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Preface

This book is intended for a one semester introduction to abstract algebra�
Most introductory textbooks on abstract algebra are written with a two
semester course in mind� See� for example� the books listed in the Bibli�
ography below� These books are listed in approximate order of increasing
di�culty� A search of the library using the keywords abstract algebra or
modern algebra will produce a much longer list of such books� Some will be
readable by the beginner� some will be quite advanced and will be di�cult to
understand without extensive background� A search on the keywords group
and ring will also produce a number of more specialized books on the subject
matter of this course� If you wish to see what is going on at the frontier of the
subject� you might take a look at some recent issues of the journals Journal
of Algebra or Communications in Algebra which you will 	nd in our library�

Instead of spending a lot of time going over background material� we go
directly into the primary subject matter� We discuss proof methods and
necessary background as the need arises� Nevertheless� you should at least
skim the appendices where some of this material can be found so that you
will know where to look if you need some fact or technique�

Since we only have one semester� we do not have time to discuss any of
the many applications of abstract algebra� Students who are curious about
applications will 	nd some mentioned in Fraleigh 
�� and Gallian 
��� Many
more applications are discussed in Birkho
 and Bartee 
�� and in Dornho

and Horn 
���

Although abstract algebra has many applications in engineering� com�
puter science and physics� the thought processes one learns in this course
may be more valuable than speci	c subject matter� In this course� one learns�
perhaps for the 	rst time� how mathematics is organized in a rigorous man�
ner� This approach� the axiomatic method� emphasizes examples� de	nitions�
theorems and proofs� A great deal of importance is placed on understanding�
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iv PREFACE

Every detail should be understood� Students should not expect to obtain
this understanding without considerable e
ort� My advice is to learn each
de	nition as soon as it is covered in class �if not earlier� and to make a real
e
ort to solve each problem in the book before the solution is presented in
class� Many problems require the construction of a proof� Even if you are
not able to 	nd a particular proof� the e
ort spent trying to do so will help
to increase your understanding of the proof when you see it� With su�cient
e
ort� your ability to successfully prove statements on your own will increase�

We assume that students have some familiarity with basic set theory�
linear algebra and calculus� But very little of this nature will be needed�
To a great extent� the course is self�contained� except for the requirement of
a certain amount of mathematical maturity� And� hopefully� the student�s
level of mathematical maturity will increase as the course progresses�

I will often use the symbol to indicate the end of a proof� Or� in some
cases� will indicate the fact that no more proof will be given� In such
cases the proof will either be assigned in the problems or a reference will be
provided where the proof may be located� This symbol was 	rst used for this
purpose by the mathematician Paul Halmos�

Note� when teaching this course I usually present in class lots of hints
and�or outlines of solutions for the less routine problems�

This version includes a number of improvements and additions suggested
by my colleague Mil�e Kraj�cevski�
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Chapter �

Binary Operations

The most basic de	nition in this course is the following�

De�nition ��� A binary operation � on a set S is a function from S�S
to S� If �a� b� � S�S then we write a�b to indicate the image of the element
�a� b� under the function ��

The following lemma explains in more detail exactly what this de	nition
means�

Lemma ��� A binary operation � on a set S is a rule for combining two
elements of S to produce a third element of S� This rule must satisfy the
following conditions�

�a� a � S and b � S �� a � b � S� 
S is closed under ���
�b� For all a� b� c� d in S

a � c and b � d �� a � b � c � d� 
Substitution is permissible��

�c� For all a� b� c� d in S
a � b �� a � c � b � c�

�d� For all a� b� c� d in S
c � d �� a � c � a � d�

Proof Recall that a function f from set A to set B is a rule which assigns
to each element x � A an element� usually denoted by f�x�� in the set B�
Moreover� this rule must satisfy the condition

x � y �� f�x� � f�y� �����

�



� CHAPTER �� BINARY OPERATIONS

On the other hand� the Cartesian product S � S consists of the set of all
ordered pairs �a� b� where a� b � S� Equality of ordered pairs is de	ned by
the rule

a � c and b � d�� �a� b� � �c� d�� �����

Now in this case we assume that � is a function from the set S � S to the
set S and instead of writing ��a� b� we write a � b� Now� if a� b � S then
�a� b� � S � S� So the rule � assigns to �a� b� the element a � b � S� This
establishes �a�� Now implication ����� becomes

�a� b� � �c� d� �� a � b � c � d� �����

From ����� and ����� we obtain

a � c and b � d �� a � b � c � d� �����

This establishes �b��
To prove �c� we assume that a � b� By re�exivity of equality� we have

for all c � S that c � c� Thus we have a � b and c � c and it follows from
part �b� that a � c � b � c� as desired� The proof of �d� is similar�

Remarks In part �a� the order of a and b is important� We do not
assume that a � b is the same as b � a� Although sometimes it may be true
that a � b � b � a� it is not part of the de	nition of binary operation�

Statement �b� says that if a � c and b � d� we can substitute c for a and
d for b in the expression a�b and we obtain the expression c�d which is equal
to a � b� One might not think that such a natural statement is necessary� To
see the need for it� see Problem ��� below�

Part �c� of the above lemma says that we can multiply both sides of an
equation on the right by the the same element� Part �d�� says that we can
multiply both sides of an equation on the left by the same element�

Binary operations are usually denoted by symbols such as

�� �� ���� �� �� 	� 
���������
��������� � � �
Just as one often uses f for a generic function� we use � to indicate a generic
binary operation� Moreover� if � � S � S � S is a given binary operation on



�

a set S� we write a � b instead of ��a� b�� This is called in�x notation� In
practice� we abbreviate even more� just as we use ab instead of a �b or a�b in
high school algebra� we will often use ab instead of a � b for a generic binary
operation�

Notation� We denote the natural numbers� the integers� the rational
numbers� and the real numbers by the symbols N � Z� Q � and R� respectively�
Recall that

N � f�� �� �� � � �g
Z � f� � � ���������� �� �� �� �� � � �g
Q � f n

m
� n�m � Z and m �� �g

For now� we assume that students have a basic knowledge of all these number
systems� Later in the course� we will give a list of axioms from which all
properties of these number systems can be derived� See Appendix C for some
basic properties of N and Z that we will need from time to time�

We now list some examples of binary operations� Some should be very
familiar to you� Some may be new to you�

Example ��� Ordinary addition on N� Z� Q and R�

Example ��� Ordinary multiplication on N � Z� Q and R�

Example ��� Ordinary subtraction on Z� Q and R� Note that subtraction
is not a binary operation on N since� for example� �� � �� N �

Example ��� Ordinary division on Q�f�g and R�f�g� Note that division
is not a binary operation on N and Z since� for example� �

�
�� N and �

�
�� Z�

Also note that we must remove � from Q and R since division by � is not
de�ned�

Example ��� For each integer n � � de�ne the set

Zn � f�� �� �� � � � � n� �g�

For all a� b � Zn let

a� b � remainder when the ordinary sum of a and b is divided by n� and

a � b � remainder when the ordinary product of a and b is divided by n�
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The binary operations de	ned in Example ��� are usually referred to as
addition modulo n and multiplication modulo n� The integer n in Zn

is called the modulus� The plural of modulus is moduli�
In Example ���� it would be more precise to use something like a �n b

and a �n b for addition and multiplication in Zn� but in the interest of keeping
the notation simple we omit the subscript n� Of course� this means that in
any given situation� we must be very clear about the value of n� Note also
that this is really an in	nite class of examples� Z� � f�� �g� Z� � f�� �� �g�
Z� � f�� �� �� �g� etc� Just to be clear� we give a few examples of addition
and multiplication�

In Z�� � � � � �� � � � � �� � � � � �� � � � � �� � � � � � and � � � � ��

In Z�� � � � � �� � � � � �� � � � � �� � � � � �� � � � � � and � � � � �

Example ��	 For each integer n � � we let 
n� � f�� �� � � � � ng�
A permutation on 
n� is a function from 
n� to 
n� which is both one�to�one
and onto� We de�ne Sn to be the set of all permutations on 
n�� If � and �
are elements of Sn we de�ne their product �� to be the composition of � and
� � that is�

���i� � ����i�� for all i � 
n��

See Appendix B if any of the terms used in this example are unfamiliar�

Again� we have an in	nite number of examples� S�� S�� S�� S�� etc� We
discuss this example as well as the other examples in more detail later� First�
we give a few more examples�

Example ��� Let K denote any one of the following� Z�Q�R �Zn� Let
M��K� be the set of all �� � matrices

�
a b
c d

�

where a� b� c� d are any elements of K� Matrix addition and multiplication are
de�ned by the following rules�

�
a b
c d

�
�

�
a� b�

c� d�

�
�

�
a� a� b � b�

c� c� d� d�

�



�

�
a b
c d

�
�
�
a� b�

c� d�

�
�

�
aa� � bc� ab� � bd�

ca� � dc� cb� � dd�

�

for all a� b� c� d� a�� b�� c�� d� � K�

Example ��
 The usual addition of vectors in Rn � n � N� More precisely

Rn � f�x�� x�� � � � � xn� j xi � R for all ig�
Addition is de�ned by the rule�

�x�� x�� � � � � xn� � �y�� y�� � � � � yn� � �x� � y�� x� � y�� � � � � xn � yn��

where xi � yi denotes the usual addition of the real numbers xi and yi�

Example ��� Addition modulo � for binary sequences of length n� n � N �
	This example is important for computer science�
 In this case the set is

Zn
� � f�x�� x�� � � � � xn� j xi � Z� for all ig�

Recall that Z� � f�� �g� Addition is de�ned by the rule�

�x�� x�� � � � � xn� � �y�� y�� � � � � yn� � �x� � y�� x� � y�� � � � � xn � yn��

where xi � yi denotes addition modulo � 	also called exclusive or
 of xi and
yi� More precisely � � � � �� � � � � �� � � � � � and � � � � ��

Example ���� The cross product u � v of vectors u and v in R� � Recall
that if

u � �u�� u�� u��

v � �v�� v�� v��

then u� v is de�ned by the formula

u� v �

����� u� u�
v� v�

���� ��
���� u� u�
v� v�

���� �
���� u� u�
v� v�

����
�
�

where ���� a b
c d

���� � ad� bc�
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Example ���� The set operations � and � are binary operations on the set
P�X� of all subsets of X� Recall that the set P�X� is called the power set of
X� and� if A and B are sets� then A�B is called the union of A and B and
A � B is called the intersection of A and B�

De�nition ��� Assume that � is a binary operation on the set S�

�� We say that � is associative if

x � �y � z� � �x � y� � z for all x� y� z � S�

�� We say that an element e in S is an identity with respect to � if

x � e � x and e � x � x for all x in S�


� Let e � S be an identity with respect to �� Given x � S we say that an
element y � S is an inverse of x if both

x � y � e and y � x � e�

�� We say that � is commutative if

x � y � y � x for all x� y � S�

�� We say that an element a of S is idempotent with respect to � if

a � a � a�

�� We say that an element z of S is a zero with respect to � if

z � x � z and x � z � z for all x � S�

Problem ��� Assume that � is a binary operation on the set S� Prove the
following statements�

	i
 If e and e� are identities with respect to � on S then e � e�� �Hint�
What is e � e���

	ii
 If z and z� are zeros with respect to � on S then z � z�� �Hint� What
is z � z���



�

Problem ��� Go through all of the above examples of binary operations and
determine which are not associative� Show non�associativity by giving three
speci�c elements a� b� c such that a � �b � c� �� �a � b� � c�
Problem ��� Go through all of the above examples of binary operations and
determine which are not commutative� Show non�commutativity by giving
two speci�c elements a� b such that a � b �� b � a�

Remark A set may have several binary operations on it� For example�
consider the set R of real numbers� We write �R� ��� �R���� and �R���
to indicate the set R with the binary operations multiplication� addition
and subtraction� respectively� Similarly� we use this notation for other sets
such as the set M��R�� of � � � matrices over the real numbers R� We
use �M��R�� �� and �M��R���� to denote matrix multiplication and matrix
addition� respectively� on M��R��

Problem ��� Determine which of the examples �R� ��� �R���� �M��R�� ���
and �P�X���� have identities� If there is an identity� determine the elements
which do not have inverses�

Problem ��� Determine which of the examples �R� ��� �R���� �M��R�� ���
and �P�X���� have zeros� If there is a zero� determine whether or not there
are non�zero elements whose product is zero�

Problem ��	 Determine which of the examples �R� ��� �R���� �M��R�� ���
and �P�X���� have idempotents� Try to �nd all idempotents in each case�

Problem ��� Here we give an example of a rule that appears to de�ne a
binary operation� but does not� since substitution is not permissible� Let
a� b� c� d be integers with b �� � and d �� �� Then

a

b
� Q and

c

d
� Q �

De�ne � on Q by�
a

b
� c
d
�

a � c

b� � d�
�

Show that
a

b
� c
d
� Q �

so Q is closed under �� Show by speci�c example that this rule does not
permit substitution�
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Chapter �

Introduction to Groups

De�nition ��� A group is an ordered pair �G� �� where G is a set and � is
a binary operation on G satisfying the following properties

�� x � �y � z� � �x � y� � z for all x� y� z in G�

�� There is an element e � G satisfying e � x � x and x � e � x for all x
in G�


� For each element x in G there is an element y in G satisfying x�y � e
and y � x � e�

Thus� to describe a group one must specify two things�

�� a set� and

�� a binary operation on the set�

Then� one must verify that the binary operation is associative� that there is
an identity in the set� and that every element in the set has an inverse�

Convention If it is clear what the binary operation is� then the group �G� ��
may be referred to by its underlying set G alone�

Examples of Groups�

�� �Z��� is a group with identity �� The inverse of x � Z is �x�
�� �Q ��� is a group with identity �� The inverse of x � Q is �x�
�� �R��� is a group with identity �� The inverse of x � R is �x�

�
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�� �Q � f�g� �� is a group with identity �� The inverse of x � Q � f�g is
x���

