






nOUYJUIPHbIE JIEKQHH no MATEMATHKE

A. o. reJIb<l>oH,ll

PEmEHI1E YPABHEHJ1A
B QEJIhIX ql1CJIAX

H3.llATEJIbCfBO «HAYKA»
r JIABHAJI PE,LtAKUH.R
(J)H3I1 KO-MATEMATHtJECKOR JIHTEPATYPbI
MOCKBA



LITTLE MATHEMATICS LIBRARY

A.O.Gelfand

SOLVING
EQUATIONS

IN
INTEGERS

Translated from the Russian
by

o. B. Sheinin

Mir Publishers
Moscow



First published 1981
Revised from the 1978 Russian edition

Ha aHlAUUCKOM Ji3blKe

© 113,naTeJIbCTBO «Hayxa»

rnaSHag pe~aKUHg ~H3HKO-MaTeMaT~~eCKOHnHTepaTYP~, 1978
© English translation, Mir Publishers, 1981

Printed in ihe Union of Soviet 'Socialist Republics



Contents

Preface . . .

Introduction .

§ 1. Equations in one unknown.

§ 2. Linear equations in two unknowns. . . . . .

§ 3. Equations of the second degree in three unknowns
(examples) . . . . . . . . . . . . . . . . . .

§ 4. Equations of the type x 2 - Ay 2 = 1. Finding an solutions
of this equation. . . . . . . . . .. ....

§ 5. Equations of the second degree in two unknowns: the
general case. . . . . . . . . . . . . . . . . . . . .

§ 6. Equations in two unknowns of degree higher than the second

§ 7. Algebraic equations in three unknowns of degree higher than
the second. Some exponential equations. . . . . . . . . .

6

7

8

9

18

23

33

44

49



Preface

This book is based on a lecture on th solution of equations in
Integers which I delivered in 1951 for the ~ rticipants of a Mathematical
Olympiad arranged by Moscow State Univ sity; I am glad to acknowledge
the assistance rendered me by my for er student, Assistant Professor
N. M. Korobov, who took notes of m lecture and wrote the first two
sections and part of the third section f the book.

High-school students will readily understand the subject-matter of the
book.

A. Gelfond



Introduction

The theory of numbers is one of the oldest branches of
mathematics. It is mainly concerned with the arithmetic properties
of natural numbers, that is, positive integers.

A most important problem in what is called analytic theory of
numbers is the problem of the distribution of prime numbers
in the sequence of natural numbers. (A prime number is any positive
integer greater than unity and divisible only by. itself and, of
course, by unity.) It concerns the regularity exhibited by prime
numbers smaller than some number N for large values of N.

As long ago as the fourth century B. C. Euclid obtained the
first results in the solution of this problem. He proved that the
sequence of prime numbers is infinite. The next result was achieved
in the second half of the 19th century by the great Russian
mathematician P. L. Chebyshev.

Another fundamental problem in, or branch of, number theory
concerns the representation of integers as sums of integers of some
specified kind, for example, the possibility of representing odd
numbers as sums of three prime numbers. This problem (the
Goldbach conjecture) was solved by the great number theorist,
the Soviet mathematician I. M. Vinogradov,

This book is devoted to an interesting branch of number theory,
the solution of equations in integers.

The solution in integers of algebraic equations in more than one
unknown with integral coefficients is a most difficult problem in the
theory of numbers. The most eminent ancient mathematicians such as
the Greek mathematician Pythagoras (sixth century "B. C.) and the
Alexandrian mathematician Diophantus (second and third centuries
A. D.), and also the best mathematicians of more recent times such
as Fermat (in the seventeenth century), Euler and Lagrange
(in the eighteenth century) devoted much attention to these
problems. The efforts of many generations of eminent mathematicians
notwithstanding, this branch of the theory of numbers lacks
mathematical methods of any generality, unlike the analytic theory
of numbers in which many diverse problems can be solved by the
method of.. trigonometric sums, due to Vinogradov.

As yet, a complete solution of equations in integers is possi ble
only for equations of the second degree in two unknowns. Note
that equations of any degree in one unknown are not really
interesting: their solution in integers might be carried out by a
finite number of trials. For equations of degree higher than the
second in two or more unknowns the problem becomes rather
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complicated. Even the more simple problem of"establishing whether
the number of integral solutions is finite' or infinite presents
extreme difficulties. .

The theoretical importance of equations with integral coefficients
is quite great as they are closely linked with many
problems of number theory. Moreover, these equations are sometimes
encountered in physics and so they are also important in practice.
Lastly, the elements of the theory of equations with integral
coefficients as presented in this book are suitable for broadening
the mathematical outlook of high-school students and students of
pedagogical institutes.

Certain of the main results in the theory of the solution of
equations in integers have been given here. Proo of the theorems
involved are supplied when they are sufficien y simple.

§ 1. Equations in One U· DOwn

Let us consider a linear equation in 0 unknown
alx + ao = 0 (1)

with integral coefficients al and ao. The s lution of this equation
. ao

x=--
a1

is an integer only when ao is divisible by al. Thus equation (1)
is not always solvable in integers. For instance, equation 3x­
- 27 = 0 possesses an integral solution x = 9, while equation
5x + 21 = 0 has no such solution.

The same is true in the case of equations of degree higher
than the first. For example, quadratic equation x2 + x - 2 = 0
has the integral solutions Xl = 1 and X2 = - 2, whereas equation
x 2

- 4 x + 2 = 0 I is not solvable in integers; its roots Xl,2 =

= 2 ± V2 are irrational numbers.
The determination of the integral roots of the nth degree equation

a.x" + an_lXn- l + ... + alx + ao = 0 (n ~ 1) (2)

with integral coefficients is not difficult. Indeed, let X = a be an
integral root of this equation. Then

anan+ an_la
n- l + ...+ ala + ao = 0

ao = - a (anlln- 1 + an _1an - 2 + ... + a1)

The latter equality means that ao is divisible by Q. Consequently
.any integral root of equation (2) is a divisor of its free term ao.
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Check all the divisors of ail one by one; those which transform
equation (2) into an identity are the integral solutions sought.
For example, the divisors of the free term of equation

x l O + x 7 + 2x3 + 2 ='0

are 1, - 1, 2 and - 2. Only one divisor, - 1, is a root of
the equation; hence this equation -possesses only one integral
root x = - 1.

