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PREFACE.

‘WEe have added in the present Volume to what was contained
in the earlier editions of this work a new chapter on the
Theory of Substitutions and Groups. Our aim has been to
give here, within as narrow limits as possible, an account of
the subject which may be found useful by students as an
introduction to those fuller and more systematic works which
are specially devoted to this department of Algebra. The
works which have afforded us most assistance in the prepa-
ration of this chapter are—Serret’s Cours d’ Algébre supérieure ;
Traité des Substitutions et des Equations algébriques by M.
Camille Jordan (Paris, 1870;; Netto’s Substitutionentheorie
und thre Anwendung auf die Algebra (Leipzig, 1882), of which
there is an English translation by F. N. Cole (Ann Arbor,
Mich., 1892); and Legons sur le Résolution algébrique des
Equations by M. H. Vogt (Paris, 1895).

Trintry CoLLEGE, DUBLIN,

Aprit, 1901.
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CHAPTER XIII.

DETERMINANTS.

127. Elementary Notions and Definitions.—This chapter
will be occupied with a disonssion of an important class of
functions which constantly present themselves in analysis.
These functions possess remarkable properties, by a knowledge
of which much simplification can be introduced into many
operations in both pure and applied mathematios.

The function a,d; + a.b,, of the four quantities

a, b,
(s, bu

is obtained by assigning to a and b, written in alphabetical order,
the suffixes 1,:2, and 2, 1, corresponding to the two permutations
of the numbers 1, 2, and adding the two produots so formed.
Similarly, the function
abyes + adyey + abse, + azdics + ashie, + ayboey, (1)

of the nine quantities
ay, by, ¢,

as, b, o,
Gy b‘y Csy

is obtained by adding all the products abc which can be formed
by assigning to the letters (retained in their alphabetical order)
suffixes corresponding to all the permutations of the numbers
1,2, 3. The whole expression might be represented by (abc),
or any other convenient notation, from which all the terms
could be written down.

VOL. II. B



2 Determinants.

The uotation (abed) might be employed to represent a
similar function of the 16 quantities a,, b,, ¢\, d, a;, &o., con-
sisting of 24 terms, which can all be written down by the aid
of the 24 permutations of the numbers 1, 2, 3, 4.

And, in general, taking n letters a, b, ¢, . .. /, we can write
down a similar function consisting of n (n - 1)(n-2)....3.2.1
terms, this being the number of permutations of the first # num-
bers, 1,2, 3 ... n.

Now the functions above referred to, which are of such
frequent occurrence in mathematical analysis, differ from those
just described in one respect only, viz.: of the 1.2. 3 ... »
(which is an even number) terms, half are affected with posi-
tive, and half with negative signs, instead of being all poeitive
as in the expression written down on the preceding page.

‘We shall now give some instances of the functions which
will be discussed in this chapter. They occur most frequently
as the result of elimination from linear equations. If, for
example, # and y be eliminated from the equations

ar + bly = O,
axr + by =0,
the result is ab, — ab, = 0.

Again, the result of eliminating 2, y, s from the equations
az+by+ ez =0,
ax + by + 3 = 0,
ax + by + ¢z = 0,

is, as the student will readily perceive by solving from two of
the equations and substituting in the third,

(’le(‘1 - (l|6302 + a”lgcl - azblc; + (l;b,('g - (l;bzcl = 0 H (2)

and this function differs from (1) given on the preceding page
only in having three of its terms negative, instead of having
the six terms positive.



Elementary Notions and Definitions. 3

Similarly, the process of elimination from four linear equa-
tions gives rise to a function of the sixteen quantities

a, by, ¢y dyy 4y b, &o.,

which differs from the function above represented by (abcd) only
in having twelve of its terms negative.

Expressions of the kind here described are called Determ:-
nants.* The notation by which they are usually represented was
first employed by Cauchy, and possesses many advantages in the
treatment of these expressions. The quantities of which the
function consists are arranged in a square between two vertical
lines. For example, the notation

a b,l
a b,

represents the determinant a,5; — a,5,.
Similarly, the expression on the left-hand side of equation (2)
is represented by the notation
| @& b e
i (l, b. (" ; .
| a5 b o '

And, in general, the determinant of the #' quantities
ay, by, ¢ ... 1, a, by, &o., is represented by

«, bl C) . . . ll

as bg Cg . o . 12

a by e . . . 4 | (3)
ay by ¢ . . . I

By taking the u letters in alphabetical order, and assigning
to them suffixes corresponding to the n(n-1)(n-2)...3.2.1
permutations of the numbers 1, 2, 3, . .. n, all the terms of the

® Sce Note D at the end of Vol. II.
B2



1 Determinants,

determinant can be written down. Half of the terms must
receive positive, and Lalf negative signs. In the next Article
the rule will be given bfr which the positive and negative terms
are distinguished.

The individual letters a,, b, ¢, ... a,, ... &c., of which a
determinant is composed, are called constituents, and by some
writers elements.

Any series of constituents such as a,, b, ¢,, ... 4, arranged
horizontally, form a row of the determinant ; and any series such
as @, @, o, . . . Ay, arranged vertically, form a column.

The term /ine will sometimes be used to exprees a row or
column indifferently.

123. Rule with regard to Signs.—It is evident from
the preceding Article that each term of the determinant will,
since it containsall the letters, contain one constituent (and only
one) from every column ; and will also, since the suffixes in each
term comprise all the numbers, contain one constituent (and only
one) from every row. We may therefore regard the square
array (3) of Art. 127 as the symbolical representation of a
function consisting in general of n(n - 1)(n-2)...3. 2. 1
terms, comprising all possible products which can be formed by
taking one constituent, and one only, from each row, and one
constituent, and one only, from each column. All that is
required to give perfect definiteness to the function is to fix the
sign to be attached to any particular term. For this purpose
the following two rules are to be observed :—

(1). The term aibses . . . I, formed by the constituents situated
in the diagonal drawn from the left-hand top corner to the right-
hand bottom corner, 18 positive.

This is called the leading or principal term. In it the suffixes
and letters both occur in their natural order; and from it the
sign of any other term is obtained by means of the following
rule :—

(2). Any interchange of two suffixes, the letlers relasning their
order, alters the sign of the term.



Rule with regard to Signs. b

This rule may be otherwise expressed thus : —Any interchange
of tico letters, the suffizes retaining their order, alters the sign of a
term. For if two letters be interchanged, and the two corre-
sponding constituents then interchanged, the entire prooess is
equivalent to an interchange of suffixes. If, for example, in
a\bsesdies the letters b and e be interchanged, we get a,escsd,bs,
which is equal to a,bsxdie;, and this is derived from the given
term by an interchange of the suffixes 2 and .

In applying this rule it is evident that an even number of
interchanges will not alter the sign of a term, and that an odd
number will.

ExaupLEs.

1. What sign is to be attached to the term asdiczdse; in the determinant of the
5th order ?

The question is, How many interchanges will change the order 12345 into 34251 ¢
Here, when 3 is interchanged with 2, and afterwards with 1, it comes into the lead-
ing place, the order becoming 31246. Again, the interchange in 31245 of 4 with
2, and afterwards with 1, presents the order 34125. The interchange of 2 with 1
gives the order 34215 ; and finally the interchange of 5 with 1 gives the required
order 34261. Thus there are in all six interchanges; and therefore the required
sign is positive.

The general mode of proceeding may plainly be stated as follows :—Take the
figure which stands first in the required order, and move it from its place in the
natural order 1234 . . . into the leading place, counting one displacement for each
figure passed over. ‘Take then the figure which stands second in the required order,
and move it from its place in the natural order into the second place ; and so on. 1f
the number of displacements in this process be even, the sign is positive; if it be
odd the sign is negative.

2. What sign is to be attached to the term asbicedse1fug2 in the determinant of
the 7th order ?

Here two displacements bring 3 to the leading place ; five displacements then
bring 7 to the second place ; four then bring 6 to the third place ; three then bring
6 to the fourth place; the figure 1 is in its place ; and finally, one displacement
brings 4 into the sixth place. Thus there are in all fifteen displacements; and the
required sign is therefore negative.

3. Write down all the terms of the determinant

a b oo d
a1 b 3 d3
ay by e dy

I ey 8 e dy
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The six permutations of suffixes in which the figure 1 occurs first are
1234, 1243, 1324, 1342, 1423, 1432.
The six corresponding terms are, as the student will easily see by applying the
Rule (2), as in the previous exanples,
arbiory — a\drcids + a\Bicidy — arbyendy + arbiordy — a1dycnds.
The other eighteen terms, corresponding to the permutations in which the figures
2, 3, 4, respectively, stand first, are as follows :—
azbieidy — asbicydy + axbyeidy — arbsed) + arbycsd) — mbyerds
+asbieady ~ azbregdy + asbreed) — wsbyerds + a3dirds — a3biondy
+ ahiosdy — adicads + adrerds — aibacady + abyordy — asbyrrds.
It will be observed here that the number of positive terms is equal to the number
of negative terms. The same must be true in general; for, corresponding to any

positive term there exists a negative term obtained by simply interchanging the last
two suffixes.

4. Bhow that if any two adjacent figures be moved together over any number
m of figures, the sign is unaltered.

For if they be moved separately, the whole process is equivalent to a movement
over 2m figures.

5. Determine the sign to be attached to the second diagonal term, vis.
anby.y ¢u2 . . . kaly, in the determinant of the nfé order.

Here the number of displacements required to change the natural order to the
required order is clearly

("_l)"‘("-2)+('l—3)+.._+2+1=”("2_l).

»(n-1)

Hence the required signis (- 1) 2 .

129. In the propositions of the present and following
Articles are contained the most important elementary properties
of determinants which, by the aid of Cauchy’s notation above
described, render the employment of these functions of such
practical advantage.

Pror. I.—1If any twco rows, or any two columns, of a determi~
nant be interchanged, the sign of the determinant is changed.

This follows at once from the mode of formation (Rule (2),
Art. 128), for an interchange of two rows is the same as an
interchange of two suffixes, and an interchange of two columns
is the same as an interchange of two letters; so that in either
case the sign of every term of the determinant is changed.



) Propositions. 7
/'(/ By aid of this proposition the rule for obtaining the sign of

any term may be stated in a form which is usually more
convenient for practical purposes than that already given. It
will readily be perceived that the general mode of procedure
explained in Ex. 1, Art. 128, is equivalent tc the following :—
Bring by movements of rows (or columns) the constiluents of the
term whose sign 1s required into the position of the leading diagoval.
The sign of the term 1will be positice or negative according as the
number of displacements is even or odd.

ExaMpLE.
What sign is to be attached to the term ABnz in the determinant

a (4

i
?

s VR
o & wlin

|
A |

f
T S ™ >

Herc a movement of the fourth row over three rows (s. e. three displacements)
brings A into the leading place. One displacement of the original second row
upwards brings 8 into the required place in the diagonal term. And one further
displacement of the original third row upwards effects the required arrangement,
bringing ABnz into the diagonal place. Thus the number of displacements being
odd, the required sign is negative.

130. Prop. I1.— Whenerer, in any determinant, two rows or
tico columns are identical, the determinant vanishes.

For, by Prop. 1., the interolﬁmge of these two lines ought
to change the sign of the determinant A ; but the interchauge
of two identical rows or columns cannot alter the determinant
in any way; hence A =—- A, or A =0.

131. Proe. III.—The value of a determinant is not altered if
the rows be writlen as colunns, and the columns as roiws.

For all the terms, formed by taking one constituent from
ench row and one from each column, are plainly the same in
value in both cases ; the principal term is identically the same;
and to determine the sign of any other term (by Prop. I.) the
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number of displacemeuts of rows necessary to bring it into the
leading diagonal in the first case is the same as the number of
displacements of columns necessary in the second case.

ExaupLe.
@« b o 4 q @ e «
a: b ;. & o ob b b
o b oo 4 I ;
a b ¢ d, d d. d; d,

Here the sign of any term, e.g. #:54c1d;, is the same in both determinants. For
three displacemcnts of rows are required to bring this term into the leading position
in the first determinant ; and the same number of displacements of columns is

required to bring the same constituents into the leading position in the second
determinant.

132. Prop. IV.—1If every constituent in any line be multiplied
by the same fuctor, the determinant is multiplied by that factor.

For every term of the determinant must contain one, and ' -

ouly one, constituent from any row or any column.

Cor. 1. If the constituents in any line differ only by the
same factor from the constituents in any parallel line, the
determinant vanishes.

Cor. 2. If the signs of all the constituents in any line be
changed, the sign of the determinant is changed. For this
is equivalent to multiplying by the factor - 1.

ExaMpLEs.

kaz b2 ez sl;i a b e |'

’ kdl b| (4] . bl L4}

kas & e ay b o

ap Ma; az | @1 a az
B1 mB1 B2 !s’u! B B B2 |=0.
fnommom nnmn

~
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3. Show that the following determinant vanishes :—

4. Prove the identity

| b a @ | . 1 & a
eca b b | m 1 8 8
ah ¢ ¢t 1 & &

Represent the first determinant by A, and multiply the rows by a, b, ¢, respec-
tively. We have then
abe a® a?

abcA =| abe b 8B |;
abe 2 &

and, dividing the first column by abe, the result follows.
5. Prove the identity ’

BYS a a*® a’ 1 o o o
7% B B B? 1 g g B¢
=
%8 7y ¥ P 12 2
aBy 3 3 B 1 » B ¥
6. Prove
2 1 -7 1 1 7 I
<-4 +3 .8 | =2 ! 2 3 8 |
6 b5 -9 ;83 b6 9
Change all the signs of the second row, and afterwards of the third column.
7. Prove
a B (2 ' 1 1 1
. RS U . ,
@ B v -H;—B;’! a'By Bva yaB
|

R "By B'ya y'aB
This is easily proved by multiplying the columns of the first determinant by
87, 7, aB, respectively; and then dividing the first row by a8y.
It is evident that a similar process may be employed to reduce any determinant
to one in which all the constituents of any selected row or column shall be units.
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8. Reduce the following determinant to one in which the first row shall consist

of units: —
4 2 5 10
1 1 6 3
A=
7 3 0 6
0 2 5 8

Since 20 is the least common multiple of 4, 2, 5, 10, it is sufficient to multiply
the columns in order by 5, 10, 4, 2; we thus obtain

20 20 20 20

1 5 10 24 6

A= ———
5.10.4.2| g5

30 0 10
0 20 20 16

Taking out the multiplier 20 from the first row, 5 from the third row, and 4 from
the fourth row, we get finally

5 10 2t 6
A=
7 6 o0 2
0 13 '] 4
9. Prove the identity
1 1 1

|
a B v ! = (B-7)(y-a)(a—-A)
a g o

Since if B were equal to y, two columns would become identical, 8 — y must be
a factor in the determinant. Similarly, y — a and a — 8 must be factors in it.
Hence the product of the three differences can differ by a numerical factor only
from the value of the determinant, since both functions are of the third degree in
a, B, 7; and by comparing the term By? we observe that this factor is + 1.

10. Prove similarly the identity

1 1 1 1

a B 7 3
@ B R
@ B P B

It is evident that a similar proof shows in general that the value of the deter-
minant of this form, constituted by the n quantities a, 8, = . . . A, is the product of
the 4n (» — 1) differences which can be formed with these # quantities.

=—(B-7)(a—3)(y—a)(B-3)(a-B)ly-3).
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133. Minor Determinants. Definitions.—When in a
determinant any number of rows and the same number of
columns are suppressed, the determinant formed by the
remaining constituents (maintaining their relative positions) is
called a minor determinant.

If one row and one column only be suppressed, the corre-
sponding minor is called a first minor. If two rows and two
columns be suppressed, the minor is called a second minor ; and
so on. The suppressed rows and columns have common con-
stituents forming a determinant ; and the minor which remains
is said to be complementary to this determinant. The minor
complementary to the leading constituent a, is called the leading
Jirst minor, and its leading first minor again is the leading second
minor of the original determinant.

It is usual to denote a determinant in general by A. We
shall denote by A, the first minor obtained by suppressing in A
the row and column which contain any constituent a; by A,
the second minor obtained by suppressing the two rows and two
columns which contain a and 3; and so on. Thus A,, repre-
sents the leading first minor, and A,,,s, or A,,,s, the leading
second minor.

The determinant A, formed by the constituents a,, b,, &\, &o.,
is often denoted for brevity by placing the leading term within
brackets as follows :—

A= (”‘ b-_» Cs oo 0 o I").

The notation = +a,5;¢, .. . /, is also used to represent A ;
this expressing its constitution as consisting of the sum of a
number of terms (with their proper signs attached) formed by
taking all possible permutations of the » suffixes.

134. Development of Determinants.—Since every term
of any determinant contains one, and only one, constituent from
each row and from each column, it follows that A is a livear and
honiogeneous function of the constituents of any one row or any one
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column. We may therefore write
A=mA, + ay A, + ay 4, + &e.,
A=bD,+ b,B, + 0B, + &e.;
or, again, A=md, + 5B, + ¢,C, + &e.,
A=A, + By + c,C, + &e.
The student, on referring to Ex. 3, Art. 128, will observe

that the determinant of the fourth order there written at length
is constituted in the way here described, namely,

b. Cs (Ig ! | bl C) (l] bl [ (11 bl [} d| i
A= “, b. Cs l/; + A, . b. Cy (l‘ + a3 Ilg C; dg + G, b; Cs (I; .
b ¢, d, P by ey dyj by ey dy by ¢y dy

We proceed to show that in the general case, writing A in

the form
A=ad,+ A, + A5+ ... + agds,

the coefficients .4,, 4., A, &o., are determinants of the order
a-1. ’

In effecting all the permutations of the suffixes 1,2,3....n,
suppose first 1 to remain in the leading place, as in the example
referred to; we then obtain 1,2,3.... (u - 1) terms which have

a, as a factor, and
WIAI = (12 + bzl'; o e Iu;
hence

ba ¢a... 1/,

! b;g ('3...,;
A|=2tbg(';...,,,=|l Ty
i e o o e

i OnCneoeln

and this determinant is the minor corresponding to the consti-
tuent a,, or 4, = A,,.

To find the value of 4,, we bring a, into the leading place
by one displacement of rows. This changes the sign of A, so
that we obtain 4, = - A,,, i. e. 4, = the minor corresponding to
a, with its sign changed. Again, bringing a, to the leading
place by two displacements, we have 4, = A, ; and so on.
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Thus we conclude that, in general,
A= alAa, - azAa._. + ”xAn, - a;Aa‘ + &o.

Similarly, we can expand A in terms of the constituents of
any other column, or any row. For example,

A =ml, - b, + e, - &e.

If it be required to obtain the proper sign to be attached to
the minor which multiplies any constituent in the expanded
form, we have only to consider how many displacements would
bring that constituent to the leading place. For example, sup-
pose the determinant (a,b,c,dies) is expanded in terms of its
fourth column, and that it is required to find what sign is to be
attached to d;A4,. Here two displacements upwards, and after-
wards three to the left, will bring d, to the leading place ; hence
the sign is negative. Thisrule may be stated simply as follows :—
Proceed from a, to the constituent under consideration along the top
row, and down the column containing the constituent; the number
of letters passed over before reaching the constituent will decide the
sign to be attached to the minor. In the example just given,
beginning at a,, we count a,, b, ¢\, d,, ds, i. e. five; and this
number being odd, the required sign is negative.

It will be found convenient to retain both notations here em-
ployed for the development of a determinant. The expansion in
terms of the minors, with signs alternately positive and negative,
is useful in calculating the value of a determinant by successive
reductions to determinants of lower degree. Ior some purposes,
as will appear in the Articles which follow, it is more convenient
to employ the notation first given, in which the signs are all
positive (whatever the row or column under consideration)
and the coefficient of any constituent represented by the oor-
responding capital letter. By substituting for the capital letter
the corresponding minor with the proper sign, determined in
the manner above explained, the latter notation is changed into
the former.
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(I"_nnua.
: « ¥ - *
L i a h «
e n - =a - -
- e h o 'k a
< N -

= iy — 1 0y - ahiey - 6:byy + agdic: — a3hyer.

e oL A LT

2. & v
LI 4 A g A g
8+ 7 =g B | +g )
f e 7 e b
s 7

= e« 277k —aft — byt - oA
°. Expanithe leterminaz: of the fourth order in terms of the constituents of
ttefint. mw.

A= - 4., - A, - A, + day,

b e A a o 4 « & 4 ] b a
=—ry AN oA -k ey g dy -y a2 by ody +di! a b .
1
A ay ¢35 dy a b dy a b o

When the determinants of the thirl order are expanded, this will give the
apression of Ex. 3, Art. 128, as the student will easily verify.

4. 3 2 4
- ¢ 1 2 4 |24
T 6 1 =3 -7 4+ 8 l
3 8 38 . |61l
5 3 R

=3(48-3) - T{16~12) + 6(2 — 24)
=-—3.

5. Find the value of the determinant
8 7 2 20

3 1 4 7
b 0 11 0
8 1 0 6

Expanding in terms of the third row, since two of the constituents in that row
vanish, we have without difficulty

; 7 2 20 8 7 20
a=5 1 4 7 (+11| 3 1 7 [;
v o 8 1 ¢

and expanding the two determinants of the thinl order, we find A = 2188.
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6. Expand 0 ¢ b d
¢ 0 a e

[ a o s
|

| d e f O
The expansion is a?d? + 8362 + 3 f? — 2bcef — 2cafd — 2abde ; the given deter-
wminant is therefore equal to the product of the four factors
Vi kS,  Vd-VE-VF,
-V +/be-/f, -Ved-VEitV/F,

a result which is sometimes useful.

7. Prove
. 1 a B 7
—a 1 vy -8

-8 _7. 1 a
. -y B -a 1
8. Expand | —a [ ¢ d

1
i=14at+B%+ 7+ a4+ B34 914 (aa'+ BB’ + yy)’.
1
|
|

b —-a d ¢
¢ d -—a 1

d ¢ b —a
Ans. ab 458+ A +db —283c2 - 20 a? — 24% B3 — 232 a3 - 252 I — 2¢* d? — 8abed.

\ 9. Prove the following identity, and expand the determinants : —

\ 0 1 1 1 0 z y H

]

L1 0 32 z 0 ¢ g

I -

1 23 0 z y z 0 z

|

i1 v 2 0 ] y z 0

Ans. 28+ yb+ o4 - 29352 — 203 22— 222 2,
10. Find the value of the determinant ’
a h g A
A b f
9 f e I
1
l
| A m v 0
Expund first in terms of the last row or last column, and then each of the
determinants of the third order in terms of A, u, ».
Ans. ~ A= (be =[N+ (ca—g?) w2 + (ab— 1h3) ¥ + 2 (gh — af ) uw
+ 2{(Af — bg) yA 4+ 2 (fg — ch) Ap.

A=

<
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VEXAXPLBS. >
s}
1. a b
) ' b1 o [ h o
a b =4y —az' + a3 .
i 1 by e | L) a !
ay b ¢

= by — aihaey — asdics + aabye) + azbic: — asbyey.
(Compare (2), Art. 127.)

2. | a A g
A oA A
e ]
| c ! S e b f
g f

= abe 4 2fgh — af? — bg? - ch2.
3. Expand the determinant of the fourth order in terms of the constituents of
the fourth row.
A =—qlde, + 088, — s, + diAg,
ey dy | | @ a d a b d Ve b

. 1
=—a| by e dy +’ul ay ¢y dy |—ei| a2 by dy |(+di| a: by o

boesody | | ay ey dy ay by ds ay b o3
When the dcterminants of the third order are expanded, this will give the
xpression of Ex. 3, Art. 128, as the student will easily verify.

4. 3 2 ¢

=3(48—3) - 7(16-12) + 5(2 ~ 24)
=-3.

5. Find the value of the determinant
] 8 7 2 2

3 1 4 7
3 0 11 0
] 1 0

-]

Expanding in terms of the third row, since two of the constituents in that row
vanish, we have without difficulty
7 2 20 8 720

A=56 1 4 7 |+11) 3 1 i

1 0 6 8 1 6
and expanding the two determinants of the third order, we find & = 2188.
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6. Expand 0 ¢ [ d
3 0 a e
| b a 0o f

| a e f O
The expansion is  a?d? + b36® + ¢ f* — 2bcef — 2cafd — 2abde ; the given deter-
minant is therefore equal to the product of the four factors
ViV, V- E-F,
-Vad+/b-/of, -ad-VutV/F,
a result which is sometimes useful.
7. Prove

1 a B Y |
-a 1 Yy -8 :
(=1+a’+8%+ 7+ a4+ B2+ 9+ (aa’ + BB + vy')%.

' —B _1c 1 a !
-y B -a 1

8. Expand

|
| —a b c d
l b —a d ¢
l ] d —a [
d ¢ b —a
Ans. @b 4 b4+ A+ db — 28362 — 263 0% — 24 5 — 242 % - 262 AP — 2¢2 a2 - Babed.

v 9. Prove the following identity, and expand the determinants : —
0 1 1 1 0 z Yy s
I
1 0 2 y z 0 ¢ y
1 -
1 2 0 y H 0 z
1 v 2 0 ] y z 0

Ans, 28+ Yy + of - 293 2% — 2 2 — 2222,
10. Find the value of the detecrminant
a A g A

h b f
‘ g f 13
A M v 0

Expand first in terms of the last row or last column, and then each of the
determinants of the third order in terms of A, pu, ».

Ans. - A= (be= YN+ (ca—g®) ud + (ab— 139 + 2 (gh — af) ur
+2{hf — bg) vA + 2 (fg — ch) Ap.

*®

A
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135. Laplace’s BDevelopment of a Determinant. —
The expansion explained in the preceding Article is included
in a more general mode of development given by Laplace.
In place of expanding the determinant as a linear function
of the constituents of any line, we now expand it as a linear
function of the minors comprised in any number of lines.

Consider, for example, the first two columns (a, 5) of any
determinant; and let all possible determinants of the second
order (,, /;). obtained by taking any two rows of these two
columns, be formed. Let the minor formed by suppressing
the @, and &, lines be represented by A,,,; then the deter-
minant can bo expanded in the form = t (a,4,) A,,q, Where
each term is the product of two complementary determinants
(see Art. 133). To prove this, we observe that every term of
the determinant must contain one constituent from the column
a and one from the column 4. Suppose a term to contain the
factor a, b, ; there must then (interchanging p and ¢) be another
term differing only in the sign and the interchange of these
suffixes; hence, the determinant can be expanded in the form
2 (ayby) Apyg; and A, is clearly the sum of all the terms
which can be obtained by permuting in every possible way
the n — 2 suffixes of the letters ¢, d, e, &c., vis. + A, the
sign being determined in any particular instance by the rule
of Art. 128. This reasoning can easily be extended to the
general case. Let any number p of columns be taken, and all
possible minors formed by taking p rows of these columns.
Each of these minors is to be then multiplied by the comple-
mentary minor, and the determinant expressed as the sum of
all such products with their proper signs.

ExaMPLEs.
Yo Expand the determinant (a15z¢5ds) in terms of the minors of the second order

formed from the first two columns.

Employing the bracket notation, we can write down the result as follows :—
(@13) (e3ds) — (a13) (cads) + (a184) (cads) + (asbs) (c1 ds) — (asba) (erds) + (asb) (erds) 5
where the sign to be attached to any product is determined by moving the two rows
involved in the first factor into the positions of first and second row. Thus, for
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example, since three displacements are required to move the second and fourth rows
into these positions, the sign of the product (asby) (c1ds) is negative.
2. Expand similarly the determinant (a;52caducs).
Ans. (a1b3) (cadses) — (a10s) (czduss) + (a154) (cadass) — (a1 Bs) (eadaes)
+ (a2bs) (erdues) = (aads) (c1daes) + (@abs) (erdseq) + (a3 b) (erdaes)
— (asbs) (e1dae4) + (aeds) (c1dzes).
3. Prove the identity

a bl a d e 4

v
az b c3 dy es f2 |
a bh o | a1 B,
a:bscadses,_sll 7,
|5|¢zba¢'a aa B 7
0 0 0 aa B ™
| as b o a B 7
0 0 0 az B2 7
0 0 0 as Bs 73

This appears by expanding the determinant in terms of the minors formed from
the first three columns, for it is evident that all these minors vanish (having one row
at least of ciphers) except one, viz. (s1zc3).

In general it appears in the same way that if a determinant of the 2mt order
contains in any position a square of m? ciphers, it can be expreesed as the product
of two determinants of the m?» order.

4. Expand the determinant

a b g A XN |
A b » oM I
g f ¢ »
A m »y 0 0
Nou oy 00

in powers of a, B, 7, where
amuy' —u'y, BawA'—vA, y=Au—Au
Ans. aa® + 8% + ¢y + 2fBy + 2g9ya + 2haPB.

6. Verify the development of the present Article by showing that it gives in the
general case the proper number of terms.

Consider the first r columns of a determinant of the n‘? order. The number of
minors formed from theso is equal to the number of combinations of » things taken
r together. This number multiplied by 1.2.3 ... r (the number of termsin each
minor), and 1. 2.3 ... # — r (the number of terms in each complementary minor),
will be found to give 1.2.3 ... n, viz. the number of terms in the determinant.

VOL. 1I. -C
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136. Bevelopment of a BDeterminant in FPreduets
of the leading Constituents.—In this and the next fol-
lowing Articles will be explained two additional modes of
development which will be found useful in the expansion of
certain determinants of special form. The application which
follows will be sufficient to show how any determinant may
be expanded in products of the leading constituents —

It is re juired to expand the determinant of the fourth order
A b (4] d

I

1

as B c3 dg !

A= ‘
ag b C ds

ag b‘ €4 D l

according to the products of 4, B, C, D. In order to give prominence to the
leading constituents we have here replaced a1, 83, ¢, d¢ by 4, B, C, D. When
the expansion is effected it is plain that the result must be of the form

A =040+ 3Ad + INAB + ABCD,

where Ao consists of all the terms in which no leading constituent occurs ; XA A4 is
the sum of all the terms in which one only of these constituents occurs ; XA’ AB is
the sum of all in which the product of a pair of the leading constituents is found ;
and 4 BCD, the leading term, is the product of all these constituents. It will be
observed that the expansion here written contains no terms of the form A" 4 BC, and
it is evident in general that the expanded determinant can contain no terms in
which products of all the leading constituents but one occur, since the coeficient
of any such product is the remaining diagonal constituent. It only remains to see
what is the form of A, and of the undetermined coefficients A, 1, . . . X', &’ . . . &e.
Putting 4, B, C, D all equal to zero in the identity above written, we huve
| 0 14 €l d

|
| as 0 [ dy |

Ao = |
ay & O dy
a b« 0

Again, to obtain A, let B, C, D be made equal to zero. The coeficient of .1 is
clearly the determinant

0 e d;
b 0 ds
by s 0

the coeflicient of B is similarly obtained by replacing 4, C, D each by gero in the
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minor complementary to B; and so on. To obtain A’, let € and D be made zero ;
the coefficient of A4 B in the resulting determinant is plainly the second minor

0 ds

C4 0

The coefficient of any other product is obtained in a similar manner. Finally,
the expansion of A may be written in the form

0 b a d
az 0 c2 dz
as b O ds

ay b‘ [/} 0

0 2 a2 0 o d 0 & d 0 & a |
+ 4 b3 0 dy |+B| a3 0 ds [+ C| aa 0 d: |+D| a2 0 ¢
b‘ (13 0 ag ¢ 0 a b‘ 0 qas b: 0
0 ds 0 ds 0 ¢ X a1 ' 0a 0
+ AdB + 40 +4D + BC’ +BD +CD
e 0 5 0 b 0 a4 0] a3 0 a1 0
+ ABCD.

A determinant whose leading constituents all vanish has been called zero-azial.
The result just obtained may be stated as follows:—Any determinant may be ex-
panded in products of the leading constituents, the coefficient of every product in the
result being a zero-arial determinant.

137. Expansion of a Determinant im Froducts im
Pairs of the Constituents of a Row and Celumn.—In
what follows we take the first row and first column as those in
terms of which the expansion is required. This is evidently
sufficient, since any other row and column may be brought by
displacements into these positions. It will be found convenient
to write the determinant under consideration in the form
a, a B vy .

d’ a b] C .
a, b & . |*

7'(':6:0:-

C2
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Let this be denoted by A’, and its leading first minor
(abscs . . .) by the usual notation A. The determinant A’ may
be said to be derived from A by bordering it, horizontally with
the constituents a,, a, 3, v, .. ., and vertically with the consti-
tuents a,, o', 3, y'... When A’ is expanded, all the terms
which contain a, are included in a,A. In addition to this, the
expansion will consist of the produot of every other constituent
of the first column by every other constituent of the first row,
every such product of two being multiplied bylits proper factor.
What this factor is in the case of any product is easily seen.
Let the coefficients of a,, b, ¢y, . . . a3, b;, .. . &o., in the expan-
sion of A be 4,, B,, ... 4,, B,, . . ., according to the notation
explained in Art. 134. It is plain that the factor which multi-
plies any product, for example ad’, in the expansion of A’, is the
same a8 the factor which multiplies a,a, with sign changed, viz.
- A, ; similarly the factor which multiplies a’f3 is the factor with
sign changed of a,b,, viz. - B,; and soon. To obtain the factor
of any such product the rule clearly is—Find the fourth consts-
tuent completing the rectangle formed by the leading term a, and
the two constituents which enter into the product: the required
Jactor is obtained by substituting for the constituent of A so found
the corresponding capital letter with the negative sign. It appears
therefore finally that the expansion of A’ may be written in the
following form :—

A’=a,A - Aiad’ - B3a’ - Ciya'-.
- d,af3 - BBR - Coyf3-. ..
- dsay' - B3y’ - Cyyy’ - . ..
- &o.

Examples of the utility of this mode of expansion will be
found under a subsequent Article.

138. Addition of Determinants. Pror. V.—If erery
constituent in any line can be resolved into the sum of two others,
the determinant can be resolved into the sum of tico others.
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Suppose the constituents of the first column to be 4, + a,
@ + ay, @y + as, &o. Substituting these in the expansion of
Art. 134, we have

A= (a,+a.)A.+ (a,+a,)A,+(a,+q,)A;+&o.
=a|A| +a,A1+ a;A;"' .o &°.+alA|+ﬂ’A'+ GQA;+&°.;

or,
a, + a, b; | a, b| Cpoe i a b] ¢ .
as; + a; bz C3 ¢ o Qa, bg Cy 00 as bg [
= + »

) as + a; b; Cy .. Qs ba Cy o o as b; Cs ..
P

which proves the proposition.

If a second column consists of the sum of two others, it is
easily seen, by first resolving with reference to one column, and
afterwards with reference to the other, that the determinant
can be resolved into the sum of four others. KFor example, the
determinant

| Mt a b+ 3 a

as; + ay bz"'ﬁz C I
j @+ ay ba+Ba C

is (using the notation of Art. 133) equal to the sum of the four
determinants

(a1des) + (a:bzﬁ) + (alﬁﬁs) + (ﬂlﬁzca)-

Similarly it follows that if each of the constituents of one
column consists of the algebraical sum of any number of terms,
the determinant can be resolved into a corresponding number of
determinants. . For example—

a4 —-a,t+ a'l bl C i a, bl (4 ' a bl C ‘ a'; b] [
a;-a;+ ulg bg Cq \ =| d; b: C; | — | as bg Cp  + ﬂ'z bl ¢ |
as— ag + a', b; C3 as b; Cy ! as ba Cs | “’3 bl Cs
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And, in general, if one column consists of the algebraic sum of
m others, a second column of the sum of » others, a third of the
sum of p others, &o., the determinant can be resolved into the
sum of mnp . . ., &o., others.

Similar results plainly hold with regard to the rows, which
may be substituted for columns in the proof just given.

139. Pror. V1.—If the constituents of one line are equal to
the sums of the corresponding constituents of the other lines multi-
plied by constant factors, the determinant vanishes.

For it can then be resolved into the sum of a number of
determinants which separately vanish. For example,

"ma, +nd, a b | ‘a, a b th @ by

ma, +nby, ay b, |=m a, a, b, ,

+ nl b, a, b,
I
| b ay b, |
and each of the latter determinants vanishes (Art. 130).

140. Prop. VII.—A determinant is unchanged when to eack
constituent of any row or column are added those of several other
rows or columns multiplied respectively by constant factors.

ma, + nby a; by | ay ay by

For when the determinant is resolved into the sum of others,
as in Art. 138, the determinants in which the added lines oceur
all vanish, since each of them must, when the constant factor is
removed, contain two identical lines. Thus, for example,

& b | |a+mb+ne b ¢ |

a b o s+ mby + nc; by o

a b q
for when the second determinant is expressed as the sum of
three others, the two arising from the added columns vanish
identically (Axt. 139).

The proposition of the present Article supplies in practice

one of the most useful properties in the evaluation of deter-
minants. '

ay+ mby+ne, b e
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ExaMprLEs.
1. S8how that the following determinant vanishes:—
B+ a 1
y+ta B 1

a+B8 7y 1

Adding the constituents of the second column to those of the first, we can take
out a + B + v as a factor, and two columns then become identical.

2. Find the value of the determinant

1 2 4
2 3 7
8 4 10

Subtracting the constituents of the first column from those of the second, and
three times the constituents of the first column from those of the third, we obtain

1 1 1
2 1 1
3 1 1
which vanishes identically.
/-1 1 1 1 -1 1 1 1
‘02 2
1-1 1 1 o 0 2 2
= =-=]| 2 0 2 |=-16.
, 1-1 1 0o 2 0 2
220
1 1 1-1 0o 2 2 0

Here the first transformation is obtained by adding in succession the constituents
of the first row to those of the second, third, and fourth.

4. T 11 4 7 11 4 |7—10—10

10 10
13 16 10 (=313 16 10 (=3 13 —-24 -16 =3| ’

24 16
3 9 6 1 3 27 ;1 0 O

= 30 (16 — 24) = — 240,

Here the second transformation is obtained by subtracting three times the first
column from the second, and twice the first from the third. In examples of this
kind, attempts should be made to reduce to zero all the constituents except one in
some row or column, in which case the calculation reduces to that of a determi-
nant of lower order. This can always be done by reducing any one line to units, as
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in Ex. 7, Art. 132; but in general it can be effected more readily by direct addi-
tions or subtractions, as in the present instance.

5. 7 -2 0 5" T =2 0 b

-2 6 -2 2 19 0o -2 17

0-2 65 38| |l-7 o 5 -2

5 2 3 1 12 0 3 9l

The first transformation is obtained by adding to the second row three times the
first, subtracting the first from the third row, and adding the first to the fourth
row. The reduced determinant is easily calculated by subtracting four times the
second column from the first, and three times the second column from the third.
Thus

19 -2 17 27 -2 23
| 27 23
2 (-7 b6 -2 =2|-27 6§ —17 |=—-6 =-972.
-27 -17
12 3 9 0 3 0

6. Calculate the determinant
1 16 14 4

12 6 7 9
8 10 11 3
13 3 2 16

The first sixteen natural numbers are arranged here in what is called a ¢ magic
square,”” i.c. the sum of all the figures in any row or in any column is constant. In
general for a square of the first #® numbers this sum is 4 (n? 4+ 1). Determinants
of this kind can be at once reduced one degree. Here, adding the last three
columns to the first, and subtracting the last row from each of the others, we have

1 16 14 4! 0 12 12 —12
1 1 -1
1 6 7 9 0 3 65 -7
a=34 | =84 =-34x12|3 6 -7;
1 10 11 6 0 7 9-11
7 9-11
1 3 2 16 1 3 2 16

and subtracting the second row from the last row, it is evident that the reduced
determinant vanishes ; hence A = 0.

7. Calculate the determinant formed by the first nine natural numbers arranged
in a magic square:

4 9 2
8 b 7
8 1 6

Ans. 360.
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8. Calculate the determinant formed by the first twenty-five natural numbers

arranged in a magic square :
10 18 1 14 22

4 12 26 8 16
23 6 19 2 15
17 b 13 21 9

11 24 7 20 3 Ans. — 4680000.

9. Evaluate, by the method of the present Article, the determinant of Ex. 9,
Art. 134.

01 1 1 0 1 0 0]
| 1 2 o
1 0 22 ¢ 1 0 2 [
A= = =11 - ’2 —g% .
1 ¢ 0 22 1 2 -5 2t-g'
1 a%-y? -y
1 ¢ 22 0, |1 ¢ 2ty —¢2

Here, to obtain the second determinant, we subtract the second column from
each of the following ones. In the reduced determinant, subtracting the first row
from each of the following, we find

1 o2 ¥t

222 y 42— 22
A=-10 - 9292 gt y? (=

0 23-y3-g -2y
= (¥ + 21 — 22— 4yt R
= (y? + 23 — 22 + 2¢2) (y? + 2% — 2% — 2¢2)
={l+2* -2} {(y - 9’ - 2}
=-@E+y+)y+z-2+a-y)(z+y-2).

10. Prove the identity

Pl YL 2y?

b+ ¢)? a? a?
As » (c+a)? & = 2abe (a + b + ¢).
¢ & (a+b)?

Subtracting the last column from each of the others, (a + 5 + ¢)? may be taken out
as a factor. Calling the remaining determinant A’, and subtracting in it the sum of
the first two rows from the last, we have

b4c—a 0 a? b+e—a 0 a?
A= 0 ct+a-b B |= 0 c+a-b »
c-a-b c—a-b (a+)? -2 —2a 2ab
ad+o—a) 0 a?
1
=3 0 blc+a-5) B |

- 2ab —2ab 2ad
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Adding the last column to each of the others, we obtain
a(d+¢) a? a?

1 “a(d+e) a? |b+c a
A= B b(cta) B |=2 = 2ab |
ab B b(cta) b etay
0 0 2ab
= 2abe(a+ b +e¢).
Hence, A=A"(a+ b+ c)d=2abe(a+ b+ ).
11. Prove the identity
1 1 1
a B vy (=(B-7(r-a)(a-8)(atB+9)
a3 B -

Subtracting the first column from each of the others, 8 — a and o - a become
factors. In the reduced determinant, subtract the first row multiplied by a® from
the second row.

12. Resolve into simple factors the determinant

11 11 1
' a B r 3
A= |
. a? [: L o
fat B A
Proceeding as in Ex. 11, we easily find that (8 — a) (y — a) (3 — a) is a factor,
and that the reduced determinant is
1 1 1 |
B+a y+a 3+ea !
B+ flatBat+a® P+ylatyd’ta® B4+ ¥atdal+ad |
Subtracting the first column from each of the others, (y — B8) (3 — 8) comes out

a8 a factor, and the remaining factor is easily found to be (3 — ) (a+ B+ 7 + 3).
Hence, finally,
A=—(B-7)(a=3)(y—a)(B-3)(a—B)(y-3) (atB+7+]).
13. Resolve into linear factors the determinant
Il a & ¢

A= ¢ 6 b

b ¢ a
Multiply the second column by w, and the third by «*; and add to the first.
The factor a + wb + w?c may then be taken off the first column (since w?® = 1), leaving
the constituents 1, w, «*. Adding then the second and third rows to the first, the
factor @ + 4 + ¢ may be taken out ; and the remaining determinant is easily found
to be equal to @ + w?b + we. Hence we have

A= (a+b+0)(a+ wb+ wi)(a+ wb + we).
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14. Resolve into linear factors the determinant

a b ¢ d
b a d ¢ l
A= .
e d a b '
d € b a
The result is as follows :—

A=—(a+d+c+d)(dt+tc-a-d)(c+ta-b—-d)(a+b~c-4d),
since each of the factors here written is a factor of the determinant; for example,
@ + b — ¢ — d is shown to be a factor by adding the second column to the first, and
subtracting the third and fourth. By comparing the sign of a¢ it appears that the
negative sign must be attached to the product.

It may be observed that the determinant of Ex. 9 is a particular case of the
determinant here considered, viz. that obtained by putting a = 0, as will appear
by comparing the equivalent forms of Ex. 9, Art. 134.

141. MualtipMication of Beterminants.—Pror. VIII.—
The product of two determinants of any order is itself a determinant
of the same order.

‘We shall prove this for two determinants of the third order.
The student will observe, from the nature of the proof, that it
is equally applicable in general. 'We propose to show that the
product of the two determinants (a,8,¢3), (a,3xys) i8

aa+ bty aa+bfBit+ey.  @os+ b+ ey,

aay + b!ﬁl + Gy (ay + szz + Cys  @ast b:ﬁa + 6y |y

asa; + b3 + ey @az + B35 + oy @sas + B35 + s
whose constituents are the sums of the products of the con-
stituents in any row of (a,6,¢;) by the corresponding constituents
in any row of (a:.ys)-

Since each column consists of the sum of three terms, this
determinant can be expanded into the sum of twenty-seven
others (Art. 138). Now it will be observed that when any one
of these is written down, a common factor can be taken off each
column ; and that several of the partial determinants will, when
these factors are removed, have two (or more) columns identical.
The determinants which do not vanish in this way can be easily
selected. Taking, for &xample, the first vertical line of the first
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column, this would give a vanishing determinant if we were to
take along with it the first line of the second column. We take
then the second line of the second column, and along with
these two we must take the third line of the third column to -
obtain a determinant which does not vanish. Retaining still
the first line of the first column, we may take the third line
of the second column along with the second line of the third
column. Taking out the common factors of the columns, we
write down these two determinants as follows :—

a b ¢ ‘ a a b
n.ﬁ;‘)’; ay by o+ ayfs I a ¢ b |
a by o | a2 e b

Taking in turn each of the other lines of the first column,
we obtain four other determinants which do not vanish. Thus
there are in all six terms; and it is plain that (e.b:) is a
factor in each of these. Taking out this factor there remains
the sum of six terms—

ﬂxBﬂs - dnﬁs‘y: - a:ﬁﬂs + ﬂ;ﬁu‘)’a + asfdays - mﬁﬂu
and this is the determinant {a,3.y:). We have therefore proved
that the determinant above written is the product of the two
given determinants.

In either of the given determinants the rows may be writ-
ten in place of columns; hence the product may be written
in several different forms as a determinant ; but these will,
of course, give the same value when expanded.

142. Multiplication of Determinants continued.—
Another mode of proof of the proposition of the last Article,
expressing as a determinant the product of two given determi-
nants of the same order, may be derived from Laplace’s mode
of development already explained (Art. 135).

The nature of this proof will be sufticiently understood from
the application which follows to two determinants of the third
order.
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The product of the two determinants (aidscs), (a1B27y3) is (see Ex. 8, Art. 135)

plainly equal to the determinant
a L2}
e b
as b
-1 0
! 0 -1
l 0 0

a 0
[ 0

0

0 ay

0 A
-1 7

a2
B

2

Bs

s

In this determinant add to the fourth column the sum of the first multiplied by
ay, the second by B, and the third by +,; add to the fifth column the sum of the
first multiplied by a2, the second by Bz, and the third by vs; and add to the sixth

%" column the sum of the first multiplied by as, the second by B3, and the third by 7s.
The determinant becomes then

a b e

a b o
a b o
-1 0 o
0 -1 0
0o 0 -1

t—
aa+hBi+an amr?-“.ﬁ_'_z +ayr @ma+biBst ey

aza1 + 5281 + 2

aza; + 8381 + e31

aaz+ BB+ 273

asaz+b3Ba + 3y
0 0
0 0
0 0

azay+ 5283+ cays
asas + b3Bs + cays
0
0
0

and this is, by Art. 135, equal to the product (with the proper sign) of the deter-

minant

-1 0
0 -1
0 0

0

0 | (which is equal to — 1)

-1

by the complementary minor, which is the same determinant as that obtained in the
preceding Article. That the sign to be attached to the product is negative is easily
seen by moving down the first three rows till the diagonals of the two minors in
question form the diagonal of the determinant itself. The student will have no
difficulty in observing that, in the general case, the number of such displacements
i8s odd when the order of the given determinants is odd, and even when it is even;
8o that the sign to be placed before the product-determinant of Art. 141 is always

positive.

The important proposition contained in this Article and the
Article which precedes will be illustrated by the examples

which follow.
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ExaxpLEs.
1. Show that the product of the two determinants

a+ib ¢+ id

a’ - d—id |

—-¢+id a-ib - -id a'+
whers i = V= 1, may be written in the form

D-iC B-id
-B-id D+iC l

where
A=sbl-Ve+ad —add, Bwmea' -ca+dd - bd,

Cmab—ab+ed —cd, Dmad+bb+cc +dd;
and hence prove Euler’s theorem
@+ +3+d) (@ +82+c*+d?)
= (aa’ + 88 + ¢’ + dd')t + (b — Ve + ad — a'd)?
+ (ca' = da + bd' ~b'd)* + (ab' — a'b+ of — ¢'d)?,

viz. the product of two sums cach of four squares can be expressed as the sum of four
aquares.

2. Prove the following expression for the square of a determinant of the third
order:—

a b ¢ P 2 (ac — 6%) ac + ac— 28  ac”+ a”c— 250" l
2 a ¥ ¢ |=1| a +dc-2b 2(a’c’ - ¥)? @' +a"c - 250" |
a ¥ e , ac” +a’c- 280" | a'c"+a"¢d —268"  2(a’c¢" - ¥7) l

‘This appears by multiplying the two determinants

a [ ¢ | e -2 a
¢ v oL e o & |
a b ¢ ! ! =20 a".
which differ only by the factor 2.
3. Provo the identity
! 2¢ - a? [ 5 '
' A Zea-bt @ | 2(a+ 8+ 6 Babo).

b a? 2ab-c?
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This may be readily proved by multiplying together the two equivalent deter-
minants

a ] ¢ - c [
b ¢ a | -4 a ¢
¢ a ) | -c ] a

4. Prove, by squaring the determinant of Ex. 10, Art. 132, the following
relation between the roots a, B, 7, 3, of a biquadratic ; &, #, 8, &c. having the
eame signification as in Chap. VIII., Vol I.:—

l L 8 L] L]
n a8 B M
= (B-7(a-3)(r-a)*(B-3) (a= B (v - 3)*
8 8
I
The student will ind no difficulty in writing down for an equation of any

degree the corresponding determinant (in terms of the sums of the powers of the
roots) which is equal to the product of the squares of the differences.

5. Resolve into factors the determinant

8¢ 85 8 23
R N [ 2

L 3 L] n z )

83 [ n L) 1

v v vy 1 0

in which s, 5, 8, &c. are the sums of the powers of three quantities a, 8, 7.
This determinant is the product of the two

ja By B0 @ B P 0 ¢
a? Bt g 2 0 @@ B 9 0 o
a B y =z [N a B y 0 y H
1 1 1 1 0 1 1 1 0
o o o 0 1 0 0o 0 1 0

and each of the latter can be readily resolved into simple factors.
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6. Prove the result of Ex. 28, p. 67, Vol. I., by multiplying the two following
determinants :—

s =z oy
z

7. Show that two determinants of different orders may be multiplied together.
For their orders may be made equal; since the order of any determinant can be
increased by adding any number of columns and the same number of rows consisting
of units in the diagonal, and all the rest zero constituents. For example,
i 1 0 0 0 |
, 0 1 0 0 ‘
may be written ' ,
[ 0 0 a b |

[0 0 a b .

a) bl

az

the only effect of the added constituents being to multiply the determinant by unity.
More generally, one set of added constituents (i. e. those either to the right or the
left of the diagonal) might be taken to be any quantities whatever, the remaining
set being ciphers. Thus (a;5;) may be written in either of the forms

1 a B 1% 1 a B Y

0 1 5 e ; o 1 0o o |
0 0 @ b | 0 3 a, 1)

0 0 as b l 0 € a3 b

as readily appears by means of the expansion of Art. 134.

143. Rectangular Arrays.—Arrays in which the num-
ber of rows is not equal to the number of columns may be called
rectungular. These do not themselves represent any definite
function ; but if two such arrays of the same dimensions are
given, there can be derived from them by the process of Art. 141
a determinant whose value we proceed to investigate.

(1). When the number of columns exceeds the number of rows.
Take, for example, the two rectangular arrays,
a b o d a Bl b4 3

(1, (2);
a b, ¢, d, G:Bt'ﬁs:
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and performing on these a process similar to that employed in
multiplying two determinants, we obtain the determinant

aa, + blﬁl + 0171 + (1.8; a,a; + b'B’ + ('112 + d]Sg
aa, + b!Bl + oy + @) May + byf3; + €1ys + did,
The value of this is easily found to be

(@:5y) (@f3) + (@163) (arys) + (@) (:8:) + (Buca) (Brya)
+ (0id2) (3:8,) + (ads) (1:32),
1. e. the sum of the products of all possible determinants which can
be formed from one array (by taking a number of columns equal to
the number of rows) multiplied by the corresponding determinants
Jformed from the other array.

Another proof of this proposition, analogous to the treat-
ment of multiplication of determinants in Art. 142, is given
among the examples which follow this Article; and either of
these proofs can be easily generalized.

(2). When the number of rows exceeds the number of columns
the resulting determinant vanishes.

Take, for example, the two arrays

a b ) a, BI
a b, I {1, a 3, } (2).
as b as ﬁ;
Performing the process of multiplication, we have
[ aa+ 5,8 @may+ 0B aay + 56
aa, + b3, @as + b3, @as + b3,
@ay, + b3 @may + 6B agas + byf3s
It will be observed that this determinant is the same as would
arise if a column of ciphers were added to each of the given
arrays, and the determinants so formed then multiplied. It
follows that the determinant vanishes.
A similar proof applies in general. It is only necessary in
any instance to add to each array columns of ciphers, so as to
make the number of columns equal to the number of rows, and

then multiply the two determinants.
VOL. 1I. D
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Exaxrres,

1. From the two arrays
111 1 11
} (n, }(2),
a B ¥y a B v
3 at+B+y
a+B+y a*+Br 4+ |

prove

2. From the two arrays

a b ¢ c —-2b a
} (1), : (2),
a ¥ o ¢ -2 a
prove
4 (a0 = B) (@' — ¥7) — (a6’ + ' — 8 = 4 (b — B)(ab' —a'b) - (ac' — a'c).

3. By squaring the array

prove
(a®+ 8% + c?) (a2 + 83+ ¢"?) = (aa’ + b + o) + (b - ¥'c)3 + (ca’ - Ca)? + (ad — a'b)?.

4. Verify, by squaring the array

the result of Ex. 1, Art. 142.
5._Prove the determinant identity
(a1 =61) (a1 =83)® (a1 =5 (a1 -8)°
(a3 — 501)* (as = 42)? (a3 —Bs)? (as— by)?

= 0,
(a3 =51) (a3 —82)* (as—B3)* (as — By)?
(ac = 51)* (ag—8)* (ag—bs)? (a¢ — by)?
This can be proved by multiplying the two arrays

m? a1 1 -2h H?
at a; 1 , 1 —25 b2

1 2).
as? a3 1 (U 1 —2 &3 @
a? a 1 1 =264 b3
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6. For the general equation of the n‘* degree, whose roots are a, 8, 7, 3, &c.,
and s, 1, %, &c. the sums of the powers of the roots, prove

6% &
=X (a— B

a  »
This appears at once by squaring the array
1 1.1 1 1 .. ;

a B vy 3 e
7. Prove similarly, for the general equation,

6% & n
n n s |=Z(B-7)(y—a)l(a-8)%
n o 4

This is easily proved, as in the preceding example, by squaring a suitable array ;
and the same process can be used to establish a series of relations of this kind.
When the number of rows in the array becomes equal to the degree of the equation,
the value of the determinant is the product of the squares of the differences of the
roots, as in Ex. 4, Art. 142. When the number of rows exceeds the degree of the
equation the value of the corresponding determinant is zero. The determinant of
the fourth order just referred to, for example, vanishes for equations of the second
and third degrees.

8. Prove, for the general equation,

o &n s &

8 n &8 4
=3(B-7(r-a@-8)(s-a)(z-B)(s~).

82 3 & L]

1 2 2 2
Multiplying the two arrays
1 1 1 .. z—a z—-B T—v . )
a B 7 . - a(z —a) B(z-B) 7(z-19) ’
a? B . . al(z — a) B(x - B) rE-v) . .1
we show that X is equal to
ST — 81 nr — 82 nr — 8

nr — 8 nT — 8 nr-4 |

nr-n Hr-4 "ur— s
which is easily transformed into the proposed determinant.

It appears in like manner in general that the determinant of similar form of
order p + 1 is equal to the corresponding symmetric function, each of whose terms
contains p factors of the original equation, multiplied by the product of the squared
differences of the p roots therein contained.

D2
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9. Find the value of the following determinant, and hence derive another proof
of the property of arrays of the first kind—

@ h o d 0 O |
a3 b2 3 dy 0 O
-1 0 0 0 a1 @
L0=-1 0 0 B B!
0 0-1 0 o 7'
00 0-1 & & .

Expanding this by Laplace’s method, we readily find its value to be the six
products, X(#152) (a182), of p. 33 ; and treating the determinant as in Art. 142, viz.
adding to the fifth column the sum of the first multiplied by a1, the second by 8,
&c., we reduce it to the determinant of the second order at the top of p. 33.

144. Solution of a System of Linear Equations.—
We have seen in Art. 134 that a determinant may be expanded
as a linear homogeneous function of the constituents in any row
or column, the coefficient of any constituent being the corre-
sponding minor with its proper sign. We have, for example,

A =ad, + a,4, + a4 + &eo.

Now, the coefficients 4,, A4,, &c., are connected with the consti-
tuents of the other columns by n ~ 1 identical relations, viz.
b|A| + bjA’ + b;A; + &0. - 0,
(‘lA[ + cgdg + (';A; + &c. = 0, &c. ’
for any one of these is what the determinant becomes when the
oconstituents of the corresponding column are substituted for
ay, Gy, a5, &c., and must therefore vanish.

