs, but it is
often convenient to speak of a single trochoidal arc,
d'a d, as the trochoid. )

It is clear that if D’¢E’, D ¢E, be drawn perp.
to the fixed straight line through d’ and d, and inter-
secting ¢ae in ¢ and e, respectively, the parts of the
trochoid on either side of d'¢’ and de are symmetrical
with respect to these lines. Therefore &’¢ and d e may
conveniently be called secondary azes.

The straight lines ¢ae and d'bd are tangents to
the trochoid at e, and at &’ and d, respectively.

PROPOSITIONS.

Prop. I.—The base of the trochoid is equal to the
circumference of the generating circle ( figs. 45, 46).
For &' 6 d = D’BD = circumference of the circle
AQB.
Cor. 1. & b = ¥’ d = half the circumference of the
generating circle.
Cor. 2. Area edd' € = 2 rect. ad = 4 rect. Cd

=4 % rect. CD = 4% circle AQB.
Cor. 3. The base &' bd : circumference of the trac-
ing circle a ¢b :: circumference AQB : circumference
agb:: R:r
Cor. 4. Area edd' ¢ = 4 rect. under Cb, 6d

= 4 reot. under C b, l}' .arcaq b=4 R;’— circle agbh.
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Pror. II.—If through p, a point on the trochoidal arc
apd (figs. 47, 48), the straight line pq M be
drawn parallel to the base bd, cutting the central
tracing circle in q, and meeting the aris AB in M ;

then, qp = I; arc aq.

Let A’PB/, o’ p &’ be the position of the generating
and tracing circles when the tracing point is at p,

Fie. 47.

A B
. ,\
o 3 -
[

A

ks d
[ K 1>

3 C

C’ their common centre, A’ C’B’ diametral cutting
pMin M. Draw the diameter Pp C’ 8. Then it is
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manifest that M¢g=M"p; MM'=4¢p; and arcag=
arc @’ p. Now B is the point which was at. B when the
tracing point was at a, and since every point of the
arc 8 B’ has been in rolling contact with BB’, the arc
BB’ = BB

But arc 8B’ = arc A’P = I;' arc dp = I;{-arcaq;
and BB’=MM’=¢p; wherefore qz; =-I;{ arc a q.
Cor. 1. Mp = 1;— arcaqg + Mg.
Cor. 2. Since bd = AQB = 1:' agb
= I;{’(arc aq + arc ¢b),
it follows that in the case of the prolate cycloid, where

R>r, and therefore % .arc ¢b necessarily>Mg,

bd>Mp, and the whole .arc apd lies on the same
gide of de as a b.

But in the case of the curtate cycloid (fig. 48),
where R <7, there must be a point ¢’ on @ ¢ b where

? arc b ¢’ = N ¢" (drawn perp. to AB),

and if p” be the point in which N ¢” produced meets
the trochoid, then will p” fall on ed, for

p”N=§arcaq”+Nq”

= 1—:' (arcaq’ +arcdg’)=bd.

The part of the trochoid lying between p” and d mani-
H
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festly falls on the side of ed remote from ab; and as
the complete curve is symmetrical with respect to e d,
it follows that the curtate cycloid has a loop of the
form p” rd#. It is also clear that the point p” Lies
between D and e, since if L be the point in which BD
cuts the arc a ¢ b, and CL cuts AQB in [, the arc B!
is less than BL. The point p” may lie nearer to e
than E does, however, and the arc d 7 p” may intersect
ab. It is easily seen either from the mode of genera-
tion or from Cor. 1, that if the ratio » : R be small,
the curve may cut ed a great number of times before
the tracing circle has been carried entirely past ed.

Observe that if C ¢’ cuts AQ'B in point Q'

arc BQ' = Nyg".

Cor. 3. Let Mp produced (if necessary, in the

case of curtate cycloid) meet ed in m; then
pm=Mm~pM

R
= ;arcaqb-—;arcaq—Mq

= ?arcbq—Mq.

For points of the arc p” »d (fig. 48) this relation still
holds, regarding lines drawn perp. to e d from the right
as negative.

.bb, and

=

Cor. 4. Arc a'p=

arc b'p=%. b d.

Cor. 5. If from p’ on p d, p’ ¢’ be drawn parallel to
bdtomeeta pbd in g,
gp :arcpqg = R:r,
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The proof of this is similar to that of Prop. II., sec. 1,
cor. 5.

ScHOL.—The reader will find no difficulty in
making the necessary modifications for the epitrochoid
and hypotrochoid, deducing properties bearing to
those established above the same relation which those
established in Prop. IIL., section 2, bear to the pro-
perties established in Prop. II., section 1.

Pror. III.—The area d’ ad (figs. 45, 46) between
the trochoid and its base : area of the generating circle
2(BC+0A4):0C 2R+

This may be proved in either of two ways corre-
sponding in all respects with the two proofs of Prop.
IIL., section 1. In the first proof, we show that ele-
mentary rectangles ¢p, ¢’ p’ (figs. 49, 50) are equal
to elementary rectangle L /; whence areas a ¢ p, ¢'b'dp’,
together, are equal to rectangle L /; and the area

R . ‘
agbdp to the rectangle Ce = — circle ag 5. Whence

area d'ad (figs. 45, 46)= © aqb+¥' ®© agb,

or

area dad: © agb:: 2R +r:r::be+bA:bC.
In the second proof, having drawn the inverted

trochoid a p”’' d, with ae as half base, and de as axis,

we show that the elementary rectangles p”p and ¢"'¢

are equal, whence

areaq’agq=areap’ap; and areaa p”dp = circle agb.

"2
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The equal areas ap”db and a p d e are, therefore, each
= } (rect. be — circle a b g)

R .
= (3 = 1) circle abg;
therefore

the area apdd = (;R + })circle abg;

and dad= (2Rr+r circle abg,

as before.

Fio. 49.

ScHOL.—The reader will find no difficulty in deal-
ing in like manner, so far as first proof is concerned,
with the area between the epitrochoid or hypotrochoid
and the base. The demonstration bears precisely the
same relation to that of Prop. I'V., section 2, which the
above first proof bears to the first proof of Prop. III.,
section 1. We thus show that the area between the
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generating semicircle a ¢ b, the arc base b d (radius F)
and the trochoidal arc apd: generating circle agb
:2CO (JC+bA):50.5C, that is, in the ratio
compounded of the ratios 2CO: 50 and (6C + & A)
: 5 C.
In all cases,—for cycloid, eplcyclmd hypocycloid,
trochoid, epitrochoid, and hypotrochoid,—
area a gbdp in the trochoidal figures = } area abde.

Prop. IV.—If the cycloid, a PD, and the trochoid,
apd (figs. 49 and 50), have a common axis a b,
area aqbdp : areaaqb DP :: R: r.
From Prop. II., section 1,
gP=arcag;
but from Prop. II., of the present section,

R
gp=7 arcag

. gp:qgP = R:r,
md elem. rectangle pg¢ : elem. rectangle ¢ P :: R: r;

whence area agp:area aqP
::areaaqgbdp:areaagbDP :: R:r.

Cor. Areaagp:areaaqP :: R: .

ScHOL.—A similar property can be readily esta-
blished for epicycloids and epitrochoids, or for hypo-
cycloids and hypotrochoids, having a common axis.
In this case, ¢ p, ¢ P, and 4 d, are concentric arcs, and
in place of elementary rectangles we have elementary
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arcas like Qp, ¢ P’ of figs. 26 and 27 ; but the
ratios are the same, and we therefore still find

area agp:areaaql :: areaaqbdp : area agb DP
“R:r

Pror. V.—If p (figs. 51, 52) is a point in a trochoidal
arc, a p b, the tracing circle when the tracing point
is at p,  C'V diametral, meeting the generating
base in B, then B'p is the normal at p ; and if
Td t is the tangent to the tracing circle at o,
T p,t p, tangents to the trochoid and tracing circle
respectively at p, then

Tt : at:: R : r.

Fra. 51.

Since, when the tracing point is at p, the generating
circle is turning around the point B’, the direction of
the tracing point’s motion at p must be at right
angles to B’p, which is, therefore, the normal at p.
The tangent p T at p is therefore perp. to p B’. Also,
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since pa’ is perp. to p ¥, and pt to C’p, triangle
p T da is similar to p B'Y, and p a’¢ to pb'C’; there-
fore

Tt:at:BC:Cb:R:r

Another Demonstration.

From p and p’ (near p), on the trochoidal arc, draw
pM, p’M’ perp. to o'/, p’M’ cutting a’p b’ in g. Then
qp 1 pquCB - C¥ (=C'p),

Prop. IL., cor. 5, and since ultimately the sides ¢ p’,
¢ p are perp. to the sides C’ B/, C’p,
angle p ¢ P'= angle p C'B'.

Hence the triangle p ¢ p’ is ultimately similar to the
triangle p C’B’, and p p’, the third side of one, is ulti-
mately perp. to p B’, the third side of the other.
Wherefore p B’ is the normal at p. And, as in the
preceding proof, T¢: a’¢::C'B’ : C'6':: R : 1.

Cor. 1. Triangle p ¢p’ being similar to triangle
pCPB,

pp pquBp:Ch

Cor. 2. If pm be perp. to p’M’,and p T cut or
meet a'd’ in K, then pp’m is in the limit similar to
triangles p B'M, K p M, KB’ p.

Cor. 3. If B'p cut p’ M’ in [, the triangles Ipm
and ! p’p are similar to the four triangles named in cor.
1. Also,!pqissimilarto K p C’,and ¢ pp'to C'p B'.
Wherefore

lg:qp'=KC' :CB :pN:NB.
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Cor. 4. If pb' cut p’ M’'in &, kpp’ is similar to

o pB,and kpgtoa pC. Wherefore
pg=qhk,andkq:gp :pg:gp ir: R,

Cor. 5. If in the case of the prolate cycloid, illus-
trated in fig. 51, the tracing point is at », where the
tangent from B’ meets the tracing circle a ¢ &', then
the normal B’r has its greatest inclination to «’B’,
and its least inclination to the base. It is manifest,
therefore, that » is a point of inflection. At the point
of the prolate cycloid corresponding to 7/, in which
B’ p cuts the tracing circle, the tangent is parallel to
the tangent at p.

Cor. 6. If in the case of the curtate cycloid, illus-
trated in fig. 52, the tracing point is at r on the generat-
ing base, the normal B’r coincides with the generating
base. Therefore the curtate cycloid cuts the generat-
ing base at right angles.

Cor. 7. B’ g produced to meet p p’ in n is ultimately
perp. to p p’, and if C’N is drawn perp. to p B’, pgn
is similar to p C'N, and p’qn to B’C’'N; and
pp :pni:pB ipN.

ScrOL.—It is easy to prove that p B’ is the normal
in the case of epitrochoid or hypotrochoid. We have
only to draw C'’s parallel to the line joining p with the
centre of the fixed circle, to meet p B’,* and proceed
as in Prop. V., section 2. (In both figs. C’s is drawn
for the case of the epitrochoid; C’s’, for the case of

* The reader will note that, in fig. 51, C's’ does not extend far
cnough. It should be produced to meet p B’
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the hypotrochoid). If;in the former case, the straight
line joining p with O, the centre of the fixed circle, be
perp. to B’p, which can only happen when >R (fig.
51), the tangent at p passes through O. This deter-
mines the position of the tangent from the centre to
the curtate epicycloid corresponding to the direction of
the stationary point in the looped epitrochoid, regarded
as a planetary curve. It is well to note the construction
for determining this point. Produce C’¥’ (fig. 51) to
O, the centre of the fixed circle, and on B’O describe
a semicircle cutting oa’p b’ in »'; then B'r is perp. to
'O, and therefore a circle described about O as centre,
with radius O #/, intersects the curtate epicycloid in
the point where the tangent passes through O. This
relation is demonstrated and dealt with under Prop. X.

Cor. 8. In the case of epitrochoids and hypotro-
choids the triangle p ¢p’ is similar—not to p CB'—
but to p C’s (the s accented throughout for hypotro-
choid) ;

pp ipqups:pC,
and pp’ :npi:ps: PN.

Since then N p and n p are the same for the epi-
trochoid or hypotrochoid as for the right trochoid, with
the same generating and tracing circles (and, of course,
the same angle, p C'a’, between tracing radius and
diametral), while

pB :Bs:F R,
and therefore p B’ : ps:: B'O : C’O (see figs. 28 and
29), it follows that p p’, regarded as an arc of an epitro-
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choid or hypotrochoid, bears to p p’, regarded as an
arc of a trochoid (p ¢ being the same for both), the ratio
sp:pB,or C'O: B’O,or F+R : R (the upper sign
for epitrochoid, the lower for hypotrochoid).

The student will find it a useful exercise to com-
plete the construction indicated in the scholium, noting
that the figs. 51 and 52 are correct for the cases there
considered, as well as for the case considered in the
text, except only that the lines p M and p’¢ M’ must
be concentric with the generating base through B'—
that is, must have for centre the point O mentioned
in the scholium,

Pror. VI.—From a point p (figs. 53 and 54), on the
trochoid a p d, above the line of centres c¢c'C, let q p
be drawn parallel to ¢ C to meet the central tracing
circle ac’b in q, and g n, p m, perp. to ¢ C; then, if
the rectangle a ¢ nf be completed,

area ahgp+rect. pn :rect. cf:: R :r,

And if from p’ on ap d below ¢ C, p'q’ parallel to ¢ C
meet ac’b in ¢’ ; q'n’, p'm' are drawn perp. to ¢ C;
and rect. n cb f' is completed, then

area a h c'q'p’—rect. p'n s rect. cf R : 1.

Let a PD be a semi-cycloid having a b as axis;
then it is easily seen that every element of either area
ahgp+pnor ahqp’'—p'n parallel to ¢ C, bears to
the corresponding element for the case of cycloid a PD,
the ratio R : »; and therefore the sum of all such ele-
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ments of either area in case of trochoid : sum of all
such elements of either area in case of cycloid (Z.e.,

Fie. 63.

o £l .

cf or cf’, as shown in Prop. V. sec. 1) :: R:r.
That 1s,
area ah gp+rect. gm : rect. cf
area ah ¢'p’ —rect. ¢m’ : rect. ’f

}::R:r.
Cor. Area ac'bdr = rect. cd=§ .circle ag b

(Prop. L., cor. 4). Thus we have here another de-
monstration of the area of trochoid.
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Prop. VII.—Let a (fig. 55) be the vertex of the
trochoidal arc ap, a’p ¥’ the tracing circle through p,
a' CV diametral, A'C' B’ the corresponding diameter
of generating circle. Describe the quadrant A’ PA”
having V' as centre and b’ A’ as radius ; produce b'p to
meet A’PA” in P; and draw Pl perp. to A",
Then, if B’ = ¥B', and B”"P A", an elliptic
quadrant having &' B"” and ¥’ A" as semi-azes, inter-
sect Plin P,

arc ap = twice the elliptic arc B" P,

Let p'* be a point on the trochoid near p, and let
p'q parallel to the base meet a’pd’ in g. Produce 4'q

Fio. 66.

to meet A'PA” in Q; draw QL perp. to 4'A”, cut-
ting B"Q'A” in Q'. Join a’p, B'p, and draw &'z
parallel to B’p (dividing a'pin n, so that a'n:np
md'd ¥'B i A’B” - B'V). Join C'p, PQ,and P'Q'.
The secants PQ, P’'Q’ being ultimately tangents at

* p’ does not lie on P 1.
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" P and P’, meet ultimately when ptoduced on ¥A"”; let
them thus meet in T.

Then P'Q’ : PQ:: P'T : PT:: ¥'n : &'a’ (since tri-
angle a'd’p is similar to PT/, and a’p and P are
similarly divided in = and P’ respectively):: B'p : B’a’.
_ Also, PQ : pg:: AV (=a'B'): a'¥’

(because P5'Q is an angle at centre of quadrant A’'PA”
and at circumference of semicircle a’p d').* Where-
fore, ex equali,

P'Q: p g::B’p:a’d. But
pp ipq:Bp: Cp(Prop. V. cor.l): 2Bp a'b
therefore, pp=2PQ.

But p p’ and 2P’Q’are increments of arc ap and arc
B”P’ respectively, which arcs begin together.

Therefore, arc a p=2 arc B"P’,

Cor. The arcs apd (figs. 45 and 46) = elliptic
arc B”A”B’, and arc d'ad = circumference of an
ellipse having semi-axes b A, 5B, that is, R+7 and
R~r.

Pror. VIIL—If a'pb (figs. 56 and 57) is the
position of the tracing circle through p, a't’ diame-
tral, a b the axis, and p b’ be joined, then

area apb'b : sect. area abq (or a'b'p k)} . .

area pb'd : segment bsgq (or b fp) “ZRtrir

Let a PD be a cycloid, having a b as axis, and let
P p be parallel to b d; then area aqu’P = 2 sec-

A’b’-m meas. of p ¥/q =} circ. meas. ofpc’q=}1’9-p,§.
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torial area A'B’P. But every element of the area
a qb¥'p parallel to base b d (as in Prop. IIL.) : corre-
sponding element in case of cycloid :: R : 7. Wherefore
area a gbb'p : sectorial area ab ¢::2 R : r, and area
acbd :sectorialareaabg::2R+r : r. Similarly
area pb'd : segment bsq::2R+r: 7

Fie. 56.

Cor. 1. Area pfb'd : segment pfd’ ::2R :r.
Cor. 2. Areaaqbbd'p. : sectorial areaadg::2R : r.
Cor. 3. If p ¢ produced meet a b in m,

area gsbdp =rect. bm, gp + —2r—R segment 4 s g¢.

ScrOL.—Two independent methods of demonstra-
ting the area of trochoids can be derived from the above
proposition, as in the case of cycloid. For, carrying p
to d, we have area apdbd: }circleagd::2R+7r : 7,
as in Prop. III.

The proof may be extended to epitrochoids and
hypotrochoids, and the following proportion esta-
blished :—
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Area ab ¥’ p : sectorial area a’ bp
iarea b'pd :seg. bsq

2 (2 CO+B0)(2 R+7): BO. r, where BO is the
radius of the base, and CO is the radius of the are of
centres, or

2 (3Fx2R)(2R+7):F.r
(where F is the radius of fixed circle), the upper sign
for epitrochoid, the lower for hypotrochoid.

Prop. IX.—To determine the area of the loop of the
curtate cycloid a p d, fig. 48.

By cor. 3, Prop. VIIL, area ¢''p"'r d b, fig. 48,
(= rect. N d+4 loop r'r — area N b ¢")

=rect. b N, ¢"p" + —27R— seg. ¢'L b;
.. 4 loop #'r = area Nbg”— rect. under bN, Ng”

+ 2rR seg. ¢"L b
=2 Rr+r seg. ¢" L b—triangleb N ¢”; -

4R-}-2rs
r

~dooprr'= eg. ¢"L b—rect. N a.

Pror. X.—With the same construction as in Proposi-
tion VIIL, areaaphla' : segment a'hp::2 R : r.
Since area agp :area AQP :: R:r:: area
agpha :aqgPHA' (PHA’ being the arc of tracing
® A’PB/, for cycloid, not wholly shown in the figure) ;
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it follows that area apha' :area aPHA'::R : 7.
But area a PHA' = 2 segment A'HP or 2 segt. a’hp;
c.areaapha :segt.a’ hp::2 R:r.
Cor. 1. Areaapdge: }circleeq'd::2 R : r.
Since ap dg'e = apde+}circle a ¢ b,
and rect. be : § circleeg’'d:: 4 R : r, it follows that
rect. be *area apde+4 circleagb::2 : 1

as in schol. to Prop. III., so that we have here a new
demonstration of the area.

Cor. 2. In the case of the prolate cycloid, fig. 57,
in which p a’ does not intersect the arc a p,

areaapa’ :segment a’hp::2 R—r: 7.

Cor. 3. Proceeding to d, area apde : } circlee g’'d
::2 R—r : r, in case of prolate cycloid.

Cor. 4. In the case of the curtate cycloid, fig. 56,
p a’ cuts the curve in some point %, bétween p and a’.
Here then

area aka’ —area kp : segment a’hp::2R—r: 7,

or passing to d,
area are—semi-looprp’a : }circle e¢’'d::2R—r : 7.

ScHOL.—Another independent demonstration of
the area of trochoids is worthy of notice. Let ussuppose
that the circle a ¢ b, figs. 49 and 50, slides uniformly
between a ¢ and b d to the position ¢ Q d (e d diametral).
Let p”a’p be the position of the upper segment when

the circle passes through p”’p (=¢"g, so that the circle
reaches p”’ and p simultaneously), and let a closely
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adjacent segment, as in the figure, give the elementary
areas a’p and a’p”. These are ultimately in a ratio of
equality, but they are the respective increments of the
areas ap a’, a p’’a’ (or as actually drawn in the figure,
they are the elementary increments next before the
attainment of these areas apa’, ap”a’), and these

areas begin together. Hence
areaapa’ =areaap’a;
and carrying the moving circle to its final position,
area apdQe=areaap’dQe=areaapdbyq,

whence the result of Prop. III. follows at once.

Prop. XI.—Let p o (figs. 58-62) be the radius of
curvature at p, on the trochoid; a'p b the tracing
circle through p. Then,if a' C'b’ meet the generating
base in B’y and C'N be drawn perp. to p B/,

po:pB:upB :pN.
With g0 much of the construction of Prop. V. as

is indicated in fig. 58 (illustrating the prolate cycloid),
let p'Li be the normal at p’ (near p). Then

g7 = % arc p ¢ (Prop. IL, Cor. 5) = B' L.

Join ¢ B’. Now p’L, being parallel to ¢ B’, is not
parallel to p B’, unless the point ¢ falls on p B’; that
is, unless the tangent to the circle a’q 4’ passes through
B’, the case illustrated by fig. 60. In this case the
radius of curvature is infinite, or p is a point of inflec-

1
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tion. In all other cases, p B’ and p’Li meet when pro-
duced,—towards B’L, when p’q has to be produced to
meet p B’ (in 1), and towards p p’ when p B’ intersects

Fre. 58. F1a. 69. Fia. 61.

7’q (in 1) between p’ and ¢, fig. 59. Let them meet
in 0. Then in the limit
lo:1B'::1p' :1q:: pB' : pN (Prop. V., cor. 3).
That is, ultimately,
op:pB'upB :pN.
Cor. Rect. under o p, p N=square on p B".
ScHOL.—The following construction is indicated for
determining the centre of curvature. On B’p, pro-
duced if p is beyond N, otherwise not, take p H=p N,
nd on the tangent p KT at p take p T=pB’; then

7
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To perp. to HT will meet p B’ produced in o, the
centre of curvature at p. For

op,p H=(p T),
that is, op,pN=(pB')

The student will find no difficulty in dealing with
the corresponding demonstration for the curtate cy-
cloid. Fig. 61 gives the construction for one general
case, p above the base; and for the case of a point on
the generating base where B’ becomes the centre of
curvature (for the latter case r and r' are put for p
and p’, while the letters H, T, and N are accented).
Fig. 62 gives the construction for a general case, p
below the base.

For the vertex, N coincides with C’,p N=a'C'=r,
and p B’ = a'B’ = R + ». Therefore,

radius of curvature at a = R +ry ‘: ")2,
both for prolate and curtate cycloids.

For the point d, N also coincides with C’,p N=r
in absolute length, and must be regarded as negative
in case of prolate cycloid, because N falls outside p B’
beyond p, whereas in case of curtate cycloid N falls
on the same side of p as B’, though beyond B’. Also
= pB’' = (R —r). Therefore, rad. of curvature at d

— a -
=& - ) , negative for prolate cycloid, and positive

for curtate cycloid. :

But it is to be noticed that in considering the
curvature in the case of the curtate cycloid as constantly
positive, regard is had to the intrinsic nature of the

curve. If the curvature is considered with reference
12
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to the base, there is a change of sign at the moment
when N passes the point B’, or where the curve cuts
the generating base—viz., at 7.

At this point r,
By

radius of curvature = =rB; or
r B’ ’

square onrad. = (r B’» = (C'r)? — (CB')*=r* — R2.

Prop. XII.—Let p o ( figs. 63, 64) be the radius of cur-
vature at the point p of an epitrochoid or hypotrochoid ;
a'p b’ the tracing circle through p; and a't’ O dia-
metral, cutting generating base in B'. Draw CN
perp. to p B'; and C's parallel to p O meeting p B’
(produced if necessary) in s. Then

po:pBups:ps— NB.

[Two illustrative cases only are dealt with (one of
a prolate epicycloid, one of a prolate hypocycloid). The
student will find no difficulty in modifying the demon-
stration and figure for other cases.]

Letp’ be a point near p; p'L the normal at p’; p'q
concentric with generating base B'L, meeting a’p 4’ in
q. Draw gn perp. to pp’; ¢giin direction perp. to
a'b’ to meet p p’ in 7, and L & perp. to B’p. Then, as

in case of right trochoid, ¢ =B arc p g=B'L,
r

and triangle B'L % is equal in all respects to triangle

qin. Also triangles pgn,pgi,pgp’ are gimilar to

triangles p C'N,p C'B’,p C’s. (See Prop. V., Cors.

and Schol.) Now L /4 is parallel to p'p; wherefore,
po:houpp :hL (=ni:ps: NB,

or ultimately po : pB’'::ps (ps — NB').
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Cor. Since ps: C'O::p B’: B'O, we see that
po:CO:(pB)»:(ps—NB)BO
= (pB)?: pB.CO-NB.BO.

See p. 166. At vertex, and at pt. on base, rad. of cur-
_(R+7)(F+R) o _(R—r}(F+R)

Ritr (F+RY Ri—r (F+R)
respectively, R being regarded as negative for hypo-
cycloid.

vature

Fia. 64.

