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Chapter IV.

HYPERBOLIC FUNCTIONS.

By James McMahon,

Assistant Professor of Mathematics in Cornell University.

Art. 1. Correspondence of Points on Conics.

To prepare the way for a general treatment of the hyper-

bolic functions a preliminary discussion is given on the relations

between hyperbolic sectors. The method adopted is such as

to apply at the same time to sectors of the ellipse, including

the circle; and the analogy of the hyperbolic and circular

functions will be obvious at every step, since the same set of

equations can be read in connection with either the hyperbola

or the ellipse.* It is convenient to begin with the theory of

correspondence of points on two central conics of like species,

i.e. either both ellipses or both hyperbolas.

To obtain a definition of corresponding points, let O
l
A

l ,

0,B
i
be conjugate radii of a central conic, and 0,A, , 0,B2

conjugate radii of any other central conic of the same species

;

let P
x , P2

be two points on the curves; and let their coordi-

nates referred to the respective pairs of conjugate directions

be {x
l , y x),

(x
t , y,); then, by analytic geometry,

* The hyperbolic functions are not so named on account of any analogy

with what are termed Elliptic Functions. " The elliptic integrals, and thence

the elliptic functions, derive their name from the early attempts of mathemati-

cians at the rectification of the ellipse. ... To a certain extent this is a

disadvantage; . . because we employ the name hyperbolic function to de-

note cosh «, sinh «, etc., by analogy with which the elliptic functions would be

merely the circular functions cos <p, sin 0, etc. . .
" (Greenhill, Elliptic

Functions, p. 175.)
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Now if the points P
x , P, be so situated that

[Chap. IV.

b, bl
(2)

*i %%

«, «»

the equalities referring to sign as well as magnitude, then P
l ,

P
t
are called corresponding points in the two systems. If Q l ,

,Qa
be another pair of correspondents, then the sector and tri-

angle P
l 1Ql

are said to correspond respectively with the

-sector and triangle P,0,Q,. These definitions will apply also

when the conies coincide, the points P
l , P^ being then referred

to any two pairs of conjugate diameters of the same conic.

In discussing the relations between corresponding areas it

is convenient to adopt the following use of the word " measure":

The measure of any area connected with a given central conic

is the ratio which it bears to the constant area of the triangle

formed by two conjugate diameters of the same conic.

Iror example, the measure of the sector A
x
O^P^ is the ratio

sector Afi x
P,

triangle Afifi^
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and is to be regarded as positive or negative according as

A
x
O

x
P

x
and A

1 1
B

x
are at the same or opposite sides of their

common initial line.

Art. 2. Areas of Corresponding Triangles.

The areas of corresponding triangles have equal measures.

For, let the coordinates of P
t , Q1

be (x
x ,y^, (#/,.?,'), and let

those of their correspondents/^, Q, be (^,, jv„), (x
t
',y,'); let the

triangles P
x
O,Q

t
, P^O,Q, be Tit T,, and let the measuring tri-

angles Afi,Bx
, A,0,B, be A", , K,, and their angles oo

l
, w,

;

then, by analytic geometry, taking account of both magnitude

and direction of angles, areas, and lines,

T* _ \{xj[- x^y^sva oo
1 _ x, y/__*/ J\.

7\ _ j{x,y
2
'-x,y,)sinw, _ x^ y/ _ £/^

K, £#A sin <o
t «„ b

t
a, b

t

'

T T
Therefore "7^ = 7?- (3)

A, A,

Art. 3. Areas of Corresponding Sectors.

The areas of corresponding sectors have equal measures.

For conceive the sectors Slt S, divided up into infinitesimal

corresponding sectors ; then the respective infinitesimal corre-

sponding triangles have equal measures (Art. 2) ; but the

given sectors are the limits of the sums of these infinitesimal

triangles, hence
5 5

In particular, the sectors AfiJP^ A,0,P, have equal meas-

ures ; for the initial points A lt A, are corresponding points.

It may be proved conversely by an obvious reductio ad

absurdum that if the initial points of two equal-measured

sectors correspond, then their terminal points correspond.

Thus if any radii O.A,, t
A, be the initial lines of two

equal-measured sectors whose terminal radii are OJP„ 0,P
t ,
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then P
x , P5

are corresponding, points referred respectively to

the pairs of conjugate directions O
x
A

x , O x
B

x , and 0.
t
A

a , Oq
B

2 ;

that is,

- = - — — —

Prob. i. Prove that the sector P
x
O,Q, is bisected by the line

joining (9, to the mid-point of P ,<2,. (Refer the points Plt Q„ re-

spectively, to the median as common axis of x, and to the two

opposite conjugate directions as axis of y, and show that P
lt Q t

are then corresponding points.)

Prob. 2. Prove that the measure of a circular sector is equal to

the radian measure of its angle.

Prob. 3. Find the measure of an elliptic quadrant, and of the

sector included by conjugate radii.

Art. 1. Characteristic Ratios of Sectorial

Measures.

Let A,O
x
P

x
= S

x
be any sector of a central conic; draw

P
1
M

l
ordinate to O

t
A lt i.e. parallel to the tangent at A

1 ;

let 0,M
X
= jr,, M

X
P, = j>,, O.A, =alt and the conjugate radius

£>,.£>, = b
x ; then the ratios xja

x ,
yjb

x
are called the charac-

teristic ratios of the given sectorial measure S,/Kr These

ratios are constant both in magnitude and sign for all sectors

of the same measure and species wherever these may be situ-

ated (Art. 3). Hence there exists a functional relation be-

tween the sectorial measure and each of its characteristic

ratios.

Art. 5. Ratios Expressed as Triangle-measures.

The triangle of a sector and its complementary triangle are

measured by the two characteristic ratios. For, let the triangle

A,O
l
P

l
and its complementary triangle P.O.B, be denoted by

T„ 7V; then

T\ _W. sin&?
. _h

(5)

K
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Art. 6. Functional Relations for 'Ellipse.

The functional relations that exist between the sectorial

measure and each of its characteristic ratios are the same

for all elliptic, in-

cluding circular, sec-

tors (Art. 4). Let/3
,,

P, be corresponding

points on an ellipse

and a circle, referred 6

to the conjugate di-

rections O
t
A lt O^B^, and 0, A„O^Ba , the latter pair being at

right angles ; let the angle A,0,P^ — in radian measure; then

s
* — \a*

\u *

-* = cos '

a, JC,

e. (6)

*r
sm

it;
[«• = K

hence, in the ellipse, by Art. 3,

— = cos K b.
sin
k: (7)

Prob. 4. Given x t = lar, find the measure of the elliptic sector

A x OiPi. Also find its area when <z, = 4, b
1
= 3, 00 = 6o°.

Prob. 5. Find the characteristic ratios of an elliptic sector whose
measure is \ti.

Prob. 6. Write down the relation between an elliptic sector and

its triangle. (See Art. 5.)

Art. 7. Functional Relations for Hyperbola.

The functional relations between a sectorial measure and

its characteristic ratios in the case of the hyperbola may be

written in the form

| = cosh * >
ir**%

and these express that the ratio of the two lines on the left is

a certain definite function of the ratio of the two areas on the

right. These functions are called by analogy the hyperbolic
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cosine ana the nyperbolic sine. Thus, writing u for SJKV the

two equations

x y— = cosh u, v — sinh u (8>
«. *.

serve to define the hyperbolic cosine and sine of a given secto-

rial measure u ; and the hyperbolic tangent, cotangent, secant,

and cosecant are then defined as follows

:

sinh u
, cosh«

tanh u = =— , coth u = -^—.—

,

cosh w sinh u

sech u = —:— , csch «
cosh «' sinh u

(9)

The names of these functions may be read " h-cosine,"'

" h-sine," "h-tangent," etc.

Art. 8. Relations between Hyperbolic Functions.

Among the six functions there are five independent rela-

tions, so that when the numerical value of one of the functions

is given, the values of the other five can be found. Four of

these relations consist of the four defining equations (9). The
fifth is derived from the equation of the hyperbola

a, b,

giving

coshJ
« — sinh"« = 1. (10)

By a combination of some of these equations other subsidi-

ary relations may be obtained; thus, dividing (10) successively

by cosh2
u, sinh

2
u, and applying (9), give

1 — tanh" u — sech a
u, )

coth 3 u — 1 = csch
2

u.

)

Equations (9), (10), (11) will readily serve to express the

value of any function in terms of any other. For example^

when tanh u is given,

coth u = -——

,

sech u = *J 1 — tanh 2

«,tanh u '
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, I . , tanh u
cosh u = — , sinh u

csch u

-y/ I — tanh" u -v/ I — tanh 2

_ y I — tanh 2 u

tanh u

The ambiguity in the sign of the square root may usually

be removed by the following considerations : The functions

cosh u, sech u are always positive, because the primary char-

acteristic ratio x
l
/a

1
is positive, since the initial line O

x
A^ and

the abscissa O
l
M

1
are similarly directed from

1 , on which-

ever branch of the hyperbola P
l
may be situated; but the func-

tions sinh u, tanh u, coth u, csch u, involve the other charac-

teristic ratio yjb^ , which is positive or negative according as

yl
and b

1
have the same or opposite signs, i.e., as the measure

u is positive or negative ; hence these four functions are either

all positive or all negative. Thus when any one of the func-

tions sinh u, tanh u, csch w, coth u, is given in magnitude and

sign, there is no ambiguity in the value of any of the six

hyperbolic functions ; but when either cosh u or sech u is

given, there is ambiguity as to whether the other four functions

shall be all positive or all negative.

The hyperbolic tangent may be expressed as the ratio of

two lines. For draw the tangent

line AC=t\ then

*. u y .
x a ytanh u = - :-=—.—

b a b x

a t /

b
' a b

(12) o AM
The hyperbolic tangent is the measure of the triangle OAC.

For

OAC at t . . .——— = —-=— = tanh u. (\X)
OAB ab b

v *'

Thus the sector AOP, and the triangles AOP, FOB, AOC,

are proportional to u, sinh u, coshu, tanh u (eqs. 5, 13) ; hence

sinh« > «> tanha. (i4>
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Prob. 7. Express all the hyperbolic functions in terms of sinh u.

Given cosh u — 2, find the values of the other functions.

Prob. 8. Prove from eqs. 10, 11, that coshw> sinh u, cosh«>i,
tanh u < 1, sech u < 1.

Prob. 9. In the figure of Art. 1, let OA— 2, OB—\, AOB = 6o°,

and area of sector AOP = 3; find the sectorial measure, and the

two characteristic ratios, in the elliptic sector, and also in the hyper-

bolic sector; and find the area of the triangle A OP- (Use tables of

cos, sin, cosh, sinh.)

Prob. 10. Show that coth u, sech u, csch u may each be ex-

pressed as the ratio of two lines, as follows: Let the tangent at P
make on the conjugate axes OA, OB, intercepts OS = m, OT = ?i\

let the tangent at B, to the conjugate hyperbola, meet OP in R,

making BR = /; then

coth u = l/a, sech u = m/a, csch u = njb.

Prob. 11. The measure of segment AMP is sinh u cosh u — u.

Modify this for the ellipse. Modify also eqs. 10-14, and probs.

8, 10.

Art. 9. Variations of the Hyperbolic Functions.

Since the values of the hyperbolic functions depend only

on the sectorial measure, it is convenient, in tracing their vari-

ations, to consider only sectors of one

half of a rectangular hyperbola, whose

conjugate radii are equal, and to take the

principal axis OA as the common initial

line of all the sectors. The sectorial

measure u assumes every value from — 00,

through o, to -f- 00 , as the terminal point

P comes in from infinity on the lower

branch, and passes to infinity on the upper

branch
; that is, as the terminal line OP

swings from the lower asymptotic posi-

tion y — — x, to the upper one, y = x. It is here assumed,

but is proved in Art. 17, that the sector AOP becomes infinite

as P passes to infinity.