By the aid of these relations we can write down the solution
of a system of linear equations. The following application to
the case of three unknown quantities z, y, %, is sufficient to
explain the general process. Let the equations be

az + by +os=m,
% + byy + 028 = 1y,
Wz + by + 03 = ms.
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Multiply the first equation by 4,, the second by 4,, and the
third by 4,; and add. The coefficients of y and z vanish, in
virtue of the relations above proved, and we obtain

(A, + asds + asAs) x = m A, + mad, + myAs,
or
m b o

M=msbzc:’
ms b o

where A represents the determinant formed from the nine con-
stituents a,, b,, ¢,, &o. i
Similarly, multiplying by B,, B,, s, we obtain

(5B, + b3B; + byBy) y = myB, + maB, + myB,,
a m ¢
Ay=| a my ¢ |
ay ms ¢

where the determinant on the right-hand side is what A becomes
when m,, m,, m, are substituted for the constituents of the second
columu. Similarly, we obtain for s

a b m
Az = a by m,
a b, m,
These values may be written more compactly, as follows : —
Az = (mbes), Ay = (amycs), As = (a,bymn).
In general, the values of z, y, s, &c., may be written as
follows : — G
2o (midaey . .. ) y=- (amy . .. &) .o (a,6am, . . . l..)’
(@mbdses . . . &)’ (@ibses ... )’ (@idss .. . I)

where, to obtain the value of any unknown, the known quanti-
ties m,, m,, &o., on the right-hand side of the given equations
are to be substituted in A for the coefficients of the required
unknown, and the determinant so formed to be divided by A.

&o.,
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ExaupLESs.

1. Solve the equations
T+y+s = Ay,

ar+ By + 3z = A,
o’z + Py + vz = Aa.

The solution is easily effected by the formulse given above. It can be shown
that the value of any one of the unknown quantities can be expressed as a quadratic
function of its coefficient in these equations, along with symmetric functions of
a, B, 7y (in addition to the given coeflicients 4o, 41, 43). For this purpose we write
the value of the unknown (say, y) in the form

0o 1 0 y

1 1 1 Ao
a B 1% A,
o B P A4,

which may be derived immediately by joining the identical equation y = y to the
three given equations, and eliminating after the manner of the Article which
follows. Now,

= 0, (1)

01 0 y 1 1 1 0 1 8 B y
1 1 1 A4 a B vy 0! conndoi
GB?AIXG’E"]’°:= unuAl.
@ B ot Ay . 1 0 0 O 1 n 8 & A

If, therefore (assuming that a, 8, o are all unequal), we multiply the equa-
tion (1) by the difference-product, we have y expressed as a quadratic function of 8
along with the sums of the powers of the three quantities a, 8, ¥.

2. SBhow, by means of the equations of Art. 77, Vol. I., that the sums of the
powers can be expressed in terms of the coeficients, or vice versa, in the form of
determinants, as follows :—

sl 0 O
nl 0
n 1 202 ;m 1 O
n=| , B8a=—|2p3 ;1 1 |, &= , &c.
202 p 3ps ;2 ;1 1
|33 p2 1
ipgs ;v 1o
8 1 0 0
an 1 0
n l' 7 a 2 0
sz=, y ps=—( 02 6 2 | 2p= , &e.
s 8| o e s n o 3
1
6w 8 8 &



Linear Homogeneous Equations. 39

145. Linear Homogeneous Equations.—When n -1
linear homogeneous equations between n variables are given, the
ratios of the variables can be determined by bringing any one of
them to the right-hand side of the equations, and solving as in
the previous Article; or we may determine these ratios more
conveniently as follows. We take the particular case of three
equations between four quantities z, y, %, w, which will be
sufficient to illustrate the general process :

alz+b|y+0|z+d|w=0
ar + by + ez + daw=10 . (1)
Oz + by + 6,3 + dgwo =0

To these may be added a fourth equation whose coefficients
are undetermined, viz.
az + by + e+ dao = . (?)
Calling (a,bic;d,) as usual A, and solving from these four
equations by the method of the last Article, we obtain, since
m =0, my=0, m=0, m =, the following values :—
Az = AA., Ay = AB‘, Ag = AC“ Aw = XD‘,

or
z y s w A

4B G DA @)

The first three of these equations express the ratios of z, y,
s, w in terms of the coefficients in the three given equations.
And, in general, the variables are proportional to the coefficients
in the expansion of A of the constituents of the n™ row supposed
added to the n — 1 rows resulting from the given equations.

‘We can now express the condition that » linear homogeneous
equations should be consistent with one another; for example,
that the equation (2) should, when A = 0, be consistent with the
equations (1). We have only to substitute in (2) the ratios
derived from (1), when we obtain

A+ 6B, + ¢,Ci +d.D, = 0,

or
A=0.
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The same thing appears from the equatiens (3) ; for if A =0,
and if z, y, 5, w do not all vanish, A must vanish.

‘What has been proved may be expressed as follows :— The
result of eliminating n quantities between n equations linear and
homogeneous in these quantities is the vanishing of the determsnant
Jormed by the coefficients of the giren equations.

146. Reciprocal Determinants. — The quantities
4, B, C, ... 4, B, &c. (Art. 134), which ocour in the ex-
pansion of a determinant (. e. the first minors with their proper
signs), may be called iurerse constituents ; and the determinant
formed with them the inverse or reciprocal determinant. We
proceed to prove certain useful relations connecting the two
determinants.

(1). To express the reciprocal in terms of the given determinant.
Let the reciprocal of A be denoted by A’, and multiply the two
determinants

(4 b[ (2 Al Bl ol
A=| a b ¢ |, A'=| 4y, By, C; |-
as by o A, By C,

All the oonstituents of the resulting determinant exoept those
in the diagonal vanish (Art. 144); and the result is

A 0 0
AA'=| 0 A 0 |=A%
0 0 A

whenoce
A = A

The process here employed in the particular case of two de-
terminants of the third order is equally applicable in general ;
giving AA" =A™ or A’ = A™'. Hence the reciprocal determinant
is equal to the (n - 1)** power of the given determinant.
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(). T0express any minor of the reciprocal determinant in termns
of the original constituents.

‘We take, for example, the determinant of the fourth order,
and proceed to expressthe first minors of its reciprocal. Multi-
plying the two determinants on the left-hand side of the follow-
ing equation, and employing the identical equations of Art. 144,
we obtain

a.b,c.d.’ OOIia.O
, G by e dy IA, By, C, D,!_ia, A \
a,b,c.d,l B, ¢, D,| [a 0 ’
éa. b ¢ d, | A, B, C, D, !a. 0 i
whence
B, C, D,
A By, Cy Dy, |=aA3,
] B‘ 0‘ D‘
or (B:CsD,) = a, A%,

thus expressing the first minor of A’ complementary to 4,.
Again, to express the second minors of A’, we have, by an
exaotly similar process,

| a, b| [ {ll 1 0 0 0 ; [ b| 0 o
: a b e d 0 1 0 O ’_ a b 0 0 .
i ay b o dy I 4, B, Cs D ' a b A 0 ’
; a, b‘ Cy ((‘ A‘ B‘ 0‘ .D‘ a, b‘ O A '
whence
(" 1); I ' o, bl

A ] A

C, D, | ' a, b,

or (03D|) = ((I.bz) A.
The general theorem may be expressed as follows :—.4 minor

of the order m formed out of the inverse constituents is equal to the

complementary of the corresponding minor of the original determi-
nant A multiplied by the (m — 1) power of A.
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The method of proof above given can be generalized. In
the case of a determinant of the fifth order, for example, the

student will easily verify the following expression for a minor
of the third order :—

(CsDiEy) = (ads) A*.

If the original determinant A vanishes, it is plain that not
only the reciprocal determinant itself, but also all its minors of
any order vanish. The vanishing of the minors of the second
order may be expressed in the following useful form :— When a
determinant vanishes, the constituents of any row of its reciprocal
are proportional to those of any other row, and the constituents of
any column to those of any other column.

147. Symmetrical Determinants.—Two constituents of
a determinant are said to be conjugate when one ocoupies with
reference to the leading constituent the same position in the
rows as the other does in the columns. For example, d; and
b, are conjugates, one occupying the fourth place in the second
row, and the other the fourth place in the second column.
Each of the leading oconstituents is its own conjugate. Any
two conjugate constituents are situated in a line perpendicular
to the principal diagonal, and at equal distances from it on
opposite sides.

A symmetrical determinant is one in which every two con-
jugate constituents are equal to each other. For examples of
such determinants the student may refer to Art. 134, Exs. 2,9,
10, and Art. 135, Ex. 4.

In a symmetrical determinant the first minors complemen-
tary to any two conjugate constituents are equal, since they
differ only by an interchange of rows and columns. The
corresponding inverse constituents are also equal, the signs
to be attached to the minors being the same in both cases.
It follows that the reciprocal of a symmetrical determinant is
stself symmetrical.

The leading minors are all symmetrical determinants.
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The mode of expansion of Art. 137 is especially useful in
the case of symmetrical determinants, as will appear from the
examples which follow.

ExaupLrs.

1. Form the reciprocal of the symmetrical determinant

a | ']
A= A b f
g9 f e

Using the capital letters to denote the reciprocal constituents as explained in
Art. 134, s0 that A may be expanded in any one of the forms a4 + AH + ¢G,
AH + 8B + fF, g¢G + fF+ ¢C, we may write the reciprocal determinant A’ as
follows : —

4 H @ be—f3 fg—ch Af-Y
Am| H B F |=| fg—ch ca-g? gh—af I.
¢ F ¢ Af-b9 gh—af ab-M I

2. Form similarly the reciprocal of
a b g 4
A b f m
g9 f e »
! m n d

Using a notation similar to that of the preceding example, so that A may be
expanded indifferently in any of the forms

6d + A\H+9G + 1L, MH + 5B + fF + mM, &c.,

the reciprocal determinant A’ is obtained by replacing in A the constituents by the
corresponding capital letters. The student will ind no difficulty in writing out, if
necessary, the expanded form of any of the reciprocal constituents; for example, F
is the minor complementary to f with its proper sign (the negative sign in this case),
and F is therefore obtained from the expansion of

a A 4
-lg S »
] m d

8. Expand the determinant A of Ex. 10, Art. 134, by the method of Art. 137.
Bringing the last row and last column into the positions of first row and first
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column, and using the notation of Ex. 1 for the inverse constituents of the leading
minor, the result can be written down at once in the form

- A= AN 4 Bu? + O + 2Fur + 2GwvA + 2HAp.

8Since a determinant is unaltered when both rows and columns are written in
reverse order, if the expansion of a determinant be required in terms of the last row
and last column (as in the present example), it is not necessary to move them in the
first instance into the positions of first row and first column. The expansion can be
written down from the determinant as it stands, replacing in the rule of Art. 137
the leading constituent and its minor by the last diagonal constituent and its
complementary minor.

4. Expand the determinant A of the above Ex. 2, in terms of the last row and
column, by the method of Art. 137.

Attending to the remark at the end of the preceding example, and using
4, B, C, F, G, H, to represent the same quantities as in Exs. 1 and 3, the result
may be written down as follows : —

l a h 9
a=d | A b S |- Al = Bm*— Cn® = 2Fmn - 2Gnl — 2Hm.
v f ¢

When a symmetrical determinant of any order is bordered symmetrically (i. ¢. by
the same constituents horizontally and vertically) the result is clearly a symmetri-
cal determinant of the next higher order. The result of Art. 137 shows in general
that the expansion of the bordered determinant consists of the original determinant
multiplied by the constituent common to the added row and column, together with
a homogeneous function of the second degree of the remaining added constituents.

5. Expand the determinant

a A ¢ !

A b f m

o VN

|
|

A l g9 f ¢ n
| m ”n d

|¢B130

This is the determinant of Ex. 2, bordered symmetrically, the common consti-
tuent of the added lines being zero. The result is clearly a homogeneous function
of the second degree of a, 8, 7, 3; and, by aid of the notation of Ex. 2, the value
of — A may te written down at once in the form

Aa+ BB+ Cy* + D3+ 2FBy + 2Gya+ 2HaB + 2Lad + 2MBS + 2Nv3.
6. Prove, by means of the Proposition of Art. 141, that the square of any deter-
minant is a symmetrical determinant.

7. The product of two reciprocal determinants is the reciprocal determinant of
the product of the two original determinants. <, . P

»
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148. Skew-Symmetric and Skew Determinants.—
A skew-symmetric determinant is one in which every constituent
is equal to its conjugate with sign changed. Since each leading
constituent is its own conjugate, it follows that in such a deter-
minant all the leading diagonal constituents are zero.

A determinant in which all except the leading constituents
are equal to their conjugates with sign changed is called a skew
determinant. Thus, while a skew-symmetric determinant is
zero-axial, in a skew determinant diagonal constituents are
present. The calculation of the latter kind may be reduced to
that of the former by the method of Art. 136.

The remainder of this Article will be occupied with the proof
of certain useful properties of skew-symmetric determinants.

(1). A skew-symmetric determinant of odd order vanishes.

For any skew-symmetric determinant A is unaltered by
changing the columns into rows, and then changing the signs
of all the rows. But when the order of the determinant is odd,
this process ought to change the sign of A; hence A must in
this case vanish. For example,

i 0 a
A= ‘ -a 0 ¢ (=0
l -6 -c 0

(2). The reciprocal of a skew-symmetric determinant of the u™
order 18 a symmetric determinant when n is odd, and a skew-symmetric
determinant when n is egen.

In any skew-symmetric determinant the minors correspond-
ing to a pair of conjugate constituents differ by an interchange
of rows and columns, and by the signs of all the constituents.
Hence the two minors are equal when their order is evenm,
namely when n isodd; and equal with opposite signs when » is
even. In the former case, therefore, the reciprocal determinant
is symmetric; and in the latter case it is skew-symmetric, its
leading diagonal constituents being all skew-symmetric deter-
minants of odd order.
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(3). A skew-symmetric determinant of even order 18 a perfect
square.

This follows from the principles established in Art. 146.

Take, for example, the determinant of the fourth order

\ 0 a b e

. -a 0 d e
A=
-b -d 0o s

-¢c -e¢e -f 0

and let the inverse constituents forming its reciprocal be de-
noted by 4,, B, ... 4, &. We have then, by (2), Art. 146,

[ 0 f
A)B:—A’Bl = Al =_f:A-

-f 0

Now 4, and B,, being skew-symmetrioc determinants of odd
order, vanish; and 4,=- B,, since these are conjugate minors;
hence f?A = A;’, which proves that A is a perfect square.
Similarly, for a determinant A of the sixth order, it is proved-
that the product of A by a skew-symmetric determinant of the
fourth order is a perfect square ; and since the latter determi-
naut has been just proved to be a perfect square, it follows that
A is so also. By an exactly similar prooess, assuming the truth
of the Proposition for the determinant of the sixth order, it may
be proved for one of the eighth ; and so on.

ExaMpLes.

1. Verify the following expression for the skew-symmetric determinant of the
fourth order:—

! 0 a [ ]
-a (] d ]
= (1f - be + cd)?.
-4 -d 0

S
'—c - —-f 0
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2. Expand in powers of z the skew determinant
x a b ¢
—-a z d e
-b -a =z f
-¢c —-¢ —-f =z
‘When the expansion of Art. 136 is employed to calculate a skew determinant,
it is to be observed that the determinants of odd order in the expansion all vanish,

and thoee of even order may be expressed as squares. Here the coefficients of the
odd powers of z plainly vanish, and the result takes the form

A=t (@ + B+ +d+ 6+ 1)+ (af = be + cd)2.

3. Expand the skew determinant

-« B e f g
i

—b —-e C’ h [ l.

¢ =f -h D

-d -g —-i -§ E
The result may be written in tho form
ABCDE + 3*ABC + 3 (¢ — fi + gh)* 4,

where the first X includes ten terms similar to the one here written, and the second
X five terms. The terms involving the products in pairs of the leading constituents
vanish, as also the term not involving these quantities.

4. The square of any determinant of even order can be expressed as a skew-
symmetric determinant.
The following method of proof is applicable in general.

The square of (ai1bsc3dy) is obtained by multiplying the two following determi-
nants :—

a b o d | | =& & —-di o
az b a & : b ay -d3
a3 b o dy ’ —bs a6 —d3 e

a b e dy I -b a —-di «
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and the product of these is
| 0, —(nh) - (ad), —(ah) - (ads) - (a1di) — (e:dy),
b~ edy, 0, —(oh) — (cads), — (@254) = (cady),
L by = e, (ash) + (o), 0, — (esb) —(eode), |
‘aihe +(adl), (b)) + (add),  (@ad) + (cadd). o,

which is a skew-symmetric determinant.
5. Form the reviprocal of a skew-symmetric determinant of the third order.
Caing for A the form in (1) of the present Article, the result is easily found
to be the symmetric determinant

? b ac
— b » —ab .
ac - ab «?

6. Form the reciprocal of the skew-symmetric determinant A of the fourth order
in Ex. 1.

Representing by ¢ the function af — ¢ + od whoee square is equal to A, and by
A’ the required reciprocal, we easily find

| 0 Je —e9 de I
i =fe 0 -b
A=l l

o -9 a®
'~ de¢ ¢ -—ao 0 :

The value of this skew-symmetric determinant may be written down by aid of the
result of Ex. 1. It is thus immediately verified that A’= (af — b¢ + cd)?¢* = A3.

7. Form the reciprocal of the skew-symmetric determinant A of the fifth order
obtained by making the leading coefficients all vanish in the determinant of Ex. 3.

Since the reciprocal is a symmetric determinant (see (2), Art. 148), and since
also it must be such that the constituents of any line are proportional to those of any
parallel line (Art. 146), it appears that the required determinant must be of the

form
I ¢ Pi¢r dips it $ids

¢191 P s it dags
$3¢1 Psps Pt e3ps ads |,
Hup1 dadz pups D duds
PP PPz Psps  Psdpe ¢’

in which ¢1, ¢2, ¢3, ¢4, ¢s are five functions of the second degree in the original
constituents whose squares are the values of the five first minors complementary to
the leading constituents of A.
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In general the reciprocal of a skew-symmetric determinant of any odd order
2m + 1 is of a form similar to that just written, the diagonal constituents being the
squares, and the remaining constituents the products in pairs, of 2m + 1 functions,
each of the mt» degree in the original constituents.

149. Theorem.—We conclude the present chapter with
an important theorem relating to a determinant whose leading
first minor vanishes. Adopting the notation of Art. 137, we
regard A as the vanishing determinant, and state the theorem to
be proved as follows :—If a determinant A, whose value 18 sero,
be bordered in any manner, the product of the determinant so formed
by the leading first minor of A 18 equal to the product of two linear
homogeneous functions of the added constituents.

Retaining the notation of Art. 137, we shall prove that the
product of A” and 4, may be expressed in the form :—

AlA,= - (A;a + .B|B + 0[‘7 +.. .)(A“I"f’ A’B’ + 431'4' .o .).

This follows at once from (2) of Art. 146 by considering in
the determinant reciprocal to A’ the values of the constituents
inverse to a, a, a’, a;; and expressing in terms of the original
oonstituents the determinant of the second order formed by
these four. Amnother proof of tbis result may be readily derived
from the expansion of Art. 137, by the aid of the property of
the reciprocal of a vanishing determinant (Art. 146), viz. that
in the determinant formed by 4,, B,, 0,, &o., the oonstituents
in any line are proportional to those in any parallel line.

If the determinant A is symmetrical, and the bordering also
symmetrical, the two factors on the right-hand side of the above
equation become identical, and the theorem takes the following
form :—1If a symmetrical determinant, whose value is zero, be bor-
dered symmetrically, the product of the determinant so formed by
its leading second minor 8 equal to the square with negative sign of
a linear homogeneous function of the bordering constituents.

Regarding A" as the original determinant, the following
useful statement may be given to the theorem just proved :—If
in any symmelrical determinant the leading first minor vanish, the
determinant stself and its leading second minor have opposite signs.

VOL. II. E



50 Determinants.

ExaupLks.

1. 1f a skew-symmetric determinant A of odd order 2m + 1 be bordered in
any manuer, the resulting determinant A’ is equal to the product of two rational
functions each containing the added constituents in the first degree and the original
constituents in the m¢t* degree.

Writing, according to the result of Ex. 7, Art. 148, the reciprocal of the given
skew-symmetric determinant in the form

0’ o s
$1 ¢t per . |,
and applying the theorem of the present Article, we find
A" =~ (p1%a+ #1928 + g3y + . ..) (1%’ + B + Sy + .. ),
or A== (Pra+ @B+ ¢sy+...)(1a"+ 928+ Py’ +...).

It may be observed that if in this result a’, 8°, 7', &c., be made equal to — a, -8,
-7, &o., respectively, we fall back on the theorem (3) of Art. 148.

2. If a skew-symmetric determinant of even order 2m be bordered in any
maaner, the resulting determinant is equal to the product of two rational functions,
one of the m‘A, and the other of the (m 4 1)®* degree in the constituents.

This may be derived immediately from the last example by making therein all
the added constituents in the first column, vis., a’, 8, 7', &c., equal to zero, except
the last, which is tobe made = 1. The determinant then reduces to one of the kind
here considered, the bordering constituents forming the top row and the last
column. It appears also that the factor of the m‘* degree in the result is the square
root of the given skew-symmetric determinant of order 2m.

3. Prove

a 0 c -b |
= — (aa + 88 + cy)(ad + 88" + ¢7').

0 a B v 8 |
a 0 e -b =
B -¢c 0 a y |-
>y b -a 0 z
¥ -2 -y -2 0
Ans, (az+ by +ocs) {2 (BY) +y(ya')+ £(aB) +a(al’) +8(B8) +¢(y3)].
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MisceLLANEOUS ExampLes.

1. Prove
i @0 ay as
I @ a a |=mJ,
| @ a  a |
where J has the usual signification.
2. Prove
l B+y 7 +a a +8 | @ B Y
B+y 7+« d+58 -2; o’ 1 4
B+ Y+« a"+8” Ioa” B’ Y’
3. Prove

! By BY+By BY
78 ya'+7Ya  ¥d |[=(By)(ra’) (aB’),
a8 af+dB dF

where the factors on the right-hand side are determinants of the second order.
Dividing the rows by 8'y’, ¥'a’, a’8’; and putting A = :—,, n= %" ye %,, the
determinant (omitting a factor) reduces to the form
1 pu+r pr | 1 —=a wr |
1 »s+A n ‘- 1 - »n

I A+p A

== (n=7)r= AA- ), &e.

A =y A
4. Find the value of the determinant

1 B+y+38 By+B3+78 Byl
1 a+y+8 ay+ad+98 ayd |

1 a+B+3 aB+ab+BS B |
1 a+B+y aBtay+By aBy

Since the interchange of two letters would make two rows identical, this can
differ by a numerical factor only from the product of the six differences. Or we
may reduce the determinant easily to the form in Ex. 10, Art. 132. The value of
a similar determinant of any order can be found in the same way; and the sign
can be determined in any instance by the method of Ex. 9, Art. 132.

E3
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5. Prove
B2 +a%%® By+ad 1
7'+ A ya+ B3 1 |=m(B-7)(a—3)(y - a)B—28)(a-B)y-3)
a4+ 98 aB+93 1

Add the last column multiplied by 2a8+3 to the first. The determinant becomes
then of the form of Ex. 9, Art. 132,

6. Prove
B+y-a-3)' (B+y-a-3)>* 1

=64 (8B —7)(a-38)y~- -
(y+a-B-8¢ (y+a-B-38 1 (B=7)a=3)(y-a)B-23)

(a+B-y-2 (a+B-7-3 1 B9
7. Prove
a b azx+d
[ ¢ bx+c |m— (ac— 8%)(ax?+ 2bz+c).
az+bd dx+ec 0

Subtract from the third row the second row plus the first multiplied by =.
8. Prove similarly

a b 13 as?+ 2z +¢

b ¢ d ba? 4+ 2ex 4+ d

¢ d e cxd + 2dz + ¢
art420z+c¢ br*+2cx+d cxt+2dx+e 0

a ] [3

=—| 8 ¢ d |(ast+ 4523 + 6o +4dz + ).

e ad e
9. Given
Si(2) = ai2? + 35,23 + 3e12 + d),
Sa(2) = asa® 4 35322+ 3eaz + s,
JS3(2) = asz®+ 3522+ 3eyx + ds;
prove the identity

1 -z F LY

Sils) f'lx) %)
L h o a

Sfilz) fil(s) A'(x) |=-18
Hle) Sfle) fi"()

3
g
2
ko
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The first determinant reduces easily (omitting a factor) to the following :—
az+bh bhxta azr+d
ax+by  bixtea cazt+d |-
ax+d bhrxta oaxtds

We haveseen (Ex. 7, Art. 142) that the order of a determinant may be increased
without altering its value. By a suitable selection of the added constituents the
calculation of a determinant may often be simplified by bordering it in this way.
The determinant last written is plainly equal to

1 0 0 0
a az+ b hz+ e ax + d
as oz + by bz + & z+ da
a3  axx+bs  brt+es ek +ds

Subtracting from the second column the first multiplied by z ; subtracting then
from the third the new second column multiplied by z ; and, finally, from the fourth
the new third column multiplied by 2, we have the result above stated.

10. Show that the determinant

Al +oyd+ ba? - 1 A—=¢)zy (A=8)az '
(A=c)zy Ay +asttert—1 (A—a)ys
(A—0)as «(A-a)ys A +bai4ay?—-1

contains A (22 + g3 + z%) — 1 as a factor, and that the remaining factor is indepen-
dent of A.

Border the determinant, as in Ex. 9, with a first column whose constituents are
1, Az, Ay, As; and with a first row whose constituents are 1, 0,0, 0. Subtract
then z times the first column from the second, y times the first column from the
third, and s times the first column from the fourth. In the determinant thus
altered subtract from the first row z times the second plus y times the third plus s
times the fourth.

11. Expand in powers of z the determinant

etz b e a
a2 btz dz
a3 b aa+z d
a b a h+z

Ans. 284 (@1 4+ b3+ o3 +de) 2 + {(Ba e3) +1(@1d) + (arcs) + (bads) + (182) + (eade)} &*
+ {(Baoads) + (ar03ds) + (@182d4) + (ard3ca) } = + (a1Bacads).
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12. Prove
- é ¢ 4
a ¥V J Jd
@ B ¢ dt|g= (8¢) (ad’) (on’) (3) (8b°) (cd)
s F ¢ & abeda’'d’c’d’ )
3 b oY 4
e & ¢ @

13. Prove the identities

1 e o «

1 8 B B8 B ¢ |C 4 ~ 4 B |
= |- - »

1 ry ¥ v B O, c 4 A F

1 3 ¥ 3%
where

4 =(B-7)(a-3), B =(y—-a)(8-3), C=(a=8)(y-3),
A= -7)(a-¥), B=(y-a)(F-¥), C=(-8)(-7¥)
Expanding the first determinant in terms of the minor® formed from the first
two columus (see Art. 135), we easily prove that it is equal to
A By +a'%)+ B(ya"+8¥)+ C(a'B + v¥);
and employing the identical equation 4 + B + C = 0, along with the relations of
Ex. 18, Art. 27, the result follows.

14. Prove that the determinant of Ex. 13 is equal to
1 Br+ad  By+a¥
1 7a + B3 v+ B8
1 aB+98 aB+9¥

This follows at once from the relations of Ex. 18, Art. 27. If«, £, 7, & be

but equal to a™, g%, 9™, 3 in the result, we obtain an_ identity which includes
Ex. b, p. 52, as a particular case.

16. Exprees as a function of differences the following determinant, whoee
vanishing expresses the condition for involution of six points on a line:—

1 ata aa’
a-=] 1 B+B8 B

1 7+

Multiplying the determinant by
a? -a 1
g -8 1

Y -v 1
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aund then removing the factor (8 —7) (y — a) (s — 8) from both sides of the equation,
the value of A is easily expreseed as follows : —

Am(a—B)(B-7)(r-&)+ (- B) (F~7) (7' -a).
This result may also be derived from the determinant of Ex. 13, whose vanishing
expresses the general homographic relation between two sets of four points.
16. Expand the determinant
z 0 0 0 ay

-1 x 0 0 as

|
0 -1 z 0 as '.
0 0 -1 z & '
0 0 0 -1 @ |

This is found to be identical with the quartic
8ozt + @12 + @12 + axr + &y

and it is easily seen that a polynomial of any degree can be expressed as a determi-
nant of like form.

17. Prove

z Ll a3 as 1

« B z a 1 |m (x—-a)(z—-B8)(z—7)(x-3);
a 8 v E 1
a B b4 3 1

a1, a2, a3, by, by, &1 being any quantities.

This follows by subtracting a times the last column from the first, 8 times the
last from the second, &c. The student will have no difficulty in writing down the
corresponding determinunt of the (s + 1)t* order which is equal to the polynomial
f (=) whose roots are a1, a3, a3 . . . aGn.

18. Resolve into factors the determinant

(a-a) (a-8)2 (a—7)
Am| (B-a) (B-B)? (B-7)
(y=-a)? (-8? (r-77?

o® a 1 1 - 2a’ a'?
Here A=| p# B 1 1 -2 B |;
? v 1 1 =29 97

and these two determinants may be resolved as in Ex. 9, Art. 132.
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19. Resolve into factors the determinant
(a-a)P  (a-BP («-97P
A=| (B-«&)P (B-B)P (B-7)P |-
(y-«P  (-8P (-70 | .
Multiplying the two rectangular arrays

& a? a 1 1 -3 3%® -—a*
B B B 1} (), 1 =38 388 -p%; (2,
7? ¥ v 1 1 -3 8 -7

A becomes equal to the sum of four terms, from each of which we can take out as
a factor the product of the two determinants

1 « a 1 a a7
1 8 A | 1 -3 B* |-
1 ¢ P 1 ¥y

The remaining factor is
3 {3aBy - 2By Xa'+ 28’y Za ~ 34 B'Y'},
which can be written also in the form
3{(a—a) (R-B) (v~ 1’)+\(¢ B) (8- 1)(1 o)+ («—7) (B- o) (v—B)}.

20. Provethqexptnnon
l h4a 1 1 1 {
¥ I'+ay 1 1
h \ -aumau‘l+—+ +—+ }
i 1 l+as 1 4 & a &
1 1 1 1+4+a

This is easily proved by subtracting the first column from each of the otbers,
and then expanding the determinant as a linear function of the constituents of the
first column. It will be apparent from the nature of the proof that the value of

the similar determinant of the n*» order is @,a3as . . . an {l + !;l-}
1
21. Prove the relation
a x x x
F ] B z z
= f(2) - 2f (),
s z 7

z z z 3

where f(@) = (2 a)(z - B)(s =) (s - B).
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This can be derived from the preceding example, or proved independently in a
similar way. As in the last example, the determinant of this form of the n¢» degree
can be similarly expressed.

22. Each of the coefficients of any equation can be expressed in terms of the
roots as the quotient of two determinants.

The student can easily extend to any degree the following applicution to the
equation of the third degree.

From Ex. 10, Art. 132, we have

s 2 z 1
@ a a 1
B B B
r P 7 1
Expanding the determinant, this identity can be written

e - (B=7)(7=~a)(a-B)(z=a)(z-B) (z-7)

@ a1 & a1 @ & 1 @ o a

B* B 1 £5-|p B 1|a34+|p B 1|z-—(B B 8

-,3-,1! y 5 1 7y £ 1 7y r vl
:a’ a 1
=l 8 1|{(2-partpar-m),
I'r’ v 1

from which the above proposition follows: pi, p2, ps being the coefficients of the
equation whose roots are a, 8, .

23. Express as a determinant the reducing cubic of a biquadratic.
Writing down the equations which result from the identity

(@0t + 43122 + 60223 + 4aszr + ay) = (23 + 20z + ¢) (a'7* + 2¥'z + ),
assuming 6aog = ac’ + a’c — 28’, and substituting in the following identity :—
a & 0 ad a 0 2aa’ a¥ +ab acd +de
5 ¥ 0 |[x ¥ b 0 [m| a¥t+ad 2% bo'+ e | =0,

e ¢ 0 ¢ e 0 ad +ac bo'+be 2¢c’
we easily find the equation
a a1 a3+ 2809
a1 @ — dop ay | =0,
a + 2809 as a“

which when expanded is found to be identical with the standard reducing cubio.
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24. Find the cundition that a biquadratic should be capable of being expressed
as the sum of two fourth powers; and, expressing it in the form
art 4 4bxd + 6exd + ddx tem (24 0)' + m(z + @),

find the quadratic whose roots are @ and ¢.
From this identity we have the following equations : —

I+m =g
04+mp =5,

P +mpime, (1)
lo'+n¢’=d,j

108 + mot = 0.

Assuming A + ux + v2? = 0 as the equation whose roots are 0 and ¢, we easily
obtain the three equations “ *

A8+ b+ =0,
A+ puc+rd=0,
Ae+pud 4+ 9e=0,
from which we have at once the required condition J = 0; and from the first two,

along with the assumed equation, we obtain the following quadratic whose roots
are 0 and ¢ :—

1 z 23
a b e |=0,
b ¢ d

If it were required to express a cubic as the sum of two cubes, in the form
I(z+ 6>+ m(z + ¢)° the first four of the above equations (1) would lead to the
same quadratic for 6 and ¢.

25. For the biquadratic

Az +a)+ B(z+B0+C(z+7) +D(z+34=0,
prove
H=34B(a- B),
I=34B (a- B)S,
J=34BC(a - B)*(a—7)*(B - )"

‘These expressions ara.true for a biquadratic written as the sum of any number
of fourth powers. If it can be written as the sum of two only, J = 0, since only
A and B remain ; and if it reduces to one fourth power, H, I, J all vanish—results
already obtained by other methods.

26. Discuss the determinant of the fourth order, whose constituents (a — a’)$,
(a = B')%, &c. are arranged as in Ex. 19, p. 66; and if a, 8,7, 3,4, 8,7, ¥
are the roots of two given biquadratic equations, show that the value in terms of
the coefficients contains as a factor

as’ + a'e — 4 (b2 + b'd) + 6oc'.
When the two biquadratics are identical this factor becomes 21.
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27. Find the ocondition that the homogeneous quadratic function of three
variables
ar? + by? + cs? + 2fys + 29sx + 2hxy

should be resolvable into two factors.
Equating the given function to the product of the factors

(ax + By + 78) (a2 + B’y + 7'5),

we readily find
« o« 0 a a0 a h g
B B 0 g B O |=8! A b f |;
v 70 7Y v 0 lyfv

hence the required condition is that the determinant last written should vaunish.
28. Show that the most general values of z, y, s, %0 which satisfy the two
homogeneous equations
az+dy+es+dw=0, dz+by+cs+dw=0
may be expressed symmetrically in terms of two indeterminates X, ¥ in the form
(o) (o) (o) £ = aX + @'Y,
(3a") (8c) (8d")y = X + BY", &c.
This can be proved by joining to the two given equations the two following :—
ot a’? b2 o'

a3 a3
s+ = w=A, =+—y+—°-t+—w=p.

Cetlys
FYYorta o ) d

d
where A, u are indeterminate quantities; by then solving for z, y, s, w, as in
Art. 144, and reducing the determinants as in Ex. 12, p. 54 ; and finally making
X=a5cdr, Y= abedu.

29. If in any determinant r columns (or rows) become identical when z = a,
then (z — a)™! is a factor in the determinant.

This appears easily by subtracting in the given determinant one of the » columns
from each of the others. The resulting r — 1 columns must each contain z — a as
a factor, since by hypothesis each constituent in it vanishes when z = a.

30. Find the value of the determinant of the nf* order

X 6 4 . a

e *x a . a

e & a . %

whose leading constituents are all equal to z, and the remaining constituents all
equal to a.
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By the preceding example A must contain (z — 6)*! as a factor ; and by adding
all the columns we see that it must also contain 2 + (» — 1) ¢ as a factor. Hence A
can differ by a numerical factor only from the product of these ; and by comparing
the product with the leading term we find

A=(z-a!{z+ (n-1)a}.

This result can readily be proved directly without the aid of Ex. 29.

31. The determinant

Si(a) fa(a) Sfi(a)

Si(B) fB) f(B) |,

5H) Alr) S50)
in which fi, /3, fs are any rational integral functions, contains the difference-
product (8 — ) (y — a) (« — B) as a factor.

This appears readily by reasoning similar to that of Ex. 29. Determinants of
this nature, in which the constitutents of any column (or row) are functions of the
same form, and the constitutents of any row (or column) involve the same quantity,
are called altermants. It is clear that the result is general, and that the alternant
of any order contains as a factor the difference-product of all the quantities involved.
The determinants of Exs. 9, 10, Art. 132, and Exs. 11, 12, Art. 140, are alternants
of the simplest form.

32. Express in the form of a determinant the quotient of the alternant in the
preceding example by the difference-product.

Assuming, to fix the ideas, that the functions involved are each of the fifth
degree (which will include lower degrees by making sume coefficients vanish), we
may write

Si(a) = a1a® + hat + c1a® + dia? + a1a +f1,
J2(a) = aza® + b2at + cza® + daa® + 030 + £,
JS3(a) = asa® + b3at + c3a® + dsa? + e3a + fa.
Now taking a, B, 7y to be the roots of the equation
B+pt+oz+r=0,
and forming the product of the following determinants :—

a® at ) o a 1 a h a d o fi
B B¢ B B B 1 a b2 o2 2 &3 Sy
Py oyl s b dy & fi
00 1000 /| oo 1 p g ]|
01 00 00 01 p gr 0
1 0 0 0 00O 1 p ¢ r 0 O

it readily appears that the determinant last written is the required quotient.
A similar method may be used to form the quotient when the alternant is of any
order, and f, f3, fs, &c. rational integral functions of any degrees.
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33. Resolve the following determinant into linear factors : —
a) a3 as a as
as L} as as &y
ag as o’ az as
as a4 as a az
az as ay as a)

In all the rows the constitutents are the same five quantities taken in circular
order, a different one standing first in each row. A determinant of this kind is
called a cirewlent. It is convenient to write & circulant in the form here given,
viz., such that the same comstituent occupies the diagonal place throughout.
Taking 0 to be any root of the equation 2% — 1 = 0, and adding to the first column
the sum of the constituents of the remaining columns multiplied by 6, 62, 63, 6%,
respectively, we observe that the following are factors of the determinant : —

a1+ +as +a +as,
ay + 0a; + 0%as + 0%aq + Otas,
&1 + 0%3 + 0'as + 6ay + 6%as,
a1 + 6%as + 6as + 0'ay + 0%a;,
ay + 6%a3 + 0%as + 0%, + 6as,

the five roots of 2° — 1 = 0 being 1, 9, 6% 6%, 6¢; and comparing the coefficient of
&% in both expressions it appears that the numerical factor is unity (cf. Ex. 13,
Art. 140). A circulant of any order can be treated in a similar manner.

34. The product of two circulants of the same order is a circulant.
35. Calculate the determinant of the n'» order

an bu 0 0 0
-1 Gn1 bpax O 0
Anm| 0 -1 ang bua O -

0 0 -1 On3  bn-3 .

in which all the constituents are zero except those which lie in the diagonal and in
lines adjacent to it on either side and parallel to it, one of these latter sets consisting
of constituents each equal to ~ 1.

Expanding in terms of the first column, we have the following relation connect-
ing three determinants of the kind here considered whose orders are n, n — 1,
»—2:—

Ap = GnAn-1 + OnAn-a.
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By aid of this equation the calculation of any determinant is reduced to that of
the two next inferior to it in the series Ax, Au-1, Aa-3, . . . A3, A1; and the values
of A; and A3 are plainly &) and aza1 + b3, respectively.

Dividing the equation just given by Aa-1 we have

Ax b
oty el
Awa

replacing by a similar value the quotient of As-1 by Aa-3, and continuing the pro-

cees, it appears that the quotient of any determinant by the one next below it in

the series can be expressed as a continued fraction in terms of the given consti-

tuents. On account of this property determinants of the form here treated are

called continuants. When each of the constituents by, da_1, . . . 83, s (in the line

above the diagonal) is equal to + 1 the resulting determinant is a simple continsuant.
36. Calculate the determinant of the n* order

e 1 0 0 0
B &« 1 0 0
au=| 0 B a 1 0 R
0 0 B & 1.

whoee only constituents which do not vanish are a, B, 1, occupying the diagonal
and the lines adjacent and parallel to it as here represented.

The calculation is readily effected for any particular value of #, in a manner
similar to that of the last example, by aid of the equation

A = aly.1 — BAn-3,

the values of A; and A3 being a and a? — B, respectively.
By examining the formation of the successive values of A, the student will
readily observe that the terms contained in the result are

a¥r, a¥8, AWM, ... %, @,
when » is even and of the form 2r ; and

airel,  qtr-lB,  qr-3g3 | o38r), afr,
when » is odd and of the form 2r + 1.

For the purposes of a subsequent investigation, in which the results just stated
will be made use of, it is not necessary to know the general forms of the numerical
coefficients which enter into these expressions; but such forms can be arrived at
without difficulty, and the following general expression obtained for A, :—

(n—3)(n—2) (n—6) (n—4)(:
1.2

3)
1.2.3  « Bt+&.

Au=a"—(n—1)an18 + an-4gt —
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37. When a polynomial U is divided by another U’ of lower dimensions, the
coefficients of the quotient, and of the remainder, can be expressed as determinants
in terms of the coefficients of U and U".

The method employed in the following particular case is equally applicable in
general. Let Ube of the fifth, and U’ of the third degree ; the quotient and
remainder can then be represented as follows : —

Q=g+ 12+ @1y, R=rox? + 912+ 1.

Also, let
Usab+ izt + a2+ asx® + aix+ a5, U’ =a'oz’+ @123+ daz+ a's.
From the identity UsQU' +R
we have the following equations :—
a0 = 9oa’0y
aL = gea’1 + q1a’0,
a3 = ¢od’s + q18"1 + 26’0,
a3 = go#’s + q16'3 + 24’1 + 7o,
. M= Q@3+ qaa's+ 11,
o= Q16’3 + 3.

Solving by Art. 144, g0, 91, g2 are expressed as determinants by means of the
first three of these equations ; and taking the first three with each of the others in
succession, we determine 7o, r1, r2. For example, to find o we have, from the first
four equations,

l'o 0 0 - ao a'o 0 0 a0

@ do 0 -a a, do 0 m
=0, or a'odp =

a2 a1 do —a as a\ ao as

&y a's a1 —-as+n as a'y a\ a

38. Find the general forms of the coeficients of the quotient, and of the re-
mainder, when a polynomial of even degree 2m is divided by a quadratic.
Taking £ + ar + B as the given quadratic function, we have the identity

G023 4 a1 2] 4 2323 4 | || 4 G3m322 + G217 + G2
= (g™ + 1293 + . . .+ Qw32+ gam-) (22 + @z + B) + roz +11.

‘Writing down the first r + 1 equations, formed as in the preceding example, to
solve for go, g1, 93 -« - - gr, it is easily seen that the value of ¢, thence derived is
a determinant of the r¢» order of the form treated in Ex. 36, bordered at the top
with the constituents 1, 0, . . . 0, ao, and at the right-hand side with ao, ay, . .. ay.
Expanding this determinant in terms of the last column, it is immediately seen that
any quotient is expressed by means of a series of the determinants of Ex. 36 in the

form
QroGy—08r1 A1 +ar3A3-&C. ... Fa1 A, + Ar;
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the upper or lower sign to be used according as r is even or odd. To obtain the
coefficients of the remainder we have the equations

Bgim-3 + 6Q3m-3 + 70 = G3m-1,
Bgwm-3 + 1 = Q3.

Expressing the values of giem_3, g1m-2 by the formula just proved, and attending
to the results of Ex. 36, we derive the following general forms for ro and r1 : —

70 = Aim-1 + A1m3B + AsmsB + . . . + A3f™32 + A1~
71 =01m + Ban-1B + BimsaB?+ ... + Baf™! + BoB™,

in which the coefficients 4, B are all functions of a, the highest power of a in any
coeficient 4 or B being represented by the suffix attached to the coefficient.

39. If the leading constituents of a symmetric determinant be all increased by
the same quantity z, the equation in  obtained by equating to zero the determinant
80 formed has all its roots real.

Let the determinant of the st order under consideration be denoted by A., and
written in the form :

a+x A g

A b+z f
9 [ e+s

Let the determinant obtained from this by erasing the first row and first columa,
i.e. the lending first minor of As, be denoted by Aa-1 ; again, the leading first minor
of As-1 by As-z; and 80 on, the last function A obtained in this way being of the
form ! +z. To these we add the positive constant Ao = 1, which may be regarded
as completing the series of minors and obtained by the same procees, since As is not
altered by afixing a last row and a last column consisting entirely of zero-elements,
with the exception of the constituent + 1 in the leading diagonal. We have now
a series of » + 1 functions—

An,y A”.l, an-3y . . . A3y A, Aoy

whose degrees in z are represented by the suffixes. When + o is substitated for =
the signs are all positive, and when — = is substituted the signs (beginning with
Ao) are alternately positive and negative. Hence if # be regarded as increasing
continuously, » changes of sign must be lost in this series during the passage
from — wto + . Now it appears by the theorem of Art. 149, that a value of
which causes any function (excluding Am, Ao) in this series to vanish gives opposite
signs to the functions adjacent to it on either side. Ao retains its sign throughout.
It follows, exactly as in (2), Art. 96, that a changeof sign can never be lost except
when z passes through & real root of A = 0. There must, therefore, exist » real
roots of this equation in order that # changes may be lost during the passage of =
from —to + o .
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Any equation in the series, being of the same form as A. = 0, has all its roots
real. It is plain also that each of these equations is a limiting equation (see Art. 90)
with reference to the equation next above it in the series ; since, in order that a
change of sign may be lost between An and Aa.; at the passage through each of
two consecutive roots of the former, the value of A1 must change sign between
these two values of #. The equation As = 0 may have equal roots, and by what
has been just proved it appears that, when this equation has r roots equal to a, the
equation A,_; = 0 has r — 1 roots equal to a, the equation Au-2 = 0 has  ~ 2 roots
equal to a, and 80 on.

The determinant here discussed occurs in several investigations in pure and
applied mathematics. The proof here given of the important property under dis-
cussion is taken from Salmon’s Higher Algebra (Art. 46), to which work the
student is referred for other proofs of the same theorem.

40. If the determinant of the preceding example have r roots equal to a; prove
that every first minor has » — 1 roots equal to a; every second minor » — 2 roots
equal to a, and s0 on.

Employing the notation 4, H, G, . . . for the elements of the reciprocal deter-
minant, we have the equation

AB — H? = Ap_3 An.

Now it is easily seen by proper transpositions of rows and columns that every
leading first minor contains the multiple root » — 1 times. It follows from the
equation just written that the minor H must contain this root r — 1 times; and &
may be taken to represent any first minor.

41. Find the conditions that the equation
a+z A g
A b+ 2z I =0

g f e+
should have equal roots.

Since each first minor must contain the double root, we readily derive the
required conditions in the following form :—

TFT Ty

(This and the preceding example are taken from Routh’s Dynamics of a System
of Rigid Bodies, Part 11., Art. 61.]

42. Any symmetrical determinant can be altered so as to have any selected
pair of conjugate constituents each zero, the determinant remaining symmetrical.

Consider, for example, the determinant obtained by putting # = 0 in the pre-
ceding example, and suppose it is required to remove the constituent g. Multipl -

VOL. I1I. F

—gbab—’—'{-_:c—zhg-
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each constituent of the third column by a (dividing the whole determinant by a at
the same time), and subtract from the constituents so altered those of the first
column multiplied by g. Treat now the two corresponding rows in the same way ;
the resulting determinant is symmetrical, and in it ¢ is replaced by zero. This
process may be applied to a determinant of any order, to remove in succession all
the conjugate constituents of the first row and column, and afterwards of the
remaining rows and columns, so as to reduce the determinant finally to ons, all of
whose constituents vanish except those in the leading diagonal.

43. Reduce the following determinant, of any order, to a form in which = will
appear in the leading constituents only : —

&z + a’) b]é + ¥ ar+c'y

I ez +a’s  biz+ b3  ox+cs
| ast +ay  bx+¥s ezt
1

Multiply by the determinant reciprocal to (aidscs . . . Is). If the given deter-
minant is symmetrical, the determinant derived from it in this way will not be
symmetrical ; but a different process may be used to reduce it in that case to
a symmetrical determinant which will have 2 present in the leading constituents
only, viz. by removing the coefficients of # from all pairs of conjugate constituents
in succession by a process exactly analogous to that of the preceding example. If
the cocfficients of x in the leading constituents of the reduced determinant should
all have the same sign, it may be proved, just as in Ex. 39, that the corresponding
equation will have all its roots real.

44. Let a determinant of the n*» order be divided into two rectangular arrays,
one containing u rows, and the other » rows (where u + » = n), and let u» sums of
products be formed by operating with one array on the other as in the multipli-
cation of determinants; if then such relations exist among the constituents that
all these sums of products separately vanish, the determinants of order u formed
from the first array are proportional to determinants of order » formed from the
complementary constituents of the second.

To fix the idcas, we take a determinant of the fifth order, but the mode of proof
is perfectly general. Let the determinant

a as a3 ay as
h 4 b b b
A=| (] 63 ] os
z1 EZ] % E7Y X

1 ¥ Y3 [ Ys
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be split horizontally into {wo arrays, one of three, and the other of two rows; and
let the following six relations exist :—

Iaz1 =0, Zay =0, Zx =0, Zhy1=0, Iz =0, Iy =0.

If now A be expanded by Laplace’s theorem, and the minor determinants so taken
(as can readily be done) that the expansion is written with all positive signs, e.g.
in the form :(—

A = (a1dges) (Tays) + (a1dseq) (22ys) + (a182¢4) (2sys) + (a1bacs) (zsya) + &e.,

it is proposed to prove that each minor determinant of the third order formed from
the first array is proportional to its factor in the expansion of A so written.
We use for convenience the following notation for the expansion last written—

AalLLl + MM'+ NN’ + PP + &c.

Squaring the determinant A, making use of the above relations, replacing by their
values the determinants obtained by squaring separately each of the component
arrays, and equating the two values of A? thus obtained, we have

(LL' + MM+ NN’ + &c. .. ) = (L + M3+ N3+ &c...)(L*+ M3+ N'3 + &c... ),
whence
(LM’ - L'M)*+ (LN'~ L'N)*+ (MN'- M'N)*+ &c.... =0,
from which we have at once
L ¥ _N_P_,
Ty NPT
46. Write down the relations which exist among the minors of the second order
formed from a determinant of the fourth order divided equally into two rectangular
arrays in the manner of the last example, like conditions being fulfilled.
‘We take the general determinant of the fourth order

a) bl (4] d, 1
a b a d
A= 0
as bs cs dy
aq IA cs dg
and first expand it by Laplace’s theorem. As the expansion of such a determinant

in terms of its second minors is often required in practice, the student is recom-
mended to accustom himself to write it with all positive signs as follows : —

(B1ca) (@ads) + (c1a3) (bsds) + (a1d3) (cady)
+ (a1ds) (bsca) + (861d3) (e3as) + (crd2) (asba).

The method of writing this down is obvious, the same arrangement being observed
as on all former occasions where four letters were involved.

F 2
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By the preceding example, we have at once the relations

(100) _ (a1m) _ (aida) _ (;ds) _ (hida) _ (ada)

(aads) (B}  (csds)  '(bscs)  (eams)  (ash)’
provided the following four equations hold :—

Iaas=0, Zmai=0, Zaay3=0, Jaa=0.

What is here proved has an important application in geometry of three dimen-
sions with reference to the six coordinates of a right line. (See Salmon’s Analytic
Geometry of Three Dimensions, 4th ed., Art. 67b.)

It may be remarked here that it will be found convenient to write uniformly
with positive signs the expansion of a determinant of the third order, which occurs
80 often in practical questions. Taking, for example, the determinant obtained by
erasing the last row and last column of A, we write its expansion as follows, the
three letters being taken in circular order :—

(a102¢3) = @1 (Byes) + 81 (caas) + 1 (aads).

46. Derive the equations (3) of Art. 145, for obtaining the ratios of # variables
from » — 1 linear homogeneous equations, from the proposition of Ex. 44.

47. Express by determinants the values of the unknown quantities derived
from a set of given linear equations by the MetAod of Least Squares.

The given equations, which are greater in number than the unknown quantities,
are supposed to have been obtained as the result of observation or experiment ; and
the numerical coefficients which enter into them, being consequently liable to
errors of observation, are not known with certainty. In such cases the most
reliable values of the unknown quantities are obtained in the manner about to be
explained by what is called the ‘‘method of least squares.”” Take, for example,
five equations of the form a1z + by + c15 = m1, a1z + day + 035 = m,, &o., between
three unknown quantities z, y, s. Multiply them respectively by a,, as, a3, aq, as,
and add ; again by &1, 3, bs, b, b5, and add; and again by ¢y, o, 3, &, ¢5, and
add. In this way the following three equations are obtained :—

23a,? + yIahy + Zarer = Iam,
23ab + g2 8 + sZhiey = Zhmy,
zZac1 + yZhier + 3 = Joimy ;
from which we bave without difficulty
z= (@182¢9) (m1dacs) + (3182¢4) (m1B2es) + . . . . + (@abucs) (Mabecs)
@b+ (@bt + ..ot (odbe® '

with corresponding values for y and 2, each of these values containing ten terms in
the numerator and ten in the denominator.

48. Show that the value of z given in the preceding example can be obtained
by first eliminating y and z from every set of three of the five given equations, and
then applying the method of least squares to the ten equations in z alone which
yosult from the elimination.




CHAPTER XIV.
ELIMINATION.

150. Befinitions.—Being given a system of n equations,
homogeneous between 5 variables, or non-homogeneous between
n — 1 variables, if we combine these equations in such & manner
as to eliminate the variables, and obtain an equation R = 0
containing only the coefficients of the equations, the quantity
R is, when expressed in a rational and integral form, called the
Resultant oxr Eliminant.

In what follows we shall be concerned chiefly with two
equations involving one unknown quantity z only. In this
case the equation R = 0 asserts that the two equations are con-
sistent ; that is, they are both satisfied by a common value
of 2. 'We now proceed to show how the elimination may .
be performed so as to obtain the quantity R, illustrating the
different methods by simple examples. It is proper to observe
that the value of R arrived at by some processes of elimination
may contain a redundant factor. The method of elimination
by symmetric functions leads to a value of R free from any
such factor; and we refer, therefore, to the conclusion of the
disoussion in the next Artiole for the precise definition of the
Resultant.

Let it be required to eliminate z between the equations

a?+ 2z +¢=0, a22+22+=0.

Bolving these equations, and equating the values of # so
obtained, the result of elimination appears in the irrational form

b b -ac ¥ ¥i-d'c
gt Tt T

a a a
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Multiplying by aa” we obtain
at' - ab=a/b"-dd -a /b -ac.

8quaring both sides, and dividing by the redundant factor

@ a’, and then squaring again, we find
R =4 (ac-b*) (a’¢’ - b) - (ad’ + a’c - 2b8")*.

This method of forming the resultant is very limited in
application, as it is not, in general, possible to express by an
algebraic formula a root of an equation higher than the fourth
degree. Other methods have consequently been devised for
determining the resultant without first solving the equations.
We now proceed to explain the method of elimination by sym-
metrio functions of the roots of the equations.

151. Elimination by Symmetric Functions.—Let two
algebraio equations of the m® and n™ degrees be

p(@)=ar™ + @™ +a2™*+...+am=0,

Y(2) = b + b2t + b2+ ...+ by =0;
and let it be required to find the condition that these equations
should have a common root. For this purpose let the roots of
the equation ¢ (+) = 0 be ai, a3y . . . am. If the given equations
have a common root it is necessary and sufficient that one of the

quantities

Yla), Y(as), «.+y P(am)
should be zero, or, in other words, that the product

Y (@) ¥ (a) ¢ (as) - - . ¥ (am)
should vanish. If, now, we transform this product into a
rational and integral function of the coefficients, which is
always possible as it is a symmetrio function of the roots of the
equation ¢ (#) = 0, we shall have the resultant required.
Further, if 38,, 3, ... 3 be the roots of the equation y (z) = 0,

we have
Y (ar) = b (a; - Bl) (@ = Bz) coe (“l - Bn)'
Y (@) = bo(as = Bi) (@ = Bs) . - + (a2 = Bu)y

4(am)= b (am =) (am— Bs) - - (am— B}
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If we change the signs of the m n factors, and multiply these
equations, taking together the factors which are situated in the
same column, we find

a*Y(a) Y(a) . . . Y(am) = (-1)"" b (B:) ¢ (Bs) - - . ¢ (Ba).
We may therefore take

R=(-1)™ 5" $(B) $(Bs) -~ 6 (B) =" ¥ (@) ¥ (@) ... ¥ (am), (1)

for both these values of R are integral functions of the coef-
ficients of ¢(z) and i (), which vanish only when ¢ (z) and
Y (z) have a common factor, and which become identical when
they are expressed in terms of the coefficients.

152. Properties of the Resultant.—(1). The order of
the resultant of two equations in the coefficients is equal to the sum
of the degrees of the equations, the coefficients of the first equation
entering R in the degree of the second, and the coefficients of the
second entering in the degree of the first.

This appears by reviewing the two forms of R in (1),
Art. 151; for in the first form a,, a,, . . . an enter in the n*
degree, and in the second form &, b, ... b, enter in the m®™
degree. Also it may be seen that two terms, one selected from
each form, are (- 1)"" b, a," and as* b,™.

(2). If the roots of both equations be multiplied by the same
quantity p, the resultant is multiplied by p™".

This is evident, since any one of the m n factors of the form
ap — 3¢ becomes p (a, — 3,), and therefore p™ divides the resul-
tant. From this we may conclude that the weight of the resultant
is mn, in which form this proposition is often stated.

(3). If the roots of both equations be increased by the same
quantity, the resultant of the cquations so transformed is equal to
the resultant of the original equations.

For we have

+ R =ab™ 11 (ap - 3,),
where II signifies the continued product of the mn terms of the
form ap — (3,; and this is unaltered when a, and (3, receive the
same increment.
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(4). If the roots be changed into their reciprocals, the value of
R obtained from the transformed equations remains unaltered, except
n sign when mn is an odd number.
Making this transformation in
R=a" o™ I (ap - Bq)r
weo have
I (a5 - 3)
R=arb™(-1)m P' q o
" 0" (-1) (@ias...am)"(Bif3s ... Ba)""°
Ay bn )
a;a....a..':(— 1)“;;, B'B""B”=(-1)n_;

but

substituting, we obtain
R = ab" (- 1) T (ap - Bg) = (- 1)™" R.