ScHOL.—A construction similar to that for the
radius of curvature at points on right trochoids can
readily be obtained. Thus produce B’p to H (as in fig.
58), taking p H=p s—NB’; on the tangent p K take
p T, a mean proportional between p B’ and p s; then
T o perp. to TH will intersect p B’ produced, in o, the
centre of curvature at p. For by the construction

po(ps—NB)=(pT)=pB'.ps
c.po:pBups:(ps— NB)

At a point of inflection the radius of curvature
becomes infinitee Now p B’ is always finite, and
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since ps : pB'::C’O : B’O, ps is also necessarily
finite. Wherefore, the radius of curvature can only
become infinite by the vanishing of p s—NB’, that is,
when NB' =ps,or Np =B,

or p must have such a position as is shown in figs. 65
and 66, for the epitrochoid and hypotrochoid respec-
tively. Wherefore,

NB :pB':ps:pB::CO:BO:F+xR:F
(upper sign for epitrochoid, lower for hypotrochoid),
Fie. 65. Fie. 66.

or, drawing p I parallel to NC’—that is, perp. to B’'N
—to meet C’'O in I,

CB :BT:CO:BO:F+R:F.
Wherefore, the construction for determining points
of inflection is as follows:—Take I in C’O (figs. 65
and 66), so that

CB :BT:CO:BO:F+R:F

or B'I _CB.BO_R.F
- CO0 T FzxR
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Then if the circle on IB’ as diameter cuts the tracing
circle, as at p, a circle about centre O with radius O p
cuts the epitrochoid or hypotrochoid in its points of
inflection.  If the circle on IB’ as diameter does not cut
the tracing circle, there are no points of inflection.
Cor. C'B':C1::CO:CPB,
R/ ’ "y . H T — R2
and (C'B)?=C1.CO; thatls,CI_———~FiR.
" If, in case of epitrochoid, I falls at &’,—that is, if

CB :B¥:CO:BO:F+R:F,
the radius is infinite at the point d; but there is ne
change of curvature : two points of inflection coincide,
and the curvature has the same sign on both sides of
the double point of inflection. In this case,

Cy:CB:=:CB :CO:R:F+R

orr:R:R:F +R.
This indicates the relation between r, R, and F, when
in the case of epitrochoid the curve just fails, at d, of
becoming concave towards the centre.
If, in case of hypotrochoid, I falls at o', that is, if

CB :Ba::CO:BO:F—R:F,
the radiys is infinite at the vertex a. Two points of
inflection coincide, the curvature having the same sign
on both sides of the double point of inflection. In
this case

Cao :CB:CB :CO:R:F—-R

orr: R:R:F -R.

This indicates the relation between r, R, and F, when,
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in the case of the hypotrochoid, the curve just fails at
a of becoming concave towards the centre.

Pror. XIIL.—If p (figs. 65 and 66) be a point of in-
JSlection of an epitrochoid or hyputrochoid, a’qp the
corresponding position of the generating circle;
a' C O diametral, meeting the generating base in
B'; pz perp. to B'C’' ; and k the centre of sem:i-
circle B'p I; then will

rect. CB'.C'I £ sq. on Cp =2 rect. Ck, Cz

(the upper sign for epitrochoid, the lower for hypo-
trochoid).

We have
(Cp)y=(C2) + (p2) = (C2) + (R I} —(k 2)?,
and for epitrochoid .
CB' .CI=(Ck)P?—(RI)
OB .CT + (Cp) = (Czp + (CRY? — (h2)?
=2C%.Cx
For hypotrochoid
C'B'.CI = (hIP*—(Ck)?
o CB . CI—(Cp)=(k2)— (C2)*— (Ck)?
=2C*%.C2
ScHOL.—This prop. may also be treated in the
manner adopted for the next—i.e., starting from the
relation (Ip)? + (Bp)? = (I B’)?, and taking triangles
IC’p and B'C’p.
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Pror. XIV.—Let p (figs. 67, 68) be the point of the
loop of an epitrochoid or hypotrochoid where the
tangent to the curve passes through the centre of the
fized circle; a’'pl’ the corresponding position of the
tracing circle ; and o’ C' B’ diametral, meeting the gene-
rating circle in A" and B'; then,if p K is drawn perp.
to OC,

Rect. 0A'y CK =3q. on C'V + rect. 0 C',C'H,

Jor epitrochoid, and
. =rect. 0C.C' B —sq. on C'V,
Jor hypotrochoid.
Since p B’ is the normal at p, B’p O is a right
angle, and sq. on B’p+sq. on p O = sq. on B'O.
Fie. 67.

%

Fie. 68.

o X e >

3

Now (B'p)* = (C'p)* + (C'B')*—2C'B’. CK
and (Op)* = (Cp)?+ (CO02x2C0.CK
(lower sign for hypotrochoid)
< (Bp)' + (Opy =2(Cp) + (C'B) + (C'O)
- 2(CB' = C0)CK;
thatis,  (B'O)' =2(C'p)’ + (C'B')" + (C'O)’
+20A'. CK.
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Or, for epitrochoid,
20A".C’K=2(C¥)+(CO) + (C'B')*—(B’O)?;
t.e. (Eue. IL., 7) OA’. C’K=(C'¥')*+ OC’. C'B".
For hypocycloid,
20A’.C'K'=(B'0)*—2(C'o")*—(C'O)*—(C'B')*;
ie. (Euc. 1L,4) OA’. C’K'=0C'. C'B'—(C'¥' )%
SceOL.—This prop. may also be treated in the
manner adopted for the preceding, bisecting K Oin =,
and noting that rect. OC’ . C'B’'= = [(C'n)*—(n B")?],
upper sign for epitrochoid, lower for hypotrochoid.
Observe that C’K (regarded as positive or negative,
according as K lies on C’'O, or C’ on KO)
_MMxx(FxR)R 2+ R**+=FR,
- F*:zR - Fx2R °

the upper sign for epicycloid, the lower for hypocy-
cloid.

This is the relation existing at a stationary point
in an epicycloidal planetary orbit.

Pror. XV.—If G (figs. 47 and 48) is the centre of
gravity of the trochoidal area d'ad,

bG:3R+2r::r:2(2R + 7).

Since every elementary rectangle of the part of area
d'a d outside circle a ¢ b, taken parallel to base : corre-
sponding element of part of cycloid having a b as axis
lying outside same circle agb:: R : r, it follows that
the distance of C(+ of former areas from bd (along
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b C, evidently) = distance of CG of latter areas from
b (along 5 C)=$b C (Prop. XVIIL, sec. 1st, cor. 3).

.*. Mom. of d’'ad about bd
3r
4
_3R+2r
- 2

=2%circleaqb. + circleagd . r

.circleagd

ﬂ{T"_—rcilrcle agb

@%.ﬂcircle agbd

2R+7r_ 3R+ 2r
- 2
orbG:3R +2r::7:2(2R + 7).

3R+2r 7
2R+r "2

and area d'ad =
- bG.2—R—:'—r—circle agh=

bG.

COl‘. b G =

Prop. XVI.— The volume generated by the revolution
of a trochoid about its base is equal to that of a
cylinder having the circle aqb for base and height
equal to the circumference of a circle of radius
3 R + r; that is, this volume=r 3R +2r) =%

By Guldinus’ 2nd prop., vol. = (area d'ad) 275 G

2R+7r 3R+ 2r
=Qagqgb T "R 17 r=Qaqb(BR+2r)r

= vol. of cylinder having circle ag¢ b for base, and
height equal to circumference of a circle of radius
4R+ r50or,vol.=72(BR + 27)x2
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AprPENDIX TO SEcTION III.
ELLIPTICAL HYPOTROCHOIDS.

The hypotrochoid becomes an ellipse when the diameter
of the rolling circle is equal to the radius of the fizxed
circle.

Let BB'D (fig. 69) be the fixed circle, BQO the
rolling circle, when tracing point @ is on the radius

Fie. 69. (Note that two lower a's are Greek.)
Y

—_—
-~
|

——

BCO. We have already seen (p. 68) that when the
circle has rolled to position B’A’O, the tracing radius
has its extremity A’ on OD perp. to OB, and B'A’ is
perp. to OD (OC'B’ being diametral). Take C’a’ on
C’A’, equal to C a, then a’ is the tracing point. Taking
C b = C a, describe arc b 5'd about O as centre, cutting
OB’ in %', ThenC'?’ = C’a’, and . . b’'a’ is parallel to
B’A’ and perp. to OD, which let it meet in M, and
draw C'N perp. to B'A’, bisecting b'a’ in n. Then
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aM:an::ad’A’:a'C'::20:aC
coaM: M (=adM +2a'n)::a0:00.

Wherefore o’ is a point on an ellipse having O a
as semi-minor axis, and bb'd as auxiliary circle,—
t.e.,having Od and O e (or R + r and R — r) assemi-
axes.

If »r > R, or the tracing point is in CO produced,
as at a, it may be shown in like manner that when the
tracing radius has any other position C’'A’a’, the
tracing point a’ lies on an ellipse having O § (D8 =0Oa)
and O a as semi-axes, that is, having semi-axes equal
to r + R and » — R, respectively.

ScHOL.—An ellipse with given semi-axes, a and d,
can be traced out equally by taking the radius of the
fixed circle equal to (a + b) or $(a—5). In theformer
case, the tracing radius =} (a+0)—b=4%(a—"0); in
the latter the tracing radius =4 (a—5) + b= % (a+d).

THE TRISECTRIX.

‘When the radius of the rolling circle of an epitro-
choid is equal to that of the fixed circle, and » = 2 R,
the curve is called the t¢risectriz. The property of
trisecting angles from which it derives its name may
be thus established.

Let BDB’ (fig. 70), centre O, be the fixed circle;
EQD, centre C, the rolling circle (ECDO diametral),
when the tracing radius is in the position CDO, or
(since CD=DO=R=4r) the tracing point is at O.
When the rolling circle is in position B’'QA’, A’C’'B'O
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diametral, let C'Pp be the tracing radius, cutting
B'QA’ in P. Then arc PB' = arc B'D; .. angle
OC’p = angle C'OC; and since C’p = OC, the tri-
angles OC’p and C’OC are equal in all respects.
Thus,
angle p OC’ = angle CC'O

and angle COC’ = angle p C'O;
... angle pOC = angle pC’'C = angle OC'C — p C'O

= right angle — 4 angle COC’ — angle p C'O

= right angle — 3 angle p C'O

= right angle — 3 angle OC p.

Fre. 70.

Wherefore, if Op produced meet in R a circle de-
scribed about C as centre, through O,

angle ROC + angle CRO = 2 angle p OC
= 2 right angles — 3 angle OC p;
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but angle ROC + angle CRO
== 2 right angles — angle RCO;
.*. angle RCO = 3 angle OC p.

Hence the trisectrix affords the following construction
for trisecting any given angle RCO. With centre C
and radius CO describe arc OR, cutting CR in R.
Join OR, cutting the loop OBC in p; then angle
RCO = 3 angle p CO, or C p trisects the angle RCO.

ScHOL.—Both the tricuspid epicycloid and the
tricuspid hypocycloid are trisectrices. See Exs. 91, 92.

THE SPIRAL OF ARCHIMEDES REGARDED AS AN
EPITROCHOID.

The curve traced out by a point retaining a fixed
position with respect to a straight line which rolls
without sliding on a circle, in the same plane as line
and point, may be regarded as an epitrochoid, whose
generating circle has an infinite radius.

Supposing the tracing point on R, fig. 71, T'DT
the rolling straight line, it will easily be seen that if
this point is near D, the curve will resemble DPR,
only instead of a cusp near D there will be simply
strong curvature convex towards O, and two points of
inflexion, one on each side of R ».  When the point is
remote from D, the curve will be concave towards O
throughout. It is easily seen from the formula at page
119 (or it can be readily proved independently*) that

* For the independent geometrical proof, it is only necessary
to show that the tracing point recedes from R# initially at the -
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if the tracing point lies at d such that D d = DO, the

radius of curvature will be infinite at d, the two points

of inflexion coinciding there, for from the proportion
r:R:R:F+R,

we have R—r:R:F:F+R.

Fre. 71.

R

‘Wherefore, since the ratio R: F+R is one of
equality when R is infinite,
R—r=F; thatis,d D = DO.

When the tracing point is on DR there will be a loop.
‘We need not consider the various curves traced out
according to the varying position of the point d, either

same rate at which the point of contact between the generating line
and the fixed circle recedes from R »; which is obvious, since D d
as it moves with the rolling tangent is constantly parallel to the
radius from O to the point of contact just named, and in its initial
mhotion the point D moves in direction D »,
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on Dr or on DR. There is, however, one case
which is historically interesting, and may therefore be
considered here, though briefly.

‘When the tracing point is at O, the curve traced
out becomes the spiral of Archimedes, a curve so called
because, though invented by Conon, it was first inves-
tigated by his friend Archimedes. It was defined as
the curve traversed by a point moving uniformly along a
straight line, which revolves uniformly around a centre.
So traced it is only perfect as a spiral when the moving
point is supposed first to approach the centre from an
infinite distance, and after reaching the centre to recede
along the prolongation of its former course to an in-
finite distance. Regarded as a trochoid, the complete
spiral (or rather the part near the centre) will be traced
out by supposing TDT’ to roll first in one direction
from the position where the tracing point is at D, and
afterwards in the other direction.

The identity of this epitrochoid with the spiral
of Archimedes is easily demonstrated. Thus, let p
(fig. 72) be a point on the curve, B'P the corre-
sponding position of the rolling tangent, P p being the
position of the line which had been coincident with
. OD, so that Pp is perp. to B'P, and B’P equal in
length to the arc DQB’. Then, since OB’ is perp.
to B'P and equal to Pp,Op =B'P. And Op is
parallel to B'P, the rolling line, whose direction has
changed through an angle measured by the arc DQB’,
which is equal to B'P or O p. Hence the distance of
p from O is proportional to the angle through which

K
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Op has revolved from its initial direction OQ' (parallel
to DT’). Therefore p is a point on a spiral of Archi-
medes.

AREA OF THE SPIRAL OF ARCHIMEDES.

The area of the curve is thus determined : —Let p p’
be neighbouring positions of the tracing point; B'P p,
B"P’p’ corresponding positions of the rolling tangent

Fia. 72.

z,

Ll & N'rnn'

Q Q

~

e R

with its perp. Then O p is equal and parallel to B'P;
Op’ to B"P’. 'Wherefore, in the limit, area p O p’=
area PB”P’. Hence, increment of area O & r p=incre-
ment of area D ¢ PB’Q; and these areas begin together:
they are therefore equal. But PB’ and P'B” are nor-
mals to D ¢ P, the involute of the circle DQB;
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therefore, area D¢PB'Q=1 ( H (see p. 85)

: 3
that is, area Orp=1 (())13

ARC OF THE SPIRAL OF ARCHIMEDES.

The arc of this spiral may be thus determined.
Drawing DK (fig. 72), as in fig. 71, and representing
element of arc PP’ by an element of area KM’ (KM
= DM =B'P), let LM be so taken that element of
area LM’ represents the increment of arc pp’. Now
the tangent at p is perp. to B’p, so that in the limit
(angle p O p’ being equal to angle PB'P’),

pp : PP ::B’p:BP;

» (pp'P: (PP ix (Bp) : (BPY

:(PO»+(0B’)y : (B'P)

or (LM):(KM)*::(DM)*+(OD)?: (DM)*
2 (KM)2+(0OD)? : (KM)?

. (LM? = (KM)2+(DO)?
or (LM)*—(KM)? = (OD)?
Wherefore L is a point on rectangular hyperbola d ¢’1,,
having Dd = OD as semi-axis, D as centre, and DK
as an asymptote ; and

arc 01]) arc D¢P :: hyperb. area DdLM ADKM.

::rect. DL +sq. on OD(lo ,I—)MD—-:)MLJ) : 8q. on DM.
o (B’ P) DM
or,- since arthP— (p- 84) = =50D°
rect. DL DM+ML
Are Orp =" + (los. 55—

x 2
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Cor. The loop cuts the axial line BO d in a point
r. such that O r = Q¢ (the tangent drawn to DQB,
parallel to OD, meeting involute D ¢R in ¢)=arc DQ.

ScuoL.—The curve, as it recedes from O, ap-
proaches more and more closely to the involute of the
circle Q'DQ, the curves being asymptotic. All that has
been said about the figure of the involute of the circle
at a great distance from O (pp. 82, 83), applies there-
fore to the spiral of Archimedes.

We have seen that the epicycloid, traced by the
point O, fig. 72, carried along with T'DT, as it rolls on
the fixed circle Q'DQ, is a spiral of Archimedes. Zo
prove the converse of this,—

Let a point start from O in direction OQ/, tra-
velling uniformly with velocity » along radius OQ/,
while this radius turns uniformly with angular velocity
o around O in direction Q'DQ, After a time ¢, let
the point be at p; then Op = v¢ and

angle Q'O ¢ (greater than 2 rt. angles) = w .

Now if, with radius OQ’ = F, we describe a circle
Q'DQB about O as centre, intersecting O p in ¢, then
arc QDg¢g=Fowt; and if F be such that Fo = v
(in other words, if F' be such that motion in a circle of
radius F, with angular velocity @ round the centre,
gives linear velocity ), then arc QD¢ (= Fowt)
=vt=Op. Wherefore, drawing OB’ perp. to O D,
and completing the rectangle OB’P p,
BP=O0p=arc QDg¢g=arc BQD;
and Pp=0B=F.
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.*. P is the position of the point D on tangent DT
after rolling round arc DQB’ to tangent at B’,and P p
is the position then taken up by DO. Hence as T'DT
rolls on the circle Q' D Q, the point O regarded as rigidly
attached to T" O T, the tangent to circle @ D Q of radius
F, at D, will trace out a spiral of Archimedes in which
the linear velocity of the moving point along the revolv-
ing radius is equal to F . angular velocity of the latter.

ProP.— The azis of a planet’s shadow in space is a
spiral of Archimedes.

The spiral of Archimedes is interesting as the path
along which the centre of a planet’s shadow (the
earth’s for example) may be regarded as constantly
travelling outwards with the velocity of light.

This is easily seen if we suppose the earth and its
shadow momentarily reduced to rest, and, with the sun
as pole, imagine a radius vector carried from an initial
position coinciding with the earth and retrograding
through the various portions of the shadow. Let V be
the velocity of the earth in her orbit, D her distance from

the sun, and therefore% her angular velocity about the

sun. Also let L be the velocity of light. Then if our
radius vector, carried back through an angle 6, corre-
sponding to the earth’s motion in time ¢, is equal to r, we
\4 D L.D
haveﬁt =60, or t= v @;andr= Lt = ~ 6.

‘Wherefore, since the radius vector varies as the vecto-
rial angle, the corresponding point of the shadow’s axis
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(which was at the earth at time ¢ before the epoch we
are considering) lies on a spiral of Archimedes. We
have in fact L, the velocity of light, for the velocity
along the radius vector (v in the preceding demonstra-
tion), when the angular velocity about the sun is taken

equal to the earth’s angular velocity in her orbit, or _;)_7

(corresponding to w in preceding demonstration).
The radius F of the fixed circle by which this
tremendous spiral could be traced out, would therefore

be such that F% =L, or F= —‘I—;D = the radius of

the earth’s orbit increased in the ratio in which the
velocity of light exceeds the velocity of the earth in
her orbit. Thus

187,

F=92,000,000 miles x 1 8 4 (r ughly)

= 5,000,000 x-187,000 miles
= 935,000,000,000 miles.

[It is convenient to remember that the sun’s dis-
tance is nearly equal to five million times the mean
distance traversed by the earth in one second.]

NotE.—The student will find further information
respecting spiral epitrochoids in the examples on pp,
254-256. The solution of these examples presents no
difficulty.
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SkctioN 1V.
MOTION IN CYCLOIDAL CURVES.

LeMMa.—When a body at rest at A (fig. 73) i8 acted on by
an attractive force residing at C, and varying as the dis-
tance from the centre, the body will travel to C in the same
time whatever the distance CA; and if p . CA is the measure
of the accelerating force at A, time of fall to A = 2"_.

~p
Let AB, perp. to CA, represent the accelerating force at
A ; join CB, then M p perp. to CA, meeting CB in p, repre-

Fie. 73.

.l

sents the accelerating force at M ; (vel.? at M) is represented
(CAY—(CM)?_ QM\*
——GAS —rect.bA.(EQ ,

AQA’ being a circle about C as centre). That is.
td

by2.MpBA*=2CAB

* Any elementary rectangle pm represents Mm . accelerating
force at M ; orsince the force may be considered uniform throughout
the space M m, p M represents half the increase of the square of the
velocity (by well-known relation in case of uniform force). Hence,

"area p A represents § (vel.? at M—vel2 at A)=} (vel.2at M).
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Vel. at M is represented by %g rect. bA ;
or, Vel. at M = %g

where V is the velocity with which a particle would reach
C after traversing distance AC under the force at A con-
tinued constant.

But if Q¢ is a small element of arc at Q and ¢gm perp.
to CA, then, ultimately,

=W
mM—bQ.Qq.

Therefore time of traversing m M =

mM _ Qgq
vel at M~ V

incrt. of time from beginning = V . the incrt. of are AQ.
arc AQ
v

or,

Hence,  time of fall from A to M =

Butif p.CA is the measure of the accelerating effect of
the force ab A, V=2 pCA . C_A_. p (CA)?
orV= J'u .CA;
Thus, vel. at M=+/p.QM; and time of fall from A to M

=.a_r_c_‘_AQ=_l—___.clrcula.rmeasureofLCQA.

Thus, time of fall to C= 1 cire. meas. of rt. angle—=—"— ;
VE . Vnu
and is therefore independent of the original distance CA.

ScrorL.—The general relation of this lemma may be re-
MM as obvious, seeing that a force varying as the dis-
tance from the centre is in this case a force varying as the
distance remaining to be traversed ; and this relation holding
from the beginning, it follows that whether such distance be
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large or small, it will be traversed in the same time. The
general relation may be considered, in this aspect, as
follows :—

Let C, fig. 74, be the centre of force, and let one particle
start from A, another from a, in the same straight lin~ CA.
Divide CA and Ca each into the same:number of equal
elements, and let /, m, n, and L, M, N be the points of divi-

Fie. 74.

SR

sion nearest to @ and A, respectively. Then the force on the
particles starting from A and & may be regarded as severally
uniform while these particles traverse the spaces AL, a
respectively ; hence these spaces being proportional to AC,
a C, that is to the uniform forces under which they are tra-
versed, will be traversed in equal times; and velocities pro-
portional to the forces, that is to ML and !m respectively,
will be generated in those times. Again, since the forces
acting on the particles at L and / are proportional to the
spaces LM, / m, and the velocities with which the particles
begin to traverse these spaces also proportional to LM, {m,
it follows that the times in LM, I m, will be equal ; and the
total velocity acquired at the end of those times will still be
proportional to ML and m/, or to MN and m n, the spaces
next to be traversed. And so on continually. Hence the
particles will arrive at C simultaneously ; and the velocities
with which they reach C will be proportional to AC and ac.
It is manifest, also, that if the particles during their
progress to C be resisted in a degree constantly proportional
to the velocity, the times of reaching C will still be equal.
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PROPOSITIONS.

Pror. L—If A (fig. T5) be the vertex, A B the axis of an in
verted cycloidd DPA, a particle let fall from a point F on
the arc APD (supposed perfectly smooth) will reach A in the
same time wherever F may be.

Let P be a point on the arc AF; draw PM perp. to AB
cutting the generating circle in Q and join AQ. Represent

Fre. 75. (Join AQ.)
L

J B P4 Fd o

K F

the accelerating force of gravity by g. Then since the tan-
gent at P is parallel to AQ,

Accs. force at Palong PP/ : g :: AM: AQ :: AQ:AB;
or, the accelerating force at P in direction of motion

_ AQ_ arc AP
=9 kBT9 2AB
Hence if the straight line ad = arc AD, and we take
af=arc AF, and a p=arc AP, the acceleration of the particle
at P is the same as that of a particle moving from f to @ under
the action of a force varying as the distance from a, and
ap ad __ .
equalatptog. AR atd tog. TN A The time of fall,
then, (by lemma, p. 135) is independent of the position of F.
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Since in this case the accelerating force at D = g =

9, ' =9 ime of fall
7% e APD, the p of lemma SR’ and time of fall from any

; — /4R T _ R
pomtofa.rcAPDtoA....\/7 9 w,\/?]

The time of oscillation from rest to rest on either side

of A= 21r4\/g'.
g

ScroL.—This proposition is easily established indepen-
dently. Thus take an elementary arc PP’; draw ordinates
FHK, PQM, and P'Q' (Q,Q’, on BQA); arcs Qn, Q'»’ about
A as centre, to AH; and ng¢, n'¢’ perp. to AH, meeting
quadrantal arc HgN on AH in g, ¢/. Then, (vel.)? along
PP=2g¢.KM

=29 (AK—-AM)= ?A_-"B (AH?— AQ?) = % .(nq)?; or,

=~ vel. st P =/\/g(nq); & PP =2(AQ—AQ)=2nn;

time along PP/ = 2 nn/ = \/:i_?ﬁ_(nq)= ? . X_qé;
=,\/m.circ. meas. of ¢ A g’;
and time along FPA !
=V@ I=n7 _E,a,sbefore.
g 2 g

Pror. II.—A4 particle will pass in the same time to A along
a smooth epicycloidal arc APD (4 the vertex, APB O dta-
metral,) under the action of a repulsive force at O varying
directly as the distance, from whatever point on APD the
particle starts.