Since the functions cosh u, sinh u, tanh u, for any position
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of 0P
l
are equal to the ratios of x, y, t, to the principal radius

a, it is evident from the figure that

cosh 0=1, sinh = 0, tanh 0=0, (15)

and that as u increases towards positive infinity, cosh u, sinh u

are positive and become infinite, but tanh& approaches unity

as a limit ; thus

cosh 00 = 00 , sinh 00 = 00 , tanh 00 = 1. (16)

Again, as u changes from zero towards the negative side,

cosh u is positive and increases from unity to infinity, but

sinh u is negative and increases numerically from zero to a

negative infinite, and tanh u is also negative and increases

numerically from zero to negative unity ; hence

cosh (— 00) = 00
, sinh (— 00) =— 00 , tanh (— 00 )

=— 1. (17)

For intermediate values of u the numerical values of these

functions can be found from the formulas of Arts. 16, 17, and

are tabulated at the end of this chapter. A general idea of

their manner of variation can be obtained from the curves in

Art. 25, in which the sectorial measure u is represented by the

abscissa, and the values of the functions cosh u, sinh u, etc.,

are represented by the ordinate.

The relations between the functions of — u and of u are

evident from the definitions, as indicated above, and in Art. 8.

Thus

cosh (—«) = + cosh u, sinh (—#)= — sinh u, \

sech (—«)=-{- sech u, csch (—«) = — csch u, > (18)

tanh (—«)=— tanh u, coth (— u) = — coth u. )

Prob. 12. Trace the changes in sech u, coth u, csch u, as u passes

from — 00 to + 00 . Show that sinh u, cosh u are infinites of the

same order when u is infinite. (It will appear in Art. 17 that sinh

u, cosh u are infinites of an order infinitely higher than the order

of u.)

Prob. 13. Applying eq. (12) to figure, page 114, prove tanh u, =
tan A OP-
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Art. 10. Anti-hyperbolic Functions.

x y t

The equations - = cosh u, j = sinh u, -r = tanh u, etc.,

may also be expressed by the inverse notation « = cosh-1 —

,

y tu= sinh
_1

-r. « = tanh _1
-T, etc., which may be read: "« is

the sectorial measure whose hyperbolic cosine is the ratio x to

a," etc. ; or " u is the anti-h-cosine of x/a," etc.

Since there are two values of u, with opposite signs, that

correspond to a given value of cosh u, it follows that if u be

determined from the equation cosh u = m, where m is a given

number greater than unity, u is a two-valued function of m.

The symbol cosh~' m will be used to denote the positive value

of 11 that satisfies the equation cosh u = m. Similarly the

symbol sech _1
;« will stand for the positive value of u that

satisfies the equation sech u = m. The signs of the other

functions smhr^m, tanh" 1
;^, coth

-1 m, csch
-1
m, are the same

as the sign of nt. Hence all of the anti-hyperbolic functions

of real numbers are one-valued.

Prob. 14. Prove the following relations :

cosh _1
OT = sinh" 1 Vm* — 1, sinh" 1

#2 = ± cosh" 1 Vm' + 1,

the upper or lower sign being used according as m is positive or

negative. Modify these relations for sin""
1

, cos
-1

.

Prob. 15. In figure, Art. i,let OA — 2, OB = i,AOB — 6o°; find

the area of the hyperbolic sector AOP, and of the segment AMP,
if the abscissa of P is 3. (Find cosh" 1 from the tables for cosh.)

Art. 11. Functions of Sums and Differences.

(a) To prove the difference-formulas

sinh (u — v) = sinh u cosh v — cosh u sinh v, )

cosh (u — v) = cosh u cosh v — sinh u sinh v.)

Let OA be any radius of a hyperbola, and let the sectors AOP,
AOQ have the measures u, v; then u — v is the measure of the

sector QOP. Let OB, OQ be the radii conjugate to OA, OQ;
and let the coordinates of P, Q, Q' be (x

1 , _y,), (x, y), (x', y')

with reference to the axes OA, OB; then
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sinh («_*) = sinh ^SLQOP = tria"gle Q0P [Art s .

_ |(.yy,— jfj/) sin go _y,x_ yx
t

\a
x
b

x
sin a> 3, a, £, a

t

= sinh « cosh z/ — cosh ?< sinh v :

cosh («

but

. , sector £><9/> triangle POO' r A
z>) = cosh —^ = a— S [Art. 5.

_ l(^y— jV.-yQ sin 00_ y x, _J^£^.

(20)



118 HYPERBOLIC FUNCTIONS. [CHAP. IV.

and then for sinh(— v), cosh(— v), writing — sinh v, cosh v

(Art. 9, eqs. (18)).

, . _, A , , . tanh u ± tanh v , ,

(c) 1 o prove that tanh (u ±v) = — . (22}w ^ v ; i±tanh?^tanh^ v '

Writing tanh (u + v) = -4 -,, expanding and dividings v
•
^ ; cosh (u±v) v s s

numerator and denominator by cosh u cosh v, eq. (22) is ob-

tained.

Prob. 16. Given cosh u = 2, cosh z> = 3, find cosh (u -)- z»).

Prob. 17. Prove the following identities:

1. sinh 211 = 2 sinh u cosh u.

2. cosh 2« = cosh
2# -f- sinh

2& =1+2 sinh
3 u = 2 cosh

2 u — 1.

3. 1 + cosh u = 2 cosh
5
^«, cosh u — 1 = 2 sinh

2
£#.

, , sinh & cosh « — 1 /cosh u — i\i
4. tanh \u = — —- = — =

:— .

1 -+- cosh u sinh u \cosh u -\- 1/

. , 2 tanh u t 4- tanh
2 u

5. Sinh 2« = r5— , COsh 2« ~ r-s—

.

1 — tanh & i -- tanh «

6. sinh 3« = 3 sinh « + 4 sinh
3
w, cosh 3^ = 4 cosh

8 « —3 cosh «.

, . 1 + tanh £»
7. cosh « + sinh a = :—.-

.

1 — tanh -$u

8. (cosh « + sinh «)(cosh v -f- sinh z>)=cosh (u -4- v) + sinh (z* + z-).

9. Generalize (8); and show also what it becomes when #=:»= . . .

10. sinh
2
.* cos

2

^ + cosh
2* sin

2

^ = sinh
2x -j- sin

2
jy.

11. cosh _1
»2 ± cosh _1

« = cosh_1
Lw« ± y (m' — i)(«

2— i)J.

1 2. sinh
-1

#z ± sinh
-1 n = sinh

-1
\_m y 1 -\- n7 ± »yi -(- m'\.

Prob. 18. What modifications of signs are required in (21), (22),

in order to pass to circular functions ?

Prob. 19. Modify the identities of Prob. 17 for the same purpose.

Art. 12. Conversion Formulas.

To prove that

cosh Mj-f- cosh «
a
= 2 cosh i(Wj+ ti^) cosh ^{u

1
—

«,),

cosh «,— cosh u, = 2 sinh $(u, -f- «,) sinh £(«,— a,),

sinh w, + sinh «, = 2 sinh £(«, -f- «,) cosh £(«,— «
3), J

sinh u
x
— sinh u,=2 cosh J(«, -(- «,) sinh |(«, — u,). 1



Art. 13.] limiting ratios. 119

From the addition formulas it follows that

cosh (u -\- v)-\- cosh (u — v) = 2 cosh u cosh v,

cosh (u -\- v) — cosh (u — v) = 2 sinh & sinh z/,

sinh (u -\-v)-\- sinh (u — v) = 2 sinh w cosh w,

sinh (« -(- v) — sinh (« — v) = 2 cosh w sinh v,

and then by writing u -\- v = u
1 ,

u — v — u^, u = ^(«, -}- «,)>

z< = £(«, — «
2),

these equations take the form required.

Prob. 2o. In passing to circular functions, show that the only

modification to be made in the conversion formulas is in the alge-

braic sign of the right-hand member of the second formula.

_. . _. ,. r cosh 2U + cosh av cosh 2« + cosh AV
Prob. 2i. Simplify -^—.

;

——. , ; :

sinh 2U -f- sinh av cosh 2U — cosh 4V

Prob. 22. Prove sinh
2* — sinh

2
j> = sinh (x -\-y) sinh (x — y).

Prob. 23. Simplify cosh
2* cosh'j1 ± sinh

2* sinh
2

j\

Prob. 24. Simplify cosh
2* cos

2
j> -f- sinh

2* sin
2

jc.

Art. 13. Limiting Ratios.

To find the limit, as u approaches zero, of

sinh u tanh u

u u

which are then indeterminate in form.

By eq. (14), sinh u > u > tanh u ; and if sinh u and tanh u

be successively divided by each term of these inequalities, it

follows that

sinh u ,

1 < < cosh u,
u

. _ tanh u ,

sech u < < v
u

but when u = o, cosh u = 1, sech u — 1, nence

lim. sinh « _
I;

lim. tanh « _
I# (24)

U = O u u = o u
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Art. 14. Derivatives of Hyperbolic Functions.

To prove that

(a)

(*)

(<)

(d)

to

(/)

af(sinh u)
-

r
= cosh u,

du

<a?(cosh u)

du

d[tanh u)

du

</(sech u)

du

<^(coth u)

du

d(csch u)

du

= sinh u,

— sech' u,

— — sech u tanh u,

= — csch* ?<,

= — csch u coth u.

(25)

(«) Let j> = sinh u,

Ay = sinh (u -j- ^J#) — sinh «

= 2 cosh %(2u -\- Au) sinh fAu,

Ay sinh £Jw
-^- = cosh (u -f £zf«)—j--

.

Take the limit of both sides, as Au = o, and put

Ay _ dy <f(sinh u)

Au du du

lim. cosh (u -)- \Au) = cosh u,

(see Art. 13)

sinh \Au
lim. —— = 1

\Au

<#(sinh w)
cosh u.

au

{b) Similar to (a).

af(tanh u) d sinh u

du ' cosh u

cosh 3 « — sinh3 u

cosh 3
?^

to
afo

cosh 3 u
= sech3

«.
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(d) Similar to (c).

d(sech u) d i sinh u
(/) -j = ~r • r- = rx~ = — sech u tanh u.

du du cosh u cosh u

(/) Similar to (<?).

It thus appears that the functions sinh u, cosh u reproduce

themselves in two differentiations ; and, similarly, that the

circular functions sin u, cosu produce their opposites in two

differentiations. In this connection it may be noted that the

frequent appearance of the hyperbolic (and circular) functions

in the solution of physical problems is chiefly due to the fact

that they answer the question : What function has its second

derivative equal to a positive (or negative) constant multiple

of the function itself ? (See Probs. 28-30.) An answer such as

y = cosh mx is not, however, to be understood as asserting that

mx is an actual sectorial measure and y its characteristic ratio ;

but only that the relation between the numbers mx and y is the

same as the known relation between the measure of a hyper-

bolic sector and its characteristic ratio ; and that the numerical

value of y could be found from a table of hyperbolic cosines.

Prob. 25. Show that for circular functions the only modifica-

tions required are in the algebraic signs of (b), (d).

Prob. 26. Show from their derivatives which of the hyperbolic

and circular functions diminish as u increases.

Prob. 27. Find the derivative of tanh u independently of the

derivatives of sinh u, cosh u.

Prob. 28. Eliminate the constants by differentiation from the

equation^ = A cosh mx -\- B sinh mx, and prove that dy/dx* = m 2

y.