Applying the same method it is easy to show that equation

x 6
- x 5 + 3 x4 + x 2

- X + 3 = 0

has no integral solutions.
The solution in integers of equations in several unknowns

is much more interesting.

§2. Linear Equations in Two Unknowns

Let us consider a linear equation in two unknowns

ax + by + c = 0 (3),

where a and b are non-zero integers and c is an arbitrary
integer. We shall suppose that the coefficients a and b have no
common divisors (except, of course, unity) *. Indeed, if the greatest
common divisor of these coefficients, d = (a, b), is not unity, then
a = aid, b = bid, and equation (3) may be written as

(alx+b1y)d+c=O

It can have integral solutions only if c is divisible by d.
In other words, in the case when (a, b) = d i= 1, all the coefficients
of equation (3) must be divisible by d. Cancelling d from the
equation, we arrive at equation

alx + b1y + Cl = 0 (Cl = ~)

whose coefficients at and hi are relatively prime.
We shall first consider the case c = O. Equation (3) becomes

ax + by = 0 (3')

* Such numbers as a and b are called relatively prime integers. We
shall denote the greatest common divisor of a and b by (a, b). For relatively
prime numbers a and b, we have (a, b) = 1..
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Solving it with respect to x, we obtain
b

x='-aY

Obviously, x will be an integer if and only if y is divisible
by a, OT, in other words, if y is a multiple of a,

y = at

where t is an arbitrary integer (t = 0, ±1, ±2, ...). Substituting
this value of Y in the previous equation, we obtain

b
x= --at= -bt

a

and formulae

x = - bt, y = at (t = 0, ± 1, ± 2, ...)

furnish all the integral solutions of equation (3').
We now consider the case c i= O. Let us show first of all that in

order to find all the integral solutions of equation (3), it is
sufficient to find anyone solution, i. e. it is sufficient to find
.integers xo, Yo for which

axo + byo + c = 0

THEOREM 1. Let a and b be relatively prime and suppose
[xo, Yo] is any solution * of equation

ax + by + c = 0 (3)

Then formulae

x = Xo - bt, Y = Yo + at (4)

where t = 0, ± 1, ±2, ... , yield all the solutions of equation
(3).

Proof. Let [x, y] be an arbitrary solution of equation (3).
Then equalities

ax + by + c = 0, axo + byo + c = 0

render

a(xo - x)
ax - axo + by - byo = 0; y - Yo = b

* A pair of integers x and y which satisfy the equation will be called
its solution and denoted by [x, y]. .

10



Since y - Yo is an integer and a and b are relatively prime, Xo - x
must be divisible by b, i. e. Xo - x has the form

Xo - x = bt

where t is an integer. But then
abt

y- Yo = --=at
b

and we get

x = Xo - bt, Y = Yo + at

Thus, it is proved that each solution [x, y] has the form
presented as (4). It remains for us to check that any pair of numbers
[Xh Yl] obtained "by formulae (4) for an integer t = t l will be a
solution of equation (3). To do this, substitute Xl = Xo - btb

Yl = Yo + at ; into, the left-hand side of equation (3):

aXt +. bYl + C = axo - abt, + byo + abt , + c = axo + byo+ c

Now [xo, Yo] is a solution, and so axo + byo + c = 0 and,
consequently,

aXt + by! + c = 0

i. e. [x h Yl] is a solution of equation (3). The proof of the
theorem is now complete.

Hence, if one solution of equation ax + by + c = 0 is known, all
the other solutions can be determined from arithmetic progressions
whose general terms are

x = Xo - bt, Y = Yo + at (t = 0, ± 1, ± 2, ...)

Note that for the case c = 0 the formulae found previously

x = - bt, y = at

may be derived from the formulae just derived by setting
Xo = Yo = O. This is legitimate because the values x = 0, y = 0
are a solution of equation

ax + by =0

But how' is one to find a solution [xo, Yo] of equation (3)
in the general case when c i= 01 Consider an equation

127 x - S2y + 1 = 0

Let us transform the ratio of the coefficients of the unknowns,
beginning by isolating the integral part of the improper fraction

11



127/52:

The proper fraction 23/52 is of course equal to 52~23' so that

127 1
52= 2 + 52/23

Now we shall apply the same transformation to the improper
fraction 52/23 in the denominator of the last equality:

52 6 1
23 =2+ 23=2+ 23/6

1
2 + 23/6

The initial fraction is thus equal to

127 2
52= +

Again, let us repeat the same process for the fraction 23/6:
23 5 1
(; = 3+ 6 = 3 + 6/5

Then

127 = 2 + ~_
52

2+= 1
1

3 + 6/5

Lastly, we shall isolate the integral part of the improper
fraction 6/5:

6 . 1
-=1+-
5 5

1
1

3 + 1
1 +­5

The final result is

127 = 2 + _
52 2+----

12



This expression is a terminating continued fraction. If we omit
the last term, the one-fifth, and transform the new continued
fraction so obtained into a common fraction and subtract it
from the initial fraction 127/52, we get

1 1 4 22
2+ =2+ =2+ 9=9

2+ _1_ 2+-l
1 4

3+ 1
1143 - 1144

52·9
1

---
52·9

Reducing this expression to a common denominator and rejecting
it we get

127·9 - 52·22 + 1 =0

A comparison of this equality with equation

127 x - 52y + 1 = 0

shows that x = 9, y = 22 is a solution of the equation and by
the theorem all its solutions are contained in the arithmetic
progressions

x = 9 + 52 t, Y = 22 + 127 t (t = 0, ±1, ±2, ...)

The result obtained suggests that in the general case of the
equation ax + by + c = 0 the solution may also be derived by
expanding the ratio of the coefficients of the unknowns as a continued
fraction, omitting the last term, and continuing calculations as we
did above.