From this it follows that in the resultant of two equations
the coefficients with complementary suffixes of both equations,
0.8. Ay, am ; @y, Gm., &o., may be all interchanged without alter-
ing the value of the resultant.

(6). If both equations be transformed by homographic transfor-
mation, that is, by substituting for z

Az + 7}
and each simple factor multiplied by N'z + ', to render the new
equations integral; then the new resultant R = Ay’ - N'pn)™ R.
To prove this, we have
$@)=a@-a)(z-a)... (z-am),
V(@) =b(@-Bi)@-B) ... (z-Ba);

z - a, becomes (A — X'a,) (:v - ; s ;, “);

s-B =N (o= B5E)
Multiplying together all the factors of each equation,
a, becomes ao (A - Na,) A =XNas) ... (A = Xam),
b b A=XNB)A-XNB)... A=-NBW).

also
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. o War—p W - p

Also, ginoce a,, 3, are transformed into X—Va’ X- VB
_ A =Xp)(ar-Br)

ar Br becomes (k = A,a') (A — AIB') ’

whenoe
a6, T1 (ar — ) beoomes a," 5, (A’ - )™ I1 (ar - By),
that is, the resultant calculated from the new forms of ¢ (2) and
$(a) is o
(Au" = Np)= R.

This proposition inoludes the three foregoing ; and they are
oollectively equivalent to the present proposition.

153. Euler’s Method of Elimination.—When two
equations ¢(z) = 0, and  (z) = 0, of the m™ and n™ degrees
respectively, have any common root 0, we may assume

#(2) = (v - 0) $: (=),

Y(2) = (2 - 0) Y (2),
$1(2) =™ + p2™t 4. . 4 P,y
Y(2) = @a™ + 2" L+ g

where

the coefficients being undetermined quantities depending on 0.
‘Whence we have

# (2) Y (2) = Y (2) ¢u(2),

an identical equation of the (m +n — 1) degree. Now, equating
the coefficients of the different powers of  on both sides of the
equation, we have m + n homogeneous equations of the first
degree in the m + n quantities pi, ps, . . . Pmy @1y @2y . . - qn; and
eliminating these quantities by the method of Art. 145, we
obtain the resultant of the two given equations in the form of
a determinant.
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Exaxrrr.
Suppose the two equatious

a*+bx+¢=0, az®*+bhz+ec=0
to have a common root. We have identically
(12 + ¢1) (az? + bz + ¢) = (12 + p3) (M 23 + Bz + &),
or (pa-pra) 2+ (g + a —pr by — paay) 2
+(qet+gb-pra—-prb)z+ge—pror=0.
Equating to zero all the coefficients of this equation, we have the four homo-

geneous equations
’ Qe —-pa =0,

Qb+ ga—pr1d—prar =0,
Qe+ @b —pra—p2b =0,
gz¢ —prer =0;
and eliminating p1, ps, g1, 93, we obtain the condition for a common root in the

form
a 0 a 0

[ a 61 [§}
=0.
° ) e &

0 ° 0 2
The student can easily verify that this result is the same as that of Art. 150.
154. Sylvester’s Dialytic Method of Elimination.—
This method leads to the same determinants for resultants as
the method of Euler just explained; but it has an advantage
over Euler’s method in point of generality, since it can often be
applied to form the resultant of equations involving several
variables. '
Suppose we require the resultant of the two equations
¢ (@) =ax™+ @™ + a2+ ...+ an=0,
Y(@)mbda® + ba™ + b + ...+ by =0,
we multiply the first by the successive powers of z,
v, 22, .. a2, 20
and the second by 2™, 2™73,... 2%, 2, 2%,
thus obtaining m + n equations, the highest power of # being
m+ n - 1. We have, consequently, equations enough from
which to eliminate
gl gmant L gd g
considered as distinct variables.
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Exaurres.
1. Find the resultant R of two quadratic equations
6+ dx+e=0, az*+biz+ec1=0.

‘We have a4+ b3+ x =0,
ad+dz +¢=0,
a2’ + b2 + a1z =0,

aqzd+ hiz+ea=0;

from which, eliminating 23, 22, z, we get the same determinant as in the preceding
Article, columns now replacing rows :

a ] ¢ 0

0 a ] e
R=
a1 5 el 0
0 a 5 [
2. Form the resultant of the two equations
U=ao+ a1z + asz® + as2® + aurt = 0,
V abo+ b1z + 822 + 5y2® = 0.
Proceeding as before, we easily find

a @ a3 ay a, 0 O
G a1 a a a 0
0 a @ a3 ay a
51 8 % 0 0 O
bo 5 b 5 0 0O
0 b5 & 5 &5 0

0 0 0 % b b &
It will be observed that 2 contains the coefficients of U in the 3rd degree, and
those of ¥ in the 4th degree ; also ao*5s* is a term in R (sce (1), Art. 152).

155. Bexzout’s Method of Elimination.—The general
method will be most easily understood by applying it in the
first instance to partioular cases. 'We proceed to this applica-
tion—(1) when the equations are of the same degree, and
(2) when they are of different degrees.

(1). Let us take the two cubio equations

a2 +bP+ex+d=0, a+b2P+ecx+d =0.

R=

QOg'OO
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Multiplying these two equations sucocessively by
& and a,
az+b , ar+bd,
o+ bz+ea 4, ar+bz+e,

and subtracting each time the products so formed, we find the
three following equations :—

(ab)) 2 +(ae)z  + (ady) =0,
(ac,) 2* + {(ady) + (ber)}z + (bdy) = O,
(ady) 2 + (bd)) z + (edy) = 0.

By eliminating from these equations 2*, 2, as distinct
variables, the resultant is obtained in the form of a symmetrical
determinant as follows :—

(aby) (acr) (ady)
(ac)) (ady) + (be,) (bdy)

(ady) (bd) (cd)

To render the law of formation of the resultant more ap-
parent, the following mode of procedure is given.
Let the two equations be biquadratics, as follows :—

art +b+e*+de+e=0, az'+b+cer+dz+e=0;
whence, following Cauchy’s mode of presenting Bezout’s method,
we have the system of equations

a_ bP+cl+dete
a b2+ ¢ +dix+ e’

ar + b e +dr+e
ar+b a+dz+e’

a2 +bx+c dr+e
=
ar® + b+, da+e’

a +bx*+cx+d e
a2 + b +ox+d, e
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which, when rendered integral, lead, on the elimination of
2, 2% z, to the following form for the resultant :—

(aby) (ac) (ady) (ae1)
(ac) (ady) + (ber) (aer) + (bdy) (bey)
(ad)) (ae) + (bdy) (b)) + (edy)  (cer)
(ae,) (bey) (cer) (dey)

If, now, we consider the two symmetrical determinants

(ad)) (ac)) (ad)) (aer)
(ac) (ady) (ae) (3e) (o) (5d)
(ady) (ae;) (be) (cer) | (dd) (ed) I
(aser) (be)) (cer) (der)
the formation of which is at onoe apparent, we observe that R
is obtained by adding the constituents of the second to the four

central constituents of the first.
8Similarly, in the case of the two equations of the fifth degree

6 + bt + ¢ +d +ex +[f =0,
a2t + bt + e+ ddt+ ez + f1=0,

the resultant is obtained from the three following determi-
nants :—

(aby) (ac)) (ad)) (ae)) (afi)

(ac) (ad) (ae)) (afi) (BA) | | (Be)) (bdi) (bes)

(ady) (ae) (ar) (b)) () | | (b)) (be)) (eer) |, (eds),

(aer) (afi) (b)) (efi) (df) (%)) (car) (dei)

(@h) @h) (&) () (¢f)
by adding the constituents of the second to the nine central
oonstituents of the first, and then adding the third to the central
constituent of the determinant so formed. The student will
have no difficulty in applying a similar process of superposition
to the formation of the determinant in general.
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(2.) We take now the case of two equations of different
dimensions, for example,
art + b +e* +dr+e=0, az*+bxr+c¢, =0.
Multiplying these equations sucoessively by
' o and a2,
az+b ,, (az+b) 2},

and subtracting each time the products so formed, we find the
two following equations :—

(aby) 2 + (acy) 2* - dayz — eay = 0,
(ac)) 2 + ((be,)) —da,} 2* - {db, + ea}x — €b, = 0.
If, now, we join to these the two equations
a2 + b2 + ez = 0,
a+ b2z +¢ =0,

we shall have four equations by means of which 2%, 2*, # can be
eliminated ; whence we obtain the resultant in the form of a
determinant as follows :—

(ady) (acy) da, ea,
(ac) (be)) —da, db,+ea, eb,
a, b, -c 0
0 a -b -0

This determinant involves the coefficients of the first equa-
tion in the second degree, and the coefficients of the second
equation in the fourth degree, as it should do; whence no
extraneous factor enters this form of the resultant.

‘We now proceed to the general case of two equations of the
m™ and n** degrees.

Let the equations be
¢ (2) = az™ + @™ +a@™ 4. . .+ ap = 0,
Y (@) = b + b2 + b2 +...+ by =0,
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where m >n; and let the second equation be multiplied by «™.
‘We have then

2™ + bi2™ + D™ + ..+ bp™ ™ =0,

an equation of the same degree as the first. This equation has,
however, in addition to the n roots of y:(z) = 0, m — n zero roots;
o that we must be on our guard lest the factor aw™—" (i.e. the
result of substituting these roots in ¢(z)) enter the form of the
resultant obtained. From these two equations we derive, as in
the above case—(1), the following » equations :—

a _ BT+ A+ .+ Oy
b, ba™ + b2+ ...+ bpr™™

G + G _ A"+ AT .+ O
bz +b  b™+ 0™+ ...+ ba™™

aoz"“+a,w"-’+...+a,._.= Q™" + Ay N4 L+ Ay
b2+ bi™? 4+ . oo + by bp™™ ’

which, when rendered integral, are all of the (m - 1)** degree ;
whence, eliminating ™, 2™, ... « as independent quantities
between these » and the m — n equations

2™ + big™? + be™ + ... =0,
bnz“"+bl¢'"+... =0;

b+ 52"+ ...+ by =0,

we obtain the resultant in the form of a determinant of the
order, the coefficients of the first equation entering in the degree
n, and the coefficients of the second equation entering in the
degree m ; whence it appears that no extraneous factor can enter ;
and that the resultant as obtained by this method has not been
affected by the introduction of the zero roots.
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If R be the resultant of two equations ¢ () =0, ¢ (z) = 0,
whose degrees are both equal tom, the resultant R’ of the system

A¢p (@) + b (2) =0, XN (2)+uY(2)=0
is (AW = Xpu)"R;
for each of the minors (a,5,), which in Bezout’s method con-
stitute the determinant form of R, becomes in this case
Ad, + pb,, Na,+ p'b'
Aa,+ud, Xa,+u'b,
whence R’ = (Au" — MNu)™R, since R is a determinant of
order m.

156. @ther Methods of Elimination.—We conclude
the subject of Elimination with an account of a method which
is often employed, but which has the disadvantage of giving
the resultant multiplied in general by extraneous factors. The
process about to be explained is virtually equivalent to that
usually described as the method of the greatest common measure.

In forming by this method the resultant of the two quadratic
equations

= (A’ =XN'p)(ard) ;

a+bz+ce=0, a2+bx+c¢=0,
we multiply these equations successively by a, and «, ¢, and ¢,
and subtract the products so formed. We thus find the two

equations
(ab) z + (ac)) =0,

z{(ac,) z + (b))} = 0.

Observing that the value zero for # does not satisfy both
the given equations we may discard the factor # from the second
of the equations last written, and thus obtain the resultant
without any extraneous factor in the form

(ac,)* - (ab,) (bey) = 0.
As the degree of this expression is four, and its weight four,

it is a correct form for the resultant.
To form by the same process the resultant of the cubio

equations g} 4 bt +or+d =0, a2 +be+cz+dy =0,
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we multiply these equations successively by a, and 4, d, and d,
and subtract each time the products so formed. 'We have then

(ad)) 2* + (ac)) z + (ad)) = 0, (ad\)2*+ (bd)) z + (ed;) = 0. (1)

Now, eliminating # between these two quadratics by means
of the formula above obtained, we find for their resultant

(aby) (ad)) (ad)  (ac)) (ac) (ady)

(ady) (ed)) (ad) (bdh) o) (ed) |
an expression whose degree is 8 and weight 12, in place of
degree 6 and weight 9; whence it appears that it ought to be
divisible by a factor whose degree is 2 and weight 3. This
factor must therefore be of the form /(bc)) + m (ad)). We
proceed now to show that it is (ad)) ; and to find the quotient
when this factor is removed.

For this purpose, retaining only the terms which do not
directly involve (ad;), we have

(aby) (od) { (aby) (cdh) + (ca) (beh)
which is divisible by (ad,), since
(bey) (ady) + (ca)) (bdy) + (aby) (edy) = 0.

Expanding the determinants, and dividing off by (ad,), we

find ultimately the quotient
(ady)® - 2 (ab,) (cdy) (ady) + (bd,) (ca)(ad),)
+ (ca,)? (edy) + (ad,) (bd,)? - (aby) (bey) (dey),

which, being of the proper degree and weight, is the resultant.

If we proceed in & similar manner to form the resultant of
two biquadratic equations, by reducing the process to an elimi-
nation between two cubio equations, we shall have to remove an
extraneous factor of the fourth degree, which is the condition
that these cubics should have a common factor when the bi-
quadratics from which they are derived have not necessarily a
common factor; and in general, if we seek by this method the
resultant of two equations of the #** degree, eliminating between
two equations of the (n - 1)** degree, we shall have to remove an

extraneous factor of the order 2n — 4. This method, therefore,
VOL. II. G

X
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is inferior to all the preceding methods; and it cannot be
conveniently used except when, from the nature of the investi-
gation, extraneous factors can be easily removed.

157. Discriminants.—The discriminant of an equation
involving a single unknown is the simplest function of the
ooefficients, in & rational and integral form, whose vanishing
expresses the condition for equal roots. 'We have had examples
of such functions in Arts. 43 and 68. We proceed to show
that they come under eliminants as particular cases. If an
equation /() = 0 has a double root, this root must occur once
in the equation f’(#) = 0; and subtracting 2/ (z) from nf(z), the
same root must occur in the equation nf(z) - 21" () = 0.

This is an equation of the,(n — 1)** degree in z; and by
eliminating z between it and the equation f'(z) = 0, which is
also of the (n — 1) degree, we obtain a function of the coeffi-
cients whose vanishing expresses the condition for equal roots.
"The degree of this eliminant in the coefficients of f(x) is 2 (n—1);
and its weight is n (n — 1), as may be seen by examining the
specimen terms given in section (1), Art. 152. Expressed as a
symmetric function of the roots of the given equation, the
discriminant will be the product of all the differences in the
lowest power which can be expressed in a rational form in
terms of the coefficients. Now the product of the squares of
the differences II (a, — a,)* can be so expressed; and since it is
of the 2 (n — 1)* degree in any one root, and of the n (n — 1)®
degree in all the roots, it follows that the discriminant multi-
plied by a numerical factor is equal to a, " II (a, — a,)".

If the function f(z) be made homogeneous by the introduc-
tion of a second variable y, the two functions whose resultant is
the discriminant of f(z) are the differential coefficients of /()
with regard to 2 and y respectively. In the same way, in
general, the discriminant of a function homogeneous in any
number n of variables is the result of eliminating the variables
from the n equations obtained by differentiating with regard to
each variable in turn.
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ExauprEs.
1. Find the discriminant of

8or? + 3412 + 343z + a3 = 0.
‘We have here to find the eliminant of the two equations
a2 + 2a1z + 43 =0,
123 + 203 + a3 = 0.
The condition for a common root is, by Art. 160,
4 (a083 — a1?) (8103 — a2®) — (@0as — a1a3) = 0.

The function of the coefficients here obtained is therefore the discriminant,
which may also be written in the form of a determinant, as follows, by Art. 154 :

% 260 @ O

0 a 2a a;
o 2, a 0|
0 a1 2a; as

It can be easily verified that this value of the discriminant is the same as that
already obtained in Art. 42.
2. Express as a determinant the discriminant of the biquadratic

aoxt + 4a12° 4 6a32® + 4asx + a4 = 0.

We have here to eliminate » from the equations

aor® + 3a12% + 3432 + a3 = 0,

a13? + 3422 + 3432 + a4 = 0.
By the method of Art. 164 the resultant is
a 3a1 3a: ay 0 0
0 6 3m 3az a O
0 0 a 3a1 34 a
@ 3a 3as a4 0 O

0 a1 341 3((3 ag 0

0 0 a 3a; 3as ay

This must be the same as I® — 27J? of Art. 68.
3. Express the discriminant of the quartic as a determinant by Bezout’s method
of elimination.
G2
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4. Prove that the discriminant, Am, of the equation
Us ax™ + by™ + ez = 0,

where z4+y+e=0,
may be obtained by rendering rational, in the form Aw = 0, the equation
1 1 1

(o)~ + (ca)™t + (ab)>1=0;

and calculate in particular the values of A;, A4, As.
When s is replaced by its value from z + y + £ = O the given function U contains
two variables, and the discriminant is obtained by eliminating z and y from

av aU
E—=0 and ;;-B 0.

§. Prove by elimination that J =0 is one condition for the equality of three
roots of the biquadratic of Ex. 2.
Since the triple root must be a double root of

Us = aoz® + 3a12* + 347 4+ 63 =0,

and therefore a single root of a12® + 243z + a3 =0; and since it must also be a

single root of
& Usmap2® + 2012 + a2 = 0,

it follows from the identity
Us = 2303 + 22 (312? + 2432 + a3) + 622 + 2a92 + a4
that the triple root must be a root common to the three equations
ap2® + 2412 + a1 = 0,
a2t + 2037 + a3 = 0,

ax® + 2a32 + ag = 0.
Hence the condition

(] aQ as

a az a3 |=mJ=0.

as as a4

6. Prove that the discriminant of the product of two ‘functions is the product of
their discriminants multiplied by the square of their eliminant.

This appears by applying the results of Art. 151 and the present Article; for
the product of the squares of the differences of all the roots is made up of the
product of the squares of the differences of the roots of each equation separately
and the square of the product of the differences formed by taking each root of one
equation with all the roots of the other.
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158. Determination of a Root common to two
Equations.—If R be the resultant of two equations

U=06u?™ + Gy ™' +...+0a,=0,
Vaba +bpaa™ +...+ b, =0,
and a any common root, then

dR 4R dR

dal da, da,
a=J7% =7k - ak - %

dao da, da,

To prove this we first show that functions ¢ (z) and ¢ (2)
can be obtained such that R = Ug (z) + Vi (2), namely, when
U and ¥V are multiplied by ¢ (z) and i (), respectively, and
added, all terms involving # vanish identically. Take, for
example, the form of R given for two functions of the 4** and
3" degrees, respectively, in Ex. 2, Art. 154. Multiply the
second column by z, the third by 4?, &c., and add to the first
column, thus obtaining U, 2U, 2*U, V, 2V, «*V, 2’V for the con-
stituents of the first column. The determinant when expanded
takes then the form Ug (z) + Vi (¢), where ¢ is a quadratio
function, and y a cubic function of z. This mode of proof can
be applied to any two functions ; and it will be observed in the
general case that ¢ and  are of the degrees n — 1 and m - 1,
respectively, the degrees of U and ¥ being m and n. We have
therefore

R=Up + VY;
whwo AR gy
da, da, day,
dR +1 d¢
dapy; = wp ¢ + U d(lp“ V d(lpu

and when a is a common root of the equations U= 0, and V=0,
we have, substituting this value for # in the preceding equations,
dR dR
“da, " dap,

which proves the proposition.
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A double root of an equation can be determined in a similar
manner by differentiating the discriminant A.

‘When the equations T = 0 and ¥ = 0 have two roots com-
mon, the first differential coefficients of R with regard to ap,
ap,, &c., vanish identically, and it is necessary to proceed to a
second differentiation. In this case the common roots are given
as the roots of the quadratioc equation

@R @R d R
Wa"—2da,dapﬂx+da’“’=o,
as is easily seen by differentiating the value of R above given,
when the first member of the equation last written is found to
be equal to
T po Tt o, L8y, (B g B,
(dT,'” 2 teiant daa) U (d 7 =2 ardayn +da,,,’)V’
an expression which vanishes when either of the common roots
is substituted for 2.
A similar process will apply if there are three or more
eommon roots.
The examples which follow are given to illustrate the
principles contained in the foregoing chapter.

ExaAnpLES.

v 1. Eliminate z from the equations
az*+ bx+¢=0,
B2=1.
Multiplying the first equation by #, we have, since 23 =1,
b*+cx+a=0;
and multiplying again by z, we have
er*+ar+b=0,
Eliminating 23 and z linearly from these three equations, the result is expressed
as a determinant
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If the methed of symmetric functions (Art. 151) be employed, and the roots of
the second equation substituted in the first, the resultant is obtained in the form

(6 + 5+ c) (aw?® + b + ¢) (aw + des? + ¢).
2. Eliminate similarly z from the equations
ard + 03+ ext+dr+e=0, 25=1.

The result is a circulant of the fifth order, obtained by & process similar to that
of the last exan ple. By aid of the method of symmetric functions the five factors

can be written down. An analogous process may be applied in general to any
two equations of this kind.

3. Apply the method of Art. 153 to find the conditions that the two cubics
p(r)=azd + 02 +cx +d =0,
y()=ar?+¥2+c'z+d=0

should have two common roots.
‘When this is the case, identical results must be obtained by multiplying ¢ (z) by
the third factor of ¢ (#), and ¢ (z) by the third factor of ¢ (z). We have, therefore,

Nz + p) ¢ (2) = (A2 + ) ¥ (2),
where A, u, A’, u’ are indeterminate quantities. This identity leads to the equativns
A'a —-Ad’ =0,
Ab+ pa—AY - pa’'=0,
A'e+ wb— A —pub =0,
Ad+ pe—Ad — pc' =0,
w'd - pd’ = 0.

Eliminating A’, u’, A, u from every four of these, we obtain five determinants,
whose vanishing expresses the required conditions. There isa convenient notation
in use to express the result of eliminating from a number of equations of this kind.

In the present instance the vanishing of the five determinants is expressed as
follows :—

i a b ¢ d 0
0 a ] ° d
, =0,
a ¥ ad o0
lo ¢ » ¢ al

the determinants being formed by omitting each column in turn. It should be
observed that the conditions here obtained are equivalent to two independent
conditions only, and itcanbe shown that, when any two of the determinants vanish,
the remaining three must vanish also.
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4. Prove the identity

a? 2a8 B
aa’ af +a'B BB |= (aB’ - a'B)>.

a'? 2a’'8’ g2

This appears by eliminating # and y from the equations
ar+By=0, az+By=0;

for from these equations we derive
(az+By)*=0, (az+By)(ax+PBy)=0, (a'x+PBy)=0.

The determinant above written is the result of eliminating 2%, 2y, and y? from the
latter equations; and this result must be a power of the determinant derived by
eliminating z, y from the linear equations.

5. Prove similarly

o 3a%8 3apB? B

a%a’ a?B’ + 2aa’B 2aBB’ + a'B? I:J:3

= (af’ — o'B)S.

aa’? a8+ 2aa’8’  2a'BB' + aB? BB
a3 3a?8’ 3a’B’? g3

6. Prove the result of Ex. 13, p. 64, by eliminating A, u, A, u’, from four
equations
,_Aa +

A
a == g ﬂ+"&c‘
ANa+p

SNBra’

connecting the variables in homographic transformation.

I3

7. Given U= Aw + 2Bur + (3,
V= A4+ 2B uv + C'v3,
u = ax® + 2bxy + cy?,
v =dz% + 2Vxy + C'yY,
determine the resultant of U and ¥ considered as functions of z, y.
Since U= 4 (u— av) (v - Br),
V=Ad (u-ar)(u-pr),
if U and ¥ vanish for common values of z, y, some pair of factors, as u— av and

u — a'v, must vanish; whence forming the resultant of  —av and ¥ — a’v and
representing the resultant of  and ¢ by R («, ), we have

R(4—av, u—a't)=(a—a')?R(% v);
and multiplying all these resultants together, we find
R(Us, V2) = 444 (a= &) (B - B (a — B)} (B &) {R (%, )}
R(Usy Vi) ={R(U, 7)}? {R(5, 0)}*.

or
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8. Prove that the equation whose roots are the differences of the roots of a given
equation f(r) = 0 may be obtained by eliminating z from the equations

3
F@) =0, F&)+f'@) fg+S" @) g+ &= 0;

and determine the degree of the equation in y (cf. Art. 44).
9. Eliminate z, y, z from the equations
z2+y+e=0,
ayz + bzx + czy =0,
a3+ b2 + ey =0.

Taking the first two equations along with an assumed linear equation with

arbitrary coefficients, viz.,
AZ +puy +vz2=0,

and eliminating z, y, £, we easily obtain
al+ bttt +(@-b-c)ur+(b—c—a)A+(c-—a-b)au=0, (1)
which must be equivalent to the equation
(Az1 4+ py1 + v21) (Ara + pys + v22) =0, (2)

where 21, y1, 51, £2, ¥3, 22 are the two systems of values of #, y, £ common to the
first two of the given equations. Substituting these values in the third of the
given equations, we have

R = (ays® 213 + ba13 213 + ex13y13) (aya® 22® + b2ad 223 + exad 9a%) 5

and reducing this value of R by means of the symmetric functions determined by
the comparison of the equations (1) and (2), we find

4R = 4p’q + ¢* + 2Tpr,

where p=a®+ b4 ¢t = 2bc — 2ca — 2ab,
g=abc(a+b+ec),
r=a*bc.

10. It U, 7, W are three given functions of z of the degrees m, n, m + n — 1,
respectively, prove that an identical relation exists of the form

RW = Up (x) + VY (2),
where ¢ (z) and ¢ (x) are functions to be determined, of the degrees n —1and m — 1,
respectively, and R is the resultant of U and V.

11. Verify the results of Art. 158 by differentiating the value of R given in
Art. 151.



CHAPTER XV.

CALCULATION OF SYMMETRIC FUNCTIONS. SEMINVARIANTS AND
SEMICOVARIANTS.

1569. Waring’s General Expressions for s, and p,.—
The most fundamental properties of symmetrie functions of the
roots of equations have been already discussed (Arts. 27, 28,
and Chap. viir., Vol. 1.). In the present chapter we add some
miscellaneous propositions which may often be used with
advantage in the caloulation of symmetric functions. The
general expressions, due to Waring, referred to in Art. 80,
will first be given :—

(1) General expression for 8, in terms of the coefficients

Puy Pr - - . Pny of an equation of the n** degree.
‘We have

—log, (1 + py +...+ pay") = 2( (pny+p=y’+ -+ Day")

1
=8xy+§8:y’+§s,y’+ coo %s,..y'w... (Art. 79).

Now, making use of the known form of the coefficient of y™
in the expansion of (p,y+p2y*+ ... + pay™)" by the multinomial
theorem, and comparing coefficients of y™ in the above equa-
tion, we find

T N e T ST
_SP(r,+1) l"(r,+l)...l‘(r,,+1)p‘ CAKRRY 2

in which ntr+st+...t1r=r,
P2+ 3+ .+ nry = m;

and ry, ry, 75, . . . 7 8re to be given all positive integer values,
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zero included, which satisfy the last of these two equations.
Also, representing by r; any of these integers,

F(re+1)=1.2.83...n

with the assumption that I' (1) = 1 when r; = 0.

(2) General expression for any coefficient pn in terms of the
sums of the powers of the roots 8,, 8,, . . . 8m.

‘We have

L4py+ .. + 0y + .o+ payt=e¥1. eWn v |

(Art. 80).

When the factors on the right-hand side of this equation
are developed, and the coefficients of y™ on both sides compared,
we find, employing the notation of the last example,

(_ 1)r1+r,+. . ’+rm8|rl-91r3- .. 8,,."-

Pm=3 T+ 1) T(ra+l) ... T(rm+1)27233. . m'=’

in which »,, r,, ... 7w are to be given all positive values, zero
included, which satisfy the equation

A2+ Byt et My =

160. Symmetric Functions of the Roots of two
Equations.—If it be required to calculate a symmetric funo-
tion involving the roots ai, as, a;, . .. am of the equation

p@)=az™+a2™ + @™+, ..+ an=0, (1)
along with the roots (3, 3;, 35, .. . Bs, of the equation
Y (@) =by™ +biy™+ by i+ ...+ b, =0, (2)

we proceed as follows :—

Assume a new variable ¢ connected with z and y by the
equation
t=Az+py;

and let y be eliminated by means of this equation from (2). The
result is an equation of the »™ degree in » whose coefficients
involve A, u, and ¢ in the n** power. Now let # be eliminated
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by any of the preceding methods from this equation and (1).
‘We obtain an equation of the mn degree in ¢, whose roots are
the mn values of the expression Aa + uf3.

If, now, it be required to calculate in terms of the coefficients
of ¢ (z) and ¢ (y) any symmetric function such as Za” 37, we
form the sum of the (p + ¢)** powers of the roots of the equation
in £. We thus find the value of = (Aa + pu3)P*? expressed in
terms of the original coefficients and the several powers of A
and u. The coefficient of AP u? in this expression will furnish
the required value of Zu?3? in terms of the coefficients of
$ (<) and ¥ (y).

If it were required to caloulate symmetric functions of the
roots of three equations, we should assume

t=Az + uy + vs,
eliminate «, y, s, and proceed as before. This method therefore
applies whatever the number of equations; and by making the
coefficients a, = b, = ¢,, &ec., we fall back on the symmetric
functions of the roots of a single equation already calculated.

161. Calculation by Sums of Fowers of Roots.—By
aid of the following differential equation, connecting a function
of the coefficients and its value in terms of the sums of the
powers, symmetric functions can often be calculated with great
facility :—

e F(p ) = - 1(dF + aF + + ar
ds, Pis Pan < -« Pul = r(dpr b dpra R Al d]’»)'

To prove this equation, we take the equation (1) of Art. 80,
aund differentiate it with regard to s.. Comparing coefficients
of the different powers of y, we have

dpq
ds,
and substituting these values in
dp, ds,  dp, ds, dps ds,’
we have at once the equation above written.

=0, when g <r; ——=-=; = —-px;
r

d
(EE(p., Pz Dn)
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ExaMPLES.

1. Calculate the value of the symmetric function Za;?a3?as?ag® of the roots
of the equation
PHprevt L pran L 4+ pa=0.
Knowing the order and weight of any symmetric function, we can write down
the literal part of its value in terms of the coefficients. Here X is of the second
order, and its weight is eight ; hence

ZI=tops+ bpipr + Lapepr + Lapsps + tipdd,

where (o, ¢, ¢2, &c., are numerical coefficients to be determined.

Terms such as psp?, psp1p2, pspr®, &c., although of the right weight, are
of too high an order, and therefore cannot enter into the expression for 3. Again,
2 expressed in terms of the sums of the powers of the roots is of the form
F(ss, 8, 8, 88) ; for, in general, %ai? az?as” . . ., when 8o expressed, is made up
of terms such as sp, 85,9y Spsgiry « « - Sip, . - . 8ll of which are sums of even powers
when p, g, 7, . . . are even ; therefore in this case none but even sums of powers
enter into the expression for 2.

d. .
Also, since a =0, and Z:_ =0, we have, using the formula above given for :£
s

ds3 r
tops+ Lprpa + tapspr + ts(p2ps + ps) + 2uprps =0,
L+ ap=0.

From these equations we infer
to+t1=0, ta+t3=0, t3+2=0, t;,+2t,=0;
but ¢ = 1, since for a quartic X = p?; therefore
thh=-2, to=2, l3=-2, {1, =2;
and, substituting these values of ¢, t1, ta, #3, t4,
2a1® as® as? as? = 2ps — 2971 p1 + 2pep2 — 20503 + PO
2. Calculate Zai>as’as® for the same equation.
Ans. —2pg + 2p1ps — 2papy + ps*.  (Cf. Ex. 6, Art. 82.)

3. Calculate for the same equation the symmetric function 2a;® a3? as.
Here the weight is six, and the order three; hence

Zadardas=tope+ 1psp1 + tapap2+ tapuapr? + UPSP+ + tsprpaps + tepad.
Also 2, expressed in terms of 1, 82, 83, &c., is (Art. 78)
818383 — 8 85 — 833 — 828( + 2s6.

Now, differentiating these two values of X with regard to ss, and comparing
differential coeflicients, we have
dpe
=

to
hie=-g=2% or tm-12.
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Differentiating with regard to s5, we have
topr+p=6a,=~6p1; . 1=17.
Differentiating with regard to s,
lops+ pd+ apz + tipd =4 =4 (p® - 2p);
whence
lot+ta=—8, ti+ta=4;

and
ts=-3, t2=4.

~ Again, = 0; for X vanishes if # — 2 roots vanish. And we find 4 and ¢ by
taking the particular case when » — 3 roots vanish ; for in this case

a1’ az? a3 = a1 az a3 Zataz = — p3 (— ;121 + 8p3) = pipaps — 33,
and therefore ¢ =-—3, ¢ =1; whence, finally,
Zaid ar® a3 = — 12p + Tpa ps + 4943 — 3pap1® — 3ps® + p1 paps.

162. Fanctions of Differences of a Cuble.—The
propositions contained in this and the next following Articles
are most useful in the calculation of ocertain classes of symmetric
functions of the roots of cubic and biquadratic equations; they
are also of great importance, as will appear in the sequel, in
reference to the determination of the number of independent
invariants and covariants of these forms.

Prop. I.—Every rational and integral symmetric function
¢ (a, B3, v) of the roots of the equation

ar® + 3a,2* + 3asz + a; =0

which tnvolves the differences only of these roots 13, when multiplied
by a~, expressible in the form F(a,, H, A), or GF (a, H, A),
according as ¢ 18 an even or odd function of the roots, F being a
rational and integral function of a,, H, A, and = being the order of ¢.

It is first necessary to prove the following Lemma :—There
exists no function of H and A which is divisible by a,. For if there
were any such function F, (H, A), then, making a, vanish, we
should have

F,(H', A") = 0, where H' = - a,, A’ =4a,°a, - 3a,’a?,
the values of H and A when a4, vanishes (Art. 42). This equation
is clearly impossible; for if we eliminate a; by means of the
equation H' = - a/%, the resulting equation will contain a, and
a, as well as H’ and A’.
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To proceed with the proof of the Proposition :—8ince ¢ is a
function of the differences, we can suppose it to be calculated
from the oubic deprived of its second term (Art. 36). We

have therefore
aor¢ (“) ﬁ: 'Y) =F (ao’ H G),

in which F 1 isa rational integral function, and », which cannot
be less than *(Art 81), remains to be determined. Arranging
the right-hand side according to powers of G, we may write

ar$a, B, ) = Fo (a0, H) + GF, (ay, H) + G*F, (a0, H) +. . .

Since the weight of H is even, it follows that when ¢ is
an even function of the roots (i.e. its weight even) all terms
involving odd powers of G must disappear, and when ¢ is an
odd function F, and all terms involving even powers of G must
disappear. Taking out G as a factor in the latter case, and
eliminating even powers of G by means of the relation

G+ 4H" = aZA, (Art. 42))

we have proved that a,"¢ is expressible in the form F(a,, H, A),
or GF(a, H, A), according a8 ¢ is even or odd.

It appears therefore that every odd function of the roots
of the kind here considered must have as a factor

Ra-LB-7v)2B-v-a)(Ry-a-B). (Ex. 15, Art.27.)

We can suppose this factor removed from ¢, with the cor-
responding value in terms of the coefficients from the second
side of the equation; and it only remains to determine the
value of  in the case of an even function of the roots. Writing
the relation in the form

a’¢ (a, B’ 7) = F(ao: H, A)’
arranging the right-hand side according to powers of a,, and
dividing by «,"*, we have

a"¢ (0, B, 'Y) = F, (ao, H,A)+2

where F, is an integral funotion of a,, H, A, and £ contains all

v FP (H; A)
a? ’
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the fractional terms. Now, ¢ being a symmetric function
whose order is =, a,"¢ is expressible as an integral function of
the coefficients (Art. 81); and since, by the lemma above estab-
lished, none of the terms included in = can become integral, the
fractional part must disappear, and the equation assumes the
form
"¢ (a, B, v) = Fe(a,, H, A).

The proposition is therefore proved.

163. Functions of Differences of a Bigquadratic.—
The corresponding proposition for a biquadratic is as follows : —

Every rational and integral symmetric function ¢ (a, (3, v, 8) of
the roots of the equation
a2t + 44,2 + 6a® + 4dax + a, = 0,

which involves the differences only of the roots, i3, when multiplied
by as, expressible in the form F (a,, H, I, J) or GF (a,, H, I, J)
according as ¢ 18 an even or odd function of the roots, F being a
rational and integral function of a,, H, 1, J, and = being the
order of ¢.

The following lemma must first be proved :— There exists
no function of H, I, J which i divisible by a,. For, suppose if
possible F, (H, I, J) to be such a function. Making a, vanish,
we have F, (H', I’y J”) = 0, where H’ =-a,®, I = - 4a,a;s + 3as?,
J’ = 2a,a,05 — aa® — ay® (the values of H, I, J, when a,=0);
but no such relation can exist, since it is impossible to eliminate
ay,, Gy as, &, 80 a8 to obtain a relation between H’, I', J’
alone. '

Now since, as in the preceding Article, ¢ is a function of
the differences of the roots, we can suppose it calculated from
the equation deprived of its second term (Art. 37). We have

therefore
a’$ (“’ B: Y 8) = F(aﬂ H, 1, G),

in which F'is a rational and integral function, and » remains to
be determined. Proceeding as before,

aS¢(a, 3,7, 8)=F,(a, H, I) + GF, (a, H, I)+ G F(ap, H,I) +...
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Sinoe the weight is even in the case of both the functions
H and I, we infer, just as in the preceding Article, that @ is a
factor in the odd functions ; and, eliminating even functions of
G by the relation
G =a}(HI-aJ).-4H?, (Art. 37)

we prove that e, ¢ is expressible in the form F(a,, I, I, J) or
GF (ay H, 1,J) according as ¢ is even or odd. It appears
therefore that every odd function of the roots of the kind
here considered contains the factor

B+y-a=-8)(y+a-B-3)(a+B-y-3)
(Ex. 20, Art. 27.)
Removing this factor, we proceed to determine » in the case
of an even function. Writing the relation in the form

a’p(a, 35 7, 8) =F(a, H, 1, J),
and dividing by a,”*, we have, as in the preceding Article,

r,(H,I,J
a0.¢("’3)728)=E)(a0’ -H’LJ)"'E_P_(F—).

Now since the right-hand side must be an integral function
of the coefficients (Art. 81), and since, by the lemma above
established, none of the terms included in = can become integral,
we have

"¢ (a, ﬁ: g 8) = Fo(”oa H, 1, J),
which proves the proposition.

Instances of the use of this proposition in the calculation of
symmetric functions of the roots of a biquadratio will be found
among the examples at the end of the chapter.

164. Seminvariants and Semicovariants. — Let
ay, a3, a3, . . . a, be the roots of
age® + na™ !t + "—(1"—_2—1) az"*+...+a,=0,

the general equation written with binomial coefficients. We
proceed to the consideration of an important class of functions
VOL. II. H
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of z which may be derived from a given symmetric function of
the roots.

In the two preceding Articles we have been occupied with
oertain special kinds of homogeneous symmetric functions of
the roots which contain the differences only of these quantities
(cf. Arxt. 36). Such functions may be called (for a reason
which will appear in a subsequent chapter) semi-invariants, or,
as it is usually written, seminvariants. Being symmetric func-
tions of the roots, they are expressible (when multiplied by a
power of a,) in a rational and integral form in terms of the
coefficients.

‘We may use in like manner the term semicovariants to denote
similar functions of the differences of the quantities 2, aj, as,. . . a,,
such that when they are arranged in powers of = the successive
coefficients of z are expressible in a similar manner in terms of
the coefficients.

We proceed now to show how semicovariants may be
generated, and then expanded in powers of x, when expressed
either in terms of the roots or in terms of the coefficients.

From any relation such as

ao'¢ (a., Qzy oo a,.) = F(ﬂo, @y Agy o o a,.),

where ¢ is an integral function of the order =, and F the cor-
responding expression in terms of the coefficients, we may, by
diminishing each of the roots by #, and consequently changing
any coefficient a, into U, (see Art. 35), derive the following
equation :—

a.,'¢(a1—:t, ag—z,...a,.—x)=F(Uo, m, Uz,...Un), (l)
thus obtaining two forms for a semicovariant, one expressed in
terms of the roots, and the other in terms of the coefficients.

To expand these forms in powers of #, we have, for the first
member of the equation, by Taylor’s theorem,

¢ (a2, a,—z,...a,—w)=¢o+x3¢o+li23°¢,,+.... ?)
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where ¢o‘¢(¢l, L2 I a’l)!
d d d
and —ssd—m+¢_i;,+"'+¢7a—,,

Again, omitting all powers of # higher than the first, the
second member of the equation becomes

F(a, a,+apr, as+2az, ... ay+na,.,x),

or, when expanded,

F, + 2DF, + &o.,
where
F,=F(ay, a, ay ... a,),
d d d d
and Dsa"t_l(l—,+2a'c—15;+3azd7,+"'+"a"'ld_a,,'

Comparing the two expanded forms, we have
a,"0¢ (ayy azy ... an) = DF (ay, ay, . . . a,),

and consequently, by successive applications of the operators
é and D,

a*&¢ (uy, uzy ... an) = D'Fay ty, ... a4)}

whence we infer from the expansion (2)
)
¥, U,...U,)=Fy+aDF,+ l“’—z D'F, + &o. . ..

By the aid, therefore, of the two operators—& in terms of
the roots, and D in terms of the coefficients—we can expand at
pleasure either side of the equation (1) in powers of ». By
means of the successive operations of & we obtain a series of
functions of the roots; and, by means of 1), their equivalent
values in terms of the coefficients.

The results now arrived at are equally true if the function ¢
iuvolves the roots of two or more equations, F being the corre-
sponding value in terms of the coefficients of these equations,
and D and J being replaced by the sums of the similar operators
relative to cach equation.

H 2
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It is important to observe that when 8¢, vanishes identically,
so also
3(¢,) or ¢, =0, &¢, =0, &e.,
and therefore + disappears in the expansion of the first member
of equation (1). Now this can happen only when ¢ is a function
of the differences of a,, az, . .. ay; whence we conclude that if
F(ay ay, ... a,)is a seminvariant

DF(ay, a\y ts, ... a,) = 0.

This identical relation is often sufficient to determine the
numerical coefficients in a seminvariant when the order and
weight are known. If there should be two or more semin-
variants of the same order and weight, the operation of D will
not supply equations enough to determine all the assumed
coefficients, as will appear from the disoussion in the next
Article. If no seminvariant exists of the required order and
weight, the coefficients will all vanish.

165. Determination of Seminvariants.—The problem
of finding the seminvariants of a given order = and weight « of
a quantio is the same as that of determining all such solutions
of the differential equation ’

do do do
DQ.“’E+2‘Z'¢E+"'+"a""d7,.=0' (1)

To solve this equation when possible assume
‘p = A1¢1 + x1¢) +i0eo+ Ar¢r, (2)

where ¢, ¢, ... ¢r are all the possible combinations of
oy @y 3y . . . Gy Of the order = and weight x, and A, Ay, ... A,
arbitrary multipliers.

Now, substituting this value of ® in the equation D® = 0,
we have as the result

B LI¢I+L2¢2+O-O+Lp‘I’p‘0,
where 1, Yu, s, ... Yy are all the distinct terms of the order »

and weight « - 1, and L, L, ... L, are linear functions of
Ay Az ... Ap, which must all vanish when & is a seminvariant.
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To determine A;, A, A;, ... A, We have
L] = IuAl + Iukg+ ceet l.,-X, = 0,

L; = IMA| + lnkg’i‘ R Iz,—kr = 0, (3)

Lpg P\A]"’[pgkg"’. .o+ ’pr/\r = 0 J
There are three distinct cases to be now considered :—
(1.) When r is greater than p, there are not sufficient
equations to determine all the quantities A;, A, A;, ... Ar; but
any p of them can be determined as linear functions of the rest.

For this purpose we can proceed as follows :—Introduce r—p =y
arbitrary multipliers defined by the equations

’”uk] + ﬂ‘nx’ + .00+ mlrkr = A[,

Ma; + MaAg + <o + MapAy = Ay,

4)

MiAy + My + o oo+ MpA, = A

Bolving the equations (3) and (4) for A,, A ... Ar, and sub-
stituting in equation (2), we have the following value for @ :—
P=AZ + A2+ AsZ+ ..+ A

and therefore
D®=ADZ+A,DZ, + ...+ AjDZj = 0,
whence D3, =0, D=,=0,...D3;=0,
since Ay, A, ... A; may have any values whatever.
‘We conclude, therefore, that in this case there are #» — p = s
linearly independent seminvariants.
(2.) When p is equal to » or greater than » the equations

L=0, L,=0,...L,=0

cannot, in general, be satisfied, and there are no seminvariants
of the quantic of the order = and weight «.

(8.) When p =1 -1 there are just sufficient equations to
determine the ratios of A, A,;, ... A, and consequently only
one seminvariant exists.
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ExaMprEs,

1. Determine for a cubic a seminvariant whose order and weight are both
three.
Assume ¢ = Aag®as + Bagayaz + Car’,

these being the only three terms which satisfy the required conditions. It is
evident from the form of D that the operation is performed by applying to the
sufiix of any coefficient a, the same process as in ordinary differentiation is applied
to the index. Thus Da, = ra,_;, and therefors

D¢ = (34 + B) actaz + (2B + 3C) m?ao = 0.
34+ B=0, and 2B+ 3C=0;

Hence

and putting 4=1, wehave B=-3, and C=2; whence, finally,
¢ =aotay— 3aa a3+ 2a3=G. (See Art. 36.)

For a quadratic no such seminvariant can be formed.
2. Investigate seminvariants of a quartic whose order and weight are both four.
Assuming
¢ = Aag’ay + Bag’aas + Cag’az® + Dagar*az + Eayl,
we readily find
D¢ = (44 + B) ao’as + (3B + 4C + 2D) ag’aras + (2D + 4E) acar®.

‘We have now only three equations among the assumed five coefficients, whose
ratios cannot consequently be determined completely. Expressing B, C, and D in
terms of 4 and E, we have easily

¢ = Aag® (acay — 4a103 + 3a3?) + E (a’as® — 24081233 + ayf),
viz., ¢ = 4a*I + EH?,

where 4 and F may have any values. We may say therefore that there are in
this case two independent fundamental seminvariants of the required order and
weight, viz., a,®7 and H?; and from these may be derived an indefinite number
of seminvariants of the same order and weight by assigning to 4 and E different
numerical values.

3. Determins for a cubic a seminvariant whose order is four, and weight six.
Assume
¢ = Aaoas® + Baoas® + Casa\3 + Daj%a:? + Eaoayazas,
whence
D¢ = (64 + E)ag’azas + (6B + 3E + 2D) apmaz® + (3C + 4D) a1%a
+(3C + 2E) apar?a3 = 0.

Now let 4 = 1, whence E=—6; also 3C + 2E =0, giving C =4; and

3C+4D=, giving D=~ 3 ; and from 6B + 3E + 2D =0, we have finally B = 4.
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Hence ¢ = aptas® + 4aoay® + 463013 — 3a,%3% — 6aga1mas.
Compare Art. 42, where the value of ¢ is given in terms of the roots.

4. Determine a seminvariant of a quintic whose order is three and weight
five.

It is easily seen that the only terms of the required order and weight are
alas, apd\ay, aymaas, a1%as, and a,a;®. DProceeding as before we find that the
“ratios of the assumed coefficients are determinate, and the seminvariant is found

to be
aotas — Bagmay + 2a0a30; — 6a1a3® + 8a)%as.

5. Determine for a quartic a seminvariant whose order is three and weight six.

\Vj

Ans. aomaq + 2a1a2as — apa3® — a1%ag — agd = J.

6. Investigate for the general equation the seminvariants whose order is three
and weight six.

It is easily seen that the only terms which can enter into such seminvariants
additional to those which occur in the preceding example are ao?@s and aoa)as.
Writing down the function ¢ consisting of seven terms with indeterminate coef-
ficients, and applying the operator D, we find that there are only five equations
among the assumed coefficients. We obtain therefore, as is easily seen, semin-
variants of the form .
Ay ((loae - Bayas + 15aza4 — lOa;’) + 'LJ,

in which A and x remain undetermined, their multipliers in this expression being
two fundamental scminvariants of the required type.

It may be observed that aoa¢ — 6a1as + 15a3ay — 10432 is an invariant of a
sextic. This function can be readily found directly by investigating seminvariants
whose order is two and weight six. Invariants being, as well as seminvariants,
symmetric functions of the roots which contain the differences only are obtained by
the present method of investigation ; and any function of the coefficients so
obtained which is an invariant for a quanticof one particular order will be a semin-
variant for quantics (written with binomial coefficients) of all higher orders. The
function obtained in Ex. 3 is an invariant of a cubic, and J is an invariant of a
quartic. It must be carefully noted, however, that most seminvariants, as e. g. those
obtained in Exs. 1, 4, are not invariants for quantics of any degree, as will be seen
from the definition of an invariant and its properties discussed in the next chapter.

7. Investigate for a quartic seminvariants of order four and weight six.

The only terms additional to those of Ex. 3 are a¢®azaq and aoasm?. Adding
therefore Adodway + uaomar? to the value of ¢ in Ex. 3, and operating by 2, we
find, after expressing the remaining coefficients in terms of A and 4, the following
value of ¢,

¢ = A (a02a3a3 — aoa4m13 + 3aoaz® + 4asar® — 3ay%as? — daomaaas) + AAs,

where A3 is the function obtained in Ex. 3, viz. the discriminant of the cubic.
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Ohserving that the muitiplier of A is the product of the functions H and 1, and
substituting for Aj its value HI — aoJ (Art. 42), we have

¢ =AUI+ pagl.

For a quartic, therefore, the functions H7 and ayJ are two fundamental semin-
variants of the required order and weight.

8. Investigate seminvariants of the same order and weight as in Ex. 7 for
quantics of the sixth and higher orders.

It will be found that there are in this case two equations less than would be
required to detcrmine the ratios of the assumed coefficients, and there will conse-
quently be three fundamental seminvariants. It may be casily shown that all
seminvariants of the required type can be represented in the form

¢ = Ado? (aoas — 6a1a5 + 15a2a4 — 10as?) + uHI + vaoJ.
9. Prove that any seminvariant of the equation
(a0, @1y o o o @) (1, 1jr =0
is also a seminvariant of the equation

(a0, @1y o« - G . . . an) (2, )0 =0,
# being greater than r.

It was Cayley who originally stated the theorem that the
number of linearly independent seminvariants of order = and
weight x is » — p, where » is the number of terms of this order
and weight, and p the number of terms of the same order and
weight « — 1, which can be formed from the coefficients

Aoy A3y Az o o « Ay,

In the discussion above given, it is assumed that L,, L,, . . . L,
are linearly independent, and it should be observed that if
certain linear relations connected them, for each such relation
the number p would be reduced by one. Cayley himself gave
no proof of the independency in general of these quantities;
but proofs have been supplied by Sylvester (Crelle, vol. 85,
p- 89) and by Prof. Elliott (4/gebra of Quantics, Art. 128).
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Exawmrrrs.
1. Prove directly that

d
2 F(Uo, Uy, U, ... Un)= DF(Uy, Uy, Us.... V).

'This follows readily from the equations
ao, . d, . .
DU, =rlp = e D{U,.T,..} =d—I{(p. v,..}.
2. Expand F(Up, Uh, U3 ... U,) by Maclaurin’s thecorem : and hence
prove

F(Uy Uy, ... Us)=Fo+ zDF, + 1—"—2 DF, + &e.
where Fy = F(ay, a1, az, .. . ag).

3. Determine ¢1, ¢3, ... ¢j, . . . ¢pp from the equations
¢+ ¢+ ceotp =Ty
101 + 920, + oot by =1,
G102 + 2023+ ...+ 9 02 =T,

10177 + $30:P1 + ... + @pBpp ) = Tpy,

This is an extension of an example already solved (Ex. 1, p. 38), and it will be
1eudily found by applying the method there cmployed that ¢; is given as a function
of the (p — 1) degree in 6; by the equation

1 0; 0% . . 0t ¢
% & 2 . . 8 To

an I 83 . . 8 V4 =0,

.1 8 8pa . . 83p3 Tp,
where s =018 4+ 028 + 0% + . . . + 6%
4. Prove that
I = ag® (B 7)? (v~ a)? (a= B)? (a= 8)? (B 3 (y = 3)= I + mJ?,
where m =~ 271

‘We make use of the proposition of Art. 163, and cxpress the given function of



106 Calculation of Symmetric Functions.

the roots, whose order is 6 and weight 12, in terms of a0, H, I, J. From the
table—

| Order. I Weight.
|
| H ‘ 2 2
| I }l 2 4
J \ 3 6
|

it is easy to see that M7 cannot enter, for the terms of the sixth order containing H,
viz. H3, H*I, HI®, have not the proper weight. Therefore IT must be of the form
1I3 + mJ3%, where ! and m are numerical coefficients.

Now put a3 and a4 equal to zero, and 1T will vanish, since in that case the
quartic will have equal roots ; hence, employing the reduced values of 7 and J,

0 = (343%)% + m (- as®)?, and therefore m = — 27/.

In applying this method to obtain the values of symmetric functions, the rule
to be followed in every case is—Retain those terms of weight x whose order is not
greater than @, and make the whole homogeneous by multiplying terms whose
order is less than % by suitable powers of ao.

5. Calculate the symmetric function of the roots of a biquadratic
IB-7(r—-a?(a=Bn
Since the order of this symmetric function is four and its weight six, we may
assume
8'Z (B~ 7)* (v ~ a)* (a — B)? = {HI + maoJ. (m
The values of ? and m may be found by putting a3 = 0, ay = 0, as in the pre-

ccding example, and calculating the value of the reduced symmetric function (when
y =0, 3 = 0) in terms of the coefficients of the quadratic equation
aoz? + 441z + 642 = 0.

Identifying then this value with the reduced value of IHI + maoJ, we obtain two
simple equations to determine /and m. Or we may procced as follows by taking
two biquadratics whose roots are known, and caleulating in each case the sym-
metric function by actually substituting the roots, and then comparing both sides
of the equation when H, I, J are replaced by their values calculated from the
numerical coefficients.

First we take the biguadratic equation 6x* — 62? =0, whose rootsare 0,0, 1, - 1,
whence '

3=8, H=-6, I=38, J=1.
Substituting in equation (1), we have
1728 = — 31 + m.
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Proceeding in the same way with the biquadratic equation
24— 6274+ 5=0, whose roots are t /5, £ 1,

we find
I=768, H=-1, I=8, J=-4;
whence
-192=20+m,
and
1=—-2x192, m=3x192;
and finally,

o' = 192 (- 2HT + 3aJ).
6. If a, B, v, 3 be the roots of the equation
a0zt + 4a12% + 6a32® + 4a3x + a4 =0,
calculate in terms of ao, H, I, J the value of the symmetric function
4°% (3a—B—y-2)2(3B—y—-3—-a)?*(3y—-3-a-5B)%

This may be solved by the same method as the two preceding examples, or we

may proceed as follows : —
@’ = 45352 52259,

where ¢, £3, 3, & are the roots of the equation
4+ 6Hz + 4Gz + ap*T - 3H?* = 0. (Art. 37.)

Hence, by Ex. 2, Art. 161,
Ans. 47{— TH® + ao*HI — 4ac®J }.

7. If F(ao, @, . . as) is a scminvariant of the equation (4o, ai, . . a,) (z, 1)*=0,
prove that the same function of the sums of the powers of the roots, viz.
F(s0, 81, 82, . . . 8), is also a seminvariant.

This follows by operating on the first function by D, and on the sccond by — 3,
and observing that Da, = ra,.; and — 3s, = rs,.;. We thus obtain results identical
in form ; and if one vanishes identically so must the other.

8. Calculate the determinant

8 8 8
A= 8 [} 83
8 & 8

in terms of the coefficients of a quartic.

By the preceding example, this determinant is a function of the differences of
the roots ; we may therefore remove the second term of the quartic before calcu-
lating it ; and if the equation so transformed be

v+ Py’+ Py + Py =0,
4 0 ~ 2P,
a=| 0 —2P, -3P =4 (8PP - 2P - 9P} ;
-2P -3P; 2P - 4P,
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but 6Py =6H, ap’Py=4G, a'P(=all-3H2
Substituting for Py, Py, Py these values, we have
ag'A = 192 (— 2HI + 3aJ):

the same result as in Ex. 6 (cf. Ex. 7, p. 35).
9. If a, B, 7,3 be the roots of the equation

a2t + 4412% + 6a22? + dasr + ¢ =0,
exprees H,, I, Ji, G4 of the equation

s+ 488+ 602l + desz + sy mI(2x 4+ a)t=0
in terms of H, I, J, G.

H H I, 48H'-al G_ .G
Am.;‘—-:!a-?, r.’= ao‘_", ;0_3" 3%3'
and by the aid of the relations
G + 4H mag (HI - aJ), G +4HS =82 (HI, - sJ3),

Ji= lg (3a,7 — 2HI).