Let the particle start from F. At P on the arc FA,
draw the tangent A’PT, and the normal PB’; then OB’A’ cuts



140 GEOMETRY OF CYCLOIDS.

the generating circle through P diametrally in B’A’, (B’ on
the base BD); and OT perp. to A'T is parallel to BP. De-
scribe arc PQ about O as centre, to meet central generating
circle AQB, and join OP, AQ.
Then if the measure of accelerating force at A = u. OA,
accelerating force at P=pu .OP; and the accelerating

force in direction PP’ = u OP. g']l; p PT

OB’ 2AQ.0C  (OB)
=pAP. g =t =3B ' 3BA.0C
S i
=IRFTR) Arc APD (Prop. VL., sec. 2).

Fie. 76. (Accent upper n and ¢.)

Therefore (applying lemma, p. 135, as in the case of

cycloid) the time in which particle reaches A
= 4/4R(F+R) T \/R(F+R)
Fou n

The time of oscillation from rest to rest on either side of
A is twice this.

Sceor.—This proposition may be proved independently
of the lemma, by a demonstration similar to that used for the
cycloid. The figure indicates the construction. 'We begin
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by showing that (Vel.)? at M = p [(OP)? — (OF)?]
= p [(OM)? + (MQ)*— (OK)?—(KH)?]
—u[MK (OM+OK)+ AM (MK +KB)— KB(MK + AM)]

=y - 2MK (OA+0B)

= p [(AHy- (AQy)] £

F+R
=p(ng) R

The rest follows directly, as in case of cycloid.

Prop. IIL.—A4 particle will pass in the same time to the ver-
tex of a smooth hypocycloidal arc under the action of an
attractive force at the centre varying directly as the distance,
JSrom whatever point on the arc the particle starts.

The construction and demonstration are in all respects
similar to those in the case of epicycloid, Prop. IL.

Time of motion from F to A =i‘5‘\/R (F—R);
“
and (Vel)? at P = p (ng)? (F._;{R).

ScHoL.—The time of oscillation in the epicycloid under
force above considered : time of an oscillation in cycloid
under gravity (the radii of generating circles being equal)
it /g (F+R) :Fvp-

This follows directly from the values above determined
for the times of motion to A.

That the times of oscillation may be equal, we must have

F+R
(F+R)g =p F?%; orp=_4F"Tg.

Since this gives' u F = E"F-—R g, it follows that the accele-
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rating force at A in the epicycloid must exceed the force of gra-
vity in the ratio OC : OB, in order that the oscillations may be
performed in the same time as in a cycloid of equal generating
circle, under gravity. The force in the epicycloid will equal
gravity at a distance from O=I% = OK’, obtained as in
fig. 76 by drawing BK' perp. to OC to meet semicircle on
OC as diameter in K'.

If we take p F =g, a cycloid in which the oscillations
under gravity will be the same as the oscillations in the epi-
cycloid must have a generating circle whose radius

_(F+R)R_00.0B_ (K _ 5y ctiined by draw-

F [0} ] OB
ing. semicircle B% O, taking B% = CK’, and drawing k%
perp. to BO.

Corresponding considerations and constructions apply in
the case of hypocycloid.

Tt is manifest (see scholium to lemma) that if the par-
ticle in its passage along the epicycloidal, hypocycloidal, or
cycloidal are, be resisted in a degree constantly proportional
to the velocity, the periods of oscillation will still be isochro-
nous; the arc of oscillation, however, will no longer be sym-
metrical on either side of the axis, but will continually be
reduced, each complete arc of oscillation being less than the
arc last described.

A weight may be caused to oscillate in the arc of an
inverted cycloid in the manner indicated in fig. 77. Here
a A is a string swinging between two cycloidal cheeks a p D,
ap' D', a being a cusp, and DD’, the common tangent at the
vertices D, D', being horizontal. The length of the string
a A being equal to twice the axis of @ pD, or to -the arc
a p D, the weight swings in the cycloidal arc DAD’ (Prop. X1I.
section 1). Such a pendulum would vibrate isochronously,
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if there were no friction and the string were weightless ; but
~ in practice the cycloidal pendulum does not vibrate with
perfect isochronism.

An approach to isochronism is secured. in the case of an
ordinary pendulum by having the arc of vibration small
compared with the length of the pendulum. In this case
the small circular arc described by the bob may be regarded
as coincident with a small portion of thecycloidal arc DAD’
(fig. 75) near to A, and the isochronism thence inferred. But

Fie. 77.
a

A

in reality the approach to isochronism in the case of a long
pendulum oscillating in a small arc, is best proved as a direct
consequence of the relation established in the lemma. :

Thus, let ACA’ (fig. 73) be the arc of oscillation of a pen-
dulum, whose length  is so great, compared with AA’, that
ACA’ may be regarded as straight. Then the accelerating
force in the direction of the bob’s motion when at M

=g . sin. deflection from the vertical=g . g very nearly,

or varies as CM. Hence the time of oscillation is very
nearly constant, whatever the range on either side of C, so
only that the arc of oscillation continues very small com-
pared with Z.

The accelerating force towards C at M being % . CM,
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the time of an oscillation from rest to rest is = ,\/ f;
9

and the Vel at M=QM \/ -‘;_ = ,\/ -;l (CA?—CM?).

A pendulum may be made to swing in an epicycloidal
arc in the way shown in fig. 78, or in a hypocycloidal arc in

Fie. 78.

the way shown in fig. 79 (Prop. XII. sect. 2); but of course
the oscillations will not be isochronous under gravity. In the

Fia, 79.

case of the hypocycloid, if the plane of fig. 79 be supposed hori-
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zontal, P a smooth ring running on the arc DADY, and this
ring be connected with the centre of the fixed circle by an
exceedingly elastic string, very much stretched, the oscilla-
_tions of the ring will be very nearly isochronous. For the
tension of a stretched elastic string is proportional to the
extension, and if when the ring is at A the string is
stretched to many times its original length, the extension
when the ring is at different parts of the arc DAD’ is very
nearly proportional to the extended length. Suppose, for
instance, that when at A. the string were extended to 100
times its original length, then the extension would ounly be
less than the actual length by one 100th part.

If the circular arc DD’ répresent part of a great circle
of the earth’s surface, DAD’ a hypocycloidal tunnelling hav-
ing DD’ as base, then, since the attraction at points below
the surface of the earth varies directly as the distance from
the centre, a body would oscillate in DAD in equal periods.
It would not, however, be possible to construct such a tun-
nelling, or to make its surface perfectly smooth.

Pror. IV.—The path of quickest descent from D to any
point F not vertically below D, is a cycloidal arc through
F, having its cusp at D and its axis vertical.

The following is a modification of Bernouilli's original
demonstration.

The path of descent will necessarily be in the vertical .
plane through D and F. Let it be DPF, and let PP’ P” be
a small portion of this path, represented on a much enlarged
scale in fig. 80a.

Let p be a point on a horizontal line through P/, and close
to P. Then since DPF is the path of quickest descent, the

L
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time of descent down the arc PP'P” is a minimum, and
from the nature of maxima and minima it follows that the
change in the time of fall resulting from altering the arc
PP'P” into the arc Pp'P” is evanescent, compared with the
total time of fall down PP'P”. If thistime were increased in
an appreciable ratio by passing from P’ to a point p on one
side, it would be appreciably diminished by passing from P’
to a point on the other side of P’, which is contrary.to the
supposition that DPF is the arc of quickest descent. Now
regarding PP’ and P’ P" as straight lines, draw p'l perp. to
PP’ and P'm perp. to P” p/, so that ultimately P{= Pp’, and

Fie. 80.

r Fie, 80a.
P'm=P"P’, Therefore, if we suppose PP’ and Pp' traversed

/

with the uniform velocity V, then I;—fl— represents the ex-

cess of time in PP’ over time in Pp’; and if we suppose
P'P” and p' P’ traversed with the uniform velocity V/,

l

then % represents the defect of time in P'P” from
time in pP”. Therefore since time along PP'P"” = time
' ' V_Pi
along Pp' P”, we must have 1:; = %1’)3, o = pm
PP'p’
sg: Pp P That is, the velocity at different points a.long
the arc of descent varies as the cosine of the angle at
which the arc is inclined to the horizon at these points. But
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this is a property of motion in an inverted cycloid. For if
DPFAD is a cycloidal arc having D and D as cusps, AB
as axis, and AB vertical, and PL is drawn perp. to AB,
cutting central generating circle in Q, then

(VelplatP=2g.BL =29 34 =4gR. (33

ie. Vel.at P=2 /g R.cos ABQ=2 7K . cos AQL,

the required relation, since AQ is parallel to the tangent
at P. |

Hence DPF is part of a cycloid having its cusp at D and
its axis vertical. .

To describe the required arc, draw any cycloid D fd/
having D as cusp, its base D d’ horizontal, and cutting DF
in f; then D’ so taken that

‘DD’ ; Dd' :: DF : Df
is the base of the required cycloid through F. The axis BA,
bisecting DD’ at right angles, bears to b a, the axis of Da d’,
the ratio DF : D/

SceoL.—The arc is not necessarily one of descent
throughout. If F' be the point to be reached, and the angle
of inclination of D’ to the horizon is less than the angle
b D a, the path from D to F’ will include the vertex A, and
the particle will be ascending from A to F'.

The cycloid DAD' is the path of quickest motion from
D to D’ at the same horizontal level as D.

L2
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SecTtiON V.
EPICYCLICS.

DEer.— If a point travels uniformly round the circumference
of a circle, whose centre travels uniformly round the cir-
cumference of a fixed circle in the same plane, the curve
traced out by the moving point is called an epicyclic.

Let AQB (fig. 81) be the circle round which the tracing
point travels, CC'K the circle in which the centre C of the

moving circle AQB is carried, O the centre of the fixed circle
CC’K. Then the circle CC'K is called the deferent, AQB the

Fio. 81. (Join Cp.)
| 3

V]

epicycle, O the centre, C the mean point, P the tracing point.
At the beginning of the motion let the tracing point be at A
in OC produced, or at its greatest possible distance from O.
‘When the centre is at C’ let the tracing point be at P. Draw
the epicyclic radius C'a parallel to CA, and let OC produced
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meet the epicycle in A’; also let OA and OA’ cut the
epicycle respectively in B and B'. Then C’a is the position
to which CA has been carried by the motion of the epicycle,
and ¢ A'P is the arc over which the tracing point has tra~
velled, in the same time. The angle PC'a is called the epi-
cyclic angle, and the angle C'OC the deferential angle. Both
motions being uniform, the deferential angle bears a constant
ratio to the epicyclic angle. Call this ratio 1 ; =; so that
1 : = is the ratio of the angular velocities of mean point
round centre, and of tracing point round mean point. If we
represent the radius of the deferent by D, and the radius of
the epicycle by E, the linear velocities of the motions just
mentioned are in the ratio D ; = E.

The deferential motion may be conveniently supposed to
take place in all cases in the same direction around O,—that
indicated by the arrow on CC’. Such motion is called direct.
Angular motion in the reverse direction is called retrograde.
‘When the motion of the tracing point round the mean point is
direct, n is positive; we may for convenience say in this case -
that the epicycle is direct, or that the curve is a direct epicy-
clic. 'When the motion of the tracing point round the mean
point is retrograde (as, for instance, if the tracing point had
moved over arc @ ¢’ P’ while mean point moved over arc
CC’), n is negative, and we say the epicycle is retrograde, or
that the curve is a retrograde epicyclic.

The straight line joining the centre and the tracing point
in any position is called the radius vector. A point such as
A, where the tracing point is at its greatest distance (D + E)
from O, is called an apocentre. A point where the tracing
point is at its least distance (D — E) from the centre is
called a pericentre. Taking an apocentre as A for starting
point, OA is called the initial line, and the angle between the
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radius vector and the initial line is called the vectorial angle.
This angle is estimated always in the same direction as the
deferential angle : so that if at the beginning the motion of
the tracing point round O was retrograde, the vectorial angle
would at first be negative.

‘Whatever value n may have, save 1 (in which case
the tracing point will manifestly move in the circle AA’),
the tracing point will pass alternately from apocentre on the
circle A A’ to pericentre on the circle BB/, thence to apocentre
on the circle AA’, and so on continually. The angle between
an apocentral radius vector and the next pericentral radius
vector is called the angle of descent. It is manifestly equal to
the angle between a-pericentral radius vector and the next
apocentral radius vector, called the angle of ascent.

PROPOSITIONS,
Prop. L.—The angle of descent ; two right angles 12 n~1 2 1.

‘When 7 is positive and greater than 1, the epicyclic
angle PC' a (fig. 81) exceeds the deferential angle C'OC, or
A’C'a, by PC'A’, or angle PC'A’=(n—1) deferential angle.
But, at the first pericentre, angle PC’A’'=2 right angles, and
the deferential angle is the angle of descent. Hence,

2 right angles = (n — 1) angle of descent,
or the angle of descent : two right angles ;;n —1: 1.

When n is positive and less than 1, A’C’ a exceeds the
epicyclic angle p C'a by p C'A’, or angle p C'A' = (1 — n)
deferential angle ; and proceeding as in the last case, we find

the angle of descent : two right angles :: 1 —n : 1.

When n is negative, we have the epicyclic angle a C'P/
+ angle A'C'a = angle P’C’'A’, or (taking the absolute value
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of n without regard to sign) angle P'C'A’= (n+1) deferen-
‘tial angle. Wherefore (proceeding as before), :
the angle of descent : two right angles ;i (n + 1) : 1,
But = being negative, the sum of the absolute values of 1
and n is the difference of their algebraic values, or n ~ 1.
Hence for all three cases,
angle of descent : two right angles ::n~1: 1.

" ScEoL.—The angle of descent is always positive. See

note, p. 185.

Prop. IL.—7The epicycle traced with deferential and epicyclic
radit D and E, respectively, and epicyclic vel. : deferen-
tral vel. 2 n : 1, can also be traced with deferential and

. epicyclic radit E and D respectively, and epicyclic vel. . de-
Jerential vel. 13 1 : n.

In fig. 81, complete the parallelogram PC'O¢. Then
Ocd=CP=E and ¢P=0C"=D. Moreover £/ ¢'OC
= £ PC'a,and ¢'Pis parallel to OC’. Wherefore we see that
while the epicyclic curve is traced out by the motion already
described, the point ¢’ travels in a circle of radius E about O
as centre, with the same velocity as P round C; while P
travels uniformly in a circle of radius E round ¢, and with
the same velocity as C' round O.

Therefore the same epicyclic curve is traced out w1th
deferent and epicycle of radii- D, E, respectively, having
angular velocities as n : 1, or by deferent and epicycle of
radii E, D, respectively, having angular velocities as 1 ; n.

ScroL.—Thus the deferential and epicyclic radii, D and
E, can always be so taken that D is not less than E. When
D = E, the curve can still be regarded as traced in either of
two ways, viz., with epicyclic vel. to deferential vel. ;. n : 1
or::1:n In this case all the pericentres fall at the centre.
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"Prop. IIL.—Every epitrochoid is a direct epicyclic ; and every
hypotrockoid is a retrograde epicyclic.

Let O be the centre of a fixed circle BB'D (fig. 82) on
which rolls the ecircle AQB; and let the tracing point be at
r on CA.% Letthe circle AQB roll uniformly to the position
A’'Q'B’, C'p P being the position of the generating radius, p
the tracing point. Draw C'Q’ parallel to OC. Then the
centre C of the rolling circle has travelled uniformly in
circle CC’ about O as centre. Again ¢ QCp= £ QCA’/

+ ¢ acp=00C (14 1’{) (since arc AP = arc B'B).

‘Wherefore p is a point on an epicyclic arc, whose defer-
ent and epicycle have radii OC and Cr, or (R + F) and »
respectively, and whose epicyclic angle : deferential angle
::BR+F :R. Or, by preceding proposition, we may have
r and R + F for radii of deferent and epicycle respectively,
having R : R+F for ratio of epicyclic and deferential angles.

In this case n is greater than 1 and positive.

Next, fig. 83, let the circle AQB roll around instead of on
the circle BB'D. Then the above proof holds in all respects,
save that the angle Q'C'p now = £ Q'C’'A’ — £ A’'C'p,and
radius OC = R — F instead of R 4+ F, Thusin this case, the
epitrochoid gives an epicyclic curve having for deferential
and epicyclic radii (R—F) and r, respectively, and deferen-
tial angle : epicyclic angle :: R—F : R ; or else, deferential
and epicyclic radii » and (R—F) and ratio of defemntml and
epicyclic angles as R : R—F.

In this case » is less than 1 and positive. »

Next let O be the centre of a fixed circle BB'D, inside
which, figs. 84 and 85, rolls the circle AQB; and let the

* Or at #/, on CA produced, in which case read p’ for p through-
out the demonstration, for all four cases.
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tracing point be at ». Then following the words of proof
for the case of epitrochoid with modifications corresponding
to the two figs. 84 and 85, the student will have no difficulty
in showing that the hypotrochoid, in the case illustrated by
each of these figures, may either have deferential and epi-
cyclic radii (F—R) and r, and deferential angle | epicyclic
angle :: F — R R; or epicyclic and deferential radii

Fie. 82. Fic. 83.

Fie. 84. Fia. 85.

and (F — R), and deferential velocity : epicyclic velocity
R:F-R

Since P has moved round C' in a direction contrary to
that in which C’ has moved round O, n is negative in both
cases, If F—~R>Ror F>2R,n is > 1; this is the
cage illustrated by fig. 84. If F— R < R or F < 2 R, the
case illustrated by fig. 85, nis < 1.
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ScHoL.—We may find in this proposition another reason
for regarding the curve traced out by a point on, or within,
or without a circle which rolls outside a fixed circle, but is
touched by that circle internally, as an epitrochoid, not as a
hypotrochoid, for this definition leads again (while the other
does not) to a symmetrical classification, giving epitrochoids
as direct epicyclic curves; and hypotrochoids as retrograde
epicyclic curves.

Prop. IV.—Every direct epicyclic is an epitrochoid ; and
every retrograde epicyclic 18 a hypotrochoid.

Let p be a point on an epicyclic curve pp/, OC (= D)
the radius of deferent, Cp (= E) the radius of epicycle;

Fiu. 86.

n positiveand > 1. Then the motion of » may be resolved
into two, one perp. to CO, the other perp. to Cp. Repre-
sent these by the straight lines p N, p M, taking pM=p» C
and therefore p N = (_i?; then the diameter p T of the pa-
rallelogram N p MT represents the motion of p in direction
and magnitude. Complete the parallelogram pCOc; take
PN'=p N; and draw N'B parallel to ¢ O to meet OC in B.
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Suppose the parallelogram NM turned (in its own plane)
round the point p through one right angle in the direction
shown by the curved arrow, making p M coincide with p» C
and the parall. NM with parall. N’C. Then p B, the dia-
meter of the parallelogram N'C, is the normal at .

Now, by the preceding proposition, if a circle DBB', having
centre at C and radius CB, roll on the fixed circle KBL having
centre at O and radius OB, the epitrochoid traced out by p,
at distance C p from C, will be the epicyclic having C p as
radius of epicycle, CO as radius of deferent, and epicyclic
ang. vel. : deferential ang. vel. :: CO : CB:: % : 1. It will
therefore be the epicyclic p p'.

Fie. 87. . Fro. 88.
N -

Thus the epicyclic p p’ is an epitrochoid having
F=B0=D (1- ]_); R=CB=2; and »=E.
\ n -n

We get precisely the same construction for the position
of the normal pB by interchanging the radii and the
angular velocities of deferent and epicycle, that is, taking
O ¢ as radius of deferent and c p as radius of epicycle. Let
» B and ¢O, produced (if necessary) intersect -in 4. - Then
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Y0 :¥c::0B:cp:in—1:n;and by the preceding propo-
sition, if a circle 5%, with centre at ¢ and radius ¢¥’, roll
outside but in internal contact with the circle £ 5’7 having
centre at O and radius O¥, the epitrochoid traced out by p at
distance ¢ p from ¢ will be the epicyclic having ¢ p as radius
of epicycle, ¢ O as radius of deferent, and epicyclic ang. vel. :
deferential ang. vel. ::¢0 :¢bd' 21 :n It will therefore
be the epicyclic p p'. Therefore p p’ is an epitrochoid having

F=00=D(n—-1); R=ct/=D.n; and r=E.

It will be found that the demonstration applies equally
to the case of the direct epicyclic where n < 1, illustrated in
fig. 87, only that N’ lies on p ¢ produced. The two corre-
sponding epitrochoids have

(1) F=BO=D (1—%); R=CB=£ ; and r =E.

(2) F=¥0=D (1 —n); R=¢cb =D=;and r =E.
Moreover, it will be found that the demonstration
applies with slight (and obvious) alterations to the case of

Fia. 89. Fia. 90.

the retrograde epicyclic illustrated in fig. 88. (In the case
illustrated, 7 > 1: it is not necessary to illustrate sepa-
rately the case in which » < 1). We obtain for the two
corresponding hypotrochoids,—
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MF=Bo=D (1+ ) R=CB=2;mdr=E

@F=30=D (1+n) ; R=¢b=Dn; andr =E.
ScHOL.—A number of cases resulting from varieties in
the position of p are illustrated by the dotted constructions,
and in figs. 89 and 90 (cases in which there is retrogression
about O, b lying between O and B). The reader will have
no difficulty either in understanding these, or in illustrat-

ing many other cases resulting from variations in the values
of D, E, and n.

Prop. V.—The normal at any point p of an epitrochoid or
kypotrochoid passes through the point of contact B of the
Sized circle with the rolling circle when the tracing point is
at p.

The demonstration of the preceding proposition includes
the proof of this general proposition. The moation of p being
at the instant precisely the same as though the circle B were
rolling on the tangent to the fixed circle at B, it follows that
if N p (= CB) represent the linear velocity of p in direc-
tion perp. to CO due to the advance of centre C of rolling
circle D BB, p M = p C represents on the same scale the
linear velocity of p in direction perp. to C p ; wherefore p T,
the diameter of the parallelogram NM, represents the re-
sultant linear velocity of p; and as in the demonstration of
preceding proposition, if the parallelogram NM be rotated
round p in its own plane, through a right angle, in the direc-
tion indicated by the curved arrow, p T is brought to coin-
cidence with p B, which is therefore the normal at p.
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Pror. VI.—T0 determine the apocentral and pericentral
‘velocities in epicyclic curves.

From Prop. IV. fig. 86, we see that if the linear velocity of

p around C is represented by p C, that is, by E, the linear velo-

city of p is represented by p T, perp. to p B, in direction, and

by » T in magnitude, where CB (= % ) represents the linear

velocity of C about O.

Hence the velocity at an apocentre is represented on the
same scale by B a, and the velocity at a pericentre by 05, a
and b being the points in which OC, produced if necessary,
meets the circle pp, p;, @ the remoter. That is, the linear

velocity at apocentre =% 4+E. On the samescale the linear

velocity of the mean centre = ]7_3 ; and

lin. vel, at apocen. : lin, vel. of mean cen. : lin. vel. at pericen.
Die:2:.2 g

D42E: D : D—nE;
n being positive in case of direct epicyclic and negative in
cage of retrograde epicyclic.
Thus in the case of the direct epicyclic the motion at an
apocentre is always direct ; while the motion at a pericentre is
direct, retrograde, or negative, according as D < or > nE, or

as CB, fig 86, ( )>or<0b Inthecaseoftheretrogmde
epicyclic the motion at an apocentre is direct or retrograde
according as D>or<n E, or as CB (_—_—n—) > or < Ca,

fig. 88; while the motion at a pericentre is always direct.
ScroL.—If D=nE, there is a cusp at pericen. or apocen.
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Prop. VIL.—T% determine the position of the points, if any,
where the motion of the radius vector becomes retrograde.

It is manifest that if, as in the cases illustrated by figs.
86, 87, and 88, the point B lies outside the circle p p, p;, or
D > n E, the motion, direct both at apocentres and pericen-
tres, is direct throughout. For the motion to be retrograde
in part of the epicyclic, then, we require that D be < n E, or
CB < C.a. Since the direction at p is perp. to B p, the mo-

Fre. 91,

&
Fic. 92.

¢
‘ ’
e
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tion will be directly towards or from centre if Bp is at right
angles to Op, for then O p will be the tangent at p. We
have then the relations presented in fig. 91 for direct epi-
cyclic, and in fig. 92 for retrograde epicyclic.

O p is the distance from O at which the epicyclic becomes
retrograde (for all smaller distances in case of direct epicyclic,
and for all greater distances in case of retrograde epicyclic).
Manifestly the distance O p is determined by describing a
semicircle on OB intersecting a’pd’ in p. Now the angle
pC'a/ = (n — 1) deferential angle (measured from apocen-
tral initial radius vector), say £ p C'a’ = (n — 1) ¢, and we
might proceed by the epicyclic method of treatment to
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determine ¢ geometrically. We hve, howeyer, already the
means of doing this, in the result of Prop, XIV., Sect. III.
Thus, draw p K perp. to C O; then

__CR_ _CK.OA'_ _ (Ca)y+0C.CB
O P00 == "cp.0a = op(00 +2)
. n
(C A of Prop. XIV. sec. 3=—]3)
D
E24+D.—=
Cos (n—1)¢ = — + no_ D’+nE2,
- B(p.D) "~ (FWDE
n

n heing negative in case of retrograde epicyclic.
Cor. If ¢, be the value of ¢ determined from this equation,
360° ¢

— ¢

ScrHOL.—The angle ¢, is of course the angle whxch ocC
makes with the initial line, and does not directly indicate
the arc of retrogradation, which is twice the angle p Od.
This, however, may be readily deduced in any given case. For

K _  Esin(n—1)o ,
tanpOb= 2 !
npOs= %0 =D Eeos(n-1)e;

fore, p Od =0, +p 00 — !&ma.lsoknown

- the motion is retrograde from ¢ = ¢, to ¢ =

is known,and there-

It can easily be shown that :
V(D?—E?)(n?E2—-D?)
(1 + =) DE

and tan pO b= n? B1—D?
‘DI-ET

sin (n—1)p,=
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Prop. VIII.—T0o determine the tangential, transverse, and
radial velocities, and the angular velocity around the
centre at any point of an epicyclic curve.