To prove this supposition we shall need some properties of
continued fractions. Consider an irreducible fraction a/b. Let us
divide a by b and denote the quotient by q 1 and the remainder
by '2:

a=Ql b + ' 2, '2<b

Now divide b by '2, denoting the quotient by q2 and the remainder
by '3' Then

b = Q2'2 + r3' '3 < r z

Continuing this process we obtain

'2 = Q3'3 + '4, '4 <'3

3-234 13



The quantities q 1, q2, ••• are called partial quotients, and the
process of calculating them just described is known as the
Euclidean algorithm. Asnoted above, the remainders r2, r3, ... , satisfy
inequalities

(5) .

and thus constitute a sequence of decreasing nonnegative numbers.
Since the number of nonnegative integers which do not exceed b

cannot be infinite, the remainder r will vanish at some step and
the process of forming the partial quotients will cease. Let r n

be the last non-zero remainder in sequence (5). Then rn + 1 = 0
and the Euclidean algorithm for the numbers a and b will be

a = ql b + r z

b = q2r2 + r3

(6)

Let us write these equalities in the form
a 1
b = ql + b/r2

b 1
-=q2+--
'2 r2/r3

By substituting the expression for b/r2 from the second equation
into the first equality and the expression for r2/r3 from the
third equation (which is not written out above) into the second
equality and so on, we obtain the expansion of alb as a continued

14



fraction:

+----

The expression obtained by omitting all terms of a continued
fraction starting with some particular term is called a convergent.
The first convergent 01 is obtained by omitting all terms
starting with 1/q2:

the second convergent, 02, is obtained by omitting all terms starting
with 1/q3:

Similarly,

1

1

etc.
Because of their method of formation the convergents satisfy

the obvious inequalities
a

01 < 03 < ·.. < 021:- 1 < b

15



qlq2q3 + ql + q3
q2q3 + 1

Let us write the kth convergent 0" as a fraction
P10" = - (1 ~ k ~ n)
Q"

and find the rule for forming the numerators and denominators
of convergents. We begin with the first three convergents 0h 02
and 03 :

. ql PI
81 =ql = -1-=~; PI =qb Ql = 1

02 = ql + _1_ = qlq2 + 1 P2
q2 q2 =~; P2 =qtq2 + 1; Q2 =q2

1 q3
83 = ql + -- = ql + + 1

1 q2q3
q2+ -

q3
P3 = qlq2q3 + ql + q3; Q3 = q2q3 + 1

From these we obtain

P3 = P2q3 + PI; Q3 = Q2q3 + Ql

By applying mathematical induction * we can prove that the
similar relations

p" = P"-IQ" + P"-2' Q" = Q"-lq" + Q"-2 (7)

hold for all k ~ 3.
Let equalities (7) be valid for some k ~ 3. By the definition of

the convergents it immediately follows that if in the expression for

bIt, q" is replaced by q" + _1_, 0" becomes 0,,+ 1. By the induction
q,,+1

hypothesis,

The substitution of qk by q" + _1_ in the expression for 8"
q"+l

changes the latter to 0,,+ 1 so that

* See I. S. Sominsky, The Method of Mathematical Induction, Mir
Publishers, Moscow.
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Pill"+ 1 + P"-l
QlIlk+ 1 + Q"-l

P"+1 .Hence, as 0,,+1 = -Q' It follows that
1:+1

PI:+ 1 = P~" + P"-h Q"+1 = Q"q" + 1 + Q"-l

Thus, if equalities (7) hold for some k ~ 3 they are also valid
for k + 1. For k = 3 equalities (7) .are indeed satisfied, so they are
valid for every k ~ 3.

Let us now show that the difference between consecutive convergents
01: - 0"- 1 satisfies the relation

(- 1)"
01: - 01:-1 = Q Q (k > 1) (8)

" k-l

Indeed

PI: Pk - 1 PI:QI:-1 - Q"P,,- 10,,-bt - 1 =----=-------
Q" QI:-l Q"Qk-t

Using formulae (7) we can transform the numerator of this fraction

PI:Qk-l - QkPk-l = (P"-lQ" + Pk- 2)Qk-l -

- (Qk-lq" + Qk-2)P"-1 = - (Pk-lQ"-2 - Qk-lP"-2)

The expression in brackets is obtained from the initial one by
replacing k by k - 1.

Repeating similar transformations we get a chain of equalities

PtQ"-1 - QtPI:-l = (- 1)(P"-lQt-2 - Qt-lPk-2) =
= (- 1)2 (P"-2QI:-3 - Qk-2P"-3) = ...

... = (-1)1-2(P2Q l - Q2Pl) =

= (- 1)l-2(qlq2 + 1 - q2ql) = (- It- 2

whence it follows that

o 0 P"QI:- 1 - Q"Pk - 1
,,- 1:-1= QQ

I: k-l

17



(9)

(10)

If the expansion of alb into a continued fraction contains n
terms, then the nth convergent 0Il will coincide with alb. Applying
equality (8) for k = n, ·we get

(_ 1)n
s, - ~n-l = Q Q

II 11-1

~ _ b _ (- 1r
b »': 1 - bQn- 1

We return now to the solution of equation

ax + by + c = 0, (a, b) = 1

We rewrite relation (9) in the form
a Pn-l (- 1)n
b - Qn-l = bQlI-t

Reducing the fractions to a common denominator and discarding
it we obtain

aQn-l - bPII- 1 = (- 1)"
aQII-l +b(-Pn _ 1)+(-1)"-t =0

Let us multiply this expression by (- 1)"- 1c. Then

a[( - l)"-lcQn_ t] + b[( - 1)"CP,,-I] + c = 0

Hence the pair of numf?ers [xo, Yo], such that

Xo = {- 1)"-lcQn_h Yo =(- 1)"cPn- 1 (11)

is a solution of equation (10); according to theorem 1, all solutions
of this equation (ire of the form

x=(-1)1I-1cQn_l - bt, y=(-l)"cPn- t +at

(t = 0, ±1, ±2, .00)

This fully solves the problem of determining all the integral
solutions of linear equations in two unknowns.