Prob. 29. Eliminate the constants from the equation

y = A cos mx -\- B sin mx,

and prove that d*y/dx"' = — my.

Prob. 30. Write down the most general solutions of the differen-

tial equations

&y 2 **y ,
d>y
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Art. 15. Derivatives of Anti-hyperbolic Functions.

(a)

(*)

(?)

(d)

W

(/)

<f(sinh '
-^) _ I

dx~ ' Vx* + i'

^/(cosh
-1

jr) _ I

4tanh~' *) _ I "1

dx ~
I — jr

I
J*<i'

4coth" 1

^)_
dx

d?(sech~' #) _ I

dx ~
x i/i - x*'

^(csch
-1

x) _ i

(26)

d* x Vx* -{- I

(a) Let « = sinh
-

' #, then x = sinh a, dx = cosh « </&

= Vi + sinh
2

« afe = V I + ^J

a^, <& = <a^/ ^i -\- x\

(b) Similar to (a).

(c) Let u = tanh
-1

x, then # = tanh u, dx = sech2
z< die

= (i — tanh2
«)<afe = (i — x')du, du = ^ir/i — ;k

2
.

(d) Similar to (c).

d(sec^x) d,
h_lL\=^/fL V _zL=.

dx dx\ x> x I \x I xVi—x*

(/) Similar to (e).

Prob. 31. Prove

^(sin~'.s) _ 1 d(cos- 1 x)_ 1

oft Vi - x" dx V]

</(tan ' x) _ 1

</.x 1 -f- a;
2

^(cot
-1

x)

dx 1 + *2 '
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Prob. 32. Prove

, . , , x dx x dx
iJsmh — = —

, tfcosh — =
a Vx°+a*' a Vx' -a"

x adx
a tanh" — =

a a — x
. , . x adx

, acoth — =——5
j

x<a a x — a

Prob. 33. Find d(sech~ L x) independently of cosh ' x.

Prob. 34. When tanh
-1 x is real, prove that coth ' x is imagi-

nary, and conversely; except when x = 1.

_, , „ ,
sinh-'a; cosh" 1 * ,

Prob. 35. Evaluate —:
, —

;
, when* = 00.03 log x ' log x '

Art. 16. Expansion of Hyperbolic Functions.

For this purpose take Maclaurin's Theorem,

f(u) = /(o) + uf(p) + ± «y"(o) + ± «y"(o) + . . .,

and put f{u) = sinh «, f\u) — cosh 2*, /"(«) = sinh u, . . .,

then /(o) = sinh = 0, /'(o) = cosh 0=1,...;

hence sinh u — u
-J—j «

3

-f- —f u" -\- . . .

;

(27)

and similarly, or by differentiation,

cosh u = 1 -I r^'H r
^ 4+ • • • (28)

2! 4

!

By means of these series the numerical values of sinh it,

cosh u, can be computed and tabulated for successive values of

the independent variable u. They are convergent for all values

of u, because the ratio of the nth. term to the preceding is in

the first case u*/(2n — \){2tt — 2), and in the second case

u*/(2n — 2)(2tt — 3), both of which ratios can be made less than

unity by taking n large enough, no matter what value u may
have.
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From these series the following can be obtained by division :

tanh u = u — \u 3 4- -feu" -f- •g^w
7

4- . .

sech u = i — £«' 4- ^u l — -fifou' 4- . .

u coth « = i 4- \iP — ^u" 4- sx-gu*— .

u csch u = i— |a 2 4- ^fc 4— TH-^u
6
-\- .

.

(29)

These four developments are seldom used, as there is no

observable law in the coefficients, and as the functions tanh u,

sech u, coth u, csch u, can be found directly from the previously

computed values of cosh u, sinh u.

Prob. 36. Show that these six developments can be adapted to

the circular functions by changing the alternate signs.

Art. 17. Exponential Expressions.

Adding and subtracting (27), (28) give the identities

cosh u A- sinh u = 1 4- u A- —ru' A -u
3
A- — u* A- . . . = e"

2! 3! 4!
'

•cosh u — sinh u = 1 — u A—-u* «
a 4- u l — . = e'

u

2! 3! 4!

hence cosh u — \{e
u 4- e~"), sinh u = \{e" — e~u),

a-™e — e 2
tanh u =— , sech u = , etc. 1

(3o)

The analogous exponential expressions for sin u, cos u are

cos u = -{e
ui +r"), sin u = —.(**•' — e- Ki

), (i = V^T)
21

-where the symbol e
ui stands for the result of substituting ui for

x in the exponential development

This will be more fully explained in treating of complex
numbers, Arts. 28, 29.
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Prob. 37. Show that the properties of the hyperbolic functions

could be placed on a purely algebraic basis by starting with equa-

tions (30) as their definitions ; for example, verify the identities :

sinh (— u) = — sinh u, cosh (— u) = cosh u,

cosh
3 u —sinh" u—i, sinh (u -\-v) = sinh u cosh v -j- cosh u sinh v,

</
2
(cosh mii) „ , ^(sinh tint) „ . ,

r-j = m cosh mu — '- = m 1 sinh mu.
du du

Prob. 38. Prove (cosh 11 -f- sinh ?/)* = cosh nu -\- sinh nu.

Prob. 39. Assuming from Art. 14 that cosh #, sinh u satisfy the

differential equation d*y/du* —y, whose general solution may be

written y = Ae" -\- Be'", where A, B axe. arbitrary constants ; show
how to determine A, B in order to derive the expressions for cosh u,

sinh u, respectively. [Use eq. (15).]

Prob. 40. Show how to construct a table of exponential func-

tions from a table of hyperbolic sines and cosines, and vice versa.

Prob. 41. Prove u = log,, (cosh u -f- sinh u).

Prob. 42. Show that the area of any hyperbolic sector is infinite

when its terminal line is one of the asymptotes.

Prob. 43. From the relation 2 cosh u = e
u + <?~" prove

2*-1(cosh «)"= cosh nu+ncosh (n—2)u+^n{n—i) cosh (n—^)u + .. .,

and examine the last term when n is odd or even.

Find also the corresponding expression for 2
n~ 1 (sinh u)n.

Art. 18. Expansion of Anti-Functions.

„. dTsinh"' x) 1 , . „. ,

Since -^—-,
'- = — = = (1 + x2)~i

dx VT+x*

1
j 1

l 3 «
x 3 5 e ,

2 24 246

hence, by integration,

, ,
1 xl

. 1 3 x % 135^' . .

sinh-
1 * = * h-~T -?T+---> (3023 '245 2467

the integration-constant being zero, since sinh
-1 x vanishes

with x. This series is convergent, and can be used in compu-
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tation, only when x < i. Another series, convergent when

x > i, is obtained by writing the above derivative in the form

^(sinh"
1

x) ,
, ,

. , if . i\~*

"

I _II + I3I_I3 5.1, 1
2/T 2 4^ 2 4 6/T 'J'

.-. sinh"' * = C+log *+- -1; -- 1 --+1 ? | i--.
. . , (32)

'

s '22^' 2 4 4*' ' 2 4 6 6*6 VJ '

where C is the integration-constant, which will be shown in

Art. 19 to be equal to log,, 2.

A development of similar form is obtained for cosh
-

' x\ for

xL T 2«,T 24«*r 24 6x°^'"J'
hence

cosh-'^= C+logx ,
2 2.2.

. (33)
1 fa

2 2* 244*' 2 46 6x"
v

•

in which C is again equal to log, 2 [Art. 19, Prob. 46]. In

order that the function cosh
-'* maybe real, x must not be

less than unity ; but when x exceeds unity, this series is con-

vergent, hence it is always available for computation.

. . <^(tanh
-1

x) 1 is,.,.,
Again, v

dx
- =——* = i+*2 + *4 + x +..-,

and hence tanh
-1 x = x -\- -x3

-{- -x"-\—x%+ ..., (34)
J J /

From (32), (33), (34) are derived :

sech"' x = cosh
-

' —
x

r 1

*' I-3-^* 1.3.5.^* , .

S
2.2 2.4.4 2.4.6.6 '

Kib '



ART. 19 ] LOGARITHMIC EXPRESSION OF ANTI-FUNCTIONS. 127

.csch-^ = sinh-I =:I-I-L
3 + -. 3--

6
- iH-^---'x x 2 ix 2 4 5* 2467^

„ . . x* 1 . 3 . x" 1 . 3 . 5 . x° . ,.— C— log x -\ 2 *—h—> — • • • ; (36)S
' 2.2 2. 4.4^2.4.6.6 V° '

coth-' x = tanh" - = - -| _|_ _L _|_ _L -f . . ., (37)x x ~ $x*
~

5x* ' jx1 ^ xo"

Prob. 44. Show that the series for tanh
-1

*, coth
-1

*, sech-1
*,

are always available for computation.

Prob. 45. Show that one or other of the two developments of the

inverse hyperbolic cosecant is available.

Art. 19. Logarithmic Expression of Anti-Functions.

Let x = cosh u, then Vx* — 1 = sinh u;

therefore x-\- Vx' — 1 = cosh u -\- sinh u = <?",

and u, = cosh" 1
^, = log (x A- Vx2 — 1). (38)

Similarly, sinh
-1

;tr = log (x -\- Vx' -f- 1). (39)

Also sech _1^= cosh-1 - = log —^t
, (40)

X X

csch
-
\r = sinh

-1- = log —^t J. (41)
x x

Again, let x = tanh u =
,

therefore = —- = e™,
1 — x e

2u = \o^—^-—, tanh -1;r=| log —
; (42)

1 — x 1 — x

1 x -4— 1

and coth
-1^ = tanh -1- = A log (43)

X X — I

Prob. 46. Show from (39), (40), that, when x= 00,

sinh
-1* — log xi. log 2, cosh

-1* — log * = log 2,

;and hence show that the integration-constants in (32), (33) are each

equal to log 2.
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Prob. 47. Derive from (42) the series for tanh' 1
.* given in (34).

Prob. 48. Prove the identities:

log*=2tanh _1 =tanh _1 —— =sinh" :

-J(*—x'
1)=cosh~ 1

i(x + x' 1

);X 1 I X -J- I

log sec x = 2 tanh" 1 tan
2
\x\ log esc x — 2 tanh' ' tan

2

(i^ -+- \x);

log tan x = — tanh" 1 cos 2a? = — sinh
-1

cot 2x = cosh
-1

esc 2X.

Art. 20. The Gudermanian Function.

The correspondence of sectors of the same species was dis-

cussed in Arts. 1-4. It is now convenient to treat of the

correspondence that may exist between sectors of different

species.

Two points Plt P^ , on any hyperbola and ellipse, are said to

correspond with reference to two pairs of conjugates O
x
A

x ,

O
t
B, , and OvA l ,

0,P
2 , respectively, when

xja, = ajxv (44).

and when y x , y2
have the same sign. The sectors A

s
O,Plt

Afi^P^ are then also said to correspond. Thus corresponding

sectors of central conies of different species are of the same

sign and have their primary characteristic ratios reciprocal.

Hence there is a fixed functional relation between their re-

spective measures. The elliptic sectorial measure is called

the gudermanian of the corresponding hyperbolic sectorial

measure, and the latter the anti-gudermanian of the former.

This relation is expressed by

SJKa
= gd SJKX

or v = gd u, and u = gd~V. (45}

Art. 21. Circular Functions of Gudermanian.