Let p, (figs. 86, 87, 88) be the position of the point on
the epicycle @ pb. Join O p, and draw B % perp. to O p,.
‘Then when Cp, (= E) represents the linear velocity in the
epicycle, O p; represents the linear vel. at p; in magnitude,
but is at right angles to the direction of motion at p,.
Hence p, % represents the linear velocity perp. to the radius
vector, and B /4 represents the linear velocity in the direction
of the radius vector, the direction of the motion in either
case being determined by conceiving p, C turned around p,,
carrying with it »; B and p, %, in the plane of the figure,
through a right angle, to coincidence with the direction of
2,’s motion in the circle a p .  This includes all cases geo-
metrically, and the student will have no difficulty in effoct-
ing the construction and deducing the proper directions for
the tangential, transverse, and radial velocities, for any given
values of D, E, and 7, and for any given position of the
moving point. The angular velocities are determined by
the same construction. Thus in the case illustrated by fig. 86 :

The tangential velocity of p, is represented by p, B in
magnitude and is in advancing direction shown by arrow
atp. .

The transverse velocity of p, is represented by p, % in
magnitude, and in direction by BA.

The radial velocity of p; is represented by B % in magni-
tude, and in direction by p, .

The angular velocity of p, about O : uniform angular velo-
city of p, about C :: g‘p—l : %} iph ot Op,.

And similarly for all other cases,

M
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It is more convenient, however, where so many cases
arise, to obtain the analytical expressions for these quanti-
ties ; for we know that by rightly considering the signs of the-
values used and obtained, the same expression will be correct
for all possible cages. Let then the angle p, Ca (fig. 86)
=(n—1) ¢ ; that is, let the deferential angle = ¢ ; let the
linear velocity of the mean point (C) be V, wherefore the
linear velocity of the moving point in the epicycle=n V. -]I‘):
This is what we have represented linearly by p, C in figs.
86, 87, and 88, so that since p, C = E, we have to affect all
the above linear representations of velocity with the co-effi-
cient . v,

D

Therefore, the tangential vel.

v v
=" . 1B ="5-/(F0f+(CB)'+2, C. CBas pCa.
v
2= \/ E® + —+2DE cos (n—1)¢

== \/D2 + n?E2 + 2 n DEcos (n—1)4.
nV

The transverse vel. = 5 . B.cosBp, O:
now, cos Bp, o=(B2 ‘)’2';(]]); 0%)- (BO)’ ~.pB.cosBp, 0
1

E'+ +2D_Ecos(n 1)¢ + B2+ D+ 2 DE cos (n—1)¢ — (D—IB)2
n

2pm 0
and transverse vel. (direct)
_V D?+nE?+(n+ 1)DE cos (n—1)p
D VDI¥E"+2DEcoes(n—1)¢

The radial vel. = %’ 2B . sin Bp,O:
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sin Bp, 0 _ BO,
&in p, OB~ p,B’

now

therefore,
,Bsin Bp,0=BO0sin p,0B= (D - ]_)) Esin(n—1)¢.
n y 2 (0]
and radial vel. (towards centre)
=(n—1)V. Esin (n—1)p
~ DI+ B3+ 2DE cos (n—1) ¢
The angular velocity about O
__ transv.vel.  V D?24nE?4(n+1) DE cos (n—1)¢
rad. vect. = D° D?+E?+2DEcos(n—1) ¢
The transverse vel. and the angular vel. about O vanish, if
D2+ nE?+ (n + 1) DEcos (n—1) ¢ =0,
the condition already obtained.

nE

If v is the velocity in epicycle, v = V" D

D" V=vn—E
which value substituted for V in the above formule gives
formule enabling us to compare the various velocities with
the velocity in the epicycle.

ScroL.—We see from the geometrical construction that
the radial velocity has its maximum value towards or from
the centre, when the moving point is at p; or p, (figs. 86, &c.),
where a tangent from O meets the circle a p, b; for then BA
or B/ has its greatest value. This also may be thus seen :
—Since the deferential motion gives no radial velocity, the
radial velocity will have a maximum value when the epicyelie
motion is directly towards or from the fixed centre,—that is,
at the points where a tangent from the fixed centre to the
epicycle meets this circle.

Cor. The angular vel. at apocentre > = or < angu-
lar vel. at pericentre, according as

aB>0b0B B>a0
b0

a0 <50 or 88 5
x2
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Prop. IX.— T dstermine when epicyclic loops touch.

For this we must have 2 p O d (figs. 93, 94) = angle of
descent ; that is, see Schol. to Prop. VIL,

Fia. 93.

[
Fra. 94.

“'

A

p n

c

P K

. D‘

3 T

, 180° _ 180°,
¢l +P0b n— 1 n—l’

1 a[_D*+=nE a1l nIEI—D? 360°
1% [ T+mDE )™ [‘ i | A=l

;e X oo

or

Prop. X.— T determine the position of points of inflexion.
If p, figs. 95, 96, as in Prop. XIIL., sec. 3, is a point of
inflexion, we have as in that proposition
20%k.Cz=CB.CI X (Cp)?
(lower sign for retrograde epicyclic)
or (C’B +(0T) C'z = C'B'. C'1 + (C'p)?
C'B'.CT + (C'p)
(C'B'+ CT) C'
: D\? D
Now by Cor. to Prop. XIL., Sect. IIL, C'I= (_ ) +D=2
n

n

’ —P_ cos (n—1) ¢ =
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to be regarded as negative for retrograde epicyclic. Hence

D D
E2
Cos(n—l)d:_—n n? + D?* 4 n3 E2
( D)E n(l+n$DE
n
Fia. 95. F1e. 96.

n being negative in case of retrograde epicyclic.
Cor. If ¢, be the value of ¢ determined from this equa-
tion, there is a point of contrary flexure when ¢ = ¢, and

another when ¢ = -3291—.— bae

SceoL.—The angular range round O of the arc between
the points of flexure can be determined, as in case of arc of
retrogradation, see scholium to Prop. VII. 'We have

, — Pz _ Esin(n—l)q»,_ .
tan pOb' (figs. 95 and 96) = 20 ~ D+Eoos (n=1)7, :
wherefore, if d be the pericentre

0d=£°T—‘ 93 — p Ob, is also known.
It is easily shown that

v (n7E3 — D?) (D? — n* E9)
n (1 + »n) DE

sin (n—1) ¢y =
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For the critical case where the points of inflexion coincide,
we have, from Cor. 1, cos (n—1) ¢y = —1;

that is D! +n3E2=n(l 4+ ») DE )

(the same condition, both for direct and retrograde epicyeclic,

due accounrt being taken of the sign of =) ;

or n(n?E —D)E=(n*E — D)D

or (nE —-D)(»*E — D) =0,

which is satisfied, (i), if » = I—I;’ the condition (Schol. p. 158)

and

for a cusp (at pericentre in case of direct epicyclic, and at apo-
centre in case of retrograde epicyclic), and (ii), if nﬂ:lﬁ)’ cor-
responding to the case when this curve becomes straight at
pericentre both for direct and retrograde epicyclic. Com-
pare scholium to Prop. XII., Section IIL, from which the
relation between 73, D, and E, can be directly obtained.

Pror. XL.—70 determine the radius of curvature, p, at a
point on epicyclic where deferential angle = ¢.

From Cor. p. 117, noting value of p B’ (asin p. 162);
that C'O=n=.C'B’; and that BN=C'B cos p B'C’; while
2B cos pBC =B'C'+pC cos (n—1)¢, it is easily shown
that

_ [D%+n? E242 % DE cos (n—1) 6%
P DI B+ % (n+1) DE cos (n—1)p
_(D+nE) (D—nE)
A ey o —nE’

at apocentre at pericentre p =
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APPENDIX TO SECTION V.
RIGHT TROCHOIDS REGARDED AS EPICYCLICS.

It is often convenient to regard right trochoids as
epicyclics. The radius of the deferent is in their case
infinite, the centre of the epicycle moving in a straight
line. Tt is necessary to substitute linear for angular velo-
cities, the value of = becoming infinite when the deferent
becomes a straight line. It is manifest that if the centre of
the rolling circle of a right trochoid moves with velocity v in
the line of centres, the tracing point moves with ve-

locity % v around the tracing circle; and conversely, it is

manifest that if a point moves with velocity » » round the
circumference of a circle of radius E, whose centre moves with
velocity v in a straight line in its own plane, the point will
trace out a right trochoid, having a tracing circle of radius E
and a generating circle of radius m E. We may putv=1,
in which case m represents the velocity of the tracing point

round the circumference of the moving circle (m = %) It

is obvious also that if m 1 thereisaloop; if m=1, a cusp;
if m < 1 the curve is inflected. These cases correspond to
those of right trochoids in which » > R, » =R, and » < R.

Since right trochoids may be regarded as special cases of
epicyclic curves, it is not necessary to discuss them further
in their epicyclic character. It will be found easy to deduce
any required relation for right trochoids from the relations
above established for epicyclics, combined with the considera-
tions noted in the preceding paragraph. A single illustra-
tion will suffice to show how this may be effected.
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Suppose we wish to determine when the tracing point
ceagses to advance in the looped trochoid. We have, from
Prop. VIL, in case of epicyclic,

D? + nE?

“{T+n)DE

and if m represents the ratio of linear velocities in epicycle and

D
deferent, n =m E
epicycle, and when D becomes infinite is the same as (n—1)g,
so that the angle ¢, (the angle a CL of fig. 48) is deter-
mined by the equation
con gy = — %——’:;"D?% =L when D is infinite.

The student will, however, find it a useful exercise to go
independently through the various propositions relating to
epicyclics, for the case in which the deferent is a straight
line. The relations involved are simpler than those dealt
with in the present section. It is to be noticed that m
may always be regarded as positive, the same curve being
obtained for a negative value of m as for the same positive
value, if 7 remains unaltered.

cos (n— 1) ¢, =

Also n¢ is the angle swept out in

SPIRAL EPICYCLICS.

‘When the radii of epicycle and deferent are both infinite
but (D—E) finite, the epicyclic becomes one of the system of
spirals of which the involute of the circle and the spiral of
Archimedes are special cases. 'We must of course suppose the
curve traced out on either side of the pericentre, since the
remoter parts of the curve pass off on each side to infinity.
Instead, however, of imagining a deferent of infinite radius
carrying an epicycle also of infinite radius, it is more con-
venient, in independent researches into these spirals by
epicyclic methods, to consider a deferent radius as revolving
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uniformly round a fixed point, this radius bearing at its
extremity a straight line perp. to it in the plane of its own
motion, along which line a point moves with uniform
velocity. Let the length of the revolving radius = d,
velocity of its extremity 1, and velocity of moving point m.
Then if m = 1, the curve is the involute of the circle traced
out by the end of the revolving radius ; if m > or < 1, the
curve is one of the system of spirals bearing the same relation
to the involute of the circle which the curtate and prolate epi-
cycloid respectively bear to the right epicycloid. If d=0, the
infinite straight line revolves ahout a point in its own centre ;
and the curve traced out by the moving point is the spiral
of Archimedes, whatever the uniform angular velocity of the
revolving line, and whatever the uniform velocity of the
tracing point along the line. See also examples 131133,

PLANETARY AND LUNAR EPICYCLES.

The ancient astronomers discovered that the paths in
which the planets travel with reference to the earth are
approximately epicyclic. It is easily shown that this follows
from the fact that the planets, as well as our earth, travel in
nearly circular paths about the sun as centre.

The general property is as follows :—

Prop. I.—Regarding the plancts as travelling uniformly in
circles about the sun as centre, and in the same plane, the
path of any planet P (fig. 97) with reference to any other
planet, p, regarded as at rest, 8 the same as the path of p
with reference to P regarded as at rest, the corresponding
radit vectores lying in opposite directions; and each such
path is a direct epicyclic.

Let S be the sun, p and P two planets (p being the
inferior planet, and P the superior), in conjunction on the line
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SpP. Let the planet p move to p’, while P moves to P,
Draw » Q and P g parallel and equal to ' P'. Then, with
reference to the planet p, regarded as at rest, the planet P
has moved as if from P to Q; while considered with refer-
ence to P, regarded as at rest, the planet p has moved as if
from p to ¢ : and since p Q is equal and parallel to P ¢, the
path of the outer planet with reference to the inner, regarded

Fre. 97.

as at rest, is the same as the path of the inner planet with
reference to the outer-regarded as at rest,—each path being,
however, turned round through 180° with regard to the
other,

Join p'q, P'P, p' p, and P’Q. Draw 8 s’ parallel to
P'q, and S§ parallel to P'Q, and join §'q, s'P, S'p, and
S8'Q. Also draw ¢'m and S M parallel to SP, and complete
the parallelograms PMS’'S, and pm 'S,

Then, by construction, the figures 8'p’, »'Q, S'P', 8¢,
gP,and ¢ P, are elograms. Wherefore p 8'=p'S=
Sp; and /2 S8p8 =/ p8yp'; FM=8P=SP'=8'Q and
£LMS'Q= £ PSP’; so that the relative motion of the outer
planet from P to Q around p may be regarded as effected
by the uniform motion of S to 8’ in a circle about p as centre
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(corresponding to the real motion of p to p’ around 8
as centre), accompanied by the uniform motion of P (which,
if at rest, would have been carried to M), in a circle around
the moving 8 as centre to Q,—that is, through the arc M Q
= P P. Hence the motion of P with reference to p is that
of a direct epicyclic having D =8 p, E=8 P, and

— Ang. vel. of P round S

" Ang. vel. of pround 8~

Similarly the relative motion of the inner planet from p

to ¢, around P, may be regarded as effected by the uniform
motion of 8 to & around P as centre (corresponding to the
real motion of P to P’ around 8 as centre), accompanied by
the uniform motion of p (Which, if at rest, would have been
carried to m) in a circle around the moving 8 as centre to
¢,—that is, through the arc mg¢=p p. Hence the motion
of p with reference to P is that of a direct epicyclic having
D=SP,E =8p, and

_ Ang. vel. of p round 8

Ang vel. of P round 8

Scror.—If the distances of the planets p and P from the -

sun are » and R respectively, the epicyclic of either planet
about the other has D =R, E =1, and

n= (B)%
r 2

for the angular velocities of planets round the sun vary
inversely as the periods—that is, as the sesquiplicate power
of the mean distance.

Since (R) > ,orn>

D

E’

the motion of one planet with reference to another is always
retrograde when the planets are nearest to each other;
therefore every planetary epicyclic is looped.
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The arc of retrogradation of one planet with reference
to the other may be obtained as explained in scholium
to Prop. VIL. of this section. The duration of the retrogra-
dation follows directly from the formula for determining
cos (n — 1) ¢, as in that proposition; for ¢, is the angle
swept out by the superior planet around the sun between the
time of inferior conjunction and first station. This formula,
with the values above given for D, E, and n, becomes

R + (E:)‘rﬂ
Rr+ (—I;{')l Rr

or, putting P, p, for the respective periods of the planets,

Rt —ot
MT¢1 =

weP—Py — R 4+RIA_ Rrl4+Rir
? "T TRATRIr T RitA
Ri rt ~Rr

5 and

STR-RIAFrTURr-R+1)

2oLy v mes i Dgr VT F o (v D

_VYE®+r)(R—2Rird +7)

R—Rirt +r
_(R—-—n)VR+4+r
T TR-Rirt +r

Wherefore tan p O b’ (see fig. 91, and schol. p. 160)
r(RR—ri) VR +r
“R®-Rirt +r)—Ri

_ r(Rt —rt)VR + r r
"RBR+r)—RiAR+r) RIVR +r
The arc of retrogradation,—

=9 9 . ° bid .
=24, 4+ 2p0Ob — 360 (P—p ;
can be readily determined. Thus, the arc of retrogradation
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=2£p0¥ - F—f_—p(360°—cos—‘ —_ﬂ—)

r—R—r
‘=2tan_l-—r=— ‘
RIiVR ¥~
P 180°+eos—1_~/i‘__"__) @
P—P( R—VvRr+r )

This formula gives the arc of retrogradation. The angle
between pericentral and stationary radii vectores is half the
arc of retrogradation.

. Thus the epicyclic path of a superior planet (period P)
with respect to an inferior planet (period p), or of latter
planet with respect to former, will have—

Apocentral distance=R + r;
Pericentral distance =R — r;

Angle of descent = PPTp . 180°
The arc of retrogradation is determined by formula (1) above.
All the tables of planetary elements give R, », P and p.
If one of the planets is the earth, the calculation is simpli-
fied, because the tables of elements give the distances of other
planets with the earth’s mean distance as unity.

If a satellite be regarded as travelling uniformly in a
circle around its primary, while the primary travels uni-
formly in a circle in the same plane around the sun, the
path of the satellite is an epicyclic about the sun as fixed
centre.

All the satellites travel in the same direction round their
primaries as the primaries round the sun, except the satel-
lites of Uranus, whose inclination is so great that their
motion does not approach the epicyclic character. The
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direction of the motion of Neptune's satellite, sometimes
given in tables of astronomical elements as retrograde, can-
not yet be regarded as determined. The inclination of
Saturn’s satellites, seven of which travel nearly in the same
plane as the rings, is considerable; but these bodies may be
regarded as having paths of an epicyclic character. Our own
moon’s path is but little inclined to the ecliptic, and the
paths of Jupiter’s moons are still nearer the plane of their
planet’s motion. The discussion of the actual motions of
these bodies belongs rather to astronomy than to our present
subject. 'We need consider here only some general relations.*.

Prop. I1.—70 determine under what conditions a satellite,
travelling in a direct epicycle about the sun, will have its
motion (referred to the sun) looped, cusped, or direct:
throughout, or partly convex towards the sun, or just fail-
ing of becoming comwex at perihelion, or partly concave
towards the sun.

Let M be the sun’s mass, m the primary’s, R the dis-
tance of primary from the sun, » the distance of satellite
from primary; also (though these values are only for con-
venience) let P be the primary’s period, p the satellite’s, and
assume that m is so small compared with M, and the satel-
lite’s mass so small compared with m, that both the ratios
(M + m) : M,and (m + satellite’s mass) : m may be regarded
throughout this inquiry as equal to unity.

'We have first to obtain the means of comparing the
velocities in the primary and secondary orbits under any

* In a work on the ¢Principles of Astronomy,” which I am at
present, writing, the nature of the planetary and lunar epicycles
will be found fully treated of. -
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given conditions. The most convenient way of doing this is
perhaps as follows:—Let V, v, be the respective velocities
of bodies moving in circles around the sun, and round the
primary, at the same distance, R; and let v be the velocity
of the satellite at distance ». Then we know that

V:Le? .. )

I—{: ‘R s M:m,

or Viv i ivM: vm,

and v v ivr /R
SViv i v/Mr: vmR,

and %‘g /M VRS,

This is the ratio of the angular velocities of primary and
satellite in their respective orbits. It gives us

n:l1(tPip)is vmR3; VM4,
The path of the satellite will therefore be looped, cusped,

or direct throughout, according as
wE > R
M3 <

or as mR%Mr; or%%%.

And the path of the satellite will be partly convex towards
the sun, or just fail of becoming convex at perihelion, or be
partly concave towards the sun, according as

mR? > R

MmR3<7r

r? m
or as mR’%Mr’;or%nl%ﬁ;or %%Rﬁ
The student will find no difficulty in obtaining formuls

for the range of the arc of retrogradation, if any, or of the
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arc of convexity towards the sun, if any, following the course
pursued at pp. 172, 173 (using in the latter case the formula
of p. 165), remembering that in this case D=Rand E = r

and n = ;, as in the case of planetary motion, but that in

reducing the formula he must employ the relation
m R3
My3®

I have not thought it necessary to occupy space here
with the reduction of these formule, because they are of no
special use. The path of our own moon has no points of
retrogradation or of flexure, and the position of such points
on the paths of Jupiter’s moons, or Saturn’s, is not a matter
of much moment.

‘We may pause a moment, however, to inquire into the
limits of distance at which, in the case of these planets and
our earth, convexity towards the sun, or retrogradation,
would occur.,

n =

In the case of our earth, % = 322,700 = (568)2 about ;

and R = 92,000,000. Therefore a moon would travel in a
cusped epicycle, or come exactly to rest at perihelion, if (the
earth’s whole mass being supposed collected at her centre)

) , 92,000,000
the moon’s distance from the earth’s centre were 329,700

miles, or about 285 miles. That a moon should travel in a
path convex to the sun in perihelion, the distance should not

xceed &’05%@, or about 162,000 miles. Thus the

moon’s actual distance being 238,828 miles, her pa.th is
entirely concave towards the sun.

M
In the case of Jupiter, = 1,046 = (323)* about; and
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R = 478,660,000 miles. Therefore a moon would travel in
a cusped epicycle, or come exactly to rest in perihelion, if its

distance from Jupiter’s centre were 4—7§i—6(‘;10’T009, or about

457,600 miles. Thus the two inner moons, whose distances

are 259,300 and 412,000 miles, have loops of retrogradation ;
" whereas the two outermost, whose distances are 658,000 and

1,155,800 miles, have paths wholly direct. But all the

moons travel on paths convex towards the sun for a con-

siderable arc on either side of perihelion ; since for the path

of a Jovian moon to just escape oonvexi{;y towards the sun at
478,660,000

32

miles, or about 14,804,000 miles; which far exceeds the
distance even of the outermost moon.

perihelion, its distance from Jupiter should be

In the case of Satum%: 3,510 = (59)* about, and

R = 877,570,000 miles. Hence a moon .would travel in a
817,670,000
3,510
or about 250,700 miles. This is rather less than the distance
of his fourth satellite, Dione, 253,442 miles ; and, owing to
the eccentricity of Saturn’s orbit, it must at times bappen
that Dione comes almost exactly to rest for an instant at a
cusp in epicyclic perihelion, or only has a motion perpendicular
for the moment to the path of Saturn. The three satellites
nearer to Saturn travelling at distances of 124,500, of 159,700,
and of 197,855 miles, have loops of retrogradation, as have all
the satellites composing the ring system. The other satellites,
having distances of 353,647, of 620,543, of 992,280, and of
2,384,253 miles respectively, have no loops ; but their paths
are convex towards the sun for a considerable arc on either
N

cusped epicycle if its distance from Saturn were
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side of epicyclic perihelion ; since, for a satellite’s path just to
escape convexity towards the sun, the satellite’s distance

should be 877,5;_%(_)_02 miles, or about 14,874,000 miles.

Prop. I11.—Regarding the planets as moving uniformly in
circles round the sun in the invariable plane, the projec-
tions of the paths of the planets in space upon a fived
plane parallel to the tnvariable plane of the solar system
are right trochoids.

This follows directly from the fact that the sun is
advancing in a right line (appreciably, so far as ordinary
time-measures are concerned), with a velocity comparable
with the orbital velocities of the planets., His course being
inclined to the invariable plane, the actual path of each
planet is a skew helix, as shown in the last chapter of my
treatise on the sun,

Pror. IV.—T0o determine the tangential, transverse, and
- radial velocities (linear) of a planet in its orbit relatively to
another planet, and its angular velocity about this planet.
Let R be the distance, P the period, V the velocity of the
planet which is regarded as the centre of motion; » the
distance, p the period, » the velocity of the other planet.
Then, in the formule for the tangential transverse, and
radial velocities in epicyclics, we have to put

]
D=R; E=r;andn=(—R) =1~);
r p
but it will be convenient to retain 7, remembering its value.
‘We may also conveniently write %‘ = p, 80 that n = p—s
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Moreover, with the units of distance and time in which R, r,

P, and p are expressed
’ _2=R

TP
Also ¢ is the angle swept out around the sun by the planet
of reference since the last conjunction of the sun and the
other planet, the conjunction being superior in the case of
an inferior planet.*
Thus the tangential velocity is equal to

v R\? N\t P—

h 2 e WP RN Y 4 p

R\/R +(r)r+ (R) R
=V VT4 pT+2ptcos(n—1)9p.

The formula can obviously assume many forms, but per-
haps this, which enables us at once to compare the tangential *
velocity with V, the velocity of the planet of reference in
its orbit, is the most convenient,

The transverse velocity (direct)

_Vv 2 (Rt , Rt 4+t _ }
= { B +(3) 1+ B D Rros (n - 1)
VR + 7+ 2Rrcos (n—1)p
=y ltet+ (et +p) cs (n—1)¢
V1 4+p?+2pcos(n—1)¢
The radial velocity (towards centre)
=(pt-1)V. — riﬂ(_nie— —
vR*+ 24+ 2Rrcos(n—1)¢
-V (o} —p)sin (n — 1) g i
V1 +p*+2pcos(n—1)¢
* The conjunction must be such that the sun is between the two
" planets. It is a convenient aid to the memory, in distinguishing
between the superior and inferior conjunctions of inferior planets,

to notice that inferior conjunction is that kind of conjunction with
the sun which only inferior planets can enter into.

N2
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The angular velocity of the planet about the planet of
reference
YV R4 pt4])Rreos(n—1)g
=R’ R+ P+ 2rcos(n—1)¢
_. p+1+(pt+p)es(n—1)¢
=0 1+p'+2c8(n—1)p

putting % = w = angular velocity of the planet of reference

in its orbit.