10. When p is even, prove that
3 (a1 —as)p = sosp —pa1sp1 + §p (p — 1) 8343 — &c.
Since

S(z—a)rnw-pnzrw’%_l

neri-&c....— psp12+ 8,

changing z into a1, a3, a3, . .. as, in succession, and adding the results on both
sides of the equations thus obtained, we find

p-p-1
1

23 (a1 — a2)P = 8g8p — pa18p1 + g~ = o= PRt + agtp,

where all the terms on the right side of this equation are repeated except the middle
term. Thus
3 (a1 — ag)d = 858 — 48195 + 3552,
3 (a1 — a3)® = 8086 — 68195 + 168204 — 10852, &ec.
11. Form the equation whose roots are ¢'(a), ¢'(B), ¢'(y), ¢'(3), where
@, B, 7, 3 are the roots of the equation
4>(z)_ = agzt + 4a812% + 6a22® + 4ayr + a¢ = 0.

wy 32G . 96 (2HI - 3agJ) ., , 256 (I3 - 21J3)
Ans. ¢'8 + — 3 =
ns. ¢ + P [ Px ¢+ s

34 0.

12. 2 (a-BPB=7)(y— ) (s - B)Y,
when expanded, becomes
Kgo' + 4K12% + 6K32% + 4Kpz + Ky
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prove that _
Kapy+ Ki(By+va+ aB) + Ka(a+ B+ ) +K;=t 16va
B-7(y-a)(a-8) ag’
where
A= 13%-27J3,

13. Prove that
a2 (B + 7 — a — 8)2(B.~ )% (a — 8)% = 192 (3aoJ — 2HI).
14. Prove that
a3 (B+y—a—28)(B-7) (a—28)*=512(a,2I% - 36a,HJ + 12H*I).

15. The quotient of a simplo alternant (one, namely, in which each element
is a single power) by the difference-product (see Ex. 31, p. 60) can be expressed
as n determinant whoso elements are the sums of the homogeneous products of the
quantities involved.

Wo take a determinant of the third order, and propose to prove

o a?f a" mn mno n, ;1 a a?
pr p B = np-l nq-l ) § O ' 1 B B" »
Yooy o | M Mo o ma| 1y

where T, TIg, &c., are the sums of the homogeneous products of a, B, v, as defined
in Art. 83, Vol. I. The method employed is perfectly general. Take the following
identity, which is easily proved :—

z y & o oy B 1 a a?

ZT-a y—a z-a ! gt 1 8 g

_z Y z 'z oy = 1y ¥ .
-8 y-B :-B |~ (r—a)(x—B)le-7)y-a)y-B)(y-7:(z-a)(z—B)(z-7)’
z Y H

Ty Yy-7v -7

write (z — a) (z — B) {x - ) as a divisor under each of the elements of the first
column on the right-hand side, (¥ — a) (¥ = B) (v — ) under those of the second,
and (z — a) (z = B) (z — 7) under those of the third, and substitute from the follow-
ing and similar equations (Ex. 1, Art. 83):—

; =14+ar'+ax?+...+aPr?P+...,
- &
I:‘
TG E—) =14+ Mz + Mz?+ ... + 0aP+ &,
—a) (z— -

S 1
where T=n V= :‘-;.
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The identity written above becomes then

l1+a'+...+ar2’P +.,. 14M2 + M +.. . +Mpz'P+., . 1a a? ‘
1482 +...+PPz?+.,. |= Z+Mz?+.. . +Mpy2? 4., . 1881
149z’ +...+9P2'P+.,. 4. .+ pa?+ ., . 1 -y-yz’

where the second and third columns of the determinants here written can be sup-
plied by replacing 2’ by ¢’ and z’, respectively. Comparing coefficients of 2Py’
on both sides, we have the required result. It should be noticed that when the
difference-product determinant is written in the form used above (viz. with ascend-
ing powers in the order of the columns) the sign to be attached to the product is
always positive, sinco the product of the two determinants, containing the term .
TpTly-1T1,.287?, must contain the term a?Bey". Note also, in applying this calcula-
tion to particular examples, that Iy = 1, and IT; = 0 when j is negative.
16. Prove, by the preceding example,

1 a* af M My I ’l¢¢'|
1 8 g (=l 0 m m laml-
1 92 0 m 1 ‘177’

The quotient, therefore, of the given determinant by the difference-product is
MIls — Iy, which may be shown to be equal to Xa%8 + Za’8 + 23a?By.
17. Prove, by the method of Ex. 15,

1 a a?..a*? a™ 1 a1 a2...a™!
1 a3 a?..a"? ay™ , 1 az a2t...a™!?
= llm-n,1 : y
.
:
1 an an?..a™? au™ 1 an an?...as!

where m = or > .
This result may be derived directly from Ex. 1, Art. 83.
18. Determine a seminvariant of a sextic whose order is three and weight
eight.
Ans. agaaag — 3agasas + 2a0a4® — a%ag + 3a,33a5 — a1a3ay — 3a2%ay + 2aza;t.



CHAPTER XVIL
COVARIANTS AND INVARIANTS.

166. Detinitions.—In this and the following chapters the
*notation
(Boy @y sy« . . @a) (7, y)"

will be employed to represent the quantic

n(n-1)

agz" + na*ly + 1.2

TR+ L+ N Y+ ay Yt

a homogeneous function of « and y, written with binomial
coefficients. If we put y = 1, this quantic becomes U, of
Art. 35; and the same notation may be used to denote the
homogeneous quantic written in z and y.

Let ¢ be a seminvariant (as defined in the preceding
chapter), of the order =, of the roots a;, a;, as, ... an of the
equation U, = (a,, a,, az, ... as) (2, 1) = 0; then if

1 1 1

g o oo
ﬂl"(c, a;—& ay, —&

be substituted for aj, as, . .. au, vespectively, the result multi-
plied by U,® (to remove fractions) is a corariant of U, if it
involves 2, and an invariant if it does not involve 2.

From this definition of an invariant we may infer at once
that

a,°¢ (a1, azy as, - . . @)

is an invariant of U, when ¢ is composed of a number of terms
of the same type, each of which involves all the roots, and each
root in the same degree =.
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These definitions may be extended to the case where ¢ (the
function of differences) involves symmetrically the roots of
several equations U, = 0, U, =0, U, = 0, &c., the roots of these
equations entering ¢ in the orders =, @', @”, &o. . . . respectively.

as before, and remove

We may substitute for each root a, — o

a
fractions by the multiplier U,*U,~ U,*". . . . &o. If the result
involves the variable #, we obtain a covariant of the system of
quantics Uy, U,, Uy, &o.; and if it does not, ¢ is an invariant
of the system.

167. Formation of Covariants and Invariants.—We
proceed now to show how the foregoing transformations may
be conveniently effected, and covariants and invariants calcu-
lated in terms of the coefficients. With this object, let the
seminvariant be expressed in terms of the coefficients as
follows : —

a"¢ (ay a3y . . . ap) = F(a, a1, @y, .. . a,).

Now, changing the roots into their reciprocals, and conse-
quently @, into @., &c., a, into ¢,,, &o. (that is, giving the
suffixes their complementary values), we have

a™y (ay, azy . . . ap) = F(ap, apay .. . ),

where i is an integral symmetrio funotion of the roots, and
F the corresponding value in terms of the coefficients. This
function is called the source* of the covariant derived therefrom.

Again, substituting a,- 2, a; -2, ... an— 2 for a;, as, . . . ay,
and consequently U,, &o., for a,, &o. (Art. 35), we find

aYla, -2, a; -2, ... an—2)=F(Upy Upsyy ... Uy, U,).

Thus, by two steps we derive a covariant from a function
of the differences, and find at the same time its equivalent
calculated in terms of the coefficients.

To illustrate this mode of procedure we take the example in
the case of the cubic

a2 (a- B)? =18 (a,* - a,a,);

¢ This term was introduced by Mr. Roberts.
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whence, changing the roots into their reciprocals, and a, a,, a,, a,
into as, a,, a,, a,, we have

a’Za* (3 - ) = 18 (a;* — aay).

Again, changing a,3, y into a-2, B - 2, y-2, and a,, @, a,
into U,, U,, U,, respectively, we find

a'2(B-v)(@-a)=18 (0 - U, T,).
The second member of this equation becomes when expanded
U.U; - U3 = (ats - a.*) 2 + (auas — a1a3) 2 + (@105 — a3?).

This covariant is called the Hessian of Us. We refer to it
as H,, since H is its leading coefficient.
As a second example we take the following function of the
quartio :— -
a’Z (3 —v)* (a - 8)* = 24 (aoa, — 4aa; + 3ay’) ; (1)

whenoe, changing the roots into theirreciprocals, and a,, a,, 4, s, 4,
into a,, as, @z, a,, a,, we have

a’Z (y - 3)* (8 — a)* = 24 (a,a, - 4ay1, + 3a,").

These transformations, therefore, do not alter equation (1) :
again, since in this case Y (a, 3, v, &) is & function of the diffe-
rences of the roots, i is unchanged whena -2, 3 -2, &o. ...,
are substituted for a, 3, v, 8. 'We infer that a.a, — 4a,a, + 3a,?
is an invariant of the quartic U,.

We observe also, in accordance with what was stated in
Art. 166, since

¢=(B-7"(@-0 +(y-a) (B -8 +(a-B)(y-93)
that any one of the three terms of which ¢ is made up involves
each of the roots in the degree =, which is here equal to 2.
In a similar manner it may be shown that

a?((y-a)(B-8)—{a-B)y-3)}{(a-Bi(y -8)-(B-7)(a-2))
x{(B-7)a-28)-(y-a)(B-13)}
=— 432 (o120 + 20,0285 — A01s* - ay%a, — a,?)
is an invariant of the quartio.
VOL. II. 1
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There is no difficulty in determining in any particular case
whether ¢ leads to an invariant or covariant, for if ¢ leads to an
invariant, ¢ = +1, that is ¢ is unchanged (except in sign, when
its type-term is the product of an odd number of differences of
the roots, s.e. when its weight is odd) when for the roots their
reciprocals are substituted, and fractions removed by the simplest
multiplier (a,a:a; . . . a4)*. An invariant whose weight is odd is
called a skew tnvariant.

168. Properties of Covariants and Invariants.—
Binoce ¢ is a homogeneous function of the roots, the covariant
derived from it may be written under the form

e am)

where = is the order, and x the weight, of ¢.
Also, as ¢ is a function of the differences, we ma.y add 1 to

each constituent, such as o d — , thus obtmmng Again,

multiplying each constituent by =z, the oovanant beoomes

U= ( axr an?
#‘¢ a,—z ﬂz—x’...a”—' )
- Employing now the notation 2, a;, a’s, &o., for the recipro-

cals of z, a;, a;, &o.; and denoting by U’ the function whose
l'OOts&l'eal,ag,.. a.., m-

U’ = apd’™ + nay_ 2" + &o., ... + na @ + 6,=0;

1 -a,z

&r—-2 ar-2

- sinoe

and  U=ame" (' - a') (&' = %) ... (& —a') =T,

the covariant above written is easily reduced to the form

1 1 1
(— l)zxnt-u 144 b (a'l s > > ee e =7 ,) H

- a;—2 aAQpn—&

whenoe it is proved that the covariant is unaltered when for
%, a,, ay, ... a, their reciprocals are substituted, and the result
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multiplied by (- 1)<z" . This transformation changes a, into
an-, that is, each coefficient into the coefficient with the com-
plementary suffix.

Now if any covariant whose degree is m be written in the

form
(Byy Byy By . .. By) (2, 1)™; 1)

. . 1
changing a, a, ... Gn, , int0 an, @pyy . .. @, > Ve have
another form for this covariant, namely,

(- 1)xae****(Coy Cy, Csy ... Cn) e, 1)..;
and as this form is an integral function of z of the same type
as (1), we have, by comparing the two forms,

m=na—2, Bo=(—1)"Cuy ... Br=(-1)"Cpr;

thus determining the degree of the covariant in terms of the
order and weight of the function ¢, and showing that the
conjugate ocoefficients (¢.e. those equally removed from the
extremes) are related in the following way :—

If Fla, aiy, @i ...a,) be any coefficient of the covariant,
(= 1)<F(an, an1y apay . . . a,) 18 its conjugate.

This property is characteristic of covariants, and is not
possessed by semicovariants, although the two classes of func-
tions agree in the mode of formation by the operator D, as will
appear in the Artiole which follows.

From the expression for the degree of a covariant in terms
of w and «, namely, nw - 2x, we may draw the following
important inferences :—

(1). If a;"¢ is an invariant, nw = 2x.

For, in this case ¢ and i are the same function, and conse-
quently their weights x and nw — « are also the same.

(2). AU the invariants of quantics of odd degrees are of even
order.

For if n be odd, it is plain from the equation n=m = 2« that
= must be even, and « a multiple of .

12
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(3). AU corariants of quantics of even degrees are of eren
degrees.

For in this case nw — 2« is even.

(4). Covariants of quantics of odd degrees are of odd or even
degree according as the order of their coefficients s odd or even.

(5). The resultant of two covariants is always of an cven order
in the coefficients of the original quantic.

For, the order of the resultant expressed in terms of the
orders and weights of the covariants is

= (ne - 2) + @’ (nw - 2«) = 2 (naw’ — =’ - @'k).

169. Formation of Covariants by the Operator D.—
From Art. 164 we infer that the expansion of F (U, Un., ... U,)
may be expressed by means of the Differential Caloulus in the
form

F,+2DFy+ > D'F, + il

2
1.2 oFetT2.3... 7

where F, is the result of making # =0 in F(U,, Un.y, ... Uh),

—— D'Fo+

Fy=F(an, Gnry . -+ @),

and D=ay— a +2a, — d +3a,—d—+...+na,.-.£—.

da, da, das
In forming a covariant by this process, the source F, with
which we set out is altered by the successive operations D, each
operation reducing the weight by one, till we arrive at the
original function F(a,, ay, . . . ax) from which the source was
formed. Sinoce this is a function of the differences, the ex-
pression resulting from the next operation D vanishes, and the
ocovariant is completely formed. The corresponding operations
& on the symmetric function y have the effect of reducing the
degree in the roots by one each step, the final symmetric function
containing the differences only. Thus by successive operations
we obtain two expressions for a covariant—one in terms of the
roots, and the other in terms of the coefficients.
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The degree m of the covariant is plainly equal to the number
L of times & operates in reducing , to ¢, s.e. equal to the difference
of the weights of the extreme coefficients. And since

Yo = (mas . . . an)"9 (i—l, i—, een ;1:),

the weight of y,is n@ — x, where « is the weight of ¢ (ai,as, ... an) ;
hence the degree of the covariant whose leading coefficient is
a,°¢ i8 nw — 2, the same value as before obtained. We add
some simple examples in illustration of this method.

ExauMprrs.

1. Form the Hessian of the cubic
a,2® + 3a12% + 3a2r + a3 = 0.
Taking the function H = aoas — @)%, we find, as in Art. 167,
a*2a? (B — 7)? = 18 (as® - myas).
Operating on the left-hand side by 3, and on the right-hand side by D, we obtain
— % 2a (B — 7)? = 18 (a1a2 — a,a3) ;
and operating in the same way again,
a2 2(8 — 7)* = 36 (a1® - agaa).

The next operation causes both sides of the equation to vanish. Hence the
required covariant is, as in Art. 167,

(1183 — az?) + (aoas — maz) z + (agaz — m?) 2%

We find at the same time the corresponding expression in terms of z and the
roots.
2. Form the Hessian of the biquadratic

aozt + 4a123 + 6azz® + 4asz + ag = 0.

The covariant whose leading coefficient is H = aoas — a1? is called the Hessian
of the biquadratic. Its degree is 4, since zv = 2, and x = 2; and .". nw — 2x = 4.
Changing the coefficients into their complementaries, the source of the covariant is
asaz — a3? , and we easily find
H, = (a0a2 ~ @) 2* + 2 (1083 — @1a3) 2 + (aoay + 2103 — 363%) 27

+ 2 (084 — 62a3) 2 + (G204 — a3?).
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3. Form for a cubic a covariant whose leading coefficient is the sem-
invariant G.

Changing the coeflicients in & into their complementaries, we get the source
as’ao — 3asazay + 2433, and operating with D we easily obtain the covariant in the
following form : —

(as?ao — 3azmar + 2a3%) + 3 (@3maa0 + a2’y — 2a31%) z
— 3 (aomas + a1%as — 2a043%) 2? — (ao%s — 3aoma; + 2a13) 2.

In this the conjugate coefficients (Art. 168) differ in sign as well as in the inter-
change of complementaries, the weight of & being odd. The student will have no
difficulty in expressing this covariant in terms of = and the roots by the aid of the
value of @ given in Ex. 15, Art. 27.

170. Theorem.—Any function of the differences of the roots
of & covariant or semicovariant 8 a function of the differences of
the roots of the original equation.

Let the covariant or semicovariant be

p(@)=(z-p)(@=-ps) ... (2~ pp)
Since ¢ is a function of the differences of z, a;, as, . . . an,
we have
d . ,
£-3¢=0» viz., ¢'(2) + 2(2 = pa)(z = p3) - .. (2~ pp) 8p1 = 0.
Now, substituting for z in this identical equation each root
p1, Py - - . in Succession, we have
¢'(p)(1 + 3p1) = 0, ¢'(ps) (1 +3pa) = 0, &o., ...,
whenoe
dp1+1=0, 3p3+1=0,...8;+1=0,...

and consequently
3(ps - pr) = 0,

which proves the theorem.

In the preceding pages many instances have been given in
which the roots of covariants or semicovariants are expressed
in terms of the roots of the original equation; and the student
will easily verify that the result of the operation of & on any
such expression is — 1. The roots of the covariants in Exs. 1
and 3 of the preceding Article are given in Ex. 25, p. 67, and
Ex. 13, p. 88, Vol. 1, respectively ; and roots of semicovariants
will be found in Exs. 10, 11, p. 87, and 12, 14, p. 88, Vol. L.

Ve
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The theorem here proved is clearly true also for any
function of the differences of the roots of two or more cova-
riants or semicovariants.

171. Double Linear Transformation applied to the
Theory of Covariants.—Hitherto we have discussed the
theory of covariants and invariants through the medium of the
roots of equations. 'We proceed now to give some account of a
different and more general mode of treatment, by means of
which this theory may be extended to quantics homogeneous
in more than two variables, such as present themselves in the
numerous important geometrical applications of the theory.
Although this enlarged view of the subject does not come
within the scope of the present work,. we think it desirable to
show the connexion between the method of treatment we have
adopted and the more general method referred to. With this
object we give in the present Article two important propo-
sitions.

Prop. I.—Let any quantic

Up=ay(z-ay) (®—ay) ... (# - amy)
be trangformed by the substitution
z=A +py, y=XNo+uy;

then if I and I’ be corresponding invariants of the two forms U,
and U ,, we have

I'= A’ - Xp)<1.
To prove this, let
I=a"2(a; - @) (as — as)? ... (a1 — an)’,
each root entering every term of = in the degree @w. When
any factor of U,, e.g. - a,y, is transformed, we find

Kai—p,
A-—Xa; !

hence Uw=d( -dy)@&-dy).... (@ -day),
where do=ay(A-Nar))A=XNas) .... (A=XNan).

z—ay=(A=Na) (2 -a"1y), where a’,=
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Again, for the difference of any two roots of U’,, we have

s r_ A =Xp)(ap - ag)
"% T XN ap) (A - Nay)

Making these substitutions for a’, and for all the differences
of roots in I’, the denominators of the fractions which enter by
the transformation disappear, and we have finally

I'= Ay = Np)*L

Prop. IL.—1If ¢ (2, y) be a covariant of the quantic Uy, the
new value of ¢, after lincar transformation, is

(A’ = XNu) ¢ (, y)-

The proof is similar to that of the preceding proposition.
‘We have

¢ y) =672 (a1-a) (a2—as)’ . ... (z— @y (z-ag)?. ..,

where each root enters in the degree =.

Now, transforming, as in the previous proposition, the value
of ¢ (¢, y) thus derived ; since the factors A -~ A'a;, A ~ N'ay, . . .
all enter in the same degree = in the denominator, they will all
be removed by the multiplier &', and the transformed value of

¢ (2, y) is ,
AW = Nuf ¢ (2, 9)-

The determinant Ay’ — Au, whose oonstituents are the
coefficients which enter into the double linear transformation,
is called the modulus of transformation.

Without any reference to the roots of the equation U, =0,
we can suppose the transformation of # and y to be applied to
the quantic in the form

U, =aw"+na.z""‘y+ (” 1) agz"y? +. + any”.

The propositions here proved with respect to invariants and
ocovariants regarded as functions of the roots will still hold good
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when these functions are expressed in their equivalent forms in
terms of the coefficients. We may therefore now restate the
Propositions in the following form :—

Prop. I.—An invariant is a function of the coefficients of a
quantic, such that when the quantic is transformed by linear trans-
JSormation of the variables, the same function of the new coefficients
18 equal to the original function multiplied by a power of the modulus
of transformation.

Proe. II.—A4 covariant is a function of the coefficients of a
quantic, and also of the variables, such that when the quantic is
transformed by linear transformation, the same function of the new
rariables and coefficients 18 equal to the original function multiplied
by a power of the modulus of transformation.

The definitions contained in the preceding propositions are
plainly applicable to quantics homogeneous in any number of
variables, and form the basis of the more extended theory of
oovariants and invariants above referred to. We give among
the following examples an application in the case of a quantic
involving three variables.

ExaMPLES.
1. Performing the linear transformation
z=AX+uY, y=MmX+mY,

if
az? + 2bzy + cy? = AX? + 2BXY + CY?,
prove that
AC - B = (Au1 — Aip)? (ac — 83).
2. Performing the same transformation, if
(@ & ¢, d, ¢) (z,y)4 = (4, B, C, D, E)(X, Y)4,
prove that
AE — 4BD + 3C?% = (Au1 — Aip)? (ae — 484 + 3¢%).
3. Performing the same transformation, if
a az? + 2bzy + cy* = AX? + 2BXY + CY?,
an
a2 + 2hizy + oyt = 1 X2 + 2B, XY + 1 Y3,
prove that

AC + A,C— 2BBy = (Apy — A)? (aes + are — 2b61).

This follows from Ex. 1, applied to the quadratic forms
(a+xa1)2%+ 2(b+ kbi) zy + (c+ k1) y3 = (A + kA1) X? + 2(B+ xB1) XY + (C+xC1) Y3,
by comparing the coefficients of x on both sides.
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Whence we may infer that, if two quadratics determine a harmonic system, the
new quadratics obtained by linear transformation also form a harmonic system.
For their roots being a, 8, and a1, B1, we have

aa{(a—a)(B-B1) + (a—B1)(B—a)}=2(acs + e - 20b1).
4. If the homogencous quadratic function of three variables

az? + byd + ¢z® + 2fy: + 292z + 2hxy
be transformed into

AX? + BY* + CZ® + 2FYZ + 262X + 2HXY
by the linear substitution
z=MX+mY+nZ, y=nX+pY+nZ, s=AX+ us¥+rZ;
prove the relation

4 H @ a b g
H B F = (Mpws)?| A b
G F c g S ¢

where the determinant (Ajuzvs) is the modulus of transformation.

This is easily verified by multiplying the proposed determinant of the original
coefficients twice in succession by the modulus of transformation written in the
form

Al As As
m H3 L2

” 14 ] v
and comparing the constituents of the resulting determinant with the expanded
values of the coefficients of X3, ¥'3, &c., in the new form.
It appears therefore that the determinant here treated is an invariant of the
given function of three variables.

172. Properties of Covariants derived from Linear
Transformation.—We proceed now to show, taking the
second statement of Prop. II. in Art. 171 as the definition of a
covariant, that the law of derivation of the coefficients given in
Art. 169 immediately follows ; that is, given any one coefficient,
all the rest may be determined.

For this purpose, performing the linear transformation

z=X+1Y, y=0X+7,
whose modulus is unity, the quantio
(@4, @1y Qs « + . ay)(7, y)" bocomes (A, A1y Ay ... 4,)(X, T)",

where
Ayj=ay, A, =a, +ah, A,=a+20h+al?, &o. (Art.35.)
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Now, if ¢ (ay, a1, @, ... a, 2, y) be any covariant of this
quantio, we have by the definition

¢ (ao, a5, a3y . .. ay, x, y) =¢ (4y 41,45y ... 4, X, Y),
or
? (agy ary sy - . . ay, '7"» =¢ (Aw 4,4, . B hy, .’/)'

Expanding the second member of this equation, and con-
fining our attention to the terms which multiply 4 : observing

“also that %= ra,., when terms are omitted which would be

multiplied in the result by 242, A%, &ec., we have
¢+];(_yz_:+ D¢)+h3('r0 LE1)+&0. X

which must hold whatever value 4 may have ; hence

dp _ d¢ d¢ d¢ d¢
yda: aoa—m+2dl@;+3ﬁa+...+ﬂaﬁ_la, (1)

and, substituting for ¢ the value
(Boy Byy By . . « By)(2y y)™,
we have
mBux™ 'y +m(m - 1) Bi2™%y + .. . + mBuy y™
= DBa™ +mDBa™'y + ...+ DBuy™;
whence, comparing coefficients, we have the following equations:
DBo 0 DB] BO’ .D.B’= 2.B|, e .DB.= mB,..,,

which determine the law of derivation of the coefficients from
the source B, ; the leading coefficient B, being & function of
the differences, since DB, = 0.

The calculation of the coefficients is facilitated by the fol-
lowing theorem which has been proved already on different
principles :—

Teo coefficients of @ covariant equally removed from the extremes
become equal (plus or minus) when in either of them o, Gy, .+ . . G
are replaced by any an_,y . . . ao, respectively.
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To prove this, let the quantic be transformed by the linear
substitution
2=0X+Y, y=X+0Y, whose modulus=-1.
Thus
(Goy @1y @3y -« « @) (2 Y)" = (Gny Anosy Angy - -« a) (X, Y)",

and, by definition, any covariant

¢ (Any Cn1y pegy <« Ay X, ¥ ) = (=1)% ¢ (@0, @1y A3 . . Gy, 2, ¥)
=(-1) ¢ (a0, a, az ... ay, ¥, X);

whenoe it follows that the coefficients of the covariant equally
removed from the extremes are similar in form, and become
identical (except in sign when x is odd) when for the suffixes
their complementary values are substituted.

It is easily inferred in a similar manner that a covariant
satisfies the differential equation

9. G dp d$
dy » d(l,,_; dan_1 dan-s

as well as the equation (1) already given.

Again, if ¢ (a,, @y, as, . .. a,) be an invariant of the quantio,
the former transformation of the present Article gives, employ-
ing the definition of Art. 171,

¢ (a0 gty . .. an) = ¢ (dyy A1y Ay ... 4,) ;

and proceeding as before, in the case of a covariant, we prove
that an invariant must satisfy both the differential equations

+ 26, +3a,.4 .o+ 0 d—i, )

d¢ d¢ d'l’ dp _
a,,d +2a.d—+3a, L; ..na.._,;l;l—o,
d¢ d¢ d¢ dq’ _
n —— B +2a,, Zas +30yy ——+ ... + 04, e 0,

either of which may be regarded as contained in the other, since
if we make the linear transformation z = ¥, y = X (whose
modulus = - 1), we have from the definition of an invariant

@ (Gny Qnry Anay < oo Bg) = (= 1)x ¢ (G5, @1y Gay - .« G) ;5
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proving that an invariant is & funotion of the coefficients of a
quantic which does not alter (except in sign if the weight be
odd) when the coefficients are written in direct or reverse order.

The relation between invariants and seminvariants, cova-
riants and semicovariants, is now clear. Invariants of the
quantic (ay ai, . . . aa) (2, y)" satisfy both the differential equa-
tions last written, whereas seminvariants of (a,, a,, . . . au)(z, 1)®
satisfy only the first of these equations. In like manner
semicovariants of (@, a4, ... a.)(#, 1) satisfy only the first of
the differential equations (1) and (2) above written, whereas
both are satisfied by covariants.

Having now explained the nature of Covariants and Inva-
riants of quantics, and the connexion between the two modes in
which these functions may be disoussed, we proceed to prove
certain propositions which are of wide application in the forma-
tion of the Covariants and Invariants of quantios transformed
by a linear substitution. The student who is reading this
subject for the first time may pass at once to the next chapter,
where the principles already explained are applied to the cases
of the quadratic, cubic, and quartic.

173. Prop. I.—Let any homogeneous quantic of the n® degree
f(z, y) become F (X, Y') by the linear transformation

2=\X+uY, y=NX+4¥;

also let any function u, of z, y become U by the same transformation ;

then we have
M A _?ﬁ _F(QU _‘?_ @)
&y m)‘ Ay’ ~ax)
where M is the modulus of transformation.
To prove this proposition, solving the equations
z=AX+u¥Y, y=NX+,%Y,
MX =pz-py, MY=-Nz+ly;

dX , . dX Ay ., . d¥
M-d;=p,ﬂzy—-—[l,ﬂ"g=—x,ll(—1;—k.

we have

whenoce
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du dUdX dUdY 1( ,dU0 dU)
Y’

Agiin, == xmtavra " H\Fax "N ap

du dch+d_U¢E7_l(_ U, dl
Iy~ aXdy "a¥day "M\ Max*ay)

which equations may be put under the form

d“—k lt_i__ . (__]_._d_U)
@y "\Mady) " *\" Mdx)
du_\(1dU\ 0 140\
Tdz f[dY) #\"Hadx)’

FAX+pY, NX+4'Y)=F(XY),

and since

L U and - —l—d—q, respectively,

changing X and Y into I ar Fax

the proposition is proved.
an exactly similar manner, changing X and Y into

14 14
M dY’ MdX’
it may be proved that
21 d\ _fd d
f(dy a'.v) “= F(ﬁ’ - ZXT') z. (2)

The results (1) and (2) may be applied to generate cova-
riants and invariants, as we proceed to show.

SBuppose f (2, y) and 4 to be covariants of any third quantic o,
where v may become identical with either as a particular case ;
also, denoting by F, (X, ¥) and U, the same covariants ex-
pressed in terms of the X, ¥ variables and the new coefficients
of v after linear transformation, we have, by Prop. II., Axt. 171,
the identical equations

M*F(X, Y)=F,(X, Y), and MU= U,;
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whence, substituting from these equations in (1),

. of At du dU, dU,
”f(@’ 'd—x)‘*“(ﬁ' ‘ﬁ)

du

tu\ . .
proving that  f <@, - ;1—:) is a covariant of o.

And in a similar manner it is proved from (2) that

d d
& %)
leads to an invariant or covariant of v, according as u is of the
n'* or any higher order.

‘We add some applications of this method of forming inva-
riants and covariants.

ExXAMPLES.

1. If ‘%, - ‘% be substituted for z and y in the quartic (a, 5, ¢, d, ¢) (2, y)* = U,

and the resulting operation performed on the quartic itself, show that the invariant
I is obtained.
We find
@b, 0,d, ) (2, - L) U= 48 (ae — 46d + 37
a’ ’ o y ) d y’ dt = .

2. Prove, by performing the same operation on H, the Heesian of the quartic
(Ex. 2, Art. 169), that the invariant J 1s obtained.
Here we find

d  d\
@8, c,d,¢) (d—y - E) H, = 72 (ace + 2bcd — ad® — ob? — &3).
3. Prove that

3
(a, 8, ¢, d) (%, - 4%) Gs = — 12 (a*d® — Gabed + 4ac® + 45%d — 35%¢),

where G is the cubic covariant of the cubic (s, , ¢, d) (z, y)® (Ex. 3, Art. 169).
4. Find the value of

wo- (%) - =20 5 T+ 0a-(3)

where u = (a, b, ¢, z, y)3. i,
( 'Y d)( ) Ans. - QEJ,-
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174. Proe. IL—If ¢ (a,, ay, a3, . . . a,) be an tnvariant of the

Jorm (ag, ay, @y . . . @) (2, y)*, and u any quantic of the '™ or any
higher degree,
u d™u ™u d™u
¢ (E-’ Py Ay ’Ef-)

18 an tneariant or covariant of u.

To prove this, let
2=AX +uY, 2 =AX'+uY,
y=XNX+uY, y=XNX+uY';

and transforming, as in the last proposition,

¢yl x LS
Y

+Ydy;

, d
“mV =Xz

also transforming u, we have U = u; whence

(X"—{%+ Y’(%,)ﬂ U=(x’(—:,l;+‘y’g;>”tt; (1)
and writing this equation when expanded under the form
(Dos Dy Dy . .. Dp)(X'y X')*= (dyy dyy sy . .. dn) (2, )",
we have, from the definition of an invariant,
¢ (Dgy Dvy D,y ... D,) = M (dy, dy, dy . .. dy),

showing that ¢ (d,, di, d, . .. dy) is an invariant or covariant.

When 7z, y, and 2, ¥ are transformed similarly, as in the
present proposition, they are said to be cogredient variables.
And in general, for any number of variables, when the coeffi-
oients which enter into the transformation of one set are the
same as those which enter into the transformation of the other,
the two sets are said to be cogredient.

The functions which occur in the equation (1) are called
emanants ; the expression on the right-hand side of the equation
being the n'* emanant of u.
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ExampLgs.
1. Let the quadratic
ao2? + 2a1zy + azy® become AoX? 4+ 24, XY 4+ A3Y2.
We have then, as in Ex. 1, Art. 171,
Aod3z - A% = M? (agaz — a1?).

Now since
®U oo QT du Pu | Dy
& Juiid pr 27 122 2 o Ao Jadiedl
ot Y et YV an ="t W o Y e

it follows from the last result, considering X’, ¥’ and #/, ¢’ as variables, that
L ELANVYTE TR AL
axi ays (dXdY as ayp (dz dy] §
This gives an invariant of a quadratic, and a covariant (called the Hessian) of

any higher quantic.
2. When # has the values

(3,8, ¢,d)(z,y)* and (a,3), ¢, d, o) (z, y)*,

what covariants are derived by the process of the last example P
(Cf. Exs. 1, 2, Art. 169.)

Ans. (1). (ac — 52) 23 + (ad — bc) zy + (bd — %) 2.
(2). (ac = %) 2 + 2 (ad — be) 2% + (ae + 2bd - 3¢%) 2%
+2 (be - o) y® + (00 — ) 4.

175. Prop. III.—If any invariant of the quantic in z, y,
U+ k(zy -2y

be formed, the coefficients of the different powers of k, regarded as
homaogeneous functions of the variables o/, y, are covariants of U.

For, transforming U by linear transformation, let .
(@0 ary @3y . .. ”n) (2, y)" = (4, 41y 4, ... An)(X: r)*;
also, if z, y and #/, y’ be cogredient variables,

vy -2dy=M(XY -X"Y).
‘Whence ,
(Goy 1y Azy « « . ) (7, Y)" + k(27 - 2Y)"
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becomes when transformed
(doy Ay, A3y o .. A) (X, X))+ kU (XY -X'Y)";
and forming any invariant ¢ of both these forms, we have

(¢’ ¢1’ ¢3’ e ¢P) (l’ k)p = M- (q)y q’l, q)zy LR q)}’)(ly M"k)pr

proving that
¢r = Mq (pr,

or that ¢, is a covariant.

When (zy’ — 2’y)" is replaced by (bo, by, by . . . b,) (2, y)*, We
have the following proposition which is established in a similar
manner :—

If ¢ (ao, @y @3y « . . Gy) be an invariant of (a,, ay, ay, . . . a4)(2, ¥)",
all the coefficients of k in

¢ (ao+kbo, ay+kby, ... a,+kb,)
are invariants of the system of two quantics

(G0 @1y B2y + « « @n) (2, 9)"  (Bos By sy - - . Ba) (2, ¥);
or, which i3 the same thing,
(b°d—i;+ b‘dia, +... 4+ b"&%,.) ¢, &o., &e.,
are invariants of the system.

This proposition may be extended to any number of quantics
of the same degree in any number of variables. If, further,
U be replaced by a covariant ¥ of the p** degree, we may
generate new covariants by forming any invariant of

V+ k(xy - «yp.

176. Pror. IV.—If ¢(z, y) and (z, y) are homogeneous
quantics, the determsnant

d dg
de  dy
W
dz dy

18 a covariant of these quantscs.
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For, transforming ¢ and ¢ by the linear substitution
2= AX +u¥, y=XNX+u%Y,

we have
L eX =@y ¥(X D)=y,
giving
LI T Y N
aX X +A ax Ad.'c +A
a® _ d¢ d¢ dkl‘ @
Tt “dy dY "dy'
‘Whence
d_q’ (i?_ i d¢ ) d¢
dX dav AFFARS "dy
o oy || iy
x ar | | &Ny ratry
which reduces to
(% B _ 4o dp\
dzdy dy dz)’

and the proposition is proved.

This covariant is called the Jacobian of ¢ and i, and is often
written under the form J (¢, ¢). The Jacobian of n functions
in n variables is a determinant of similar form, and can be shown
to be a covariant by an exactly similar proof.

177. Derivation of Imnvariants and Covariants by
Differential Symbols.—If z,,y,; 23, ¥:; 23, ¥s; ... Zny yn DO &
series of cogredient variables (such as, for example, the co-
ordinates of » points), the functions (z.ys - 2y1), - . . (Zpye — Z4¥p)

d d
dy!  drg
are transformed by the same linear transformation as z;, y; (see
Art. 173), we derive a series of symbols of differentiation, which
combined as above give the following :—

dad_4d4d «_’i__d_i)&.,
dz, dy, dz, dy,)’ YU \dzp dyy  drgdy,)
K2

are unaltered by linear transformation ; and since
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These symbols may be denoted simply by (1, 2), ... (», 9),
&oc.; and by their aid a complete calculus can be constructed
for deriving and comparing invariants and covariants. For
example, the Jacobian of ¢, Y may be written in the form

(1, 2) ¢1

where =9 (1'1, !/l), ¢2 = d’ (1'2; y‘l)a
the suffixes being omitted after the differentiation has been
performed. Similarly, expanding the symbolic form (1, 2)*¢: s,
we obtain the covariant

Tody o, d¢ Y Ty

dz* dy* ~ ° dedy dedy © dy* da*’
the distinotion between the variables being removed after the
differentiation has been performed.

In the investigation by this method of the invariants and

ocovariants of a single quantic, the result is obtained under the
symbolic form

(1,2)*(2 3P (3,4)... (5, * BT T, T,
where Uj, for example, is used to denote the quantic obtained
by substituting 2; and y; for # and y in U. If after this
operation is performed # and y disappear, we have obtained
an invariant; and it is easy to see in this case that the figures

1,2,38,...p, ¢ must all occur exactly » times in terms such as
(#y5)=. TFor example, the formula

(1, 2)*U,U,
gives a series of binary invariants for all even quantios, the order
of the invariant in general being equal to the number of factors
U,, U,, &e. In like manner from the formula
(12 (23)* (31) U,U,U,

we can derive 4 series of ternary invariants for quantics of the
degree 4m, the operation (12)* (23)* (31)* in the case of the
quartic yielding the invariant

A8y + 20,0505 — auty® — a,® — ab.
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It should be noticed that this interchange of variables may
be accomplished formally by means of a differential operator;
for instance

d d \»
(x(—i;j+yd—w) Ui=1.2.3...a0, &o., &o.

The method here explained of forming invariants and
covariants is due to Prof. Cayley.

The above method of calculating invariants and covariants
can be easily extended to ternary forms; for, if 2.8, 2:ya2s,
a3ysss be cogredient variables, it appears readily by the rule for
multiplying determinants that

21 % 2 |

Ia Y %

Zy Ys 23

becomes, after transformation, a similar funotion multiplied by
the modulus of transformation ; whence, by Art. 173, we derive
a series of symbols of differentiation, as follows :—

< d d 4 4 4
dz, dy, dz . dzy, dyp, dsp

. d d d d d d
(128) = de, dy, dz, g (pgr) = dz, dy, dz,
4 da 4 | 4 4 4

dvs dy, dsy | " dz, dy, ds,

‘We now conclude this chapter with some examples selected
to illustrate the foregoing theory. The student is referred for
further information on this subjeot to Salmon’s Lessons Intro-
ductory to the Modern Higher Algebra; to Gordan’s Vorlesungen
iber Invariantentheorie ; and to Clebsoh’s Theorie der bindren
algebraischen Formen, where a symbolio method is adopted
throughout.
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ExAMPLES.

1. The discriminant of any quantic is an invariant.

2. The resultant of two quantics is an invariant of the system.

8. From the definitions, Art. 166, prove that all the invariants of the quantie
U (zy' — 2'y) are covariants of U, the variable being 2’: .

Hence derive the covariants of a cubic from the invariants of a quartic expressed
in terms of the roots.

4. If I, I, 1Is, ... I. be the same invariant for each of the quantics

2x) o) o) e

z-a’ zT-a' z-a' " z-an

of the order @, where aj, a3z, . . . an are the roots of ¢ () = 0, prove that

Faft
2 I(z—a)"
is a covariant of ¢ (z). -1
For example, using J) to denote the J invariant composed of the four roots
a3, a3, a4, as (Art. 167), with similar values for J3, J3, J3, Js we have the follow-
ing covariant of a quintic :—
Ni(@—a1))’+ Ja(z - a3)® 4+ T3 (2 — a3)® + Ju (2 — as)® + J5 (2 — as)3.
5. If ai a2 a3, ...as be the roots of the equation

and if (ao, a1y a3y ... a,.) (z, l)u =0;

B P13 . . . pm = F(ao, a1, a3, ... ay),
where ¢1, ¢z, . . . ¢m are all the values of a rational and integral function of some
or all the roots obtained by substitution, find the equation whose roots are the
m values of — %, given 329 =0. (Cf. Exs. 12, 13, 14, p. 88, Vol. I.)
Ans, F(Uo, Uhy Us, ... Up)=0.
) 6. Express the identical relation connecting three quadratics in terms of their
invariants.
Let U=a12®+2h 2y + a1 93,

V =aza® + 2bazy + eay?,

W =asa®+ 252y + asy?;
multiplying together the two determinants

ay h o a —-25 @

ay by o 3 —2bs a3

as b e es =28 ay

o o © o
© © © o

y' —zy A 2 22y oy
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we have
In I Ins U
. Ly I In v
= 0, where 2I,,= + — 2b5b,.
I Ins I W » pg = @plq + Gglp pbe

U Vv w 0
Expanding this determinant we have
(La2dys = I3s?) U? + (Isslin - In¥) V2 + (Inlaa— ) W2 + 2(Inia = Inlns) VW
+ 2 (Isahha ~ IngIi) WU + 2 (L) — InsI13) UV = 0. (1)

There are two particular cases worth noticing : —

(1). When the three quadratics are mutually harmonic.—In this case I3y =0,
I51 =0, Iiz=0; andthe identical equation assumes the following simple form : —

U\, [ 7 \? W \?
— |+ =+ —_-) =0.
(‘/I_u) \/Izz) (\/I;a
(2). When one of the quadratics W = 0 determines the foci of the involution of

the points given by the other two, U= 0, and ¥V = 0.—In this case I;3 = 0, and
Iy = 0; and making this reduction in the general equation (1), we have

(1122 = Iuln) W3 = Iyy (I22U? = 204UV + InV3);
but from the equations I15=0, and I3 =0, we find
as =« (a1ds), —2b3=x(c1as), c3=n(bics);
4 (3303 = bs%) = i {4 (m1ds) (hrcn) - (14a)*},
Iny = i3 {InIp3 — 3%},
and reducing, when k=1, or W =J(U, V),
—{J(U, V)}3 & InaU* - 2113 UV + In V3.
7. Determine the invariants of the quartic

whence

or

AM@EF—a) +A3(z—az)d + ...+ An (Z — an)t.
Ans. I=3MA;z(a1 — az)t, J=ZA1AA8V (a1, a3, as),

where v (a1, a3, . .. ar) represents the product of the squared differences of
a1y A2y o o . Gpe

8. Prove that the condition that four roots of an equation of the nt» degree
should determine on a right line a harmonic system of points may be expressed
by equating to zero an invariant of the degree } (n — 1) (n — 2) (n — 3).

9. If ¢ (a0, a1, . . . an) be any seminvariant of the quantic (a0, a1, . . . au)(z, 1)*;

prove that ‘;% is also a seminvariant.
"
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10. Prove that the seminvariants
avas — a1%, doay — 4mas + 3az?, ao’as — 3apmias + 2a13,
of the quantic (av, a1, as, . . . as) (2, y)* give rise to covariants of the degrees
2n - 4, 2n - 8, 3n - 6.

11. Prove that the coefficient of the penultimate term in the equation of the
squares of the differences of any quantic leads to a covariant of that quantic of the
fourth degree in the variables.

12. Prove that the product of two covariants of the same quantic whose sources
are ¢ and ¢ may be written under the form

¢¢+2D(¢¢)+li_'2n(¢¢)+&e....

Mr. M. Roberts.
13. Prove in particular that the mt* power of the quantic

(a0, a1, a2, . . . aw) (2, 1)»
may be represented by

3
aa™ + 2D (aa™) + 1—’-2 % (am) + f% DS (a,) + &e.
Mr. M. Roberts.

14. Prove from both definitions of a covariant that any covariant of a covariant
is a covariant of the original quantic or quantics.

16. If ai a2, ...am, and By, Bs, ... Bs be the roots of the equations
U-(do,ax,azy---6-)(2,1)"=0, and V= (bo, b1, b3y ... bn) (2, 1)»=0:

it is required to derive a covariant of thesystem U'and ¥V from the simplest function
of the differences of their roots, viz., X (ap — B;) = nJa — m3B.
This question will be solved if we express

" R

in terms of the coefficients of U and V.
For this purpose we have

1 1
z(z—a,)(z—ﬁ') 2%4.2:_—3—24:_5 zz—a;

and if Uand 7 be written as homogeneous functions of z and y,

1 dlog U a _ dlgU
Zz—ay_ dz ’ Zx—ay__ dy » &

Whence, substituting these values in the last equation, we have
_dUav _duav.

U TR " " a &

which is the Jacobian of U and 7. It should be noticed also that the leading
coefficient of J (U, V) is ag b1 — a1 bo.
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16. Prove that the common factors of two quantics are double factors of their
Jacobian J (U, 7), when the quantics are of the same degree 7.

Let U= Py, V = Py, where P= lz + my. Forming J (U, V), we find part of
it divisible by P? and the part which apparently has only P as a factor may be
written as follows (using Euler’s theorem of homogeneous functions, and omitting
a numerical factor) : —

(& +05) (5-2)+ (2+93) (»2-15)
and this is identical with (Iz + my) J (¢, ¢).

17. Prove that the 2 (n — 1) double factors of AU+ u¥, obtained by varying
A and g, are the factors of J (U, 7'), where U and ¥ are both of the nt* degree.

18. Find the resultant of two cubics Uand 7 by eliminating dialytically between

ww ) . WOV _
. dy

(Ao, .A], Az, oo e A,) (z, y)F,
(Bo, B1, By, ... By)(z, y)?

U=0, V=0, 0, 0.

19. If

be two covariants of U,, prove that the leading coefficient of their Jacobian is
2¢ (AoB1 — A, Bo).
(do, 4y, A2, . . . 4p) (7, y)P,
(Bo, Bi, By, . . . By)(z, ),
(Cor €1y Cay ... G (2, )P
be three covariants of U, prove that the determinant
Ao A, As

20. If

Bo B Ba

. Co (41 Ce
is a seminvariant.



CHAPTER XVIIL

COVARIANTS AND INVARIANTS OF THE QUADRATIC, CUBIC,
AND QUARTIC.

178. The Quadratic.—The quadratic has only one inva-
riant, and no covariant other than the quadratic ttself.
For, if a and (3 be the roots of the quadratio equation

Umar + 2z +¢ =0,

the only funoctions of their difference which can lead to an
invariant or covariant are powers of a — (3 of the type (a—[3)*;
the odd powers of a — (3 not being expressible by the coefficients
in a rational form. Whence, expressing

o (a i - - ﬁ)zp

by the ooefficients, we conclude that the quadratio has only the
one distinot invariant ac — 5%, and no covariant distinct from U
itself.

179. The Cubic and its Covariants.—In the present
Artiole the covariants of the oubic will be disoussed as examples
of the principles already explained, and in the following Article
the definite number of covariants and invariants will be deter-
mined.

In the case of the cubic a covariant is obtained from a
function of the differences of the roots most simply by sub-
stituting

By + az, ya + 32, af3 + vz for —a, -3, -7,
and thus avoiding fractions; for, transforming a - (3, we have

1 1 _-(By+az)+ (ya+ o)
a-z -z @-a)z-PB)z-7) '
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and when fractions are removed we arrive at the above trans-
formation (the order being equal to the weight in the case of
either function of the differences H or @). This mode of
transforming functions of the differences will now be applied
to the covariants of the ocubic.

(1). The Quadratic Corariant, or Hessian H,.

Transforming both sides of the equation

a,’ (a+ w3 + 0y)(a + ’B + wy) =9 (4, - a,a,),

we have
a,’ {(a + 0P + w'y)  + By + wya + w'af)
x {(a + W'B+wy)z+ Py + w'ya+ waf) =9 (U - U,U));
thus showing that
Lz + L, and Mz + M, (Art. 59)

are the factors of
H,= (0,0 — ) 2 + (0,05 - a1a) 7 + (@05 - a5?),

L, s By+wya+wafd, M =py+owya+ waf.

From the form of the Hessian in terms of the roots in Art. 167,
or from the relations of Art. 43, we conclude that when a cubic
8 a perfect cube each of the coefficients of the Hessian vanishes
identically.

(2). The Cubic Covariant G,.

‘We have, as in Art. 59,
a{(a+ wf + w'y)® + (a + 0P + wy)?*}= - 27 (a’a; + 2a,® - au,a;).
Transforming both sides of this equation as before, we find

a*{(Le + L,)*+ (Mz + M,)*) =-27 (U*U,+ 2U* -3U,U,U)
= 27@,,

where G, denotes the covariant formed from the function of

differences @'; and operating as in Art. 169 on the source

derived from G (the sign being changed in order that G' may

be the leading coefficient), we easily obtain (see Ex. 3, Art. 169)
G, = (a’as - 3a,8.a; + 2a,%) &° + 3 (aui1s + a1*a; - 2a,a%) &

- (as’ao - 3asaza, + 2a,%) - 3(asa,a, + as’a; - 2a,0,?) 2.

where
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Resolving (Lz + L,)* + (Mx + M,)*, we may obtain the factors
of G,; or, more simply, since the factors of G are (3 + v - 2a,
v +a-23, a+f3 -2y, the factors of G, are

1 1 2 1 1 2 1 1 2
ﬁ—a:+-y—:v-a—:c’ 1—z+a—w_ﬁ—x’ a-—x+B—z_ v-2
when fractions are removed.

‘We have obviously the following geometrical interpretation
of the equation G, =0:—If three points 4, B, C determined by
the equation U = 0 be taken on a right line; and three points
4’y B, O, such that 4’isthe harmonic conjugate of 4 with
regard to B and C, B’ of B with regard to C and 4, and C’
of C with regard to 4 and B; the points 4’, B’, C" are deter-
mined by the equation @, =0. (Compare Ex. 13, p. 88,Vol. I.)

(3). Ezpression of the Cubic as the difference of two cubes.

This can be effected, by means of the factors of the Hessian,
as follows :—

(Le+ L)) - (Mz+ M, )* = 27U';I—;Z-
0
For, as in Ex. 6, p. 116, Vol. 1., we have
- = [-27 (B-)(y - a)(a - B).

Transforming this equation as before, the first side becomes
(Lz + .Ll)a - (Mz + Ml)a,
and the second side
J-2T(B-7)(y-a)(a-P)(z-a) (z-B) (z-7).

Substituting from previous equations, we have
(Lz + L,)* - (Mz + M) = 27— J& 4 =21 UJ—-

(4). Relation between the Cubic and its Corariants.

The following relation exists: —
G’ +4H;* = AU



Number of Covariants and Invariants of the Cubic. 141

For, from Ex. 6, p. 116, Vol. L.,
a*(B-7)' (y-a) (a-B)’ =-27(G"+4H’) =- 27a/'A,

and transforming this equation as before,
a'(B - 7)'(y —a)*(a= B)*(z - a)*(z- B)'(# - 7)*=-27(GQ,' +4 H;");
whence AU = G, + 4H >

(5). Solution of the Cubic.

The expression

(TJa+@)t+ (Ufa- 6.}

is a linear factor of U.

For from the relations in (2) and (3) we have

2a2 (Lz + L,)*=27 (U JA + @),
-2a} (Mz+ M\)=27(UJA-@,);

(Le + L) - (Mz + M,)

is a factor of U, the proposition follows.

This form of solution of the cubic is due to Prof. Cayley.

180. Number of Covariants and Invariants of the
Cublc.—Before proceeding to the discussion of the quartic we
take up the problem referred to in Art. 162, viz. the deter-
mination of the number of independent covariants and inva-
riants, for which purpose we have in the case of the cubio the
following proposition :—

The cubic has only two corariants, their leading terms being
H and G ; and only one invariant, vis. the discriminant A, where

and since

a’'A =G+ 4H?, or A =da'd®+ 4ac® - Babed + 4db* - 3b*c*.

The proof of this can be derived immediately from the
proposition of Art. 162. Let ¢ (a, 3, y) be any integral
symmetrio function of the differences of the roots (of order =),
expressible by the coefficients in a rational form. It is proved
in the proposition referred to that a”¢ is of the form

GF(a, H, A), or F(qa, H, p),

according as ¢ is an odd or even funoction of the roots. It follows,
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therefore, in the first place that there cannot be an invariant of
an odd degree in the roots, since GF (a, H, A) does not remain
the same function when a, b, ¢, d are changed into d, ¢, b, a,
respectively ; and the only invariant of an even degree must be
a power of A, since if F'(a, H, A) contained a or H besides A,
it could not remain the same function when the coefficients are

similarly interchanged.
Again, the cubio has only two distinct covariants; for it has
been proved that every seminvariant a"¢ is of one of the forms

F(a, H,A), or GF(uH,A);

and therefore the corresponding covariant, formed from the
seminvariant as leading term, must be expressible as

F(U, H, ), or G,F(U, H, A);

that is, every covariant is expressible in a rational and integral
form in terms of H, and @,, along with U and A ; or in other
words, there are only two distinet covariants.

181. The Quartic. Xts Covariauts and Iuvariants.—
‘We have shown already that the quartic has two invariants, I
aud J (Art. 167). From the functions H and G of the dif-
ferences of the roots we can derive two covariants H, and G,,
whose leading ooefficients are H and @ ; for from the relation

a,’ = (a - 3)* =48 (02, - a,%)
we derive, by the process of Art. 167,
a’2 (a - B) (2 - 7)* (# - 9)* = 48 (UV, - Uy');
and, expanding UU,- U}, we have
H, = (a,a, — a,®) 2 + 2 (6,05 — a.1a5) 2* + (@08 + 20,05 — Ba,?) 2*
+2 (@a, - a,a,') z + (ay0, - ay?).
In a similar manner, since

G - ao’“. + 201' - 3a°a)ag,
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we obtain the covariant
- Gz = U’Ul + 2U3=- 3UU;U,,

which reduces to the sixth degree; and if it be written as
follows :—

Go=Az'+ A\2* + Azt + A2 + A@* + Agr + A,
we find, by expanding the above, or more simply, by forming
the source 4, and performing the successive operations of
Art. 169, the following values of the coefficients :—

A, = - ala, + 3aasa, - 2a®, As=-ala, - 2aa,a, - 6a,’a, + 9a,a.?,
A, = - baasa, - 10a,%a, + 15a,a,a,, As =- 10a,as’ + 10a,%a,,

4, = 5aoa,a4f 10a,%as- 15a.a,as, A, =ag'a,+ 2a.mas+6a,%a; - 9aay?,
A, = aa; - 3a0a,a, + 2a,’.

Here it will be observed that, when 4, is determined,
4,, 4,, and 4, may be obtained from A4, 4, and 4, by
changing the suffixes into their complementary values, and
altering the sign of the whole, in accordance with what was
proved in Art. 168.

‘We proceed in the following Articles to discuss the leading
properties of these two covariants of the quartic.

182. Quadratic Factors of the Sextic Covariant.*—
As the quadratio factors of G, enter prominently into the fol-
lowing discussion, we prooeed in the first place to find expressions
for those factors in terms of the roots of the quartie, and to
deduce their principal properties.

SBince the factors of @, expressed in terms of a, 3, v, &, are

B+y-a-3, y+a-£3-8, a+PB-y-39,
the factors of G, are obtained from these by substituting
1 1 1 1

z-dzr-z-y -9

for a, 3, v, J, respectively, and mul-

tiplying each factor by g to remove fractions.

¢ See a Paper by Prof. Ball, Quarterly Journal of Mathematics, vol. vii., p. 368,
containing a full and valuable discussion of the various solutions of the biquadratic.
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Whence, denoting these factors by u, ¢, w, we have

\
au=U< 1 R 1 1 13)’

r—[3 .‘t—'y—ar—a_;v—

1)

~—

1 1 1 1
aw= U(a:—'y Yz-a x—ﬁ_z—8>’

alo=U(xia+xiB_z—l-y_xis>’}
which values of u, ¢, «, arranged in powers of », are
u=(B+y-a-38)2-2(By—-ad)z+LBy(a+d)-ad(B+7),
t=(y+a-B-8)2'-2(ya-Pz+ya(B+3)-Pi(y+a) t; (2)
w=(a+B-y-8)2*-2(a3-yd)z+af(y+3)-y3(a+p)

and, consequently, 32G, = a*uvto.
From equations (1) we easily find

v=(a-8)(z-P) (z-7) - B-7)(@-a) (z-9),
w=(a=8)(z-P) (@-7) + (B-7) (-a) (z-9);
and from these and similar equations we have

v-u? wr-u® u-o U .
p—v—v—k=k—-p=4—a_’ 3)

where A, u, v have the usual meaning (Ex. 17, Art. 27); and
consequently,

(m=v)td + (v=-A)o* + A-p)w*=0;
whence

—(u=-v)wre (e A-p+e A-v)(w A =p-v A=v)

Binoe, as this identical equation shows, the factors on the
second side are both perfect squares, we may assume

° ’/\—,u +t=,J/\— v =2t
1© Ik—y—v ’A—v-2u,’;
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we have, therefore,
w0 N - =+,
vJA_:_v =u’ - s,
v - u=2uu,;

from which values we conolude that u, v, w, the quadratic factors
of G, are mutually harmonic.

For the geometrical interpretation of the equation G, =0
see Art. 65.