The six hyperbolic functions of u are expressible in terms

of the six circular functions of its gudermanian ; for since

—= cosh u, —= cos v, (see Arts. 6, 7)

in which u, v are the measures of corresponding hyperbolic

and elliptic sectors,
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hence cosh u = sec v, [eq. (44)]

(46)

sinh u = 4/secV — 1 = tan v,

tanh u = tan z//sec v = sin v,

coth « = esc z>,

sech z< = cost',

csch u = cot ?/.

The gudermanian is sometimes useful in computation ; for

instance, if sinh u be given, v can be found from a table of

natural tangents, and the other circular functions of v will give

the remaining hyperbolic functions of u. Other uses of this

function are given in Arts. 22-26, 32-36.

Prob. 49. Prove that gd u = sec
-
'(cosh u) — tan

-
'(sinh u)

= cos
-
'(sech u) = sin" '(tanh u),

Prob. 50. Prove gd -1
z> = cosh" '(sec v) = sinh"1

(tan v)

= sech"" '(cos v) — tanh" '(sin v).

Prob. 51. Prove gd o = o, gd 00 = fa, gd(— 00) = —fa,
gd"'o=o, gd-'(i^)=co, gd"'(-i^)= -oo.

Prob 52. Show that gd u and gd"'» are odd functions of ^, v.

Prob. 53. From the first identity in 4, Prob. 19, derive the rela-

tion tanh \u — tan \v.

Prob. 54. Prove

tanh" '(tan u) = \ gd 2U, and tan" '(tanh x) = £ gd _12x

Art. 22. Gudermanian Angle

If a circle be used instead of the ellipse of Art. 20, the

gudermanian of the hyperbolic sectorial measure will be equal

to the radian measure of the angle of the corresponding circular

sector (see eq. (6), and Art. 2, Prob. 2). This angle will be

called the gudermanian angle ; but the gudermanian function v,

as above defined, is merely a number, or ratio ; and this number

is equal to the radian measure of the gudermanian angle 6,

which is itself usually tabulated in degree measure ; thus

6 — i%o°v/rt (47)
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Prob. 55. Show that the gudermanian angle of u may be construct-

ed as follows:

Take the principal radius OA of an equilateral hyperbola, as the

/^ initial line, and OP as the terminal

line, of the sector whose measure is u\

from M, the foot of the ordinate of

P, draw MT tangent to the circle

whose diameter is the transverse axis;

then AOT is the angle required.*

Prob. 56. Show that the angle 6

never exceeds 90 .

Prob. 57. The bisector of angle AOT
M bisects the sector AOP (see Prob. 13,

Art. 9, and Prob. 53, Art. 21), and the line AP. (See Prob. 1, Art. 3.)

Prob. 58. This bisector is parallel to TP, and the points T,P
are in line with the point diametrically opposite to A.

Prob. 59. The tangent at p passes through the foot of the

ordinate of T, and intersects TM on the tangent at A.

Prob. 60. The angle APM is half the gudermanian angle.

Art. 23. Derivatives of Gudermanian and Inverse.

Let v = gd u, u = gd _I
v,

then sec v = cosh u,

sec v tan vdv = sinh u du,

sec vdv = du,

therefore ^(gd _1
v) = sec vdv. (48)

Again, dv = cos v du — sech u du,

therefore d{gd u) = sech u du. (49)

Prob. 61. Differentiate:

y = sinh u — gd u, y = sin v -\- gd-1
v,

y = tanh u sech u -\- gd u, y = tan v sec v -\- gd-1 v.

* This angle was called by Gudermann the longitude of 11, and denoted by lu.

His inverse symbol was |L; thus u = ^i.(/u). (Crelle's Journal, vol. 6, 1830.)

Lambert, who introduced the angle 0, named it the transcendent angle. (Hist,

de l'acad, roy.- de Berlin, 1761). Hottel (Nouvelles Annales, vol. 3, 1864)

called it the hyperbolic amplitude of u, and wrote it amh u, in analogy with the

amplitude of an elliptic function, as shown in Prob. 62. Cayley (Elliptic

Functions, 1876) made the usage uniform by attaching to the angle the name

of the mathematician who had used it extensively in tabulation and in the

theorv of elliptic functions of modulus unity.
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Prob. 62. Writing the "elliptic integral of the first kind" in

the form ~
d(j)

~
J^ Vi - K3 sin

2 0'

k being called the modulus, and the amplitude; that is,

4> = am u, (mod. /c),

show that, in the special case when k = 1,

u = gd-1 4>, am u = gd u, sin am u = tanh u,

cos am u — sech u, tan am u = sinh u;

and that thus the elliptic functions sin am u, etc., degenerate into

the hyperbolic functions, when the modulus is unity.*

Art. 24. Series for Gudermanian and its Inverse.

Substitute for sech u, sec v in (49), (48) their expansions,

Art. 16, and integrate, then

gd u = u - \u" + ^u" - j%f^' + . .

.

(50)

gd-V = v + \v> +^ 6 +^i^7 + • • • (5i)

No constants of integration appear, since gd u vanishes with

u, and gd~'v with z/. These series are seldom used in compu-

tation, as gd u is best found and tabulated by means of tables

of natural tangents and hyperbolic sines, from the equation

gd u = tan~'(sinh u),

and a table of the direct function can be used to furnish the

numerical values of the inverse function ; or the latter can be

obtained from the equation,

gd"V = sjnh J(tan v) = cosh"'(sec v).

To obtain a logarithmic expression for gd~V, let

gd""!' = u, v = gd u,

* The relation gd » = am «, (mod. 1), led Hoiiel to name the function gd u,

the hyperbolic amplitude of «, and to write itamh u (see note, Art. 22). In this

connection Cayley expressed the functions tanh u, sech «, sinh u in the form

sin gd «, cos gd u, tan gd u, and wrote them sg «, eg u, tg «, to correspond

with the abbreviations sn u, en u, dn u for sin am u, cos am «, tan am «.

Thus tanh « = sg « = sn u, (mod. 1); etc.

It is well to note that neither the elliptic nor the hyperbole functions

received their names on account of the relation existing between them in a

special case. (See foot-note, p. 107.)
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therefore sec v = cosh u, tan v = sinh u

sec v -f- tan w = cosh a -j- sinh z< = **,

I -j- sin v _ I — cos (|-7r -|- z>) _

cos z> sin (£?r -|- v)

u, = gd" V, = log, tan (i?r + $v).

tan (iw -f £v),

Prob. 63. Evaluate
gd u — u gd 'g

_J»=o

(52)

Prob. 64. Prove that gd u — sin u is an infinitesimal of the fifth

order, when u = o.

Prob. 65. Prove the relations

\n + iv= tarry, in — \v = tan"'«"".

Art. 25. Graphs of Hyperbolic Functions.

Drawing two rectangular axes, and laying down a series of

points whose abscissas represent, on any convenient scale, suc-

cessive values of the sectorial measure, and whose ordinates

represent, preferably on

the same scale, the corre-

sponding values of the

function to be plotted, the

locus traced out by this

series of points will be a

graphical representation of

the variation of the func-

tion as the sectorial meas-
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ure varies. The equations of the curves in the ordinary carte-

sian notation are

:

Fig. Full Lines. Dotted Lines.

A y = cosh x, y — sech x
;

B y = sinh x, y — csch x
;

C y = tanh x, y = coth x
;

D y = gd x.

Here x is written for the sectorial measure u, and y for the

numerical value of cosh u, etc. It is thus to be noted that the

variables x, y are numbers, or ratios, and that the equation

y = cosh x merely expresses that the relation between the

numbers x and y is taken to be the same as the relation be-

tween a sectorial measure and its characteristic ratio. The

numerical values of cosh n, sinh u, tanh u are given in the

tables at the end of this chapter for values of u between o and

4. For greater values they may be computed from the devel-

opments of Art. 16.

The curves exhibit graphically the relations

:

sech u = —-— , csch u = ——— , coth u
cosh u sinh u tanh u

cosh u < 1, sech u > 1, tanh u > 1, gd u < $n, etc.;

sinh (— u) = — sinh it, cosh (— u) = cosh u,

tanh (— u) = — tanh u, gd (— u) = — gd u, etc.;

cosh 0=1, sinh = 0, tanh = 0, csch (o) =00 , etc.;

cosh (± 00 ) = 00 , sinh (± 00 ) = ±00 , tanh
(± 00 ) = ± 1, etc.

The slope of the curve jy = sinh x is given by the equation

dy/dx = cosh x, showing that it is always positive, and that

the curve becomes more nearly vertical as x becomes infinite.

Its direction of curvature is obtained from d^y/dx* = sinh x,

proving that the curve is concave downward when x is nega-

tive, and upward when x is positive. The point of inflexion is

at the origin, and the inflexional tangent bisects the angle

between the axes.
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\

The direction of curvature of the locus y = sech x is given

by d'y/dx* = sech x{2 tanh
2

;r — i), and thus the curve is con-

cave downwards or upwards

according as 2 tanh" x — i is

negative or positive. The in-

flexions occur at the points

x = ± tanh- 1

.707, = ± .881,

y — .707 ; and the slopes of

the inflexional tangents are

± 1/2.

The curve y = csch x is

asymptotic to both axes, but

approaches the axis of x more

rapidly than it approaches the

axis of y, for when ^r = 3, jj/ is

C only . 1, but it is not till y = 10

that x is so small as .1. The curves y = csch x, y = sinh x

cross at the points x = ± .881, y = ± 1.

-1-

Prob. 66. Find the direction of curvature, the inflexional tan-

gent, and the asymptotes of the curves^ = gdx,y = tanh x.

Prob. 67. Show that there is no inflexion-point on the curves

y = cosh x, y = coth x.

Prob. 68. Show that any line y = mx -\- n meets the curve

y = tanh x in either three real points or one. Hence prove that

the equation tanh x = mx -\- n has either three real roots or one.

From the figure give an approximate solution of the equation

tanh x = x — 1.
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Prob. 69. Solve the equations: cosh x = x + 2; sinh x = ix -

gd x = x — \n.
'

Prob. 70. Show which of the graphs represent even functions,
and which of them represent odd ones.

Art. 26. Elementary Integrals.

The following useful indefinite integrals follow from Arts.

14, 15- 23:

Hyperbolic. Circular.

1. j sinh u du = cosh «, /'sin u du = — cos a,

2. / cosh ?< ^ = sinh it, /cos u du = sin u,

3. / tanh it du = log cosh u, /"tan « du = — log cos u,

4. / coth z< du = log sinh «, /"cot « ^« = log sin u,

5. / csch it du = log tanh - , /esc z*^ = log tan -

,

= — sinh-'(csch u), = — cosh -1
(csc u),

6. / sech u du = gd it, I sec u du = gd- 1

u,

r dx x r c.

J 4/^-7-^ = sinh_1
v"

T

</
"^/.r

= sin
- -,

8- f-r£=.= cosh-' *. /-^
/" a£r 1 1 . .x P dx

9. ,/ -5
j = -tanh- -, /

-——

;

cos- —

.

a

= — tan

* Forms 7-12 are preferable to the respective logarithmic expressions

(Art. 19), on account of the close analogy with the circular forms, and also

because they involve functions that are directly tabulated. This advantage

appears more clearly in 13-20.
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X P — dx

[Chap. IV.

r -dx ~| i . ,
x r

10. / — i = -coth- -, /
-

" x —a A x>a a a «/ a

ii.

— dx '<

x Va 2 + x1
«

/-==^==Lsech-^,/-

I ,
x= - cot-'-,

-\- x a a

dx i x— - = — sec
- —

Vx 1 — a2 a a-

f — dx I x P — dx
12

' J x^7T?=a CSd*~ a'J x~Vx^
1 ,*

—, = - esc- -

.

a a a

From these fundamental integrals the following may be

derived:

13- / dx I ax-\- b= —— sinh ,

—

=p , a positive, ac> b
;

Vax' + 2bx+ c Va Vac—b'

I , ,
ax 4- b . . ,.= —=cosh , ^positive, ac<Cb

;

Va

f.
dx

V—a
I

cos

I4> J ax'-\-2bx-\-c
'"" y^_#

j ax -\- b

VT^a~c

ax -\- b
tan-

vW-£ !