Cor. 1. In conjunction (superior if moving planet is in-
ferior) ¢ =0;

.*. Angular velocity in superior conjunction
pt+1+pt+4p

1+p2+2p
o LFe) x (1 +pt)
- (I +py
14 pt

l+p )

Cor. 2. Similarly since in opposition if the moving planet
is superior, or in inferior conjunction if the moving planet is
inferior, (r—1) ¢ = 180°, angular velocity of a planet in op-
position or inferior conjunction
JAHl—pt—p

1+p2—-2p
_ (=p)—pi(l=p) [ 1—p
==y = (=F)
- 1—pt w
T ap 1=p T 4/;+P

ScroL.—All the above formulee are susceptible of many
modifications depending on the relations subsisting between
the periods, distances, real velocities, and angular velocities
of the planets in their orbits. From Kepler's third law all
such modifications may be directly deduced.



EPICYCLICS, 181

Pror. V.—4 planet transits the sun’s disc at such a rate
that the sun’s diameter S would be traversed in time t;
assuming circular orbits and uniform motion, determine
the planet’s distance from the sun.*

Let the planet’s distance = p, earth’s distance being unity,
and let w be the earth’s angular vel. about the sun = sun's
dngular vel. about earth. Then, if ¢/ be the time in which
the sun in his annual course moves through a distance equal
to his own apparent diameter, wt' =8, and the planet’s
angular velocity about the earth when in inferior conjunction

w

Vo+p

‘Wherefore, the planet’s retrograde gain on the sun (which

advances with angular velocity w)

= o + o
T Vet
c (L Yte) 8 et
vp+o ¢
- t
or p+4/p=t,—_2$
a quadratic giving
t t V3t + ¢
o ‘°=§(t'iti t’—+t '

The lower sign must be taken, the upper giving a value of
p greater than unity.
Cor. Let us take the supposed case of Vulcan, whose
* This was the problem Lescarbault had to deal with in the case

of the supposed intra-Mercurial planet Vulcan, He faxled for want
of such formule as are here given,
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rate of transit was such that the sun's diameter would have
been traversed in wather more than four hours. Since in
March (the time of the supposed discovery) the sun traversed
by his annual motion a space equal to his own apparent
diameter in rather more than 12 hours, we may say that
(with as near an approximation as an observation of this
kind—inexact at the best—merits) ¢’ = 3¢, Thus
p=%2-v3)
=4 (2 — 1:732) = 4 (0-268) = 0-134.
This is very near the estimated value of the imagined planet’s
distance,
FORMS OF EPICYCLIC CURVES.

. The relations discussed in the propositions of this section
enable us to determine the shape and general features of
epitrochoids or direct epicyclics and of hypotrochoids or re-
trograde epicyclics, for various values of D, E, and n. I
Ppropose to consider these features, but briefly only, because
in reality their consideration belongs rather to the analytical
than to the geometrical discussion of our subject.

In the first place, since we obtain the same curve by
interchanging deferent and epicycle, and at the same time
interchanging the relative angular velocities of the motions
in these circles, we shall obtain all possible varieties of epi-
cyclic curves by taking D as not less than E, so long as we
give to = all possible values from positive to negative in-
finity.

The whole curve lies, in every case, between circles of
radii D+ E and D—E, the apocentres falling on the former
circle, the pericentres on the latter. When D = E, the whole
curve lies within the apocentral circle; and all the pericentres
lie at the fixed centre.
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If » be infinite, whether positive or negative, we may
consider the deferential velocity zero, and that of the epicy-
clic finite, giving for the curve the direct epicycle itself if n
is positive, and the retrograde epicycle itself if » is negative.

‘When n is very great, we obtain such a curve as is
shown in fig. 98, Plate I1. (p. 184) if = is positive, and such
a curve as in fig. 99, if » is negative.

As » diminishes the angle of descent increases, the loops
separate and we obtain such forms as are shown in figs. 100
and 101, for » positive or negative respectively.

With the further reduction of =, the loops become
smaller, the point of intersection approaching the pericentre
when 7 is positive, the apocentre when » is negative, until

finally, when n=%, the loops disappear and we have peri-

central cusps as in figs. 102 and 104, or apocentral cusps as
in figs. 103 and 105, according as » is positive or negative.
In the former case the curve is the epicycloid, in the latter
the hypocycloid.

As n diminishes from % towards unity the cusps disap-
pear and we have points of inflexion on either side of the
pericentres if = is positive, or of the apocentres if » is nega-
tive, as shown respectively in figs. 106 and 107, Plate II1.

As n further diminishes the points of inflexion draw
further apart for a while in case of direct epicyclic, and after-

wards approach until n? = %, when they coincide again at

the pericentres, the curve being entirely concave towards the
centre for all smaller values of n. In the case of the retro-
grade epicyclic, the points of inflexion draw apart on either
side of the apocentres, and continue so to do till they meet
points of inflexion advancing from next apocentres on either
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side; so that in this case, as in that of direct epicyclic, we
have when »? =g two points of inflexion coinciding at

the pericentres. These two cases are illustrated in figs. 114
and 115. The former is a direct epicyclic; n=25; and
D:E::25:1; (apocentral dist. : pericentral dist. : : D+E
:D—E::13:12. The latter is a retrograde epicyclic;
n=—3;and D:E::9:1; (apocentral dist. : pericentral
dist. :: D+E:D—E ::5:4). Compare figs. 118,121, 154,
158. _

As n continues to decrease from the value/\/ % the

angle of descent continually increases if » is positive and we
.have curves of the form shown in fig. 108,
Fie. 114, Fie. 115,

me

In diminishing from the value %, n passes through

the value unity. 'When » = + 1 the curve is a circle hav-
ing the fixed point as centre, and having for radius whatever
distance the tracing point may have from that centre ini-
tially ; the radius vector therefore always lies in value
between D + E and D—E.

" Asn continuing positive diminishes in absolute value from
1 to 0, the angle of descent which had become infinite dimi-
nishes, remaining positive.* The curve continues concave

* De Morgan says, ‘becomes very great and negative.’ This is
correct on his assumption that the angle of descent is to be re-
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towards the centre, resembling the appearance it had had
before » reached the value unity. As n approaches the value
0, however, the angle of descent becomes less and less, until
when n=0 it becomes 180°, the curve being now a circle hav-
ing radius D and centre at distance E from the fixed centre.
Thus, if the tracing point is initially at A, fig. 81, p. 148,
the centre is at ¢, but if the tracing point is initially at P,
the centre is at ¢’, (O ¢ being parallel to C'P).

As n diminishes in absolute value from— \/];_‘,j to —1,

the angle of descent increases till it is equal to 90°, the
curve, always concave towards the fixed centre, forming a
series of arcs more and more approaching the elliptical form,
as in fig. 109, till when n = —1 the curve is the elliptical
hypocycloid, see p. 124. We see that the equality of the
diameters of the fixed and rolling circles is equivalent to the
condition » = — 1 for retrograde epicyclic. The semi-axes
are (D+ E) and (D—E).

Lastly as =, still negative, diminishes from ~1 towards
0, the curve at first resembles in appearance that obtained
before n reached the value —1, but the angle of descent
gradually increases, until at length, when n = 0, it is 180°
and the curve becomes the circle already described.

garded as positive when the radius of the epicycle gains in direc-
tion on the radius of the deferent, and negative when the radius of
the deferent gains in direction on the radius of the epicycle. There
is no occasion, however, to make this assumption, which is alto-
gether arbitrary. If we consider the actual motion of the tracing
point coming alternately at apocentre and at pericentre upon the
deferential radius, which constantly advances whatever the value of 5
positive or negative (except- + 1 only), we must consider the angle
of descent as always positive. We arrive at the same conclusion
also if we consider that the radius vector advances on the whole be-
tween apocentre and following pericentre, for all epicyclics, direct
or retrograde.
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The varieties of form assumed by epicyclies according to
the varying values of %, D, and E, are practically infinite.
It will be noticed that in all the illustrative figures, = is a
commensurable number, so that the curve re-enters into itself.
Of course, no complete figure of an epicycle in which = isnot
a commensurable number could be drawn.

Certain special cases may here be touched on briefly.

When D = E, the direct epicyclic assumes such forms as
are shown in figs. 110, 112, the retrograde epicyclic such
forms as are shown in figs, 111 and 113. The distinction
between the two classes of epicyclics in these cases is re-
cognised by noting that the angle of descent, which must be
positive, can only be made so by tracing the curves in ﬁgs
110 and 112 the direct way, and by tracing those in figs.
111 and 113 the reverse way.

A distinction must be noted between direct and retrograde
epicyclics, when D is nearly equal to E, and = approaches the

D

value Py which is nearly equal to unity. For the direct epi-

eyclic, the angle of descent, 180° + (n—1), becomes very
great, and we have a curve which passes from apocentre to
‘pericentre through a number of revolutions, before beginning
to ascend again by as many revolutions to the next peri-
centre.* On the other hand, in the case of the retrograde
epicyclic, when D is very nearly equal to E, the angle of
descent 180° = (n + 1) approaches in value to 90°, or the
angle between successive apocentres approaches in value to
two right angles, so that the curve has such a form as is
shown farther on in fig. 119.

‘We have followed the effects of changes in the value of

* Prof. De Morgan strangely enough takes figs. 116 and 117 as

illustrating this case. But in both these figs. n=%'; in fig. 117,
D=4 E. In neither is E very nearly equal to D,
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11, where D and E are supposed to remain unchanged through-
out. The number of apocentres and pericentres depends, as
we have already seen, on the value of n. It will be a useful
exercise for the student to examine the effect of varying the
value of E, keeping D and n constant, or (which amounts

Fic. 116.

really to the same thing)to examine the effect of varying the
value of %, keeping n constant. Since the angle of descent
is equal to 180° + (n — 1) if n is positive, and to 180° +

Fia. 117,

(n+1) if n is negative, cha.ngiﬁg the value of ]li;will not give
all the curves having any given number m of apocentres or

pericentres (for each revolution of the deferent). For this

purpose it is necessary to assume first n = (m + 1), giving
all the direct epicyclics having m apocentres and m peri-
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centres, and secondly n = —(m—1) giving all the retrograde
epicyclics having m apocentres-and m pericentres, for each
revolution of the deferent. (Of course, m is not necessarily

a whole number.)
Fia. 118.

Suppose we take n=121, so that the angle of descent
(=180°+$) is equal to §ths of two right angles. Then if
E> % D we have such a curve as is shown in fig. 116. As
E diminishes until E= £ D, the loops turn into cusps as

Fie. 119.

shown in fig. 117; as E diminishes still further until E
=45 D (that is n’=]]—;), the curve assumes the orthoidal

form shown in fig. 118. Again, take n= —4. Then
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when E is nearly equal to D the curve has such a form
as is shown in fig. 119, merging into the cuspidate form
as in fig. 120, when E = #D; and into the orthoidal (or
straightened) form, as in fig. 121, when E= & D (or

Fie. 120,

= %) For further illustrations see p. 256.

If we compare fig. 98 with fig. 122, we perceive that in
the former the loop between two successive whorls overlaps

Fre. 121.

two preceding loops, while in the latter each loop overlaps
but one preceding loop. A number of varieties arise in this
way. The determination of the condition under which any
given preceding loop may be just touched is not difficult;
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but in no case does the condition lead to a formula giving »
directly in terms of D and E. The simplest of these cases is
dealt with in Prop. IX. of this section. (See fig. 160, p. 256.)

Figs. 123 and 124 illustrate eight-looped epicyclics direct
and retrograde. By noting the different proportions between

Fie. 122,

their respective loops, and by comparing fig. 123 with fig.
100, a ten-looped direct epicyclic, and fig. 124 with fig. 101, a
ten-looped retrograde epicyclic, the student will recognise the
effect of varying conditions on the figures of epieyclics. (In

Fi6. 123.

fig. 100, n = 11; in fig. 101, n = ~ 9; in fig, 123, n =9,

~ and in fig. 124, n= —7),

It is a useful exercise to take a series of epicyclics and
determine the value of D, E, and n, from the figure of the
eurve. Suppose, for instance, the curve shown in fig. 125,
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is given for examination. This closely resembles fig. 108 in
appearance ; but in reality fig. 125 is a retrograde, whereas
fig. 108 is a direct epicyclic. The character of the curve in
this respect is determined by tracing it directly from any
apocentre and noting that the next apocentre falls behind

Fie. 124,

the one from which we started. The values of D and E are
determined at once from the dimensions of the ring within
which the curve lies,—its outer radius being D + E, its
inner D — E. The value of » is conveniently determined

Fie. 125.

by noting the angle between two neighbouring apocentres
(indicated best by the intersections of the curve next within
the apocentres, for from the symmetry of the curve all inter-
sections lie of necessity either on apocentral radii vectores
or on these produced). . This angle = one-tenth of 360°, so
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that the angle of descent is ;ths of 180°; orn + 1 = 2.
Thus in absolute value #» = }, but = is negative. '

In like manner we find that in fig. 126, n = — }.

In each of the figs. 127, 128, and 129, n = 2, since
there is only one apocentre. In fig. 127, the trisectrix,

Fia. 126. . Fia. 127.

© O

D =E; in fig. 128, the cardioid, D = 2 E; in fig. 129,
D=3E.

Figs. 130and 131, Plate I'V., illustrate some of the pleasing
combinations of curves which may be obtained by the use of
the geometric chuck, the instrument with which all the curves
of the present part of this section have been drawn. In

Fia. | 28. Fiu. 129,

() O

tig. 130 we have two direct epicyclics, (D — E) of the outer
being equal to (D + E) of the inner. It will be found that
for the outer n = 7, while for the inner » = 15. In fig. 131 .
we have four direct epicycles, having (D 4 E) constant, but
ratio D : E different in each. It will be found that there
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are 5} apocentres in each circuit ; whence (n — 1) =
. 360 =674, and n = 684. The inner part of the figure
is a retrograde epicyclic having 53 apocentral distances in
each circuit ; whence in absolute value (n + 1) = 674, and
n= — 663.

Figs. 132, 133, Plate V., are further examples for the
student.

" The remaining eight figures of Plates IV. and V., for
which I am indebted to Mr. Perigal, present the approxi-
mate figures of the epicyclics traversed by the planets, with
reference to the earth regarded as fixed. Of course the real
curves of the planetary orbits with reference to the earth
do not return into themselves as these do, the value of n not
being in any case represented by a commensurable ratio.
Moreover, the orbits of the earth and planets around the
sun are not in reality circles described with uniform velocity,
but ellipses around the sun as a focus of each and described
according to the law of areas called Kepler’s second law.
Therefore figs. 134—141 must be regarded only as repre-
sentative types of the various epicyclics to which the plane-
tary geocentric paths approximate more or less closely., In
the case of Mars, I may remark that either of the ratios
15 ;8 or 32 : 17 would have given a more satisfactory
approximation to the planet’s epicyclic path around the
earth. It so chances that I have taken occasion during the
6pposition-approach of Mars in 1877 to draw the true geo-
centric path of Mars around the earth for the last forty
‘years and for the next fifty, taking into account the eccen-
tricity and ellipticity of the paths, and the varying motion
of the earth and Mars in their real orbits around the sun.
The resulting curve, though presenting the epicyclic cha-
racter, yet falls far short of any of the curves of Plates IV.

(o]
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are 51 apocentres in each circuit; whence (n — 1) =
+3. 360 =674, and n =68}. The inner part of the figure
is a retrograde epicyclic having 5} apocentral distances in
each circuit ; whence in absolute value (n + 1) =674, and
n= — 661.

Figs. 132, 133, Plate V., are further examples for the
student.

The remaining eight figures of Plates IV. and V., for
which I am indebted to Mr. Perigal, present the approxi-
mate figures of the epicyclics traversed by the planets, with
reference to the earth regarded as fixed. Of course the real
curves of the planetary orbits with reference to the earth
do not return into themselves as these do, the value of » not
being in any case represented by a commensurable ratio.
Moreover, the orbits of the earth and planets around the
sun are not in reality circles described with uniform velocity,
but ellipses around the sun as a focus of each and described
according to the law of areas called Kepler's second law.
Therefore figs. 134—141 must be regarded only as repre-
sentative types of the various epicyclics to which the plane-
tary geocentric paths approximate more or less closely, In
the case of Mars, I may remark that either of the ratios
15:8 or 32 : 17 would have given a more satisfactory
approximation to the planet’s epicyclic path around the
earth. It so chances that I have taken occasion during the
6pposition-approa.ch of Mars in 1877 to draw the true geo-
centric path of Mars around the earth for the last forty
years and for the next fifty, taking into account the eccen-
tricity and ellipticity of the paths, and the varying motion
of the earth and Mars in their real orbits around the sun.
The resulting curve, though presenting the epicyclic cha-
racter, yet falls far short of any of the curves of Plates IV.

(o]
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and V. in symmetry of appearance. The loops are markedly
unequal, a relation corresponding of course to the observed
inequality of the arcs of retrogradation traversed by Mars
at different oppesitions.

NoTE.—MTr. H. Perigal, to whom I am indebted for all the illus-
trations of this part of the present work (except figs. 118-121, 132,
133, and 154-161, engraved by Mr. L. W. Boord, with a similar
instrument), gives the following account of the geometric chuck :—

¢The geometric chuck, a modification of S8uardi’s geometric pen,
was constructed by J. H. Ibbetson, more than half a century ago, as
an adjunct to the amateur’s turning-lathe. It is admirably adapted
for the purposes of ornamental turning ; but is still more valuable
as a means of investigating the curves produced by compound cir-
cular motion. In its simplest form it generates bicircloid curves,
80 called from their being the resultants of two circular movements.
This is effected by a stop-wheel at the back of the instrument giving
motion to a chuck in front, which rotates on its centre, while that
centre is carried round with the rest of the instrument and the train
of wheels which imparts the required ratio of angular velocity to the
two movements. A sliding piece gives the radial adjustment, which
determines the phases of the curve dependent upon the radial-ratio.

¢ By the simple geometric chuck a double motion is given to a
plane on which the resultant curve is delineated by a fixed point;
but it may act as a geometric pen when it is made to carry the
tracing point with a double circular motion, so as to delineate the
curve on a fixed plane surface. The curves thus produced being
reciprocals, all the curves generated by the geometric chuck may be
produced by the geometric pen,and vice vorsd, by making the angu-
lar velocity of the one reciprocal to that of the other. For instance,
the ellipse may be generated by the geometric chuck with velocity-
ratio = 1: 2’ (see, however, remarks following this extract), ‘and
by the geometric pen with velocity-ratio = 2 :1, the movements
of both being inverse, that is, in contrary directions.

¢The accompanying curves were turned in the lathe with the geo-
metric chuck (by myself, many years ago), of sufficient depth to
enable casts to be taken from them in type metal, so as to print the
curves as black lines on a white ground. These curves are therefore
veritable autotypes of motion.’

Mr, Perigal has invented, also, an ingenious instrument, called
the kinescope (sold by Messrs. R. & J. Beck, of Cornhill), by which
all forms of epicyclics can be ocularly illustrated. A bright bead
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is set revolving with great rapidity about a centre, itself revolving
rapidly about a fixed centre, and by simple adjustment, any velo-
city-ratio can be given to the two motions, and thus any epicyclic
traced out. The motions are so rapid that, owing to the persist-
ence of luminous images on the retina, the whole curve is visible as
if formed of bright wire.

He has also turned hundreds of epicyclics (or bicircloids, as he
prefers to call them) with the geometric chuck, There is one point
to be noticed, however, in his published figures of these curves. The
velocity-ratio mentioned beside the figures is not the ratio n : 1 of
this section, but (n—1) : 1, ¢.e., he signifies by the velocity-ratio, not
the ratio of the actual angular velocity of the tracing radius in the
epicycle to the angular velocity of the deferent radius, but the ratio
of the angular gain of the tracing radius from the deferent to the an-
gular velocity of the deferent. This may be called the mechanical
ratio, as distinguished from the mathematical ratio ; for a mecha-
nician would naturally regard the radius C’A’ of the epicycle PA'P’
(fig. 81) as at rest, and therefore measure the motion of the tracing
radius C'P’ from C’A’, whereas in the mathematical way of viewing
the motions, C'a is regarded as the radius at rest, and the motion of
C'P is therefore measured from C'a. The point is not one of any im-
portance, because no question of facts turns upon it ; but it is neces-
sary to note it, as the student who has become accustomed to regard
the velocity-ratios as they are dealt with in the present section (and

usually in mathematical treatises on epicyclic motion), might other-
wise be perplexed by the numerical values appended to Mr. Perigal’s
dmgrams. These values, be it noticed, are those actually required in
using the geometric chuck or the kinescope ; for in all adjustments
the epicycle is in mechanical connection with the deferent.

FORMS OF RIGHT TROCHOIDS.

Right trochoids may be regarded as epicyclics having the
radius of deferent infinite, the centre of the epicycle travel-
ling in a straight line. A good idea of the form of trochoids
may be obtained by regarding them as pictures of screw-
shaped wires (like fine corkscrews), viewed in particular
directions. This may be shown as follows :—

If a point move uniformly round a circle whose centre
advances uniformly in a straight line perpendicular to the

02



196 GEOMETRY OF CYCLOIDS.

plane of the circle, the point will describe a right helix, the
convolutions of which will lie closer together, relatively to
the span of each, as the motion of the point in the circle is
more rapid relatively to the motion of the circle’s centre.
Now if any plane figure be projected on a plane at right
angles to its own, by parallel lines inclined half a right
angle to each plane (or perpendicular to one of the two planes
bisecting the plane angle between them), the projection of
the figure is manifestly similar and equal to the figure itself.
Therefore if the circle and the point tracing out the belix just
described be projected on a plane parallel to the axis of the
helix, by lines making with this plane and the plane of
the circle an angle equal to half a right angle, the circle will
be projected into a circle whose centre advances uniformly
in the plane of projection in a right line. The projection of
the tracing point will be a point travelling uniformly round
this circle ; and therefore the projection of the helix will be a
right trochoid. 'We may say then that every helix viewed
at an angle of 45° to its axis is seen as a trochoid,—or rather
that portion of the helix which is so viewed from a distant
point appears as a trochoid. When the tracing point of a
helix moves at the same rate as the centre of the circle, the
helix viewed at an angle of 45° to its axis appears as a
right cycloid. Thus a helicoid or corkscrew wire having a
slant of 45° and viewed from a great distance at the same
slant (so that the line of sight coincides with the direction
of the helix where touched, at one side, by a plane through
the remote point of view), appears as a cycloid.

The helix is projected into other curves if the line of sight
is inclined to the axis at an angle less or greater than 45°.
In this case the projected curve is that generated by a point
travelling round an ellipse in such a way that the eccen-
tric angle increases uniformly while the centre of the ellipse
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advances uniformly,—in the direction of the minor axis if the
angle of inclination exceeds half a right angle, and of the .
major axis if the angle of inclination is less than half
right angle. : .

A set of such curves, obtained from a helix of inclination
45°, are shown in fig. 144, plate V1., A b, TV being a semi-
cycloid, and A by T, A bg T, &c., other projections of the
same portion of the helix by lines inclined to the plane of
projection at an angle exceeding a right angle, Ab T’ being
the orthogonal projection of this portion of the helix.

Such curves, and varieties of them resulting when the
helix is skewed (the centre of the circle advancing in a
direction not perpendicular to the plane of the circle), possess
interesting properties ; but they do not belong to our subject,
not being trochoidal. Moreover, for their thorough investi-
gation much more space would be required than can here be
spared. But one of these curves, the orthogonal projection
AbT (fig. 144, Plate VL) of a helix of inclination 45°,
must be briefly mentioned here, because associated histori-
cally as well as geometrically with the right cycloid.

THE COMPANION TO THE CYCLOID.

This curve, called also ¢ Roberval’s Curve of Sines,” may
be obtained as follows :— _

Let AB (fig. 142) be a fixed diameter of a circle AQB,
and through any point Q on AQB draw MQ p perp. to ACB
and equal to the arc AQ; the locus of this point p is the
companion to the cycloid APD having AB as axis,

If COc, the line of centres of semicycloid APD, be
bisected in O, the curve passes through O, because CO =
quadrant AQC'.

Drawing pm, Q, n, perp. to CO¢c, we have m O =
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CO-Cm=AC—-AQ=arcQC';pm :Om :: Qn : arc QC’
22 8in QCC : cire. meas. of QCC’. Hence the part A p O of
the companion to the cycloid is a curve of sines.

Produce Q7 to meet AC'B in Q’, draw M Q’»’ paralle

Fia. 142.

to BD to meet the curve A p D in p’ and ABin M/, and draw
p'm’ perp. to COc. Then
Cm' = Mp = ACQ,and OC = AC’
s Om' =arc C'Q =arce C'Q =0m;
And pm=nQ =nQ =pm.
Therefore the part Op'D of the curve bears precisely the
same relation to the line O ¢, which the part A p O bears to
OC. Thus the entire curve is a curve of sines.
Area A p OC = area O p' D ¢; wherefore, adding CODB,
area AODB = rect. CD = £ rect. BE = circle AQB.

It is also obvious that the same curve D p' O p A will be ob-
tained by taking Ec¢' D as the generating semicircle, and
drawing m'q' p'=arc ¢’ D, m ¢ p = arc ¢ ¢’ D ; so that the
figure ED p Op A is in all respects equal to the figure
BApOp D.
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- Since MQP = arc AQ 4+ MQ;and M p = arc AQ,
MQ=pP;
80 that an elementary rectangle QN = elementary rectangle
p L of same breadth ; whence it follows that area ApD P
= semicircle AQB : for we may regard pL and NQ as
elementary rectangles of these areas respectively, and the
- equality of every such pair of elements involves the equality.
of the areas. Since
area AODB=circle AQB; and area A p DP=1}circle AQB;
o Area APDB = § circle AQB;
and 2 aréa APDB = 3circle AQB:
this is Roberval’s demonstration of the area of the cycloid.