�� �R � f�g� �� is a group with identity �� The inverse of x � R � f�g is
x���

�� �Zn��� is a group with identity �� The inverse of x � Zn is n � x if
x �� �� the inverse of � is �� See Corollary C�� in Appendix C for a
proof that this binary operation is associative�

�� �Rn ��� where � is vector addition� The identity is the zero vector
��� �� � � � � �� and the inverse of the vector x � �x�� x�� � � � � xn� is the
vector �x � ��x���x�� � � � ��xn��

�� �Zn
� ��� where � is vector addition modulo �� The identity is the zero

vector ��� �� � � � � �� and the inverse of the vector x is the vector itself�

�� �M��K���� where K is any one of Z�Q �R �Zn is a group whose identity
is the zero matrix �

� �
� �

�

and the inverse of the matrix

A �

�
a b
c d

�

is the matrix

�A �

� �a �b
�c �d

�
�

Note that the binary operations in the above examples are all commuta�
tive� For historical reasons� there is a special name for such groups�

De�nition ��� A group �G� �� is said to be abelian if x � y � y � x for all
x and y in G� A group is said to be non�abelian if it is not abelian�

Examples of Non�Abelian Groups�

�� For each n � N � the set Sn of all permutations on 
n� � f�� �� � � � � ng is
a group under compositions of functions� This is called the symmetric
group of degree n� We discuss this group in detail in the next chapter�
The group Sn is non�abelian if n � ��



��

�� Let K be any one of Q �R or Zp� where p is a prime number� De�
	ne GL��� K� to be the set of all matrices in M��K� with non�zero
determinant� Then �GL��� K�� �� is a group� Here � represents matrix
multiplication� The identity of GL��� K� is the identity matrix

�
� �
� �

�

and the inverse of �
a b
c d

�

is �
d

ad�bc
�b

ad�bc�c
ad�bc

a
ad�bc

�
�

GL��� K� is called the general linear group of degree � over K�
These groups are non�abelian� We discuss them in more detail later�

Math Joke�
Question� What�s purple and commutes� �For the answer see page ����

Theorem ��� If �G� �� is a group then�
	a
 The identity of G is unique�
	b
 The inverse of each element in G is unique�

Problem ��� Prove Theorem ���� Hints� To establish 	a
 assume that e and
e� are identities of G and prove that e � e�� �This was done in the previous
chapter� but do it again anyhow�� To establish 	b
 assume that x and y are
both inverses of some element a � G� Use the group axioms to prove that
x � y� Show carefully how each axiom is used� Don�t skip any steps�

Now we can speak of the identity of a group and the inverse of an element
of a group� Since the inverse of a � G is unique� the following de	nition makes
sense�

De�nition ��� Let �G� �� be a group� Let a be any element of G� We de�ne
a�� to be the inverse of a in the group G�
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The above de	nition is used when we think of the group�s operation as
being a type of multiplication or product� If instead the operation is denoted
by �� we have instead the following de	nition�

De�nition ��� Let �G��� be a group� Let a be any element of G� We de�ne
�a to be the inverse of a in the group G�

Theorem ��� Let �G� �� be a group with identity e� Then the following hold
for all elements a� b� c� d in G�

�� If a � c � a � b� then c � b� 
Left cancellation law for groups��

�� If c � a � b � a� then c � b� 
Right cancellation law for groups��


� Given a and b in G there is a unique element x in G such that a�x � b�

�� Given a and b in G there is a unique element x in G such that x�a � b�

�� If a � b � e then a � b�� and b � a��� 
Characterization of the inverse
of an element��

�� If a � b � a for just one a� then b � e�

�� If b � a � a for just one a� then b � e�

�� If a � a � a� then a � e� 
The only idempotent in a group is the
identity��

�� �a����� � a�

��� �a � b��� � b�� � a���

Problem ��� Prove Theorem ����

Problem ��� Restate Theorem ��� for a group �G��� with identity �� 	See
De�nition ����


Problem ��� Give a speci�c example of a group and two speci�c elements
a and b in the group such that �a � b��� �� a�� � b���

Problem ��� Let � be an associative binary operation on the set S and let
a� b� c� d � S� Prove the following statements� �Be careful what you assume��
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�� �a � b� � �c � d� � ��a � b� � c� � d�
�� �a � b� � �c � d� � a � �b � �c � d���

� In �� and �� we see three di�erent ways to properly place parentheses

in the product� a � b � c � d� Find all possible ways to properly place
parentheses in the product a�b�c�d and show that all lead to the same
element in S�

Theorem ��� �The Generalized Associative Law� Let � be an associa�
tive binary operation on a set S� If a�� a�� � � � � an is a sequence of n � �
elements of S� then the product

a� � a� � � � � � an
is unambiguous� that is� the same element will be obtained regardless of how
parentheses are inserted in the product 	in a legal manner
�

Proof The case n � � is just the associative law itself� The case n � �
is established in Problem ���� The general case can be proved by induction
on n� The details are quite technical� so to save time� we will omit them�
One of the problems is stating precisely what is meant by  inserting the
parentheses in a legal manner!� The interested reader can 	nd a proof in
most introductory abstract algebra books� See for example Chapter ��� of
the book Basic Algebra I 
�� by Nathan Jacobson�

Remark� From now on� unless stated to the contrary� we will assume the
Generalized Associative Law� That is� we will place parentheses in a product
at will without a detailed justi	cation� Note� however� the order may still
be important� so unless the binary operation is commutative we must still pay
close attention to the order of the elements in a product or sum�

Problem ��	 Show that if a�� a�� a� are elements of a group then

�a� � a� � a���� � a��
� � a��

� � a��
� �

Show that in general if n � N and a�� a�� � � � � an are elements of a group then

�a� � a� � � � � � an��� � a��
n � � � � � a��

� � a��
� �

Now that we have the Generalized Associative Law� we can de	ne an for
n � Z�
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De�nition ��� Let �G� �� be a group with identity e� Let a be any element
of G� We de�ne integral powers an� n � Z� as follows�

a� � e

a� � a

a�� � the inverse of a

and for n � ��
an � an�� � a
a�n � �a���n

Using this de	nition� it is easy to establish the following important theorem�

Theorem ��� �Laws of Exponents for Groups� Let �G� �� be a group
with identity e� Then for all n�m � Z we have

an � am � an�m for all a � G�

�an�m � anm for all a � G�

and whenever a� b � G and a � b � b � a we have

�a � b�n � an � bn�

This theorem is easy to check for n�m � N � A complete proof for n�m � Z

involves a number of cases and is a little tedious� but the following problem
gives some indication of how this could be done�

Problem ��� Let �G� �� be a group with identity e� Prove using De�nition
��� the following special cases of Theorem ���� For a� b � G�

�� a� � a� � a��

�� a� � a�� � a���


� a�� � a� � a��

�� a�� � a�� � a��

�� a�� � a� � a��

�� Assuming a � b � b � a� a� � b� � �a � b���



��

�� Assuming a � b � b � a� a�� � b�� � �a � b����

Problem ��
 Restate De�nition ��� for additive notation� �In this case an

is replaced by na��

Problem ��� Restate Theorem ��� for a group whose operation is ��

Answer to question on page ��� An abelian grape�
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The Symmetric Groups

Recall that if n is a positive integer� 
n� � f�� �� � � � � ng� A permutation
of 
n� is a one�to�one� onto function from 
n� to 
n� and Sn is the set of all
permutations of 
n�� If these terms are not familiar� it would be a good idea
to take some time to study Appendix B before proceeding�

Let us discuss the di
erent ways to specify a function from 
n� to 
n�
and how to tell when we have a permutation� It is traditional �but not
compulsory� to use lower case Greek letters such as �� � � �� 	� etc�� to
indicate elements of Sn� To be speci	c let n � �� We may de	ne a function
� � 
�� � 
�� by specifying its values at the elements �� �� �� and �� For
example� let�s say�

���� � � ���� � � ���� � � ���� � ��

Another way to specify � is by exhibiting a table which gives its value�

� �

�
� � � �
� � � �

�
�

We call this the two line or two row notation� The function � just de	ned is
one�to�one and onto� that is� it is a permutation of 
���

For another example� let

� �

�
� � � �
� � � �

�
�

The function � is not one�to�one since � �� � but ���� � ����� This problem
can always be identi	ed by the existence of the same element more than

��
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once in the second line of the two line notation� � is also not onto since the
element � does not appear in the second line�

Let

� �

�
� � � � � n

���� ���� � � � ��n�

�
�

be the two line notation of an arbitrary function � � 
n�� 
n�� Then�

��� � is one�to�one if and only if no element of 
n� appears more
than once in the second line�

��� � is onto if and only if every element of 
n� appears in the
second line at least once�

Thus � is a permutation if and only if the second row is just a rearrangement
or shu"ing of the numbers �� �� � � � � n�

The composition of two permutations�

If � and � are elements of Sn� then �� is de	ned to be the composition of
the functions � and � � That is� �� is the function whose rule is given by�

���x� � ����x��� for all x � 
n��

We sometimes call �� simply the product of � and � � Let�s look at an example
to see how this works� Let � and � be de	ned as follows�

� �

�
� � �
� � �

�
� � �

�
� � �
� � �

�

It follows that

����� � ������� � ���� � �
����� � ������� � ���� � �
����� � ������� � ���� � �

Thus we have

�� �

�
� � �
� � �

�
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One can also 	nd products of permutations directly from the two line nota�
tion as follows�

First Step�

�
� � �
� � �

��
� � �
� � �

�
�

�
� � �
� � �

�

Second Step�

�
� � �
� � �

��
� � �
� � �

�
�

�
� � �
� � �

�

Third Step�

�
� � �
� � �

��
� � �
� � �

�
�

�
� � �
� � �

�

Problem ��� Compute the following products in S��

���

�
� � � �
� � � �

��
� � � �
� � � �

�

���

�
� � � �
� � � �

��
� � � �
� � � �

�

���

�
� � � �
� � � �

��
� � � �
� � � �

�

���

�
� � � �
� � � �

��
� � � �
� � � �

�

Whenever we need to prove two functions are equal� we require the fol�
lowing de	nition�

De�nition ��� If � � A � B and � � A � B are functions then � � � if
and only if

��x� � ��x�� for all x � A�

In particular� if � and � are in Sn then � � � if and only if

��x� � ��x�� for all x � 
n��
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The identity of Sn�

The identity of Sn is the so�called identity function


 � 
n�� 
n��

which is de	ned by the rule�


�x� � x� for all x � 
n��

In the two line notation 
 is described by


 �

�
� � � � � n
� � � � � n

�

The function 
 is clearly one�to�one and onto and satis	es


� � � and �
 � �� for all � � Sn�

So 
 is the identity of Sn with respect to the binary operation of composition�

Note that we use the Greek letter 
 �iota� to indicate the identity of Sn��

The inverse of an element � � Sn�

If � � Sn� then by de	nition � � 
n�� 
n� is one�to�one and onto� Hence the
rule

����y� � x if and only if ��x� � y

de	nes a function ��� � 
n� � 
n�� The function ��� is also one�to�one and
onto �check this#� and satis	es

���� � 
 and ���� � 
�

so it is the inverse of � in the group sense also�
In terms of the two line description of a permutation� if

� �

� � � � x � � �
� � � y � � �

�

then

��� �

� � � � y � � �
� � � x � � �

�
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The inverse of a permutation in the two line notation may be obtained
by interchanging the two lines and then reordering the columns so that the
numbers on the top line are in numerical order� Here�s an example�

� �

�
� � �
� � �

�

Interchanging the two lines we have��
� � �
� � �

�
�

Reordering the columns we obtain

��� �

�
� � �
� � �

�
�

Problem ��� Find the inverses of each of the following permutations in two
line notation� Check in each case that ���� � 
 and ���� � 
�

� �

�
� � � �
� � � �

�

� �

�
� � � � �
� � � � �

�

Theorem ��� For any three functions

� � A� B� 	 � B � C� � � C � D

we have

��	�� � ��	���

Proof Let x � A� Then

��	���x� � �	���x�� � ��	���x����

and

��	���x� � ��	��x�� � ��	���x����

It follows that

��	���x� � ��	���x� for all x � A�

Hence ��	�� � ��	���
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Corollary ��� The binary operation of composition on Sn is associative�

With this corollary� we complete the proof that Sn under the binary operation
of composition is a group�

The Cycle Diagram of a Permutation

An important way to visualize an element � of Sn is as follows� Arrange
n dots in the plane� Number the dots � through n� For all i � 
n�� if ��i� � j
draw an arrow from dot number i to dot number j� We call this picture the
cycle diagram of �� To get a nice picture� it is best to use the following
technique for drawing the diagram�

�� Draw a dot and number it �� Let i� � ����� If i� �� � draw another dot
and label it i��

�� Draw an arrow from dot � to dot i�� �Note that i� � � is possible��

�� Assume that dots numbered �� i�� i�� � � � � ik have been drawn� Consider
two cases�

�i� There is an arrow leaving every dot drawn so far� In this case let
ik�� be the smallest number in 
n� not yet labeling a dot� If there
are no such then stop� you have completed the diagram� otherwise
draw a new dot and label it ik��

�ii� There is a dot numbered j with no arrow leaving it� In this case
let ik�� � ��j�� If there is no dot labeled ik�� draw a new dot and
label it ik��� Draw an arrow from dot j to dot ik���

�� Now repeat step � with k � � replacing k�

Example ��� � The cycle diagram of the following permutation is given in
Figure 
���

� �

�
� � � � � � � � � �� �� �� �� �� ��
�� �� � � � � � �� � �� �� � �� � �

�
�

Notice that the diagram consists of 	ve  cycles!� one  ��cycle!� one  ��cycle!�
two  ��cycles! and one  ��cycle!� Every cycle diagram will look something
like this� That�s why we call it the cycle diagram�



��


diagram goes here�

The cycle diagram of � from Exercise ���

Problem ��� Draw the cycle diagrams for all �� elements of S�� You will
need a systematic way to list the elements S� to make sure you have not
missed any�

We now give a more precise de	nition of a  cycle!�

De�nition ��� Let i�� i�� � � � � ik be a list of k distinct elements from 
n��
De�ne a permuation � in Sn as follows�

��i�� � i�
��i�� � i�
��i�� � i�

���
���

���
��ik��� � ik
��ik� � i�

and if x �� fi�� i�� � � � � ikg then

��x� � x

Such a permutation is called a cycle or a k�cycle and is denoted by

�i� i� � � � ik��
If k � � then the cycle � � �i�� is just the identity function� i�e�� � � 
�

For example� let � be the ��cycle de	ned by � � �� � ��� � may be
considered as an element of S� in which case in two line notation we have

� �

�
� � �
� � �

�
�
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Notice that according to the de	nition if x �� f�� �� �g then ��x� � x� So we
could also consider �� � �� as an element of S�� In which case we would have�

� �

�
� � � �
� � � �

�
�

Or we could consider �� � �� as an element of S�� In which case we would
have�

� �

�
� � � � �
� � � � �

�
�

Similarly� �� � �� could be an element of Sn for any n � �� Note also that
we could specify the same permutation by any of the following

� � �� � ��� � � �� � ��� � � �� � ���

In this case� there are three numbers �� �� � in the cycle� and we can begin
the cycle with any one of these� In general� there are k di
erent ways to
write a k�cycle� One can start with any number in the cycle�

Problem ��� Below are listed � di
erent cycles in S��
�a� Describe each of the given cycles in two line notation�
�b� Draw the cycle diagram of each cycle�

�� ���

�� �� ��

�� �� � ��

�� �� � � ��

�� �� � � � ��

De�nition ��� Two cycles �i� i� � � � ik� and �j� j� � � � j�� are said to be
disjoint if the sets fi�� i�� � � � � ikg and fj�� j�� � � � � j�g are disjoint�

So� for example� the cycles �� � �� and �� � �� are disjoint� but the cycles
�� � �� and �� � �� are not disjoint�

Theorem ��� If � and � are disjoint cycles� then �� � ���



��

Proof Let � � �a� � � �ak� and � � �b� � � � b��� Let fc�� � � � � cmg be the ele�
ments of 
n� that are in neither fa�� � � � � akg nor fb�� � � � � b�g� Thus


n� � fa�� � � � � akg � fb�� � � � � b�g � fc�� � � � � cmg�
We want to show ���x� � ���x� for all x � 
n�� To do this we consider
	rst the case x � ai for some i� Then ai �� fb�� � � � � b�g so ��ai� � ai� Also
��ai� � aj� where j � i� � or j � � if i � k� So also ��aj� � aj� Thus

���ai� � ��ai� � aj � ��aj� � ����ai� � ���ai��

Thus� ���ai� � ���ai�� It is left to the reader to show that ���x� � ���x� if
x � bi or x � ci� which will complete the proof�

Problem ��� Show by example that if two cycles are not disjoint they need
not commute�

Theorem ��� Every element � � Sn� n � �� can be written as a product

� � ���� � � ��m �����

where ��� ��� � � � � �m are pairwise disjoint cycles� that is� for i �� j� �i and �j
are disjoint� If all ��cycles of � are included� the factors are unique except
for the order�

The factorization ����� is called the disjoint cycle decomposition of ��

To save time we omit a formal proof of this theorem� The process of
	nding the disjoint cycle decomposition of a permutation is quite similar
to 	nding the cycle diagram of a permutation� Consider� for example� the
permutation � � S��

� �

�
� � � � � � � � � �� �� �� �� �� ��
�� �� � � � � � �� � �� �� � �� � �

�
�

The disjoint cycle decomposition of � is

� � �� �� �� � �� ����� �� �� ���� ���� ������

Compare this with the cycle diagram given for this same permutation on
page ��� To obtain this� one starts a cycle with �� since ���� � �� we
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have the partial cycle �� ��� Next� we observe that ����� � ��� This gives
the partial cycle �� �� ��� We continue in this way till we obtain the cycle
�� �� �� � �� ���� Then we pick the smallest number in 
��� not used so
far� namely� �� We start a new cycle with �� Noting that ���� � �� we have
the partial cycle �� ��� Continuing we obtain the cycle �� �� �� ��� And we
continue in this way till all the elements of 
��� are in some cycle�

Problem ��	 Find the disjoint cycle decomposition of the following permu�
tations in S��

� �

�
� � � � � �
� � � � � �

�

� �

�
� � � � � �
� � � � � �

�

� �

�
� � � � � �
� � � � � �

�

Problem ��� Find the disjoint cycle decomposition of the following permu�
tations in S�� �Each permutation is given as a product of cycles� Try to do
this without converting the cycle notation to the two line notation��

��� �� � ���� � ��
��� �� � � � ���� � ���� � ��
��� �� ���� ��
��� �� ���� ���� ��

Problem ��
 	a
 Verify that if a� b� c� d� e are distinct elements of 
n� then
each of the following cycles can be written as a product of ��cycles� �Hint�
look at 	

 and 	�
 in Problem 
���� 	b
 Verify that the inverse of each of
these cycles is a cycle of the same size�

��� �a b c��
��� �a b c d�
��� �a b c d e��

De�nition ��� An element of Sn is called a transposition if and only if it
is a ��cycle�



��

Note that the transposition �i j� interchanges i and j and leaves the other
elements of 
n� 	xed� It transposes i and j�

De�nition ��� An integer n is even if n � �k for some integer k� It is odd
if n � �k�� for some integer k� The parity of an integer is the property of
being even or odd� Two integers have the same parity if they are both even
or if they are both odd� They have di�erent parity if one is even and the
other is odd�

Theorem ��� Every element of Sn can be written as a product of transpo�
sitions� The factors of such a product are not unique� however� if � � Sn
can be written as a product of k transpositions and if the same � can also be
written as a product of � transpositions� then k and � have the same parity�

The 	rst part of this theorem is easy� Generalizing Problem ���� we see
that every cycle can be written as a product of transpositions as follows�

�i� i� i� � � � ik� � �i� ik� � � � �i� i���i� i���
Then� since each permutation is a product of cycles� we can obtain each
permutation as a product of transpositions� The second part is more di�cult
to prove and� in the interest of time� we omit the proof� A nice proof may
be found in Fraleigh �
��� page �����

Problem ��� Write the permutation � on page �� as a product of transpo�
sitions� Do it in more than one way� How many transpositions are in each
of your products�

Problem ���� Give the disjoint cycle decomposition of each of the � ele�
ments of S�� Also write each element of S� as a product of transpositions�

De�nition ��	 A permutation is even if it is a product of an even number of
transpositions and is odd if it is a product of an odd number of transpositions�
We de�ne the function sign � Sn � f����g by

sign��� �

�
� if � is even

�� if � is odd

If n � � then there are no transpositions� In this case to be complete we
de�ne the identity permutation 
 to be even�
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Problem ���� Show that the function sign satis�es

sign���� � sign���sign���

for all � and � in Sn�

Remark� Let A � 
aij� be an n� n matrix� The determinant of A may be
de	ned by the sum

det�A� �
X
��Sn

sign���a��	�
a��	�
 � � �an�	n
�

For example� if n � � we have only two permutations 
 and �� ��� Since
sign�
� � � and sign��� ��� � �� we obtain

det�A� � a��a�� � a��a���

Problem ���� Find the sign of each element of S� and use this information
to write out the formula for det�A� when n � �� 	Note that in this case the
determinant is a sum of � terms�


Problem ���� If n � �� how many terms are in the above formula for the
determinant�

De�nition ��� If �G� �� is a group� the number of elements in G is called
the order of G� We use jGj to denote the order of G�

Note that jGj may be 	nite or in	nite� If it is 	nite jGj � n for some
positive integer n� An interesting but di�cult problem is that of determining
all groups of a 	xed order n� For small n this can be done as we shall see�
but there seems to be no hope of answering the question for all values of n
in spite of the e
orts of many mathematicians who specialize in the study of
	nite groups�

Problem ���� Find jGL���Z��j and jM��Z��j�

Theorem ��	 jSnj � n# for all n � ��
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Proof Let n be any positive integer� Elements of Sn have the form

�
� � � � � � n
a� a� a� � � � an

�

where a�� a�� � � � � an is any rearrangement of the numbers �� �� � � � � n� So the
problem is how many ways can we select the a�� a�� � � � � an� Note that there
are n ways to select a�� Once a choice is made for a�� there are n�� remaining
possibilities for a�� Thus� there are altogether n�n � �� ways to select a�a��
Then� for each choice of a�a�� there are n � � remaining possibilities for a��
Thus� there are n�n � ���n � �� ways to select a�a�a�� Continuing in this
way� we see that there are

n�n� ���n� �� � � � � � � � n#

ways to choose a�� a�� � � � � an�

Problem ���� Show that the inverse of a k�cycle is also an k�cycle� Hint�
Show that if a�� a�� � � � � ak are distinct elements of 
n� then

�a� a��
�� � �a� a��

�a� a� a��
�� � �a� a� a��

�a� a� a� a��
�� � �a� a� a� a��

and more generally

�a� a� � � � ak��� � �ak � � � a� a��
Hint� Let � � �a� a� � � � ak� and � � �ak � � � a� a��� Show that ����ai�� � ai
for all i by considering three cases� i �� f�� �� � � � � kg� i � f�� �� � � � � k��g and
i � k�

Problem ���	 Show that if � is a k�cycle then sign��� � � if k is odd and
sign��� � �� if k is even�

Problem ���� �Challenge Problem� For � � Sn prove that

� is even ��
Y
i�k

��k�� ��i�

k � i
� �

� is odd ��
Y
i�k

��k�� ��i�

k � i
� ��
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Chapter �

Subgroups

From now on� unless otherwise stated� G will denote a group whose binary
operation is denoted by a � b or simply ab for a� b � G� The identity of G will
be denoted by e and the inverse of a � G will be denoted by a��� Sometimes�
however� we may need to discuss groups whose operations are thought of as
addition� In such cases we write a � b instead of ab� Also in this case� the
identity is denoted by � and the inverse of a � G is denoted by�a� De	nitions
and results given using multiplicative notation can always be translated to
additive notation if necessary�

De�nition ��� Let G be a group� A subgroup of G is a subset H of G
which satis	es the following three conditions�

�� e � H�

�� If a� b � H� then ab � H�

�� If a � H� then a�� � H�

For convenience we sometimes write H � G to mean that H is a subgroup
of G�

Problem ��� Translate the above de�nition into additive notation�

Remark If H is a subgroup of G� then the binary operation on G when
restricted to H is a binary operation on H� From the de	nition� one may
easily show that a subgroup H is a group in its own right with respect to this
binary operation� Many examples of groups may be obtained in this way� In
fact� in a way we will make precise later� every 	nite group may be thought
of as a subgroup of one of the groups Sn�

��



�� CHAPTER �� SUBGROUPS

Problem ��� Prove that if G is any group� then

�� feg � G�

�� G � G�

The subgroups feg and G are said to be trivial subgroups of G�

Problem ��� 	a
 Determine which of the following subsets of S� are sub�
groups of S��

�� H � f
� �� ��� �� ��� �� ���� ��g
�� K � f
� �� � ��� �� � ��g

� J � f
� �� ��� �� � ��g
�� L � f� � S� j ���� � �g�

	b
 Determine which of the following subsets of Z�� are subgroups of Z���
	Here the binary operation is addition modulo ���


�� A � f�� �� �� �� g
�� B � f�� �g

� C � f�� �� �� �� �� �g

	c
 Determine which of the following subsets of Z are subgroups of Z� 	Here
the binary operation is addition�


�� U � f�k jk � Zg
�� V � f�k � � j k � Ng

� W � f�k � � j k � Zg

Problem ��� Let

SL���R� � fA � GL���R� j det�A� � �g�
Prove that SL���R� � GL���R��

SL���R� is called the Special Linear Group of Degree � over R



��

Problem ��� For n � N � let An be the set of all even permutations in the
group Sn� Show that An is a subgroup of Sn�

An is called the alternating group of degree n�

Problem ��	 List the elements of An for n � �� �� �� �� Based on this try to
guess the order of An for n 
 ��

De�nition ��� Let a be an element of the group G� If there exists n � N

such that an � e we say that a has �nite order� and we de�ne

o�a� � minfn � N j an � eg
If an �� e for all n � N � we say that a has in�nite order and we de�ne

o�a� ���

In either case we call o�a� the order of a�

Note carefully the di�erence between the order of a group and the order
of an element of a group� Some authors make matters worse by using the
same notation for both concepts� Maybe by using di
erent notation it will
make it a little easier to distinguish the two concepts�

If n � �� to prove that o�a� � n we must show that ai �� e for i �
�� �� � � � � n � � and an � e� Note also that a � e if and only if o�a� � �� So
every element of a group other than e has order n � � or ��

Problem ��� Translate the above de�nition into additive notation� That is�
de�ne the order of an element of a group G with binary operation � and
identity denoted by ��

Problem ��
 Find the order of each element of S��

Problem ��� Find the order of a k�cycle when k � �� �� �� �� Guess the
order of a k�cycle for arbitrary k�

Problem ���� Find the order of the following permutations�
	a
 �� ���� � ��
	b
 �� ���� ���� � � ��
	c
 �� ���� ���� � � ���� �� ���
	d
 Try to �nd a rule for computing the order of a product disjoint cycles

in terms of the sizes of the cycles�
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Problem ���� Find the order of each element of the group �Z�����

Problem ���� Find the order of each element of GL���Z��� �Recall that
GL���Z�� is the group of all �� � matrices with entries in Z� with non�zero
determinant� Recall that Z� � f�� �g and the operations are multiplication
and addition modulo ���

Problem ���� Find the order of the element � in the group �R � f�g� ���
Are there any elements of �nite order in this group�

De�nition ��� Let a be an element of the group G� De�ne

hai � fai � i � Zg�
We call hai the subgroup of G generated by a�

Remark Note that

hai � f� � � � a��� a��� a��� a�� a�� a�� a�� � � � g�
In particular� a � a� and e � a� are in hai�
Problem ���� Translate the above de�nition of hai and the remark into
additive notation�

Theorem ��� For each a in the group G� hai is a subgroup of G� hai con�
tains a and is the smallest subgroup of G that contains a�

Proof As just noted e � a� � hai� Let an� am � hai� Since n �m � Z it
follows from Theorem ��� that

anam � an�m � hai�
Also from Theorem ���� if an � hai� since n���� � �n we have

�an��� � a�n � hai�
This proves that hai is a subgroup�

Since a � a� it is clear that a � hai� If H is any subgroup of G that
contains a� since H is closed under taking products and taking inverses�
an � hai for every n � Z� So hai � H� That is� every subgroup of G that
contains a also contains hai� This implies that hai is the smallest subgroup
of G that contains a�
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Theorem ��� Let G be a group and let a � G� If o�a� � �� then hai � feg�
If o�a� � n where n � �� then

hai � fe� a� a�� � � � � an��g
and the elements e� a� a�� � � � � an�� are distinct� that is�

o�a� � jhaij�
Proof Assume that o�a� � n� The case n � � is left to the reader� Suppose
n � �� We must prove two things�

�� If i � Z then ai � fe� a� a�� � � � � an��g�
�� The elements e� a� a�� � � � � an�� are distinct�

To establish � we note that if i is any integer we can write it in the form
i � nq � r where r � f�� �� � � � � n � �g� Here q is the quotient and r is the
remainder when i is divided by n� Now using Theorem ��� we have

ai � anq�r � anqar � �an�qar � eqar � ear � ar�

This proves �� To prove �� assume that ai � aj where � � i � j � n� �� It
follows that

aj�i � aj�	�i
 � aja�i � aia�i � a� � e�

But j�i is a positive integer less than n� so aj�i � e contradicts the fact that
o�a� � n� So the assumption that ai � aj where � � i � j � n � � is false�
This implies that � holds� It follows that hai contains exactly n elements�
that is� o�a� � jhaij�
Theorem ��� If G is a �nite group� then every element of G has �nite
order�

Proof Let a be any element of G� Consider the in	nite list

a�� a�� a�� � � � � ai� � � �

of elements in G� Since G is 	nite� all the elements in the list cannot be
di
erent� So there must be positive integers i � j such that ai � aj� Since
i � j� j � i is a positive integer� Then using Theorem ��� we have

aj�i � aj�	�i
 � aja�i � aia�i � a� � e�

That is� an � e for the positive integer n � j� i� So a has 	nite order� which
is what we wanted to prove�
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Problem ���� For each choice of G and each given a � G list all the ele�
ments of the subgroup hai of G�

�� G � S�� a � �� ���

�� G � S�� a � �� � ���


� G � S�� a � �� � � ���

�� G � S�� a � �� ���� ���

�� G � Z� a � ��

�� G � Z� a � ���
�� G � Z��� a � ��

�� G � Z��� a � ��

�� G � GL���Z��� a �

�
� �
� �

�
�

��� G � GL���R�� a �

�
� ��
� �

�
�

Problem ���	 Suppose a is an element of a group and o�a� � n� Prove that
am � e if and only if n jm� �Hint� The Division Algorithm from Appendix C
may be useful for the proof in one direction��
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The Group of Units of Zn

De�nition ��� Let n � �� An element a � Zn is said to be a unit if there
is an element b � Zn such that ab � �� Here the product is multiplication
modulo n� We denote the set of all units in Zn by Un�

Note that � is a unit in Z� since � � � � �� Since the multiplication is
commutative� � and � are both units� We say that � and � are inverses
of each other� But note that if we write ��� � �� we must keep in mind
that by ��� in this context we do not mean the rational number ���� The
following theorem is easy to prove if we assume that multiplication modulo
n is associative and commutative�

Theorem ��� Un is a group under multiplication modulo n�

We call Un the group of units of Zn�

Problem ��� List all the elements of Un for n � f�� �� �� � � � � ��g�

Problem ��� For which n � f�� �� �� � � � � ��g is there an element a � Un

such that Un � hai�

Theorem ��� For n � �� Un � fa � Zn � gcd�a� n� � �g�

Remark� This theorem is established in number theory courses� In number
theory� the order of the group Un is important enough to have its own name
and notation� The order of Un is denoted by ��n�� is called the Euler totient
function and is pronounced fee of n� In number theory it is proved that if a

��
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and b are positive integers such that gcd�a� b� � � then ��ab� � ��a���b� and
if p is prime and n � N then ��pn� � pn � pn��� These facts make it easy
to compute ��n� if one can write n as a product of primes� But there is no
known easy way to compute ��n� if the factorization of n is unknown�

Note that there are four di
erent but similar symbols used in mathemat�
ics�

�� � � lower case Greek letter phi �pronounced fee�

�� $ � capital Greek letter Phi

�� � � lower case script Greek letter phi

�� � � slashed zero �not Greek� but Danish� and symbol for the empty set

Problem ��� Prove the easy part of Theorem ���� namely� show that if a �
Zn and gcd�a� n� � d 
 �� then a is not a unit� �Hint� Show 	�
 that if
a � Zn and gcd�a� n� � d 
 � there is an element b � Zn � f�g such that
ab � �� 	�
 If b � Zn � f�g and ab � � then a is not a unit� �

Theorem ��� If p is a prime then there is an element a � Up such that
Up � hai�

Proof� This theorem is proved in advanced courses in number theory or
abstract algebra�

Problem ��� Demonstrate Theorem ��
 for all primes p � ���

Remark It will be noted that sometimes even when n is not prime there is
an a � Un such that Un � hai� In fact� the following theorem from advanced
number theory tells us exactly when such an a exists�

Theorem ��� If n � � then Un contains an element a satisfying Un � hai
if and only if a has one of the following forms� �� �� pk� or �pk where p is
an odd prime and k � N�

So� for example� there is no such a in Un if n � �k when k � �� nor for n � ��
or ���
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Direct Products of Groups

Recall that the Cartesian product X��X��� � ��Xn of n sets X�� X�� � � � � Xn

is the set of all ordered n�tuples �x�� x�� � � � � xn� where xi � Xi for all i �
f�� �� � � � � ng� Equality for n�tuples is de	ned by

�x�� x�� � � � � xn� � �y�� y�� � � � � yn��� xi � yi for all i � f�� �� � � � � ng�
De�nition 	�� If G�� G�� � � � � Gn is a list of n groups we make the Cartesian
product G� �G� � � � � �Gn into a group by de�ning the binary operation

�a�� a�� � � � � an� � �b�� b�� � � � � bn� � �a� � b�� a� � b�� � � � � an � bn��
Here for each i � f�� �� � � � � ng the product ai � bi is the product of ai and
bi in the group Gi� We call this group the direct product of the groups
G�� G�� � � � � Gn�

As an example� consider the direct product Z��Z� of the two groups Z�

and Z��

Z� � Z� � f��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��g�
We add modulo � in the 	rst coordinate and modulo � in the second coordi�
nate� Since the binary operation in each factor is addition� we use � for the
operation in the direct product� So� for example� in this group

��� �� � ��� �� � �� � �� � � �� � ��� ���

The identity is clearly ��� �� and� for example� the inverse of ��� �� is ��� ���
It is clear that this is a group� More generally we have the following result�

��
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Theorem 	�� If G�� G�� � � � � Gn is a list of n groups the direct product G �
G��G�� � � ��Gn as de�ned above is a group� Moreover� if for each i� ei is
the identity of Gi then �e�� e�� � � � � en� is the identity of G� and if

a � �a�� a�� � � � � an� � G

then the inverse of a is given by

a�� � �a��
� � a��

� � � � � � a��
n �

where a��
i is the inverse of ai in the group Gi�

Problem 	�� Prove the above theorem for the special case n � ��

Problem 	�� Find the order of each of the following groups� Also give the
identity of each group and the inverse of just one element of the group other
than the identity�

�� Z� � Z�

�� Z� � S� � U�


� Z� Z� � Z�

�� GL���Z��� Z� � U� � Z�
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Isomorphism of Groups

Two groups may look di
erent yet be essentially the same� This concept of
sameness is formalized in mathematics by the concept of isomorphism �from
the Greek� isos meaning the same and morphe meaning form�� Before we
give a precise de	nition of isomorphism� let�s look at some small groups and
see if we can see whether or not they meet our intuitive notion of sameness�

Problem ��� Go through the examples of groups we have covered so far and
make a list of all those with order � ��� List them according to their orders�
For example� the following groups have order ��

GL���Z��� Z�� S�� U�� U�� Z� � Z��

Make a similar list for all integers from � to ���

De�nition ��� Let G � fg�� g�� � � � � gng� Let o�gi� � ki for i � �� �� � � � � n�
We say that the sequence �k�� k�� � � � � km� is the order sequence of the group
G� To make the sequence unique we assume that the elements are ordered so
that k� � k� � � � � � kn�

For example� the order sequence of S� is ��� �� �� �� �� ���

Problem ��� Consider the following list of properties that may be used to
distinguish groups�

�� The order of the group�

�� The order sequence of the group�

��
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� Whether the group is abelian or not�

Look carefully at the groups in the list you made for the previous problem and
see which may be distinguished by one or more of the three listed properties�

De�nition ��� Let �G� �� and �H� 	� be groups� A function f � G � H is
said to be a homomorphism from G to H if

f�a � b� � f�a� 	 f�b�

for all a� b � G� If in addition f is one�to�one and onto� f is said to be an
isomorphism from G to H�

We say that G and H are isomorphic if and only if there is an isomor�
phism from G to H� We write G �� H to indicate that G is isomorphic to
H�

Examples ��� Some familiar examples of homomorphisms and isomorph�
isms are�

�� det � GL���R� � R � f�g is a homomorphism since

det�AB� � det�A� det�B�

for all A�B � GL���R��

�� sign � Sn � f����g is a homomorphism since

sign���� � sign���sign���

for all �� � � Sn�


� log � R� � R� where R� denotes the positive real numbers and the op�
erations are respectively multiplication and addition� is an isomorphism
since from calculus we know that log is one�to�one and onto and

log�xy� � log�x� � log�y�

for all positive real numbers x and y� �Here log�x� � ln�x���
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�� exp � R � R� � where R� denotes the positive real numbers and the op�
erations are respectively addition and multiplication� is an isomorphism
since from calculus we know that exp is one�to�one and onto and

exp�x � y� � exp�x� exp�y�

for all real numbers x and y� Note that exp�x� is an alternative notation
for ex�

The last two examples show that the group of positive real numbers under
multiplication is isomorphic to the group of all real numbers under addition�

Theorem ��� �Isomorphism is An Equivalence Relation� If G� H and
K are groups then

�� G �� G�

�� If G �� H then H �� G� and


� If G �� H and H �� K� then G �� K�

Problem ��� Prove Theorem ����

Problem ��� Prove that every group of order � is isomorphic to the group
U��

Problem ��� Prove that every group of order � is isomorphic to the group
Z��

Problem ��	 Prove that every group of order 
 is isomorphic to the group
Z��

Problem ��� Prove that if G and H are isomorphic groups then jGj � jHj�

Problem ��
 Prove that if G and H are groups then G�H �� H �G�

Theorem ��� Let �G� �� and �H� 	� be groups and let f � G � H be a
homomorphism� Let eG denote the identity of G and� eH denote the identity
of H� Then

�� f�eG� � eH �
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�� f�a��� � f�a���� and


� f�an� � f�a�n for all n � Z�

Problem ��� Prove parts � and � of Theorem ����

Problem ���� Prove part 
 of Theorem ��� for n � ����� �����

The general case of Theorem ��� can be proved by induction on n� We
will come back to this later�

Problem ���� Restate Theorem ��� 	a
 in the case that both G and H use
additive notation� 	b
 in the case where G uses additive notation and H
uses multiplicative notation� and 	c
 in the case where G uses multiplicative
notation and H uses additive notation�

Theorem ��� Let �G� �� and �H� 	� be groups and let f � G � H be an
isomorphism� Then o�a� � o�f�a�� for all a � G� It follows that G and H
have the same number of elements of each possible order�

Problem ���� Prove Theorem ��
� Hint� Use the Theorem ����

Theorem ��� If G and H are isomorphic groups� and G is abelian� then so
is H�

Problem ���� Prove Theorem ����

De�nition ��� A group G is cyclic if there is an element a � G such that
hai � G� If hai � G then we say that a is a generator for G�

Problem ���� Find an example of a cyclic group that has more than one
generator�

Theorem ��� If G and H are isomorphic groups and G is cyclic then H is
cyclic�

Problem ���� Prove Theorem ����

Problem ���	 Determine which of the following groups are cyclic and which
are not cyclic�



��

�� Z under ordinary addition�

�� Zn under addition modulo n�


� Un for n � ���

�� S��

�� Z� � Z��

�� Z� � Z��

�� Z� � Z��

�� A��

�� S��

��� GL���Z���

Problem ���� �Challenge Problem� Prove that if G is a �nite cyclic
group of order n then G has ��n� generators� Hint� Let G � hai� Show
than an element b � ai � G is a generator of G if and only if gcd�i� n� � ��

Theorem ��	 Let a be an element of a group G�

�� If o�a� �� then hai �� Z�

�� If o�a� � n � N then hai �� Zn�

Proof of � Assume that o�a� ��� De	ne the function � � Z� hai by the
rule ��n� � an for n � Z� � is onto by de	nition of hai� To prove that � is
one�to�one let ��n� � ��m� for some n�m � Z� Then an � am� If n �� m by
symmetry we can assume n � m� Then

e � a� � an�n � ana�n � ama�n � am�n�

But n � m so m � n � N � This contradicts the assumption that o�a� � ��
So we must have n � m� This shows that � is one�to�one� Since