, « negative.

- I «^r 4- 3
tanh- — , ac <.b\ ax-\- b < \Zp _ ac

Vb*—ac

— i

Vb'
2

-ac

Thus, /

VF—ac
5 dx

ax 4- b
, ,

coth- ,—

—

— , ac < b\ ax 4- b > ^/^ _ ^

;

4/3
a- #<;

•coth-'(^— 2) = coth- J

2— coth
_
'3

xt

—4x-{-s

= tanh-'(.5)—tanh- 1

(.3333)= -S494— -3466=. 2028.*

/ dx
:—tanh -1^— 2

)
=tanh-'o— tanh_1

(.5)*°-4*+3

= - -5494-

(By interpreting these two integrals as areas, show graph-

ically that the first is positive, and the second negative.)

dx
15- J (a-(a—x) Vx—b Va—b

tanh-,
IX~ b

*For tanh- 1 (.5) interpolate between tanh (.54) = .4930, tanh (.56) = .5080

(see tables, pp. 162, 16$; and similarly for tanh-1 (.3333).
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or —
,

tan
. x—b 2 x—b

- \ / -7
, or coth- a / r

Y b—a Va— b \ a~ bVb—a V b—a' Va— b \ a-b '

the real form to be taken. (Put x — b = z\ and apply 9, 10.)

16. / . = . tanh~'
«/ (a—*) V^—* */£— a

2 ., IT-
ox

. , I b—x — 2 lb—x
coth- 1 */ -7 . or — tan -'a/ 7;

Vb—a

the real form to be taken.

17. /V - affdx = ^(;tr2 - a'f - -a* cosh" 1
jr

By means of a reduction-formula this integral is easily made

to depend on 8. It may also be obtained by transforming

the expression into hyperbolic functions by the assumption

x — a cosh u, when the integral takes the form

ai
/ sinh 3 udu = — / (cosh 2u — i)du = -« 2

(sinh 2u — 2u)

= ^<2
2(sinh u cosh u— 11),

which gives 17 on replacing a cosh u by x, and a sinh u by

(x* — a2
)*. The geometrical interpretation of the result is

evident, as it expresses that the area of a rectangular-hyper-

bolic segment AMP is the difference between a triangle OMP
and a sector OAP.

x*fdx — -xid1 - x 2

)
h 4- -a* sin"

1 -.
'

2 x ' ' 2 <z
18. f{c

19. yv +

«

3r^ = -*(** + *')*

+

~a ° sinh~' -•

20. Aec 3
<pd<p =Ai + tan 2 0)V tan

= £ tan 0(i + tan
2

0)
2

-f £ sinh"
1

(tan 0)

= £ sec tan -j- \ gd _1
0.

21. / sech* u du= % sech u tanh u -\-$ gd ?*.

Prob. 71. What is the geometrical interpretation of 18, 19?

Prob. 72. Show that / {ax
2

-\- 2bx + cydx reduces to 17, 18, 19,
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respectively: when a is positive, with ac < tf
;
when a is negative;

and when a is positive, with ac~> b .

Prob. 73. Prove / sinh u tanh u du — sinh u — gd u,

I
u

cosh 2< coth u du — cosh u + log tanh -.

Prob. 74. Integrate

(*
2 + 2*+5)"V.*, (x'

2 + 2% + 5)-V#, (x
2 + 2* + 5)V*.

Prob. 75. In the parabola / = 4px, if s be the length of arc

measured from the vertex, and <p the angle which the tangent line

makes with the vertical tangent, prove that the intrinsic equation of

the curve is ds/dcp = 2p sec
3

<p, s = \ sec <p tan <p + \ gd _1
0-

Prob. 76. The polar equation of a parabola being r = a sec
2 -^

referred to its focus as pole, express s in terms of 6.

Prob. 77. Find the intrinsic equation of the curveVa = cos^ x/a >

and of the curve y/a — log sec x/a.

Prob. 78. Investigate a formula of reduction for^y cosh" x dx;.

also integrate by parts cosh'"
1 * dx, tanh

-1 * dx, (sinh'
1 x)

2dx; and

show that the ordinary methods of reduction for / cos'"xsin"xdx

can be applied to / cosh'" x sinh" x dx.

Art. 27. Functions of Complex Numbers.

As vector quantities are of frequent occurence in Mathe-

matical Physics; and as the numerical measure of a vector

in terms of a standard vector is a complex number of the

form x-\-iy, in which x,y are real, and i stands for-/— 1; it

becomes necessary in treating of any class of functional oper-

ations to consider the meaning of these operations when per-

formed on such generalized numbers.* The geometrical defini-

tions of cosh 11, sinh?/, given in Art. 7, being then no longer

applicable, it is necessary to assign to each of the symbols

*The use of vectors in electrical theory is shown in Bedell and Crehore's

Alternating Currents, Chaps, xiv-xx (first published in 1892). The advantage

of introducing the complex measures of such vectors into the differential equa-

tions is shown by Steinmetz, Proc. Elec. Congress, 1893; while the additional

convenience of expressing the solution in hyperbolic functions of these complex

numbers is exemplified by Kennelly, Proc. American Institute Electrical

Engineers, April 1895. (See below, Art. 37.)
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cosh (x -f- iy), sinh (x -\- iy), a suitable algebraic meaning,

which should be consistent with the known algebraic values of

cosher, sinh^r, and include these values as a particular case

when y = o. The meanings assigned should also, if possible,

be such as to permit the addition-formulas of Art. 1 1 to be

made general, with all the consequences that flow from them.

Such definitions are furnished by the algebraic develop-

ments in Art. 16, which are convergent for all values of u, real.

or complex. Thus the definitions of cosh (x -\- iy), sinh [x -\- iy)

are to be

cosh {x + iy) = I + ±-{x + iy)' + —(x+ *»< + ...,
2 ! 4 •

sinh {x + iy) — (x+ iy) + ^{x+ iy)
3 + . .

.

(52)

From these series the numerical values of cosh (x -\- iy),

sinh (x -j- iy) could be computed to any degree of approxima-

tion, when x and y are given. In general the results will come

out in the complex form*

cosh (x -\- iy) =. a-\- ib,

sinh (x -\- iy) = c -f- id.

The other functions are defined as in Art. 7, eq. (9).

Prob. 79. Prove from these definitions that, whatever u may be,

cosh (— u) — cosh u, sinh (— u) = — sinh u,

-7- cosh u = sinh u, —sinh u = cosh u,
du du

-r-=cosh mu = m 1
cosh mu, -r

-
5 sinh mu = >n sinh mu.\

du du '

*It is to be borne in mind that the symbols cosh, sinh, here stand for alge-

braic operators which convert one number into another; or which, in the lan-

guage of vector-analysis change one vector into another, by stretching and

turning.

t The generalized hyperbolic functions usually present themselves in Mathe-

matical Physics as the solution of the differential equation d'
2 <p/du'' = m'2 tp,

where 4>, m, u are complex numbers, the measures of vector quantities. (See

Art. 37.)
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Art. 28. Addition-Theorems for Complexes.

The addition-theorems for cosh (u -{- v), etc., where u, v are

complex numbers, may be derived as follows. First take u, v

as real numbers, then, by Art. 1 1,

cosh (u -j- v) = cosh u cosh v -j- sinh u sinh v;

hence I + i-,(« + vf +. . . =(i + ±f + . . .)(i + ±f+.

.

.)

+(«+^+...)(-+
3v+-)

This equation is true when u, v are any real numbers. It

must, then, be an algebraic identity. For, compare the terms

of the rth degree in the letters u, v on each side. Those on

the left are —;(«+ »)
r

; and those on the right, when collected,
t !

form an rth-degree function which is numerically equal to the

former for more than r values of u when v is constant, and for

more than r values of v when u is constant. Hence the terms

of the rth degree on each side are algebraically identical func-

tions of u and v* Similarly for the terms of any other degree.

Thus the equation above written is an algebraic identity, and

is true for all values of u, v, whether real or complex. Then

writing for each side its symbol, it follows that

cosh (« -L- v) = cosh u cosh v -\- sinh u sinh v; (53)

and by changing v into — v,

cosh (u — v) = cosh u cosh v — sinh u sinh v. (54)

In a similar manner is found

sinh (u ± v) = sinh it cosh v ± cosh u sinh v. (55)

In particular, for a complex argument,

cosh (x ± iy) = cosh ^r cosh iy ±_ sinh ^r sinh iy,
)

[ (56)
sinh {x ± «» = sinh x cosh z> ± cosh x sinh zj/.

)

* " If two rth-degree functions of a single variable be equal for more than r

values of the variable, then they are equal for all values of the variable, and are

algebraically identical."
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Prob. 79. Show, by a similar process of generalization,* that if

sin u, cos u, exp u \ be defined by their developments in powers of

u, then, whatever u may be,

sin (u -f- v) = sin u cos v -\- cos u sin v,

cos (« + ») = cos it cos z> — sin u sin #,

exp (u -\- v) = exp » exp v.

Prob. 80. Prove that the following are identities:

cosh
2
u — sinh

2 » = 1,

cosh ?< -+- sinh u = exp #,

cosh u — sinh « = exp (
— u),

cosh u = £[exp w -f- exp (
— »)],

sinh « = £[exp «— exp(— u)\

Art. 29. Functions of Pure Imaginaries.

In the defining identities

cosh u = 1 -)—rV -I -«* + . . .,
2! 4! '

'

sinh u = u A—-u* -I—- «
b+ . ...

3! 5!

put for u the pure imaginary ty, then

cosh iy — 1 — -jpj
2 + -•/ - . . . = cosy, (57)

3
p; -t-

5
,,

sinh z> = iy -+ —
(

(z» 3

-f -,(«»' +

= ^--^y + ^|/-- ••] =ismy, (58)

and, by division, tanh iy = z tan y. (59)

* This method of generalization is sometimes called the principle of the

" permanence of equivalence of forms." It is not, however, strictly speaking, a

" principle," but a method; for, the validity of the generalization has to be

demonstrated, for any particular form, by means of the principle of the alge-

braic identity of polynomials enunciated in the preceding foot-note. (See

Annals of Mathematics, Vol. 6, p. 8r.)

f The symbol exp « stands for "exponential function of a," which is identi-

cal with e" when « is real.
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These formulas serve to interchange hyperbolic and circular

functions. The hyperbolic cosine of a pure imaginary is real,

and the hyperbolic sine and tangent are pure imaginaries.

The following table exhibits the variation of sinh u, cosh u,

.tanh ;/, exp u, as u takes a succession of pure imaginary values.

u
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cosh (x ± iy) — cos (y ^ ix),

sin (x ± iy) — ± i sinh (_v =F ix),

cos (ar ± ij) = cosh (y =f /.v).

Prob. 84. From the product-series for sin x derive that for

sinh x :

«** = *{* -*?)[* -£?){*-?„'

sinh* = 4+J)( I + ^)(x +
3^

Art. 30. Functions of x-\-iy in the Form X-\-iY.

By the addition-formulas,

cosh (x -\- iy) = cosh x cosh iy -f- sinh .*- sinh zy,

sinh (;tr -|- iy) = sinh ;tr cosh y/ -f- cosh ;r sinh zy,

but cosh y/ = cos y, sinh (y = i sin jj/,

hence cosh (x -\- iy) = cosh x cos _y -f- z sinh x sin j,

,
(60)

sinh (x -\- iy) = sinh x cos y -\-i cosh ^ sin _y.