Draw sr parallel and near to Qp, and k3%, CT, !
perp. to OC ; then

IC=As; mC=AQ; . ml=Qs; and
mi:inh::Qs.nk;.CQ(=kk):Qn (ut.=rl)
s.rect. ml.rl=rect. nh.hk; that is, rect. r m=rect. nk;

or inct. of area A pm C==inct. of rect. A n. But these areas
begin together. Hence area A pm C=rect. A n; also

Area AOC =rect. CT; and area pm O = rect. nT.
Representing angles by their circular measure :—

pm—-rsmg—rsmo—:—n, and rect. n T=r? (l—coso—:-") H

therefore, the proof that area pm O = rect. n T, may be re-
garded as a geometrical demonstration of the relation

0
‘/.zsmxdm=l — COSZ

and similarly, since pm=r eos‘&Q =1 cos = , the proof
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that area A pm C = rect. A n may be regarded as a geome-
trical demonstration of the relation

0
J cos zd z = sin 2.
z
It will easily be seen that for points on O p'D,
Area AOp’ M' — rect, M’ m’ = rect. A n, or Bn,

leading agnin to the relation
area AODB = rect. Be.
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SEcTIiON VI.

EQUATIONS TO CYCLOIDAL CURVES. -

Although, properly speaking, the discussion of the equa-
tions to cycloidal curves belongs to the analytical treatment
of our subject, it may be well, for convenience of reference,
to indicate here the equations to trochoids (including the cy-
cloid), epicyelics, and the system of spirals which may be re-
garded as epitrochoidal (see p. 127, et seg.). For the sake of
convenience and brevity I follow the epicyclic method of
considering all these curves.

Let the centre of a circle a g b (figs. 45, 46, Plate 1.), of
radius e, travel with velocity 1 along a straight line C ¢ in its
own plane, while a point travels with velocity m round the
circumference of the circle. Take the straight line C ¢ for
axis of , C a for axis of y, and let the point start from a, in
direction @ ¢b. 'When it has described an angle m¢ about C,
the centre has advanced a distance ¢ ¢ along C¢, and there-
fore, if 2 and y are the coordinates of the tracing point,

x=e¢ + esinm ¢, Y = e Ccos m ¢. 1)
If weremove the origin to b, the centre of the base, taking
b d as axis of z and b a as axis of y, the equations are,
z=¢e¢ + esinmg, y = e +ecosmg. 2)
If we remove the origin to a, the vertex, taking ae as
axis of x and a b as axis of y, the equations are

& =¢¢ -+ esinmg, ‘y=e—ecosm¢. (3)
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If we remove the origin to ¢/, taking ¢' C as axis of z,
and ¢/ d’ as axis of y, the tracing point starting from d in
the same direction as before, the equations are

x=¢e¢ — esin ¢, Y = e cos m ¢. (4)

If in this case we remove the origin to ¢, taking é’e as

axis of z and ¢’ d’ as axis of y, the equations are
z=e¢ — esin ¢, y=e+ecosmé. (5)

And lastly, if we remove the origin to d’, taking d'd as

axis of x and d’ ¢’ as axis of y, we have the equations
z=ec¢p —esin ¢, y=e—ecosm¢. (6)

Fia. 143. (Join C’p.)

If m = 1, these equations represent the right cycloid ; if
m < 1, they represent the prolate cycloid ; and if m > 1, they
represent the curtate cycloid.

. For epicyclics, take O (fig. 143}, the centre of fixed circle
as origin, OA through an apocentre A as axis of «, and a
perp. to OA through O as axis of y. Put OC, radius of defe-
rent=4d ; CA, radius of epicycle=¢ (using italics as more
convenient in equations than capitals); 2 COC' = ¢, and
anglea C P==2 ¢. Then, if # and y are the co-ordinates of P

z=dcos pt+ecosn¢, y=dsingtesinng. (7)
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If OC, instead of passing through an apocentre when pro-
duced, intersects the curve in a pericentre at B, the equations
are ,

x=d cos ¢ — ecos n ¢, y=dsing —esinn¢. (8)
For a retrograde epicyclic, angle a CP'=n¢, and the
equations (A being an apocentre ) are

a=d cos ¢ + ecos n ¢, =dsing—esinng. (9)

_ If B is a pericentre of retrograde epicyclic, the equations
are .

z=d cos ¢ — ¢ CoS 1 ¢, y=d sin ¢+esin ngp. (10)

But all these equations are derivable from form (7) ;—(8)
by rotating the axis through the angle of descent,TZ—l ; and
(9) and (10) from (7) and (8) respectively by changing the
sign of n. So that equations (7) may be used as the equa-
tions for the epicyclic in rectangular coordinates, without
loss of generality. '

‘When, in (7) and (10),2 = :fl, the equations are those of
the epicycloid and hypocycloid respectively, when an axis coin-
cides with the axis z; if, in equations (8) and (9), n=%, the
equations are those of the epicycloid and hypocycloid, respec-
tively, when a cusp falls on axis of . it will be remembered
that if F is radius of fixed circleand R radius of rolling circle,
d=R+F, and ¢ = R; R being regarded as negative in case
of hypocycloid.

From (7) we get

2 +yl=r=d*+ e+ 2decos(n—1)¢, (11)

dcos ¢+ ecosng
and tan b = 4 i esinn g

which are the polar equations to the curve, O being the pole

(12)
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and OA, though an apocentre, the initial line. [Equation
(11) is obviously derivable at once from the triangle OC'P.]
For the epicyclic spirals, suppose OC/, fig. 143 =/, and that
a tangent at C to circle CK, carrying with it the perp. BCA,
rolls over the arc CK, uniformly, till it is in contact at C,
the angle C’OC being ¢. Then if AC =g, and z and y are
the rectangular coordinates of the point to which A has
been carried, it is obvious (since CA in its new position is
parallel to OC ) that (taking projections on axes of = and y)
z=(f+g)cos ¢+ fosing; y=(f+g)singp—fpcosg; (13)
the equations to the epicyclic spiral traced by A. The spiral
traced by B obviously has for its equations
z=(f—g)cos p+fpsin¢; y=(f—g)sing—fpcosg. (14)
From (13) we get -0
2 +yl=r'=(f+g) +¢% or
— sin ¢ —f ¢ cos
Fom VAR tan 0= FEDEEE (15
the polar equations to these spirals. See also Ex. 133, p. 253.
If g=0, or the tracing point is on the tangent, equations
(13) become
z = fecos ¢ + fprsing, y=/rsing —fpcosp; (16)
the equations to the involute of a circle. The polar equation
to this curve is (from 15),

St Y=L _ =

S
tan 6 = s (17)
Fian x/r;—f’_!_ Vi
If g = — f, equations (13) become
x=f¢sing; y= —f¢cos¢;
giving 22+ y?=y2¢2; orr=f¢;

and tan 6 = — cot ¢; or6=¢—1—;3
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whence r=f0+/3; (18)

the polar equation to the spiral of Archimedes, with OD, fig.
72, p. 130, as initial line. If OQ be taken as initial line, the
equation is
r=10. (19)
All the pairs of equations in rectangular coordinates can
readily, by eliminating ¢, be reduced to a single equation
between z and y. Thus (1) becomes

e _—
a:=,’72008‘1(§)_+ Vet —y3; (20)
the general equation to the right trechoid.
From equation (11)
1 x2+y!_d2_e!.

— ~1
p=,_1 %" 2de ;

which combined with either of equations (7) gives the general
equation to the epicyclic in rectangular coordinates. Tq
obtain this general equation in a symmetrical form, note that
from (7)

yecos¢ — xsin¢ =esin (n — 1)¢. (21)

However, in nearly all analytical investigations of the
properties of these curves, it is more convenient to use the
pair of equations (1) for trochoids, (7) for epicyclics, and
(13) for epicyclic spirals, or the polar equations (11) and (12)
for epicyclics, and (15) for epicyclic spirals.

The only use I propose to make, here, of the equations to
these curves, is to obtain the general equations to the evo-
lutes of trochoids, epicyclics, and epicyclic spirals. These
general equations, though they may be deduced from rela-
tions established geometrically in the text, are more con-
veniently dealt with analytically.

‘We have in equations (1), (7), and (13), 2 and y expressed
as functions of a third variable ¢ ; wherefore
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L@ G

dydz da:d_y’
de¢t do " d¢* d¢

and the equation to the evolute is derived from the two

equations dy
B
- d*y dz dxd'z/

AR l)

T &y da_da dy
dg* dp— d¢* d¢
where £ and 5 are coordinates of the point in the evolute

corresponding to the point x, y, on the curve.
In the case of trochoids, we obtain from (1)

dz_ . 2y _ nmo:

d¢_e+mecosm¢, d¢= —mesmme;

P .
(@) (Z—‘z ﬁ=e’(1+2mcosmcp+m'*').

206

)

d?y . d’z .
3=—m3ecosm ¢; E,»:—mesmmnp,

Also, — Y-
4
Z_i@ dz_dx d—z—_e’m’(cosm¢+m),

d¢ d¢* d¢
_ (1 +2mcos mo + mot
wherefore =—¢ mi(cosme +m)
. 14+ 2mcosmo + m? .
a.ndlfweput—( m’(cosmq:im) )=Ic,theequatxons

to the evolute are
E=e¢+ e(l + km)sinm ¢, 29)
’r,=elc+e(l +Icm)oosm¢. (
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If we put —1—_'_1}0—m=¢’ and m (14 % m)=mn/, these equations

may be written
E=e(l4+km)¢' +e(l + km)sinm'y/,

and ne==ek + e(l + km) cos m'y' ;
from which we see that the evolute of the trochoid may be
regarded as traced by an epicycle of variable radius e (1 + % m),
in which the tracing point moves with velocity bearing the
variable ratio m' to the velocity of the epicycle’s centre,
while the deferent straight line shifts parallel to the axis of
x 8o that its distance from this axis is constantly equal to
ek on the negative side of the axis of y.

If m=1 (or curve (1) becoraes the cycloid), k= — 2,
and equations (22) become

t=c¢p—esing; n=~—2e—ccosme¢;  (23)

showing that the evolute is an equal and similar cycloid,
with parallel base, removed a distance 2 ¢, or one diameter of
the tracing circle, from the base of the involute cyecloid
towards the negative side of the axis of y (that is from the
concavity of the involute), and having vertices coincident
with the cusps of the involute cycloid.

From equations (7) we obtain

dze _ _ 4 . : . dy_ .
To= dsing—nesinng; a?_dcoscp-i-necosn«p,
(22N, (dy A\ _ a2, 3.4, -
o d¢)+(n) =d?+n?e?+2 ndecos (n—1) ¢,
2
%——dsin«p—n’esinn%
d?z
W:—deoscp—n’ecos'n«p;

&
®

8

«

.d'y dx__ QY g3 n3e3 (3 -
I dg m'dtp—d +n3e? + (n? + n)decos(n—1) ¢
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{d® + n¥e? + 2ndecos (n—1) ¢}% .
d3 + nde?+(n? + n)decos(n—1)p’
di+nde?+2ndecos(n—1)¢ -k
2+ndel+ (n3+n)decos(n—1) ¢
we obtain for the equations to the evolute
E=dcos ¢ + ecosn¢ —k (dcos ¢ + necosn ¢),
and n=4dsing + esinng — k(dsing + nesinn¢);
or E=d(1—k)oos ¢ + e(l—nk)cosng } s (24)
and n=d(l1—k)singp+e(l—nk)sinng ’
whence we see that the evolute may be regarded as traced
by an epicycle of variable radius ¢ (1—n= %) carried on a de-
ferent also of variable radius d (1—#%).
It is easily seen (see p. 117, and figs. 63, 64), that
=08 (- 245) A
C'0' \ps—NB'
When d = ne, so that the involute epicyclic is the epi-
cycloid or the hypocycloid (according as n is positive or ne-
gative), & reduces to

wherefore, p =

and if we put

, and the equations of the evolute

l14n
become
n—1 n—1
E_m.doos¢—n+1 € cos 1 ¢
n—1 ds n—1 . 3 (25)
q—m. sm«p-—n_l_ esinn¢

which (we see from 8) are the equations of an epicycloid or
hypocycloid (according as = is positive or negative), whose
deferential and epicyclic radii (and in fact whose linear pro-
portions) bear to those of the involute the ratio (n—1) :
(n+1), and whose vertices touch the cusps of the involute
epicycloid or hypocycloid. If n is positive the ratio (n—1)
: (n +1) is the same as (d—e) : (d+e¢),or F: (F+ 2 R), as
in Bection II. If 7 is negative the ratio (n—1) : (n+1) is
the same as (d+¢) : (d—e),or F ;: (F—2R), as in Section II.
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Section VII,
GRAPHICAL USE OF CY CLOIDAL CURVES,

GraPHICAL USE oF THE CycroiD AND ITs COMPANION TO
DETERMINE THE MoTION OF PLANETS AND COMETS.

[ From the Monthly Notices of the Astronomical Svciety for April
1873.]

The student of astronomy often has occasion to deter-
mine approximately the motion of bodies, as double stars,
comets, meteor systems, and so on,—in orbits of considerable
eccentricity. The following graphical method for solving
such problems in a simple yet accurate manner is, so far as I
know, a new one.* By its means a diagram such as fig. 144,
Plate V1., having, once for all, been carefully inked in on
good drawing card, the motion of a body in an orbit of any
eccentricity can be determined by a pencilled construction of
great simplicity, which can be completed (including the
construction of the ellipse) in a second or two.

Let APA/, fig. 145, be an elliptical orbit of which ACA'’
is the major axis, C the centre, S being the centre of force,
so that A is the aphelion, and A’ the perihelion. Let H be

* New as a method of construction, though the principle- on
which it depends is of course not new. The curve A » T (fig. 146), for
instance, is an orthogonal projection of a particular prolate cycloid
which, as Newton long since showed, if accurately drawn, gives the
means of determining the motion in the ellipse APA’. But, as he
remarks, this prolate cycloid cannot readily be drawn ; whereas the
curve A p T' can be very readily drawn.

r
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half the periodic time, and T the time in which the body
moves from A to P.
On A A’ desceribe the auxiliary semicircle A b A’

Then
T: H:: area ASP : area ABA’

:1(ACQ 4+ 8CQ) s area A DA’
tAC.AQ+CS.QM : AC. AQA’
C8
1TAQ 43 - QM AQA/
Now if A m T’ be a cycloid having AA’ as its diameter,
then ’

Ordinate M m = AQ + QM.

Fro. 145,

And if we take M ¢ = AQ, we have ¢ a point on A ¢ T/,
the companion to the cycloid. The line ¢ m is then equal to
QM ; and if we take a point p on m Q such that

_SC _ 8¢
ﬁqp_m.qm_E.QM

we have
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SC
Mp=AQ + AG" QM ; and AT = AQA’
wherefore
T:H::Mp:A'T .
Thus we may represent the time in traversing the arc AP
by the ordinate M pto a curve A p T, obtained by dividing
all such lines as ¢ m (joihing the cycloid and its companion,
and parallel to A'T’) so that gp : ¢ m as 8C : AC.

Accordingly, if we construct such a diagram as is shown
in fig. 144, plate V1., in which AT’ is a semi-cycloidal arc
and AbT' its companion, while intermediate curves are
drawn dividing all such lines as b by, into ten or any other
convenient number of equal parts, the curves through the
successive points b, b,, by, &c., to by, give us the time-ordi-
nates for bodies moving in ellipses having A and A as apses,
and their centres of force respectively at C, S, Sy, S, .

S, and A"

In the plate the semi-ellipses correspondmg to these posi-
tions of the centre of force are drawn in, and it will be
manifest that any ellipse intermediate to those shown can be
pencilled in at once, with sufficient accuracy. Ellipses within
AByA’ have their focus of force between Sy, and A’, and ure
exceptionally eccentric.* It is easy to construct such an
ellipse, however, in the manner indicated for the semi-ellipse
AByA'. For the radial lines and the parallels to AT
through their extremities are supposed to be inked in ; and
(taking the case of ellipse AByA') we have only to draw the
semicircle a Bya’, and parallels to AA’ through the points
where the radial lines intersect this semicircle, to obtain by

* It is manifest that when the centre of force is at A’ we have
the case of a body projected directly from a centre of force, and the
time-curve becomes the cycloid A b,,I'. Thus the above lines give a
geometrical demonstration of the relation established analytically

in the paper which follows.
P2
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the intersections of these parallels with the parallels to AT
a sufficient number of points on the semi-ellipse.

The illustrative diagram has been specially constructed
for the use of those who may have occasion to employ the
method, and will be found sufficiently accurate for all ordi-
nary purposes. Before proceeding, however, to show how
the method is applied in special cases, I shall describe how
such a diagram should be constructed :—

First the semicircle ABA’ must be drawn, and the lines
AT, A'T’ perp. to AA’. Then CA’ must be divided into
ten equal parts (and when the figure is large, a plotting scale
for hundredths, &c., should be drawn). Next A'T and AT
must be each taken equal to 3:1416 where CA’ is the unit.
Join TT'. Now AT and A’'T’ represent; as time-ordinates,
the half-period of any body moving in an ellipse having A A’
as major axis. Each must now be divided into the same
number of equal parts, and it is convenient to have eighteen
such parts. (So that in the illustrative case of our Earth,
three divisions represent a month.) Next the semicircle
ABA’ must be divided into eighteen equal parts. Through
the points of division on the semicircle, parallels to AT and
A’'T’ are to be drawn,* and the points of division along AT and
A'T’ are to be joined by parallels to AA’and TT'. Then the
curve A b T, the ‘ companion to the cycloid,’ runs through
the points of intersection of the first parallel to AT and the
first to AA’, the second parallel to AT and the second to
AA’, the third parallel to these lines, the fourth, and so on,
‘We have now only to take b b, equal to CB; q, p, equal to
M, P,; q,psequal to My, P, ; and so on, to obtain the re-
quired points on the cycloid A b, T'; and the equidivision

* Practically it is convenient to draw another semicircle on TT,

divide its circumference into eighteen parts, and join the correspond-
ing points of division on the two semicircles.



GRAPHICAL USE OF CYCLOIDAL CURVES. 213

of all such lines as bb,g, q, p|, qo p; (into ten parts in the
illustrative diagram) gives us the required points on the
intermediate curves.

Next let us take some instances of the application of the
diagram,

I. Suppose we wish to divide a semi-ellipse of given
eccentricity into any given number of parts traversed in
equal times, and let the eccentricity be §, and 18 the given
number of parts * :—

Then 8, is the centre of force; AB,A' the semi-ellipse ;
and Ab; T the time-curve. The dots along A b;T' give
the intersection of the time-curve with the time-ordinates
parallel to AA’; and therefore parallels to AT, though these
dots (not drawn in the figure, to avoid confusion) indi-
cate by their intersection with the semi-ellipse AB;A, the
points of division required.

I1. Suppose.we wish to know how far the November
meteors travel from perihelion in the course of one quarter
of their period, that is, one half the time from perihelion to
aphelion :—

The curve ABgA, is almost exactly of the same eccen-
tricity as the orbit of the November meteors. To avoid
additional lines and curves, let us take it as exactly right.
Then A b, T’ is the time-curve. For the quarter period
from the perihelion (or aphelion), we take of course the
middle vertical line, which intersects Ab,T in ¢, This
point by a coincidence is almost exactly on a parallel to AT,
and this parallel meets the semi-ellipse AByA’ in n, the re-
quired point on the orbit. In other words, the journey of
the November meteors from A to n occupies the same time
as their journey from n to A’, 8, being the position of the

* This selection is made solely to avoid the addition of lines and
curves not necessary to the completeness of the diagram.
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Sun, and the Earth’s distarce from the Sun approximately
equal to A'S,.

II1. Suppose we require, in like manner, the quarter-
peerion] positions in different orbits, all having AA  as major
nxis, but their eentres of foree variously placed along CA .
We gt any number of points; n, 1, k, precisely as n was
obtained ; m, of course, is on the purallel through C,,; and
we obtain, in fine, the curve m nlk B, which rerembles, hut
is not, an elliptic quadrant.

I'V. Suppose we require to know in what time the half
orbit from aphelion or perihelion is described in orbits of
different eceentricity, The required information is manifestly
indienten] by the intersection of CC’ with the time-curves, in
b, by, by, &e.  Thus in the circle, AB is described in the time
represented by Ch; in the semi-ellipie AB; A, AB, -is
described in the time represented by Ch,, and B3A’ in the
time represented by by(Y’; and so on for the other semi-
ellipses.

V. Suppose we require to determine approximately the
¢ equation of the centre’ for a body when at any given point
of its orbit of known eccentricity. Take the case of Mars,
whose eccentricity being nearly Y, his path is fairly repre-
sented by the ellipse next within ABA’, and his time-curve
by Ab; T". Then the equation of the centre, when Mars is
at his mean distance, is represented by bb,; when Mars is
at P, (not on the circle, but on the curve just within), the
equation of his centre is represented by q, r,; and so on.

Many other uses and interpretations of the time-curves
will suggest themselves readily to those who are likely to use
the dingram.

After the above method had been briefly described, Pro-
fessor Adawms, who was in the chair, mentioned a method
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(devised by himself many years since) by which the same
results can be obtained from the ¢ companion to the cycloid’
or ‘curve of sines” Professor Adams’s method may be thus
exhibited :—Let a b @’ be the y-positive half of one wave of
the ¢ curve of sines,’ 5C its diameter ; A bA’, a semicircle with
radius 5C. Let ABA/, fig. 146, be a half-ellipse having its
focus at 8. Then the time in any arc AP of this ellipse may
be thus determined. Join & 8, produce the ordinate PM to Q
on circle ABA’, draw Q ¢ parallel to a a’, and ¢ p parallel to
58 ; then ap represents the time in traversing AP, where
@ a' represents the half period. Andwicev-rsd, if we require

Fia. 146.

the position of the moving body after any time from the apse,
say aphelion, then take « p to represent the time, where a a’
is the half period, ACA’ the major axis, 8 the centre of force;
join 8, draw p ¢ parallel to 83, ¢ Q parallel to AA’, and
QP perpendicular to AA' gives P the point required. '
It will be manifest that in principle my method is iden-
tical with this, for in my figure the time is represented by
M p, where M ¢ (fig. 145) is equal to the arc AQ, and ¢ p is
equal to QM reduced in the ratio of CS to CA. Now a p in
fig. 146 is the projection of @ ¢ and ¢ p ; and the projection of
a g is equal to the arc AQ (see p. 200), while the projection
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of ¢p is equal to QM reduced in the proportion of C8
to AC.

Although Professor Adams’s construction has the advan-
tage of requiring but a single curve, yet for the particular
purpose described my construction is more convenient. We
see from the fig. 146 that to give the relation bhetween. the
times and positions in the case of the ellipse A p A’, we
require a series of parallels to 5C, aa’ and 58; and the
parallels to 58S only serve for this one case. Therefore we
could not construct a reference figure for many cases, without
having many series of parallels and a very confusing result.
In my construction we have, instead, many curves, but a
result which is not confusing because each curve is distinct
from the rest. :

GrapHICAL Ust oF THE CycrLoip To MEASURE TEE MoTioN
OF MATTER PROJECTED FROM THE SUN.
[ From the Monthly Notices of the Astronomical Society for
Decembor 1871.]

‘Whatever opinion we may form as to the way in which
tae matter of certain solar prominences is propelled from
beneath the photosphere, there can be little question that
such propulsion really takes place. It seems clear indeed
that some prominences, more especially those seen in the
Sun’s polar and equatorial regions, are formed—or rather
make their appearance—in the upper regions of the solar
atmosphere, and even assume the appearance of eruption-
prominences by an extension downwards, somewhat as a
waterspout simulates the appearance of an uprushing column
of water though really formed by a descending movement.
But it is certain that other prominences are really phenomena
of eruption.
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In the case of any matter thus erupted, we shall clearly
obtain an inferior limit for the value of the initial velocity
of outrush, if we assume that the apparent height reached by
the matter is the real limit of its upward motion (that is,
that there is no foreshortening), and that the solar atmosphere
exercises no appreciable influence in retarding the motion.
The latter supposition is, however, wholly untenable under
the circumstances, while the former must in nearly all cases
be erroneous ; and I only make these suppositions in order
to simplify the subject, noting that their effect is to reduce
the estimated velocity of outrush to its lowest limiting
value.

We are to deal then, for the present, with the case of
matter flung vertically upwards from the sun’s surface and
subject only to the influence of solar gravity; I propose to
congider the time of flight between certain observed levels,
not the mere vertical distance attained by the erupted
matter; and (as I wish to deal with cases where a great
distance from the sun has been attained) it will be necessary
to take into account the different actions of the solar gravity
at different distances. Zéllner, in dealing with prominences
of moderate height, has regarded the solar gravity as con-
stant ; but this is evidently not admissible when we come to
deal with matter hurled to a height of 200,000 miles, since
at that height solar gravity is reduced to less than one-half
the value it has at the surface of the sun.

It is easy to obtain the required formula ; and though it
is doubtless contained in all treatises on Dynamics, it will
be as well to run through the work in this place. In re-
ducing the formula I have noticed a neat geometrical illus-
tration (and a partial proof) which I do not remember to
have seen in that form in any book. It not only presents
in a striking manner the varying rate at which a body
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falls towards a centre attracting according to the law of
nature, but it supplies a means whereby the time of flight
between any given distances may be readily obtained from a
simple construction.

Let C, fig. 147, be the centre of a globe ABD, of radius
R, and attracting according to the law of nature ; let g be the
accelerating force of gravity at the surface of the globe. Then
the attraction exerted at a unit of distance, if the whole
mass of the globe were collected at a point, would be g R32,

Fie. 147.

: w )
L

Illustrating the motion of a body descending from rest towards a globe
attracting accerding to the law of nature.