§ 3. Equations of the Second Degree in Three
Unknowns (Examples)

EXAMPLE 1. Consider equation

X2+y2=Z2 (12)

From a geometrical point of view, the determination of. integral

18



solutions of this equation amounts to finding all Pythagorean
triangles, i. e. right triangles whose legs x, Y and hypotenuse z are
represented by integers.

Let us denote the greatest common divisor of the numbers x and y
by d: d = (x, y). Then

x = Xld, Y = Yld

and equation (12) becomes

xid2 + ytd2 = Z2

This means that Z2 is divisible by d2
, and hence z is a multiple

of d: z = Zld.

Equation (12) can now be written as

xid2 + ytd2 = zid 2

Cancelling d2 we get

xi + yt = zi
This is an equation of the same type as the initial one, (12),

only Xl and Yl have no common divisors (except, of course,
unity). So when solving equation (12) we can restrict ourselves
to the case when x and yare relatively prime.

Thus we may suppose that (x, y) = 1. Then at least one of the
quantities, x and y (say x), is odd. Transferring y2 into the right-hand
side of equation (i2) we get

'<, x2 = Z2 - y2, x 2 = (z + y)(z - y) (13)

We shall denote the greatest common divisor of the expressions
z + y and z - y by di- Then

z + y == ad h Z - Y = bd, (14)

where a and b are relatively prime. Now substituting the values
of z + y and z - y into (13) we obtain

x 2 = abdi

Since a and b possess no common divisors, the latter equality
is possible only if these numbers are perfect squares *:

a = u2
, b = v2

• The product of two relatively prime numbers is a perfect
square only if each factor is a perfect square.

19



But then

and

x = uvd, (15)

Now determine y and z from equalities (14). Adding them together
we get

(16)
u2 + v2

Z = 2 d1

while subtracting the second one of equations (14) from the
first we get

u2
- v2

2y = ad; - bd, = u2d1 - v2dt ; y = 2 d t • (17)

From (15) it follows that, x being odd, U, v and d1 are also odd.
Moreover, d, = 1, since otherwise from the equations

u2 _ v2

X = uvd 1 and y = 2 d 1

it would follow that x and y have a common divisor d 1 =1= 1,
which contradicts the supposition that they are relatively prime.
The numbers u and v are connected with the relatively prime
numbers a and b by the equations

a2 = u2
, b = v2

(18)
22

x = uv, y = ---, z =

and so are relatively prime themselves; v < u since b < a, as can be
seen from (14). .

Substituting d1 = 1 into equalities (15)-(17) we get formulae
u2 _ v2 u2 + v2

which, with odd and relatively prime u and v (v < u), furnish all the
triplets of positive integers x, y, z which do not possess common
divisors and which satisfy equation (12). By a substitution of the
expressions for x, y and z in equation (12), it is easy to verify
that for arbitrary u and v the numbers (18) satisfy this equation.·

For the initial values of relatively prime u and v, formulae (18)
yield the following frequently encountered equalities

32 + 42 = 52 (v = 1, U = 3)

52 + 122 = 132 (v = 1, u = 5)

20



152 + 82 = 172 (V = 3, U= 5)

As was noted above, formulae (18) give only those solutions. of
equation

x 2 + y2 = Z2

in which the numbers x, y and z do not have common divisors.
All the rest positive integral solutions of this equation can be
obtained by multiplying solutions (18) by an arbitrary common
factor d. The method used for determining all the solutions of
equation (12) can also be employed to find all ·the solutions of
other equations of the same type.

EXAMPLE 2. Find all the positive integral solutions of equation

x 2 + 2y2 = Z2 (19)

if the numbers x, y and z are pairwise relatively prime.
Note that if the triplet x, y, z is a solution of equation (19)

and the numbers x, y and z possess no common divisors
(except, of course, unity), then they are pairwise relatively prime.
Indeed, let x and y be multiples of a prime number p (p > 2).
Then from equality'

with an integral left-hand side it follows that z is a multiple of p.
The same conclusion holds if x and z, or y and z are multiples of p.

Notice that x must be an odd number for the greatest common
divisor of x, y and z to be equal to unity. For if x is even, then the
left-hand side of equation (19) is an even number so that z is
also even. But then x 2 and Z2 are multiples of 4. From this it
follows that 2 y2 is divisible by 4, in other words that y must also
be an even number. Thus, if x is even then all three numbers
x, y, z must be even. Thus, in a solution not having a common
divisor different from unity x must be odd. From this it immediately
follows that z must also be odd. Transferring x 2 into the right-hand
side of equation (19) we get

,2 y2 = Z2 - x2 =. (z + x)(z - x)

But z + x and z - x have the greatest common divisor 2. Let
their greatest common divisor be d. Then

z+x=kd, z-x=ld

where k and 1 are integers. Adding together these equalities,
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then subtracting the second one from the first we arrive at

2z=d(k+l), 2x=d(k-l)

But z and x are odd and relatively prime. Therefore the greatest
common divisor of 2x and 2z must be equal to 2, that is d = 2.

Th ith Z+x z-x. ddTh ~ ithus, eit er -"-2- or --2- IS o. ererore eit er

are relatively prime or

z + x and
z-x

2

z+x
-- and z-x

2

are relatively prime.
In the first case equality

z- x
(z + x)-- = y2

2
leads to

z + x = n2
, z - x = 2 m2

while in the second case from

z + x ( ) 2--2- z-x =y

it follows that

where nand m are positive integers and m is odd. Solving these two
systems of equations with respect to x and z, and finding y,
we obtain either

1 1
z = 2(n2 + 2m2

), x = 2(n2
- 2m2

), y = mn

or

respectively, where m is odd. Combining these two expressions
we derive the general formulae

1 1
x = ± 2(n2

- 2m2
), y = mn, Z = 2(n2 + 2m2

)

22



where m is odd. But for z and x to be integers, n must be even.
Putting n = 2b and m = a, we finally obtain general formulae which
yield all the solutions of equation (19) in positive integers x, y and z
having no common divisors greater than unity:

x=±(a2-2b2
), y=2ab, z=a2+2b2 (19')

where a and b are positive and relatively prime and a is odd.
No other restrictions are imposed on a and b except that x
should be positive. Formulae (19') do indeed provide all the
solutions in integral and relatively prime x, y and z, since on the one
hand we have proved that in this case x, y, z must be
represented by formulae (19'), while, on the other hand, any
numbers a and b complying with the conditions formulated above
furnish such relatively prime numbers x, y, z as constitute a
solution of equation (19).