Thus if cosh (x -\- iy) = a -f- id, sinh (x -\- iy) = c -\- id, then

a = cosh .# cos ^, # = sinh ;r sin j,

(61)
c = sinh ;tr cos y, d = cosh ;tr sin y.

From these expressions the complex tables at the end of

this chapter have been computed.

Writing cosh z = Z, where z = x -\- iy, Z = X-\- iY; let the

complex numbers z, Z be represented on Argand diagrams, in

the usual way, by the points whose coordinates are (x, y),

(X, Y); and let the point z move parallel to the jj/-axis, on a

given line x = m, then the point Z will describe an ellipse

whose equation, obtained by eliminating y between the equa-

tions X = cosh ;// cos_y, F= sinh m sin_y, is

+
(cosh my (sinh nif

and which, as the- parameter m varies, represents a series of

confocal c!''^s.es, the distance between whose foci is unity.
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Similarly, if the point z move parallel to the jr-axis, on a given,

line y = n, the point Z will describe an hyperbola whose equa-

tion, obtained by eliminating the variable x from the equations

X= cosh x cos n, Y = sinh x sin n, is

X 2 Y 2

(cos w)
2

(sin «)"

and which, as the parameter n varies, represents a series of

hyperbolas confocal with the former series of ellipses.

These two systems of curves, when accurately drawn at

close intervals on the Z plane, constitute a chart of the hyper-

bolic cosine ; and the numerical value of cosh (in -f- in) can be

read off at the intersection of the ellipse whose parameter is m
with the hyperbola whose parameter is «.*

Prob. 85. Prove that, in the case of sinh (x -f- iy), the above two

systems of curves are each turned through a right angle. Compare
the chart of sin (x -\- iy), and also of cos (x + iy).

„ , „, ^ ,••, • /,-\ sinh 2X + i sin 2V
Prob. 86. Prove the identity tan (x 4- iy) = =

J
.

COSH 2X + cos 2JC

Prob. 87. If cosh (x -)- iy), = a -\- id, be written in the " modulus

and amplitude" form as r(cos -\- i sin 0), = r exp it), then

r = a
2 + ?>* — cosh

2 x — sin" y = cos
2

y — sinh
2
x,

tan = b/a = tanh x tan y.

Prob. 88. Find the modulus and amplitude of sinh (x -\- iy),.

sin (x + iy), exp (x -f- ry).

Prob. 89. The functions sinh u, cosh u have the pure imaginary

period 2/77-; that is, sinh (u -\- 2in) — sinh u, cosh (a + 2in) — cosh w;

also sinh (u-\-$i7z) —i cosh «, cosh (u -\- \in) = i sinh u, sinh (k-}-^)
= — sinh u, cosh (u + «'t) = — cosh #.

Prob. 90. The functions cosh.~'m, sinh
-1

OT have multiple values

at intervals of 2in, but each has a unique value (called the principal

value) in which the coefficient of / lies between o and n for the

former, and between — \rt and + i 71 for the latter.

* Such a chart is given by Kennelly, Proc. A. I. E. E., April 1895, and is

used by him to obtain the numerical values of cosh (x-\-iy), sinh (x-\-iy), which

present themselves as the measures of certain vector quantities in the theory of

alternating currents. (See Art. 37.) The chart is constructed for values of x
and of y between o and 1.2; but it is available for all values oiy, on account of

the periodicity of the functions.
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Art. 31. The Catenary.

A flexible inextensible string is suspended from two fixed

points, and takes up a position of equilibrium under the

action of gravity. It is required to find the equation of the

curve in which it hangs.

Let w be the weight of unit length, and j the length of arc

AP measured from the lowest point A ; then ws is the weight

of the portion AP. This is balanced by the terminal tensions,

T acting in the tangent line at P, and //in the horizontal

tangent. Resolving horizontally and vertically gives

T'cos = H, T sin cp = ws,

in which is the inclination of the tangent at P; hence

ws s

where c is written for H/w, the length whose weight is the

constant horizontal tension ; therefore

dy s ds is* dx dss ds I s*

dx c' dx y ' c* ' c \/s
l
_j_ ^

x s . , x s dy y x— = sinh
-1 — , sinh — = — = -=—, — = cosh —

,

c c c c dx c c

which is the required equation of the catenary, referred to an

axis of x drawn at a distance c below A.

The following trigonometric method illustrates the use of

the gudermanian : The " intrinsic equation," s = c tan 0,

gives ds = c sec 3
d4> ; hence dx, = ds cos <b, = c sec d<p

;

dy,=ds sin 0, =£sec tan 0<f0 ; thus x=c gd _1
0, y= c sec 0;

whence y/c = sec = sec gd x/c = cosh x/c ; and

s/c = tan gd x/c ~ sinh x/c.

Numerical Exercise.—A chain whose length is 30 feet is

suspended from two points 20 feet apart in the same hori-

zontal ; find the parameter c, and the depth of the lowest

point.
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The equation s/c = sinh x/c gives 15/e = sinh 10/c, which,

by putting \o/c = z, may be written 1.5,3 = sinh^. By exam-

ining the intersection of the graphs of / = sinh^, y = l.$z,

it appears that the root of this equation is z = 1.6, nearly.

To find a closer approximation to the root, write the equation

in the form_/(V) = sinh z — 1.5^ = 0, then, by the tables,

/(1.60) = 2.3756 — 2.4000 = — .0244,

/(1.62) = 2.4276 — 2.4300 = — .0024,

/(1.64) = 2.4806 — 2.4600 = + .0206;

whence, by interpolation, it is found that /(1.6221) = o, and

z = 1.622 1, c = \o/z = 6.1649. The ordinate of either of

the fixed points is given by the equation

y/c = cosh x/c = cosh \o/c = cosh 1.6221 = 2.6306,

from tables; hence y = 16.2174, and required depth of the

vertex = y — c = 10.0525 feet.*

Prob. 91. In the above numerical problem, find the inclination

of the terminal tangent to the horizon.

Prob. 92. If a perpendicular MN be drawn from the foot of the

ordinate to the tangent at P, prove that MN is equal to the con-

stant c, and that NP is equal to the arc AP. Hence show that

the locus of N is the involute of the catenary, and has the prop-

erty that the length of the tangent, from the point of contact to the

axis of x, is constant. (This is the characteristic property of the

tractory).

Prob. 93. The tension T at any point is equal to the weight of a

portion of the string whose length is equal to the ordinate y of that

point.

Prob. 94. An arch in the form of an inverted catenary f is 30

feet wide and 10 feet high; show that the length of the arch can be

2 ^o
obtained from the equations cosh z — —z = 1, 2s = — sinh z.

3 z

* See a similar problem in Chap. I, Art. 7.

f For the theory of this form of arch, see "Arch" in the Encyclopaedia

Britannica.
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Art. 32. Catenary of Uniform Strength.

If the area of the normal section at any point be made
proportional to the tension at that point, there will then be a

constant tension per unit of area, and the tendency to break

will be the same at all points. To find the equation of the

curve of equilibrium under gravity, consider the equilibrium of

an element PP' whose length is ds, and whose weight is gpoods,

where oo is the section at P, and p the uniform density. This

weight is balanced by the difference of the vertical components

of the tensions at /'and P', hence

d{ T sin 0) = gpwds,

d{T cos0) = o;

therefore T cos = H, the tension at the lowest point, and

T= //sec 0. Again, if co be the section at the lowest point,

then by hypothesis oo/oo = T/H'= sec 0, and the first equation

becomes

Hd(sec sin 0) = gpoo sec ds,

or c d tan = sec ds,

where c stands for the constant H/gpoo
B

, the length of string

(of section g? ) whose weight is equal to the tension at the

lowest point ; hence,

ds = c sec <pd(p, s/c = gd~'0,

the intrinsic equation of the catenary of uniform strength.

Also dx = ds cos = c d<p, dy = ds sin = c tan d<p
;

hence x = c<p, y—c log sec 0,

and thus the Cartesian equation is

y/c = log sec x/c,

in which the axis of x is the tangent at the lowest point.

Prob. 95. Using the same data as in Art. 31, find the parameter

c and the depth of the lowest point. (The equation x/c = gd s/c

gives 10/c = gd 15A, which, by putting 15/c = z, becomes
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gd z — \z. From the graph it is seen that z is nearly 1.7. If

f{z) = gd z — \z, then, from the tables of the gudermanian at the

end of this chapter,

/(1.70) = 1. 1780 — 1. 1333 = + .0447,

/"(i-75) = i-i79 6 — 1-1667 = + -OI2 9>

/"(1.80) = 1. 1804 — 1.2000 = — .0196,

whence, by interpolation, z = 1.7698 and c = 8.4755. Again,

y/c = logs sec x/c ; but x/c = 10/c = 1-1799 ! and I#I 799 radians

= 67° 36' 29"; hence y = 8.4755 X .41914 X 2.3026 = 8.1798, the

required depth.)

Prob. 96. Find the inclination of the terminal tangent.

Prob. 97. Show that the curve has two vertical asymptotes.

Prob. 98. Prove that the law of the tension T, and of the section

w, at a distance s, measured from the lowest point along the

curve, is

T 00
, s

]y
= ^ = cosh

7 ;

and show that in the above numerical example the terminal section

is 2.85 times the minimum section.

Prob. 99. Prove that the radius of curvature is given by
p = c cosh s/c. Also that the weight of the arc ^ is given by
W = H sinh s/c, in which s is measured from the vertex.

Art. 33. The Elastic Catenary.

An elastic string of uniform section and density in its natu-

ral state is suspended from two points. Find its equation of

equilibrium.

Let the element da stretch into ds ; then, by Hooke's law,

ds = da(i + IT), where A is the elastic constant of the string

;

hence the weight of the stretched element ds, = gpwda, —
gpoods/{\ + XT). Accordingly, as before,

d{T sm
<f>) =gpwds/{\ + XT),

and T cos <p = H — gpwc,

hence cd(ta.n 0) = ds/(i -f fi sec 0),

in which ji stands for XH, the extension at the lowest point

;
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therefore ds = <r(sec
2

-j- M sec * 0)^0,

s/c = tan -f- ^(sec tan -)- gd" 1

0),

which is the intrinsic equation of the curve, and reduces to that

of the common catenary when fi = o. The coordinates x, y
may be expressed in terms of the single parameter by put-

ting dx = ds cos = c(sec -\- j.i sec 2
(p)d<p,

dy = ds sin = c(sec
a

-f /< sec 3

0) sin ^0. Whence

x/c = gd" 1

-|- yu tan 0, _y/c = sec + ^jj. tan" 0.

These equations are more convenient than the result of

eliminating 0, which is somewhat complicated.

Art. 34 The Tractory.*

To find the equation of the curve which possesses the

property that the length of the tangent from the point of con-

tact to the axis of x is con-

stant.

Let FT, P'T' be two con-

secutive tangents such that

PT — P'T' = c, and let OT
= t\ draw TS perpendicular

to P'T'; then if PF' = ds, it

is evident that ST' differs

from ds by an infinitesimal of a higher order. Let FT make

an angle with OA, the axis of y; then (to the first order of

infinitesimals) FTd<p = TS = TT' cos ; that is,

cd<p = cos cpdt, t=c gd~'0,

x, = t — c sin 0, = ^(gd~
J — sin 0), y = c cos 0.