Let a particle falling from rest at E reach the point P i
time £; and let AE = H, and CP =«. Then the equation
of motion is

Az gR?
=T
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giving

o 2
(d—a:) =”’=2qR +C;

so that, since the particle starts from rest at a distance
(R + H) from C, we have

29 Re
R+H

For convenience write D for (R + H); then we have

d
£ mmnrr (o)
29R? /D —=x
= (329). (1)
R\/Zq dt x
D dz™ VD<o
Integrating, we have

R\/‘g t= vD ac—w“‘—-];cos" (D 2w) C.

But when ¢ =0, x=D; so that C—DE

0= + C.

Thus

hence we have

R/\/%(—]t=~/Dm’—a"+]2) cos™! (M_ » (9)
(where D is equal to the radius of the globe added to the
height from which the particle is let fall).

Equation (1) gives the velocity acquired in falling (from
rest) from a height H to a distance 2 from the centre, and
(2) gives the.time of falling to that distance. The geo-
metrical illustration to which I have referred, relates to
tke deduction of (2) from (1) ‘We see from (1) that at the
point P
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2 _ 2y R?2 /D — m)
v —_— ]
b x

Bisect CE in F, and describe the semicircle CDE ; then if
DE is a tangent to the circle DAB, and if DM is drawn
perpendicular to CE,

_(CD)? _R!
CM="0E =D’
s0 that
v= «/ a4 . (_/M \/P_]!!. (u)

But if close by G, either on the tangent GH or on the are
GE, we take G’ and draw G'P’ perpendicular to CE, and
G n perpendicular to GP, we have

GG'+Gn _GF+FP _ COP
PP - GP — ~CP.PE
L
=7/ b’

Hence, from (u),

so0 that
the vel. | . [ velocity acquired in falling through
at P * | space CM, under const. accel. force g

.. [ elem. space) , sum of elementary
Y PP } * | spaces GG and Gn

Therefore the falling particle traverses the space PP’ in the
same time that a particle travelling with the velocity acquired
in falling through space CM under constant accelerating
force y, would traverse the space (GG’ + G=). It follows
that the time in falling from E to P is the same as would be
occupied by a particle in traversing (arc EG + GP) with the
velocity acquired in falling through the space CM under a
constant accelerating force g. In other words,




GRAPHICAL USE OF CYCLOIDAL CURVES. 221

t=PG + arc GE |
vV2g.CM
or

R\/%g.m VPE. PO + CF arc GE

= V(D —-2x)= +§cos'l (2:1:]-)- D),

as before,

The relation here considered affords a very convenient
construction for determining the time of descent in any given
case. For, if PG be produced to Q so that GQ = arc GE,
Q lies on a semi-cycloid KQC, having CE as diameter ; and
the relative time of flight from E to any point in AE is at
once indicated by drawing thretugh the point an ordinate
parallel to CK. The actual time of flight in any given ecase
can also be readily indicated. For let T be the time in
which LC would be described with the velocity acquired in
falling through a distance equal to LC under accelerating
force g, and on LM describe the semicircle L M ; then
clearly Cm (= +/CL . CM) will be the space described in
time T with the velocity acquired in falling through the
space CM under accelerating force g ; and we have only to
divide Cm into parts corresponding to the known time-
interval T, and to measure off distances equal to these parts
on PQ to find the time of traversing PQ with this uniform
velocity, .., the time in which the particle falls from E to P.
The division in the figure illustrates such measurements in
the case of the sun, the value of T being taken as 184 minutes.

Moreover it is not necessary to construct a cycloid for
each case. One carefully constructed cycloid will serve for
all cases, the radius CA being made the geometrical variable.

As an instance of this method of construction, I will take
Professor Young’s remiarkable observation of a solar out-
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burst, premising that I only give the construction as an illus.
tration, and that a proper calculation follows.

Fin. 148.

12" 55=.

Fie. 149.

1h.5m,
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"~ On September 7, 1871, Professor Young saw wisps of
hydrogen carried in ten minutes from a height of 100,000 miles
to a height exceeding 200,000 miles from the sun’s surface.
A full account of his observations is given in the second and

Fre. 150.

1n.40m

third editions of my treatise on thesun. Figs. 148, 149, 150,
and 151, with the times noted, indicate the progress of the
changes. T assumed in what follows that there was no fore-

Fie. 151.

159",
shortening. The height, 100,000 miles (upper part of cloud

in fig. 148), was determined by estimation ; but the ultimate
height reached by the hydrogen wisps (that is, the elevation
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at which they vanished as by a gradual dissolution) results
from the mean of three carefully executed and closely ac-
cordant measures. This mean was 7 49", corresponding to
a height of 210,000 miles (highest filaments in fig. 149). We
may safely take 100,000 miles as the vertical range actually
traversed, and 200,000 miles a8 the extreme limit attained.
We need not inquire whether the hydrogen wisps were
themselves projected from the photosphere,—most probably
they were not,—but if not, yet beyond question there was
propelled from the sun some matter which by its own motion
caused the hydrogen to traverse the above-mentioned range
in the time named, or caused the hydrogen already at those
heights to glow with intense lustre. We shall be under-
rating the velocity of expulsion, in regarding this matter
as something solid propelled through a non-resisting me-
dium, and attaining an extreme range of 200,000 miles,
What follows will show whether this supposition is ad.
missible.

Now g for the sun, with a mile as the unit of length and
a second for the unit of time, is 0°169, and R for the sun is
425,000. Thus the velocity acquired in traversing R under
uniform force g,

= +v2¢.R
= +/338 x 425
= 379, very nearly.
(This is also the velocity acquired under the sun’s actual
attraction by a body moving from an infinite distance to the
sun’s surface.) )
And a distance 425,000 would be traversed with this
velocity in 18™ 40® (= T).
Let KQE, fig. 1562, be our semi-cycloid (available for
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many successive constructions if these be only pencilled), and
CDE half the generating circle.

Then the following is our construction :—Divide EC into
6} equal portions, and let EP, PA be two of these parts, sp
that EA represents 200,000 miles and CA 425,000 miles
(the sun’s radius). Describe the semicircle ADL about the
centre C and draw DM perpendicular to EC ; describe the half
circle M m L. Then m C represents T where the ordinate PQ
represents the time of falling from E to P.

Fie. 152,

{ 4

a A

Py m\
if

Illustrating the construction for determining time of descent of a particle from
rest towards a globe attracting aocording to the law of nature.

T =18 50™, and PQ (carefully measured)is found to
correspond to about twenty-six minutes.

Thus a body propelled upwards from A to E would
traverse the distance PE in twenty-six minutes. But the
hydrogen wisps watched by Professor Young traversed the
distance represented by PE in ten minutes. Hence either
E was not the true limit of their upward motion, or they

Q
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were retarded by the resistance of the solar atmosphere.
Of course if their actual flight was to any extent fore-
shortened, we should only the more obviously be forced to
adopt one or other of these conclusions.

But now let us suppose that the former is the correct
solution ; and let us inquire what change in the estimated
limit of the uprush will give ten minutes as the time of
moving (without resistance) from a height of 100,000 to a
height of 200,000 miles. Here we shall find the advantage

"Fio. 153.

L [ L

10}(

) ';gh R

Tlinstrating the construotion for determining time of descent between given levels
when a body descends from rest at a given height towards a globe attracting accord-
ing to the law of nature.

of the constructive method ; for to test the matter by calcu-
lation would be a long process, whereas each construction
can be completed in a few minutes.

Let us try 375,000 miles as the vertical range. This
gives CE = 800,000 miles, and our construction assumes the
appearance shown in fig. 153. We have AC=425,000 miles;
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AP=PP' =100,000 miles ; and Q / or (PQ—P'Q’) to repre-
sent the time of flight from P to P'.

The semicircles ADL, Mm L, give us m C to represent
T or 18™ 508 ; and QL carefully measured is found to corre-
spond to rather less than ten minutes. It is, however, near
enough for our purpose.

It appears, then, that if we set aside the probability, or
rather the certainty, that the sun’s atmosphere exerts a
retarding influence, we must infer that the matter projected
from the sun reached a height of 375,000 miles, or there-
abouts. This implies an initial velocity of about 265 miles
per second.* .

But it will be well to make an exact calculation,—not
that any very great nicety of calculation is really required,
but in order to illustrate the method to be employed in such
cases, as well as to confirm the accuracy of the above con-
structions.

In equation (2) put +v/2g R = 879; R = 425,000;
D =625,000; and x= 525,000; values corresponding to
Professor Young’s observations. It thus becomes—

’\/ g_g(m) t = +/(100,000){525,000)

+ 312,500 cos— (w),

625

* The value is of course deduced directly from (1), p. 219; but it
is worthy of notice that it can be deduced at once from fig. 163, by
drawing A a parallel to KC, and m f parallel to a E ; then C frepre-
sents the required velocity, CL representing 379 miles per second.
A similar construction will give the velocity at P, P, &c. Applied
to fig. 147, it gives C f to represent the velocity at A, C f' to represent
the velocity at P; m fand m f being parallel to a E and GE re-
spectively. Applied to the case dealt with in fig. 162, we get Cf't
represent the velocity at A, where E is the limit of flight: C /i
found to be rather more than § of CL; so that the velocity at A is
rather more than 210 miles per second.

Q2



228 GEOMETRY OF CYCLOIDS.

or
379 /17 .t = 250,000 ~21 + 1,662,500 cos™! (2;)

1562-7 ¢ = 1,145,100 4 1,285,800 = 2,430,900,
t = 1,556 = 25™ 56°.
This then is the time which would have been occupied in
the flight of matter from a height of 100,000 to a height of
200,000 miles, if the latter height had been the limit of
vertical propulsion in a non-resisting medium.

In order to deduce the time of flight ¢ between the same
levels, for the case where the total vertical range is 375,000
miles, we have, putting ¢, for the time of faZ to 200,000
miles above the sun’s surface, and ¢, for the time of fall to
100,000 miles, the equation,

425
800

(879) ¢, = +(175,000) (625,000)

1256 — 80
400,000) cos -1 { —== — 21
+ (400,000) cos ( 0 )’

425

5o (879) ta =  (275,000) (525,000)

1 (105 — 80
+ (400,000) cos~! (T)’

giving (since & — ¢, = ¢/)
425 (379) ¢ = 95,000 { v IT X 2T — vT X35}

800
b 9
~1 ~1
+ 400,000 { cos (16) co8 (16) }

27625 ¢/ = 49,250 + 111,816 = 161,066,
t' = 583e = 9m 43s,
This is very near to Professor Young’s ten minutes. I had

found that an extreme height of 400,000 miles gave 9m 24s
for the time of flight between vertical altitudes 100,000
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miles and 200,000 miles. It will be found that a height
of 360,000 miles gives 9™ 58, which is sufficiently near to
Professor Young's time.

Now to attain a height of 360,000 miles a projectile from
the sun’s surface must have an initial velocity

/360,000
-— A
= v29R. A/ 785000 = 379 '\/157

= 2567 miles per second.

The eruptive velocity, then, at the sun’s surface, cannot
possibly have been less than this. 'When we consider, how-
ever, that the observed uprushing matter was vaporous,
and not very greatly compressed (for otherwise the spectrum
of the hydrogen would have been continuous and the
spectroscope would have given no indications of the phe-
nomenon), we cannot but believe that the resisting action of
the solar atmosphere must have enormously reduced the
velocity of uprush before a height of 100,000 miles was
attained, as well as during the observed motion to the
height of 200,000 miles. Itwould be safer indeed to assume
that the initial velocity was a considerable multiple of the
above-mentioned velocity, than only in excess of it in some
moderate proportion. Those who are acquainted with the
action of our own atmosphere on the flight of cannon-balls
(whereby the range becomes a mere fraction of that due to
the velocity of propulsion), will be ready to admit that hy-
drogen rushing through 100,000 miles even of a rare atmo-
sphere, with a velocity so great as to leave a residue sufficient
to carry the hydrogen 100,000 miles in the next ten minutes,
must have been propelled from the sun’s surface with a
velocity many times exceeding 257 miles per second, the
result calculated for an unresisted projectile. Nor need we
wonder that the spectroscope supplies no evidence of such
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velocities, since if motions so rapid exist, others of all
degrees of rapidity down to such comparatively moderate
velocities as twenty or thirty miles per second also exist,
and the spectral lines of the hydrogen so moving wonld
be too greatly widened to be discerned.

Now the point to be specially noticed is, that supposing
matter more condensed than the upflung hydrogen to be
propelled from the sun during these eruptions, such matter
would retain a much larger proportion of the velocity origi-
nally imparted. Setting the velocity of outrush, in the case
we have been considering, at only twice the amount deduced
on the hypothesis of no resistance (and it is incredible that
the proportion can be so small), we have a velocity of pro-
Jjection of more than 500 miles per second ; and if the more
condensed erupted matter retained but that portion of its
velocity corresponding to three-fourths of this initial velocity
(which may fairly be admitted when we are supposing the
hydrogen to retain the portion corresponding to so much as
half of the initial velocity), then such more condensed
erupted matter would pass away from the sun’s rule never to
return.

The question may suggest itself, however, whether the
eruption witnessed by Professor Young might not have been
a wholly exceptional phenomenon, and so the inference
respecting the possible extrusion of matter from the sun’s
globe be admissible only as relating to occasions few and
far between. On this point I would remark, in the first
place, that an eruption very much less noteworthy would
fairly authorise the inference that matter had been ejected
from the sun. I can scarcely conceive that the eruptions
witnessed quite frequently by Respighi, S8ecchi, and Young
—such eruptions as suffice to carry hydrogen 80,000 or
100,000 miles from the sun’s surface—can be accounted for
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without admitting a velocity of outrush exceeding consider-
ably the 379 miles per second necessary for the actual rejec-
tion of matter from the sun. But apart from this it should
be remembered that we only see those prominences which
happen to lie round the rim of the sun’s visible disk, and
-that thus many mighty eruptions must escape our notice
even though we could keep a continual watch upon the
whole circle of the sierra and prominences (which unfortu-
nately is very far from being the case).

It is worthy of notice that the great outrush witnessed
by Professor Young was not accompanied by any marked
signs of magnetic disturbance. Five hours later, however, a
magnetic storm began suddenly, which lasted for more than
a day; and on the evening of September 7, there was a dis-
play of aurora borealis. Whether the occurrence of these
signs of magmetic disturbance was associated with the
appearance (on the visible half of the sun) of the great spot
which was approaching or crossing the eastern lLimb at the
time of Young’s observation, cannot at present be deter-

I would remark, however, that so far as is yet kmown
the disturbance of terrestrial magmetism by solar influences
would appear to depend on the condition of the photosphere,
and therefore to be only associated with the occurrence of
great eruptions in so far as these affect the condition of the
photosphere. In this case an eruption occurring close by the
limb could not be expected to exercise any great influence on
the earth’s magnetism ; and if the scene of the eruption were
‘beyond the limb, however slightly, we could not expect any
magnetic disturbance at all, though the observed phenomena
of eruption might be extremely magnificent.

In this connection I venture to quote from a letter
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addressed to me by Sir J. Herschel in March 1871 (a few
weeks only before his lamented decease). The letter bears
throughout on the subject of this paper, and therefore I
quote more than relates to the association between' terrestrial
magnetism and disturbances of the solar photosphere.

After referring to Mr. Brothers’ photograph of the corona
(remarking that ¢ the corona is certainly extra-atmospheric
and w/tra-lunar’), Sir John Herschel proceeds thus :—

‘I can very well conceive great outbursts of vaporous
matter from below the photosphere, and can admit at least
the possibility of such vapour being tossed up to very great
heights; but I am hardly yet exalted to such a point as to
conceive a positive ejection of erupted particles with a
velocity of two or three hundred miles per second. But
now the great question of all arises: what s the photo-
sphere? what are those intensely radiant things—scales,
flakes, or whatever else they be—which really do give out
all (or at least 2% ths of) the total light and heat of the
sun ? and if the prominences, &c., be eruptive, why does not
the eruptive force scatter upwards and outwards this lu-
minous matter? . . . Through the kindness of the Kew
observers I have had heliographs of the two great outburst-
ing spots which I think I mentioned to you as having been
non-existent on the 9th, and in full development on the 10th,
both [being] large and conspicuous, and including an area of
disturbance at least 2’ (54,000 miles) across. They were both
nearly absorbed, or in rapid process of absorption, on the
11th. In my own mind I had set it down as pretty certain
that the outbreak must have taken place wery suddenly at
somewhere about the intervening midnight. Well, now !
The magnet's declination curves at Kew have been sent me,
and, lo! while they had been going on as smoothly as
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possible on the 6th, Tth, 8th, and 9th, and up to 11} p.M. on
the latter day (9th), suddenly a great downward jerk in the
curve, forming a gap as far as 3} A.M. on the 10th. Then
comparative tranquillity till 11 A.m., and then (corresponding
to the re-absorption of the spots) a furious and convulsive
state of disturbance extending over the 11th and the greater
part of the 12th. I wonder whether anything was shot out
of those holes on that occasion! and, if so, what is gomg on
in the inside of the sun?’
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EXAMPLES.

All the examples which have no name appended to them are
original, except four or five familiar ones (as 125, 126, &c.), the
authors of which are not known.

1. A chord of a cycloid parallel to the base is equal in
length to the perimeter of the uppermost of the two seg-
ments into which the chord divides the generating circle.

2. A’PB' is the generating circle through P on the cy-
cloidal arc APD; A’B’ diametral ; and equal arcs P ¢ and
P ¢’ are taken on A’'PB’. Show that straight lines drawn
from ¢ and ¢’, parallel to the base, to meet APD, are equal.

3. AQB s a semicircle on diameter AB; and from Q, QL is
drawn perp. to AB, and produced to P, so that QP = arc
AQ. Show that the locus of P is a cycloid having a cusp at
A, and AB as secondary axis,

4. If B'P (fig. 4, p. 8), the normal at P, be produced to
meet AA’ produced, in G, then PB’. PG = A'P2, ‘

5. If the tangent A'P (fig. 4, p. 8), produced, meet the
tangent at D in T, show that A'T : A B :: arc PB' : PB.

6. Show that the rectangle under PG (fig. 4, p. 8) and
the diameter of curvature at P = (arc AP)3.

. 7. Show that the chord in which the tangent at P (fig. 4,
p. 8) intersects the circle on B'G as diameter, is equal to the
arc AP.

8. PC'p is the tracing diameter of P on the cycloidal are
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D'APD. If p P, parallel to the base, meet the arc D'A
‘in P, show that the timgents and normals at P and P’ form
a rectangle.
9. An equilateral triangle AQC is described on AC
(fig. 4, p. 8) as side ; show that QP, parallel to the base of the
cycloid, bisects the arc APD in P.
10. If through C, CP be drawn parallel to the base, to
meet the cycloid in P, show that (arc AD)? = 2 (arc AP)2
, 11. If there are two cycloids APD and AP"D placed as
in fig. 3, p. 6, and the straight line drawn from any point P
in one to a point Q in the other, P and Q lying on different
sides of C ¢, is equal to the diameter of the generating circle,
show that the circle on PQ as diameter touches BD and AE.
12. When the angle BAQ (fig. 4, p. 8) is equal to two
thirds of a right angle, then in the limit when P’ moves up
to P,
=2MN,and ¢P' =2ng=21n.
13. When the angle BAQ = one-third of a right angle,
then in the limit :
PP =¢qP =2ng=4%In
14. In fig. 3, p. 6, if arc AQB intersect arc AP’ D in
R, show that
area AQRP" = area BRD.

15. APD, AP'D are two equal semi-cycloids placed as in
fig. 8, p. 17 ; show that every generating circle A’PB’ divides
the area APDP into three parts, which are equal each to each
to the three parts into which the area of the circle A’PB’ is
divided by the arcs APD, AP'D.

16. In the same case, if two generating circles P’RA’PB’
and prapbd cut APD in R, P and 7, p, respectively, and
AP'D in P/, p/, show that ‘

area P'R rp'= difference of areas RA'P, ra p.
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17. In fig. 5, p. 10, Area RD ¢ = area AQC'T.
18. In fig. 11, p. 22,
Area AQB p”—area E p”’ D = } generating circle.
19. If in fig. 5, p. 10, RJ is drawn perp. to BD, and a
quadrant AIC about T as centre, show that

area RJD = area AQC'IL.

20.' If CQP parallel to base BD cut the central genera-
ting circle in Q and meet the cycloid in P,show that the area
AQP is equal to the triangle ABQ.

21. A semi-cycloid having BA as axis, B as vertex, cuts
the semi-cycloid APD (A vertex, AB axis,and D cusp) in P,
and AQB is the central generating circle, Q lying on the
same side of AB as P; show that the area AQBP is equal to
the square inscribed in the circle AQB.

22. The normal at any point of a cycloidal arc divides
the area of a generating circle through the point, and the area
of the cycloid, in the same ratio.

23. In Example 20, show that

(arc AP)? = } (arc APD)2

24. If a cycloidal arc DAD' is divided into any two parts

in P, and PB’ is the normal at P (B’ on the base), show that

arc DP . arc PD'= 4 (PB/)2.

25. D is the cusp of a cycloid APD, C’ the centre of the
tracing circle PKB’ through P. If DC' cut the tracing
circle PKB’ in K, and DP =2 arc PK, show that DP
touches the tracing circle at P.

26. If APD is a semi-cycloid, having axis AB and ba.se
BD ; AP'D the quadrant of an ellipse having semi-axes AB,
BD; and AP"D the arc of a parabola, having AB as axis,
show that '

area APDP : area AP'DB ; area AP'DB;.:9:3x:8.
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27. With the same construction, the radii of curvature of -
the three curves at A are in the ratio 16 : 272 ; =3,

28. On the generating circle AQB the arc AQ =4 cir-
cumference is taken, and through Q a straight line. parallel
to the base is drawn, cutting the cycloid in the point P ;
show that the radius of curvature at P is equal to the
axis AB.

29. The axis AB of a cycloid APD is divided into four
equal parts in the points D, C, and E, through which straight
lines are drawn parallel to the base, meeting the cycloid in the
points P, P,, and Py; if the radii of curvature at A, P, P,,
and Py, are respectively equal to p;, pg, p3, and p,, show that

P12:P22:P32:P42::4:3:2:1-

30. OI (fig. 14, p. 27) is produced to a point J, such that
IJ =2 OK, and on OJ as base a cycloid is described ; show
that radius of curvature at vertex of this cycloid = LG'.

31. If a cycloid roll on the tangent at the vertex, the
locus of the centre of curvature at the point of contact is a
semicircle of radius 4 R. ’

32. If a cycloidal arc be regarded as made up of a great
number of very small straight rods jointed at their extremities,
and each such rod has its normal (terminated on the base of
the cycloid) rigidly attached to it, show that if the arc be
drawn into a straight line, the extremities of the normals
will lie in a semi-ellipse, whose major axis = 8 R, and minor
axis = 4 R.

33. PB’ and P'B” are the normals at two points P, P/,
close together on & cycloidal arc, and PQ parallel to the base
BD' meets the central generating circle in Q ; show that if
PP’ is of given length, B'B” varies inversely as the chord
BQ.

34. From different points of a cycloidal arc, whose axis is
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vertical, particles are let fall down the normals through those
points ; show that they will reach the base simultaneously in

time 2\/ .R_.
g .
If they still continue to fall along the normals pro-
duced, they will reach the evolute simultaneously in time

2 R
2 —
V5
" 35. If the distance of P on semi-cycloidal arc APD (fig.
10, p. 21) from base BD = § AB, show that
3 moment of PD about AE = 14 moment of AC about AE.

36. In same case, if PM parallel to BD meet ABin M,
show that
moment of PD ahout AE = § (AB)} [(AB)! —(AM)! ].
37. Show that the moment of arc AP (fig. 10, p. 21)
about AB

= 2 (NQ+arc AQ) AQ—% ABt (ABt —BM!).

38. If equal rolling circles on the same fixed circle
trace out an epicycloid and hypocycloid having coincident
cusps, the points of contact of the rolling circles with the
fixed circles coinciding throughout the motion, show that
the tangents through the simultaneous positions of the tracing
point intersect on the simultaneous common tangent to the -
three circles.

" 39. A tangent at a point P on an epicycloidal arc APD is
parallel to AB the axis, and a circular arc PQ about O as
centre intersects the central generating circle in Q; show
that

Arc AQ:arcBQ::F:2R.

40. Two tangents P'T, PT to the same epicycloidal are
D’P’APD intersect in T at right angles, and through P’ and
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P circular ares P'Q’ and PQ are drawn around Q as centre
to meet the central generating circle in Q and Q, neither arc
cutting this circle ; show that

arc Q' AQ : a semicircle :: F : F 4+ 2R.

41. If the rolling circle by which an epicycloid is traced
out travel uniformly round the fixed circle, the angular ve-
locity of the point of contact about centre of fixed circle being
w, show that the directions of the normal of the tangent also
change uniformly with angular velocity F—;;—Rw.

42. On the same assumption, the direction of the tracing
radius changes uniformly with angular velocity F ; R w.

43. If-the rolling circle by which a hypocycloid is traced
out travel uniformly round the fixed circle, the angular
velocity of the point of contact about centre of fixed circle
being w, show that the direction of the normal and of the
tangent also change uniformly with angular velocity
F—-2R

2 R W,
44. On the same assumption the direction of the tracing

radius changes uniformly with angular velocity F_R

45. A is the vertex of a hypocycloidal arc APDP/, D the
cusp, P’ a point on the next arc; and the tangent at P’ is
parallel to the axis AB. If a circular arc P'Q around O as

centre intersect the remoter half of the central generating
circle in Q, show that

Arc ABQ:arcBQ::F:2R.

46. Two tangents P'T, PT to the same hypocycloidal arc
D'P’APD, the base D'D less than a quadrant, intersect in T
at right angles ; and through P’ and P circular ares P'Q’ and.

W.
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PQ are drawn around O as centre to meet (without cutting)
the central generating circle in Q' and Q ; show that

Arc Q'AQ : a semicircle ;: F : F-2 R.