§ 4. Equations of the Type x 2 - Ay2 = 1.
Finding All Solutions of This Equation

We now come to the solution in. integers of equations of
the second degree in two unknowns of the type

x 2 - Ay2 = 1 (20)

where A is a positive integer other than a perfect square. To find an
approach to the solution of such equations, let us expand
irrational numbers such as vA into continued fractions. From
Euclid's algorithm it follows that any rational number may be
expanded into a continued fraction: with a finite number of terms.
For irrational numbers the situation is different: their expansions
into continued fractions are infinite.

Let us find, for example, the continued fraction expansion
of the irrational number 0. Consider an obvious identity

(0 - 1)(0 + 1) = 1
or

0-1= 1
0+ 1

0-1= 1
2 + (0 - 1)

Replacing the difference 0 - 1 in the denominator of the last
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identity by the expression

which is obviously equal to it, we receive

1
2+------

2 + (0 - 1)

0=1+-----0-1=----
2+ 1

2 + (0 - 1)

0= 1 +-----­
2+-------

Again we replace the bracketed term, in the denominator of the last
equation, by the fraction equal to it from the same identity. Then

1

1

1
2·+-----

2 + (0 - 1)

Continuing this process, we arrive at the following expansion ofo into an infinite continued fraction

o = 1 + 1 (21)

2+------
1

1
2+-

2+

2+----

Note that the method of expansion based on identities of the type

(Vm2 + 1 - m)(Vm2 + 1 + m) = 1

is not suitable. for all irrational numbers VA. It may obviously
be used when the integer A may be expressed as A = m2 + 1
where m is a non-zero integer. (In particular, the case m = 1
leads to the expansion for A = 0, m = 2 corresponds to A = V5 etc.)
However, comparatively simple methods also exist for the expansion
of VA into continued fractions in the general case.

As before, in the case of finite continued fractions, we shall
form for the infinite continued fraction (21) a sequence of convergents
Bb B2 , B3, ...
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I 7 l~
03 = 1 + --1- = 5' 03 < V2

2+ 2

17
04 = ... = ll'

(22)

etc.
"

From the way these convergents are formed it follows that

01 < 03 < < V2
02> 04 > ; V2

In general, if we are given the continued fraction expansion of some
irrational number r:x

Cl=ql + ----

then the convergents satisfy the inequalities

01 < 03 < ... < 02k+ 1 < ... < (l < .

... < 02" < < 04 < O2

Let us write the convergent Olt as

Olt=~.
Q"

(23)

Expressions (7)

r, = Pk-lq" + Pk-2, Q" = QIc-1QIt + Q"-2

derived in § 2 for the case of finite continued fractions are also
valid for infinite fractions, as in the derivation of (7) we did not
make use of the fact that the continued fraction was finite.
Hence relation (8) between consecutive convergents

(- If
0" - 0,,_ 1 = QQ (24)

It It-I

also remains valid.
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Assume for example k1 = 3 and k2 = 4 and expand V2 into a
continued fraction. Equalities (22) will then lead to

7 3 -1
83 - 82 = 5 - 2 = 10

17 7 1
54 - 63 .= - - - = -

12 5 60

which coincides with the results given by formula (24).
Consider now formula (24) for the subscript 2k:

(_ 1)21+ 1

b2k - b2k + 1 = - (b2k+l - b2k ) = - Q Q =
2k+ 1 21 Q2k+ 1Q21

We shall now prove the validity of inequality
1o< P2k - exQ2k < -Q-- (25)

2k+ 1

The left inequality is obvious, for, according to inequalities (23),

P2k
ex < 82k = -Q ; etQ2k < P2k ; 0 < P2k - CtQ2k

21

The deduction of the other inequality (25) is also a rather simple
procedure. From (23),

so

Substituting P2k/Q2k for 82k, we get
P2k
---et<----
Q2k Q2kQ2k + 1

Multiplying this inequality by Q2k we arrive at the desired
result:

1
P2k - etQ2k < -Q-­

2k+ 1

We now apply the results obtained to the solution of equation

x 2 - 2 y2 = 1 (26)

Let us transform the left-hand side of this equation:

x2
- 2 y2 = (x - V2y)(x + }!2y)
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and assume x = P2k and y = Q2k' where P 2k and QZk are the
numerator and the denominator, respectively, of the corresponding
convergent in the expansion of 0. Then

P~k - 2Q~k = (P2k -- 0 QZk) (PZk + 0 Q2k) (27)
The left-hand side of this equality, and therefore the right ...

hand side too, is an integer. We shall show that this integer is
greater than zero but less than two and so is equal to unity.
To do this write inequality (25) for r:.t = 0:

0< P2k - 0Q2k <-Q1 . (28)
2k+ 1

From this it is clear that both factors of the right-hand side of
(27) are positive, and so

On the other hand,

p 2k - 0 QZk < _Q1 =
2"+ 1

1 1
------<--
2Q2k + Q2k-l 2Q2k

But, because of inequalities (23),

p 2k 1 ;::;

82k = -Q > V2
2k

Hence

0Q2k < P2k

P2k + 0Q2k < 2P2k

and the factors on the right-hand side of (27) satisfy inequalities

P2k - 0Q2k < 2~2k

P2k + 0Q21t < 2PZk

Multiplying these inequalities together gives

P 2 2Q2 P2k
21- 21t<-Q

21

Using inequality (28) we arrive at
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1;::;' 1
V 2Q-2k + -Q--

2 2 2k_+_l 1 ;:;2 + 1
P2k - 2Q2k < V £.