This is a convenient single-parameter form, which gives all

* This curve is used in Schiele's anti-friction pivot (Minchin's Statics, Vol. I,

p. 242) ; and in the theory of the skew circular arch, the horizontal projection

of the joints being a tractory. (See "Arch," Encyclopaedia Britannica.) The

equation <p = gd t/c furnishes a convenient method of plotting the curve.
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values of x, y as increases from o to \tz. The value of s, ex-

pressed in the same form, is found from the relation

ds = ST' — dt sin = c tan d(p, s = c log, sec 0.

At the point A, = o, x = o, s = o, ^ = o, y=-c. The

Cartesian equation, obtained by eliminating 0, is

^ = gd"' (cos-
fj

- sin (cos- ^ = cosh- £ - ^/i _*.

If « be put for t/c, and be taken as independent variable,

= gd u, x/c = u — tanh u, y/c = sech «, j/c = log cosh «.

Prob. ioo. Given t = 2^, show that = 75 35', j = 1.3249*:,

y = . 265&Y, x — 1.03601:. At what point is t = c ?

Prob. 101. Show that the evolute of the tractory is the catenary.

(See Prob. 92.)

Prob. 102. Find the radius of curvature of the tractory in terms

of 0; and derive the intrinsic equation of the involute.

Art. 35. The Loxodrome.

On the surface of a sphere a curve starts from the equator

in a given direction and cuts all the meridians at the same

angle. To find its equation

in latitude-and-longitude co-

ordinates :

Let the loxodrome cross

two consecutive meridians

AM, AN\n the points/', Q\
let PR be a parallel of lati-

tude ; let OM= x, MP= y,

MN'= dx, RQ = dy, all in radian measure ; and let the angle

MOP=RPQ = a; then

tan a = RQ/PR, but PR = MN cos MP*
hence dx tan a = dy sec y, and x tan a = gd -

'

y, there being
no integration-constant since y vanishes with x; thus the re-

quired equation is

y — gd (x tan a).

* Jones, Trigonometry (Ithaca, 1890), p. 185.

Mjf
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To find the length of the arc OP: Integrate the equation

ds = dy esc «, whence s = y esc a.

To illustrate numerically, suppose a ship sails northeast,

from a point on the equator, until her difference of longitude is

45°, find her latitude and distance :

Here tan a — I, andjy = gd x = gd \n = gd (.7854) = .7152

radians; s = y Y2 = 1.0114 radii. The latitude in degrees is

40.980.

If the ship set out from latitude yv the formula must be

modified as follows : Integrating the above differential equa-

tion between the limits {xu y) and (x„ y,) gives

(*, - *,) tan " = gd " >, — gd - >,

;

hence gd" 'y„ = gd ~ l

y 1
-j- (.*, — Jr,) tan a, from which the final

latitude can be found when the initial latitude and the differ-

ence of longitude are given. The distance sailed is equal to

(ji
—

^1) csc a radii, a radius being 60 X i8o/;r nautical miles.

Mercator's Chart.—In this projection the meridians are

parallel straight lines, and the loxodrome becomes the straight

line y' = x tan a, hence the relations between the coordinates of

corresponding points on the plane and sphere are x' = x,

y' = gd~'f- Thus the latitude y is magnified into gd~ 'y, which

is tabulated under the name of " meridional part for latitude

y "
; the values of y and of y' being given in minutes. A chart

constructed accurately from the tables can be used to furnish

graphical solutions of problems like the one proposed above.

Prob. 103. Find the distance on a rhumb line between the points

(30 N, 20° E) and (30° S, 40° E).

Art. 36. Combined Flexure and Tension.

A beam that is built-in at one end carries a load P at the

other, and is also subjected to a horizontal tensile force Q ap-

plied at the same point; to find the equation of the curve

assumed by its neutral surface : Let x, y be any point of the



152 HYPERBOLIC FUNCTIONS. [CHAP. IV.

elastic curve, referred to the free end as origin, then the bend-

ing moment for this point is Qy — Px. Hence, with the usual

notation of the theory of flexure,*

EI^~ = Qy — Px, -4 = n2

(y — tax),
dx 1 ax

P , Qm =Q' n =£/

which, on puttingy — mx = it, ax\dd*y/dx* =d*u/dx', becomes

d'u

dx* = nU
>

whence u = A cosh nx -f- B sinh nx,

that is, y = mx -j- A cosh nx -\- B sinh nx.

The arbitrary constants A, B are to be determined by the

terminal conditions. At the free end ;r = o, j/=o; hence A
must be zero, and

y = mx -f- B sinh nx,

-£- = m 4- 72.5 cosh «#
;dx

but at the fixed end, x = I, and dy/dx = o, hence

B = — m/n cosh «/,

and accordingly

*# sinh «;tr

y = mx j
T
.

n cosh nl

To obtain the deflection of the loaded end, find the ordinate

of the fixed end by putting x = /, giving

deflection = mil tanh nl\x n '

Prob. 104. Compute the deflection of a cast-iron beam, 2X2
inches section, and 6 feet span, built-in at one end and carrying

a load of 100 pounds at the other end, the beam being subjected

to a horizontal tension of 8000 pounds. [In this case 7=4/3,
E = 15 X io", Q = 8000, P = 100 ; hence n = 1/50, m = 1/80,

deflection = 8
'

Tr(72 — 50 tanh 1.44) = -5^(72 — 44.69) = .341 inches.]

* Merriman, Mechanics of Materials (New York, 1895), pp. 70-77, 267-269.
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Prob. 105. If the load be uniformly distributed over the beam,

say w per linear unit, prove that the differential equation is

and that the solution isy=A cosh nx-{- B sinh nx-\- mx' -| r.

n

Show also how to determine the arbitrary constants.

Art. 37. Alternating Currents.*

In the general problem treated the cable or wire is regarded

as having resistance, distributed capacity, self-induction, and

leakage
;

although some of these may be zero in special

cases. The line will also be considered to feed into a receiver

circuit of any description
; and the general solution will in-

clude the particular cases in which the receiving end is either

grounded or insulated. The electromotive force may, without

loss of generality, be taken as a simple harmonic function of

the time, because any periodic function can be expressed in a

Fourier series of simple harmonics.-}- The E.M.F. and the

current, which may differ in phase by any angle, will be

supposed to have given values at the terminals of the receiver

circuit ; and the problem then is to determine the E.M.F.

and current that must be kept up at the generator terminals
;

and also to express the values of these quantities at any inter-

mediate point, distant x from the receiving end ; the four

line-constants being supposed known, viz.:

R = resistance, in ohms per mile,

L = coefficient of self-induction, in henrys per mile,

C'= capacity, in farads per mile,

G = coefficient of leakage, in mhos per mile.:):

It is shown in standard works § that if any simple harmonic

* See references in foot-note Art. 27. f Chapter V, Art. 8.

% Kennelly denotes these constants by r, I, c, g. Steinmetz writes s for

wL, K for aoC, 6 for G, and he uses Cfor current.

§ Thomson and Tait, Natural Philosophy, Vol, I. p. 40; Rayleigh, Theory

of Sound, Vol. I. p. 20; Bedell and Crehore, Alternating Currents, p. 214.
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function a sin (oot -(- 0) be represented by a vector of length

a and angle 0, then two simple harmonics of the same period

27T/C0, but having different values of the phase-angle 0, can be

combined by adding their representative vectors. Now the

E.M.F. and the current at any point of the circuit, distant x
from the receiving end, are of the form

e = e, sin (cot -\- 0), i = i, sin (oat -\- 0'), (64)

in which the maximum values e
lf

i
lt and the phase-angles 0, 6',

are all functions of x. These simple harmonics will be repre-

sented by the vectors eJ0, iJ0' ; whose numerical measures

are the complexes e, (cos d -\-j sin If)*, z, (cos 0' -\-j sin 0'),

which will be denoted by e, i. The relations between e and I

may be obtained from the ordinary equations f

di „ „de de „ . ,
di , . ,

dx-= Ge+ c
di< dx = **+ L

dr <
65>

for, since de/dt = aoe, cos (aot -j- 0) = we, sin (oat -\~ -\- ^n),

then de/dt will be represented by the vector <»<?, /0 -f- ^-tt
; and

di/dx by the sum of the two vectors 6^, /0, Cw, /0 + \n
;

whose numerical measures are the complexes Ge, j'aoCe; and

similarly for de/dx in the second equation ; thus the relations

between the complexes e, i are

^ = (G+jooC)e,
d£ = (R+jcoL)i. (66)J

*In electrical theory the symboiyis used, instead of i, for tf— 1.

f Bedell and Crehore, Alternating Currents, p. 181. The sign of dx is

changed, because .* is measured from the receiving end. The coefficient of

leakage, G, is usually taken zero, but is here retained for generality and sym-

metry.

\ These relations have the advantage of not involving the time. Steinmetz

derives them from first principles without using the variable t. For instance,

he regards R -|- jtoL as a generalized resistance-coefficient, which, when applied

to i, gives an E.M.F., part of which is in phase with i, and part in quadrature

with i. Kennelly calls R + jwL the conductor impedance; and G -\- jooC the

dielectric admittance; the reciprocal of which is the dielectric impedance.
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Differentiating and substituting give

^ = (R+jcoL)(G+JGoC)e,

-± = (ye + jwL){G + jooC )i,

155

(67)

and thus e, 1 are similar functions of x, to be distinguished only

by their terminal values.

It is now convenient to define two constants m, m
l
by the

equations*

m* = {R +jooL){G +jooC),< = (i? +JcoL)/(G +jcoC)
; (68)

and the differential equations may then be written

rf*/ dn
d?

= m%e
> ~d? = m

'
l
> (69)

the solutions of which are t

e = A cosh mx -\- B sinh mx, 1 = A' cosh mx -f-
5' sinh ;«#,

wherein only two of the four constants are arbitrary ; for sub-

stituting in either of the equations (66), and equating coeffi-

cients, give

(G -\-jaoC) A = mB', (G +jooC)B = tnA',

whence B' = A/mv A' =. B/mv

Next let the assigned terminal values of e, 1, at the receiver,

be denoted by E, I; then puttings = o gives E = A, I = A',

whence B = mj, B' = E/m
1 ; and thus the general solution is

e = E cosh mx -\- mj sinh mx,

1 _
1 = I cosh ;«x -f- ~E sinh wjt.

(70)

* The complex constants m, m,, are written z, y by Kennelly; and the

variable length x is written Z a . Steinmetz writes v for m.

t See Art. 14, Probs. 28-30; and Art. 27, foot-note.
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If desired, these expressions could be thrown into the ordi-

nary complex form X -\- j'Y, X' -\-jY', by putting for the let-

ters their complex values, and applying the addition-theorems

for the hyperbolic sine and cosine. The quantities X, Y, X',

Y' would then be expressed as functions of x ; and the repre

sentative vectors of e, i, would be e
1
/d,i

l
/&', where e'= X'-\-y,

i," = Xn + Y'\ tan d = Y/X, tan^7 =~Y,

/JT.

For purposes of numerical computation, however, the for-

mulas (70) are the most convenient, when either a chart,* or a

table,f of cosh u, sinh u, is available, for complex values of u.

Prob. 106. J Given the four line-constants: R = 2 ohms per mile

E = 20 millihenrys per mile, C = 1/2 microfarad per mile, c? = o;

and given w, the angular velocity of E.M.F. to be 2000 radians

per second; then

oaL = 40 ohms, conductor reactance per mile;

R -f-jooL = 2 -f- 407 ohms, conductor impedance per mile;

c»C = .001 mho, dielectric susceptance per mile;

C + fcoC = .001;' mho, dielectric admittance per mile;

(G -\-j'ooC)'
1 = — 1 000/ ohms, dielectric impedance per mile;

rri
1 = {R+jooZ)(G +J00C) -— .04 + .002;', which is the

measure of .04005 /177
1

' 8'; therefore

m = measure of .2001 /88° 34' = .0050 -f- .2000/, an ab-

stract coefficient per mile, of dimensions [length] "',

mm^ = m/(G -f- joaC) = 200 — 57' ohms per mile.