183. Expression of the Hesslan by the Quadratic
Factors of G..—Since

4B -3 (a-B) e - O
combining the terms in pairs, and noticing that
2(P-7)(@-9T=0,
Ze-P)r@E-1)E-9
=3((B-9)(@-a)(@-9)+ (a-d) (z- B) (= - 1)

the quantities between brackets being u, v, w, we have
- 48-115=u’+0’+w’,
a

which is the required expression for H..

184. Expression of the Quartic itself by the Qua-
dratic Factors of G,..—From equations (3) a symmetrical
value may be obtained for U; for, substituting in those equa-
tions in place of A, u, v their values in terms of the roots
P15 Py ps of the equation 4p* - Ip + J = 0, we find

@ (0 = 10%) = 16 (- ps) U, @* (10 — ) = 16 (s - p) U,
a* (u'-1") = 16 (o, - p)) U,

from which equations, by means of the value of H, in the pre-
oceding Article, we obtain

(au)*=16 (o, U - H,), (av)*=16(p,U-H,), (4
(aw)® = 16 (p, U - H,).
L
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‘We now make the substitutions
u’ = A]X’, 02 = AzY’, ws A;Z’,

where A,, 4,, A, are the discriminants of u, v, w; thus replacing
%, v, 0 by three quadratics X, ¥, Z whose discriminants are
each equal to unity. By means of this transformation the
forms of the quadratics are further fixed, and the identical
relation conneoting their squares (see (1), Ex. 6, p. 135) is
expressed in its simplest form. Caloulating the discriminants,
we find

A,=(B+y-a-0){Ly(a+d)-ad(B+7)} - (By-ad),
with similar values of 4, and 4;; whence we have

Ai=-A-p)A-v), A== (u=v)(u=A), &s=-(v-A) (v-p)-
Making these substitutions, the preceding equations become

1 (pr = p)(pr—p) X*=H, - p,T, " |
N (p2=ps)(ps = p1) ¥Y* = H, - p, T, (5)
(ps = p)(ps = p3) Z* = H, - ps U,

from whioh are easily deduced the following values of U and
H,, and the identical equation connecting X, ¥, Z:—

H, = p’X*+ p* Y + p,* 27,
- U=pX*+p. 1 + 2%, (6)
0=X*+ P+ 2%;
where, as has been proved, X, ¥, Z are three mutually harmonio
quadratics whose discriminants are reduced to unity in each

case. The value of G, may be expressed in terms of X, ¥, Z

as follows. Since 32@G, = a*uvw, and
Wt = (u-v)* (v = A’ A=pu) X* Y2 = &6 (-1 X* Y2,

aﬁ
we find
G.=$ I"-2TT . XY2.
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185. Resolution of the Quartic.—From the equations
- U=p1X2+sz‘+p3Z’,
0=X*+ ¥*+ 27,

we find

U= (px - ps) Y+ PI_PS)an U= (,Dz"‘Ps)Z"" (Pz"px)xz,

U=(ps—p) X*+ (ps - pa) Y7,

where X?, ¥?, Z* have the values determined by equations (5) ;
and breaking up these values of U into their faotors, we have

three ways of resolving U depending on the solution of the

equation
4p°-Ip + J = 0.

The resolution of the quartic has been presented by Pro-
fessor Cayley in a symmetrical form which may be easily
derived from the expressions already given for U and H,.
For, since in general

I(a@® + 2by + c,y?) + m (a2 + 2bazy + €2y°) + 1 (as2® + 2bs2y + eyy?)
is a perfect square when
SR (a0, — 5" + Smn (asey + ascs — 2b:b,) =
IX +m¥ +nZis a perfoot square when Z+m*+n*=0, Y:" 5 P! &

X, ¥, Z being mutually harmonio, and the discriminants each S (. ./
reduced to unity.

The resolution of U is therefore reduced to finding values of
i, m, » such that the general quadratic /X + mY + nZ, or

lJpz - PaJﬂs— p.U+ mJPS - PIJHz"PJ-T.
+ ﬂ,Jp: —szE;"PSU,

being a perfect square, may vanish when U vanishes; or in fact
to satisfy the two equations

Ilos—ps+m Jos—pi+n for-pa=0, P+m*+n=0,
These equations are plainly satisfied if
I 0 m
Jpa-ps Jes—pr o -
L2




148  Covariants and Invariants of Quadratic, &c.
whence, finally, the squares of the four linear factors of U are

(pr—p») [H,-pUt (p;—pn)JH,—p,Ui (pl-p:),.’Hs—psU,

vhich expression when rationalised becomes A U™.
If it be required to resolve the quartic «U — AH., it appears
in a similar manner that

! pr—ps JH: = p. U+ mdps—p1 JH: - p, U

+n,Jp1 - p1JHs - pa U,

being a perfect square, must vanish when U — AH, vanishes ;
or, values of /, m, » must be determined so as to satisfy the
equations

P +m*+nt=0,

! (o1 = ps) (k= pid) + m,Jps = 1) (x = paA) + 5, J(p1 = ps) (k — paX) = 0.
These equations are plainly satisfied if

! m n

Jor-p) PN Jlos=p) (e =pN)  Jr-pa) (c-pN)’

whenoe
(p2 = )k = pA JH: — 0. U+ (ps = p1) Jx = pA JHz = pa U

+(p1 = pa)Jx — pA JH: — ps U

is the square of a linear factor of U - AH,.

186. The Imvariants and Covariants of U - \H,.
—Employing the equations (6) of Art. 184, and denoting

X*+ Y*+ Z* by V, we may, by adding—%IVto AH, - «U,

reduce it to the form R, X* + R, Y L R.Z*, where R, + R;+ Ry=0.
‘When this is done we have the following reduced values of
-Rn RI, -R) —_

3R, = x(2p1-ps = ps) + A (2p2ps ~ psp1 — p1pa),
3R, =« (201 =ps = p1) + A (2psp1 = p1ps = paps),
OB; =k (2ps = p1—ps) + A (2pipa = paps = pspy)-
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On account of the similarity of the forms
P X+ p, Y+ p 2" and R.X'+ R, Y*+ R, 2%,
which are of the same type, we caloulate the invariants and
covariants of «U - AH, by simply changing p:, ps, p» into
R,, R,, R;in the expressions for the invariants and covariants
of U.
Therefore, since

an I =§{(p:—ps)" + (ps = p1)* +(pr = pa)*}s = = 4pipsps,
B:~ Ry=(ps—ps)(x = Ap1)y Rs— Ri=(ps— pi)(x = Apa)y

R, - R, = (pi— pa) (x - Aps),
we find the following values for the invariants of U - AH, :—

I’ .
TRt
IJ b4J:-I*

I?
J(:.A) = Jx® - -6 A+ T kA® - ——216

I1f we form the covariants H\, ), and G, of Q, where

40 = 4 - Ix\* + JN?

Tepy = I = 3JkA +

Al

(the reducing cubic rendered homogeneous in «, A), we find, as
M. Hermite has remarked,

TIpy = - 12H ), Jie) = 4G
Again, to caloulate the Hessian of x U — A H,, we reduce
R:!X*+ R}Y’ + R'Z2®

by the substitutions

p,’X’ + plY? + p?Z% = - 11U,

pX+ gV + piZ =} (IH, + JU),
which are obtained from the equations

pi’ = pps + 31, pi’=pspr + 31, pit = pipa+ 1,

by multiplying first by p,X? p,¥? p,2% respectively, and
secondly by p,*X? p'Y?, ps'Z%, and adding.
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In this way we find the following form for the Hessian
of :U - AH, r—

1B (40 - 53)- v (G- )}
which may be expressed in the form
%(a, T UR)
which is a multiple of the Jacobian of xU - AH, and Q, the
variables being « and A.
Again, since I® - 27J" = 16 (p: - p3)* (ps - p1)* (01 = p2)’
and G.=3JPP-21J. XYZ;
transforming p,, ps, ps into R, R, R,, we find
L= 21 e 0= @ (I* = 21J7), G, n2= 0BG

We have therefore expreséed the invariants and covariants
of 7 - AH_ in terms of the invariants and covariants of U.

187. Number of Covariants and Invariants of the
Quartic.—We prooeed to prove the following proposition,
which determines the number of these functions :—

The quartic has only the two distinct invariants I and J, and
two distinct covariants whose leading coefficients are H.and Q.

This proposition asserts that every invariant is a rational and
tntegral function of I and J, and every covariant a rational and
sntegral function of U, H,, G, I, J. The following disoussion
is founded on principles similar to those already employed in
the case of the cubio. It is proved in the proposition of
Art. 163, if ¢ (a, 3, v, O) be any integral function of the dif-
ferences of the roots expressible by the coefficients in a rational
form, that a*¢ (a, 3, v, 3) may be expressed by the forms

GF(a,H,1,J), or F(a,H,1,J),

aocording as ¢ is odd or even.



Ezamples. 151

Now, if F(a, H, I, J) be an invariant, a and H must
disappear, since if they were present this function could not
remain the same when the coefficients are written in direct or
reverse order. Similarly, no odd function such as GF(a, H, I, J)
can give an invariant. It follows that every invariant is a
function of I and J.

Again, the quartic has only two distinot covariants; for we
have proved that every function of the differences a” ¢ is of one
of the forms

F(a,H,I,J) or GF(a, H,1,J).

Now, considering these forms as the leading coefficients of co-
variants, it has been proved that every covariant is expressible as

F(U,H,I,J) or G F(U, H,I,J);

that is, every covariant is expressible in terms of H, and G,
along with U, I, and J; and this is the proposition which was
required to be proved.

ExaMpLEs.

1. If U be any cubic, and G its cubic covariant, prove that the Hessian of
AU + uG, has the same roots as the Hessian of U, A and u being constants.

2. Prove that any covariant of a quantic, whose roots ure a1, a2z, . . . an,
satisfies the equation

deo d¢
3 1 - =g —
Za a W =2 Y’

where % is the degree of ¢ in the coefficients of the quantie, and &1 = Za.

3. If a quantic have a square factor, prove that the same square factor enters
its Hessian.

4. If a quartic have a square factor, the covariant G, has that factor as a
quintuple factor.

5. Prove that the sextic covariant @ of the quartic ¢ (z) may be written under
the form

(o (02, 2@

@=—ap

6. Applying the principles of Art. 187, determine without calculation the form
of the sextic covariant of the quartic AU + uH,.




1562 Covariants and Invariants of Quadratic, &c.

7. Calculato the values of H, I, @, J for the Hessian of a quartic.

,_SaJ-HI ., I? JG 540213
Ams. H'= TR 1_1—2, 0’--7, J'=_W_.

8. Find tho two conditions that the Hessian in the preceding question should
bo a perfect square, and show that both contain J as & factor.

Ans. JG =0, aoJ(2HI — 3agJ) = 0.
0. A sominvariant of the equation -
(a0, a1, G2, . . . an) (2, 1)* = 0
arrangod in powers of a, being

p-1
¢=A,+pA,.1¢.+plp2 Apaagd + . ..+ doae? ;

provo that DA e —nay.1j4;.1, and hence show that if §(ao, a1, 02, .. .a,) is a
sominvariant so also is ¢ (Ao, 41, A, . . . 4,).

10. Henco show how the final coefficient of the equation of squared differences

can bo found for any oquation when it is known for the equation of next lower
ordor.

11. It
@ (an) & (doy Ay, 43, . . . 4p) (an, 1),

¥/(an) = (Bo, B1, Ba, . .. By) (an, 1)¢

bo two seminvariants of Us arranged in powers of as, prove that any seminvariant
of tho systom ¢(x) and () is a seminvariant of Un.

12. It
L (do, Ay, As, . . . Ay) (an, 1),

Iy = (Bo, By, Bs, ... By (an, 1)2

be two invariants of Us o (ao, a1, a3, . . . @) (7, y)*, prove that the resultant of
I and I when ay is climinated is the leader of a covariant of Us.1 of the degree

(n+1)pg - pra—gm
in the variables, ») and 3 being the orders of 1) and 3.
13. If the discriminant of a biquadratic be written under the form
(4o, 41, A3, As) (a4, 1)3,
prove that the discriminant of this cubic is
273 GRAY,

where As is the discriminant of (a0, a1, @3, a3) (%, 1)*; and knowing As, find
A3, Ay, and 4.
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14. Form the equation whose roots are

¢(a1), ¢(az), @(as), ... ¢(an)
where a1, a2, a3, . . . an are the roots of f(z) = 0, the resultant R of f(z) and ¢ (2)
being given.
Change the last coefficient dw of ¢ (z) into 5w — p, and substitute this value for
bm in the equation R = 0.

15. Prove that U and H, expressed in terms of #1 and w3 of Art. 182 are both
of the form
(Ar Bv A) (“l” “2’)’-

16. Prove that the quartic
S(2, y) = (3, b, ¢, 4, o) (2, y)*

may be reduced by a linear transformation z=AX+pu¥, y=AX+ Y tothe
form

£ N) XS + £y ) T4+ 6pHIX T,
4p3-Ip+J =0, MmAy - Nu.

where

17. Retaining the notation of the last example, prove that % and : , are the

roots of one of the factors u, v, w of the sextic covariant of the quartic.
18. Prove that

a6
dt,’ = 60 (U1 Uy - UpUsY),
-
the reducing cubic of Art. 65 (cf. Ex. 5, p. 132, Vol. I.).

19. Prove that
p)PX‘ + ”Y2 + P!’z, = np-ZE- - n'-l L’v

where I,.1, II,2 are sums of homogeneous products.

20. If U=t + ot + 6mBy?,
where E=Az+puy, n=ANz+uy, M=Ad~-Apu;
prove that ITe HY1 +3m?), J=M%m-—md),
J 1+3m?
M= T 4(M3m)* - I(M?*m) + J = 0,

Hom MY {m(Et + n%) + (1 - 3 Pr?},
Gum M1 - 9m%) g0 (34 — n¥)-



CHAPTER XVIII.

COVARIANTS AND INVARIANTS OF COMBINED FORMS.

188. Combined Forms.—In the present chapter we pro-
pose to illustrate the theory of the covariants and invariants
of systems of two or more quantics (Art. 166) by the simplest
cases, viz.—(1) two quadratios, (2) quadratic and cubic, and
(8) two cubics. We give in each case an enumeration of the
forms which have been shown to be fundamental by the inves-
tigations of Clebsch, Gordan, and Sylvester; showing how these
forms may be obtained, but without attempting the reduction
of all other forms dependent on them. In estimating the
number of covariants and invariants of a combined system, the
independent forms which belong to each quantic by itself are
counted among the total number belonging to the system. It
will be found convenient to use the term special to designate
those forms which belong to the two quantios regarded as a
system (and which therefore contain the coefficients of both),
a8 distinguished from those which belong to the quantics taken
separately.

Invariants and covariants are both included under the name
concomitant, which is applied to any funotion whose relations to
the quantics are independent of linear transformation.

189. Two Quadratics.—Let the two quadratics be
U=aa®+2bay + ey, V =ax'+ 2b2y + cy’.
This system has one special invariant, and one special covariant.

The invariant may be obtained by forming the disoriminant of
AU + uV, which is found to be

Aﬁ (a.cl - bli) + k’l (axcz + a0 — 2616’) + y.' (agl'g - bg’),
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all the coefficients of A : u being invariants (Art. 175) ; whenoce
we have the special invariant

@03 + asCy, — 2b|b’ = 2113. (Ex. 3, Art. 171-)

The vanishing of this function of the coefficients is the
condition that the pencil of lines U¥ = 0 should be harmonio,
the rays represented by one equation being conjugate to those
represented by the other.

The special covariant is the Jacobian of the system, viz.

az+ by bz+ay

= J (U, 7),
az + by bz + ey
which may be written in the form
y -wy &
a b a |

ay bg Cy

obtained by eliminating dialytically the variables from the
quantios U, V, (¢y’ - 2'y)’, the form 2y’ - 2’y being a universal
concomitant of all binary quantics (Art. 175). This form for
J (U, V') can also be arrived at by eliminating A and p from

the equations obtained by comparing the coefficients in the
identity AU + uV = (zy - 2'y)*.
The square of J is connected with U and ¥ by the following
important relation : —
-0, V)=10-2I,UV + 1,V?, (1)

which may be derived immediately from the equation

y -2y 2* 2 2y Y o U v
a bl € C - 2b| a = U 2I|1 2I“
a, b, o ey —2b, a, vV 21, 2I,

Again, it is easy to see that J(UV') gives the double lines
of the system AU + uV, for when AU + uV is a perfeot square

A,Iu + 2A’J13 + ”’Igg = 0,
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and eliminating A : u by means of the equation AU + u¥V = 0,
the double lines are determined by the equation

.IleUz - 2I|’UV + IuV’ = 0,
or JY(U, V) =0.

Every oconcomitant of a system of two quadratics may be
expressed in terms of the six forms U, V, J(U, V), I, I3y In,
all of which are constituents of the formula (1) written above.
The resultant of U, V, for example, is

4(IuI - L) (Art. 150.)

which is also the discriminant of J (U, V), and the dialytie
eliminant of U, V, J(U, V).

190. @Quadratic and Cubic.—Let the two quantics be
U=(a,b,c,d) (2, y)?, Va=(d,V¥V,c) (2, y)?,

the covariants of U being denoted as usual by H,and @.. The
system has one special cubic covariant, the Jacobian of U and V,
or J(U, V); and one special quadratio covariant, viz., J (He V).

In writing down the remaining ocovariants it will be found
convenient to adopt the following notation. We use U with
suffix D to denote the result of substituting in U the differential
symbols D,, - D, for z, y, respectively, where D, = %, Dy= diy;
hence

Up = (a, b, ¢, d) (Dy, - D,)*, Vo= (a,¥,¢) (Dy~ Dy,

with a corresponding notation in other cases.
There are four linear covariants, which may now be written
as follows :—

Vo(U), Viu(@:), Un(P7), Go(V)-
The first of these written at length is
(ac’ — 268 + ca’)x + (bc’ = 2cb’ + da’)y.
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There are three special invariants. The first is the inter-
mediate invariant of the system of two quadratics H, and
v, viz.,

(ac - 8) ¢ - (ad — be) ¥ + (bd - @) & = I,

where the notation I, is used to signify that the invariant is
of the p* degree in the coefficients of U and the ¢** in the
ocoefficients of V. The second invariant is the resultant R of
Uand V. It is of the second degree in the coefficients of U,
and third in the coefficients of 7, and may be expressed in many
ways by the methods of elimination of Chap. XIV. The general
form of any invariant I,, of this type is

Iy=IR +m(a’c - b*) I,
! and m being any numbers.

The third invariant is of the type I.;, and may be obtained
by operating with ¥ three times in succession on the product
of U and G, ; it can be written in the form

Vs (UG).

There are, therefore, nine special forms belonging to this
system ; and if to these be added U and ¥, and the independent
covariants and invariants of each, we obtain the complete list
of fifteen forms, viz., three cubic, three quadratio, and four
linear covariants, and five invariants.

191. Tweo Cubics.—Let the cubics be

U=(a,b,c,d)(2y)* V=(a,V,d,d)(z, ¥
the covariants of U being represented as before by H, and @G,
and those of ¥ by H.” and G.".
Of this system there is one quartio covariant, the Jacobian
of U and V, viz,,
J (O, V)= (ad)a* + 2 (ac’) 2y + {(ad) + 8 (b¢) )2y
+ 2 (bd) 2y’ + (ed)y*;
and two special cubic covariants, viz. :—
J(U,H,), and J(V,H.).
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There are four special quadratio covariants. If we form the
Hessian of AU + uV, i.e. substitute Aa + ua’, Ab + ub’, &o., for
a, b, &o. in H,, we find

NH, + MK, + i’ H ..
The intermediate Hessian K, here obtained is the first special
quadratic covariant; and the remaining three are obtained by
taking the Jacobians in pairs of H, K, and H,'.

There are six linear covariants which may be written as
follows : —

H,(V), Hy(G's), H, (U), H(G:), Up(HS), Vo (H).

It is easily seen that H, (U) and H, (@) vanish identically,
for U and @, may be brought by linear transformation to the
forms as® + dy*, and ad (a2® - dy®), respectively, and H, to the
form adzy (cf. Art. 179).

There are in all seven invariants, five of which may be
obtained by forming the discriminant of AU + uV, the ooeffi-
cients of the different powers of A : u being invariants. If the
discriminant is

XA + 4A%0 + BN D + 4’0’ + utA’,
we obtain in this way three special invariants ©, ®, @', the
extreme coefficients being the discriminants of U and V. The
two remaining invariants are of odd orders in the coefficients of
each cubic. They are denoted by P and @, and may be defined
as follows :—
P =3U,(¥) = (ad) - 3 (b¢), (1)

27Q = P - R, @)
where R is the resultant of U and ¥ as obtained by Bezout’s
method (Art. 155), viz.

R=(ad’)* - 18 (ab’) (cd") (ad’) + 9 (b2)(ca’)(ad’)
+ 27 (ca)? (cd’) + 27 (ab) (bd)* - 81 (ab’) (be') (cd’).

Substituting this value of R in (2), we find

— Q= (b0)* + (ca') (o) + (ab') (b)* (b (ad?)
- 3 (ab') (b¢) (ed) - (ad)(ab) (ed).
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Any invariant comprised in the formula /P* + mR, where /
and m are numbers, being of the type I, might have been
selected instead of @ as the fundamental invariant of this type;
reasons will appear subsequently for the selection which has
been made (see Ex. 4, p. 160).

If to the special forms enumerated be added those which
belong to each cubic, we have in all twenty-six fundamental
forms, viz. one quartio, six ocubio, six quadratic, and six linear,
covariants; and seven invariants.

Several of the covariants and invariants enumerated in the
preceding Articles will be found expressed in terms of the roots
of the two equations of the combined system among the examples
which follow on the next page.

192. Combinants.—Combined forms of the same degree
give rise to a series of invariants and covariants whose coeffi-
cients are expressible by determinants of the form (a,3,), such
as occur in the resultant obtained by Bezout’s method (Art.
155). These concomitants are unaltered, save by a factor of
the form (A’ — A'u)", when the quantics U, ¥V are changed
into AU+ uV, XU +4'V. Buch invariants have been called
combinants, and the corresponding covariants may be termed
in like manner combining covariants. Of the former we have
examples in P and Q of the preceding Article ; and Jacobians
in general are examples of the latter class of concomitants.

It may be noticed that the J and J invariants of the bi-
quadratio in A : u of the preceding Article, viz. the discrimi-
nant of AU + u ¥, are combinants of the system of two cubics ;
for in fact a linear transformation of A and u is equivalent to a
transformation of U and V of the kind oconsidered in the
present Article, and therefore any function of the invariants
A, 6, ®, &o., unaltered by such transformation must be a com-
binant. It can be verified that these invariants may be ex-
pressed in terms of P and @ as follows (see Salmon’s Higher
Algebra, Arxt. 218) :—

I=3P(P°-24Q), J=-P*+36PQ-216Q.
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ExAMPLES.

1. If a, B, 7, and a’, B’ are the roots of the equations
U=azd+ 3022+ 3cx+d=0, V=dr®+2¥2+¢=0;
express in terms of the coefficients the function
(B-1(a-a)(a=B)+(y-a)(B-a)(B-B)+(a—B)(y—a)(y—B).
Denoting this function by ¢, we easily find
-’ ¢ =9{a'(bd — &) — ¥'(ad - bc) + ¢ (ac — B)}.
The given function of the roots is an invariant of the system, for it involves all t
roots of the cubic in the second degree, and all the roots of the quadratic in the fi1
degree. If, in fact, we make the substitutions of Art. 166, and multiply by U?
to make the function integral, the result will not contain #, and is therefore
invariant (Art. 190).
The geometrical interpretation of the equation ¢ = 0 is that the quadratic
should form with the Hessian of U a harmonic system.
2. Using the same notation as in the preceding question, find the condition tk
one pair of roots of U = 0 should form a harmonic range with the roots of ¥ = 0.
Adns. R+ 9 (dd — ¥3) In1 = 0.
8. If a, B, 7, and ', B/, o' be the roots of the cubics
U=az+ 302+ 3¢z +d=0, P=dz®+43¥23+3z+d' =0,
express the following function (when multiplied by a«’) in terms of the eoefficien
and prove that it is an invariant of the system :—
(a-a)B-B)r-7+@-B)B=-7)(y-d)+(a-7)(B-d)(y-B);
or, differently arranged,
(a=d)B-7)(r-B)+(a-B)(B-a)(y-7)+(a=7)(B—8)(v-d).
Ans. 3P, where P= (ad — dd) - 3 (b — ¥e). (Art. 19!
4. Retaining the notation of the preceding example, prove that if x can

determined so as to make U+ «¥7 a perfect cube, the following relation exis
among the roots of the two cubics : —

(B=)"/9(@) + (v- a) Y/ 9(B) + (a— B) ¥V 9() = 0,

where ¢(2) = 7, and a, 8, 7y are the roots of U=0; and prove that in this case t
invariant Q (Art. 191) vanishes.

The relation among the roots is obtained immediately by substituting a, 8,
for z in the identity U + x ¥ = (I + m)3, and eliminating «, /, m from the resultii
equations.
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Rationalizing, we have

(B=7P¢(a)+(y—al e (B)+(a=Bl ¢ (n]>_ -
{ 6=ty =) (a=B) f-2e@o@ om0

Substituting for ¢ (a), ¢ (B), ¢(7); introducing the relations obtained by comparing
the different powers of A in the following identity : —

Z(a+A)3(B-9)*=8(a+A)(B+A)(y+A)(B—7)(y—a)(a—B8);
and expressing the result in terms of the coefficients, we find
{3P}3-271R=0, or Q=0 (Art. 191).

‘We now give several different forms under which the invariant @ presents
itself. 8ince U + «V is a perfect cube, we have (Art. 43)—

a+nd_b+xb’_c+xc’

binb c+nd dtnad’ @
Equating these fractions separately to — «', we find

a+ xa' + x'd + k't =0,
b+ xb + ke + xx'd =0, 2)
c+ud’ +xd+ x'd=0;

and solving for «, ', xx', wo may eliminate them, and find the condition in the
form

a b o ¥ J a d ¥ b o d
Qe|d ¥ ¢ a b o|—-|a b ¢ a d|=0.
¥ J a b ¢ d b ¢ d ¥ ¢ &
Again, eliminating x and «* from the equations (1) without introducing »’, we
obtain another form for Q, viz.,

ac - 5% acd + de — 20 a'd - 2

Q=| ad-be ad'+ dd— bc - ¥e ad -bd =0.
bd-0®  bd' + Yd- 200 Ya — o

This form of Q can be readily obtained also by expressing the condition that
the Hessian of AU + u ¥ (Art. 191) should vanish identically—a condition which is
fulfilled when AU + uV is a perfect cube. .

Finally, writing the equations (2) in the form

a+xb _ b+ -t x'd
d+ &Y Vi+nd J+xd”
and eliminating «’ and «’3, we have a third form for Q, viz.,
(a¥) (a0) (3)
Q=| (@) () + (@) () |=o0.

() (o) (ed)
VOL. IIL M
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The constituents in this form are the same minor determinants which occur in
Bezout’s form of the resultant, and it may be easily verified that this value of Q
agrees with the expanded form written in Art. 191.

5. Find the condition that the roots of two cubics should determine a system
in involution.

The condition in terms of the roots is expressed by equating to zero the prodact
of six determinants of the type

1 a+a ad

1 B+p BF |-
1 v+

6. Express the condition of the preceding example in terms of the coefficients
of the cubics.
The roots of one cubic being conjugates to the roots of the other, the two are

+ . reducible to the following forms :—

U= az® + 382% + 3ex + d,
V = dz® + 3xoz® + 3x3bz + x%a;
and writing the discriminant of p U + ¥ in general in the form (Art. 191)—
A + 4p%0 + 6p% + 490 + A,
@=x%, A'=x%;
whence the required condition

we find in this case

A0 - A8 =0.
7. Express in terms of the coefficients of the cubics of Ex. 3 the following
covariant of the system :—
adZ{3(B-8) (y-7)+3(8-7) (y-B) +(B—7) (B -7)Hz—a) (- d).
Ans. 18{(ad + dc—2b¥) z* + (ad’ + a'd — bd - ¥c) z + (bd' + ¥d - 2¢) }.
8. To reduce the two cubics
U= (a, b,¢,d)(z,yp V=(a,¥,dd)(zy)

1dF 1dF
T=iax "=iav
by means of a linear transformation

s=AX +uf, y=xX+u¥,

to the forms

the coefficients in which are to be determined in terms of the coeficients of the

given cubics.
Let F =(d4, B, 0, D, E) (X, Y)*;
then U= (a, b, ¢, d) (2, y)* = (4, B, C, D) (X, ¥)}

V=(d,V,dd)(zy)?°=(B, C, D, E)(X, Y).
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Now, substituting the differential symbols D,, — Dy or z, and %Dy, - % Dx
for X and Y in the Hessian of both forms of U, we find the operational equation

D DYy D Dy Diy Dy

1
a ] ¢ =i 4 B c ;
b ¢ 4 B c D

whence, operating on both forms of ¥, we have

a ¥ ¥y ¢
V@, y)=| a ] ¢c |2+ a ] e yu';—r:.
[ [ d ) e a
Similarly,
a ] ¢ [ ] d
JX
oz y)=| & ¥ d lz+| o d y=300
¥y ¢ d ¥y ¢ &

where ¢ and y are covariants of U and ¥, and J is the ternary invariant of F.
Again, since
J J
¢(Dn—.D.)=EDY, and —y(Dy, - D,) = F‘Dx'
performing the operation

¢(D'9 - -D') *(”) y)r or ‘P(Dn - Dl) ¢(’y ')1
on equivalent forms, we have

a b ¢ ¥ ¢ d d ¥ d| (b ¢ d
Qm|d ¥ ¢ a b o|—-|a b o ad ¥ d =%~
¥ J d b ¢ d 5 ¢ al| | ¥ ¢ &

We are now in & position to determine the coefficients of F and the values
of A, u, A, i in terms of the coefficients of U and V.
For we have from former equations

¥ ¢ a b5 o 4
Q= a b3 ¢ |¢p- 7 |
5 ¢ d 14 d
ada ¥ d a b o
Q=-| a o lo+ A T
5 ¢ d ¥ ¢ 4
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whence, substituting these values of z and y in U and 7, we find
QU= (on By, Co, DO) (¢, ‘”s’

@7 = (30, Co, DO, EO) (4’1 ‘l’)’r
and, therefore,

1 dF 1 dF,
Q@U=3% FV=7 g where Fo=(dn Bo, Co Do, Br) (9, ¥)';
A B C D E MW
also L RTG TR T

9. Determine the invariants of F, in the preceding example, and hence infer
the form of the resultant of two cubics.
‘We have, from the equations of Ex. 8,

J1°=”“Jo, and J°I= Hmlo;

and, substituting differential symbols for z, y and X, ¥ in both forms of ¥, and
operating on U, we find
Pumad-dd-3(b—¥o)= iIFs
which equation, along with the [equation Q = ‘%, enables us by previous results to
express Jo and Jo in terms of Pand Q in the following way :—
Io = PQ’, and Jo = Qﬁ'

From theee results we derive the relations

from which it follows that when I3 = 27J3, we have P3 = 27Q ; but the first rela-
tion holds when F has a square factor, which necessitates U and ¥ having a common
factor ; whence we infer that P3 — 27Q, being of the proper degree and weight, is
the resultant of the cubics U and 7 (cfe Art. 191),

10. If q, 8,7, 3; a, B, 7, & be the roots of the biquadratics

(a,8,¢,d,6) (2, 1)'=0, (d,¥,0,d, ) (z, )4=0,
prove
ad3(a—d)(B=B) (y—7) (3-8) = 24 {ad + d'e~ 4 (' + ¥d) + 6¢d },

and show that this function is an invariant of the system.

11. Prove that the following function of the roots of a biquadratic and quadratic
gives an invariant of the system, and determine its geometrical interpretation :—

1 B+y B7y 1 y4a va 1 a+B aB
1 a+3 ad x| 1 B+3 B3 x| 1 y+8 8 =¢.
1 d+p dF 1 d+p dof 1 d+8 doF
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The geometrical interprotation of the equation ¢ = 0 is, that the two conjugate
foci of some one of the three involutions determined by the biquadratic form along
with the quadratic an harmonic system.

12. Prove that the following functions of the roots of a biquadratic and qua-
dratic give invariants of the system, and determine their values in terms of the
coefficients : —

a0b’3(a’ ~ a) ('~ B) (B' =) (B -3),
%*%o*3(a — B)* (y — &) (8- B) (v — B) (3 —d).

13. If f(z) and ¢ (z) be two quartics with unequal roots, tho roots of f(z) being
a, By 7, 8, prove that the condition that a quartic of the system Af(z) + u¢ (%) can
have two square factors may be expressed as follows:—

1 aa vVo@
1 88 vVoB)
1 9 7 Voo

138 /o0

14. Determine the condition in terms of the coefficients that the quartic
Af(z) + u¢ (z) may have two square factors.

In this case the Hessian of Af(z) + ug(2) = x {Af(2) + up(2)}, from which
identity we have five equations to eliminate A%, Au, u3, kA, xu ; thus obtaining an
invariant Iy, of the 4tA degree in the coefficients of each equation.

15. Prove that the resultant of two quartics becomes a perfect square when the
invariant fy vanishes.

Rendering rational the determinant in Ex. 13, and dividing by the product of
the squares of the differences of the roots, we find, when the coefficients are
introduced,

Iy = Iy, — 64R ; whence, &c. &c.

16. The discriminant of AU + u¥, where U and ¥ are cubics (a, 3, ¢, d) (2, ¥)3,
(@, ¥, ¢, d) (z, y)?, being written as in Art. 191, resolve into its factors the
covariant

(4, ©, &, 0, 4)(V,- U0
The leading coefficient of this covariant is easily obtained by forming the discrimi-
nant of a¥ — &' U directly ; it is

(ab)? {4 (ad) (ad") — 3 (a0)*},
which may be written in the form 24*{ P4 + 6(4C — B%)}, where 4, B, C are
the first three coefficients of the Jacobian ; and, consequently, the given covariant
is expressed as follows : —

2J%U, V) {PJ(U, V) + 6 Hessian of J(U, 7)}.
17. Express the invariants of the Jacobian of two cubics in terms of P and Q.
Ans. 12I' = P4, 2167 = 54Q — P,



CHAPTER XIX.
TRANSFORMATIONS.

SecrioN I.—TscHIRNHAUSEN’S TRANSFORMATION.

193. Under the general heading of this chapter we purpose
oollecting several propositions which could not have been con-
veniently given elsewhere, and which are of importance in
eonnexion with the subjects discussed in the foregoing pages.
‘We commence with a general theorem relating to rational
transformations.

Theorem.— The most general rational algebraic transforma-
tion of a root of an equation of the n'® degree can be reduced to an
integral transformation of the degree n — 1 at most.

For every rational function of a root a, of the equation
f(z) = 0 is of the form

x (ar)
¥ (ar)’

where x and i are integral functions ; also,
X (ar) _ Yla) . ... Ylars) Ylarn) . . - . Ylan)
T8 R PR T R S V(an) ¥ (an)

and the denominator { (a;) ¥ (az) . . . ¥ (as), being a symmetrio
function of the roots of f(z) = 0, can be expressed as a rational

function of the coefficients. Whenoe %é—::—; is reduced to an
integral form.

Moreover, the numerator of the former fraction is & sym-

Sz

metric function of the roots of the equation prom ¢)zr =0, and

may consequently be expressed as a rational function of the
coefficients of that equation ; that is, in terms of a, and the
ocoefficients of f(z).
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Now, denoting by F(a,) this integral form of X(“rg’ we have

Yar,

by division

Fla,) = Qflar) + ¢(ar) = ¢(ar),
where ¢(a,) does not exoeed the degree n — 1; which proves the
proposition.

In the particular cases of the quadratic and cubio it follows
that the most general rational function of a root can be reduced
to a linear function, and a quadratic function of that root,
respectively. In the case of the ocubic this quadratic function
may be reduced to another form which is often useful, as fol-
lows :—Denoting the quadratic function by (0), and dividing
the cubic £(0) by ¢(0), we have

S(0) = (g0 + 9:0) $(0) + 7, + 1.0 =0;
proving that

"°+‘r10.
¢(0)=_qo+910’

whence it appears that the most general trangformation of a root
of a cubic may be reduced to a homographic transformation.

In connexion with the proposition here established it is easy
to justify the remarks made in Arts. 59, 66, relative to the solu-
tions of the cubic and the biquadratic equations. With this
object in view, let ¢ and y be two rational functions of n quan-
tities a,, a3, . . . a, (Which may be considered as the roots of an
equation), each having only p values when the roots are inter-
changed in every way. Denoting these values of both functions
obtained by the same substitutions by

1> P25 P35 - - - Bpy
4‘1, \I‘I; 4’8, ¢ o ‘pp}
we have, for every integer j,
o + phe’ + e’ + .o+ gy’ = T

a symmetric function of the roots, since it is the sum of all the
possible values which ¢y~ can take.
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In this way we may obtain the system of equations

¢ + ¢2 + ¢s +...+¢p =T,
4’!7“1 +¢!¢‘2 +¢8"’3 +'-'+¢p'¢’p = Tu

PP + PP + b + L+ Pt = Ty

where T\, T, ... T, are all symmetric functions of a,,as,as,. . . aa.

Solving these equations, we find at once ¢, expressed as a
symmetric function of s, ¥s, . . . Y, since any interchange of
Yy sy - - . Yp, being equivalent to an interchange of ¢s, ¢s, - . « Py,
does not alter the value of ¢,. This value therefore is by the
present proposition reducible to a rational and integral function
of y, of the degree p - 1, since  has only p values considered as
a function of ay, as, . . . a,. Now oonsidering the special cases
referred to—(1), when p = 2, and n = 3, it is proved that a
linear relation connects ¢ and y in terms of symmetric functions
of a;, as, as; and (2), when p =3, and #n =4, ¢ and | are in a
similar manner shown to be connected by a rational homo-
graphio relation (see Examples 5, 6, 7, p. 132, Vol. 1.).

194. Formation of the Transformed Equation.—The
transformation explained in the preceding Artiole was first
employed by Tschirnhausen for the reduction of the cubic and
biquadratio. 'We proceed to explain the method of forming in
general the equation whose roots are ¢ (a:), ¢ (az), .- .. ¢ (aa),
where ¢ () is an integral function of » of the degree n — 1.

Let 9(@) =+ az+ a2 +...+ana2™

Raising ¢ (2) to the different powers 2, 3, ... n in succession, and
reducing the exponents of z in each case below » (by dividing
by f(#) and retaining only the remainder), we have

P =by+t bz +b2+. ...+ by 2™,

P=c+az+c@®+... .+ Cpa2™,

t=hthe+ @+ ... .+ lp 2™
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Substituting for z in these equations each of the roots of the
equation f(z) = 0, and adding, we find, if S,, 8;, S,, &o., denote
the sums of the powers of the roots of the required equation,

S =na,+ a8 + 85+ . «. . + Gn1 8p1y

‘S’ = ”bo + blsl + bgsg + .00+ bn.[ 85.1’

Sa=nly + 18 + 1Lg +....+ lpy8s

Now, expressing 8, 8, . . . 8, in terms of the coefficients of
f(z), we have 8,, 8, . . . 8, determined in terms of the coeffi-
cients of ¢ () and f(z); we are also enabled by Art. 80 to
express the coefficients of the equation whose roots are ¢ (ai),
¢ (as), ... ¢ (an) in terms of S,, S,, ... S, and therefore finally
in terms of the coefficients of ¢ () and f(2); thus theoretically
the transformation is completed.

195. Second Method of forming the Transformed
Equation.—There is another way of finding the final equation
in ¢ by elimination, which we now give. 8ince

G-¢p+az+a@ +...+a,2"" =0,

if this equation be multiplied by z, 2%, ... 2*?, and the expo-
nents of  reduced below »n by means of the equation f(z)=0, we
have in all # equations to eliminate dialytically the » — 1 quan-
tities, #, 2% ... 2"'. 'We thus obtain the transformed equation
in the form of a determinant of the #™ order, ¢ entering into
the diagonal constituents only. For example, if f(2) = 2* -1,
we obtain the transformed equation in the following form :—

G-¢ & Ay « .+ Qp
Gn- G-¢ a . . Gpa

=0.
a, as as . . Qy— ¢

Although these methods of performing Tschirnhausen’s
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transformation appear simple, yet if they be applied to par-
tioular cases the result usually appears in a complicated form.
Professor Cayley, by choosing a form of the transformation
suggested by M. Hermite, was enabled to take advantage of
the theory of covariants and thus to complete the transforma-
tion for the cubic, quartic, and quintic. 'We shall content
ourselves with showing in an elementary way how Cayley’s
results for the cubioc and quartic may be obtained.

196. Tschirnhausen’s Transformation applied to the
Cubie.—Let the cubic equation

az® + 3br* + 3cz + d = 0
be written under the form
+3Hzs+ G=0;
and let it be transformed by the substitution

y=A+«xs+3.

If s, %,, 5, be the roots of the cubic, and yi, y», ¥; the correspond-
ing values of y, we have

Y= Ys = (82— %) (x - ),
Ys= 9= (- %) (x— %), (1)

Yi— Y= (8 — %) (K - 83)»
and consequently

20, — s — Ys = (28— 2, — %) ko + (2885 — 2,8, — 818,),
23 = Y3~ th = (28— 8 — 1) K+ (2243, — 213, — %:3,), (2)
25—t — 2= (23— 5, %) k + (2813 — 8,8 — 2,8,).
‘Wherefore, if the equation in y with the second term removed be
Y’+3H'Y + & =0,
we have from equations (1) and (2)
H=H, &=0G,
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where H, and G, are the Hessian and oubic covariant of
*+3Hk + G;

and the transformation is therefore completed, since y, + y: + s

can be easily determined.

197. Tschirnhausen’s Transformation applied to
the Quartic.—In this case we do not attempt to form directly
the transformed quartic, but prove the following theorem, which
shows how this transformation may be resolved into two others.

Theorem.— Tschirnhausen’s transformation changes a quartic
U into one having the same invariants as 1U + mH,, and therefore
in general reducible to the latter form by linear transformation.

To prove this, let the quartio

@+ + pa2® +p + Py =0
be transformed by the substitution
Y =0+ a2 + a@® + a2,

If 2, 21, 5, 2, be the roots of the quartic, and y., ¥a, ¥s, ¥
the corresponding values of y, we have

DI bt ma(ea+25) + as (0 + i+ 22),
Ty — T
$-¥% a + @y (2, + 2) + a5 (2.* + 22, + 2°).
E 2 W 7Y

From these equations we proceed to show that

(-9 -y)
(22— 23) (21 - @)

where P, and Q, involve the roots of the quartic symmetrically.
In the first place, we find

(25 + 2 + 2°) (2 + 2+ £3) = P — P ps + o — P,

=P+ Qo(ma + 212),

where A has its usual value, viz. 32, + 2,2, ; and secondly, since

29 + 22y + 2 = (23 + @)° - 2y, &0,
we find again

(Z3+ @) (2 + 212+ 20) + (21 + @) (827 + 2223+ 24°) = Pa— 1 s + DA
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Finally, since the other terms in the product are obviously of
the same form as P, + @A, we have proved that

(ys - 9s) (11— 94) .
(o= 2 (e mzy ~ Tt Qe aed;

(- 9s) 1 -9 = (v—p) (Po+ Q).

Now, introducing p,, ps, ps in place of A, u, v, this and the
similar equations preserve their forms; whenoe, altering P, and
Q, into similar quantities, we obtain the equations

(¥2-9) (%1 - 9) = 4 (ps - ps) (P - Qp1)y
(s —91) (92— 94) = 4 (o1 — ps) (P - Qpa),
(h=93) (s —vs) = 4 (pa—p1) (P - Qps),

which lead at once to the invariants of the transformed quartio; ¥7.-
and comparing their values with the invariants of «U - AH,
given in Art. 186, the theorem follows at once.

whenoe

198. Reduction of the Cubic to a Binomial form by
Tschirnhausen’s Transformation.—Let the cubic

az® + 3ba® + 3ex + d
be reduced to the form y* - ¥ by the transformation
Yy=q+pz+at

1f @, 2,, #; be the roots of the given cubic, and y, a root of
the transformed oubic, we have the following equations to
determine p and ¢:—

2+ pz+ =1,
2 + p2s + ¢ = wiyy

7+ prs+ ¢ = 0y
from which we find

2, + W + W'
=2 T 7T ==} (8 + p8).
p Tt oty + 0z q (82 + p81)
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Adding 2, + 2, + @, to this value of p, we have

2,73 + Wy, + W2, .
Z + wl + 0y

it follows (Ex. 25, p. 57, Vol. I.) that there are only two ways
of completing this transformation, as the values of p, ¢ ultimately
depend on the solution of the Hessian of the cubio.

P+ + 23+ A3=—

199. Reduction of the Quartic to a Trinomial Form
by Tschirnhausen’s Transformation.—Let the quartic

azt + 4b2® + 6¢ca* + 4dz + ¢

be reduced to the form #* + Py* + @, in which the second and
fourth terms are absent, by the transformation

y=q+pz+2
If 2, 2y, 25, 2, be the roots of the quartic; also g, y, two
distinct roots of the transformed quartio, we have the following
equations to determine p and ¢ :—
L etepntg=yy, B EPE Q=Y
B rprtg=—y, +pBtq=-1;
from which we find

_a:,’+:v,’—z,’—z"
O+ -y — 2

y 4 ==} (6 + pa).

And, adding z, + 2; + 2, + 2, to this value of p, we have

2 (1013': - zﬁa) .

to Tt Bt T =
P A A -2,

hence, by Ex. 5, p. 132, Vol. L., it follows that there are three
ways of reducing the quartic to the proposed form, the determi-
nation of which ultimately depends on the solution of the
reducing cubic of the quartic.
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200. Removal of the Second, Third, and Fourth
Terms from an Equation of the n** Degree.—We begin
by proving the following proposition, which we shall subse-
quently apply :—

A homogeneous function V of the second degree in n quantities
Zyy X3y Zsy « - - Zn CaN be expressed in general as the sum of n squares.

To prove this, let ¥, arranged in powers of 2, take the

following form :—
V- Plit,' + 20;31 + .R],

where P, does not contain #,, z,, . . . . 2,; also @, and R, are
linear and quadratic funotions, respectively, of 23, 2, . . . Za.
‘We have then

Ql ! Ql'
V"( Pz, + —>+R:-—;
i+ TP, P,
also, assuming
VieBi- 3 - P + 20 + B

where P, is a constant, and @, and R, do not contain 2, and 2,
we have simila.rly
Q

7= ([P s 1)+ o
so that

V= (Jﬁw. Ji_?)_) (JP.a:.+J3:‘)+ ‘%’:'

Proceeding in this way, we arrive ultimately at R,., -

Qz :

@ua
P’
whioh is equal to P,z,*; and the proposition is proved.

Now, returning to the original problem, let the equation be

P+ p 4. .+ pa=0;
and, putting
Yy=a* + B+ y2* + & + ¢,

let the transformed equation be

V+RQY+ QY +. ..+ Qu=0,
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where, by Art. 194, Q, @, . . . @, . . . are homogeneous
functions of the first, second, . . . r** degrees in a, 3, v, J, ¢.
Now, if a, 3, v, 8, ¢ can be determined so that

Ql=09 Qs=0p Qa=0»

the problem will be solved. For this purpose, eliminating e
from @, and @,, by substituting its value derived from @, = 0,
we obtain two homogeneous equations

R|=0, R;=0,

of the second and third degrees in a, 3, v, &; and by the
proposition proved above we may write R, under the form

u -0+ -0,

which is satisfied by putting ¥ =v and w=¢ From these
simple equations we find y = la + mB, and & = /ja + m,3 ; and
substituting these values in @, = 0, we have a cubic equation to
determine the ratio 3 : a. 'Whenoe, giving any one of the
quantities a, 3, v, J, ¢ a definite value, the rest are determined,
and the equation is reduced to the form

P+QUt+ QY +...+Q=0.

In a similar way we may remove the coefficients @,, @,, @,
by solving an equation of the fourth degree.

Applying this method to the quintic, we may reduce it to
either of the trinomial forms

2+ Pr+Q, 2+P2P+Q;
or again, changing « into :%, to either of the forms

£+ PP+ Q 2+ P+ Q.

In this investigation we have followed M. Serret (see his
Cours & Algébre Supérieure, Vol. 1., Art 192).
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SecrioN II.—HERMITE’S AND SYLVESTER’S THEOREMS.

201. Homogeneous Function of Second Degree
expressed as Sum of Squares.—We have already shown,
in a general way (Art. 200), that a homogeneous function of
the second degree in the variables may be reduced to a sum of
squares, no hypothesis being made as to the nature of the
ocoefficients of the funotion considered. We now return to the
consideration of this problem when the coefficients of the function
are supposed to be all rea/; and we proceed to determine, in
magnitude and sign, the ocoefficients of the squares in the
transformed function.

Let F(x,, 23, . . . z) be a homogeneous function of the second
degree in n variables with real coefficients ; and let us suppose
that it is reduced by the method of Art. 200 to the form

D (21 + Gaa + Ay + . . .+ Gah)?
+ 03 (%2 + o2y + . . .+ bpza)?
+Ps (2 + ...+ Cuza)?

+ Pun’y

where all the coefficients of this new form are real.
Making now the linear transformation

Xi=d1+ Qs+ A + Q&+ . . .« + Gnn,
X, = Ty + bys + by + . . . + Day,
X3= X3+ Cily + o o o + Cylpy
X, = Zn,

we have
F(x,, Tzg T3y o o o 3’“) -p1X]‘ +ngz’+stg’ +... +p,.x..’.

Since the modulus of this transformation is equal to 1, the
discriminants of both these forms of F'must be absolutely equal.
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Denoting, therefore, the discriminant of F by A,, we have
Ay =p1paps - .. Pn

and similarly, when the variables 2., 2, . . . 2, are made to
vanish in both forms of F, we have

Aj=pipaps - . - Py
Now, giving ; the values 1, 2, 3, &o., we find

=A _ﬁ’ _A_’ ,,A".
n 1y P2 Al Ps A,""p" A’

and the coefficients are determined in terms of the discriminant
of the original quadratic form in » variables and the discrimi-
nants of the forms in n - 1, » — 2, &o., variables derived from
the given form by causing one, two, &o., of the variables to
vanish in succession in the manner just explained.

Again, since the constants in the form F (z,, 23, . . . 2,) are
in number 3n (n — 1) less than in a form eomposed of a sum of
squares of n linear functions of n variables, we learn that ¥ can
be reduced to a sum of squares’in an infinity of ways. It is
most important, however, to observe that in whatever way the
trangformation is made, provided it is real, the number of coefficients
(affecting these squares) which have a given sign is always the same.
This theorem, which is due to Jacobi, is easily proved; for
. suppose the contrary possible, and let

F=p1X1'+p,X.' +.. .+pnxu’-q1yl’+ qIY2’+' .o "’QnYn’:

where the number of positive coefficients on both sides of this
identity is not the same. Making all the terms positive, by
transferring those affected with negative signs to the opposite
sides of the identity, we shall have a sum of /squares identically
equal to a sum of m squares, where m is greater than /. Now,
substituting such values for #,, #;, ... 2, that each of the
! squares may vanish (which may be done in an infinity of
ways), we find a sum of m squares identically equal to zero,
which is impossible.
VOL. II. N
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202. Hermite’s Theorem.—The principles explained in
the preceding Article have been applied by Hermite to the
determination of the number of real roots of an equation f(z) = 0
comprised within given limits. The special form of the function
F which he makes use of for this purpose is

r=n

b

=1 4r =P

(1 + ats + a,'25 + ... + a,"'2,)?,

in which #,, #;, .. . , are any variables in number equal to the
degree of the equation ; and r takes all values from 1 to n in-
clusive, the roots of the equation being ay, ay, ... a,; also p is
any arbitrary parameter.

This form is plainly a symmetrio function of the roots of
the equation f(z) = 0; and as the ooefficients of this equation
are supposed to be real, F will be also real, when expressed in
terms of these ocoefficients and p, provided the parameter p be
given any real value. If the roots a,, as as, . . . a, are not all
real, the assumed form of F will not be obtained by a real
transformation ; but it is easy to deduce from it, as follows,
another form which will be so obtained.

If a, and a; be & pair of conjugate imaginary roots, we may
write

a,=17,(coBa +¢6ina), a;=7r,(c08a~-1sina).

Denoting for shortness #; + a,: + a2+ . . . + a,*'x, by ¥,

and substituting these values in ¥, and ¥;, we find

Y.=U+iV, Y,=U-iV,

where U and V are real ; also putting

al_P=r(oos¢+isin¢), $=r(oos¢—isin¢),

the part of the function F depending on a, and as, viz.,

Y]2 + Y22
“l"p Gz—p’
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becomes

r{(cosgﬂ'sin %)'(UH'V)H(cosg— ¢ 8in g)’(U—iV)’:,

which may be also written as the difference of the squares
?_pen?)- ( in? Y,
2r(Uoo 5 Vsm2) 2r Usm2+ V cos )3
proving that two imaginary conjugate roots introduce into F

two real squares, one of which has a positive and the other a
negative coefficient.

We now state Hermite’s theorem as follows :—Let the equa-
tion f(#) = (* — ) (# — as) . . . (- a,) =0 have real coefficients
and unequal roots : if then by a REAL substitution we reduce

: x:? 2 Y2
LA (S RN ¢ 1)
a-p a-p a-p ap—p
where Y=zt as+ al25+. .. + a2,

to a sum of squares, the number of squares having positive coefficients
will be equal to the number of pairs of imaginary roots of the equa-
tion f(x) =0, augmented by the number of real roots greater than p.

This theorem follows at once from what has preceded if we
consider separately the parts of the funotion (1) which refer to
real roots and to imaginary roots, for obviously there is a posi-
tive square for every root greater than p, and we have proved
that every pair of conjugate imaginary roots leads to a positive
and negative real square, without affecting the other syuares
independent of these roots.

The number of real roots between any two numbers p, and
p: may be readily estimated. For, denoting in general by P;
the number of positive squares in F when p = p;, by N; the
number of roots of the equation f(z) = 0 greater than p;, and by
21 the number of imaginary roots, we have

PlﬂN]"'.I, P1=N1+I;
whence

NI—N2=P1—P2,

N2
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proving that the number of real roots between p, and p, is equal
to the difference between the number of positive squares when
p has the values p, and p,, respectively.

The number here determined may be shown to depend on
a very important series of functions connected with the given
equation. In order to derive these functions we conmsider F
under the form (Art. 201)

4 An
iy
The number P expresses the number of coefficients in this

form whioh are positive, or, which is the same thing, the number
of the following quantities which are negative :—

AX+ 'X, + ’X, X,

Al Az Ag A.
""1_’ -Kl, -Z—”...._A_”-l. (2)
‘We proceed now to caloulate A, A;, ... Aj, ... As in terms
of p and the roots of the equation f(2) = 0; and as the method
is the same in every case it ?vill be sufficient to calculate A,
i.e. the discriminant of the original form of F when all the

variables except i, 3, 2y vanish.
‘Writing for shortness v, =

, we have in this case
ar—

F, = Sv, (21 + ays + a/'%)0.
The discriminant in this form is
p>i7 Sav  Za’v
As=]| ZBav Za’v Z2a'v |,
Sav Z2a’v ZTa'v
which may be written as the product of the two arrays

1 1 ...1 Vi Vi e .. Up
@ a ... G , @V V3 o . o GuVp :
a® a ... ay vy a’rs . . . Aplvg
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and, consequently,
1 1 1 p

=3y | @ as a (a2 = as)* (a3 = ay)* (“‘_a’)’.
Ay = vy 3 2 (ar=p) (as— p)(aa P)

a’® a a

In an exactly similar manner we find

(ah az, a3 .« “.i)
§:(m p)(az=p) ... (aj=p)’

where the notation v (aj, a3, as, - . . aj) is employed to represent
the produot of the squares of the differences of a,, a, as, . . . a;
Hence the quantities A;, As, ... Aj... A, are all determined.
Now, multiplying the numerator and denominator of each
of the fractions in the series (2) by f(p), each value of A is
rendered integral, and the series becomes "

Vl V: Vs V" \gﬂ”"
T P B ®)
where
V- p-a)p-a) .. (o o),

V;=2(p—¢h)(l)-¢8)"-'(P_aﬂ)p
Vi=3V(aya)(p-as)....(p~au),
V;=2V(ax,¢z’ “a)(P"“l)""(P_“u)’

Vn=v (ax, A3y A3y o ¢ o » a,.).

- Since negative terms in the series (3) correspond to varia-
tions of sign in the series V, V1, Vs, Vs, .... V,, it is proved
that the number of variations lost in the series last written,
when p passes from the value p; to the value p,, is exactly equal
to the number of real roots of the equation f(p) = 0 comprised
between p, and p,.

It will be observed that the functions ¥, ¥, Vi, &o., here -

arrived at have the same property as Sturm’s functions; from
which in fact they differ by positive multipliers only, as was
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observed by Sylvester, who first published these forms in the
Philosophical Magazine, December, 1839. In order to establish
the identity of the two series of functions we proceed in the
first place to prove in the following Article an important
theorem connecting the leading coefficients of Sturm’s functions
and the sums of the powers of the roots of an equation.

203. Theorem.— The leading coefficients of Sturm’s auziliary
Sunctions (i. . f*(z), and the n — 1 remainders) differ by positire
factors only from the following series of determinants :—

8 8 & &
8% & 8 8 8 8 8
8, & 8 8 8 8 8 8, 8
8 | 81 83|, |8 8 8 | 8 8 8 & |, &o.

Using the bracket notation, we may write these determinants
in the form s, (8, %s), (8, 8, 8.), &o., the last in the series being
(808284 - - . 82n2).

Representing Sturm’s remainders by Ry, R,, ... Rj, ... Ry,
and the successive quotients by Q,, @, Q, &oc., we have (see
Art. 96)

R, = Qf (=) - /()
Ry = Q.R, - fv(-’v) = (Qle" l)f(:t) - an(‘”),
Ri=QR,- R, = (QleQa“ Q- Qa) f'(z) - (QzQa -1) f(z)’ &e.