Q2k Q2kQ2k + 1

For any k ~ 1
1 1 1

----~--=-
Q2kQik+ 1 . Q2Q3 10

therefore

2 2 1;'; 1
P2k - 2 Q2k < V 2 + 10< 2

We have thus proved that for any k ~ 1 the integer P~k­

- 2 Q~k satisfies inequalities

o< P~k - 2 Q~k < 2

Hence

P~k - 2Q~k = 1

This .means that for any k ~ 1 . the numbers x = P2k, Y = Q2k

yield the solution of the equation

x 2
- 2y2 = 1

We do not yet know whether or not the solutions of equation
(26) found above are all the solutions of that equation.

The question now naturally arises, how do we find all the solutions
of equation

x 2 - Ay 2 = 1 (29)

in integers x and y for integral A > 0 and irrational VA"?
We shall show that we can do this if we can find at least one
solution of equation (29). As evidenced by equation (26) such
equations do have solutions. So we shall now consider the problem
of how to obtain all the solutions of equation (29) from a single
particular solution which we shall call a minimum or least solution
leaving open for the moment the question of whether or not
equation (29) always has at least one solution in integers other
than the trivial solution x = 1, y = o.

Let us suppose that equation (29) does have a non-trivial solution
[xo, Yo], Xo > 0, Yo > 0, and

x~ - Ay~ = 1 (30)

(Remember' that a solution is a pair of integers [xo, Yo] satisfying
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the equation.) We shall call this solution minimal if for x = Xo

and y = Yo the binomial x + VA j, VA > 0, assumes the .least
possible value among all the possible values which it will take
when all the possible positive integral solutions of equation (29)
are substituted for x and y. For example, the least solution of
equation (26) is x = 3, y = 2 because for these values of x and y
the binomial x + 0 Y assumes the value 3 + 20. Indeed, equa­
tion (26) admits of no other solutions with small positive integers
x and y; the smallest values of x and Y constitute the next
solution: x = 17, y.= 12 and it is clear that 17 + 120 is
greater than 3 + 20. Note that equation (29) does not have two
least solutions. For, assume that solutions ~h Yt] and [X2' Y"2]
give the same value to the binomial x + VA y. Then

Xt + VA Yt = X2 + VA Y2 (31)

However, VA is an irrational number while x., Y., X2, Y2 are
integers. Hence, as it immediately follows from Eq. (31)

~t - X2 = (Y2 - Yt)VA
which is impossible because Xl - X2 is an integer and (Y2 - Yt) VA,
being a product of an integer and an irrational number, is irrational.
And we know that an integer cannot be irrational. The contradic­
tion disappears ifXl = X2 and Yt = Y2' i. e. if we take not two different
solutions, but one. Thus, if a least solution does exist, it is unique.

Observe now another very important property of the solutions of
equation (29). Let [XI, Yt] be a solution of this equation. Then

xi - Ayf ::= 1
or

(32)

(33)

(34)

Now raise both terms of equality (32) to the positive integral
power n:

Raising the factor on the left-hand side to the power n according
to the binomial theorem, we get

(Xl + VAYl)n = xi + nxi-lVAYl +

n(n - 1) n- 2A 2 (lr;Ar n l~A+ X t Y1 + ... + V.It Y1 = X n + V .It Yn

2
where Xii and Y.. will be integers since the first, the third term, and,
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(35)

(37)

in general, the odd terms of the binomial expansion are integers
while the even terms are integers multiplied by vA. Collecting
separately the odd and the even terms of the expansion we
obtain (34). We shall now prove that the numbers x, and Yn
will also be a solution of equation (29). The proof is simple: changing
the sign of VA in equality (34), we obtain

(Xl -- VAYl)n = Xn - VAYn

Multiplying (34) and (35) term by term and using expression
(33) we finally have

(Xl + VAYlt(Xt - VAYlt =

= (x, + VAYn)(xn - VAYn) = x~ - Ay~ = 1 (36)

or, in other words, [xm Yn] is also a solution of equation (29).
Now we can prove the basic theorem concerning solutions

of equation (29):
THEOREM II. Any solution of equation (29)

x 2
- Ay2 = 1

with positive A and irrational VA is of the form [± X m ± Yn] where

x, = ~ [(xo + Yo VAr + (xo - Yo VAn

Yn = 1~ [(Xo + Yo VA)n - (Xo - Yo VArJ
2V A

and [Xo, Yo] is the least solution of the equation.
Proof. Suppose the converse, namely, that there exists a positive

integral solution [x', y'] of equation (29) such that the equality

x' + VAy' = (xo + VAYo)n (38)

does not hold for any positive integer n. Consider a sequence of
numbers

Xo + VA Yo, (xo + VA YO)2, (xo + VA Yo)3, ...

It is a sequence of positive and indefinitely increasing numbers,.
since xo ~ 1, Yo ~ 1 and xo + VAYo > 1.

By definition of [xo, Yo] as the least solution,

x' + t!Ay' > Xo + VAYo

there always exists an integer n ~ 1 such that

(xo + VAYot < x' + VAy' < (xo + VAyo)"+ 1 (39)

30



But Xo - I!Ayo > 0 because

(xo + I!Ayo)(xo - I!Ayo) = x5 - AY6 = 1 > 0

Hence, when all terms of inequalities (39) are multiplied· by the
same positive number (xo - I!A Yo)" the inequality signs are
retained, and we will have

(xo + I!Ayo)"(xo - I!Ayo)" < (x' + {Ay')(xo - I!AYo)n <

< (xo + VAYo)n+ 1 (XO - VAYo)" (40)

Since

we have

(Xo + I!Ayo)" + 1 (XO - I!AYo)n = Xo + I!Ayo (42)

In addition to this

(x' + I!Ay')(Xo - I!AYo)n = (x' + I!Ay')(xn - {4Yn) =

= x'x, - Ay'y~ + {4 (y'xn - x'Yn) = i + {4y (43)

where i and yare integers and

x, - {4Yn = (xo - {4Yo)n

Making use of relations (41)-(43) and inequalities (40), we obtain
inequalities

1 < x + {4y < Xo + {4yo (44)
We shall show that the pair of integers i and y is a solution of
equation (29). To do this, multiply termwise, Eq. (43), i. e. equation

x + {4y = (x' + {4y')(xo - {4yo)" (45)

and equation

i - {4y = (x' - {4y') (xo + VAYot (46)

which is immediately obtained from (43) by a change of the sign
of I!A. As [x', y'] and [xo, Yo] are solutions of equation (29),
the result will be