Next let the assigned terminals conditions at the receiver be:

7=o (line insulated); and E =1000 volts, whose phase may betaken
as the standard (or zero) phase; then at any distance x, by (70),

E
e = E cosh tnx, 1 = — sinh mx,

in which mx is an abstract complex.

Suppose it is required to find the E.M.F. and current that must
be kept up at a generator 100 miles away; then

* Art. 30, foot-note. ( See Table II.

X The data for this example are taken from Kennelly's article.
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e = iooo cosh (.5 + 207), 1 = 200(40 — j)~' sinh (.5 + 20/),

but, by Prob. 89, cosh (.5 + 20/) = cosh (.5 + 20/ — 6nj)

= COSh (.5 + 1. 15;) = .4600 + .4750/

obtained from Table II, by interpolation between cosh (.5 + 1.17')'

and cosh (.5 + 1.27); hence

e — 460 + 47s/ = ^(cos +7 sin 0),

where log tan = log 475 — log 460 = .0139, = 45° 55', and

e
l
= 460 sec 6 — 625.9 volts, tl]e required E.M.F.

Similarly sinh (.5 + 20/) = sinh (.5 -|- 1.157) = .2126 + 1.02807V

and hence

i = —— (100 +;')(.2i26 + 1.028/) = —-—(4046 + 2060;)
1601 1601 JJ~

= /
1
(cos 0' +/ sin 0'),

where log tan 0' = 9.70684, 0'= 26 59', ^= 4046 sec #'/i6oi = 2.77:

amperes, the phase and magnitude of required current.

Next let it be required to find e at x = 8; then

<? = 1000 cosh (.04 + 1.67") = 10007 s inn 0°4 H~~ - 3/)>

by subtracting $nj, and applying Prob. 89. Interpolation be-

tween sinh (o + 07) and sinh (o + . 17) gives

sinh (o -f- .037') = 00000 -|- .029957.

Similarly sinh (.1 -f -037) = .10004 + • 3°o4/-

Interpolation between the last two gives

sinh (.04 + ^Zj) = .°4°°2 + .029997.

Hence e = 7(40.02 +29.997')= — 29.99+40.027' =^(003 0+7 sin 0),

where

log tan 6 = .12530, 6 = 126° 51',?, = — 29.99 sec 12 &° S 1 ' =
5 -01

volts.

Again, let it be required to find e at x = 16; here

e = 1000 cosh (.08 + 3.27) = — 1000 cosh (.08 + .067),

but cosh (o + .067) = .9970 + 07, cosh (. 1 + .067) = 1.0020 + .0067;

hence cosh (.08 + .067)= 1.0010 +.00487,

and e— — 1001+4.87 = ^(cos #+7 sin 0),

where 8 — 180° 17', e
l
= 1001 volts. Thus at a distance of about

16 miles the E.M.F. is the same as at the receiver, but in opposite
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phase. Since e is proportional to cosh (.005 + .2j)x, the value of

x for which the phase is exactly 180 is n/'.2 = 15.7. Similarly

the phase of the E.M.F. at x = 7.85 is 90°. There is agreement

in phase at any two points whose distance apart is 31.4 miles.

In conclusion take the more general terminal conditions in

which the line feeds into a receiver circuit, and suppose the current

is to be kept at 50 amperes, in a phase 40° in advance of the elec-

tromotive force; then /— 5o(cos 40 +/ sin 40 ) = 38.30 + 32.14/;

and substituting the constants in (70) gives

i
7— 1000 cosh (.005 + ,y')x + (7821 + 6236/') sinh (.005 + .2j)x

= 460+475/—4748+9366/'=— 4288+9841/=.?, (cos #+/sin 0),

where = 113 33', e, = 10730 volts, the E.M.F. at sending end.

This is 17 times what was required when the other end was insulated.

Prob. 107. If the receiving end be grounded, that is if £ = o;

and if a current of 10 amperes be caused to flow to ground; find

the E.M.F. and current to be kept up at the generator. Also

compute these quantities, and their phases, at the distances 7.85,

15.7, 31.42, 94.25 miles from the receiver.

Prob. 108. If self-induction and capacity be zero, and the

receiving end be insulated, show that the graph of the electromo-

tive force is a catenary.

Prob. 109. Neglecting leakage and capacity, prove that the

solution of equations (66) is 1 = I, e = E + (R +jooL)Ix.

Prob. no. If x be measured from the sending end, show how
equations (65), (66) are to be modified; and prove that

_ 1 _
e = E cosh mx — mj

a
sinh mx, 1 = I cosh mx — ~E

a
sinh mx,

where E„ /„ refer to the sending end.

Art. 38. Miscellaneous Applications.

1. The length of the arc of the logarithmic curve y = a" is

j= i(cosh u-\- log tanh \y), in whichM= i/log a, sinh u =y/M.

2. The length of arc of the spiral of Archimedes r = ad is

j = £«(sinh 2u +- 2k), where sinh u = 6.

3. In the hyperbola x'/a1 —y'/f — 1 the radius of curva-

ture is p—{a' sinh" u-\-F cosh 2

iifi/ab; in which u is the

measure of the sector AOP, i.e. cosh u = x/a, sinh u =y/b.

4. In an oblate spheroid, the superficial area of the zone
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between the equator and a parallel plane at a distance y is

S = 7r£
J
(sinh 211 -\- 2u)/2e, wherein b is the axial radius, e the

eccentricity, u = ey/p, and/ parameter of generating ellipse.

5. The length of the arc of the parabolay = 2px, measured

from the vertex of the curve, is / = ^/(sinh 2u-\-2ii), in which

sinh u =y/p =tan 0, where <p is the inclination of the termi-

nal tangent to the initial one.

6. The centre of gravity of this arc is given by

$lx — p
2(cosh

s u — i), 6\ly = p" (sinh 411 — 471) ;

and the surface of a paraboloid of revolution is S = 2n yl.

7. The moment of inertia of the same arc about its ter-

minal ordinate is [= n[xl(x — 2x) -\- ^p'N], where p. is

the mass of unit length, and

N= u — \ sinh 2u — \ sinh 4«+ y
1^ sinh 6u.

8. The centre of gravity of the arc of a catenary measured

from the lowest point is given by

4ly= c"(sinh 2u -f 211), Ix = c\u sinh u — cosh u + 1),

in which u = x/c ; and the moment of inertia of this arc about

its terminal abscissa is

/ = /<c
3

(tV sinn 3U ~\~ i sinn u ~ u cosh M )'

9. Applications to the vibrations of bars are given in Ray-

leigh, Theory of Sound, Vol. I, art. 170; to the torsion of

prisms in Love, Elasticity, pp. 166-74; to the flow of heat

and electricity in Byerly, Fourier Series, pp. 75-81 ;
to wave

motion in fluids in Rayleigh, Vol. I, Appendix, p. 477, and in

Bassett, Hydrodynamics, arts. 120, 384; to the theory of

potential in Byerly p. 135, and in Maxwell, Electricity, arts.

172-4; to Non-Euclidian geometry and many other subjects

in Gunther, Hyperbelfunktionen, Chaps. V and VI. Several

numerical examples are worked out in Laisant, Essai sur les

fonctions hyperboliques.
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Art. 39. Explanation of Tables.

In Table I the numerical values of the hyperbolic functions

sinh u, cosh u, tanh u are tabulated for values of u increasing

from o to 4 at intervals of .02. When u exceeds 4, Table IV

may be used.

Table II gives hyperbolic functions of complex arguments,

in which

cosh (x ± iy) = a ± ib, sinh (x ± iy) = c ± id,

and the values of a, b, c, d are tabulated for values of x

and of y ranging separately from O to 1.5 at intervals of .1.

When interpolation is necessary it may be performed in three

stages. For example, to find cosh (.82 -)- 1.342') : First find

cosh (.82 -|- 1.32), by keeping^ at 1.3 and interpolating between

the entries under x = .8 and.*: = .9 ; next find cosh (.82 -)- 142),

by keeping y at 1.4 and interpolating between the entries under

x = .8 and x = .9, as before; then by interpolation between

cosh (.82 -j- 1.3?) and cosh (.82 -f- 1.42) find cosh( .82-)- 1.342),

in which x is kept at .82. The table is available for all values

of y, however great, by means of the formulas

sinh (x -j- 2in ) = sinh x, cosh (x-\- 2in) = cosh x, etc.

It does not apply when x is greater than 1.5, but this case sel-

dom occurs in practice. This table can also be used as a com-

plex table of circular functions, for

cos (y ± ix) — a :p ib, sin (y ± ix) = d ±ic ;

and, moreover, the exponential function is given by

exp (± x ± iy) = a ± c ± i{b ± d),

in which the signs of c and d are to be taken the same as the

sign of x, and the sign of 2 on the right is to be the product of

the signs of x and of i on the left.

Table III gives the values of v = gd 71, and of the guder-

manian angle 6= 180° v/n, as u changes from O to 1 at inter-
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vals of .02, from I to 2 at intervals of .05, and from 2 to 4 at

intervals of .1.

In Table IV are given the values of gd u, log sinh u, log

cosh u, as u increases from 4 to 6 at intervals of .1, from 6 to

7 at intervals of .2, and from 7 to 9 at intervals of .5.

In the rare cases in which more extensive tables are neces-

sary, reference may be made to the tables* of Gudermann,

Glaisher, and Geipel and Kilgour. In the first the Guderman-

ian angle (written k) is taken as the independent variable, and

increases from o to 100 grades at intervals of .01, the corre-

sponding value of u (written Lk) being tabulated. In the usual

case, in which the table is entered with the value of u, it gives

by interpolation the value of the gudermanian angle, whose

circular functions would then give the hyperbolic functions

of u. When u is large, this angle is so nearly right that inter-

polation is not reliable. To remedy this inconvenience Gu-

dermann's second table gives directly log sinh it, log cosh ?/,

log tanh u, to nine figures, for values of u varying by .001 from

2 to 5, and by .01 from 5 to 12.

Glaisher has tabulated the values of e* and e~ x
, to nine sig-

nificant figures, as x varies by .001 from o to .1, by .01 from O

to 2, by .1 from o to 10, and by I from o to 500. From these

the values of cosh x, sinh x are easily obtained.

Geipel and Kilgour's handbook gives the values of cosher,

sinh x, to seven figures, as x varies by .01 from o to 4.

There are also extensive tables by Forti, Gronau, Vassal,

Callet, and Houel ; and there are four-place tables in Byerly's

Fourier Series, and in Wheeler's Trigonometry.

In the following tables a dash over a final digit indicates

that the number has been increased.

* Gudermann in Crelle's Journal, vols. 6-g, 1831-2 (published separately

under the title Theorie der hyperbolischen Functionen, Berlin, 1833). Glaisher

in Cambridge Phil. Trans., vol. 13, 1881. Geipel and Kilgour's Electrical Hand-

book.
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Table I.—Hyperbolic Functions.

u.
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Table II. Values of cosh (x + iy) and sinh {x + iy).
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Table II. Values of cosh (x + iy) and sinh (x -f iy).
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Table II. Values of cosh (x + iy) and sinh {x + iy).

y



Art. 39.] tables.

Table II. Values of cosh (x -j- iy) and sinh (x -f- iy.)

16/
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Table III.

[Chap. IV.

»