Proceeding in this manner, we observe that any remainder
R; can be expressed in the form

Rj= 4;f (z) - B f(2). @)

The degree of R;jis n - j; and since Q,, Q., &o., are all of
the first degree in 2, it appears that the degrees of 4; and B;
are s — 1 and j - 2, respectively.
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Assuming, therefore, for R, and 4; the forms
Rimr,+rz+nrd+...+rpj2™,
A= X+ A2 + N2+ ..+ A @Y

and substituting in (1) any root a of the equation f(z) = 0, we
have

L Totrat+ratt ... 47, a™
AN+Aa+Aa+...+ Aaft = .

S (a)

Multiplying by a, %, . .. a’?, o', in succession ; making
similar substitutions of the other roots; and adding the equa-
tions thus derived, we obtain by aid of the relations of Ex. 4,
p- 172, Vol. 1., the following system of equations :—

Aoso + 1181 + ...+ Aj_,&'j.g + Aj—ls".l = 0,

Ao«?. + kpﬂg +...+ k_,-_,aj_l + )\,-_,s_,- = 0,

Aofiz + A8 + .« . + Afagie + Aii8ys = 0,
Asia+ A& + ..o+ Ajabyis + AfiBgia = Fusje
From these equations we have, without difficulty,

80 3] LEEERY 8,‘_. 8_,-.1
8 & ... &,
81 8 ... 8,8
& 8 ... 8

rn-.i:')'j 9 Aj=7j . . . . . . y
| 8ja 851 . o . 83 8y5g
C 8.1 8 . o 8a
e v la ...2M7

the value of y; being so far arbitrary. It appears therefore that
the coefficient of the highest power of z in R; differs by this
multiplier only from the determinant (8%, .... 8;.). We
prooceed to show that the sign of v; is positive. For this purpose
we make use of the following relation connecting the successive
values of the functions R and 4 :—

AynRy — Bip Ay = f(2). )
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To prove this ; substituting for Ry, Rx, Ri, their values in
terms of 4 and B in the relation Ry, = QRx — Ry, we derive

Ahl QkAk - 4;. 1 Bkn = Qka - Bb—l H

by aid of which we readily obtain the following relations con-
necting the successive funotions :—

Ak,]B& - AkBk“ = Aka-] - Ak.]Bk = e = AlBo - AoBl =—- 1,
AxyRi— ARy = ARy, — Ay Ry= ... = Al.R,— AR, =f(z),

in which R, = f'(z), R, = f ().

Now, comparing the coefficients of the highest powers of =
in (2); observing that 2* ocours only in A, R, and making
use of the determinant forms above obtained, we have

Yot (86838¢ « - « 8ak-) Yk (808384 « - o 8aka) = 1,
or Yeyin = (8880 . . . 8ua)™

Also, calculating the value of R, in the ordinary manner,
we easily find
1 % 8

whenoe it is seen that the value of v, is l

It follows, from the relation just esta.bhshed between any
two sucocessive values of vy, that ys, v,, ... v, &o., are all positive
squares, and therefore, finally, that r,; the coefficient of the
highest power of z in Rj, has the same sign as the determinant
(853286 « + « 8y-a).

It should be noticed that there is only one way of expressing
a funotion of #, of the degree n —j, in the form 4/"(z) — Bf (),
where 4 and B are of the degrees j - 1 and ; — 2, respeotively,
and f(z) of the degree n ; for this function being in general of
the degree n + 7 - 2, in order that it may reduce to the degree
n — 7, the 25 — 2 highest terms must vanish, and this is exactly
the number of undetermined quantities in 4 and B at our
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disposal, since it is the ratios only of the coefficients we are
concerned with. Sturm’s remainders may therefore be obtained
in this way with an undetermined multiplier.

The functions R;, 4;, and B; are semicovariants of f(z), as
may be easily seen by supposing f(z) transformed by the sub-
stitution s = @,z + a, before these functions are caleulated. Their
actual expressions in terms of the differences of # and the roots
can be readily inferred from the disoussion in the following
Artiole.

204. Sylvester’s Forms of Sturm’s Functions.—We
make use of the notation employed in the preceding Article,
and propose to show that the Sturmian remainder R; differs
only by the positive factor ; from the function V;, We have

R = 4;f () - B;f(%), 1)
where Ri=r,+rz+r2 + ...+ 1™,
Aj= A+ Az+ A2 + ..+ A,
Bi = py + mZ+ st + .o o+ piat’
also from the value of r, ; above given we have immediately
Tnj =7 2V (ar, a3, as, ... aj),

showing that the leading coefficients in R; and V; differ only
by the factor y;. We now prooeed to prove that the last co-
efficients in these functions differ only by the same factor.
For this purpose, dividing the identity (1) by f(z), substituting
in it from the equation

f@) "z @ B
and comparing coefficients, we find
Mo = Ai8o + As81 + Asta + + o oo + Ajr 8iay
m o= Ao + Ay + .. oo + Ajoy 8iosy

M= A1 8
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Also, putting z = 0 in (1), we have
7o = Ao Pnt = Mo Puy
and, substituting for u, in terms of A,, A, A,, &o.,

r
-2 AOS—1+A|8° +A,81 + ... +Aj.18j.¢;
n

whence, giving to Ay Ai, ... A the same values as in the
caloulation of r,, we find

8- 8 8 ... 82
8, 8, 82 . 851

ro= (- Lpays
I 853 81 8 v oo 8353

Now, referring to the calculation of A; in Art. 202, and put-
ting p =0, or v, = —1—, in the value of A; there found, we find
Qy

for the determinant just written the value

2 V (ai, as, as,y . .. @)

aaas . . . a;

hence, giving p, its value in terms of the roots, we have

ro= (- 1)"7 2V (ay, az, as, . . . a;) @G @jsa - . . ap,

which was required to be proved.

The first and last coefficients of R;, when divided by 1;,
having been thus shown to be the same as in the form W,
it follows that all the intermediate terms must be similarly
related ; for, in the first place, R, is a function of the diffe-
rences of the quantities 2, a;, as ... as, 88 may be seen by
transforming f(2) before calculating R; by the substitution
s=az +a,asin Ex. 3, Art. 99. When this transformation
is completed, every coefficient in R, as well as %, is a funotion
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of the differences; consequently R; is a semicovariant, and
satisfies the differential equation

d d d d dR; _
(E+‘E+d—a’+...+E)RJ—O,O %‘ D-R;—O;

and therefore, as is proved in Article 164, all the coefficients
may be obtained from the last by a definite law. The same
conclusions plainly holding also for the function Vj, it is
therefore proved, finally, that

Rj=v; V;

ExaMpLEs.

1. Using the notation of Arts. 203, 204, prove that the quotient of 4, by v; can
be written as a symmetric function involving z and the roots; e. g.,

‘,,i“ =3(B=17) (y- )t (a- B (¢~ a) (2~ B) (=)

2. With the same notation prove that

80 8 g ... ¥4
L L 8 ... &
Bf =Yy ’
8.3 &1 & ... 83
0 T 1 Tg e I}.l
where Ty=sx ' + nzf3 4 80253 4 ... + 81,

3. With the same notation, and denoting by U,
Tt
D (r-ar) (@1 +ars + atxs + ...+ arlzy)?,
r=l
prove that the discriminant of Uj may be determined by the equation v;4; = 4,
and show directly that if 4; = 0 for a certain value of 2, 4,1 and 4.1 have
opposite signs for the same value of z.

Nore.—Hermite’s theorem holds when a, — p is changed into (a, — p)™ in the
enunciation on p. 179, m being any odd integer, positive or negative.



~)

<

188 Transformations.

SecrioNn ITI.—MisceLLaNEOUS THEOREMS.

205. Reduction of the Quintic to the Sum of Three
Fifth Powers.—This reduction can be effected by the solu-
tion of an equation of the third degree, as we proceed to show.
Let

(s @1y A3, Bsy Aey Gs)(@, ¥)* = by (2 + Bry)® + ba (2 + Bay)® + bs (2 + Buy)’,
where 3, 3s, 3; are the roots of the equation
PP+ P +pz+p,=0.
Now, comparing coefficients in the two forms of the quintio,
a,=b +b +b , a=0bf + b + b
ay = b3, + bf3:* + bsf3s%, as = b3 + b3 + b3,

ag = blBl‘ + bzﬁ:‘ + b.ﬁ,‘, as = b!ﬁl" + b.B.l + bapa.; .
whenoce
Poly + P10y + Patis + Pyay = 0,

N Doty + D183 + Doty + paay = 0,

Polls + Piay + Patig + Psas = 0.

When these equations are taken in conjunction with the
equation
Po+ D1+ pt + ps® = 0,
we have the following equation to determine 3, 33, Bs :—
1 z 2 2

a, a as as

= 0.
a [/ 7% das Qq
a; as aq as

Also, b, by, bs are determined by the equations
b] + ba + b‘ = ao,

blBl + baﬁz + bspa =y,
bIBI' + blﬁ:’ + bﬁa’ =0y
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whenoe the question is completely solved when 3, 3;, 3, are
known.

This important transformation of the quintio is a partioular
case of the following general theorem due to Sylvester :—

Any homogeneous function of z, y, of the degree 2mn — 1, can be

reduced to the form
bi(+Liy)™ " + by (2 + Bay)™ 4. .. +ba(+ Lay)™?

by the solution of an equation of the n'* degree.
The proof of the general theorem is exactly similar to that
above given for the case of the quintic.

206. Quartics Transformable into each other.—We' }" )
proceed to determine under what conditions two quartics can be
transformed, the one into the other, by linear transformation.

Let the quartics be

U=(a,b¢d e)(z,9)' =a(z-ay)(z-By) (z-vy) (= - &),
V =(d,¥,,d,6)(@,y)'= &' (&~ ad’y) (@ - BY) (& —v¥) (- &Y);
and if they become identical by the transformation
d=adz+puy, ¥=Nz+uy,
we have, by Art. 38,
B -1)=8) _-d)B-3)_ @-B) -
B-7)a-3)  (-a@-3) (@-P)x-9)°

showing that the six anharmonio ratios determined by the roots
must be the same for both equations.

From these equations we have also the following relations
between the invariants of the two forms :—

I'=1r1, J' =1J; (1)
whenoe
1
T @
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The quantity IJ—: being absolutely unaltered by transforma-

. tion when the quartio is linearly transformed, is called the
absolute invariant of the quartic. The oondition expressed by
equation (2) is, therefore, that the absolute invariant should be
the same for both quartics. The ocondition here arrived at
agrees with the result of Ex. 16, p. 148, Vol. 1., where it is proved
that the sextic which determines the anharmonic ratios of the
roots involves the absolute invariant, and no other function of
the coefficients of the quartic. 'We may refer to Art. 197 for
an illustration of what is here proved, the quartic as there
transformed having the same invariants and consequently the
same absolute invariant as a quartic of the form /U + mH,.

The conditions expressed by the equations (1), (2) are
always neccssary; but not always sugficient, as we proceed to
illustrate by two exceptional oases.

Suppose, in the first place,

U=vwow, Veu?

where u, v, w, v, ¢/, are of the linear form & + my.
: 3 3
Although the condition % = —IJ—,, is satisfied in this case, the

common value of these fractions being 27, it is impossible to
transform U into V, since it is impossible to make ow a perfect
square by linear transformation.

Secondly, if U=wy, Vau';
although the equations I’ = »I, J’ = r*J are satisfied, since
I'=0, I=0, J'=0, J=0, it is nevertheless impossible to
transform U into V.

In both these cases it would be impossible to identify the
six anharmonio ratios depending on the roots of the quartiocs.
In general, it may be stated that it is impossible to transform
one quantic into another by linear transformation when any
relation exists between the invariants of one of them which
does not exist between the invariants of the other (see Clebsch’s
Theorie der Bindren Algebraischen Formen, Art. 92).
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207. Number of Absolute Invariants of any Quan-
tie.—We proceed now to examine how the number of absolute
invariants of any binary quantio is connected with the number
of ordinary invariants, and how far a limit can be determined
to either of these numbers. Transforming the quantic

(ao) al’ az, ce a") (3‘, -'/)”
by the substitution
z=AX+uY, y=NX+u¥Y;
if the new form be
(4, 4y 4s ... 4,) (X, Y)*,

we have by the comparison of coefficients » + 1 equations
expressing A,, 4,, ... A4, as follows :—
Ao = (ag @1y @s - - aa) (A, ), . .. A= g% A™id, ...

Ay = (ay, @, a, . .. ay) (u, 1)"

d ., d .
where A= AZ‘ +A (17’ F(j) =123.. WA F(,,) =1.
Now, eliminating A, u, X’, i/, we obtain, among the new and
old coefficients, # — 3 independent relations; but if (Au’— A’u) be
admitted when A, u, X" u” are excluded by elimination, we must
add the equation Au’— A'u = M to the n + 1 equations already
obtained, making % + 2 inall; and when the elimination is now
completed, we have # — 2 independent relations. It may be
inferred from our previous investigations that these relations
are of the form .

¢'(Ao, A], Az, “ e An) = M"¢r (ao, a;, Az o 00 a,.), (A.l't. 171)

and we have therefore n - 2 independent ordinary invariants
¢1 P2, s . - . pna. Eliminating M we obtain, as above stated,
n - 3 relations connecting the two sets of coefficients, and this,
therefore, is the number of independent absolute invariants.
It is not true in general that every invariant can be expressed
as a rational function of the invariants ¢., ¢s, ¢s . . . ¢ns; and,
consequently, we have not obtained a superior limit to the num-
ber of independent ordinary invariants by this investigation.
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208. Number of Seminvariants of a Quantie.—Every
geminvariant can be expressed rationally in terms of a, and
n — 1 funotions of the coefficients which are either invariants or
seminvariants. For, removing the second term from the equa-
tion

U,=(a,a,a,...a)( 1)"=0,

the new ocoefficients are easily obtained by substituting for 4
its value - g—' (Art. 35). As these coefficients, when divided by
(]

a,, are symmetric funotions of the differences of the roots, they
must be invariants or seminvariants when multiplied by a power
of a,; also every other symmetrio function of the differences of
the roots must be a rational function of the same quantities,
but not necessarily tntegral when multiplied by 4,"; oonse-
quently we have not obtained any superior limit to the number
of independent seminvariants (or, which is the same thing,
covariants) by this investigation. It has been proved, how-
ever, by Gordan that the number of seminvariants of any
quantic is finite.

As an illustration of the preceding, we give the values of
A, As, A, A5, A¢ in & reduced form—

ayd, = H, a’d,=@G, a2A.=a’l-3H? (Art.37)
a’ds = a’F - 2GH,
a’ds = 45H* - 15a’HI + 10G* + a'l,,
where F = aas - ba.aya, + 2a,a,05 - 6a,a,® + 8a,’ay,
I, = aa, - 6ayas + 15a,a, — 10at,

F being a seminvariant, and I, an invariant of the sextic U..
(Exs. 4, 6, p. 103). We have, therefore, proved that every
seminvariant of the sextic can be expressed in the form

a™" ‘l’(ao, F, @, E) I’ 12),

where ¥ is a rational and integral function ; and, consequently,
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every oovariant when multiplied by a power of U, may be
expressed as follows:—
¥ (170, -an Gﬂ Ez, Iﬂ I’)‘

‘We conclude with the following important observation :—
When a rational and integral function of several seminvariants is
Jormed so that the resull is divisible by a,, a new seminvariant is
obtasned which is considered distinet from the others.

209. Hermite’s Law of Reeciprocity.—THEOREM. A
quantic (@, @y, . . . a,) (%, ¥)*, of degree n, has as many covariants
of the order = in the coefficients as a quantic (@, ai, . . . a,) (2, ¥)°,
of degree w, has covariants of the order n in the coefficients.

This theorem can be shown to depend on Cayley’s theorem
(Art. 165) as to the number of distinot seminvariants of given
order and weight of any quantic. 'When for a quantic of the
nt* degree an integral homogeneous function of the coefficients
is formed containing all possible terms of order = and weight «
which can be made up out of the coefficients a,, a,, as, . . . a,, it
can be proved that there will be exactly the same number of
terms in the corresponding expression, of order » and same
weight x, which can be formed for a quantio of degree = from
the coefficients a,, a,, s, . . . @,. For this purpose Mr. Ferrers has
employed a mechanical method of transformation term by term,
which will be readily understood from a particular application :—
Let us suppose that an expression of order 8 and weight 22
of a quintic contains the term a,’a,a’a@a; (which we write
@,8,0,0:05150,45) ; and let the weights of the successive factors be
represented by points arranged horizontally as follows : —

If now the points be counted in vertical in place of horizontal
VOL. 1I. o
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order we obtain the term a,a.:a,a,, of order 5 and weight 22. It
is olear that two terms thus derived from one another have always
equal weights, since the total number of points counted in both
cases is the same. We see therefore that to any term of order 8
and weight 22 derived from the coefficients of a quintio corre-
sponds a term of order 5 and weight 22 similarly derived from
the coefficients of an ootavio ; this relation is reciprocal, so that
for each term of either function there exists a corresponding
term of the other, and if one list of terms be complete, the
derived list must also be complete. In applying this transfor-
mation it must be observed that if the term to be transformed
does not contain the coefficient with highest suffix of the corre-
sponding quantio, the order of the derived term will be deficient,
and the factor @, with proper index must be supplied, this of
course not affecting the weight. It being clear, then, that two
corresponding expressions thus derivable from one another
contain the same number of terms, we may represent this result
by the notation

N (=, x, n) = N (n, «, =).

The same is true for similar functions whose weight is one less
in each case. 'We have therefore

N (=, x,n) - N(=, k-1, n) = N(n, x, ®) - N(n, x - 1, »),

from which, if Cayley’s theorem (p. 104) be assumed, it follows
that the number of seminvariants of order = and weight x which
can be made up out of a,, a, a, . .. a, is equal to the number
of order » and weight « which can be made up out of
Goy @y G3y . . . (.

Hermite’s theorem as to covariants follows immediately,
since the corresponding seminvariants can be taken as leading
ocoefficients of covariants; and, moreover, since nw — 2x = =n — 2,
the degrees of two corresponding covariants are equal. As a
particular case, also, we see that fo an tnvariant of one quantic
corresponds an invariant of the other.
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ExaMpPLES.

1. Show that the terms written with literal coefficients which occur in the
resultant of a cubic, by the transformation above described, supply the literal terms
of the cubic invariant of the quartic.

2. From the seminvariant of a quintic in Ex. 4, p. 103, derive the literal
terms of the corresponding seminvariant of a cubic ; and show that to the quintic
covariant of the former corresponds the product of H. and @. of the cubic.

3. S8how that quantics of the degree 2m alone have invariants of the .second
order in the coefficients.

For the only invariants of a quadratic are of the type a™, whose order in the
coeficients is 2m, A being the discriminant.
210. Reciprocal and Orthogonal Linear Transfors
mation—Contravariants.—When the coordinates of a point
are transformed by a linear transformation, the tangential co-

ordinates of a line and the operating symbols —. o ‘; ; are both
transformed by the same new linear transformation, which is
said to be reciprocal to the first.
Let the linear transformation be
T = a]x+ b|Y+ ch,
y=0X+bY +cZ }; 1)

s=asX + b, Y + ;7

whence any line Az + uy + vs becomes by transformation
LX + MY + NZ, where

L =a) + au + ay,
M=0bX+bu+dw }; )
N=cd +cu +cw

d ddr ddy d ds

also X TX Hax @ ax
s de dy ds
or, substituting for X IX X their values,
d d + d + g
ax " By TP

02
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and similarly
—d—=b,£-+b,—d—+ b,i, i=c.ii-+c, d
Y die dy s’ dZ dz dy
ddx’ ddy’ ddZ follow the same
laws of transformation, and consequently A, u, v and : (;; ‘z
also ; in fact from equations (2) this transformation is
A\ =A,L + BM + C\N,
Au = AL + B,M + C,N,
Av = A,L + B,M + C,N,

A
where A = (aybe), A, = a B, = db. &c &o.

This linear transformation is said to be reciprocal to the
transformation (1) whose modulus is A, its coefficients being

lia 1aa 1aa
Ada’ Adb’ A de’

d
+c:d H

whenoe L, M, N and the symbols

&o.

The variables z, y, s, and : : d‘: are said to be contra-

gredient to each other, for a linear transformatlon of 2, y, s leads

to a linear tranformation of the symbols :v’ : ;, whioh,

although not the same, is connected with the first in the manner
already explained.

We next define ‘orthogonal” transformation. If, in the
equations (1) above written, we have among the coefficients the
relations

a’+at+at =1, r+82+b=1, e&’+e’+eat=1,
Wb+ b+ ashy = 0, a6+ a0+ aes =0,  biei+byeatbse, = 0,

the transformation is said to be orthogonal. These conditions
are fulfilled, for example, by the direction-cosines which enter
into the relations between the coordinates of a point referred to
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two different sets of rectangular axes in solid geometry. In
such a transformation it is clear that we have the relation

2+y+s =X+ Y+ 2%,

and that the new variables are expressed as follows in terms of
the old :— ’

Xeoaz+ay+as, Y=bz+by+bs, Z=cx+cy+cs.

Also, if the modulus of transformation written as a deter-
minant be squared, each of the elements contained in the
principal diagonal is equal to unity, and all the other elements
vanish.

These results can be readily extended to any number n of
variables, in which case there will be 7 (n + 1) relations among
the coefficients of transformation.

It is easily seen that, in the case of an orthogonal transfor-

mation, diz’ W B are cogredient with 2, y, 5.

‘We conclude with a definition of ¢ contravariants,” confining
our attention, for simplicity, to the case of three variables.
‘When a quantic in z, y, s is transformed, any function involving
the coefficients of the original quantic, together with other
variables which are transformed by the reciprocal substitution
above explained, is said to be a contravariant if it differs only by
a power of the modulus of transformation from the corre-
sponding function of the transformed coefficients and variables.
The condition, for example, that a line Az + uy + vz should
touch a conic given by an equation in trilinear coordinates is
a contravariant. The theory of contravariants can be included
under that of invariants by considering the combined system
composed of the given quantio and Az + uy + vs.

It may be observed that in the case of binary quantios
contravariants and covariants are not essentially distinot (see
Salmon’s Higher Algebra, Art. 140).
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MiscELLANEOUS ExXAMPLES.

1. Every quantic of an odd degree has a quadratic covariant of the second
order in the coefficients.

For every quantic of an even degree has an invariant of the second order in the
coefficients (Art. 177), which may be written in the form U, (U) or (1, 2)* U1 U3 ;
and this invariant of the quantic whose degree is 2m will be a seminvariant of one
whose degree is 2m + 1 =n. The covariant therefore which has this seminvariant
as leader will be a quadratic, since n@ — 2x = 2, x being =% —~1 and & = 2.

2. Every quantic of an odd degree 2m + 1 = »# has a linear covariant of the
degree # in the coefficients when # is greater than 3.
For if I(z, y)* be the quadratic covariant of the preceding example, we have

I;(U)zL‘.z+ Ly,

a linear covariant, the order of Lo and L, being n. It is here assumed that Lo and
I, are not identically zero, as they are for the cubic.

8. Every quantic of an odd degree has an invariant of the fourth order in the
coefficients of the form Ado0s? + 24104 + Aa.

The discriminant of I (z, y)? is the required invariant.

4. Every quantic of odd degree » has a seminvariant of the third order in the
coefficients which is the leader of a covariant of the nd degree.

For, differentiating with regard to a, the discriminant obtained in the preceding
example, we have, for the resulting seminvariant, @ = 3, x = n, and consequently
p =nw — 2x = n, which is therefore the degree of the covariant of which :TA‘ is
the leader.

The series of seminvariants obtained in this way for the odd quantics is impor-
tant, the order in the coefficients being low.

6. Quantics of the degreo 4m have invariants of the third order in the coef-
ficients.

For cubics have invariants of the type am, of the order 4m in the coefficients,
A being the discriminant. This and the next four examples are immediate
deductions from Hermite’s Law of Reciprocity (Art. 209).

6. Quantics of the degree @ have as many invariants of the fourth order as
there are solutions in positive integers of the equation 2p + 3¢ =®. A quintic,
for example, has one, a sextic two, a septic one, an octavic two; and so on.

For quartics have invariants of the type Ir J4, which is of the order 2p+3¢=z
in the coefficients.

7. Every quantic of the degree 2p + ¢ has a covariant of the second order in
the coefficients. In particular, when ¢ =1, every quantic of odd degree has &
quadratic covariant of the second order in the coefficients (cf. Ex. 1).

For quadratics have covariants of the type a? Uh¢, which is of the order 2p + ¢
in the coeflicients.
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8. Every binary quantic of an odd degree greater than 3 has a linear covariant
of the fifth order in the coefficients.

For a quintic has an invariant I; of the 4th order, the discriminant of I, also
covariants of the 6th and 7th orders, viz. Ly (Ex. 2) and M, = Lp I,; from theso
we form the covariants J#'L., of order 4p + 1, and I >3 M, of order 4p - 1;
but every odd number is of the form 4p + 1.—HErMITE.

9. Every quantic of the degree 4p + 2 has a quadratic covariant of the third
order in the coefficients.

For a cubic has a quadratic covariant of the type APH, of the order 4p + 2 in
the coefficients.

10. When the quintic (a0, a1, a3, as, a4, as) (2, y)* hasa triple factor, prove that
the covariant I, is a perfect square, and the covariant J; a perfect cube, the linear
factor being the triple factor of the quintic in both cases.

11. When the quintic has two double factors, the remaining factor is a single
factor of J,.

12. If U, = (a0, a1, 63, ... an) (2, y)*, prove that the resultant of U, and the
covariant G, is the discriminant of U cubed; that is, R (U, @) = A% (UL); and
prove also B (U., H;) = A3 (U%).

Express H, and G, in terms of the semicovariants U, U1, ... U1, U.

13. If U and ¥ be two cubics, express U, V3 in terms of their combinants
Pand Q.

14. When the quintic has a triple root, the following symmetric functions of the
roots vanish : —
X (a1 — a3)? V (a3, a4, as), E(a1 —aa)* ¥ (as, ay, as)-
15. Transform two given quadratics in 2, y to the forms
awd + b3, a'ud 4 b3,
where % and v are linear functions of z and y.
16. If the coefficients of three quadratics
a1z + 2hizy + g,  a22* + 2bazy + oay?,  asa? + 2bsy + ogy?
be connected by the relation
a1 bl (23
aa b ea |=0,
i a b s
prove that they may be reduced by linear transformation to the forms
A\ X3+ 173, A3X34+ O3F3, A3X%+ CaX2.

The determinant here written is the condition that the three quadratics should
determine a system of points or lines in involution.
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17. To reduce two quadrics in three variables to the sums of the same three
squares with proper coefficients.

Let Uwmax? + By? + es* + 2fys + 295z + 2hzy,
F=ax?+ biy? + as® + 2Niys+ 29185 + 2M12y,
dF dF dF
F(z, 9,5 =AU+, x=*5’ Yﬂ}d—y, z=iz-
We have then identically

Aa+a1 AR+ M A9+ 1 X
» 1 AM+h Ab+H AM+NH ¥ ’(A)
AN | g+ g AM+hHh re+a Z A(A)
0

i X Y z

where A (A) is the discriminant of AU+ 7'; and #(A) is a function of the 2nd
degree in A, the symbols X, ¥, Z being retained in it for the present, and not
replaced by the values involving A.

Resolving into partial fractions, we have

e) 1 e 1 e() 1 )
A AT a) Amma T AR Aoy (

in which & (A;), ® (A2), ®(As) are all perfect squares, since they are obtained by
bordering the vanishing determinants A (A1), A (As), A (As). (Art. 149.)

Now, replacing X, ¥, Z by their values, AUy + V1, &c., ®(A)) is easily re-
ducible to the form

Nat+ay NhA+M Mg+ gn TG
Nh+hy A+ B AFH N Oa
-(rA-a)? = (A - APt
ANg+n Nf+Si et Us
L/} & Us 0
where j =1, 2, or 3, and #; is independent of A.
Substituting these values in (1), we find
AT+ Fa(h=a) 2 b n = a) =5 4 = ng)
Va (A y* Voot A(M)
Equating the coefficients of A, we have
103 %? u3?
e o — —_—
= A'(A1)  A'(A3) + A'(hs)’
ua? us?
-Vea As ——
Eo N E ™ S
which was required to be done.
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It is to be observed that this problem has only one solution. The mode of
reduction here given is due to Darboux ; and is plainly applicable whatever be the
number of variables.

18. Prove that two cubics can, in general, be transformed one into the other by
linear transformation.

19. Expreess three cubics, U, ¥, ¥, by means of three cubes.

Assuming

AU+ uV + v W = (z - py)’, (1)
and comparing coeficients, we have
Aay + pas +vas = 1,
Aby + uby + wby = — p,
Acy + uez + weg = pt,
Ady + pdy + vds = — pd.

These equations, by eliminating A, u, v, give three values of p, and corresponding
values of A, u, »: in this way we obtain three equations of the form (1) to deter-
mine U, ¥V, W in terms of

(z—py)? (z-p9) (z-p)*
It is easy to see that p is given by the equation

ap+b  ap+b  ap+bs
bip+tear  dip +ea bsp+es |=0,

cp+dr  cp +ds csp + ds

A eimilar method may be applied to express n quantics of the n‘A order in terms
of n ntd powers.

20. Prove that the three roots of a cubic may be expressed as

xy, 0(11), Oz(Il),
where

lx +m
7y and 63(z) ==z.

6(z) =

From Art. 60, putting §' J - %— = K, where ¢ =1 or — 1, we derive

K(B-9)=HBy+ Hi(B+7) + Ha,
K(y—a) = Hya + Hi(y +a) + Ha, (1
K(a—B8) = HaB+ Hi(a + B) + Hs.
These homographic relations between the roots may be written in the form
B=0(y), v=0(a), a=0(B);

where the numerator and denominator in 6 are supposed to be divided by 2K ; and
this being done it will be found that 7, m, 7, m’ are connected by the relations
im' ~Im=1=14+ m', and the roots a, 7, 8 may be represented as a, 0 (a), 6° (a) ;
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0% (a) being equal to a. It is important to observe that the equations (1) are con-
sistent, the sum of the expressions on the right-hand side being zero; that is to
say, K must have the same sign in all three, any other combination of signs being
inadmissible.

This example is a particular case of a general theorem of Abel’s, vis.—If the
m roots of an equation of the m¢ degree are a, 8 (), 62 (), . . . 0*- (a), where 0(z)
is a rational function such that when the operation 0 is repeated m times 6= (z) = z,
then the solution requires only the determination of a primitive root of 2% — 1 = 0
and the extraction of the m*» root of a known quantity.

21. Given a binary cubic U and its Hessian Hy, the cubic being satisfied by the
ratios 2 : y and #': y'; prove that

dH,  dH.
17wy
va W-%y
is an absolute constant, A being the discriminant of U.
This expression is absolutely unchanged by linear transformation, since

Hx,f= M'H’,', A’= MGA,
and

z y
7z ¢

d
T AT Y.

X v 1 a4
ax it " *m YV ay

x v | X

Reducing U to the sum of two cubes by a linear transformation whose modulus
= 1, the constant may be easily shown to be

This is another form of the

V-3
homographic relation of Art. 60.

22. Prove that a rational homographic relation in terms of the coefficients
connects any two rational functions of the same root of a cubic equation; but
that the relation is not rational when the roots are different.

23. Transform the quartic

(a, 8, ¢, d, o) (z, 1)*
into one whose invariant I shall vanish.

Assuming ye2d+ 292+,
and making the invariant J of the transformed equation vanish, we have

I(p—p)P(p-p)=0, ®
where ¢ is a known quadratic function of 7, not involving ¢.

Expanding (1), we have o

Ig* - 3p + 5 =0,

which determines ¢, and consequently », by means of a quadratic equation; and ¢
may have any value.

By a similar transformation J can be made to vanish.
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. 24, Prove that the most general rational transformation of a quartic f(z) may

be reduced to the transformation
P Q
' D — —

p-z g-z
When P= Rf(p) f (g), and Q= — Rf(q) f'(p), show that the second term of
the transformed quartic is absent.
25. Prove that the transformation

a4+ 28z + y

v Ty ”

may be accomplished by the three successive transformations—(1) a homographic
transformation ; (2) a transformation of the roots into their squares; (3) a homo-
graphic transformation.

26. If p be any integer, prove that

(B1P — 24P) (2sP — 2&)

Y e x4+ 3
@) (z122 + 2524) 21,

where % and 3; are symmetric functions of 21, 22, 23, z¢ ; prove also that

(9(n1) — ¢ (2a)) (9 (23) — ¢ (20)) _ o + 21 (1122 + 2574)
¥ (@) = ¥ (@) (¥ (@) = ¥ (@)~ X, + X1 (@121 + 2524)

where 3o, 3, X', X1 are symmetric functions of 21, 23, 23, 2.
27. If ¢ (, y) and ¢ (2, y) be two covariants of the binary form
U= (a0, a1, 63, . .. 6a) (7, y)*
of the degrees p and g, respectively ; and if
1dy 1dy )

cp(zx qde, yx+qdzr

be expanded in the form
(Voo "1y Py ... Vo) (X, Y)»;

prove that Vo, V1, V3, .... Vp are covariants of U. (HERMITE.)
Ezxpanding, the coeflicient of Xr7 ¥ is

(=1y  (dyd _dy g_);
1.2.3...; (@dz’ﬁ ayl ¥
The modulus of this transformation of ¢ is § (2, y).

28. When in the preceding example n = 4, and ¢(z, y) and ¥ (2, y) are replaced
by U, find the values of Vo, V1, V3, V3, Vi.

Ans. U(1, 0, H, G», IUY - 8H%) (X, D).
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29. Prove for two cubics U and ¥V

Dn Da Dy
a =16 .D]I Dﬂ D!’ ’
Dys Dis Dy

where Dy, D1a, &c., are the invariants of the three Hessians, and Q has the same
signification as in Art. 191.

30. Eliminate 2’ from the equations
8 = (607 + @) 2 + (aox + 3a17" + 2a3) y, (a0, a1, 43, a3) (¥, 1)3=0.
Ans. 5 + 3He,y8 + Gy =0.
31. Transform the quadric (a, 5, ¢, f, 9, A) (2, ¥, %) to X, ¥, Z, where
X=aiz+Biy+7z, Y=ar+Biy+75, Z=a2+By+7s.
Ans. M M3 s X
Nz 22 Mas Y
My M2 My 2
X Y V4 0

where My= daiaj + BBiB; + Cyiys + F(Bivs + Bryi) + @ (vioy + asyy) + H(aiBy+ aiBi),
and A4, B, C, F, G, H are the coefficients of the tangential form of
@ b6, f, 9, B) (5, 9, 8.
32. Prove that the quartic (a, $, ¢, d, ¢) (2, y)* may be transformed into
kn (48 — Itn® + )
E=lztmy, n=z-13y,

by the substitution

where a, B, 7, 8 are the roots, and
120=-3(a-8)(B—3), 12m=3a(8-38)(y-3),
and % is a function of a, B8, v, 3.

33. When U: is a quartic, and H, its Hessian, prove that the factors of
U.H, — UyHy are z - y, and the three quadratic factors of @, (Art. 182) when
«y replaces 22, and z + y replaces 2z.

34. Prove that all quartic covariants of U, whose roots are rational functions
of the roots of U, are included in the formula

(p*+ 4Ip* — 2Jp + Y4I?) Us— (4p°-Ip+J) H,. (Mn. RusserL.)
How is this example connected with the preceding P
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86. Prove that 2%+ 228 L =Y 504 factor of 13T, — 167H,,
T—ati-pt iy

where Us=(x—a)(z- B)(z—17)(z-3).

36. If U. and U’; be two quartics which have the same absolute invariant,

prove that
IVH, Uy - I'VH' U,

may be resolved into four factors of the form

Azt + Bz + Cif + Dy (Me. RusseLL.)
37. If the leading coefficient of a covariant involve the coefficients of several
quantics in the orders @), @3, . . - Wr and weights ), i, . . . xr, the degree of

the covariant is
mam+mwrt,. .+ -2(trat ... +nr)

38. If for every difference ap — aq, in the formation of a seminvariant ¢ of an

equation U =0, we substitute
(ap — ag)
(z = ap) (z — ay)’

prove that the result is the product of the covariant whose leader is ¢ by Ux-=,
where = is the order and x the weight of ¢.

39. When U is a quintic, what are the invariants of the quartic emanant

,d d\s
(z o +y d_y) e
Ans, The quadric and cubic covariants I, and J,.
40. Give the relation connecting the covariants Hy, Gx, Iz, Js, of any quantic U.
Ans. — G = 4H,3 — UH, I + U,

41. Show how to transform a quantic of an odd order so that all the new coef-
ficients shall be invariants.
Ans, Take two linear covariants for the new X and Y.

42. Find the relation which connects the coefficients of two quartics when their
roots are connected by the relation

1 a o aa
1 B B BF
= 0.
1 v 7
1 3 ¥ 3

Ans. I3 = I'3)* = 0,
(Cf. Ex. 13, p. 54; and 13, 14, p. 119, Vol. 1.)
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43. Transform a cubic U into its cubic covariant G4 by linear transformation.
Making the transformation given by the equation

dH, dH, .
F4 —E +VW—0,thomsultnAG.l.

44. Transform a quartic U into itself by linear transformation.
If
U= A (2 + ¢*) + 2Bs%?,
the quadratic factors of the covariant G, are zy, 2? + ¢?, 22 — y*; now making the

transformation determined by the equation 2 :’;’ +y z—; =0, where ¢ is any one of

.of these three factors, U is transformed into U".
45. If three quadratics be mutually harmonic, prove that they may be reduced
to the forms
AX? + CY?, AX'-CY?, BXY.

46. It ¢ (a0, a1, a3, . . . an) be a seminvariant of U,, prove that
¢ (Dag, Day, Day, . . . Day)
is an invariant or seminvariant of U..1, where
d d d
DHGodTl+2dl-d—a’—+...+m.jz-
Pror. PETRRSEN.
47. Form for a quintic seminvariants whose order is 4 and weight 8.
The terms contained in the complete gradient® Gy, are as follows :
ao’as?, a1*asay, aoa1a3a4, aoasayy aoa1ay?, a1as?, a1asas, ast, ao’asas, God104as, G1%es.
Operating with D, and making DG,s = 0, we find seminvariants of the type
IS+ mI3,
where I has the usual meaning, and
8 = aq’a? — 3aon1a3a4 — 4604204 + 4aoaras® + 5a)azaq + 2a1ay? ~ 8a1as%as
+ 3a3* — as (a0%as® — Baoaias + 2a:7).

48. Prove that the quadratic factors u, v, w of G« expressed in terms of the roots
are unchanged when for z, a, B, 7, 3 their reciprocals are substituted and fractions
removed by the multiplier (- 1) 2%aBv8.

It appears, therefore, that ao, aov, a0t may separately be regarded as covariants
if the rational domain, which before included only the coefficients, be regarded as
extended by the adjunction to it of the roots a, 8, v, 3.

# The term ‘‘gradient’’ is used to signify the sum of all possible terms of any
assigned order and weight.
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SecrioN IV.—GEOMETRICAL TRANSFORMATIONS.*

211. Transformation of Binary to Ternary Forms.
—Woe think it desirable, before closing the present chapter, to
give a brief account of a simple transformation from a binary to
a ternary system of variables, whereby a geometrical interpre-
tation may be given to several of the results contained in the
preceding chapters. The applications which follow in connexion
with the quadratic and quartic will be sufficient to explain this
mode of transformation; and will enable the student acquainted
with the principles of analytic geometry to trace further the
analogy which exists between the two systems.

Denoting the original variables, i.e. the variables of the

binary system, by z,, ., we propose to transform to a ternary
system by the substitutions

z =&, !/'230.'/09 $=y.

For example, taking the simple case of a quadratic whose
roots are a, (3, viz.,

2.} = (a + B) 2oy, + afys’ = 0,
and transforming, we obtain

z-3(a+PB)y+afBz=0. (1)
‘We have also the equation
Yy -43x=0.

This is the equation of a conic, which we call ¥, and (1) is
plainly the equation of a chord of this conic joining the points
a and (3, the point determined by the equations

g,e 2"/—¢=s, where ¢=§:,

being referred to as the point ¢ on the conio V.

® See Quarterly Journal of Mathematios, vol. x., p. 211, 1869.
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‘When a = 3 the quadratio becomes (z, - ay.)*, i.e. the square
of a factor of the first degree ; also (1) reduces to z—ay + a’s =0,
which is plainly the equation of the tangent at the point a to
the conic ¥'; whence the line corresponding to a quadratic with
distinot roots is a chord of the conic V, this line becoming a
tangent when the roots are equal.

In further illustration of this method we consider the
binary sextic and quintic, so as to show how the transformation
is presented differently according as the degree of the quantio
is even or odd. In the former case we have

U, = (z,— ary,) (2o - asy,) (2, — asy,) (zo - 00!/0) (zo - as!/u) (-to - ﬂo!/o)y
which becomes by transformation

C13C3Cs6y  C13C35Cesy  C13C36Cesy

or some other of the fifteen similar products of chords, where
ca=2— 3} (a1 + a3) ¥ + a;a,8 i8 the chord 1, 2; and c,,, cs, &o.,
have a like signification. In the second case, viz. when the
degree of the binary quantic is odd, we must square U, before
making the transformation. Thus, if U, represents the pro-
duct of the first five factors written above, U,> becomes when
transformed #t,4¢.f;, where ¢, =2 - aiy + a’s is the tangent
to ¥ at the point a,, and %, ¢;, &c., have a like signification.

212. The Quadratic and Systems of Quadratics.—
The only invariant that a quadratio has is its disoriminant,
and this isalso an invariant in the ternary system, its vanishing
being the condition that the line corresponding to the quadratic
should touch the conic ¥. 'We now consider the system of two
quadratios

az,? + 2bxoyo + oy, a'zt + 2z, + 'y},

which for shortness we call L and M.
‘When transformed these become two lines

L=az+ by+cs, M=a'x+by+cs.
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Now the condition that the line whose equationis AL + u =0
should touch the oonic ¥ is

A'(ac—b") + Au(ac’ +a’c - 2bb) + u(a’d’ - 4) = 0. (2)

All the coefficients of this equation are invariants in both
systems : we have already seen that this is true of the first and
last coefficients, and the intermediate coefficient which is the
harmonio invariant of the binary system is an invariant in the
ternary system also, its vanishing expressing the condition that
the lines L, M should be conjugate with regard to the conic V.
. This equation determines the tangents which can be drawn
through the point of intersection of L and M to the conic V.
When this point is on the conic the tangents coincide, and the
discriminant of the quadratic vanishes. 'Whence we obtain
geometrically the following form for the resultant of two qua-
dratios : —

R = 4(ac- ) (¢ - b*) - (ac’ + ac - 2bY')*;

for if L, M, and ¥ have a common point, the original quadra-
tics must have a common root, and the condition is in each case
the same.

Again, the pairs of points or lines given by the equation
AL + uM = 0 form a system in involution (cf. Art. 189), the
double points or lines being determined by the equation (2);
and in the ternary system the corresponding pencil of lines
passing through a fixed point determines on a conic a system of
points in involution, the double points being the points of con-
tact of tangents drawn to the conic from the fixed point.

If we consider next the three quadratics

az + 2b,2y, + a1ys’y Aty + by, + ety aste + 2byz0y, + csy t,

it is seen that the determinant (a,4:c;) is an invariant in both
systems, its vanishing being the condition in the binary system
that the quadratios should form an involution (Ex. 16, p. 199),
and in the ternary system that the three corresponding lines
should meet in a point.

VOL. II. P
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As a final illustration, we consider a system of three qua-
dratios connected in pairs by the harmonio relations

a,6; + axe, — 20,0, = 0, &oe.

Transforming the quadratics, we obtain three lines X, ¥, Z,
which form a self-conjugate triangle with regard to the conic V.
The theorem relating to three mutually harmonic quadratics,
viz. that their squares are connected by an identical linear
relation (see Ex. 6, p. 134), is suggested by a well-known
property of conics ; for ¥ expressed in terms of X, ¥, Zis of
the form
V=X'+Y'+2%

whence, restoring the original variables =z, y, ¥, vanishes
- identically, and X, ¥, Z become the original quadratics, each
divided by a factor which may be seen to be the square root of
its discriminant (see (1), Ex. 6, p. 135).

213. The Quartic and its Covariants treated geeo-
metrically.—It will appear from the remarks to be made in
the next Articles that in applying the transformation now
under consideration to the quartic U, =(a, b, ¢, d, ¢)(2,, y,)*, the
term 6cz,’y,* will be replaced by 2¢zs + cy?, so that the quartio
will be replaced by the two following conics :—

U =ax®+ cy* + ez* + 2dyz + 2cze + 2y,
V =y - dzr;
the form of U here selected being connected with ¥ by an

invariant relation. The invariants of U and V are invariants
of the original binary form, for the discriminant of U-pV¥ is

4p* - Ip + J,
and the invariants of the ternary system are
A'=-4, 6'=0, 6=1, A=J;
where I and J are the invariants of the quartic, the diseri-
minant of U - pV being written as usual under the form
A - o9 + 0™ - A,
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Let the conics U and V intersect in the points 4, B, C, D,
these points being determined by the equations
z _y
o 2
when ¢ has the four values a, 3, v, J, the roots of the binary
quartio ; and let the points of intersection of the common chords
BC, AD; CA, BD; AB, CD be E, F, @, respectively, where
EFQ@ is the triangle self-conjugate with regard to both conies.
Now, denoting by (af3) = 0 the equation of the line 4B, and
using & similar notation for the remaining chords, we have by
the theory of conics

U-pV=By)(ad), U-pV=(va)([B), U-psV =(aP)(yd),

where pi, ps, ps are the roots of the equation 4p* — Ip + J = 0.

On restoring the original variables ,, y, in these equations,
V., vanishes identically, and we have U, resolved into a pair of
quadratic factors in three different ways, depending on the
solution of the reducing cubic of the quartic. "Whenoce it
appears that the resolution of a quartic into its pairs of quad-
ratio faotors, and the determination of the pairs of lines which
pass through the four interseotions of two conics, are identical
problems, each depending on the solution of the same cubic
equation.

‘We now prooeed to show that the sides of the common self-
conjugate triangle of U, ¥V correspond to the quadratio factors
of the sextic covariant in the binary system. Since the side
F@ is the polar of E, the coordinates 2/, 4 of E are found by
solving the equations (8y) = 0, (ad) = 0; we have, therefore,

2 _ v B 4
Bya+d)-ad(B+y) 2(By-ad) P+y-a-¥
and, substituting for 2/, ¥/, 5’ the values thus determined in the
polar of E, viz.,

8,

a:s’—y—g+z’s=0,

we express this equation in the form

(ﬁ+1—a—8)z—(ﬁ7—a8)y+(zﬁy (a+d)-ad(B+v))e=0.
P
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On restoring the original variables ,, y,, this is seen to be
one of the quadratic factors of the sextic covariant (Art. 182).
It is therefore proved that the points where FG' meets ¥V are
determined by the quadratio equation

B+y-a-8)¢'-2(By-ad)p+Py(a+d)-ad(B+y)=0;
and consequently the six points on ¥ which correspond to the
roots of the sextic covariant are the points where this conioc
meets the sides of the common self-conjugate triangle of U
and V.

To determine the points on ¥ which correspond to the roots
of the Hessian, we caloulate for the conics U and ¥ the oo-
variant conic I (Salmon’s Conic Sections, Art. 378); thus
finding
~3F=(ac-b")2*+ (bd-c) y* + (ce — d*) 8* + (be—cd) ys

+ (ae — 2bd + ¢*) sz + (ad - bc) zy ;
and on restoring the original variables, we have
H (zy o)t = — } Fy;

also, since the conioc & interseots U and ¥ in the points of con-
taot of their common tangents, we see that the points on ¥
corresponding to the roots of the Hessian are the points so
determined. The Hessian has, moreover, a double geometrio
origin, for it may equally well be obtained by transforming the
oonio ¢ (Salmon’s Conics, Art. 377) which is the envelope of a
line cut harmonically by the conics U and V.

214. We now give some general transformations from the
binary system to the ternary, which will be useful in comparing
the concomitants in both systems.

(1). Linear transformation of both systems.

If the binary variables be linearly transformed, the new
variables expressed in terms of the old being

Xo= A2+ pyoy, Yo=Nao+ u'yo
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the new ternary variables will be expressed in terms of the old
as follows:—

X =Nz + Ay + u's,

Y =2\\"z + (Ay' + Xp) y+ 2;1;1'3,

Z =Xz + Nu'y + u''s;
and, consequently,

Y- 4ZX = A\’ - Nu)? (y* - 4s2),

showing that the form of the fired conic is unaltered by the above
linear transformation of 2, y, s, which conversely leads to the
general linear transformation of the primitive binary variables.
The modulus of this ternary transformation is (Ax” - A'u)? (see
Ex. 4, p. 88).

(2). Transformation of Partial Differential Coefficients.

If f (20, yo) becomes U by the substitution of Art. 211, we
have

d aug au

titf., 2‘”0 dz 2.’/0 @’
and therefore
ar 2dU 4( ' U ?*U d’U) (d’U d’U)

d?’ zWJ'y}?éJy'sM—"d;d—z"&?
d/ dU dU d dU
—4E(xd_x+y3;+ dU) 2——4511((/),
here I1 ed to denote th tion —— @ £
where II is used to denote the opera Teds Ay

Hence, the degree of f being 7, and therefore of U being 3,
we have

af aUu .
o B 2(n-1) Tz -43I1(U), and similarly

drf aU
dz,dyo=2(” -1 @+ 2y (U),
af

T =20- 1)"7?-4xn(17).
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If the transformation be such that [1(U) vanishes identi-
cally, we have, for the transformation of the second differential
coefficients, the following simple values :—

ar av  df

-2 dU d*f au
dz} )dz’ dr,dy,

d_y’ W’=2(”—1)—.
0

=2(n-1) =

From these values we find easily

1 d dU dU ,d
2(FeintVogy) == (G v T E)

showing that the second emanant (Axt. 174) in the binary system
8 trangformed into the first polar in the ternary system ; and in
like manner all the even emanants are transformed into polar
ourves of one-half the degree.

Again, if the second differential coefficients of / when ex-
pressed in the ternary system be represented as follows : —

% =1 (2, ¥,3), d;pi;/ =¢2 (2 9, 8), %{i = ¢s(2, ¥, 3),
we will have I (¢, + ypa + 5¢ps) = 0,

provided that I1(¢,) =0, IT (¢) = 0, and II(¢s) = 0;
@p_ C¢s_ _ dps

dy}  deydy, dx*’

and therefore by what precedes

for

dp, _dps _ dps.
ds  dy dz’
d {
but (z¢,+y¢,+s¢,)=7¢+—‘r;-2fd%3,

which vanishes identically.
Moreover, it may be noticed that when IT (¢,), I1(gs), I (¢s)
do not vanish, we have in general

(n = 8) I (21 + ys + 5¢s) = (n = 1) (2T1 (¢.) + Y11 (¢s) + 311 (¢5) ).
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(8). Transformation of the Jacobian.

The Jacobian of any binary system w, o, is transformed into
the Jacobian of U, V, and the fixed conic 420 — y*= W; W
being here used for the conio ¥ of Art. 211, with sign changed,
and U, V being the transformed values of v, v. For

du du
7, 9) dz, dy, 1 az, + by, by +cy,
’ do do (m=1)(W-1)| a'ay+ by, Va,+cy, ’
dz, dy,

n and »’ being the degrees of # and o, respectively, and a, b, ¢
being used to denote the second differential coefficients ; whence
we have

U dU dU

a b c de dy ds

s 1 ’ ’ 4 - dV dV dV
S 0) = o) , b "" |\ & dy &)
Yoo ~%ubo To AW dW dW

dz dy ds

the last determinant being obtained from the preceding by the
transformation in ().
In oconnexion with this transformation it may be noticed that

J(U+oW, V+yW, W)=J(U, V, W)+ WJ($, ¥, ¥);

whenoe it follows that J(T +¢ W, V +y W, W) and J(U,V, W)
give when transformed the same covariant in the binary system.

(4). The Hessian and other concomitants.
For the transformation of the Hessian we have

n* (n-1)* H(u) = E Ay (%)
o Jo "0t 0,
,(dU dU  (dU\
=4(u—l) % E‘('@) };

which proves that one curve into which the Hessian may be
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transformed is the locus of thé poles with regard to U of
tangents to the fixed conio.

The line corresponding to the binary concomitant
(eo/s = Zug)* I8 '~ dyy + 5,

which is the polar of 2/, y/, 8 with regard to the fixed conic.
If the quadratics

az} + 2bzy, + ¢y, A’z + 2W°zy, + Yy,

become when transformed the lines L, M, the Jacobian
J (L, M, V) determines the polar line of their intersection with
regard to the fixed conic V.
The ourve corresponding to the covariant

u dy  du Loy du o

dag® dy  dy,' dwy’ drydy, dz,dy,

dU 4V dU AV _, a0 a7

de ds  ds dz dy dy’
which equated to zero is the condition that the polar lines of a
point with regard to U and ¥ should be conjugate with regard
to the fixed conic. This covariant may be written under the
form II(UV), when II(U) =0, II(V)=0.

215. When the transformation of Art. 211 is applied to a
quantic f'(2,, y,) of even degree 2m, it is plain that the roots of
this quantio will be determined geometrically by the points of
intersection of a curve of the m' degree with the fixed conic
V. 1f the degree of the quantic is odd, it must, as already
stated, be squared before the transformation is effected ; and
the roots will then be determined geometrically by the points
of contact of the corresponding curve with the conie.

In transforming the quantic f(z, y,) we may obtain an
indefinite number of ternary forms by varying the mode of
transformation ; for if U be any one of these forms, U + ¢ms ¥,
in which the coefficients of ¢n3 are arbitrary, would equally
well be a transformation of f(z, y,), since this form would,
on restoring the original variables, return to the quantic

is

.
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S (2 ). Moreover, every possible transformation is included
in the foregoing. It is, however, important to notice that
among these innumerable ternary forms there 18 always one such
that the invariants and covariants of this form combined with V
are tnvariants and covariants of the binary quantic also. To
determine this form take the operator II of the preceding
Artiole, which, as can be easily seen, is obtained by substituting
the differential symbols D., Dy, D, in the tangential form of V,
or D,, -2D,, D, for z, y, 2 in V itself. Operating then with I
on U + ¢naV, we obtain a result ¥,_, of the degree m — 2;
and equating to zero its coefficients, we have equations suffi-
cient to determine all the coefficients of ¢m-.. The required
transformation therefore is unique, as these equations are of the
first degree. It may also be noticed that
O¢pmaV = VIgpms— 2 (2m - 1) pma.

This mode of fixing the form of U + ¢usV is unaltered by
any linear transformation of the binary variables and the con-
sequent linear transformation of the ternary variables; for,
referring to (1), Art. 214, it is easily proved that the differential
operator o » ” »

- 7 )2

ade ~ ap - MW (IZdX dY’)’
and if after linear transformation any function f(z, y, ) becomes
F(X, ¥, Z), we have

LA S )’( #F  &F

dsdz  dy} (ZdX ~ dY ’)’
which proves that the form F(X, ¥, Z) is fixed by the same law
as f(«, y, %), and this law is independent of the linear transfor-
mation of the binary system.

The following method may be employed to obtain the
proper form of U corresponding to a given binary quantie
of even degree. Let the quartio u, = (a,, a1, a3, as, a;) (%o, ¥,)*
be written in the form

1 d’ Uy d’u, , Cuy)
3.4|° da? + 25l dz,dy, *tyd dy, Ty
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transforming the second differential coefficients, and multiplying
the terms by z, y, s, respectively, we obtain the proper form for
U, such that II (U) = 0, viz.

az’ + ayt + a8 + 2ayz + 2a.5x + 2a,zy.

Again, in the case of the sextic u,, writing it in the form

1 z,d’u,+2.“ d*u, . . Tt
5.6 17° dz? oo dz,dy, Yo dy)’

d‘u  du d*u
de dzdys’ dys
just explained, and multiplying by z, y, s, respectively, we
obtain a ternary cubic U of the proper form (see (2), Art. 214).
In a similar manner the transformation of the octavie is made
to depend on that of the sextic; and proceeding in this way
step by step we may transform any binary quantic » of even
degree to a ternary quantic U of half the degree, such that
n(v)=0.

216. Combined System of a Quartic and Quadratie.
—Transforming this binary system we have a ternary system
composed of two conics and a line ; and for simplicity we shall
suppose the conics referred to their common self-conjugate
triangle. Denoting the quartic and quadratic by U, and L,
respectively, and the corresponding ternary forms by U and L,
we have

transforming the quartics in the manner

U=ar+by* + cz*, a+b+ec=0,
V=2+ p*+ 5% be+ca+ab=1I,
L=azx + 3y + s, abe = I,

To obtain the linear covariants of this system, since a, (3, v are
the coordinates of the pole of L with regard to V, the polar of
this point with regard to U is aar + 0By + cys = M, the first oo-
variant ; and treating M in the same way, aa, b3, cy being the
coordinates of its pole with regard to ¥, the polar of this point
with regard to U is ¢’ar + 6’8y + c*ys = N, which is a second
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covariant. 'We cannot derive any more linear covariants in
this way, for the next one so derived is

aaz+ bBy +Pys=a(be- L) ax + b (ca- I,) By + c(ab - I) ys,

and can therefore be expressed in terms of L and M in the
form I,L - LM. But three more linear covariants L', M’, N’
may be obtained by taking the poles of L, M, N with regard to
V, and joining them two and two. This system may be ex-
pressed by the Jacobians

J(M,N, V), JWN,L V), J(L M, V).
‘We have therefore obtained six linear covariants L, M, N, and
L'y, M’, N’; to which all others may be reduced, for example
o= @ax + U"By + "y
= a"? (be— I,) az + 0™ (ca - I,) By + ¢** (ab - I,) y=
= Iips = Lty s ;
also
. b'caz + ca'By + a’b*ys = I,'L + LM + I, N,
since
be=a*+ I, ca=0'+1, ab=c*+1I,.
Similarly, "c"az + c"a"By + a"b"ys may be reduced to the form
AL+ BM+ CN ; and other reductions which present themselves
impose no difficulty.