(x + {4y)(i - {4y) = XZ - Ayz =

= (x' + VA y') (x' - {4 y') (xo + {4 Yot (xo - VA Yor =

= (x'Z - Ay'Z)(x5 - AY5t = 1 (47)
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The last step is to prove that both x and yare positive. First
of all, note that x =t- 0, otherwise (47) would give us

- AY5 = 1

which is impossible because A > O. Moreover, if y = 0 the same
equality (47) furnishes x2 = 1, but inequalities (44) yield x > 1, a
contradiction. Finally, note that the signs of x and y coincide.
For if we suppose that the signs of x and yare opposite,
then those of x and - yare the same. Let us compare the moduli
of the numbers x+ y'Ay and x - VAy. The modulus of the first
number must be less than of the second because, in the first
case, two numbers with the same sign are subtracted one from the
other while in the second case they are added together. But we
already know that

x+ yAy> 1

and so x - VA.v is also greater than unity in modulus. But

(x + y'Ay)(x - VAy) = x2
- Ay2 = 1

and we have arrived at a contradiction, because the product of two
numbers, each with modulus greater than unity, must also be
greater than unity in absolute value. Hence the signs of the two
numbers, x and y, are the same and x =t- 0 and y -::F o. Inequalities
(44) lead then directly to the conclusion that x > 0 and ji > O.
And so, by supposing that there exists a solution [x', y'] of equation
(29)

x 2 - Ay2 = 1, A > 0
such that (38) does not hold for any positive integer n, we have
been able to construct another positive integral solution [x, y] of
the same equation (x > 0, Y > 0 are integers) satisfying inequalities
(44), which contradict the defmition of the least solution [xo, Yo].
We have thus proved that the supposition that there exist solutions
not given by formula (38) leads us .to a contradiction. In
other words we have proved that all solutions of our equation may
be obtained from formula (38).

Thus each solution [x, y] of equation (29)may be derived from the ..
expression

x + VAY = (xo + VAYor, n ~ 0 (48)
where [xo, Yo] is the least solution. Changing the sign of
VA in equality (48), we also get equality

x - VAy = (xo - VAYor (49)
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(50)

Adding the two equalities, then subtracting the latter from the former,
and finally dividing the sum by 2 and the difference by
2VA, we obtain

x = Xn= ~ [(Xo + VAYor + (Xo - VAYorJ

Y = Yn = 2~ [(xo + VAYor - (Xo - VAYotJ

These are explicit expressions for any positive solution [x, y].
Each solution can be derived from them by an arbitrary choice
of the signs of x, and Yn.

For example, since we saw above that the least solution of
equation x 2

- 2 y2 = 1 is x = 3, Y = 2, all the solutions of this
equation are contained. in formulae

x, = ~ [(3 + 2y2r + (3 - 2Y2Y'J

Yn = -,1;;; [(3 + 2y2r- (3 - 2y2rJ
2 V2

The least solution [3, 2] corresponds to n = 1; for n = 2 and 3
the solutions are [17, 12] and [99, 70] respectively, etc.

Note that the numbers x, and Yn increase with n as terms of a
geometrical progression with a common ratio Xo + VAYo. Indeed

o< Xo - VAYo < 1

because

(Xo + VAYo)(xo - l!Ayo) = 1.

Therefore, (xo - VA Yo)" tends to zero with increasing n.
Note also that if equation (29) possesses at least one non­

trivial solution, or, in other words, at least one solution with
y '# 0, then it will also have a least solution and, consequently,
all its solutions can' be derived from formulae (SO). The existence
of a non-trivial solution for any positive integer A with
-VA irrational will be discussed in § 5.

§ 5. Equations of the Second- Degree in Two Unknowns:
the General Case .

We shall pr?~ in this section that for an arbitrary positive
integer A with VA irrational, the equation

x2 - Ay2 = 1 (51)
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always has a non-trivial solution; in other words, there exists a pair
of non-zero integers Xo and Yo satisfying the equation.
We shall first describe a method for expanding an arbitrary
positive number into a continued fraction. {Previously, when

expanding 0 into a" continued fraction (see § 4), we made use
of the special properties .of that number.) Let rJ. be any
positive number. Then there always exists an integer less than or
equal to rJ., and greater than rJ. - 1. This integer is called the
integral part of ex and is denoted by [ rJ.]. The difference
between· rJ. and its integral part is called the fractional part
of a and is designated by {a}. The relation between these two
quantities

a.- [a] = {(X}
or

a = [a.] + {(X} (52)

is a direct consequence of their definitions.
Note also that the fractional part of a number, being the

difference between a positive number and the greater integer not
exceeding it, is nonnegative and always less than unity. For
example, ~h,=- integral part of 27/5 is 5 and its fracti??!1 part is
2/5; for V2 the respective numbers are 1 and V2 - 1, for

~, 3 and V52 - 3, etc.
The notions just introduced may be used for the expansion of

positive numbers into continued fractions. Suppose
1

[cx] = qb {(X} = -
CXl

Then

(53)

As {<X} is always less than unity, al is always greater than unity.
If cx were an integer then its fractional part would be equal
to zero so that at would be infinite and we would have
a = ql. However, as we are discussing the continued fraction
expansion of irrational numbers, we can leave aside this particular
case and say that at is a positive number greater than unity. With
this number (Xt we can proceed as we did with o, and write

1 1
(Xt = q2 +-, q2 = [exl], - = {CXI}

(X2 CX2
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Repeating this process, we obtain a series

1
CX=ql+-' ql=[CX]

CXI

1
CXl = q2 + -, q2 = [CXI]

CX2

1
CX2 = q3 + -, q3 = [ CX2]

CX3
(54)