��n�m� � an�m � anam � ��n���m�

� is a homomorphism and it follows that � is an isomorphism� Hence Z �� hai�
By Theorem ��� hai �� Z�
Proof of � Assume that o�a� � n � N � For our proof we need to introduce
the following notation from Appendix C�
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De�nition ��� Let n � N � For each a � Z by the Division Algorithm there
are unique integers q and r satisfying

a � nq � r and � � r � n�

We denote r by a mod n� That is� a mod n is the remainder when a is divided
by n�

Now using this we can de	ne precisely addition modulo n by the rule�

a� b � �a � b� mod n�

Note that here we write a� b for addition in Z and a� b for addition in Zn�
So to be precise� by Zn we mean the group �Zn����

Recall that Zn � f�� �� �� � � � � n� �g� On the other hand by Theorem ���
since o�a� � n we have

hai � fa�� a�� � � � � an��g�
So the mapping � � Zn � hai de	ned by the rule ��i� � ai for i �
�� �� �� � � � � n � �� is clearly one�to�one and onto� It remains to show that
� is a homomorphism� To prove this note 	rst that i � j � r means that
i� j � qn � r where � � r � n� �� Now we have

��i� j� � ��r� � ar � ai�j�qn � aiaja�qn � aiaj�an��q

� aiaje�q � aiaje � aiaj � ��i���j��

Hence ��i � j� � ��i���j�� That is� � is a homomorphism� Since it is also
one�to�one and onto it is an isomorphism� Hence Zn

�� hai and by Theorem
��� hai �� Zn�

Problem ���
 Prove that if G is a cyclic group then G is isomorphic to Z

or Zn�

The above shows that a group generated by one element is easily describ�
able� What about groups that are not generated by one element but are
 generated! by two �or more elements�� The following exercise introduces a
notation to make precise such matters�

Problem ���� �Challenge Problem� Let G be a group and let S � G�
De�ne hSi to be the subset of G whose elements have the form s��� s

��
� � � � s�nn

where n � N� si � S and �i � �� for i � �� �� � � � � n� Prove
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�� hSi is a subgroup of G�

�� hSi is the smallest subgroup of G that contains S� that is� if K is a
subgroup of G and S � K then hSi � K�


� Show that for n � � the group Sn is not cyclic� but Sn � hf�� �gi where
� � �� �� and � � �� � � � � n��

Note that the above problem shows that although Sn� n � �� is not cyclic�
it is generated by two elements� However� unlike the cyclic groups one can
say very little about groups generated by two elements�

You may be interested in the curious fact �	rst discovered by Philip Hall�
that �A��

�� �i�e�� the direct product of �� copies of the alternating group of
degree �� can be generated by two elements� but �A��

�� cannot� On the other
hand� the group �Z��

n� that is� the direct product of n copies of Z�� requires
a minimum of n generators for each positive integer n�

We state without proof the following theorem� A proof may be found� in
any of the references 
�� �� �� ���

Theorem ��� �Cayley�s Theorem� If G is a �nite group of order n� then
there is a subgroup H of Sn such that G �� H�

This makes precise the idea that every 	nite group is  contained! in
Sn for some positive integer n� For example� the group U
 � f�� �� �� �g is
isomorphic to the subgroup

H � f
� �� ��� �� ��� �� ���� ��g

of S�� Note that a group of order k may well be isomorphic to a subgroup of
Sn where n � k�

Problem ���� Find a group of order ��� which is ismorphic to a subgroup
of Sn where n � ����
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Cosets and Lagrange
s Theorem

De�nition 
�� Let G be a group and let H be a subgroup of G� For each
element a of G we de�ne

aH � fah j h � Hg�
We call aH the coset of H in G generated by a�

Remark In the case of additive notation the coset of H in G generated by
a is written in the form

a �H � fa � h j h � Hg
Sometimes aH is called a left coset and the set Ha � fha j h � Hg is

called a right coset� Since we will only use left cosets� we will leave o
 the
modi	er left�

Problem 
�� Here we consider all the cosets of a particular subgroup of the
group U��� Recall that

U�� � f�� �� � � � � ��� ��g
and that the element � � U�� has order ��� so

U�� � f�� �� ��� ��� � � � � ���g�
Since � has order ��� ��� � �� but �i �� � for � � i � ��� It follows that
����� � �
 �� �� but ����� � ��� � �� Hence �� has order 
 so

H � h��i � f�� ��� �
g

��
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is a subgroup of U���
Show that the subgroup H just de�ned has exactly four di�erent cosets in

U��� Note that if we list all the cosets

�H� ��H� ��H� � � � � ���H� ���H�

it appears that there are �� cosets� Show however that there are only four
di�erent cosets�

Note that none of the cosets overlap� that is� if two cosets are di�erent�
then their intersection is the empty set� Also note that every element of U��

is in one and only one of the four di�erent cosets and each coset of H has
the same number of elements as H�

Problem 
�� Find all cosets of the subgroup H � h�� ��i of the group S��

Problem 
�� Let G be a �nite group and let H be a subgroup of G� Let
a� b � G� Prove the following statements�

�� a � aH�

�� jaHj � jHj�

� If aH � bH �� �� then aH � bH�

Remark Suppose G � fg�� g�� � � � � gng is a group with n elements and
H � G� Then if we form the list of all cosets of H in G we have

g�H� g�H� � � � � gnH�

But as noted in the above examples some of the cosets in this list are repeated
several times� If we remove all repetitions from the list we are left with what
we shall call the distinct cosets of H in G� If there are s distinct cosets we
may denote them by a�H� a�H� � � � � asH�

Theorem 
�� �Lagrange�s Theorem� If G is a �nite group and H � G
then jHj divides jGj�

Proof Let n be the order of G� and let k be the order of H� We want to
show that k j n� Let a�H� a�H� � � � � asH be the distinct cosets of H in G�
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Note that s is the number of distinct cosets� By Problem ���� these cosets
are pairwise disjoint and their union is the whole group� That is�

G � a�H � a�H � � � � � asH and aiH � ajH � � when i �� j�

Since also each coset has the same number of elements as H� we have

jGj � ja�Hj� ja�Hj� � � �� jasHj
� jHj� jHj� � � �� jHj
� k � k � � � �� k

� ks�

It follows that n � ks� This shows that k j n� and proves the theorem�

The following problems give some important corollaries of Lagrange�s
Theorem�

Problem 
�� Prove that if G is a �nite group and a � G then o�a� divides
jGj�

Problem 
�� Prove that if G is a �nite group and a � G then ajGj � e�

Problem 
�	 Prove that if p is a prime and a is a non�zero element of Zp

then ap�� � �� 
Here the product is multiplication modulo p�� In number
theory this is called Fermat�s Little Theorem

Problem 
�� Prove that if n � N and a � Un then a�	n
 � �� 
Here the
product is multiplication modulo n�� In number theory this is called Euler�s
Theorem�

Problem 
�
 Prove that if jGj � p where p is a prime then G is a cyclic
group�

Problem 
�� Prove that if G and H are groups of order p where p is prime
then G �� H�

Problem 
��� Let G be a group� Prove the following statements�

�� If jGj � � then G �� Z��



�� CHAPTER 
� COSETS AND LAGRANGE�S THEOREM

�� If jGj � � then G �� Z��


� If jGj � � then G �� Z��

Note that we have seen the �rst two items previously� But now we may give
easier proofs�

Problem 
��� Find two groups of order � that are not isomorphic�

Problem 
��� Find two groups of order � that are not isomorphic�

De�nition 
�� We say that there are k isomorphism classes of groups
of order n if there are k groups G�� G�� � � � � Gk such that 	�
 if i �� j then
Gi and Gj are not isomorphic� and 	�
 every group of order n is isomorphic
to Gi for some i � f�� �� � � � � kg�

This is sometimes expressed by saying that there are k groups of order n up
to isomorphism or that there are k non�isomorphic groups of order n�

In more advanced courses in algebra� it is shown that the number of
isomorphism classes of groups of order n for n � �� is given by the following
table�

Order � � � � � � � � � � �� �� �� �� �� �� �� ��
Number � � � � � � � � � � � � � � � � �� �

This table means� for example� that one may 	nd �� groups of order �� such
that every group of order �� is isomorphic to one and only one of these ��
groups�

Gordon Royle has such a list for groups of order up to ���� �with the
exception of orders ��� and ����� It is interesting to note that the largest
number of groups seems to appear when the order is a power of �� that is for
�� �� �� �� ��� etc� There are� for example� ����� non�isomorphic groups of
order ���� For the entire list go to Gordon Royle�s homepage at

http���www�cs�uwa�edu�au��gordon�
and follow the link to Combinatorial Data� In a recent paper The groups
of order at most ���� by H� U� Besche� B� Eick� and E� A� O�Brien it is
announced that they have been able to extend known results so that the
number of groups of each order up to ���� is now known� The research
announcement may be found at

http���www�ams�org�jourcgi�
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In Table ���� we list the ten most challenging orders as taken from the
paper by Besche� et al and the number of groups of each order� It is inter�
esting to note that according to this paper there are ��� ����������� groups
of order ��� and only ����������� remaining groups of order � ����� Thus
in excess of �� % of the groups of order � ���� are of order ����

Table ���� The ten most di�cult orders

Order Number
��� �� ��� ��� ���

�� � � ��� ��� ���
�� �� ��� ���

�
 � � � ��� ���
�
 � � � ��� ���
�
 � � � ��� ���

�� � � � � ��� ���
�� � �� ��� ���

�
 �� ���
�� � �� �� ���

At the opposite extreme there are some orders for which there is only one
isomorphism class of groups� For example� there is only one isomorphism
class of groups of order n if n is prime� But there are some non�primes that
have this property� for example� ���

No formula is known for the number of isomorphism classes of groups
of order n� Although the number isomorphism classes of groups of order
n is not known in general� it is possible to calculate easily the number of
isomorphism classes of abelian groups of order n using the following famous
theorem which we state without proof�

The Fundamental Theorem of Finite Abelian Groups If G is a �nite
abelian group of order at least two then

G �� Zp
n�
�

� Zp
n�
�

� � � � � Zp
ns
s

where for each i� pi is a prime and ni is a positive integer� Moreover� the
prime powers pnii are unique except for the order of the factors�
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If the group G in the above theorem has order n then

n � pn�� pn�� � � � pnss �

So the pi may be obtained from the prime factorization of the order of the
group G� These primes are not necessarily distinct� so we cannot say what
the ni are� However� we can 	nd all possible choices for the ni� For example�
if G is an abelian group of order �� � �� � �� then G is isomorphic to one
and only one of the following groups� Note that each corresponds to a way
of factoring �� as a product of prime powers�

Z� � Z� � Z� � Z� �� � � � � � � � �
Z� � Z� � Z� �� � � � � � �
Z� � Z
 �� � � � �
Z� � Z� � Z� � Z� � Z� �� � � � � � � � � � �
Z� � Z� � Z� � Z� �� � � � � � � � �
Z� � Z� � Z
 �� � � � � � �

Thus there are exactly � non�isomorphic abelian groups of order ���

Corollary For n � �� the number of isomorphism classes of abelian groups
of order n is equal to the number of ways to factor n as a product of prime
powers 	where the order of the factors does not count
�

Problem 
��� Determine the number of non�isomorphic abelian groups of
order n where n � f�� �� �� ��� ����g

Problem 
��� Prove that Z�
�� Z� � Z��

Remark� In number theory it is proven that if n � ab and gcd�a� b� � �
then Zn

�� Za � Zb� This is called the Chinese Remainder Theorem�
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Introduction to Ring Theory

De�nition ��� A ring is an ordered triple �R��� �� where R is a set and �
and � are binary operations on R satisfying the following properties�

A� a� �b� c� � �a� b� � c for all a� b� c in R�

A� a� b � b� a for all a� b in R�

A� There is an element � � R satisfying a� � � a for all a in R�

A� For every a � R there is an element b � R such that a � b � ��

M� a � �b � c� � �a � b� � c for all a� b� c in R�

D� a � �b � c� � a � b� a � c for all a� b� c in R�

D� �b� c� � a � b � a� c � a for all a� b� c in R�

Terminology If �R��� �� is a ring� the binary operation � is called addition
and the binary operation � is called multiplication� In the future we will
usually write ab instead of a � b� The element � mentioned in A� is called the
zero of the ring� Note that we have not assumed that � behaves like a zero�
that is� we have not assumed that � � a � a � � � � for all a � R� What A�
says is that � is an identity with respect to addition� Note that negative �as
the opposite of positive� has no meaning for most rings� We do not assume
that multiplication is commutative and we have not assumed that there is
an identity for multiplication� much less that elements have inverses with
respect to multiplication�

��
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De�nition ��� The element b mentioned in A� is written �a and we call it
minus a or the additive inverse of a� Subtraction in a ring is de�ned by the
rule a� b � a � ��b� for all a� b in R�

Unless otherwise stated� from now on we will refer to the ring R rather
than the ring �R��� ��� Of course� if we de	ne a ring� we must say what the
binary operations of addition and multiplication are�

Problem ��� How could one state properties A��A� in a more compact
manner using previous de�nitions�

De�nition ��� Let R be a ring� If there is an identity with respect to mul�
tiplication� it is called the identity of the ring and is usually denoted by ��
If such an element exists� we say that R is a ring with identity�

In some cases� the identity of a ring may be denoted by some symbol other
than � such as e or I�

De�nition ��� We say that a ring R is commutative if the multiplication
is commutative� Otherwise� the ring is said to be non�commutative�

Note that the addition in a ring is always commutative� but the multiplication
may not be commutative�

De�nition ��� A ring R is said to be an integral domain if the following
conditions hold�

�� R is commutative�

�� R contains an identity � �� ��


� If a� b � R and ab � � then either a � � or b � ��

De�nition ��	 A ring R is said to be a �eld if it satis�es the following
properties�

�� R is commutative�

�� R contains an identity � �� ��


� For each x � R such that x �� �� there is a y � R such that xy � ��
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Problem ��� Which of the following are rings� If so which have identities�
which are commutative� which are integral domains and which are �elds�

�� �N ��� ���
�� ��Z��� �� where �Z is the set of even integers�


� �R��� ���
�� �Q ��� ���
�� �Z��� ���
�� �Z���� ���
�� �Z���� ���
�� �Z���� ���
�� �M��R���� ���
��� �M��Zn���� ���

De�nition ��� Let R be a ring with an identity �� An element a � R is said
to be a unit of R if there is an element b � R such that ab � ba � �� We
let U�R� denote the set of all units of R� If such a b exists we write b � a���
We sometimes call a�� the multiplicative inverse of a�

It is easy to see that if R is a ring with identity �� then U�R� is a group
under multiplication� It is called the group of units of R�

Example ��� �The ring F 
x� of polynomials in x over the �eld F ��
Let F be a 	eld� A polynomial in the indeterminate �or variable� x over F
is an expression of the form

a� � a�x� a�x
� � � � �� anx

n

where the coe�cients ai are elements of the 	eld F and n may be any non�
negative integer� The rules for multiplication and addition of polynomials
are exactly as in high school algebra� The only exception is that we permit
the coe�cients to be from any 	eld F � and when coe�cients are added or
multiplied� we use the binary operations in F � This ring is usually denoted
by F 
x�� For each 	eld F the ring F 
x� is an integral domain� But F 
x� is
not a 	eld since the only units of F 
x� are the non�zero constants� that is
polynomials of the form a� where a� is a non�zero element of F �
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Problem ��� Find the group of units of each of the following rings� Z� R�
M��R�� Zn�

De�nition ��
 If R is a ring� a � R and n � N we de�ne an by the following
rules�

a� � a�
an � aa � � �a 	n copies of a
 if n � ��

If R has an identity � and a is a unit then we can also de�ne�
a� � ��
a�� � multiplicative inverse of a�
a�n � �a���n for n � ��

Note that since generally an element a of a ring is not a unit� we cannot
expect an to be de	ned for negative integers�

Problem ��� What is the smallest ring� What is the smallest �eld�

Theorem ��� Let R be a ring and let a� b� c � R� Then the following hold�

�� If a� b � a� c then b � c�

�� If a� b � � then b � �a�

� ���a� � a�

�� ��a� b� � ��a� � ��b��
�� a� � � and �a � ��

�� a��b� � ��a�b � ��ab��
�� ��a���b� � ab�

�� a�b� c� � ab� ac�

�� �b� c�a � ba� ca�

Problem ��� Prove Theorem ����

Problem ��	 Show that condition 
 in the de�nition of integral domain can
be replaced by the following cancellation law�

If a� b� c � R� a �� � and ab � ac then b � c�
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Problem ��� Prove that every �eld is an integral domain� Show by example
that the converse of this statement is not true�

Problem ��
 Prove that Zn is a �eld if and only if it is an integral domain�

Problem ��� Prove that Zn is a �eld if and only if n is a prime�

De�nition ��� Let �R��� �� and �S���
� be two rings� A function

f � R� S

is a homomorphism if for all a� b � R we have

f�a � b� � f�a�
 f�b�

f�a� b� � f�a�� f�b��

If also f is one�to�one and onto we call f an isomorphism� In this case
we say R and S are isomorphic and write R �� S�

Although it will usually be clear from the context� now that we have
homomorphisms for both groups and rings� sometimes we will say ring ho�
momorphism or group homomorphism to be speci	c� Similarly� for isomor�
phisms�

As in the case of groups� if two rings are isomorphic� then they share
almost all properties of interest� For example� if R and S are isomorphic
rings� then R is a 	eld if and only if S is a 	eld� We will give a non�trivial
example below of two isomorphic rings�

De�nition ���� A subset S of a ring R is said to be a subring of R if the
following conditions hold�

�� � � S�

�� If a � S� then �a � S�

�� If a� b � S� then a� b � S and ab � S�

If R is a �eld and the following conditions also hold�

�� � � S�
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�� If a �� � and a � S� then a�� � S�

we say that S is a sub�eld of R�

If S is a subring �sub	eld� of the ring �	eld� R� then it is easy to verify that
S is itself a ring �	eld� with respect to the addition and multiplication on R�
Some obvious examples are the following�

�� Z is a subring of Q and of R�

�� Q is a sub	eld of R�

�� �Z is a subring of Z�

Problem ���� Prove that there is no element x � Q such that x� � ��

Problem ���� Assume there is a positive element
p
� � R such that

�
p
��� � ��

De�ne the following subset of R�

Q �
p
�� � fa� b

p
� j a� b � Qg�

Prove that Q �
p
�� is a sub�eld of R� 	The tricky part is showing that all

non�zero elements are units�


Problem ���� Let

S �

��
a b
�b a

�
� a� b � Q

�
�

�� Show that S is a subring of the ring M��Q ��

�� Show that S �� Q�
p
���
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Axiomatic Treatment of R 
 N 


Z
 Q and C

There are several ways to axiomatize the standard number systems R� N � Z�
and Q � One way is to start by laying down axioms for N and then using
N and set theory to build successively the number systems Z� Q and R� A
quicker way is to start with axioms for R and using these axioms 	nd N � Z�
and Q inside of R� We follow the latter approach here� We begin by de	ning
an ordered ring�

De�nition ���� An ordered ring is a quadruple

�R��� �� ��

where �R��� �� is a commutative ring and � is a binary relation on R which
satis�es the following properties for all a� b� c � R�

�� a � b and b � c �� a � c�

�� a � b �� a � c � b� c�


� a � b and � � c �� ac � bc�

�� Given a� b � R one and only one of the following holds�

a � b� a � b� b � a�

��
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Note that we could develop some of the theory of ordered rings without
the assumption of commutativity� however� this assumption will make things
a little easier� All of the ordered rings we are interested in are commutative
anyhow�

Terminology The binary relation � is as usual called less than� Con�
dition � above is called transitivity and condition � is called the Law of
Trichotomy� We also refer to � as an ordering or order relation on the ring
R� We use the following abbreviations�

b 
 a �� a � b

a � b �� a � b or a � b

b � a �� a � b

a � b � c �� a � b and b � c

a � b � c �� a � b and b � c

An element a is said to be positive if a 
 � and� negative if a � �� Note that
�a may be positive or negative� depending on whether or not a is positive
or negative� Hence it is best to read �a as minus a rather that negative a�

Problem ���� Let R be an ordered ring with identity � �� �� Prove that for
all a� b� c � R the following statements hold�

�� � � a and � � b �� � � ab�

�� a � � �� � � �a�

� � � ��

�� a �� � �� � � a��

�� If a � b and c � d then a � c � b � d�

�� a � b �� �b � �a�
�� a � b and c � � �� bc � ac�

�� If a is a unit and � � a then � � a���

�� If a is a unit and � � a � � then � � a���

��� R is in�nite�
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Note that some rings cannot be ordered� For example� the last statement
of the above problem shows that there is no way to make the rings Zn into
ordered rings� As we shall see the 	eld of complex numbers is an in	nite ring
that cannot be made into an ordered ring� We will give a rigorous de	nition
of the complex numbers later� The main examples of ordered rings are Z� Q
and R�

Problem ���� Show that if a ring R has an identity � �� � and contains an
element i such that i� � ��� then R cannot be an ordered ring�

If an ordered ring R is a integral domain �or 	eld�� we call R an ordered
domain �or ordered �eld�� Now we can distinguish Z from Q and R by
the fact that Z is an ordered domain and not an ordered 	eld� whereas both
Q and R are ordered 	elds� The problem is how to distinguish Q from R�
This was historically a di�cult thing to accomplish� The 	rst clue was the
fact that

p
� is not a rational number� To describe the di
erence� we need a

few more de	nitions�

De�nition ���� Let R be an ordered ring� Let S be a subset of R� An
element b of R is called an upper bound for S if x � b for all x � S� If S
has an upper bound we say that S is bounded from above�

Problem ���� Give examples of subsets S of R satisfying the following con�
ditions�

�� S has no upper bound�

�� S has an upper bound b � S�


� S is bounded from above but has no upper bound b � S�

De�nition ���� Let S be a subset of an ordered ring R which is bounded
from above� An element � � R is a least upper bound �l�u�b� for S if �
is an upper bound for S and � � b for all upper bounds b of S�

Problem ���� Give least upper bounds for the following subsets of R�

�� 
�� �� � fx � R j � � x � �g�
�� 
�� �� � fx � R j � � x � �g�
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De�nition ���� An ordered �eld R is said to be complete if it satis�es the
following�
Least Upper Bound Axiom Every non�empty subset of R which is

bounded from above has a least upper bound�

Theorem ���� There exists a complete ordered �eld� Any two such �elds
are isomorphic�

The proof of this is beyond the scope of this course� Many books on
analysis begin by just assuming that there exists such a 	eld� Actually we
began this course by assuming familiarity with R as well as N � Q and Z�

De�nition ���� The unique complete ordered �eld whose existence is as�
serted by Theorem ���� is called the �eld of real numbers and denote by
R�

All properties of the real numbers follow from the de	ning properties of a
complete ordered 	eld� For example� one can prove that if a � R and a 
 ��
then there is a unique element x � R such that x� � a and x 
 ��

It can be shown that Q is not complete� For example� the set

S � fx � Q j x� � �g
is bounded from above but has no least upper bound in Q � Since we assume
R is complete� the set S does have a least upper bound � in R which one can
prove is positive and satis	es �� � ��

We also observe that just as we de	ned subtraction in a ring by the rule

a� b � a� ��b��
we de	ne division in a 	eld as follows�

De�nition ���	 Let a and b be elements of a �eld� If b �� � we de�ne

a�b �
a

b
� a� b � a � b��

where b�� is the inverse of b with respect to multiplication�

Under the assumption of the existence of a complete ordered 	eld R� we
can de	ne N � Z� and Q as follows� First we de	ne N �
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De�nition ���� Say that a subset S of R is inductive if it satis�es both
of the following conditions�

�� � � S�

�� If n � S� then n� � � S�

De�nition ���
 Then we de�ne the natural numbers N to be the inter�
section of the collection of all inductive subsets ofR�

De�nition ���� Let � denote the identity of R� De�ne � � ���� � � ����
� � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � ��

If we start with only the axioms for a complete ordered 	eld� we have initially
only the numbers � and �� From the above de	nition we obtain in addition
the numbers ���������������� Using the fact that for each a � R we have
�a � R we get also ��������������� � � � � as well as numbers such as

�

�
� ����

�

�
� ����

�

�
� ����

�

�
� � � ���� � � �

Example ���� Show that each of the following is an inductive subset of R�

�� R�

�� fx � R j x � �g�

� f�� �g � fx � R j x � �g�
�� f�� �� �g � fx � R j x � �g�

From De	nitions ���� and ���� one may prove the following two theorems�

Theorem ���� N is an inductive subset of R�

Theorem ���� �The Principle of Mathematical Induction� If S � N

and S is inductive then S � N�
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Problem ���� 	a
 Prove that �� �� �� and � are elements of N �
	b
 Prove that � � � � �� � � � � �� 	c
 Prove that � � � � ��

Here are a few examples of things that can be proved by using induction
�this is short for The Principle of Mathematical Induction��

Problem ���	 Prove that n � � for all n � N� Hint� Let

S � fn � N j n � �g�

Prove that S � N and S is inductive� Conclude from the Principle of Math�
ematical Induction that S � N � This is equivalent to the statement n � � for
all n � N and completes the proof�

Problem ���� Prove that �n 
 n for all n � N�

Problem ���
 Prove Part 
 of Theorem ���� Hint� divide the problem into
two parts� First prove f�an� � f�a�n for all n � N using induction� Use
Theorem ���� Part � to handle the case n � � and use Theorem ���� Part �
and the laws of exponents to handle the case where n is negative�

Problem ���� Prove that � � �
�
� ��

Problem ����� As noted above it may be proved that if a � R and a 
 �
there exists a unique number x � R satisfying x� � a and x 
 �� The number
x is denoted

p
a� Prove that

� �
p
� �

p
� � �

and
�

�
�
p
� � ��

De�nition ����� De�ne Z � N � f�g � �N where �N � f�n j n � Ng�

The set Z is a subring of the ring R which we call the ring of integers� All
of the properties of Z that we are accustomed to follow from the axioms for
R and the above de	nitions� This includes things such as there is no integer
x such that � � x � �� In this course we will not take the time to develop
all the known results of this nature�
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De�nition ����� Q � fn�m j n�m � Z and m �� �g�
The set Q is a sub	eld of R called the �eld of rational numbers�

De�nition ����� The �eld of complex numbers is the triple �C ��� ��
where

C � f�a� b� j a� b � Rg�
and addition and multiplication are de�ned as follows for �a� b���c� d� � C �

�a� b� � �c� d� � �a � c� b� d�

�a� b� � �c� d� � �ac� bd� ad� bc�

Theorem ���� C is a �eld with zero given by ��� ��� identity given by ��� ���
the additive inverse of �a� b� is given by ��a��b� and if �a� b� �� ��� �� then
the multiplicative inverse of �a� b� is given by

�a� b��� �

�
a

a� � b�
�

�b
a� � b�

�
�

This theorem is straightforward to prove� To save time we prove only the
following�

Problem ����� Prove that ��� �� is the zero of C and the additive inverse
��a� b� of �a� b� � C is given by ��a��b��
Problem ����� Prove that ��� �� is an identity for C � that ��� ��� � ���� ��
and that if �a� b� �� ��� �� then the multiplicative inverse of �a� b� is given as
stated in the theorem�

Remark� If we write for a� b � R

a� bi � �a� b�� a � �a� ��� bi � ��� b�� i � ��� ��

then
i� � ��

and we can consider R as a subset of C and the addition and multiplication
on R agrees with that on C for elements of R� That is� in this notation R is
a sub	eld of C �

We lack the time in this course to discuss any of the many applications
of complex numbers in mathematics� engineering and physics�
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Problem ����� Using the notation above for elements of C � let z � �� �i�
w � �� � �i and � � ������ � �

p
����i� Write the following in the form

a� bi where a and b are real numbers�

�� z � w�

�� zw�


� z���

�� ���

De�nition ����� Let a� b � R and let z � a� bi � C � The complex number
z � a� bi is called the conjugate of z� z is read � z conjugate��

Problem ����� Prove the the mapping � � C � C de�ned by ��z� � z is a
ring isomorphism from C to itself which is its own inverse� That is� for all
z� w � C prove�

�� zw � z w�

�� z � w � z � w� and


� z � z

Another way to de	ne C is given in the next problem�

Problem ����� Let

R �

��
a �b
b a

�
j a� b � R

�
�

This is a subring of the ring of all � � � matrices M��R�� In fact� R is a
�eld� Prove that R is isomorphic 	as a ring
 to C �

Problem ����	 Compare the formula in Theorem ���� for the inverse of a
complex number to the formula for the inverse of a matrix of the form

�
a �b
b a

�
�



��

Remarks We mention here a few interesting theorems about R that we will
not have time to cover in this course� Proofs may be found in introductory
analysis courses and advanced algebra courses�

A set S is said to be countable if it is 	nite or if there is a one�to�one
correspondence between S and N � A set which is not countable is said to be
uncountable�

Theorem ���� Q is countable�

Theorem ���	 R is uncountable�

A real number which is not in Q � that is� is not rational� is said to be an
irrational number�

Theorem ���� The set of irrational numbers is uncountable�

A real number is said to be algebraic if it is a root of some non�zero polynomial
anx

n � � � �� a�x
� � a�x � a� where the coe�cients ai are rational numbers�

For example�
p
� is algebraic since it is a root of x� � � and �

q
�� �

p
�� is

algebraic since it is a root of x� � �x� � �� A rational number q is algebraic
since it is a root of x� q�

Theorem ���
 The set of algebraic numbers forms a countable sub�eld of
R�

A real number which is not algebraic is said to be transcendental�

Theorem ���� The set of transcendental numbers is uncountable�

However it is very di�cult to prove that a particular real number is tran�
scendental� Important examples of transcendental numbers are � and e�

Theorem ����� �Hermite �
��� e is transcendental�

Theorem ����� �Lindemann �

�� � is transcendental�
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The Quaternions

The quaternions were invented by Sir William Rowan Hamilton about �����
Hamilton was perhaps the 	rst to note that complex numbers could be
thought of as a way to multiply points in the plane� He then had the idea of
trying to 	nd a way to multiply points in R� so that the 	eld axioms would
be satis	ed� He was unable to do this� but he 	nally found a way to de	ne
multiplication on R� so that the multiplication together with ordinary vector
addition of elements of R� would satisfy all the 	eld axioms except for com�
mutativity of multiplication� He called these new objects quaternions� They
turned out� like complex numbers� to have many applications in engineering
and physics� This  number system! is denoted by H for Hamilton since Q is
already taken to denote the rational numbers�

De�nition ���� The ring of quaternions is the ring �H ��� �� where
H � R� � f�a� b� c� d� j a� b� c� d � Rg

and where � and � are de�ned by the rules�

�x� y� z� w� � �a� b� c� d� � �x � a� y � b� z � c� w � d�

�x� y� z� w� � �a� b� c� d� � �xa� yb� zc� wd�

xb � ya� zd� wc�

xc� yd� za � wb�

xd � yc� zb � wa�

where x� y� z� w� a� b� c� d � R� The addition and multiplication inside the ��
tuples on the right represent addition and multiplication in R�

��
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Stated this way the rules for multiplication are hard to remember� There is
a simpler way to describe them� Let

� � ��� �� �� ��

i � ��� �� �� ��

j � ��� �� �� ��

k � ��� �� �� ��

Note that here we are being a little lazy in letting � stand for both the vector
��� �� �� �� and the real number �� The set f�� i� j� kg is what is called in
linear algebra a basis for R� � This means that if we de	ne for a � R and
�x� y� z� w� � R� the scalar by vector product

a�x� y� z� w� � �ax� ay� az� aw��

the quaternion q � �x� y� z� w� may be written uniquely in the form

q � x� � yi� zj � wk�

Now if we abbreviate x � x�� the quaternion takes the form

q � x� yi� zj � wk�

Addition now becomes

�x�yi�zj�wk���a�bi�cj�dk� � �x�a���y�b�i��z�c�j��w�d�k�

Products of the basis elements �� i� j� k are de	ned as follows�

�q � q� � q for all q � H �

i� � j� � k� � ���
ij � �ji � k�

jk � �kj � i�

ki � �ik � j�

Using these rules� the distributive law� and the fact that if q� and q� are any
quaternions and a � R then

a�q�q�� � �aq��q� � q��aq���

one easily calculates the product of two quaternions q� � x � yi � zj � wk
and q� � a � bi � cj � dk�
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Problem ���� Use the above rules to calculate the product q�q� of the quater�
nions q� � � � i � �j � �k and q� � � � i � �j � �k� Write the product in
standard form a� bi � cj � dk� where a� b� c� d � R�

Problem ���� Show that ��� �� �� �� acts as an identity for H and that H is
not a commutative ring�

Problem ���� Show that the quaternion q � x�yi�zj�wk has an inverse
given by q� � c�x� yi� zj � wk� where c � ���x� � y� � z� � w�� provided
that q �� �� Here � � ��� �� �� ���

Problem ���� Show that there are in�nitely many quaternions q satisfying
q� � ��� Hint� consider quaternions of the form q � xi � yj � zk�

Problem ���� Show that the � element set

Q � f����� i��i� j��j� k��kg
under quaternion multiplication is a group� This is one of the �ve non�
isomorphic groups of order �� It is called� naturally enough� the quaternion
group�

De�nition ���� A ring which satis�es all the �eld axioms except possibly
for commutativity of multiplication is called a division ring�

Note that a division ring may be de	ned as a ring whose non�zero elements
form a group under multiplication� All 	elds are division rings� A commu�
tative ring which is a division ring is a 	eld�

Theorem ���� H is a division ring�

Proof� From linear algebra we already know that vector addition on R�

is an abelian group� From the above problems we know that H has an
identity and every non�zero element has an inverse� It remains only to prove
associativity for multiplication and the two distributive laws� The proofs
of these properties are straightforward and we leave them for the interested
reader�

The ring of quaternions is one of the rare examples of a non�commutative
division ring� The following theorem shows why Hamilton had di�culty
	nding a division ring whose underlying set is R� �
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Theorem ���� �Frobenius� Let D be a division ring which is algebraic
over R� Then D is isomorphic to R� C � or H �

See Chapter � of 
�� to see what it means to be algebraic over R and how to
prove this theorem� This result implies that there is no  nice! way of de	ning
multiplication on Rn so that it becomes a division ring unless n � f�� �� �g�
There are many interesting and useful ways to make Rn into a ring which is
not a division ring for other values of n� However� we do not have time to
go into these matters�

Problem ���	 De�ne

H �

��
z �w
w z

�
j z� w � C

�
�

�� Prove that H is a subring of the ring M��C ��

�� Prove that H is a division ring� Hint� it su�ces to show that the each
non�zero matrix in H has an inverse that is also in H�


� De�ne the matrices

� �

�
� �
� �

�
� I �

�
i �
� �i

�
� J �

�
� i
i �

�
� K �

�
� ��
� �

�

	a
 Show that every element of H can be written in the form�

a�� bI � cJ � dK

where a� b� c� d � R�

	b
 Show that
I� � J� � K� � ���
IJ � K� JI � �K�
JK � I�KJ � �I�
KI � J� IK � �J

Remark� You need not verify it� but it follows from this that H �� H �
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The Circle Group

Before de	ning the circle group we 	rst discuss some geometric aspects of the
	eld of complex numbers� A typical element z of C will be written z � x�yi
where s� y � R� We identify z � x � yi with the point �x� y� in the plane�
Thus the absolute value jzj of z is de	ned by

jzj �
p
x� � y��

Note that since zz � x� � y� we also have�

jzj �
p
zz�

Problem ���� Prove that for z� w � C

�� jzwj � jzjjwj�
�� jzj � �� and


� jzj � ��� z � ��

We know from analytic geometry that jzj represents the distance from z to
the origin � in the plane� The directed angle � that the segment from � to
z makes with the positive side of the x�axis is called the argument or polar
angle of z� As in polar coordinates we write r � jzj� Then we have

x � r cos ��

y � r sin ��

��



�� CHAPTER ��� THE CIRCLE GROUP

and

z � r�cos � � i sin �� ������

From trigonometry we know that every non�zero complex number z may be
written uniquely in the form ������ for real numbers r and � satisfying r 
 �
and � � � � ���

We assume that students are familiar with the exponential function x �� ex

where x � R� We extend the de	nition of this function from R to C �

De�nition ���� For z � C let z � x � yi where x� y � R� We de�ne the
exponential function z �� ez by

ez � ex�yi � ex�cos y � i sin y��

in particular� if � � R we have

ei� � cos � � i sin ��

From the above we have immediately the following�

Theorem ���� Every non�zero complex number z may be written uniquely
in the form

z � rei� ������

where r � jzj 
 � and � � � � ���

Note that the expression ei� is well�de	ned for all � � R�

Theorem ���� Let z� � r�e
i�� and z� � r�e

i�� where ri � � and �i are real
numbers� Then

z�z� � r�r�e
i	�����
�

Problem ���� Use the addition identities for the sine and cosine to prove
Theorem �����

Note that� in words� Theorem ���� says� The argument of the product is
the sum of the arguments of the factors and the absolute value of the product
is the product of the absolute values of the factors�� This easily generalizes via
induction to the following� If zj � rje

i�j � j � �� � � � � n are complex numbers
then

z�z� � � � zn � r�r� � � � rne	i�����������n
�

Taking rj � � for all j we obtain the following famous theorem�
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Theorem ���� �De Moivre�s Theorem� For all � � R and n � Z� we
have

�cos��� � i sin����n � cos�n�� � i sin�n���

equivalently�
�ei��n � ein��

De�nition ���� We de�ne

T � fz � C j jzj � �g�

T is a group with respect to multiplication in C and is called the circle
group�

Note that geometrically T is the set of complex numbers which are at a
distance � from the origin� that is� it�s points are exactly the points on the
unit circle x� � y� � ��

Problem ���� Show that every element z � T may be uniquely written in
the form z � ei� where � � � � ���

Problem ���� Prove that T is a subgroup of U�C ��

Problem ���� 	a
 Prove that the mapping � � T � C de�ned by ���� � ei�

is a homomorphism from �R��� onto the circle group T� 	b
 Show that for
every point z � T there are in�nitly many � � R such that ���� � z�

Recall that in Problem ����� we showed that complex numbers can be
represented as certain � � � matrices over the real numbers� So it should
come as no surprise that the circle groups can also be represented by certain
� � � matrices over the real numbers� It turns out that this set of matrices
also has another name which we give in the following de	nition�

De�nition ���� De�ne

SO��� �

��
cos � � sin �
sin � cos �

�
j � � R

�
�

SO���is a subgroup of SL���R� and is called the special orthogonal group
of degree ��
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De�nition ���� For � � R� de�ne

R��� �

�
cos � � sin �
sin � cos �

�

With this de	nition we have SO���R� � fR��� j � � Rg�
Problem ���	 Prove 	a
 that R����R���� � R��� � ���� 	b
 R��� is the
� � � identity matrix� and 	c
 R����� � R����� Conclude that SO���R� is
a subgroup of GL���R��

Problem ���� Prove that SO���R� �� T�

Problem ���
 Prove that if we represent a point p � �x� y� in the plane by

a �� � matrix

�
x
y

�
then the point R���p given by the matrix product

R���p �

�
cos � � sin �
sin � cos �

� �
x
y

�

is obtained by rotating p through � radians counter�clockwise about the origin�
�Hint use the polar coordinate representation �x� y� � �r cos �� r sin �� of the
point p��

Remark The above problem also justi	es referring to the circle group as the
group of rotations of the plane�

We now determine the order of an element ei� � T�

Theorem ���� An element z � ei� � T has �nite order if and only if � � k
n
�

for some n � N and k � Z� that is� if and only if � is a rational multiple of
��

Proof First we recall from trignometry that �cos�� sin�� � ��� �� if and only
if � � ��k for some integer k� Using exponentional notation� this says that
ei� � � if and only if � � ��k for some integer k�

Assume that ei� has 	nite order� Then by De Moivre�s Theorem we have
ein� � � and by the previous remark� n� � ��k for some integer k� Solving
for � we see that � � �k

n
� � k�

n
� where k� � �k� That is� � is a rational

multiple of �� Conversely� suppose that � � k
n
� for some n � N and k � Z�

Then
�ei���n � ei	��n
 � ei

k
n
�n	 � eik�	 � ��

This shows that the order of ei� is 	nite and at most �n�
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Problem ���� Show that the order of the element ei
p
�	 in T is in�nite�

What about the element ei
p
�� 	For the latter you may assume that � is

transcendental�


De�nition ���� Let n � N� An element z � C is said to be an n�th root
of unity if zn � ��

Problem ����� Prove that for n � N the set

fz � C j zn � �g ������

is a subgroup of U�C ��

De�nition ���	 The set 	���

 of all n�th roots of unity is a subgroup of
U�C � called the group of n�th roots of unity�

Figure ����� The ��th roots of unity �� the vertices of the regular ���gon��

Problem ����� Prove that z � C is an n�th root of unity if and only if z is
an element in T of �nite order k where k jn�
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De�nition ���� For n � N de�ne

�n � ei
��
n �

Theorem ���� The group of n�th roots of unity is cyclic of order n� One
generator of the group is �n

Proof From De Moivre�s Theorem it is clear that ��n�
n � �� Note that the

powers
��n�

k � eik
��
n � k � �� �� � � � � n� �

are the vertices of the regular n�gon centered at the origin� Hence ��n�
k �� �

for � � k � n� This proves that o��n� � n�
Now� suppose that z is any n�th root of unity� Note that jzjn � jznj � ��

That is� jzj is a positive real number whose n�th power is �� It follows that jzj
must be equal to �� Hence z � ei�� By the argument in the proof of Theorem
���� since zn � �� we have � � k �	

n
� This shows that z � eik

��
n � ��n�

k� and
therefore lies in the subgroup h �n i generated by �n�

Problem ����� Show that z � T if and only if z�� � z�

Problem ����� Show that if z � ei� then z � e�i��

Problem ����� Use the formula for R��� to �nd the coordinates of the point
��� �� � R� after it has been rotated ��o counter�clockwise about the origin� Do
the same for ��o� Express the coordinates of the answer as rational numbers
and�or radicals� not trig functions�

Problem ����� Prove that the group h �n i is isomorphic to the group Zn

under addition modulo n�

Problem ����	 For each n � f�� �� �� �� �� �g �nd all the n�th roots of unity
��n�

k for k � f�� �� � � � � n� �g� Express them in the form a� bi where a and
b are real numbers not involving trig functions� Also sketch the location in
the plane of the n�roots of unity for each n�

Problem ����� Prove that h ei	
p
� i �� Z�



Appendix A

Some Rules of Logic

Constructing mathematical proofs is an art that is best learned by seeing
many examples of proofs and by trying to imitate these examples when con�
structing one�s own proofs� Nevertheless� there are a few rules of logic and
language that it is useful to be aware of� Most of these are very natural and
will be used without comment� Their full understanding only comes with
experience� We begin with some basic assumptions concerning equality�

�� x � x holds for all x� 
 Re�exivity��

�� If x � y then y � x� 
Symmetry��

�� If x � y and y � z then x � z� 
Transitivity��

For example� if we are able to prove x � y� y � z� z � w and w � r�
then we may conclude by transitivity of equality that x � r� Re�exivity and
symmetry of equality are also very useful� It is not necessary to quote these
rules everytime they are used� but it is good to be aware of them �in case
someone asks��

Implications are crucial to the development of mathematics� An implica�
tion is a statement of the form

If P then Q �A���

where P and Q are statements� Instead of �A��� we will sometimes write

P �� Q� �A���

��
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The statement �A��� is read� P implies Q!� We call P the hypothesis and�
Q the conclusion of the implication �A���� Students should be careful when
using this notation� For example� do not write

If P �� Q

when you mean

P �� Q �A���

To prove the implication P �� Q� start by assuming that P is true and
use this assumption to establish the validity of Q� It is sometimes easier to
prove the equivalent statement

Q is false �� P is false �A���

This is called the contrapositive of the implication �A����
We write

P �� Q �A���

as an abbreviation for the two statements

P �� Q and Q �� P

So� for example� if you need to prove P �� Q you really have two things to
prove� both P �� Q and Q �� P � The statement �A��� is read

 P is equivalent to Q!�

or

 P holds if and only if Q holds�!

And sometimes we use the abbreviation  i
! for  if and only if!� So an
acceptable alternative to �A��� is

P i
 Q

�
We assume that implication satis	es the following rules�

�� P �� P holds for all P � 
 Re�exivity��

�� If P �� Q and Q �� R then P �� R� 
Transitivity��



��

We assume that equivalence satis	es the following rules�

�� P �� P holds for all P � 
 Re�exivity��

�� If P �� Q then Q�� P � 
Symmetry��

�� If P �� Q and Q�� R then P �� R� 
Transitivity��

We will often use these rules for implication and equivalence without com�
ment�
Convention In de	nitions the word if means if and only if� Compare� for
example� De	nition ����
Important Phrases In addition to looking for implications and equiv�
alences� students should pay close attention to the following words and
phrases�

�� there exists

�� there is

�� there are

�� for all

�� for each

�� for every

�� for some

�� unique

�� one and only one

��� at most one

��� at least one

��� the

��� a� an

��� such that
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��� implies

��� hence

��� therefore

The use of these phrases and words will be clari	ed if necessary as the course
progresses� Some techniques of proof such as proof by contradiction and proof
by induction are best understood by examples of which we shall see many as
the course progresses�



Appendix B

Functions

Here we collect a few basic facts about functions� Note that the words
function� map� mapping and transformation may be used interchangeably�
Here we just use the term function� We leave the proofs of all the results in
this appendix to the interested reader�

De�nition B�� A function f from the set A to the set B is a rule which
assigns to each element a � A an element f�a� � B in such a way that the
following condition holds for all x� y � A�

x � y �� f�x� � f�y�� �B���

To indicate that f is a function from A to B we write f � A � B� The set
A is called the domain of f and the set B is called the codomain of f �

If the conditions of De	nition B�� hold� it is customary to say that the
function is well�de�ned� Often we speak of  the function f!� but strictly
speaking the domain and the codomain are integral parts of the de	nition�
so this is short for  the function f � A� B�!

To describe a function one must specify the domain �a set� and the
codomain �another set� and specify its e
ect on a typical element �variable�
in its domain�

When a function is de	ned it is often given a name such as f or �� So
we speak of the function f or the function �� If x is in the domain of f then
f�x� is the element in the codomain of f that f assigns to x� We sometimes
write x �� f�x� to indicate that f sends x to f�x��

��
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We can also use the barred arrow to de	ne a function without giving it
a name� For example� we may speak of the function x �� x� � �x � � from
R to R� Alternatively one could de	ne the same function as follows� Let
h � R � R be de	ned by the rule h�x� � x� � �x� � for all x � R�

Note that it is correct to say the function sin or the function x �� sin�x��
But it is not correct to say the function sin�x��

Arrows� We consistently distinguish the following types of arrows�

� As in f � A� B�
�� As in x �� x� � �x� �
�� Means implies
�� Means is equivalent to

Some people use � in place of ��

It is often important to know when two functions are equal� Then� the
following de	nition is required�

De�nition B�� Let f � A� B and g � C � D� We write f � g if and only
if

A � C� B � D and f�a� � g�a� for all a � A� �B���

De�nition B�� A function f � A � B is said to be one�to�one if the
following condition holds for all x� y � A �

f�x� � f�y� �� x � y� �B���

Note carefully the di
erence and similiarity between �B��� and �B����

De�nition B�� A function f � A � B is said to be onto if the following
condition holds�

For every b � B there is an element a � A such that f�a� � b� �B���

Some mathematicians use injective instead of one�to�one� surjective in�
stead of onto� and bijective for one�to�one and onto� If f � A� B is bijective
f is sometimes said to be a bijection or a one�to�one correspondence between
A and B�
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De�nition B�� For any set A� we de�ne the function 
A � A � A by the
rule


A�x� � x for all x � A� �B���

We call 
A the identity function on A� If A is understood� we write simply

 instead of 
A�

Some people write �A instead of 
A to indicate the identity function on
A�

Problem B�� Prove that 
A � A� A is one�to�one and onto�

Theorem B�� If f � A� B and g � B � C then the rule

gf�a� � g�f�a�� for all a � A �B���

de�nes a function gf � A� C� This function is called the composition of
g and f �

Some people write g � f instead of gf � but we will not do this�

Theorem B�� If f � A� B is one�to�one and onto then the rule

for every b � B de�ne f���b� � a if and only if f�a� � b� �B���

de�nes a function f�� � B � A� The function f�� is itself one�to�one and
onto and satis�es

ff�� � 
B and f��f � 
A� �B���

The function f�� de	ned in the above theorem is called the inverse of f �

Theorem B�� Let f � A� B and g � B � C�

�� If f and g are one�to�one then gf � A� C is one�to�one�

�� If f and g are onto then gf � A� C is onto�


� If f and g are one�to�one and onto then gf � A� C is also one�to�one
and onto�
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Appendix C

Elementary Number Theory

Here we review some basic number theoretic de	nitions and results� For the
most part� we will just state the results� For a more detailed treatment� the
student is referred references 
���
��� or 
�� given in the bibliography� Unless
otherwise stated in this appendix� all lower case letters� a� b� c� etc� will be
integers� Recall that we use N to denote the set of natural numbers �also
known as the positive integers� and we use Z to denote the set of all integers�
i�e��

N � f�� �� �� � � �g

and

Z � f� � � ���������� �� �� �� �� � � �g�

De�nition C�� Let a� b � Z� We say b divides a and we write b j a if there
is an element c � Z such that a � bc� We write b � j a if b does not divide a�

If b j a we also sometimes say that b is a factor of a or that a is a multiple
of b� To tell if b divides a where b �� �� we simply divide a by b and see if the
remainder is � or not� More generally� we have the following fundamental
result�

Lemma C�� �The Division Algorithm� For any integers a and b with
b �� � there exists unique integers q and r such that

a � bq � r� � � r � jbj�

��
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De�nition C�� The number r in the above Lemma is denoted by a mod b�

For example we have

�� mod � � � since �� � � � � � � and � � � � �

and

����� mod � � � since ��� � ���� � � � � and � � � � �

�

De�nition C�� An integer p is said to be prime if p � � and the only
positive factors of p are p and ��

De�nition C�� Let a and b be integers� at least one of which is non�zero�
The greatest common divisor of a and b is the greatest positive integer�
gcd�a� b�� that divides both a and b� We de�ne gcd��� �� � ��

De�nition C�� If a and b are non�zero integers� the least common mul�
tiple of a and b is the smallest positive integer� lcm�a� b�� that is a multiple
of both a and b� If a � � or b � �� we de�ne lcm�a� b� � ��

An important property of primes is given by the following lemma�

Lemma C�� If p is prime and pjab then pja or pjb�

Perhaps the most fundamental result concerning integers is the following
theorem� which is sometimes called The Fundamental Theorem of Arithmetic�

Theorem C�� �Unique Factorization for N� If n � � is an integer� then
there exists a unique list of primes p�� p�� � � � � pk such that the following two
conditions hold�

�� p� � p� � � � � � pk�

�� n � p�p� � � � pk
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For example� if n � �� the unique list of primes is �� �� �� �� ��

Now 	x a positive integer n� Recall that Zn � f�� �� � � � � n� �g and that
multiplication and addition in Zn are de	ned by

a� b � remainder when the ordinary sum of a and b is divided by n� and

a � b � remainder when the ordinary product of a and b is divided by n�

To facilitate the proof that these two binary operations are associative�
we temporarily denote addition in Zn by � and multiplication in Zn by 
�
This way we can use � and � for ordinary addition and multiplication in Z�
Thus we have

a� b � �a� b� mod n

a
 b � �ab� mod n

Theorem C�� Let n be a positive integer� De�ne f � Z � Zn by the rule
f�a� � a mod n� Then

f�a� b� � f�a�� f�b� �C���

and

f�a � b� � f�a�
 f�b�� �C���

Proof Let r� � f�a� and r� � f�b�� This implies that

a � nq� � r�� � � r� � n

and
b � nq� � r�� � � r� � n

Hence
a� b � nq� � r� � nq� � r� � n�q� � q�� � r� � r�

Now
f�a�� f�b� � r� � r� � r

where
r� � r� � qn � r� � � r � n

Hence
a� b � n�q� � q� � q� � r� � � r � n
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and it follows that
f�a� b� � �a� b� mod n � r�

and we conclude that

f�a� b� � r � f�a�� f�b��

This proves �C���� The proof of �C��� is similar and left to the interested
reader�

Corollary C�� The binary operations � and 
 on Zn are associative�

Proof Using the notation in the theorem� we have for a� b� c � Zn� f�a� � a�
f�b� � b and f�c� � c� Hence

�a� b�� b � �f�a�� f�b��� f�c�

� f�a� b�� f�b�

� f��a� b� � c�

� f�a� �b � c��

� f�a�� f�b� c�

� f�a�� �f�b�� f�c��

� a� �b� c�

This proves that � is associative on Zn� The proof for 
 is similar and left
to the interested reader�
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Partitions and Equivalence

Relations

De�nition D�� A partition of a set X is a collection P of pairwise dis�
joint� non�empty subsets of X whose union is X� The elements of P are
called the blocks of the partition�

For example� if X � 
�� � f�� �� �� �� �� �� �� �� �g then
P � ff�� �g� f�g� f�� �� �g� f�� �� �gg

is a partition of X� Note that this partition has four blocks f�� �g� f�g�
f�� �� �g� and f�� �� �g�

Remark� In the de	nition of partition we used the term collection� This is
just another name for set� It is just more natural to say collection of sets
than to say set of sets� So in fact� a partition of X is a set whose elements are
themselves sets which we choose to call blocks& satisfying three properties�

�� Each block is a non�empty subset of X�

�� No two di
erent blocks have an element in common�

�� Every element of X lies in at least one block�

Problem D�� Find all partitions of the set 
��� List them according to the
numbers of blocks in each partition� The number of blocks may be any integer
from � to ��

��
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Problem D�� Find a partition Pk of the set Z that has exactly k blocks for
each of the following values of k� ����
��������

De�nition D�� A �binary� relation on a set X is a subset � of the Carte�
sian product X �X� If �a� b� � R we write a�b and we say that a is related
to b with respect to the relation R�

Since we will only be concerned with binary relations� we will leave o

the modi	er binary� Examples of relations are � and � on the set R� � on
any set� and �� on the class of all groups� Rather than use � for a generic
relation� we use the symbol ��
De�nition D�� A relation � on a set X is an equivalence relation on
X if the following properties hold for all x� y� z � X�

�� x � x�

�� If x � y then y � x�


� If x � y and y � z then x � z�

The properties in the above de	nition are called re�exivity
 symmetry

transitivity� respectively�

The most common equivalence relation is equality� Equality is an equiv�
alence relation on any set�

De�nition D�� If � is an equivalence relation on the set X� and a � X we
de�ne the set


a� � fx � X j x � ag�

a� is called the equivalence class of a relative to the equivalence relation ��
Theorem D�� If � is any equivalence relation on the set X then the col�
lection of all equivalence classes is a partition of X� Conversely� given any
partition P of the set X� one may de�ne an equivalence relation � on X by
the rule

a � b�� a� b � B for some block B � P
in which case the equivalence classes of � are precisely the blocks of the
partition P�
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