These six linear covariants when transformed give six
quadratic covariants in the binary system.

There are six invariants, but only three are special inva-
riants of this system. To obtain them, let the condition that
AL + uM + vN should touch ¥ be

DA? + Dyp® + Do* + 2Dsuv + 2D + 2D A = 0

whence we obtain five invariants, D,, D,, D,, D,, D, where
D, = a"a* + b"[3* + c"y*, three of which only are independent, for

Dy=a™* (be— L) a® + 0% (ca - I,) B* + o (ab - L) *

=1LiD, - Ian-zi
whence
Da = IaDo - Izl)n, D=1,D, - IzDﬁ
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and thus we obtain no more than the five invariants 1,, I, D,
D,, D,, the two last being special invariants. D, vanishes
when L and M are conjugate with regard to ¥, and D, when
L and N are conjugate with regard to V.

The remaining special invariant may be obtained as the
eliminant of L, M, N, viz.

a B
aa BB oy |= R
da BB oy

The square of the last invariant can be expressed in terms
of D,, D,, D,, for

a ﬁ Y ! D, D, D,

R’]zg = aa bB c’y = Dl D’ DS ’
aa V3 cy D, D, D,
8150 D; - I;Du - LD], l)‘ = I;D] - I’Dj-

Ry, plainly vanishes when L passes through one of the
vertices of the common self-conjugate triangle of U and V.

‘We proceed now to express the resultant of the quadratio
and quartio in terms of D,, D,, D,. This is the same problem
as to find the condition that L should pass through one of the
four points U, ¥, and is most easily solved by finding the con-
dition that only one conic of the system U - p¥ can be drawn
to touch L. Now if L touch U - pV

P! (a®+ B3+ v?) — p (aa® + BB3* + cy?) + bea® + caf3* + aby* =0,
or Dy - Dip + D, + I,D, = 0,
and the discriminant of this quadratio is R, whence
R =D?-4D,D, - 4I,D}.

* It is not permissible to infer in general that Rizsis resolvable into factors,
for it aBy be taken out as factor the remaining factor is not an invariant expressed
in a rational form, and all irrational quantities are outside our domain of investi-
gation.
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The geometrical meaning of the relation D, = 0 is that the
line L is cut harmonically by the conics U and V.

To determine the quartio covariants of the binary system
from the quadric covariants of the ternary system, we have in
the ternary system three quadric covariants, viz. the Jacobians

JIL U, V), JMU,V), JNUV);
there are also the three conics
JIL,V, W), JIM,V,W), J(N,V,W),
where W = a’2* + b%® + ¢'%, the harmonie conic of az® + by* + cs?
and 2* + y* + s*, with sign changed.

These three conics are easily reduced, for
JM,U,V)=J(LV,W), JINU,V)=JHM,V,W);
J(N, V, W) =I3J(M U,v)-LJ(L, U, V);
whence there are only three special quadric covariants, and
consequently only three special quartic covariants of the

binary system.

Before conoluding this Article we give some of the forms
which would have been obtained if we had employed the
ordinary equations of the conies U and V, viz.

U = az* + cy + ex* + 2dys + 2csx + 2bzy,
V =y - 4z
The condition that L = az + By + s should toush U - p ¥V

i8 now
S -pP+p'Y, where

3 = (ce — d®) a® + (ae - ¢*) 3* + (ac - b*) y*
+ 2 (be - ad) By + 2(bd - ) ya + 2 (cd - be) af3,
® = ea’ + 4¢f3? + ay' — 483y + 2cya - 4daf3,
2 =4(ya - 3.
Also R,,, is the Jacobian of 3, ®, =, considered as conics ;

and
It=—4I’ I8=_4‘I’

where I and J are as usual the invariants of the quartic.
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Examprrs.

1. If a quartic have a double factor, prove geometrically that this factor is a
double factor of H,.

2. If a quartic have a square factor, prove geometrically that this factor is
a quintuple factor of the covariant G.; and construct the point on the conic ¥
which corresponds to the remaining root of the equation G, =0.

3. Resolve the quartic as in Art. 185 by finding the tangents to the conic ¥
where U meets it, U and 7 having been expressed as sums of squares.

4. Determine the condition that A« + ur should have two square factors,
where « and v are quartics.

Transforming, we have in this case

AU+ uV + v (y? — 452) =2 (az + By + 7)*;

consequently, every term in the tangential form of AU + u¥ + » (y? — 42r) must
vanish, giving six equations to climinate A%, u3, »*, uv, »A, Au; hence the required
condition is determined.

5. Apply the transformation of Art. 211 to prove the theorem of Art. 197.

Let Tschirnhausen’s transformation be put under the form

ety o
a2+ 28z + o

Make the numerator and denominator of the last fraction homogeneous in z, y;

replace z by — A, and transform: (1) becomes then

L+AL =0,
where L=az+By+793 L =daz+By+s

If z, y, £ be eliminated from the equations L +AL' =0, U=0, V =0, we
shall have the transformed quartic in A ; which, considered geometrically, deter-
mines the lines drawn from the point of intersection P of L and L' to the points of
intersection 4, B, C, D of Uand V. Again, if x be so determined that the conic
U + V" pass through the point P, the anharmonic ratio of the lines P4, PB, PC,
PD is equal to the anharmonic ratio of the lines 74, AB, AC, AD, where T4 is
the tangent to U + « ¥ at A4 ; that is, of the lines

t+xl, t+pl, t+pl, t+pit,
where ¢ and ¢ are the tangents to U and 7 at 4. Now, forming the invariants of

the quartic whose roots are «, p1, p2, ps, the theorem follows by Arts. 186 and 206,
since the absolute invariant is the same for both quartics.

6. Transform a quartic into one having three roots in common with its reducing
cubic.

This is the converse of the preceding example, for as ¢ and # are the polars of one
of the points of intersection of U and 7, the transformation there given reduces
the quartic to one having for roots p1, p3, ps, the roots of the reducing cubic.
Now returning to the binary system, and remembering that first emanants in the
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ternary rystem become, by transformation, second emanants in the binary system,
this transformation (where 5 is a multiple of A) becomes in the binary system
d d\?
¢ 1 (1’3;+g/d—y) A
n 12 (s —-2yP '
where U, = (a, b, ¢,d,e) (2, .'/)‘r and Uy = 0.
['4
Expanding and replacing v by p, we have
(e +28p+0) 22+ 2 (8 + 20p+ d) 2y + (cp* + 2dp+ 6) y?
n (@ - py)?
Again, since the numerator of this fraction vanishes when z =py as U, = 0,

we have, on dividing the numerator and denominator by z — py, one of the linear
transformations which reduces the quartic to the form

xn (§ — Tgn? — 2Jn%),

the last factor of which is immediately transformable to the reducing cubic.

7. Let three points a, , ¢ be taken on the conic ¥ given by the equations
pr=mei+bhp+e, py=apt+bptes,  ps=a39?+ byp + o5,

the values of ¢ at these points being a, B, 7, the roots of a cubic U; prove the
following constructions for determining the points on the conic corresponding to
the roots of the cubic covariant G, and the Hessian H, :—

1°. Let tangents be drawn to the conic ¥ at the points 4, 3, ¢, forming a tri-
angle 4 BC; the lines Aa, B, Cc meet the conic at points &, ¥, ¢, corresponding to
the roots of G..

2°, The four triangles abe, a'¥'d, ABC, A'B'C’ are homologous, and their axis
of homology meets the conic 7 at the points corresponding to the roots of H,.

8. From the constructions in the last example, prove that U, and G, have the
same Hessian H,, and that the roots of H, are imaginary when the roots of U, are
real.— Dublin Ezam. Papers, Bishop Law’s Prize, 1879.

9. Determine the condition that two quadratic factors (z — a)(z — B), (2 —v)(z - 38)
of a quartic Up should form with a given quadratic Az®+ 2u2 + » a system in
involution.

Transforming, the three corresponding lines must meet in a point, which point
is one of the vertices of the common self-conjugate triangle of the conics U and V.
The tangential equation of these points is J (3, ¥, #) = 0, which is therefore the
required condition, the tangential form of xU + ¥ being »?% + & + X',

This condition may also be put under the form

[ a3 a3
(A@:‘—2ﬂdm+”d-‘—t-’) G:=0,
as we proceed to show.
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@ @ a?
If T=Am’—2[l—'——' !yo.’.,dTo"

and G5 = wrw when resolved into its quadratic factors, we will have
TG, = 6T8. TV . Tw,
for transforming to the ternary variables
T =A 1 -2u 1— +v —‘-i
ds oy @
when applied to a function ¢ (z, y, £) such that 1T = 0. Now «, v, w become three
lines X, ¥, Z which form a self-conjugate triangle with reference to 7, and
NXYZ = 0 in the case of any three lines which are mutually conjugate; whence
1XYZ reducesto TX.TY.TZ,
since ™X=0,1Y=0, 19Z2=0,
and TX =0 is the condition that two quadratic factors of U, should form with
Az? + 2uz + » a system in involution.
10. Prove that the quartics
(012 + 2817y + 71y7) (as2® + 2Bszy + 73¢%) — (aa2® + 2Bazy + 12y?)%, (1)
(@122 + 222y + asy?) (1122 + 2932y + 7ay®) — (B12* + 2Bazy + Bay?)Y,  (2)
have the same invariants.
Transforming (2) to the ternary system, we have the conic
(mz + azy + ase) (712 + 72y + 732) — (B12 + Bay Bs?)?,
which, for shortness, we write as LN — M3, where
L=az +asy+asz, M=mpiz+Pey+Bss, NayZ+yy+ yse. (3)
Now, when the discriminant of
LN — M*+ A (y? — 4s7)
is formed, the invariants of (2) are the functions — 3H and @ of this cubic in A (or
the last two coefficients when the second term is removed). This discriminant may
be obtained as the resultant of the three equations
Nay — 2MB1 + Ly — 4as = 0,
Naz — 2MBa + Lya + 22y = 0, (4)
Nag — 2MBy + Lys — Az = 0,
when 2, y, s are eliminated ; or by eliminating the six quantities z, y, s, Z, M, N

by means of the three additional equations (3) the resultant is obtained in the

form
al B 7 0 0 —4A

az B2 7 0 22 0
ag Bs 3 —4A 0 0
= A (A).
0 0 1 ai az a3

0 -3 0 B Bz Bs

1 0 0 7 72 s
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If we had operated similarly on the quartic (1) we should have obtained the same
resultant A (A), the form the determinant takes in this case being obtained by
dividing the first three rows of A (A) by — 4A, and multiplying the first three
columns by — 4A. Whence it follows that the invariants are the same in both
cases.

To expand A (A) we replace L, M, N by their values in equations (4), and then
eliminate z, y, , thus obtaining

In Ina Ins—-2A
Iz Ina+ A Iz » Wwhere 21y = ayyq + agyp — 2BpBq.
Iis—2A Iss Isa

This determinant becomes when expanded
Inw Ina Ins

4N+ 4 (2 — D) A’ — {duLss— Ns* + 4 (Nslna— Dals) A — | Tha Iag Ins

»

Ins Izs Iss

every coefficient of which is the same for both quartics, as may be verified directly.
11. Determine the condition that three quadratics should by linear transfor-
mation be simultaneously reducible to the forms

do dp dl
dz?’ dzdy’ dy?
Ans. Inlsy = 4I2I23 + I22? + 205215, = 0.
12. Prove that the condition in Ex. 11 is the same for the following two sets of
quadratics : —
a2t + 2812y + 11y?, @12 + 2Baxy + vy, asz? + 2Bszy + 7ayl,
and a1 + 2a37y + asy?, P1a+ 2B2xy + Bsy?, %13+ 2yary + yay?.
The condition in Ex. 11 can be put under the form
(F22 — Dns)® + Indss — na® + 4 (Nial2a — al2s),
which is at once expressible by the coefficients of A (A) in Ex. 10.

217. Principal Concomitants of the Sextic.—The
binary sextio # being the next even form, we shall, as a final
illustration, briefly indicate how its invariants and the two
principal covariants may be derived from the ternary system of
a ocubic and conio combined. The two covariants alluded to are
the quartio Z,, whose leader is a1, — 4414, + 3a® = I, and the
quadratic L, = I (u); for by treating these as & combined
system, in the manner of Art. 216, we may obtain all the
forms of the binary sextic as far as the fourth degree.

YOL. II. Q
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Transforming the sextic « = (a,, a\, @, a3, a,, as, as) (z,, yo)*
we have the ternary cubio
U = az® + ayy® + a® + Bayzys
+ 3 (a’y + a3 + Ay’ + ay’s + asr + asy).

Now forming the discriminant of

%(z’d—‘iw’%u'%)'mwz
or (U, Usy Ussy Ussy Usy Un)(#, ¢, 3)* = AV,
we have 4N -I (U)X + J(U), where
I(U) = U,Us - 40,0, + 30y,
Uw Us Us
J(U)=| Un Un Uy
Uw Un Us

Expanding I (U) in the form (ay,, ax, s, @us, as,, a.s)(z, y, 3!
we find
@ = Gy — 4,63 + 3a3®,  2ay = ayas — 3aya5 + 2asa,,
Az = mas — 4a,a, + 3as%, 2as, = 6, — dayas + Taa, - 4a,,

Qss = A0g — 4(’3”5 + 3“4', 20“ = a0a6 - 3a|a4 + 2a’a’;
also
A + @Y + Q38 X + QY + Ay, AT + GY + a3

JU)=| ax+ay+as, @GT+ay+as, ar+ay+as
T+ @Y + A%, AT + QY+ A8, AL+ Gy + g3
Operating with I1 on I (U) we get
I, = awas — 6a,as + 15a,a, - 10ay?,
viz. the invariant (1, 2)* U, U, of the sextic; whence
n(Iu+yLV)=0.
Also I1J (U) = L, becomes L, on transformation.
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Again, if we form the discriminant of
I(U) + 3,V - kV,
we have 4% - Ik + I,,

where 7, and I,, the invariaunts of I, , are invariants of the fourth
and sixth orders of the sextic, the geuneral form of all such
invariants being

IL + m.I:,, IIzI‘, + mIg‘ + nI.-

The invariants which Salmon (Higher Algebra, p. 262)
selects as fundamental are the invariants — S and 7 of the oubic
curve U (Higher Plane Curves, Arts. 220, 221; 3rd Ed.).

The condition that the ocubic and conic should touch is
expressed by the vanishing of an invariant I,,, and this in-
variant is the discriminant of the sextic.

The oondition that three connectors of the six points of
intersection of U aund ¥ should meet in a point is expressed
by the vanishing of an invariant I,;; this is the skew invariant
of the sextic, and may be obtained as the invariant R,, of
Art. 216 for the combined system

I(U) + 3LV, Vv, nJ(U).

The covariant 7,  may also be obtained from the ourve
U,U; - U, which transforms into H_ ; for, reducing by the
relation U, = U, we find

-l-ﬂ (mm - U”) = UnUu —4U13Uz; + 317“’ = I(U)-

The covariant L, may also be obtained by substituting
D,, - 2Dy, D, for z, y, s in I(U), and operating on U.

Q2



CHAPTER XX.
THEORY OF SUBSTITUTIONS AND GROUPS.
SecrioN I.-—~SUBSTITUTIONS IN (FENERAL.

218. Definitions —Notation.—Ifn symbols z,, 25,2y, ... 2,
be given, and if each symbol be replaced by some one or other
from the same set, so that the result is a new arrangement of
the same n symbols, the operation of passing from the first to
the second arrangement is called a substitution. The symbols
2y, &3, . . . Ty a0 to be regarded as entirely independent quan-
tities, and are referred to as the variables, or the elements affected
by the substitution.

If the operation be denoted by S, a substitution S can be
represented as follows :—

Ss(wl Xy Xy ... :t:)’

To Tp Ty... X

where the two horizontal lines contain the same set of u letters,
. and the operation consists in replacing any letter in the upper
line by that which stands under it in the lower line. The opera-
tion may be supposed to be applied to a funotion ¢ (21, 25, . . . zy)
of the variables, in which case the resulting function S¢ will be
obtained by replacing 2, by z, wherever it ocours in ¢, 2, by z,
and so on. In the case of any letter which is not displaced by
the substitution under consideration the two symbols in the
same vertical line will be identical. Since the suffixes of =
admit of only 1.2.3 ... » = N permutations, this is the total
possible number of distinot substitutions. In this number is

included that arrangement in which the order of the suffixes is
the same in both horizontal lines, viz., that in which no letter
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is displaced by the operation. Such a substitution, which
affects no element, is called the tdentical substitution, or the -
substitution unity, and may be denoted by S = 1.

It will usually be found convenient in practice to denote
the symbols operated on by single letters a, b, ¢, ... or by the
numbers 1, 2, 3, . .. simply, the symbol = being omitted.

219. Circular Substitutions.—The notation above ex-
plained admits of simplification. Consider, for example, the

substitution

S = (a bede f),

bedefa

in which each symbol is replaced by that which follows it in the
first line, the last letter / being replaced by the first. Such is
called a circular substitution, and is denoted simply by the
letters of the first line enclosed in a bracket, thus—

S=@becdef).

It is olear that S can be written in several different ways,

and that any of the letters involved may stand first, provided
the cyolical order be preserved : thus
8 = (bedefa) = (cdefab) = (defabe) = (efabed) = (fabede).

Now it is easy to see that every substitution can be resolved
into one or more circular substitutions. TFor in effecting any
substitution 8, if a letter @ in the upper line be found replaced -
by b, and & in its turn by ¢, and so on; in continuing this
process, we come necessarily to a letter (4, say) whioch is found
replaced by a. The result of the operation so far is the circular
substitution (abe . .. #). If the letters be not all exhausted by
this process, we select a letter from those which remain, and
form in a similar manner a new circular substitution; and so
on, a8 long as any new symbols remain.

If we denote by C, C,, ... C; the different substitutions
obtained in this way, we may write

8= C,C:C; ... G

and S may be said to be resolved into its circular factors. These
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factors are called the cycles of S. Cycles which contain two
letters only are called ¢ranspositions. As an example, we take
the substitution

(12345678
8={g 6 1 2 75 4 3)

Starting with the symbol 1 in the upper line we obtain
immediately the cycle (183), and proceeding in & similar
manner with 2 we obtain]the oycle (26574); hence

8 = (183) (26574).

It is clear that the order in which the operations are conducted
is indifferent, since no cycle affects any of the elements con-
tained in any other, and therefore the order in which the
factors of § are written is indifferent.

If all the elements are involved in the first operation alone,
the substitution is itself circular, e. g.,

1 284567
S"(s 6 75 21 4)‘(13745_26)‘

If the position of any element is unaltered by a substitution,
this element may be enclosed in brackets by itself when the
substitution is expressed as a product of cycles, or it may be
omitted altogether, e. g.,

1 238456
8= (3 6 4 1 5 2)=(134)(26)(5)=(134)(26).

Here (5) being the identical substitution = 1 may be replaced
by unity. Although an element constituting a cycle by itself
can be replaced by unity, it is often necessary to retain it in
order to show that this element was amongst those which were
subject to the operation.

A circular substitution S can be repeated any number of
times on the same elements, and the successive operations
denoted by S?, 8% &o. We have, for example,

abedef abedef , [abecde,
§ (bcdefa)’ o (Odefa b)’ S“(defabcf)
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Proceeding, we find 8* =1. If, in general, p is the lowest
integer such that §° = 1, the substitution S is said to be of the
order p; it is clear therefore that the order of a circular sub-
stitution is equal to the number of elements it displaces.

For two elements a, 3 we have (af8) = (3a), and (af8)* = 1.
For three elements a, (3, v, we have (af3y)*=(ayf); (a3y)*=1.

220. Products and Powers of Substitutions. —If two
or more substitutions S,, S;, . .. S; be operated in succession on
a given set of elements, the result is a new arrangement which
might have been arrived at by one single substitution S. This
substitution may be called the product of the former set, and
. we may write S=28,S,... S;, the component factors being

applied in the order 8,, 8., . . ., viz., from left to right. When a
substitution is resolved into its component cycles, as in the
preceding Article, we saw that the order of the factors is indif-
ferent, no element being common to any two of the cycles.

But, in general, in a product of substitutions where the same
element may ocour in two or more of the factors 8,, S, . . ., it is
most important to observe that the commutative law of algebraio
multiplication does not hold good, and that the order of the
factors must be preserved. With three elements, for example,
the student will easily verify that the product (12)(13) is a
different substitution from the product (13)(12). While the
commutative law of algebra fails, the associative law holds good,
viz., 8,8;. 8, = 8,.8,8;; for if S, changes any element a into
b, and 8, changes b into ¢, which again is changed into d by
means of S,, the substitution of d for a is the final result whether
this be supposed effected by first changing a into ¢ (by means
of 8,8,), and then ¢ into d, or first changing a into b, and then

. b into d (by means of S,8;).

" The result of operating the same substitution 8 any number
of times, p, in succession may be represented by S?, and we have
clearly the equation 8?87 = 8P* = 8287, The inverse of a given
substitution 8§ is one which reverses the order of procedure in S,
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and is denoted by the symbol 8-*. Thus, if
a a; a .. Q, L (b0 b b .. b,
§= (b, b, by .. b,.)’ 5= (u, a, ay .. a,.)'
we have clearly 88'=8'8=1.

Since the total number of possible substitutions is limited,
some repetition of S must reproduce the original arrangement
of the elements. If p is the lowest integer such that S* =1,
8 is said to be of the order p, and the series of substitutions is
limited as follows : —

1, 8, 8 8 ... 8

The extension of this mode of expression to negative ex-
ponents may be obtained by writing §* in the form S**
where p is the order of S, and consequently S¥*=1. We have
then S?S® = SPSk*P = S =1, and the substitutions S and S
cancel one another.

Any circular substitution can be represented as a product of
transpositions, for it is clear that the operation (abedef) can be
conduoted by first interchanging a and &, then interchanging
a and ¢, then @ and d, and s0o on. 'We may write therefore

(abedef) = (ab) (ac) (ad) (ae) (af),

from which it appears that any cycle can be resolved into a
product of transpositions, in number one less than the number
of elements contained in the cyole. The order of the factors
in any such product is important, these factors not being
commutable amongst one another. It follows immediately that
every substilution can be expressed as a product of transpositions,
for each of its cycles can be so expressed.

If a substitution S affecting n elements contains & cycles it
can be easily inferred that S can be expressed as a product of
n — k transpositions. It should be observed, however, that the
same substitution can bhe expressed in a great variety of ways
as a product of transpositions. It will appear in the sequel
that however variously expressed, the number of transpositions
in any given substitution preserves the same parity; that is to
say, if once even, it is always even; if once odd, always odd.
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ExAMPLES.
1. Resolve into its cycles

Ss(a’ a3 a3 a4 a5 as a7 ag ay 4G G G2 G13 Gu4 au)
a1 @1 a5 13 G a3 G3 G4 Aag Gy G0 G G4 A3 Gip

Ans. 8= (a1 a1y ar0 a9 as a3 a7 a3 as) (a4 a13 ag) (@13 Aw) (Are).

The appearance of the factor (a15) = 1 in the result shows that this element was
amongst those subject to the operation.

2. Express as a product of transpositions

8-1234667890
(38692406]7)'

Ans. § = (13)(16) (14)(19) (28) (26) (70).

3. If a circular substitution C be multiplied by a transposition 7), one of whose
elements is contained in C' and the other not, the resulting substitution CT is
circular.

Taking a4, as the common element, we may write

C=(mmas...a), T=(aa).

The effect of Cis to replace the arrangement ay, a2, . . . ai, a; by a2, as, ... ai,a1, &,
and of T'to interchange 1 and 4 in the latter. 'Weo have then

a G .. Qi) @& a
a a3 .. a; a a

C'T-( )-(a.az...aca;).

4. If a circular substitution C'be multiplied by a transposition 7, both of whose
elements are contained in C, the resulting substitution CT is the product of two
cycles having no common element.

‘We may take
Cs(maz...a;bdy... %), T= (albl).
Proceeding as in the previous example, we readily find

CT=(maz...a)(bidy...85).

5. If a substitution § be multiplied by a transposition T, whose elements are
contained one in each of two different cycles C, C’, of §, the product CC'T is one
unbroken cycle of all the elements in € and C'.

This follows at once from the last example by multiplying both sides of the
resulting equation into 7, since 72 = 1.

6. If any substitution § is the product of # transpositions, and if it be multi-
plied by a transposition 7, the product S7 will consist either of » + 1 or r — 1
transpositions.
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It S affects n elements, and contains k cycles, we have as stated above r=n —k.
If T introduces two new elements we have one additional transposition, hence r + 1
in all. There are three cases remaining; according as (1) 7"introduces one new
element only, or (2) two elements already contained in the same cycle of §, or
(3) two already contained in different cycles of S. These casesare discussed in the
three preceding examples ; and it is readily inferred that the number of transposi-
tions in ST is always r + 1, except when both elements of T occur in the same
cycle of §, in which case n is unaltered, and % becomes & + 1; rtherefore becomes

n—(k+1l)=n—-k-1=r-1

It appears from this example that however § be expressed as a product of
transpositions, the effect of multiplication by a single additional transposition is to
change its parity, viz., from odd to even, or even to odd.

7. The order of a substitution § is equal to the least common multiple of the
orders of its cycles.

Let 8§=CGECs. .. G,
and u be any common multiple of the orders of C1, C2, . . . . Since

S=0"0". .. c#*, and COt=C=..0"=1,

we have S* =1; and if p be the least value of u, S* =1; whence p is the order
of 8.

Hence we infer that if the cycles 1, C2, Cs, . . . are of the same order, this
order is also the order of §. Such substitutions are called regular, the same number
of letters occurring in each cycle.

8. If a circular substitution § contains p letters, and if u is prime to p, then $*
is itself circular,

9. If a circular substitution § contains pgq letters, then S7 is a regular substitu-
tion consisting of p cycles of ¢ letters each. If, for example,
S = (123456), &% = (135)(246), 83 = (14)(26)(36).
10. Every regular substitution is a power of a circular substitution.
Take S as in example 7, with the factors
Ci=(mbier... ), Ci=(adaca...l), ...Ch=(adjey..Y),
i.e., such that the same number of letters are involved in each cycle. If now we
write down the circular substitution
C=(maas..abibbs. . b5 .. ... hily . . 1),
whose first 5 letters are the initial letters of the j cycles, the next set the second
letters of the successive cycles, and 8o on, it is easily verified that the j*» power of
C breaks up into the product of the j successive cycles €1, Cz, . . . C;; hence
S = 0.
11. Express the regular substitution
S=(1 3 5 12)(2 7 6 11)(4 8 10 9)

as a power of a circular substitution.
Ans. S=(124378661012119)%3
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12. Every transposition of the elements z1, z3, 3, . . . #» can be expressed by
transpositions from the following series of #n — 1, viz. :—
(mi22), (2123), (B1zd), . . . (D1zaa), (2128).

For it can be easily verified that if z,, g are any two clements

(za2p) = (12 (z12g) (312,).
13. Every substitution which can be resolved into an even number of trans-
positions can be expressed by circular substitutions of the third order.
The given substitution is expressible by products either of the type (ag) (a7) or
(aB) (v3) ; we have (aB) (ay) = (aBy), and (aB) (73) = (aBy) (ady), since
(aB7) (aBy) = (aBy) (7ad)
= (aB) (a7) (ya) (+8)
= (aB) (ay)? (+8), and (a9)* = L.
14, Show that any circular substitution of three of the elements 21, 23, . . . 2
can be expressed by means of the n — 2 circular substitutions
(112223),  (21722), . . . . (©1722wa)), (12220).

Retaining for brevity the suffixes only, we proceed to express (ay) in terms of
(12a), (128), and (124).

(aB) = (aB) (ay)
= (aB) (al) (al) (ay), since (al)*=1,
= (aBl) (aly)
= (la) (1ya).
Now making use of this equation to bring a new element 2 in a similar manner
into each of the cycles on the right-hand side, we have

(aBy) = (21a) (281) (217) (2al)
= (12a)? (128) (127)? (12a), the required expression.
The following mode of expression can also be easily verified : —
(aBy) = (12a) (129) (128) (12a) (129).

221. Similar Substitutions.—Two substitutions which
contain the same number of cycles, and the same number of
elements in corresponding oycles are said to be similur.

Two substitutions S, T are said to be commutative when
ST=TS.

The operation represented by the substitution 7-'ST is called
the ¢ransformation of S by T, and the resulting substitution the
conjugate of S with respect to 7.

Any substitution is similar to its conjugate with respect to any
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other substitution. To prove this, let S be transformed by the
substitution
abe .. 1 ...
T-(a’b’c' N S )’

and let (abe . . . !) be one of the cycles of S. The effect of the
operation 7' is to replace a’ by a, which by the operation of §
is replaced by b, which again by the operation 7' is replaced by °
¥’. The substitution 7*8T, therefore, replaces a’ by &', 4’ by ¢,
... 7 by a’; and to the cycle (abc . .. ?) in S corresponds the
oycle («’b’¢’ . . . I') in its conjugate.

The transformation of S by 7' is completed by replacing in
each cycle of S every letter by that which stands under it in the
substitution 7' The resulting substitution is therefore similar
to 8. Reciprocally it is clear that if two substitutions S, and
S, are similar, a substitution 7" can be found which transforms
one into the other.

The products ST and 7'S, which ar® in general different,
are always similar, since ST = 1 (T'S)T.

The conjugate of the product ST' with respect to a third
substitution U is equal to the product of the conjugates of its
factors, for we have U™(8T) U= U'SUUTU.

If two substitutions 8, T are commutative, their conjugates
with respect to I7 are commutative, for if ST = T'S, we have

U»SUU"TU = U'TUU8T.

SecrioN II.—MUuLTIPLE-VALUED FUNCTIONS AND GROUPS.

222. Definition of Group. Symmetric Group.—
According to the number of values a function of @, 2, . . . 2,
assumes under the operation of the IV possible substitutions, it
is said to be one-valued, two-valued, . .. p-valued. A sym-
metric function of these elements, being unaltered by any
transposition (Art. 27), and therefore by any product of trans-
positions, is a one-valued function. If a function be not
symmetrie, it has two or more values which may be derived
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from one supposed given by the process of substitution.
Consider, for example, the two rational functions of three
elements

O =202+ 2+ 20, A = (20— ) (2 - ) (22— 23).

Each of these is two-valued. Of the six possible substitu-
tions, viz.,
1, (128), (132), (12), (13), (23),

the first three leave ®, unaltered, while by each of the last
three it is changed into its second value 2’2, + 25’2, + 2223 = @,.
In the same way A also is unaltered by the first three, and is
ochanged by the last three into its second value —,.[A. As
an example in the case of four elements consider the function

¢1 -2+ X3y
There are, in addition to ¢,, two other values, viz.,
s =22y Pz and ¢y = 212 + 297y ;

the funotion is therefore three-valued.
It can be easily verified that ¢, is unaltered by the follow-
ing eight substitutions :—

1, (12), (34), (12)(34), (13)29), (14)(23), (1324), (1423),

and that any of the remaining sixteen will change ¢, into one
or other of the two remaining values. The substitutions which
leave a function unchanged constitute a group. It is clear that
any combination by multiplication of two or more members of
the group will itself be a substitution contained in the group.
'We give therefore the formal definition of a group as follows :—

A system of distinct substitutions is said to form a group when
all powers and products of these substitutions form part of the same
system.

The number of substitutions contained in a group is called
the order of the group. .
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The number of elements operated on is the degree of the
group.

The group which leaves a function ¢ (i, 23, . . . ) unaltered
is called the group belonging to ¢, or, briefly, the group of ¢.

The total number of IV substitutions, of course, constitutes a
group. This is called the symmetric group, since all its members
leave any symmetrio function unaltered.

One group may contain all the substitutions of another in
addition to others peculiar to itself. In such a case the included
group is called a sub-group of the former.

The symmetrio group contains every other group as a sub-
group. Any substitution whatever, with all its distinet powers,
makesup a group contained as a sub-group in the symmetrie
group. Next in importance to the symmetrio is the alternate
group, which we will now define.

223. Alternate Gromp.—Let -us consider in the case of
n elements the rational function

I (zi = @) = (21 — &) (&1 — ) (21 ) ... (-‘Fl — Zn)
(w2 =as)(ra—a) .... (& —2n)
(s —a) oo (23— )

(a'n-l - zn),
consisting of the product of all the differences of the elements.
The square of Il is the well-known symmetric funoction, the
discriminant A ; and therefore IT has two values equal numeri-
cally with opposite signs, viz. A and - [A. Such two-valued
functions are called alfernating functions. It is clear that any
transposition alters the sign of II, for consider the transposition
(#1#;) in which », and x, may be taken for anytwo of theelements.
This altersthe sign of the first factor in the upper row, and inter-
changes the remaining factors of the upper row with the factors
of the second row. It does not affect any of the factors in the
remaining rows; hence the sign of the product isaltered. Any
second transposition restores the original sign; hence the effect
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of the produot of two, or any even number of, transpositions is to
leave,[A unaltered, and the effect of the product of any odd
number is to change /A into its second value —,[A, or -, [A
into its second value ,[A.

A substitution can be expressed in many different ways as
a produot of transpositions, but, however variously expressed, the
aumber of such factors must be always even or always odd; for it is
clear that the same substitution cannot at the same time change
the sign of /A and leave it unchanged. Since the product of
two even substitutions is itself an even substitution, it follows
that unity, along with all substitutions which are made up of
an even number of transpositions, constitute a group, and that
JA and - _JA are both functions belonging to this group. It is
called the alternate group: we proceed to investigate its order.
Let the alternate group of n elements consist of the following
substitutions : —

S8=1 8 8 .... 8, (I

and let the remaining substitutions of the symmetric group, all
consisting of an odd number of transpositions, and therefore
distinct from the former, be

8, 8, 8, .... 8. @)

We select now any transposition 7, and form by multipli-
cation the two following series : —

8T, 8T, 8T, .... 8T, (3)-
ST 8T, 8T, .... ST (4)

Every substitution in (3) is composed of an odd number of
transpositions, and is therefore contained in (2), and every sub-
stitution in (4) of an even number, and therefore contained in
(1). It follows that » = ¢, and also » = ¢; hence » = ¢; and
since r + £ = N, we have finally for the order of the alternate

group
r=3N.
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224. Conjugate values of Multiple-valued Fuunctions
and Conjugate Groups. Theorem.— The order of any group
18 an exact divisor of N, the quotient being the number of distinct
calues of the corresponding multiple-valued function.

To prove this important theorem we take the group

G=[8=1, & 8, ... 8) (1)

whose order is » and degree n, and which contains all thos
substitutions (and no others) which leave a funotion ¢,(z,,2s,...2)
unchanged. Let =; be a substitution not contained in this
group, and one therefore which changes ¢, to another of its
values, say ¢;. Multiplying the members of G, by =, we have
the following series of substitutions, all belonging, of course, to
the symmetric group : —

Sl 2,, ngg, 8;21, « o e S,.E,. (2)

The members of this series have the following properties :—
(1) they are all distinot from one another, for the equality
8,2, = 83, would imply S, = Ss; (2) they all transform ¢,
into ¢,, for the effect of the first factor S, is to leave ¢
unaltered ; and (3) there are no other substitutions in the
symmetric group possessing this property, for if 7' is any
substitution ohanging ¢. to ¢, the product 7'=," leaves ¢
unaltered, and therefore belongs to the group G.; hence
T=,;" = Sk, and therefore T = 8;3,; that is, 7' is contained in
the series (2) above written. We can form a similar row by
means of a substitution 3; which changes ¢, to a third value ¢,
Proceeding in this way till all the values of ¢, viz. ¢, ¢s, s, . - - §p
are exhausted, we have the following table (in which, for sym-
nmetry, 3, is written = 1) :—

Slzl’ Sﬂzly 'Sazn o o . Srzl)
SIE'M 8122, 8323) LRI Srzz,
Slzh Szzn Sazn, DI Srzav

Slzp‘ . 22p‘ SJEP' « e S,-Ep.
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Sinoe there is no remaining value of ¢, all the substitutions of
the symmetric group must be contained in this table ; and the
substitutions therein contained are all different ; for those con-
tained in any row are distinot from ome another, as we have
seen, and no two substitutions contained in different rows can
be equal, since if, for example,

8;23 = szz, then Es = S;lSﬂz, = Syzl;

that is, =; would be one of the substitutions contained in the
second row, which is contrary to hypothesis. 'We have then
in this table all the IV substitutions of the symmetric group
written in p lines of r each, from which it follows that »p = IV,
and the theorem is proved.

On account of the similarity of the different values

Py Pr - oo Phs - Do

of the p-valued function ¢, it is evident, a priori, that each of
these functions will have a group similar to the group of ¢,.
It can be readily shown that the group of any function ¢y is
obtained by transforming (Art. 221) all the substitutions of G
by the substitution i which alters ¢, to ¢x In fact, any
substitution 3'S,3 leaves ¢, unaltered, for 3 changes it to
¢1, Which is unaltered by S,, and consequently changed by 3
to ¢x. The group of ¢ is therefore

38,3, 183 S8, ... %83

where each substitution of @, is transformed by ;. This
result may be represented briefly by the notation

Gk = 2: Gl zk-

G, G, G, ... G, are called conjugate groups, and the ocor-
responding functions ¢, ¢z, s - - - @, conjugate functions.
It is clear (Art. 221) that any two conjugate groups consist of
similar substitutions.
VOL. 1I. R
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What is above proved as to the relation between the orders
of @, and the symmetrio group is true, more generally, of the
relation betwecen the orders of Gy and any wider group @, in
which @, is contained as a sub-group ; that is to say, the order of
G, i3 an exact divisor of the order v’ of any wider group G'. The
proof, which is precisely similar to that given above, consists in
arranging the »’ substitutions of @’ in a number of rows (say, m)
of which the first is made up of the » substitutions of @&,. We
readily obtain the following relations: rp =rp’= N, ' =mr,
p = mp’, where p’ is the number of distinot values of any
function belonging to G'.

ExanMpLEs.

1. Construct, for four elements, the conjugate groups corresponding to the
different values of the function ¢ = 2123 + zsz¢.
1t is easily seen that there are only three distinct values of this function, vis.,
$1 =173 + 23Ty, P31 =212y + T3, D3 m 12 + Tady,

and each has therefore a group of order 8.
The group of ¢ consists of the following eight substitutions : —
G =[1, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)].

If we take any substitution, e.g. (23), which changes ¢1 to ¢3, and any other,
say (24), which changes ¢1 to ¢3, and form the table of the foregoing Article, we
obtain all the 24 substitutions of the symmetric group as follows :—

1 (12)  (34)  (12)(34)  (13)(24)  (14)(23)  (1324)  (1428)
(23) (132) (23¢) (1342) (1243) (14) (124) (148
(24) (142) (248) (1482) (12) (1234)  (134) (128

The first row is the group &:; the other rows not comstituting groups, but
being such that the members of the second (and no others) all convert ¢, into ¢z, and
the members of the third (and no others) all convert ¢: into ¢s. The group G3 cor-
responding to ¢2 is obtained by transforming the substitutions of @1 by (23), and
this is done by simply interchanging 2 and 3 in the®substitutions of @y. In this
way we find easily the groups of ¢; and ¢s, as follows : —

Gram[1, (13), (24), (139)@24), (19)(34), (14)(23), (1234), (1432)],
G = [1, (14), (23), (14)(23), (13)(24), (12)(34), (1342), (1243)).



Ezamples. 243

It will be observed that none of the ciroular substitutions of the 3rd order are
present in any of these groups, and the three groups have certain substitutions
common. In fact the substitution unity must be common to all conjugate groups ;
and here G4, @3, G3 have the three substitutions (12)(34), (13)(24), (14)(23)
common, in addition to unity, these four substitutions forming & common sub-
group of the three conjugate groups.

2. Verify that the substitutions of Gi in the preceding example form a closed
group ; that is to say, any multiplication of two of its members always reproduces
some member of the group.

Representing the substitutions of @1 in the order of the preceding example by
the symbols 1, 4, B, 0, D, E, F, G, we have the following multiplication table,
which the student will easily verify :—

1 4 B c D E F G

1m1 1 |4 | B | c¢c|D|E| F|e@
(12) = 4 4| 1| c¢c|B|le | F|E]|D
()= B B|lc¢c |1 |4 | F|e¢| D|E
(12)(3¢) = € c| B | 4|1 | E|D|6¢|F

(13)(24) = D p | F|le | E|1|c|a]|B

(14)(23) = E E|le | F|D|c¢c|1]|B]| 4

(1324) m F F D E G B A4 c 1

(1423) = @ ¢ | E|Dp | F|la|B|1|cC

In cffecting the multiplication, the factor from the first column is to be placed at
the left-hand side of each symbol of the upper row in turn,
It will be observed that G contains the sub-groups

(1,4, B,¢) [1,0 D E], [1GF @,

all of order 4, and soveral also of order 2, e.g. [1, 4], [1, CJ: .

3. Construct the alternate group &' for four elements. The substitutions which
consist of an even number of transpositions can easily be selected from the twenty-
four given in Ex. 1. They are, in fact, the four substitutions 1, (12)(34), (13)(24),

R2
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(14)(23), along with the eight circular substitutions of the third order. These we
arrange in three rows, as follows : —

1 (12)(34)  (13)(24)  (14)(23),
&= {132 (234) (124) (143),
(142) (243) (134) (123).

To this group belongs the function VA. If each substitution be multiplied by
any transposition, say (23), which changes Va to — Va, the remaining twelve sub-
stitutions of the symmetric group are obtained. If each member of G* be transformed
by (23), we obtain the group of — VA. It is easily verified that this coincides with
G the group of va. Forexample (12)(34) becomes (13)(24) by this transformation
(14)(23) is unaltered; (123) and (132) are interchanged ; and so on. The two
conjugate groups therefore coincide in this case, VA and — VA both belonging to
the same group. The same is true for any number of elements (Art. 223).

The arrangement in three rows of the substitutions of G" illustrates what is
proved at the conclusion of the foregoing Article. The four substitutions in the
first row form a sub-group of G'; the four in the second row are obtained from
these by multiplication (on the right-hand side) by (132), and the last four by
multiplication by (142) ; the order 4 of the sub-group being a divisor of the order
of . To this group, which we call H, viz.,

H=[1, (12)(34), (13)24), (14)(23)],
belongs the function
A (2173 + 2324) + B (1123 + 2324) +.C (2124 + Z273),

in which 4, B, C are any arbitrary constants.
This function has six distinct values for the substitutions of the symmetric
group, viz.,
Apr+ Bpy + Cps,  Ap2+ Bps+ Cp1,  A¢ps + By + Copse,

Ay + Bos + Cp2, A¢s + By + Cops, Ay + Bopa + Co1.

These have all the same group H, the six conjugate groups coinciding in this
case ; in fact, any transformation of the symmetric group operated upon the sub-
stitutions of H will reproduce the same four in some order. Such a group is called
an invariant sub-group of the symmetric group. The alternate group is also an
invariant sub-group.

4. Prove that the group derived from the n — 1 transpositions (12), (13), ... (1s),
is identical with the symmetric group.

Every substitution, being expressible Ly transpositions, can be represented as a
product of members of this series (Ex, 12, Art. 220).

6. Prove, for any number of elements, that there is only one group of order { N,
viz., the alternate group.

Let the group of order $V be

Siml, & & ... 8 o))
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Multiplying this, first at the left side and afterwards at the right, by any
substitution 7 of the symmetric group not already contained in it, we have the two

series
T, TS TS, ... TSy @)

T, &7, &T, ... S‘”T. (3)

Each of these must consist of the } ¥ substitutions not contained in (1) ; hence
the two series are identical, and whatever ¢ may be, we have for some value of 5
the relation

T8 =8&T, or 8i=T"'§T;

from which it is easily inferred that the group (1) contains all substitutions similar
to any one contained in it. Hence (1) cannot comprise any single transposition, for
if it did it would contain all such, and be consequently identical with the symmetric
group (Ex. 4).

If now it can be shown that (1) contains as a substitution any product of a pair
of transpositions, it will follow, since it must then contain all such products of pairs,
that it is the alternate group. For this purpose, suppose 7' in the series (2) to be
any transposition. The effect of multiplying both (I) and (2) by a second trans-
position U is to interchange the two series (1) and (2). It is proved therefore that
UT must be one of the substitutions of (1).

From this it appears that every two-valued function belongs to the alternate
group, since this is the only group whose order satisfies the equation 2r = V.

6. The alternate group includes all circular substitutions of odd order, and none
of even order.

7. Prove that a group which contains all the circular substitutions of the third
order is either the alternate or the symmetric group.
Use Ex. 13, Art. 220.

8. Prove that a group which contains all the circular substitutions of the fth
order contains also all of the third order. For

(acded) (acbed) = (abe).
9. The order of a greup is a multiple of the order of any one of the substitutions
of the group.

10. If n is & prime number, every group of order n is composed of » powers of a
circular substitution of order 5.

11. If two groups have common substitutions, these themselves form a group,
and their number is & common divisor of the orders of both groups.

12. If the members of a group are all transformed by the same substitution, the
conjugates thus derived themselves form a group.

Use the relations given at the end of Art. 221.
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225. Formation of Functions of a given Group.
The Galois Function.—We now take up the problem of the
formation of rational integral non-symmetric functions which
remain invariable for all the substitutions of a given group.
For this purpose it is necessary first to obtain an integral
function of the n variables which assumes N distinct values for
the IV substitutions of the symmetric group. Such a function
is the following :—

‘Pl S a7 +a?; + ayls + ...+ auplyy

in which a,, as, . . . a, are distinct arbitrary constants ; for it is
olear that of the N values of ., derived by substitution, viz.,
Y1y sy Ysy .. Yy, Do two can be equal if the variables be
assumed unequal.

This function, i, is called the Galots Function. Suppose,
now, the given group to be

G=1[1, 8 8, ... 8]

and let ¢u, {3, s, . .. Yr be the r distinct values of the Galois
function obtained by applying the substitutions of G. A
symmetrio funoction of Y, {, . .. Y will be unaltered by these
substitutions, for the effect of any substitution of G on y, Y1, ¥,
. .« Yr is to reproduce these functions in some order or other; in

faot the series
Y S, S, ... S

will become, after the operation S,
Sar, SSa, SsSadyy . . o 88y

and S,, 8,8,, 8,S, ... are in some order the » distinct
substitutions of the group. Any such symmetric funotion
therefore may be used to search for functions of the group G.
A function symmetric in Y, {4, . . . Y may be also symmetric
in 2,, 23, . . . Zu, or may belong to any wider group containing G
as a sub-group. If there is no wider group except the symme-
tric which contains G' as a sub-group, we conclude that any
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unsymmetrio function of ), 2y, ... 2, obtained in this way
belongs to the group G. We add a few simple examples to
illustrate this mode of finding functions of a given group.

ExaMpLEs.

1. Form a function of three variables which shall be unchanged by all the
substitutions of the alternate group, viz.,
[, (123, (182)].
Operating with these substitutions on the Galois function, we have
Y1 = a171 + %3 + as?y,
Y2 m a1?; + asrs + asny,
V3 = a1zs + aan1 + asrs.

Y1 and Y,? are both symmetric in 21, 23, 2. But by means either of y1yays
or 2y1® we can obtain the unsymmetric functions

%23 + 23%s + 2% and 7% 4+ 2337 + 73irs,
both of which must belong to the given group. Calling these functions #; and ¢'s.
as in Art. 222, it is in fact easily verified that
W1? = Za)® 321° + 6aiazas 212973 + 3 (b2ba + ¥'¥a),
where ®a = a1%a3 + asas + ayla, ¢'a = ailas + aala1 + as?az.
2. Investigate functions of four variables which shall belong to the group
Hu[l (12)(34) (13)(24)  (14)(23)).
‘Writing down the values of the four Galois functions as follows : —
Y1 = a171 + a2 + as?s + asZy,
2 = @123 + aat1 + asr + a?s,
V3 = @123 + a2 + ast1 + aurs,
Vs = a1y + az2s + asra + a2,

we find that 2§, is symmetric in 21, 23, 23, 74, but that 2y,? is not so. From the
latter we readily obtain the function Ad¢1 + Bgz2 + Cps of Ex. 3, Art. 224,
¢1, ¢2, ¢s representing the same functions of x1, z2, z3, 74 a8 in Ex. 1 of the
Article referred to. We have in fact

Y1’ = 2a1? 221 + 4 (@102 + asag) P1 + 4 (mias + azaq) Pz + 4 (x1a4 + azas) ¢s.
The unsymmetric functions occurring here, viz. ¢1, ¢z, ¢s belong respectively

to the wider groups @i, G2, Gs, of order eight. The sum of these with arbitrary
coeflicients belongs to the given group H, and is a six-valued function.
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3. Investigate functions of four variables for the group
Gi=[1, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)].

Taking, along with the four values of y in the preceding example, the
additional four
V5 = 183 + aaT1 + as¥s + auZy,

Yo = a1Z1 + asr + asty + a4y,

Y1 = a1r3 + aaxy + as¥2 + axly

V8 = a17¢ + az2s + as21 + sy,
we easily verify the following relation : —
21? = 23,2 X712 + 8 (@102 + asad) (2123 + 2az0) + 2 (a1 + a2) (as + aq)(21 + 22) (73 + =)
whence the functions z1z; + zsxs and (r1 + 22)(zs +24) are obtained, both belong-
ing to the given group, since there is no wider group except the symmetric in which
Gh is contained as a sub-group.

It is clear that this method may be used to discover by means of the symmetric
functions of higher orders an infinite variety of functions corresponding to a given
group.

226. Theorem.—Erery integral symmetric function of the
distinct values of any integral multiple-valued function of n
elements is a symmetric function of the elements themselves.

Although this proposition appears sufficiently evident from
the similarity of structure of the conjugate values ¢., ¢s, ¢ss- . - 9,
of a p-valued function (Art. 224), we may give a formal proof
as follows. Let F (¢, ¢s - - . ¢,) be any rational integral
symmetric function of the p values. Any substitution what-
ever S (affecting the elements) applied to these p values either
leaves any function unchanged or replaces it by one of the
others. No two of the resulting values can be equal, for if
S¢: were equal to S¢;, it would follow, by applying the substi-
tution §-, that ¢; = ¢;, which is contrary to hypothesis. Con-
sequently the same p values of ¢ are reproduced by S in some
order or other. The symmetrio function F therefore remains
unchanged by any substitution, and is consequently a symmetrie
function of the elements themselves.

From this is derived immediately the following corollary :—

Cor.—The p distinct values of any integral multiple-valued

Junction are roots of an equation whose coefficients are integral
symmetric functions of the elements themselves.
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For an example of this we refer to Ex. 4, Art. 39, vol. i.
‘What is here proved with regard to rational integral functions
can be readily extended to all rational functions whether inte-
gral or not, for any fraction may be converted by the method
of Art. 193 into an equivalent form whose denominator is sym-
metrio in the elements.

227. Theorem.—Two functions belonging to the same group
can be rationally expressed each in terms of the other.

This important proposition, to which we now apply the
principles of the method of substitution, has been discussed
before (Art. 193) from a somewhat different point of view. Let
¢: and ¢, be two functions belonging to the same group

Gl - [1, Sg, Ss, e 0 Sr],

of order » and degree n; each of these funotions having p
distinot values, where rp = N. Any substitution not contained
in @, will convert ¢, into another of its values, say ¢x, and at
the same time y, into yx. By operating all possible substitutions,
p pairs of values ¢i, ¥i; ¢sy Y2 - - - ¢py Yo are obtained. Now,
in the first place, the rational function

SpW e i i e (1)
is clearly a symmetric function of the elements, for it appears,
by the same reasoning as that of the preceding Article, that any
substitution whatever affecting the elements will reproduce in
some order the terms of this sum, viz. Z¢*%J’, which is therefore
a symmetrio function of the elements. If, now, we take s =1,
and assign to ¢ all the values 0, 1,2, ....p - 1 in succession,
we obtain the following p equations linear in yy, ¥, . . . Y, :—

\P] + lﬁg + ...+ 'IPP =T 0
¢|\Ii| + ¢3¢3 + .00+ ¢P4‘P = Tl
¢l1'_d‘l + ¢g,¢3 + ...+ ¢pz\l‘p = Tg ’ (2)

¢|rl\ld| + ¢,’-l¢/3 + ...+ ¢pﬂ'l¢p = Tp-l
where T\, T\, T3, . . . are all symmetrio in @, 2y, . . . 2,. For
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the solution of these equations we refer to Ex. 1, p. 38, and
Ex. 3, p. 105, from which it will be readily inferred that i, can
be expressed as a-rational function of ¢, in the following form :—

Viddn.--9)dr= A + Aip* +. ..+ 4,

where v has the same meaning as in Art. 202, and 4, 4,
..., are all symmetric in z,, 7, . . . 2.

It follows, conversely, that two rational functions such that
each can be expressed rationally in terms of the other belong to the
same group ; for since each remains unchanged by all the
substitutions which constitute the group of the other, it follows
immediately that the two groups must coincide.

228. Extension of Theorem with Cerellaries.—Even
when the groups of ¢, and i, are not identical, but one of them
included as & sub-group in the other, it is still true that the
function which belongs to the wider group (and which has con-
sequently the smaller number of distinct values) is expressible
rationally in terms of the function of the narrower group.

Let ¢, belong to the group @, of the preceding Article, and
let 4, belong to the wider group

G/ = [l’ /O A S,J].
We have (Art. 224) the relations

ro=rp’=N; ¥=kr; p=kp’;

there are, as before, p distinct values of ¢ ; but the values of i,
viz. Y, Yu, s, - - . Y, become equal in sets of % so that only
p’ distinct values remain. It is still true, however, that the
expression (1) of the preceding Article is a symmetric funotion
of z,, 75, . . . x,, for any substitution applied to it will reproduce
in some order the distinct terms of the series. The equations
(2) therefore can be solved as before, and an expression obtained
for 4, in terms of ¢,. If it be attempted, however, to express
¢: in a similar form in terms of y,, the solution fails, on account
of the equality of two or more of the values of ; for it is
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implied in the solution of these equations that no two values
of ¢ are equal (see Ex. 1, p. 38). The theorem as thus extended
may be stated as follows :—

Theorem.—If two rational functions of any set of variables
are such that one remains unchanged by all the substitutions of the
group to which the other belongs, the first is expressible by means
of the second in the form of an integral polynomial whose coefficients
are rational symmeltric functions of the variables.

From this proposition may be deduced important conse-
quences which are contained in the following corollaries.

Cor. 1.—A4 function can ahoays be found in terms of which any
number of given functions can be rationally expressed.

Let ¢, Y, X, - - be the given functions, and let w be assumed
such that

ws= a¢+ﬁ¢+1x+.. .

where a, 3, v ... are arbitrary constants. The substitutions
which are common to the groups of ¢, ¢, x ... will leave w un-
changed. Henoce the group of w is contained as a sub-group
in that of each of the given functions; any one of which may
therefore be expressed in terms of w.

Cor. 2.—Any rational function whatever can be rationally
expressed in terms of a function having N distinct values; in
particular in terms of the Galois function.

For the group of an N-valued function, reducing to the
identical substitution, is included as a sub-group in every other.

Cor. 3.— The variables themselves can be expressed rationally in
terms of the Galois function.

The group to which z, for example, belongs contains
1.2.3... (n - 1) substitutions, including, of course, the sub-
group unity. The n values of this funotion are the n variables
2, 23, . .. Z,, and each can be expressed rationally in terms of
the Galois funotion.

The proposition contained in this corollary was stated
originally by Abel without proof. alois has given a proof
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of the proposition founded on elementary principles, which
we think it desirable to add, since it shows how the caloulation
may be conducted and the required rational expression for any
one of the variables obtained.

Let f(z) = 0 be the equation whose roots are 2, z;, . . . 2y
all supposed unequal ; and let i/, be a known value of a rational
function y of the roots which has IV distinoet values.

If all the roots except , be permuted in every possible way,
we obtain 1.2.3... (n-1) = u distinot values of iy given by
the equation

F)= (- -4 ... (b - ) =0.

The coefficients of this equation when expanded are sym-
metric functions of z,, s, ... 24, and can therefore be expressed
in the terms of the coefficients of

7@ _,
z -2
and will involve 2, in a rational form along with the coef-
ficients of f(2). If the expanded equation be represented by
F(y, ) = 0, we have F(y,, #) = 0, since it is satisfied by
¥ =, ; we have also f(2,) = 0, from which it follows that the
equations f(z) = 0 and F (Y., z) = 0 have a common root. It
is easily seen that this is the only root common. If therefore
we seek the common measure of f(z) and F(y4, ), and continue
the process till we obtain a remainder of the first degree in z,
by equating it to zero we shall find for 2, a rational expression
in terms of i, and the coefficients of f(z).
Ez. For a cubic equation
S(2) =22+ 12’ + pox + p3 =0,

if ¢ be taken equal to the Galois function ai121 + @sz2 + as3, it is readily proved
that F(y1, 21) involves z; in the second power, and the problem is reduced to find-
ing the greatest common measure of a quadratic and cubic. The question is
simplified by taking the special Galois function #1 + ¥ + wisrs = §1; we find in
this case that the coefficient of z)* vanishes, and z; is obtained immediately in
terms of y, as follows :—

_W—p + p1? —3py

h 3 )

21
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Cor. 4.—All the values of the Galois function can be expressed
rationally in terms of any one among them.
For all belong to the same group unity.

229. Two-valued Functions. Theorem.—Erery two-
valued integral function of n variables is of the form 8, + S, JA,
where 8, and 8, are integral symmetric functions, and A the dis-
eriminant.