47. AQ, QB are quadrants of the central gonerating
circle of an epicycloid or a hypocycloid, and the circular arc
QB about O as centre meets APD in P ; show that

Area APQ : triangleABQ :: CO : BO.

48. In last example; show that (arc AP)? = } (arc APD)3,

49. At any point B’ in the base of an epicycloid DAD/
a tangent PB'P’ is drawn to the fixed circle, meeting the
epicycloid in P and P ; show that

PB’ < arc DB/, and P'B’ < arc D'B.

50. With the same construction, show that PB’P’ has its
greatest value when B’ is at B, the foot of the axis AB.

51. At P, a point on the epicycloid DAD', a tangent
PKY is drawn cutting the fixed circle in K and K’, and the
normal PB'd’ cutting the fixed circle in B’ and &’ (B’ on the
base DBD') ; show that

PK.PK':(PB)?®::F+R:R:: (PV)’: PK.PK'

52. With the same construction if OM be drawn perp.

to PKP’, show that
OM:PB:PV::F+2R:2R:2(F+ R).

53. If tangent at P to epicycloid DAD’ touches the
fixed circle, and PB’b’ the normal at P-meets the fixed circle
in B’ and &' (B’ on the base DBD’), show that
PB' (F +2R)=2R?;and P&'(F + 2R)=2R (F + R).

54, If tangent at P to epicycloid DATD’ touches the fixed
circle and cuts the rolling circle in A’, then
(APP:(2R)y:: (F+R)(F+3R):(F+ 2R)?
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= 55. In figs. 21 and 22 (pp 44, 45) the points P, B', b, lie
in a straight line.

56. In figs. 21 and 22, the tangent to DP at P cuts
b0 ¢ produced in a point a such that ba =2b¢.

57. At D the cusp of an epicycloid D'AD (fig. 19, fron-
tispiece) a tangent D ¢ to the fixed circle DBD’ meets D’AD
in #, and from ¢ another- tangentst K is drawn meeting the
fixed circle in K ; show that D¢ is always less than the arc
DBK if the radius of the rollmg circle is finite. ' .
" 58. ACBis the axis of an epicycloid DAD'; D, D’ its
cusps ; CQ, Og radii.of central generating circle and fixed °
circle respectively, perp. to ABO and on same side of it.
If C ¢ cut Q g parallel to CO in K, and a straight line d K d’
through K parallel to O g is the genemting_,base of a prolate
cycloid having AQB as central generating circle, show that
the area between the epicycloid DAD’ and its base DD’ is
equal to the area between the prolate cycloid d A d' and its
base d d'. (

59. ACB is the axis of a hypocycloid DAD'; D, D’ its
cusps; CQ, Oq radii of central generating circle and fixed
circle perp. to BAO and on the same sidé of it. If Cq cut
Q ¢ paralle] to 00 in K, and a straight line d K d’ through
K parallel to O ¢ is the generating basis of a curtate cycloid
having AQB as ceutral generating circle, show that the
area between the hypocycloid DAD' and its base DD’ is
equal to.the area between the curtate cycloid d A d’ and its
base dd'. . .

60. The area between the cardioid and its base is equal
to five times the area of the fixed circle.

61. The area between the cardioid and a circle concentrie
with the fixed circle, touching the cardioid at the vertex, is
equal to three times the area of the fixed circle.

R
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62. The area of a circle touching the cardioid at the
vertex and concentric with the base, is divided into three
equal parts by the arc of the cardioid and the axis produced
to meet the circle.

63. Area A o P (fig. 39, p. 74) =3 R (6% + arc B3).

64. If 6 = £ BO b (fig. 39, p. 74)

Area PSA=R? (30 + 4 &in 6 + } sin 2 6).
65, The area between one arc of the tricuspid epicycloid
and the base is pqual to 3% times the area of the generating
circle. ‘

66. A complete focal chord is drawn to a cardioid.
Show that the lesser of the two segments into which the
focus divides the chord, is'equal to the portion intercepted
between the fixed circle and the tracing circle through the
extremity of the longer segment. '

67. A circle is described on the axial focal chord as
diameter, show that the segments of a complete focal chord
intercepted between the curve and this circle are equal.
(Purkiss.)

68. Lines perp. to focal radii vectores through their ex-
tremities have a circle for envelope. (Purkiss.)

69. From 8, the focus of cardioid, a perp. SQ to a com-

plete focal chord PSP, is drawn, meeting the fixed circle in
Q; show that SQ is a mean proportional between SP and
SP.
" 70. If SP be any focal radius vector of a cardioid whose
vertex is A, and the bisector of the angle PSA meet the
circle on SA in Q, SQ will be a mean proportional between
SP and SA. (Purkiss.)

71. PSP’ is a complete focal chord of a cardioid ; SQAQ’
a circle on SA as diameter; 8Q, SQ’ bisectors of the angles
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PSA, P'SA respectively ; and'S ¢ perp. to PSP’ mests circle
SQA in ¢ ; show that ’
SQ:8¢::8B: 8Q.

72. The pedal of a cardioid with respect to the focus is
also the locus of the vertex of a parabola which is confocal
with the cardioid and touches the circle on SA as diameter.
(Purkiss.)

The demonstration of this will be more easily effected by taking
for the cardioid the locus of w, fig. 39 (se¢ p. 76). From » draw
» y & parallel to & f, then 8 y, perp. to = g, gives y a point on the

pedal of this cardioid with respect to 8, It can readily be shown

that & parabola having 8 as focus and y as vertex touches the
circle B& S in &,

73. From a fixed point A any arc AQ is taken and bi-
sected in Q. If Pis a point on the chord QQ' such that
QP = 2 Q'P, show that the locus of P is a cardioid.

74. If rays diverge from a point on the circumference of
a circle and be reflected at the circumference, the caustic will
be a cardioid. (Coddington’s ‘Optics,’ or Parkinson’s ¢ Optics,’
Art. 72, which see.)

If S &, fig. 39, p. 74, represent path of a ray, to circle B S, re-
flected ray &g is in the line P& g, normal to the caustic APS, and
therefore the envelope of the reflected rays is the evolute of the-
cardioid APS,or is a cardioid having its vertex at S, SO diametral
and linear dimensions one third those of APS. This, however, is
not a direct proof. The preceding proposition will be found to
supply a direct proof, Forif from A tworays proceed to neighbour- .
ing points Q, ¢, and thence respectively after reflection to neigh-
bouring points Q' and ¢',arc Q' ¢’ = 2 arc Qg ; and the point of in-
tersection of QQ’ and ¢ ¢' therefore lies on QQ’ (equal to AQ), at a
point ultimately equal to one-third of the distance QQ' from Q.

75. A series of parallel rays are incident on a reflecting
semicircular mirror and in the plane of the semicircle ; show
that the caustic curve is one half (from vertex to vertex) of

R 2
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a bicuspid epicycloid or nephroid. (Coddington’s ¢ Optics,’ or-
Parkinson’s ¢ Optics,” Art. 71, which see.)

76. A series of rays are incident on the concave mde
of a reflecting cycloidal mirror to whose axis they are
parallel and in whose plane they lie; show that the caustic
curve consists of two equal cycloids each havihg one half of*
the base of the cycloidal mirror for base, and the axis of this
larger cycloid as the tangent at their cusp of contact. k

77. The linear dimensions of the evolute of the bicuspid
epicycloid (or nephroid) are % those of the curve itself.

78. The area between one arc of the nephreid and the
base is equal to four times the generating circle.

79. The evolute of a nephroid is drawn, the evolute of
this evolute, the-evolute of this second evolute, and so-on
continually : show that the sum, of all the areas between .
all the evolute nephroids, and their respective base-circles,
are together equal to ome-third of the area between the
original nephroid and its base-circle. .

80. If in the epicycloid m R = nF, show that the linear
dimensions of the evolute are to those of the epicycloid as
m . m+ 2n.

81. If mR = nF, area between an arc of epicycloid and

gen. © = M ﬁxed@

82, If PB'0oQis the diameter of curvature at the point’
P of an epicycloid, o the centre of curvature, B'a point of the.
base, then :

" Area of epicycloid ¢ area of gen. ® :: QB : Bo.

83. If the arc of an epicycloid, from cusp to cusp = a,.
and m R = »n F, show that a + arc of evolute-from cusp to
cusp + arc of evolute’s evolute from cusp to cusp, and so on
ad infinitum,
’ o —(m+2n) e

2n
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84. If the area between an epicycloid and its base = A,
and m R =nF, show that A + area between an arc of the
evolute and its base + area between an arc of the evolute’
evolute and its base; and so on ad mﬁmtum,

(m + Zn)’A"'
=T En)

85. If in the hypocyloid m R = n F, show that the linear
‘dxmensxons of the evolute are to those of the hypocyclmd as
‘m : m—2n.

Interpret this result when R == -
86. If mR=nTF,area b‘et‘.;veen an arc of hypoéycloid
and its base =,?ﬂ__ gen. @ = (3_m—_2_1¢)_n_ ﬂxed@

87. f PB'oQ is the diameter of curva,ture at the point
P of a hypocycloid, o the centre of curva.ture, B a point on
the base,
QB : Bo{!3CF-2R : F.

88. If the arc of a hypocycloid from cusp to cusp=a, and
mR = nF, show that a + arc of hypocycloid of which the
given hypocycloid is the evolute + arc of hypocycloid of
which this hypocycloid is-the evolute, and so on ad infinitum,

m
=-——a.

2n

89. If the area between a hypocycloid and its base = A,
and m R =n F, show that A 4 the area between one arc of
the hypoeycloid of which the given hypocycloid is the evolute,
and ¢ts base + the area between one arc of the hypocycloid
of which this hypocycloxd is the evolute and its base, and
80 on ad infinitum,

_ miA
Y Y (Y
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. 90. D’AD is an arc of a tricuspid epicycloid, from cusp
to cusp, ACB the axis, AQB the central generating circle, G
its centre, OBCA diametral ; show that an angle may be tri-
sected by the following construction :—Let ACQ be the
angle to be trisected. Join QB, QO ; about O as centre
describe arc QP meeting D’AD in P (on AD): join PO;
make the angle OPB equal to the angle OQB, and towards
the same side, PB’ meeting the base D'BD in B’; and join
B'O. Then the angle BOB is equal to one-third of. the
angle ACQ. o

91. D’AD is an arc of a tricuspid hypocycloid from
cusp to cusp; ACB the axis; AQB the central generating

* circle, C its centre, OACB diametral. Show that an angle

may be trisected by the following construction. ILet ACQ
be the angle to be trisected. Join QB, QO; about O as
centre describe arc QP meeting D' AD in P (on AD); join
PO and make the angle OPB’ equal to the angle OQB, and
towards the same side, PB’ meeting the base D BD in B';

and join BO. Then the angle BOB' is equal to one-third of

the angle ACQ.

92. D'AD is an arc of an epicycloid from cusp to cusp ;
ACB the axis; AQB the central generating circle, C its
centre ; OBCA diametral. A radius CQ is drawn to AQB;
and BQ, OQ are joined. About O as centre the are QP is
drawn meeting D’AD in P (on AD); PO is joined, and the
angle OPB is made equal to the angle OQB and towards the
same side, PB’ meeting the base D'BD in B'. If OB’ is
joined, show that

angle BOB' = % .angle ACQ,

80 that, by means of a suitable epicycloid, an angle may be
divided in any required ratio.
93. D'AD is an arc of a hypocycloid from cusp to
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cusp; ACB the axis; AQP the central generating circle,
C its centre; OACB diametral. From C a radius CQis
drawn to AQB; and BQ, OQ are joined. About O as centre
the arc QP is drawn meeting D’AD in P (on AD); PO is
joined ; and the angle OPB’ is made equal to the angle
OQB, and towards the same side, PB’ meeting the base
D’BD in B. If OB’ is joined, show that

angle BOB' = %“ angle ACQ,

so that by means of a suitable hypocycloid an angle may be
divided in any required ratio,

94. If PC p is the tracing diameter at P on an epicycloid
or hypocycloid APD (vertex at A), o the centre of curvature
at P, show that o p produced meets the tangent at P ina
point T such that TP is equal to the arc AP.

95, If an epicycloid roll upon the tangent at the vertex,
show that the locus of the centre of curvature at the point
of contact is & semi-ellipse having semi-axes

F+R) 4R R’ F+R
78 JLRAL IR o)

96. If a hypocycloid roll upon the tangent at the vertex,
show that the locus of the centre of curvature at the point of
contact is a semi-ellipse havmg semi-axes
4R? 4R(F-R
(F IR and —(F——)

97. An arc DAD’ of the bicuspid epicycloid, or nephroid,
has its axis AB coincident in position with A 3, the axis of a
cycloid whose vertex is at A; but AB=%Abd. "If the
nephroid and the eycloid roll on T'AT, the common tangent
at A, in such sort that they simultaneously touch the same
point on T'T, show that the centre of curvature of the
mephroid at the point of contact will trace out the same
curve as the foot of normal to the cycloid at the point of
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contact (the foot of normal being understood to mean the
intersection of the normnal with the base).

98. If a quadricuspid hypocycloid (radius of fixed circle
F) is orthogonally projected on a plane through two opposite
cusps, in such sort that the distance 2 F between the other
two cusps is projected into distanee 2f, show that the pro-
jected curve is the evolute of an ellipse having axes equal to

Ff wd F/?
Fa_ f’ F‘ f’

99. Show that the are of the projected curve in 98, from
cusp to cusp, ) ' '
‘ _ P4 Ff+s2

=—Fi7

100. ACA’, BCB' are the major and minor axes of an
ellipse, C its centre; and o Ba' B’ is asimilar ellipse having
BCB 28 major axis; if the ellipse ABA’B’ is orthogonally.
projécfed into a circle, show that the evolute of @ Ba'B’ wil]
be projected into a quadncnspxd hypocyclmd and determine
its dimensions.

. 101. With the same construction, show (independently)
that the portion of the projection of any normal of a Ba B,
intercepted between the. projections of AA’ and BB/, is of
constant length. (This will be found to follow readily from
Propos. X. and XIV. of Drew’s ¢ Conics,’ chapter ii.)

. NoTe.—This propoesition, demonstrated geometrioally, combined
with what is shomwn at pp. 72, 13, affords a geometrioal .demon-
stration of the natwre of the evolute to the ellipse. See next
problem. i

102. Let ACA’, BCB be the major and minor axes of am
ellipse, 5 C % the orthogonal ‘projection of BCB on a plane
through ACA’, so situated that 54 : BB’ :: BB : AA.
‘From B draw BL perp. to AB to meet A’C in L; and about

v
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Cinthep'ane AbA , describe a circle with radius LA cutting
CA,CA,Cb,and C¥,in K, K/, k, and k , respectively. Draw
afour-pointed hypocycloid, having cusps at K, &', K/, and .
Then a plane perpendicular to the plane A b A'Y/, through
any tangent to the hypocycloid K &'K'k, will intersect, the
plane ABA'B’ in a normal to the ellipse ABA'B/, and a
right hypocyclcnda.l cylinder on K k'K'k as base, will inter-
sect ABA’B’ in the evolute of this ellipse.

103. Two.stra,ight lines intersect at right angles in a
plane perpendicular to the sun’s rays, one of the lines being
horizontal. If the extremities of a finite straight line slide
along the fixed straight lines, and the shadow of all three
lines be projected on a horizontal plane, show that the
envelope of the projection of the sliding line is the evolute of
an ellipse. Determine the position and dimensions of this
ellipse.

If the sun’s altitude is a, and the length of the shdmg line J,
then taking for axis of @ the shadow of the horizontal fixed line,
the equation to the envelope is a%+y? sin’a=1%; and the
equation to the involute ellipse is  @* cos* a +y* sin?acos a=1"

104. At P a point on the hypocycloid DPAD’ the tan-
gent KPK' is drawn, meeting the fixed circle in K and K/,
and the normal 5PB’ meeting the fixed circle in 4’ and B’
(B’ on the base DBD'); show that ,

KP.PK':(PB)2:: F-R:R:: (P¥V)?: KP. PK"

105. With the same construction, OM is drawn perp. to
KPK'’; show that ‘
OM :PB :PV::F=2R:2R:2(F—R)
106. If the tangent to the cardioid at P touches the fixed

circle, and cuts the rolling circle in A’, and the normal at
P cuts the fixed circle in B’ and ¥’; then



250 GEOMETRY OF CYCLOIDS.

=3 R; Py = Rad ap=22R
107. In the trochoid, if R %', the normal at p, meets the
generating base in B’, and the tangent at p meets the tangent
at vertex in T, a'd’ being diametral to tracing circle; show
that triangle TB'p’ is similar to triangle a'd'p.
108. With same construction
¢TBda'= £t bpB = ¢ Tpda.

109. In fig. 48, triangle Cb ¢’ == B-secbor bCq".
110, In fig. 48 p. 96, show that
Joop p’ rdr—2( “R)arc bNLg" 42— rect. N .

111. Show that the result obtained in the last example
agrees with that obtained in Prop. IX., Section III.

112. If in Q' ¢”, fig. 48, produced, a point X is taken such
that (CX)? = rect. a Ba C, and a circular arc XY (less than
semicirele) with C as centre and CX as radius cuts a b pro-
duced in Y, show that

loop p"' rd = 2 segment XY — rect. N n.

113. In fig. 48, p” « is drawn parallel to ¢'’b to meet the

base bd in y ; show that
area ydrp” :seg ¢"Lb::aB:aC.

114. From B (fig. 45, frontispiece) a straight line B ¢ ¢’
is drawn cutting the central tmcmg circle in ¢ and ¢/, and
straight lines ¢ p and ¢'p’ parallel to the base meet the arc
a d in p and p'; show that the tangent at p is parallel to the
tangent at p',

115. P and P’ are two points on an epitrochoid or hypo-
trochoid, C and C’ the corresponding positions of the centre
of generating circle, O the fixed centre, OA, OB the apo-
central and pericentral distances. If OP.OP'=0A . OB,

(r— R)
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show that the tangents at P and P’ make equal a.ngles with
OC and OC’ respectively,

116. A cycloid on base BD (fig. 45, frontispiece) has its
cusps at B and D ; show that it touches the prolate cycloid
' apd at a point of inflexion.

117. A series of prolate cycloids have the same line of
centres, their axes in the same straight line, and their bases
equal. Show that their envelope is a pair of arcs of a cycloid
having its hase equal to half the base of each prolate cycloid
of the system, and the line of their axes as a secondary axis.

118. If the normals at p and ¢, two points on a prolate
cycloid @ p g d, are parallel, and meet the generating base in
b and b respectively, then p and p’ being the radii of cur-
vature at p and ¢ respectively,

pio i (eB): (@),

119. If p is the radius of curvature at the point where a
curtate cycloid cuts the generating base, and p is a mean
proportional between the radii of curvature at the vertex
and at d on the base, show that p? = pur.

120. Show that that involute of the central gene-
rating circle of a cycloid which has its cusp at the vertex
passes through the cusps of the cycloid.

121. That involute of any generating circle of a eycloid,
which has its cusp at the tracing point, passes through the
cusps of the eycloid.

122. The sum of the two nearest arcs of the involute of
the circle, cut off by any tangent to the circle, is least when
the tangent touches the circle at the farther extremity of
the diameter through the cusp of the involute.

123. If the rolling straight line by which the involute of
a circle of radius / is traced out has rolled over an arc a from

the cusp, show that the arc traced out ='—ga’.
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124. If the rolling straight line by which a spiral of
Archimedes is traced out, has rolled over an arc a from first
position, when the extremity of perp. carried with it was
at the centre of the fixed circle (radius /), show that

a.rctmcedout='§{u V1 4+ a? + log (a + +1 +a2)}.

125. All involutes of circles are similar.

126. "All spirals of Archimedes are similar.

127. If a straight line carrying a perp. of length d roll on
a circle of radius f, and another straight line carrying a perp.
of length D (on same side with reference to centre of fixed
circle) roll on a circle of radius F, show that the curves
traced out by the extremities of these perps. will be similar
if P:piiF:/

128. In the spiral of Archimedes the subtangent is equal
to that arc of a circle whose radius is the radius vector,
which is subtended by the spiral angle. (Frost’s ¢ Newton ).

The subtangent is the portion of a perp. to radius vector,
through pole, intercepted between pole and tangent at extremity of
radius vector. What is required to be shown in this example is
that if p'p (fig. 72, p. 130), produced, meet B'O produced in Z, 0Z
is equal to the arc corresponding to DQB’ in a circle of radius O p.

129. Establish the following construction for determining
the centre of curvature at point p (fig. 72, p. 130) of a spiral
of Archimedes. Draw radius OB’ to fixed circle, perp. to
O p; join p B’ ; and draw OL perp. to p B. Then if B'L is
divided in. o 5o that ’ ;

Bo:oL::Bp:BIL,
o0 is the centre of curvature at p.

130. From this construction (established geometrically)
show that, taking the usual polar equation to the spiral of
Archimedes, viz.,, r = a 0,

qw

=al 4 )
- "’"‘2+

-
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131. A straight line turns uniformly in & plane round a
fixed point, while the foot of a perpendicular of length I
moves uniformly along the revolving line; show that the
other end of this perpendicular will trace out one of the -
spirals described at pp. 128, 129.

132. If the angular velocity in preceding problem 8w,

L

the linear velocity of the foot of perpendlcu]ar v,and l ="
. w

the perpendicular lying on the side towards which the revolv-
ing line is advancing, show that the other extremity of the
perpendicular will describe the involute of the circle. - ;

133. If DT, fig. 42, p. 82, rolls on the circle DQB of radius
a, and a point initially on DO and distant 4 from D is carried
with DT to trace out a spiral in the manner described at
- pp. 128, 129, show that the polar equation to the spiral, 0Q
being taken as initial line, and the rolling taking pla.ce in the
usual positive direction, is -

134. Show that the construction given in Exa.mple 129
for determining the centre of curvature at a point on the
spiral of Archimedes is applicable to all the spirals of Ex-.
amples 131 and 133. .

135. In the case of one of these spirals, putting the arc
over which the rolling line has passed from its initial
position = ¢, show that

_ (@pt1y)? :
Tale? 4 ab + b° . :
- 136. The locus of the foot of perpendicular from a point

on a cycloid upon the diametral of the generating circle
through the point is the companion to the cycloid.
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"137. From D, the cusp of an inverted cycloid, and P, &
point near D, two particles roll down the smooth are to the
vertex ; show that in the limit the path of either relatively
to the other is a semicircle.

138. A particle is projected with given velocity from the
vertex of a cycloid whose axis is vertical, and vertex upper-
most ; find where it will leave the curve, and the latus
rectum of ity future parabolic path.—(Tait and Steele’s
¢ Dynamics.’)

139. A particle falling from rest at a point in an in-
verted cycloid has its velocity suddenly annihilated when it
has passed over half its vertical height above the lowest
point ; then proceeds, again losing its velocity when half-
way down from its last position of no velocity, and so on

continually, Show that it will be at 2%1:11 of its original

height above the vertex after n times the time it would have
taken to fall to the vertex undisturbed.—(Tait and Steele’s
¢ Dynamics.”) '

140. If a curve of any form is rolling upon another
curve in the same plane, and p is a point on the curve

traced by any given point carried with the rolling curve and

in the same plane with it, & the point of contact of the fixed

and rolling curves, show that the following relation exists

between o}, p,, the radii of curvature of the fixed and rolling*
curves at b, and p; the radius of curvature of the- traced

curve at p (putting pb = n and the angle between pb and”
the normal of fixed curve at b = 6),

{n (p1 + pa) — p1 pa 008 O}ps = n?(py + py).

141. A tube of uniform cross section, small compared with
its length, is bent into the form of a cycloid, its open ends
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lying at the cusps, and this cycloid is placed with its axis
vertical and its vertex downwards. Equal quantities of
fluids of specific gravity o, and o, are poured in at the two
cusps, the quantity of each being such as would fill a length
‘@ of the tube (a being the length of the cycloid’s axis, so that
4a is the length of the tube). If the fluids do not mix and
the distance of the upper levels of the fluids from the vertex
(measured along the cycloidal arc) be z,, %, respectwely,
show that ’
4&:1(0' -|- 0y) = a(o, + 3 62),
and 4xy(0) + 03) = a(3 ey + a3).

142. If in problem 141 an equal quantity of a third fluid
of specific gravity o3 is poured in upon the free surface of
the second fluid (sp. gr. oy), and @), @;, are the respective
distances of the free surfaces of the first and third fluids
from the vertex (measured along the cyclmda.l a.rc), show
that

dai(r + 03 + 03) = “("1 +30 + 503)’

and 4&:2(0‘ + (£ + ﬂa) = a(5 (4] + 30’ + 03)-

Under what condition will either the first or third fluid run
over?

143. If » fluids are poured in, as in Ex. 141, the specific
gravities of 1st, 2nd, 3rd, &c., to the nth, being ), o,, oy,
&c., to o, respectively, the arcs occupied by the respective
fluids being #,, Z,, I3, . . . I,, and no fluid overflowing; and if
« is the distance of the free surface of the first fluid from the
vertex (messured along the cycloidal arc), show that

dx(orly + oy + agly + .. L+ ol) = a2 + ay(ly* + 210,)
+ o302+ 200+ 20.05) + . . .
+o, 024+ 200,+ 2004+ ...+ 2, L)
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Fx. 144. " F1a. 1564. Ex. 148. Fis. 158.
Ex. 145. Fia. 155. Ex. 149, Fie. 159.
Ex. 146, Fia. 156. Ex. 150. Fia. 160.
Ex. 147. Fe. 157, Ex. 151, Fuo. 161,

Spottisiwoode & Co., Printers, New-street Snuare, London,

.Interpret figs. 154161 in the way explained in pp. 191-193,
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