A two-valued function must belong to a group of order 3.
The only group of this order is the alternate group (Ex. 5,
Art. 224), to which the function /A belongs. The theorem
therefore follows as an immediate consequence of the funda-
mental theorem of Art. 227. On account of its importance,
however, we give the following independent proof.

Let the two values of the function be denoted by ¢, and ¢,,
and let G, and @, be the corresponding groups, each of order
34N. In the first place, these two groups must be identical ; for
if any substitution S of G, were to change ¢, to its second
value ¢,, then S~ would change ¢, into ¢.; but this is impos-
sible, since S-' as well as S belongs to the group G.. Every
substitution, therefore, of G, must belong to G;, and vice versd.

To show now that these groups coincide with the alternate
group, consider the function ¢, ~ ¢, = . Any substitution
which belongs to the common group leaves this unaltered ; any
other will change ¢, to ¢, and ¢, to ¢, and will therefore
change the sign of i ; the transposition (z.zg), for example, will
have this effect, for the group common to the two values of any
alternating function could not include all transpositions without
coinciding with the symmetric group. It is easily inferred
that ¢, — ¢, is divisible by «, — 2, and hence by the product of
all the differences since y* is symmetrio.

The quotient of { by ,[A is symmetric. To prove this, let
(JA)™ be the highest power of /A which occurs in . The
quotient of y by (,JA)™ is symmetric, since, if not, it would be
an alternating function, and would again contain , [A as a factor,
which is contrary to hypothesis. It follows immediately that
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m is an odd number, and that the quotient of by JA is sym-
metrio. Writing therefore ¢, — ¢, = 4,/a, and ¢, + ¢, = B,
where 4 and B are both symmetrie, we at onoe derive

$=8+8[8, $=8-8]a

where S, and 8, are both symmetrio functions of the variables
2y, @3, ... 2a. It i8, of course, also evident that the groups @,
and G, coincide with the group of [A, viz. the alternate group.

230. Theorem.— The alternating functions are the only un-
symmetric functions of n variables of which a power can be
symmetric.

The theorems contained in this and the next following
Articles are of great importance in connexion with the problem
of the general solution of algebraical equations. It will be
sufficient to prove the theorem for prime powers, for if there
exists a funotion F(z,, 23, . . . 2,) such that F*-¢ is symmetrio,
p being prime, then there is also a function ¢ = F¢ such that ¢*
is symmetric. Let therefore

¢° = 8, a symmetric function.

Sinoe the group of ¢, which is unsymmetric, cannot contain
all the transpositions, let o = (z.25) be a transposition which
converts ¢ into ¢;; we have

¢°=9¢f = S,
and therefore ¢; = wg, where w is a p** root of unity. Henoe
op = ¢j = we,
and, operating again with o,
o’ = wop = w'¢;

but o* = 1; hence * = 1, and consequently p = 2.

Since therefore ¢* is symmetric, ¢ is an alternating function,
and the proposition is proved.
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231. Theorem.—For any number, n, of independent elements
there 18 no multiple-valued function of which a power is two-valued
tohen n > 4 ; and when n = 3, or n = 4, if there 48 any such power
&t i8 a third power.

Confining our attention as before to prime numbers, and
supposing that ¢ is a multiple-valued function whose p** power
is two-valued, we have (Art. 229)

¢* = 8 + 8, /A. (1)
The group of ¢ cannot contain all the circular substitutions
of the third order, for if it did this group would coincide with
the alternate group and ¢ would be two-valued (Ex. 7, Art. 224).
Let 0 = (z.252,) be such a substitution not contained in the
group of ¢, and suppose ¢ = ¢;. From the equation (1), since
8, + 8, A is unaltered by o, we have
P = &;F;
hence ¢; = wg, where w is a p* root of unity. "Operating again
twice in sucoession with o, we obtain readily
op = we,
*p = wop = w'¢,
P = wlop = w';
whenoe, since o* = 1, we have w* = 1, and therefore p = 3.
Again, when the number of elements is greater than 4,
there are circular substitutions of the fifth order, and these
cannot be all contained in the group of ¢ (Ex. 8, Art. 224),
Let r be one of these not in the group of ¢, and r¢ = ¢;. We

have, as before, from the equation (1), by applying this substi-
tution (which does not affect the right-hand side),

¢ = ¢f =8+ 8, [A.

Henoe, proceeding as before, we have r¢ = w¢, and operating
again on this and the succeeding equations with r, we readily
find 7°¢ = w’¢; whence w® = 1, since r*= 1, and it is proved
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that p = 5. Now, this result being inconsistent with the value
of p previously obtained, viz. 3, we infer that when the num-
ber of elements is greater than 4 it is impossible to find any
multipled-valued function ¢, a prime power of whioch will be
two-valued.

That there are actually, when n is not greater than 4,
multiple-valued functions, a third power of which is two-valued,
will appear from the following applications to the cases where
n=3and n=4:—

1. To find a multiple-valued function of three elements whose third power is
two-valued. We examine whether the problem admits cf solution by means of the
simplest linear function, viz.

¢ =ar1 + Bra + y23;
that is, whether the constants a, B, ¥ can be determined so as to make ¢ fulfil the
required conditions.

Taking o = (z12223), and identifying o¢ with wp, where «® = 1, we have

ar3 + BTy + yz1 = w(az1 + Br2 + y2s) ;
whence
Y=wa, B=wy, a=wub,

and immediately
¢ = a(r; + w22 + wzy).

Taking « = 1, we infer that a function of the type z1 + w3zs + wzs satisfies the
conditions of the problem. This function is six-valued, and its cube two-valued
(compare Art. 59, vol. i.).

The student will easily prove, in a similar manner, that any function of the type

™ + wz™ + wizz™,

where m is any integer, will equally well supply a solution of the problem.

2. To investigate a similar function when #» = 4. In this case it is clear that
no linear function of the type azi + Bzz + s + 374 can, without making 3 =0,
fulfil the condition of being multiplied by a factor when operated on by the sub-
stitution o = (212273). We take therefore the function next in simplicity, viz. one

of the type
¢ = aniz2 + Bnazs + Y2301 + 2u(d71 + B + o' D).

The function obtained from this by the operation of o is
¢ = arrs + Brsz) + yuim3 + 24(a'z2 + By + y'11).

Identifying ¢; with w¢, and replacing B, v, 8, 9’ by their values in terms of
a, a’y we have
¢ = a(7172 + 0’722y 4+ wrsr1) + o' (1174 + wirazg + wisry).
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Operating again with a different substitution of the third order, say r = (21222¢),
and denoting 7¢ by ¢z, we have

1 = a(237¢ + @243 + w322) + o' (1271 + W22 + W2a7)).

Identifying, as before, ¢x with 64, where 0is some cube root of unity, we find
at once 0 = w? and a’ = o?a, the remaining relations being all consistent with
these. We have therefore, taking a = 1,

¢ = 2172 + Za7 + W(T173 + 237¢) + (2124 + 2223).

This is a function of the required kind having itself six values but only two values
when cubed (compare Art. 66, vol. i., and Ex. 3, Art. 224).

Skcrion III.—THE GaLois RESOLVENT.

232. Galois Resolvent—@roup of an Equation.—

Let
Fi@)=a"+pa™ ' +p2™?+...+ p, =0 (1)

be an equation whose roots, supposed all umnequal, are z,,
;. . . zn, and whose coefficients are regarded as known rational
quantities. The Galois function

\lq-a.x.+a,2‘,+...+a.z,.

has N distinet values i, ¥, ... Yy, corresponding to the N
substitutions of the symmetric group (Art. 225). The equation
of the N** degree whose roots are these NV values, viz.,

V()= -y) G-t) .. G=g) =0, ()

is called the Galois resolvent. When this equation is expanded,
the roots z,, 23, . . . 2+ will enter it in a symmetrio form ; henoce
the coefficients of s in the expanded equation can all be
expressed rationally in terms of p,, p;,...ps. In general, this
equation is irreducible; that is to say, it cannot be broken up
into factors of inferior degree with rational coefficients. We
proceed to examine under what circumstances it may become
VOL. 1I. 8
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reducible. For this purpose, suppose ¥,(z) to be an irreducible
factor of the * degree, with rational coefficients, contained in
¥ (3), and let

¥i(3) = (5 - ) (5 - o) - .. (5= o), 3)

where s, ¥s, - . . ¥r are derived from i, by means of the sub-
stitutions S,, Ss, . .. 8,. The following consequences can be
established : —

(1). Every function ¢ of the roots which 18 unchanged by the
substitutions 1, S, S, . . . S, can be expressed rationally in terms of
Puy Py e o Pne

For, since each of the roots 2y, 2,,... is a rational funotion
- of {, and the coefficients (Art. 228), the function ¢ itself will
be also a rational function of these quantities, say f(,). Now,
under the operation of the substitutions 8, 8;,..., ¢ remains
unchanged, but iy, becomes in succession s, s, . . . ; hence

P = F) =P = o= E (7 G) +S8) + -+ S

but the latter expression being symmetrio in the roots of ¥, =0
can be rationally expressed by the coefficients of this equation,
which are themselves rational.

(2). Every function which 13 rationally expressible twill be
unchanged by the substitutions 1, 8,, S, ... 8,

Let ¢ be a function of the roots which has a rational
expression, say R; and let /(i) be the function of ¥, by which
¢ can be also expressed (Art.228). We have, then, f(yy)=R;
whence the equation f(s) - 2 =0 has a root y, in common with
the equation ¥,(s) = 0; but the latter equation is irreducible,
and therefore all its roots must be common to the two equa-
tions, and consequently f({,) is unaltered when y, is replaced
by 2, s, . . .; that is to say, ¢ is unaltered by the substitutions
which change i, into s, Y, . . . {r, in succession.

(8). The substitutions 1, S,y S, . .. S, form a group.

The effect of the operation of any one of these substitutions,
say S, on ¥,(2) is to leave the function unchanged since its
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coefficients are rational ; the new values, therefore, of {1, s, . . . {r
derived by this substitution must be identical with the first
values, the order only differing; the effect of a second of the
given substitutions, say 8, is to reproduce in some order the
same values of . It follows that S,8, is contained among the
substitutions of which S, and Ss are any two: and the proposi-
tion is therefore proved.

The group indicated in the preceding proposition, all the
substitutions of which leave unchanged certain functions of the
roots (not necessarily symmetrical) is called the group of the
equation. In the case of a perfectly general equation, with no
known relation among its roots, the group is the symmetric
group. When an unsymmetric function of the roots can be
expressed rationally in terms of the coefficients, the group
which leaves this function unchanged is the group of the
equation, and the equation is in this case special. The group
of an equation may be any sub-group of the symmetrio, ac-
cording to the special character of the given equation. The
number of such sub-groups, however, among which the group
of the equation is to be sought, is limited by the following
proposition :—

(4). The group of an irreducible equation is transitive.

A group is said to be ¢transitive when it contains one or more
substitutions whose effect is to replace any element whatever by
another arbitrarily chosen. A transitive group, therefore, has
in it substitutions which affect all the elements. Now let the
group G of the equation be, if possible, not transitive, and let
it affect only the elements 2, &, ... am (m <n). The substitu-
tions of @, altering only among themselves the positions of
these m roots, will leave their symmetric functions unaltered.
"These symmetrio functions, therefore, are rationally expressible,
and the function F(z) will admit a rational divisor

@-2)(z-22)...(x - an),
and will become reducible contrary to hypothesis.
S2
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ExaMpLEs.

1. To form the sextic equation whose roots are the six values of the Galois
function
a1Z1 + a3 + asry,

and to express its coefficients in terms of the coefficients of the cubics whose roots
are z1, 73, 23, and ai, a3, as, respectively.
The six values may be arranged in two sets, of three each, as follows .—
Y1 = a121 + a3z + asTs, Y2 Ja1?2 + a3 + axri, Y3 = a1Zs + a21 + as’s,
Vim a2 + azz3 + a2, Y2 = a7z + asz1 + as?s, ¢ = a123 + a%s + asz1;

the first row corresponding to the substitutions of the alternate group, vis., 1, (123),
(132), and the second row to the remaining three substitutions, (23), (12), (13) of
the symmetric group. If now

Yim(s—y)(s—va)(z-ta), ¥a = (s-¥1) (- ¥2) (s ¥3),

these functions are buth two-valued, and have the same group (Art 225); more-
over, they are unchanged by the substitutions (a121), (m21), (aszs), and therefore
involve ai, a2, as, and zi, 23, 23, similarly. It is easily verified (cf. Ex. 1, Art.
225) that

2 = Y1 = Za1x1,

I 1ys = Y 1¥2 = 2a1322123 + 321%Za1as + Zaraz22123;

also Y1y2ys, being a two-valued function, and involving the a’s and 2’s in a similar
manner, must be of the form

81t 54/ 8ads,
where §) and §3 are symmetric in both sets of elements, and
vV 8a = (a1 - a2) (a1 - @) (m—as), v Bax = (51— 23) (21 — 23) (3 — 23).
We have, in fact,

V1y2ys = a1azas 32,3 + 117373 Za13 + 3217273 a12as + $xde + Fe ¥a,

where ®: =21%23 + 2303 + 2301, ¥ =170 + 2 + TP
also @+ ¥a=3In 30172 — 3017923 = 8,
& —¥e=/a:;
therefore e.=3(8+v/a), ox=3(8-v20)
and finally, »

Viyays = arazas 241 + 212323 Zuid + Saiaaay 212388 + § (S:Ss + ‘\/AtA.)-

The value of y'1y'2y'; is obtained by changing the sign of the square root.

Q.
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The cubic functions ¥, and ¥s, therefore, can be readily expressed in terms of
the coeficients of the given cubics, each of them containing one irrational quantity.
When they are multiplied together, their product, which is the Galois resolvent,
will be rational in both sets of coeflicients. For the complete solution we refer
to Ex. 11, p. 118, vol. 1.

It may be obeerved that, if the function of the coefficients which is equal to
A is a perfect square, the value of \/ A, in the coefficients becomes rational, and
the Galois resolvent can be broken up into two rational factors of the third degree.
In this case the cubic equation is speciul, and its group the alternate group. This
is the only class of special irreducible equations of the third degree, for the alternate
group is the only transitive sub-group of the symmetric in the case of three
elements.

2. To form the equation of the 24th degree, whose roots are the several values
of the Galois function a1z + asz2 + aszs + agz; and, secondly, to determine
the conditions that it can be resolved into rational factors, expressed in terms of
the coefficients of the quartics whose roots are 1, 73, 23, 2 and a1, a3, as, &
respectively.

Let these quartics be (1) (a, b, ¢,d,¢) (z,1)* and (2) (a1, b, a1, dy, &) (2, 1)%.
‘We have (p. 140, vol.1.),

n=— s VA VE V5, me-te RV,

n=-24 VAV A=V =t RV,

with similar values for aj, az, @3, as obtained by putting the suffix 1 to each
letter in the values of =zi, 22, 73, z(; whence

¢121+aax2+¢323+qz¢=f:—: +\/;‘\/:1+A\/;x/;1+1/;\/;;.

Putting now 455
2 = a121 + a3¥3 + as¥3 + ayrq — ;l'n

we have s=V/AvVa+VavVm+ VvV n,
and B = Any = 1 — 1 = 23/ AV iV NV
Writing also ¢ = AA + pu1 + w1, ¥ =A%? + plu? + ¥in?;
squaring again, and reducing, we find

2GG13

St - 2@5’ - -(F;s—’)'

°¢'+2¢=on (A)
since ¢ "
‘/;“/;‘/;=2_¢.=" Vavmvine= oo

2a,°
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The next step is to express ¢ as a function of ¢. For this purpose we form
the equations

i+ ht+ =171,
P41+ g+ pga= T, (B)
1 + pala + P3N =T,
¢1, 92, ¢3, being the values of ¢ determined by a cubic equation, whoee

coefficients involve only one irrational quantity, viz. ArAy,.
(See p.118, vol. 1.)

Similarly i1, ¥2, ¥s, the corresponding values of y, are given by a cubic
which involves the single irrational quantity 4/ AxsAa,s; also
V= (A= @) (A=) (Wt = r) = (u +9) (v +A) (A + 4) VA

We proceed now to express 7o, T1, T3 in terms of the symmetric functions of

A, i, v, 86d A1, p1, »1, with \/AAAM, and consequently in terms of symmetric
functions of z1, 72, 25, 2, and a), a2, a3, ag, with the irrational quantity
A/ B:8a; for since @A + H = a%, (p. 140, vol.1.)

V= (=g (=) (6 =) = (0~ 00) (01 = 05) (s — 05) = o/,
61, 02, 63 being the roots of the reducing cubic
4(a6)® - I(ab) + J =0,

substituting in equations (B) for ¢1, ¢2, ¢ and 1, §2, ¥s, their values, we
find
To=(A?+ u? +») (A3 + ui? + 0,
Ty = A3 + 81 + WV,
where
@ =pul+ A+ A%, W=+ A+ A

both two-valued functions, since they are unchanged by any even number of
transpositions. In fact

S+¥=A+pu+») (W+rA+ap)-3apur=S,
P-¥=(A—-p)(A=-»)(u-»);
whence _ _
*=35+3v8r, ¥=385-3v2a,
where S is a symmetric function, and therefore
Ti = IA33A0 + § (881 — 4/ AxAn,).

Again, in order to calculate 7%, we have

" Ty = ZAYIA + 23ud330, %02 + 2AuvAuin SAZA) + 208 + 29V,
where
@ =u+ A+ A%, ¥ w4 A+ AL,
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both two-valued functions. In fact,
S+Y=(w+ A +Ap) A2+ pud+0) —AwrA+putr)m§,
S-¥=A+u+tn(A-p)A=-»)(n-»),
e=38S+45v8n, ¥=45-3852r; where S'mA+pu+,
and therefore, finally,
T2 = IAIA¢ + 23632312010 + 2ApvA 11 3AZA) + ](881 -88y m)
It is then proved that 7o, T, T: involve only symmetric functions rationally, and
the irrational quantity /' ax4a,.
Now, solving the equations (B), we have
Vv =P¢?+ Qp + R,
where P, Q, R are expressible by symmetric functions of A, u, », and A, u1, »1

with ‘\/A,\A,\l (Art. 227).

‘When this value of y is substituted in equation (A), it becomes of the form
26
(aar)®
¢ being determined by the equation

24— 2983 -

2+ (2P-1)¢*+2Q¢p + 2R =0,

3 — 8ILg — -1- {2107, + / (P-2TT) (I3 —2173) =0,  (C)

obtained by substituting — ;[— for H, and tor G in the cubic equation of p. 118,
Vol. I.; also
@/ 82 =164/T-21J%, and 01>/ Ba = 16 4/ T13 — 27773,

Now, eliminating ¢ between these equations, we obtain one equation of the
12¢A degree in z, involving the single irrational quantity v/ 8.4, and a second of
the same degree by changing the sign of v/ A Aa. If the three values of ¢ deter-
mined by equation (C) be substituted in equation (A), we can resolve this equation
of the 12¢» degree into four quartics; but this would involve the cube root of
v/ 8,44, and, in addition, the cube roots of unity.

The value of ¢ expressed in terms of z), 73, 23, 74, and ay, a3, as, ay is

1 3
ﬁ¢=1(22+xa—xl-12) (a2 + a3 — a1 — ay)? = AA; + pp1 + w915

and since ¢1, ¢z, ¢ are connected in pairs by a homographic relation involving
v/ 4544 and the cube root of unity (see Art. 60, vol. 1.), only one value of ¢ is
required to complete the resolution of the equation of the 12¢% degree into four
quartics.

As in the preceding example, it appears that the two factors of the Galois
resolvent, each of the 124 degree, become rational in the coefficients when the
discriminant is a perfect square; and in this case the group of the equation so
characterized reduces to the alternate group.
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3. T. Zeexcoe cnder wia: conditions the Galis resolvent breaks up into
fri2ors = e cane of the gx2ie whea a. is replaced by o in the Galois function

$ = as; + @z + @i + aly + agls,

« Yeing an imaginary fifth root of wmity.
The fuzctisn $ Las 12) values: and when « is put in place of e, with the
omiitior & = 1, the Galois resolvent takes the form

Vo W, B =0,

for if 4, is a ront, s0 also are @b, a’r, & P
We now pat ¢4 = 0, and from the values of ¢ select the following four : —

6 = ‘an — a'n + dny L alrg 4 158,
0= nidntentantn
6 = ‘a'r) + a 51+ a'ny + a¥54 + £5)85,
0 = [&'r) + &’11 + &’ + a B¢ + 13)8,

of which the last three are obtained by subsetituting in succession a?, o, «* for «
in 0), and reducing by the equation «* = 1. It should be noticed that, since 5 is a
prime number, if in the series «, «*, a*, a* we replace a by a?, the same roots are
reproduced in a different order.

From 61, 6, 0, 6, the 24 values of 0 can be obtained, in six sets of four, by
the six permutations of z), z2, z3; for zi, haring all the multipliers possible,
viz. a, a?, a*, a!, need not be permuted. Every symmetric function of 8, 6, 03, 6,
has six values obtained by the same permutations. The resolvent is therefore the
product of six quartics of the type

0+ ¢ +pt+ 00+ 7=0.

.
Again, since 3 ¢, r* is the sum of all the values pA+* can assume, it is

1
unchanged by any substitution, the order only being affected ; it is therefore ex-
pressible by the coefficients of the quintic; whence, making u = 1, we find by
Art. 227 that 7 is a rational function of ¢. The same is true for all the coeffi-
cients; therefore if one is known, all are known. Now let u = 0, then éﬁ* is

known, and we can therefore form a sextic for determining ¢ ; and by adjoi;ing the
roots of this sextic, this particular form of the resolvent becomes the product of six
quartics in 0 = Y5,

Thus the solution of the quintic depends on the solution of a sextic, as Lagrange
has pointed out. The analogous method was successful in solving the cubio, by
reducing it to a quadratic in y®. In the case of the septic, a similar treatment of
the Galois resolvent would reduce it to 120 sextics in y’.
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SecrioN IV.—TrE ArceBrAlic SoLuTioN oF EQUATIONS.

233. Application of the Theory of Substitutions to
the Algebraic Solution of Equations.—The problem of
the solution of an algebraic equation may be stated as follows :—
From the given values of the single-valued functions p,, p, . ..,
viz. the coefficients of the equation, to find the value of an
N-valued function, viz. a root of the Galois resolvent,; for we
have seen (Art. 228, Cor. 3) that each of the roots 2, 23, . . .
can be expressed rationally in terms of any Galois function.
Although the actual determination of the roots in terms of the
given coefficients is not facilitated by this mode of procedure,
yot the statement of the problem in this form is important in
reference to the question of the possibility of the solution of
algebraio equations generally.

The known solutions of the cubic and biquadratic may from
this point of view be presented briefly as follows : —

(1). In the case of the cubic equation
L+pd+pr+ps=0,

we have to find from the given single-valued functions p,, p,, ps
a six-valued funotion of the form az, + a#; + ass by the
extraction of roots. In the first place all two-valued functions
can be expressed rationally (Art. 227) in terms of the two-
valued function

Jas = £ (@ - @) (@ - 2) (@2 - @),

and therefore in terms of p,, p,, ps, along with the square root
of a known function of the coefficients (Art. 42, Vol. 1.). Now
we have found (Art. 231, Ex. 2) a six-valued function
2, + wy + w'zy = ), whose cube is two-valued. 4, itself there-
fore can be expressed by means of a cube root of a function of
the coefficients in addition to the square root previously intro-
duced (cf. Art. 59, Vol. 1.). A six-valued function having
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been thus obtained, the solution of the equation is theoretically
ocomplete.

(2). In the case of the biquadratic equation
'+ P2+ P2 + pr+ P =0,
we have to find a 24-valued function of the form
@ity + ats + ayTs + auy

from the single-valued functions p,, ps, ps, ps by the extraction
of roots.

As in the preceding case, any two-valued function can be
expressed rationally in terms of p,, p, ps, pi, along with the
two-valued function , [A,, and henoce in terms of these coefficients
along with the square root of a known function of the ooef-
ficients (Ex. 15, p. 126, Vol. 1.). Now, referring to Art. 231,
Ex. 2, we find the six-valued function

¢ =2+ 2 + (173 + 22) + W (212 + Ba2s),

whose third power is two-valued ; ¢ will be expressible therefore
by the aid of a cube root of a known function of the coefficients.
‘We have now to find a means of passing from this six-valued
function to a 24-valued function. The group of ¢ is (Ex. 3,
Art. 224),

H=[1, (12)(34), (13)24), 19@3)], (=6, r=9),
and a second function belonging to the same group is
0’ = (x, + 23— 2 —z‘)’ (zﬁr; + x’zd)‘-

This funection is rationally expressible in terms of ¢, and the
value of 0 therefore is obtained in terms of the coefficients by
the aid of an additional square root. The group of 0 is

(1, (12)(34)], (p=12, r=2),
to which the following function also belongs : —
P = {a (- 25) + as (23 — @) )75
J* is expressible in terms of 0; and finally ¢, which is a
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24-valued function, is obtained by the aid of another square
root.

The process illustrated in these two cases may be described
as the successive reduction of the group of an equation by the
adjunction of radicals to the domain of known quantities. The
symmetric group is in each case first reduced to the alternate by
the addition to the known coefficients of the square root of the
discriminant. The further reduction depends on the included
sub-groups of the alternate till finally the group unity to which
the Galois function belongs is reached. If the solution of the
quintio were attempted by this method, we could proceed no
further with the reduction than the first step, since, as has been
seen (Art. 231), there exists in this case no multiple-valued
function of the roots of which a power is two-valued. It
cannot, however, be inferred immediately from this that the
algebraio solution of the quintic is impossible. Before making
this inference it will be necessary to examine closely the alge-
braic character of the formula which is the possible expression
of a root of an algebraio equation ; and hence to show the
propriety of the application of the theory of substitutions to the
problem.

For this purpose we proceed in the first place to explain the
distinction between quantities which are to be regarded as
rational and those which are to be regarded as irrational ; or, in
Kronecker’s language, to define the rational domain.

234. Pefinition of Rational Domain.—All rational
functions, with integral coefficients, of certain parameters
R',R”, R ... constitute the rational domain (R’, R”, R, . . .).
If amongst any functions of this domain the operations of addi-
tion, subtraction, multiplication, division, and involution to an
integral power are performed, the resulting quantities still
belong to the rational domain.

The extraction of roots will, in general, lead to quantities
outside the domain. We may, however, limit ourselves to
the extraction of roots of prime order, since an (mn)™ root can
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be replaced by an m® root of an #™ root, and all numbers can
be resolved into prime factors. . I —? o

The theory of substitutions apphes exolumvely to rational
functions of the roots of equations ; whence, if this theory is to
be applied, we must avoid bringing irrational funotions of the
roots into our investigations.

If the student refers to the expressions given for the roots
of the quadratic, cubic, and biquadratic equations in terms of
their coefficients, it will be found, when the roots are substi-
tuted in place of the ooefficients, these expressions become
rational funhotions of the roots involving the cube roots of
unity, the rational domain consisting of the coefficients of
the equations and the cube roots of unity.

It will appear subsequently if any algebraic formula which
is an expression for a root of an equation of an higher degree
exists, it must become a rational function of the roots (when
they replace the coefficients) involving several primitive roots
of unity; and finally, the theory of substitutions proves that
functions of the roots do not exist satisfying such conditions,
and that the algebraic solution of the higher equations is im-
possible.

235. Form of the Roots of Equations algebraically
solvable.—If f(#) = 0 be an equation, the coefficients of
which are included in the rational domain (R’, R”, R .. ),
and which moreover we suppose irreducible in this domain,
we say that this equation is solvable algebraically when it
is possible to satisfy the equation by substituting for z an
expression formed of elements within the domain (R’, R”, .. .)
by means of the following operations of algebra, viz. addition,
subtraction, multiplication, division, raising to integer powers
and the extraction of integer roots, the number of such opera-
tions being finite.

The value of z thus determined is designated as an algebraic
function of the domain (R’, R”, R ...).
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The building up of this algebraic function may always be
completed in the following manner:—
1°. Caloulate a rational function of the elements of the
domain, viz.,
F,(R,R",R"...).
2°. Caloulate a quantity ¥, satisfying the equation
V:"= F, (R, R", R”..)),

where p, is a prime number. We also suppose that F,is not
an exact p,** power, for if it was, ¥, would be included in the
primitive domain.

3°. Adjoining V, to the primitive domain, form a rational
function F,_, (V,, R, R”, R"’...) in this extended domain,
and caloulate ¥7,_, from the binomial equation
V- F.(V.R,R, R"..),

L

where p,, is a prime number. We also suppose that this root
cannot be immediately extracted, for if so, ¥,., would be
included in the domain (V7,, R, R”,...). )

4°. Adjoining V,., to the last domain, form a new rational
function in this new domain F,,(V,., V., R, R”,...), and
80 on.

'We can therefore represent the formation of the algebraic
function 2, where f(z) = 0, by the following chain of
equations :—

V- R (R, K. ),

V:.Vl'l = F'-l(Vn H, R,, .o .),
V:'..’.,’—" Fy-a(Vv-l’ Vv; .R’, .R'” .o .), (A)

V':l = F(VyVs, ...V, R,R", ...),
2= F(Vy V... V,, R\, R, .. ),
where the functions F are rational and the numbers p prime.



270 Theory of Substitutions and Groups.

Before proceeding further it is desirable to express the
functions F in an integral form, if they are not so expressed
already ; aud to fix our ideas we shall take v = 3, the method
being the same in every case. Supposing F, not an integer
function of ¥, and V,, we can always put

Fl = ¢(Vh m)

¥ (Vs V)

¢ and ¢ being rational and integer functions.
From the chain of equations we have in this case

Ve = F(R), VP =F,(V,R), R=(R,R",...).
- Also, if w be a primitive root of the equation 2*2-1 =0,
YV V) Y (0P, V) Y (@ Vo V5) o (wPr Py, Vi) = i (VP2 V).

Again, the product of these factors, omitting the first, is
rational, being independent of w. Now eliminating V,*s by
means of the equation

V= F, (Vs R), ¥, (V4 Vs) becomes ¥;(Vs, R).

Treating ¥; in a similar manner, it is converted into a
function of the form ¥, (Vys, R), the multiplier being
rational ; now eliminating Vs, ¥, becomes ¥, (R).

Finally, multiplying the numerator ¢ by these rational
factors, which were applied to y, &o., &ec., the value of F, is un-
altered and the denominator is a function of R=(R’, R”, R". ..).
Thus F, is expressed as a rational function of 73, 7;, in an
integral form.

And therefore, in general, we are enabled to write any
rational function of the Vs, viz., F,, as follows :—

Fa-l (Vu’ V¢+1 oo Vy, R) =J0+J|.V¢ + Jg Vaz cee t+ L.—lVapﬂ-l’
where the functions J are integer functions of V., Vassy - - - Vs
and fractional only in R, R”, . ..

It will be necessary now to prove a fundamental theorem of
Abel’s which will be frequently applied subsequently.

'-"[’Y‘l.l. " - -
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236. Theorem.—If the equations

S+ ot + L+ =0, (1)
o - F=0, Q)
where p 18 a prime number, are simultaneously satisfied, either
Loy Jos Jos «+ « Jp all vanish, or else one of the roots of the equation (2)
can be expressed rationally in terms of fi, fs . . . fp and F.
For suppose the coefficients of equation (1) not to vanish,
then the equations (1) and (2) have a greatest common divisor

2P+ g+ g4 o+ g, =0, (3)

the coefficients of which are rational functions of F, f,, /3, ... f,.
Now if 2, be any one of the roots common to the equations (1)
and (2), the other roots will be of the form

wt,, whry, ... where w? - 1=0;
whenoce
gp = zlpwu&ﬂ ces = l'zlp. (4)

Again, since p is a prime number, we can find two numbers m
and n such that mp + #7p = 1. Also
gpn = wmrz;p = w"".ﬁ(l-"'p),
and by (2)
w"'-h - gpnFm’

therefore, w""z, which is a root of equation (2) is expressed
rationally in terms of F, £}, 3, . . . /.

237. We proceed now to make a further reduction in the

form of
E-] = Jo + JlVa. + J;I’.,a oot Jpa.-lzpﬁ-l,

so that J, may be equal to unity.
Let J, be one of the coefficients J, J3, . . . which does not
vanish, and putting
Jx Va‘ =W a)
there are integer numbers m and #, such that

mi + np, = 1;
whence
J‘m V,'" = J‘m V.(l-np“) = Wam ;
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therefore, we have
VC = ’V."E"J.": .t Fa = le"

Hence ¥V, and W, can be expressed the one in terms of the
other and the elements V., V.., . .. V,, so that the rational
domains

(Va, Varts -+ Vo Ry R”,...) and (W, Vory ... Vo ROR"..)

are equivalent.
Again, there is no power of ¥, lower than p, which is rational
in this domain. For if

Wl' = q’ (V¢+l9 V;ﬂ’ LI Vv)’
where ¢ < p,,
JIVE = ®(Voy Vaiay - - - V)5

but g is not divisible by p,, for p, being a prime number should
divide « or ¢ ; but both are less than p,, and consequently we
should conclude that a power of ¥, less than p, should be
rationally expressible, which is impossible, p, being the lowest
power of V, which is a rational function of V,,,, Vs . . . V..
Moreover, by raising W, to the power p, we have

W," = J.”E‘ =W (V.,[, V,n, « e V.,, R’, .R” . .),

whence we learn that W,, like V,, is given by a binomial equa-
tion of the degree p,, and we can replace the one by the other
in the chain of equations connecting the V.

It follows that we can introduce W, in place of ¥, where
it occurs in the funetions F,_,, F,,, ... F,.

Therefore in :

Foo=Jdy+ hVe+ LV l2+...+ J,...%”-“,

when we replace J, V,* by its value J,(F,J,™)» W =4, this funo-
tion is of the form Ly W.», where mh = lp, + A and Ly is a
rational function of ¥, V.., ... V,, which can be rendered
integral by Art. 235.
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Cor.—1t should be noticed that when 4 is given the values
1,2,3,...p,-1 in the equation mh = lp, + &’, A" has for its
values 1,2, 3, ... p. - 1 in some order, since all its values are
distinot and less than p, ; also since mx + np, = 1, « is the only
value of 4 for which the remainder 4’ = 1.

‘We see then that

F._. = Jo+ W; + L’W‘.2+ [ +Lp._lW‘P.-l’

where the L’s have been rendered integral and L, = 1, and we
return to the old notation by putting ¥V, for W,, and J, = 1.
‘We have then, finally, the important result

Foa(Po Vanroo - Vo R) = o+ Vu+ iV 2+ ..o+ Jpa VI
whence, expanding the function
F(Vy, Vy...V,,Ry,R"..)=u2,

a root of the equation f(¢) =0 in powers of ¥V, (the ¥ with
lowest suffix), and making the foregoing reductions, we have

= GO +Vl + GgV]’ +..04 GPI-Ilel-l-

238. We prooeed now to apply this theory to the solution
of equations which are solvable algebraically.

For this purpose, forming the different powers of z;, and
taking care to reduce the exponents of V3, V... 50 as to be
respectively less than p,, p., ... by means of the chain of
equations which define 7, 73, . . ., we shall arrive at the
result

f(zl) =H,+ HV,+ ,V*+...+ le-llel-l =0
by hypothesis, where H,, H,, H, . . . are integer functions of
the V’s.

By Abel’s theorem Ho, H,, ... Hy,-, must all vanish ; for if
not, the equations

Ho+H\Vi+...+Hp | Viir'=0, Vii=F(Vy, Vs...V,, R, R",.. )

would be simultaneously satisfied, and F, would be an exact
** power in the domain (73, ¥, . .. ¥,), which is contrary to
hypothesis.

VOL. 1, T
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In a similar manner, expanding H; in powers of 7, viz.,
Hi=K+KV:+EV+...+ K.V,
the coefficients K, K ... should all vanish for exactly
analogous reasons. But if ¥V, be absent, expand in powers of
Vs, &o., &e.

If in any case the coefficients of these successive functions
do not vanish when arranged in powers of V;, their indices
having been reduced as much as possible, it is a proof that we
have neglected to secure that each function F in the chain of
equations is not an exact power, or that the number of the
elements ¥ has not been reduced to 8 minimum.

‘We have an example of this deficient reduction in the case
of the oubic equation which we insert now, as an illustration.

Let f(z) = 2* + 3Pz - 2Q,

5 =2Q+ [@+P +Q- J@ + P. (Volri,p. 45)
The chain of equations is as follows :— ,
m’=Q’+P, Vz’=Q+ Vs, V13=Q—Va, (A)
= V| + Vz,
whence if(xl)=PV:+(Vz’+P)Vx+ | A4
the coefficients of this equation, P, V3! + P, ¥, cannot vanish
identically, which is a proof that the functions ¥ have not been
reduced to a minimum number, and we proceed to show that
V. is a part of the rational domain (¥, ¥V, P, Q).
From the chain of equations (a)
(PiVa)= @ -Vy*=-P°, whence V,V,=-P,
. __P__ Py (@-F)F¥
Again, V.= Ao y

whence V, is a part of the domain (73, Vs, P, Q).
The chain of equations () is therefore reduced to

V’=Q@+P, Vi=Q+V, W1=Va—'IV—)=V:+_—(Q-I,:') V".
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The other two roots are obtained by putting » 7, and «*7,
for V3, the last element of the chain (a),

-V

I =w Vz + .P! (l)’ V:"
X3 =W’V|+ Q ;)ZV’MV”-
Resuming the general investigation, we have
2‘1=Go+ V;+G{V,'+G;’Vg’+... (1)

f((tl) = H°+ H1V| + Eng'+ H,V,’+ e 50,

the coefficients H all vanishing.

Now substituting in (1) for V7, w\ ¥}, 0Py ... w7 V,,
we obtain the values of ;, 25, ... 2, where w,"1 - 1 = 0, from
the system of equations

e = Go"l- w;‘V; + szthl‘l_*_“. (K=0, 1, 2,...])1—1);

and finally, from this system of equations we have
1
Vi= Py 20’1-‘ Zes1y ()

whence we conclude that the irrational function of the coeffi-
cients 7, is a rational function of the roots when the primitive
root of unity w, is adjoined to the rational domain.

To prove the same for V,, interchange the roots in (2) in
every way, and so form an equation

-7y - Vi) (- V") ...=¢(y) =0,

which has for roots all the values of 7,71, which consequently is a

symmetric function of #,, 2;, ... 2,,; that it will take this form

is easily seen, for if ¥, is a root, ,**' ¥, is another value of V..
‘We have then

1
h = [;1 Ew*tﬂl]“= V=L, + L,V3+ L, V' +. . .,
T 2
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where L, is equal to 1. Proceeding now similarly as in the
case of «,, ¢(y) replacing 1 (z),

1
V,=Ezw{‘.’/.u, (K=O, 1,2,.-.}”—1), (I,,P’_]-:O;

80 ¥, is a rational function of the roots of f(2) when w, and w,
are adjoined to the rational domain, and similarly for all the
¥’s when certain primitive roots of unity are adjoined.
Summing up the results arrived at we have the following :—
Theorem.—If an equation f(z) = 0, the coefficients of which
are rational functions of the quantities R’y R”, ..., can be satisfied
by an explicit algebraic function

¢=F(Vy Vy...V, R, R ..),

the quantities V' are rational and integral functions of the roots,
and of the primitive roots of unity ; they ure moreover determined
by a chain of equations of the form

V2e=Fo(Vas Vis... Vi R, R"..)),

wheremn the indices p are all prime numbers and the functions F
all rational.

This theorem makes it possible to apply the theory of substi-
tutions to the proof of the proposition that general equations of
degree higher than the fourth are not algebraically solvable.
The proof is as follows :—

It has been shown that the first irrational function ¥, is the
», root of & function rational in the domain (R, R”...), and
as V, is a rational function of the roots such that ¥,? is symme-
trical, it is, by Art. 230, the square root of the discriminant A,
or of the form 8,/ A where § is a symmetrio function of the
roots. Consequently p, = 2.

If we adjoin 84/A to the rational domain we include all the
one-valued and two-valued functions of the{roots. Proceeding
another step, there must be a rational function of the roots 7,_,,
which is 2p,-, valued, and of which the p,.,** power is two-valued,
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but no such function exists when n > 4 (Art. 231). Conse-
quently the process, which should have led to the roots, cannot
be oontinued.

‘We oonclude, therefore, that the general equation of degree
higher than the fourth cannot be solved algebraically.

In the foregoing investigation we have followed the sys-
tematio treatment of this question given by Netto in his
Substitutionentheorie. The principles on which the investiga-
tion rests are due to Abel, who was the first to establish in a
rigorous manner the impossibility of the algebraic solution of
equations of a degree higher than the fourth. The funda-
mental theorem of the present Article was stated by him in the
following form :—If an algebraic equation s solvable algebraically,
we can always give to the root such a form that all the algebrasic
functions of which it is composed can be expressed rationally in terms
of the roots of the proposed equation (Abel, (Euvres Completes,
1881, Vol. 1., p. 75). The manner in which this theorem is
applied in the proof given above is a modification of Abel’s
proof introduced by Wantzel, to whom the propositions, in the
theory of substitutions, of Arts. 230 and 231, appear to be due
(see Berret’s Cours d’ Algebre Supérieure, Vol. 11., p. 484).



NOTES.

> 'NOTE A. ~

DETERMINANTS.

THE expressions which form the subject-matter of Chapter XIII.
were first called ¢‘determinants” by Cauchy, this name being adopted
by him from the writings of Gauss, who had applied it to certain
special classes of these functions, viz. the discriminants of binary and
ternary quadratic forms. Although Leibnitz had observed in 1693
the peculiarity of the expressions which arise from the solution of
linear equations, no further advance in the subject took place until
Cramer, in 1750, was led to the study of such functions in connexion
with the analysis of curves. To Cramer is due the rule of signs of
Art. 128, During the latter part of the eighteenth century the
subject was further enlarged by the labours of Bezout, Laplace,
Vandermonde, and Lagrange. In the nineteenth century the earliest
cultivators of this branch of mathematics were Gauss and Cauchy ;
the former of whom, in addition to his investigations relative to the
discriminants of quadratic forms, proved, for the particular cases of
the second and third order, that the product of two determinants
is itself a determinant. To Cauchy we are indebted for the first
formal treatise on the subject. In his memoir on Alternate Functions,
published in the Journal de I Ecole Polytechniqus, vol. x., he dis-
cusses determinants as a particular class of such functions, and
proves several important general theorems relating to them. A
great impulse was given to the study of these expressions by the
writings of Jacobi in Crelle’s Journal, and by his memoirs published
in 1841. Among mathematicians who have advanced this subject in
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more recent years may be mentioned Hermite, Hesse, Joachimsthal,
Cayley, Sylvester, and Salmon. There is now no department of
mathematics, pure or applied, in which the employment of this
calculus is not of great assistance, not only furnishing brevity and
elegance in the demonstration of known properties, but even leading
to new discoveries in mathematical science. Among recent works
which have rendered the subject accessible to students may be men-
tioned Spottiswoode’s Elementary Theorems relating to Determinants,
London, 1851; Brioschi’s La teorica des Determinants, Pavia, 1854 ;
Baltzer's Theoris und Andwendung der Determinanten, Leipzig, 1864 ;
Dostor's Eléments do la théorie-des Détorminants, Paris, 1877 ; Scott’s
Theory of Determinants, Cambridge, 1880 ; and the chapters in
Salmon’s Lessons Introductory to the Modern Higher Algebra, Dublin,
1876. For further information on the History of this subject, the
reader is referred to Muir's Zheory of Determinants sn the historical
order of its development, London, 1890. In Salmon’s Higher Algebra
also there are short historical notes on Eliminants, Invariants, Co-
variants, and Linear Transformations, as well as on Determinants.

NOTE B.

COMBINED FORMS.

'WE give here, as an appendix to Chap. XVIII., an enumeration of
the concomitants of two quartics U and 7. For this purpose it is
convenient to use the notation (¢, y)* for (1, 2)° ¢,y,, when the dis-
tinction between the variables is removed. In this notation we have
sixteen covariants (U,, 7,)?, (U,, H'.», (V., H.y, (H,, H,), when
2 has the four values 1, 2, 3, 4; but of these Sylvester has reduced
(H#,, H',) and (H,, H'.)* so that only fourteen independent cova-
riants are obtained in this way ; we have, however, to add the four
covariants (@,, V.), (&, U,)', (H,,G".), (H's, G.)*. These are the
eighteen special covariants of this system (Gordan, Math. Ann. 11
275). To this list are to be added the five forms belonging to each
quartic separately, viz. U, H,, G,, I, J, and V., H'., G, I', J'.
Hence there are in all twenty-eight forms made up as follows :—
eight invariants, eight quadric, seven quartic, and five sextic co-
variants.
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The Table which follows gives the number of forms of the com-
bined systems from I, I. to IV,, IV. :—

L | 1L m.‘ Iv.
|
L | s | 5 |13 i 20
IL 6 | 15 ! 18
1L 26 : 61
Iv. | 28
NOTE C.

THE QUINTIC AND ITS CONCOMITANTS.

GorpaN fixes the number of independent concomitants as twenty-
three, which may be derived as follows :—the first fourteen, viz. four
invariants, four linear covariants, three quadratic covariants, and three
cubic covariants come from the covariants I, of the second degree and
J, of the third degree considered as a distinct combined system in the
manner of Art. 190; one reduction, however, in the number there
obtained occurs in this case, for the resultant of Z, and J,, or R(Z,, /),
is the same as the discriminant of J, or A (J}), both leading to the
same invariant of the twelfth order. In addition to the fourteen thus
obtained the remaining concomitants are defined as follows, K, being
used to denote the Hessian of J, : —

Quartio Covariants : Ip(H,) = Q., J(I,, Q) ;
Quintic Covariants: U,, J(U, L), J(U, K.);
Sextic Covariants: H,, J(Z,, H,),
Septic Covariant : J(H,, J,);
Nonic Covariant : J(U,, H,).
The foregoing results are collected in the following Table, where
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p signifies the degree in the variables, = the order in the coefficients
of the quintic, and 2V the number of concomitants of each degree :—

? w N
0 4+ |8 !12. 18 | 4
1 5,7 |1 | 13| 4
2 2 | 6 | 8 3
3 3 | 5 | 9 3
|| 4 | 6 | 2
5 1|8 3
6 || 21 7 | 2
7 6 | | 1
9 3 ! ‘ 1

Adopting the definitions of the invariants given by Clebsch and
Gordan, and implied in the following equation (see Art. 189), the
connexion between the four invariants of the quintic is established as
follows by Gordan :—

- (1, K,) = LK, - 2K, + 1,1.};
also Mp(J)=L, =Lz + Ly.
Now, substituting Z, and - Z, for z and y in Z,, K,, and in J(Z,, K,),
we find - I = F(1, I, I,),
since R(1,, L) = 121,, - 16 I, 1,,
R(K,, L,) = I - 1L

Thus 7, is defined, and its square expressed in terms of the other
invariants which are not skew.
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NOTE D.

THE SEXTIC AND IT8 CONCOMITANTS.

Tae first sixteen forms come from /, and L, treated as a combined
system (Art. 216). In this way we obtain all the invariants, quad-
ratic covariants, and quartic covariants. There are in general
eighteen forms in the combination of a quartic and quadratic, but in
this special case, owing to the nature of the coefficients, the invariant
D,, which is an invariant J; of the sextic, is expressible in terms of the
invariants 1, I, I,, in the form I, = pI? + ¢I;1,: also the covariant
sextic of I, is reducible to those which occur in the enumeration
which follows. It should be noticed that since nw — 2« is even for
the sextic, all the forms are even in the variables.
The following is a complete enumeration of the covariants :—

Quadrics: L, =I,(U), M.=L,(L), N.=M,(L),
J(L, H), J(L,N), I, N,).

Quartics: 1,, H(1,), J(I,, L,), J (I, M), J (I, IV,).

Sexties: U, J,, J(U, L,), J(U, M,), J(Js L.).

Octavies: H,, J(U, L), J(H,, L.).

Decimic : J(Z,, H,).

Duodecimic: &..
These results are collected in the following Table, in which p is

the degree of the concomitant, = the order in the coefficients, and N
the number of each kind :—

? (- N
0 2 4 6 10 | 15 l 6
2l 3 5 7 8 |10 |12 6
|
402 4 6 7 9 .
6 ! 1 | 3 | 4 6| 6 LB
sl 2 | 3 | & '3
10 || 4 I 1
12 3 I
]




Notes. 283

It will be noticed that there are two covariants of the sixth degree
in the variables, and of the sixth order in the coefficients ; this is the
first instance in which there are two irreducible seminvariants of the
same order and weight in the binary system.

It may be observed that if the ternary forms of any three of the
quadratic covariants be taken as lines of reference, the sextic will be
represented by a cubic and conic combined, such that every coefficient
in the equation of either curve is an invariant of the sextic.

NOTE E.

DETERMINATION OF THE UNIQUE TERNARY FORM.

Tae following is the simplest method of finding, for a given binary
quantic of degree 2m, the ternary form U, of degree m, such that
oa(ru)=0.

Let Ube written with trinomial coefficients complete in form ; for
the variables z, y, s substitute 22, 2z.y,, ¥}, respectively, and arrange
the result as a binary form of the 2m* degree; this form will then
become 3 (pa, + ga, + re, + &c.) 2 yJ, where a,, a, 4, &c. &c.
are the literal coefficients of the ternary form, and p, ¢, r, &c. &ec.
their numerical multipliers. The reduction of U from having
m(m + 8)

2
will be accomplished by putting a,=a,=4,, &c. in such compound terms.

‘When this change is made it will be found that the differential equa-

. @BU U . a1 . .
tion Bds " dp = 0 is satisfied identically: also that p + ¢ + r + &ec.

is the proper binomial multiplier in the binary form. When, for
example, m = 4 we have the following quartic for U :—
a2t + ayt + azt + 6 (ay’s® + as%2? + a2'y?)
+ 4 (a2 + 2’8 + @Y’ + ayY’s + 62°T + a;5’y)
+ 12zys (ayz + 6y + az8),
which becomes on transformation
(@oy @1y Bay @3, G4y s, G5, By 85) (2o o)

All the concomitants of this ternary quartic U and the conic y* - 4sz
combined are also concomitants of the binary octavic.

+ 1 coefficients to a form with only 2m + 1 distinct coefficients
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NOTE F.

Proressor ELL1oTT’s DETERMINATION OF A SOLUTION OF THE
D1rrerENTIAL EQUATION D& = F(ay, 0y @3, . . -, 4,).

Ix order to find a special solution of the differential equation
M=F(a°)ahal) . "9“!)9

where F'is a rational and integral function of the coefficients of order

w end weight «, of the most general type, such that nw — 2« is

positive, it will be necessary to establish some preliminary theorems.
The following notation is adopted :—

c d d d d
D= G,y —, D =a + 20— + ...+ N4, —,
P R ! oy

9, = .DDI' - Dlr.D, v =nw - 2x.

I. To prove the theorem @,F = vF,

o d e d
(1) DD,—D‘D=n§a,-—'—2gra,d—a-',

o dF . d d
g % " @F. Now, in order to reduce g ro, o

since AF(ay, ay a3, . . . 6,) = F(ay, Aay, Nay, . . . A"ay,),

differentiating both sides of this equation with respect to A, and then
putting A = 1, we have

KF=27'G,E

now substituting in (1),
(DD, - D,D)F = (nw - 2«)F, or @ F=vF,

‘We proceed to make several deductions from this result which we shall
subsequently make use of,



Notes. 285

II. To prove the theorem
DDy - DD =r(v-r+1)D",
we have in the first place
©,= DD - D*D = (DD, - D.D)D, + D,(DD, - D,.D)
=(v-2)D,+ Dy=2(v- 1D,

observing that the operator D, increases x by 1, and decreases v by 2,
and that D decreases « by 1, and increases v by 2.

Again,
DD} - DD = 0,D? + DO,D, + D0,

. = (v - 4).D]’ + .DI(V - 2)Dl + .Dl’v = 3(v - 2).D|’ H
similarly

D.Dl"' D{D = @lDl'-l + _Dl@l_Dl"-z + DI’QI.D]H +..04 D{"'@l. -
Remembering that ®,.DFF = (v - 2p)DF,
and reducing, we have

@,- = .DDl' - l'D = r(V -r+ I)Dl'_l.

Now, operating with both forms of ®, on Jr-'F, and giving r the
values 1, 2, 8, ..., in succession, we obtain the following series
of equations where, for shortness only, we write

O=D0D, U, =DD, U,=D2D...1, = D'D:—
HF d HlF = Vﬁ;
ﬂan - HQF = 2(V+ l)an,
[ILF - ILF = 3(v + 2) ILF,
IO F - I,F=p(v+p-1)1,,F,
this series being continued until p has such a value that I,F= 0
which will occur when p exceeds « if not previously.

Now, eliminating IN,F, I F, II,F, . . ., we obtain the finite

result
1 D,D DprD?

DD, ‘ﬁ' T.2.v@+D)  1.2.3.0(rs )wr2)
that is, we have obtained, as was required, a particular value for ®
which satisfies the equation

Dd = F(ay ay, a3, . . . a,),

1 DD N
® = D, {J' 1.2.v(+D) " 1.2.3.v(v+1)(v+2)"”} F

...}F=F;

viz.,
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As regards this value of & it should be noticed—

1°. That it has a limited number of terms since ="' F = 0.

2°. That none of the coefficients become infinite when » is positive.

It follows at once that if v > 0 for D®, i.e. if v > - 2 for ®, the
linear functions Z,, L,, ... L, of Ay, A, .. . A,, which occur in Art.
165 are linearly independent ; for the A’s may be chosen so as to give
them any values whatever. This amounts to Prof. Elliott's proof
alluded to in Art. 165.

We proceed now, with the same object in view, viz., that of
showing the independence of Z,, L, ..., to apply the method of
Art. 165 to exhibit the solution of the following differential equation,
which includes the equation of that Article, and in which F has the
value defined on p. 284 :—

Dd=F=cfr+efs+...+6y,

In the first place, when p = r there are no seminvariants of the
order = and weight « + 1, x being the weight of 7'; but we obtain a
solution of the equation D® = F, such as has been obtained by the
former constructive process, viz ®,.

Secondly, when r is greater than p, we introduce A;, Ay, ..., A,
defined by equations (4), Art. 165, where r = p + ;.

These equations, along with the equations

Li=e, Ly=¢, ... Ly=¢,,
determine A, Ayy Asy . . . A, a8 linear functions of ¢;, ¢, . . . ¢, and
of A, A;, A, ... A, and we have the following value for &:—

1
=K{01¢|+01¢¢+...+0,¢,+A|2|+A32’+...+Aj2j},

where A is the determinant formed by the coefficients of L,, L,, ... Z,,
and the coefficients of A,, A;, ... A, not involving ¢, 63, ... ¢,
®,,®,, . . . O, are linear functions of ¢y, sy ... ¢,, and 3, 3y, ... 5
are-seminvariants, since D3, DS,, ... D3, all vanish.

Now every value of ®, under the given conditions as to order and
weight, satisfying the differential equation D® = F'is given by the
last formula, which of course includes the value of ®, previously
determined by an independent method; whence it is necessary that A
shall not vanish, for if it did the formula would fail to determine
&, in particular, that is, L,, L,, ... Z, are not linearly connected, for
Ay, Ay, ... A are entirely arbitrary.
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NOTE G.

ABELIAN EQUATIONS.*

THE resolution of an equation f(z) = 0 of which all the roots arc

of the form
z, 0(z), P(z) . .. 6™ (),

where 6™(z) = z, m being a prime number.
First it is plain that if 6«(2,) be substituted for z, in the series

z, 0(2), () . . . (2,

the order of the roots only changes in virtue of the condition
0™(z,) = z,. Now denoting any root whatever of the equation 2 -1=10
by e, the expression

¥(2) = {2, + ab(z)) + a6*(2)) . . . a™0™Y(2)}"™,
where a is considered known, has only a single value, and consequently
can be expressed rationally in terms of the coefficients of f(2), 6(z),

and a.
For if we replace z, by another root, for example z, = 6%(z,), we have

Y(z;) = (B (2)) + aP(2) . . . + a2 + a™0(2,)}"™

= {a"z, + ab(z)) . . . + ™" (2)}";

whence we see that
W(z)=¥(z) . ..=¥(2,),
and consequently

(o) =1 2:': ¥(2,).

We can therefore calculate ¥ as a symmetric function. It moreover
contains a, and consequently has a distinct value for each value of a.
It then we denote by U, the value of ¥ corresponding to tho
value a, of a, we can derive m equations of the form
z+00(2) + a2 P(2) + . . . + o, 0" (z) =" [T,
giving r the values (0, 1,2, ..., m - 1).

¢ See Ex. 20, pago 201.



288 Notes.
The value corresponding to a, = 1 is known, for it is
L1+ 23+ 2y ... 0=~ A,

4 being the coefficient of 2™ in f(z).
Also if we add both sides of these m equations, observing Sa® = 0,
p £ m, we find that

moy=—-A+ 7|0+ 7T +...+ " |Uus

Again, if we multiply each of the equations by a,™ before adding,
we find

me,mmbr(2)=- A +a* [T +a, T +.. .+ 0] T[T

In this expression when we fix the value of any one of the radicals,
the others are determined by it rationally, as we proceed to prove by

connecting "Jﬁ; and 'J U, Putting a, = o', a being a primitive root
of unity, we have

“[Ti=a+ af () + o’ B (2) +... +a™ 0™ (2),
~[T,=2+ a0 (z) + a®@P(z) + ... + o™ VP g™i(z),
and if we change in these equations z into 6" (z),
"|T; becomes o= "|T,,
"[U, becomes a7 [T,

whence P(z) = %‘-’)—p

is unaltered by any interchange of the roots, and can therefore be
calculated as a symmetric function, viz. :—

mb(2) = ($(z) + () + b(m) + . . . + bz}

hence all the radicals = [T,, 7T, . .. &c. can be expressed rationally
in terms of ™|T, and known quantities ; the above formula for z, has
therefore exactly m values, and the equation f(2)=0 is always
solvable by radicals.
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