For rational numbers cx (or, which is the same, for cx = alb,
where a and b are positive integers) this sequential calculation
furnishes the same result as the Euclidean algorithm with integers
qh Q2, q3, .•. , qm ••. being the partial quotients (see formula
(6) in § 2). Here, as also in § 2, the process must break ofT.
On the other hand, when cx is irrational this process must be
infinite. For if CXn were an integer for some n, then CXn :- 1

would be rational, and so also CXn - 2 , CXn - 3, ,••• and, lastly, CXl

would be rational. Consecutive ,substitutions eliminating CXb CXl, •••

• • • , CXn - 1 from formulae (54) lead to a continued fraction
1

CX=Ql + ----

(55)+---
1

q +-
n CX

n

or, since n may be taken arbitrarily large, we can write it
in the form of an infinite continuous fraction

1
CX == ql + ----

35



As mentioned in § 4, relation (8) between the convergents
is' not dependent on the finiteness or infinity of the continued
fraction and so it holds also in this case. From expression (8),
as we have seen, follows inequality (25) for even convergents.
This inequality will again be used to prove the existence of a solution
of equation (51), but the reasoning will be more complicated than
in the particular case when A = 2.

THEOREM III. For any positive integer A and irrational VA
equation (51)

possesses a non-trivial positive solution [xo, Yo].
Proof. Because of certain complications in the proof of the

existence of solutions to equation (51) we shall break up
the proof into several steps. The first step will prove the
existence of a positive integer k such that equation

Xl - Ayl = k (56)

has an infinite number of positive integral solutions. Let 'us
consider the binomial x 2 - Ay2 . We shall replace x and y respectively
by the numerators and denominators of the consecutive- even
convergents of the irrational number cx = VA. Then

Z2n = P~n - AQ~n = (P2n - CXQ2n)(P2n+ CXQln) (57)

But since
1

0< P1n - CXQ2n < -Q-­
In+ 1

it directly follows that
1o< P 2n+ CXQln = 2CXQ2n + P2n - rxQ2n < 2CXQ2n + -Q-­

In+ 1

Let us use the last two inequalities to estimate Z2n. By
substituting greater quantities for both factors on the right-hand
side of (57) we get for Z2n the inequality

O<Z2n<-Ql (2CXQ2n+-Q1)<2CX+1 (58f'
2n+ 1 In+ 1

since Qln is less than Q2n + 1. If we replace x and y by P 2n
and Q2n respectively in the binomial

z = x 2 - Ay2

z will assume an integral positive value. Thus, all the numbers
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Z2, Z4, ••• , Z2m ••• will be positive integers, none of which

exceed the same number 2ex + 1. But since ex = VA is irrational,
. its continued fraction is infinite and so the sequence of pairs

of numbers P2n and Q2n is also infinite. Now since there are not
more than [2ex + 1] integers between 1 and the number 2ex + 1
(which is definite and does not depend on n), the infinite
sequence of positive integers Z2, Z4, •.• , Z2m •.. is made up of
a finite number of different terms. In other words, the infinite
number series Z2, Z4, ••• , Z2m ••• is just the sequence of
integers 1, 2, 3, ... , [2ex + 1] repeated in some way or other and it is
not even necessary for all these integers to occur in the series.
Note also that since the quantity of different terms of the
infinite series Z2, Z4, ••• , Z2m .•. is finite, at least one term
(one number), k (1 ~ k ~ [2ex + 1]), is repeated an infinite number
of times. In other words, among the pairs of numbers
[P2' Q2], [P4, Q4], ... , [P2m Q2n],'" there is an infinite
set of pairs for which Z = x2

- Ay2 assumes the same value k upon
substitution of these numbers in place of x and y. Thus, we have
proved the existence of a positive integer k for which equation
(56) possesses an infinite number of integral solutions [x, y]. Let
us enumerate once again these number pairs which are solutions
of equation (56) for given k denoting them by [ub V1], [U2' V2], ...
... , [um vn] , •••• We will then have

u~ - A~ = k (59)

The sequence of pairs CUb VI], [U2' V2], ... , [Um Vn] , ••• will
of course be part of the sequence of numerators and denominators of
the even convergents of CI.. If we 'could assert that k = 1, then we would
have proved that equation (51) has an infinite number of integral
solutions. Since we cannot assert this, let us assume that
k > 1 (in the contrary case when k = 1 everything is proved),
and go on to the second step of our proof.

We shall now prove that among .the pairs of integers CUb V1],
[U2, V2], ... , [Um Vn] , ••• there will be infinitely many pairs
yielding the same remainders when divided by k. To put it
another way, we shall prove that there exist two nonnegative
integers, p and q, both less than k, such that for an infinite
number of pairs [Ub Vl]' [U2' V2], ... , [Um Vn] , ... the equalities

Un = ank + p, Vn = bnk+ q (60)

hold, where lln and bn are the quotients upon division of Un

and Vn by k, and p and q the remainders. For, if we divide Un and Vn
by the integer k, k > 1, then we obtain relations of the form (60),
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where as always the remainders upon division lie between zero
and k - 1. Since the only possible remainders upon the division
of the numbers Un by k are "the numbers 0, 1, 2, ... , k - 1, and
likewise the remainders upon the division of Vn by k can only be these
same numbers 0, 1, 2, ... , k - 1, then the number of possible pairs
of remainders upon the division of the numbers u, and Vn by k
will be k . k = k2

• This is also obvious because a pair of remainders
[Pm qn] corresponds to each pair [um vn] and the number of
different values assumed by each of the numbers Pn and qn separately
is not greater than k. Consequently, the number of different
pairs of remainders is not greater than k2

• Thus to each pair of
integers [um vn] there corresponds a pair of remainders [Pm qn] on
division by k. But the number of different pairs of remainders is
finite, does not exceed k2

, while the number of pairs [um Vn] is
infinite. This means that since the number of different pairs in the ­
sequence [Ph ql], [P2' q2], ... , [Pm qn], ... is finite, at least
one pair of remainders is repeated an infinite number of times.
Denoting this pair of remainders [p, q], we see that there exists an
infinite set of pairs [um vn] for which relations (60) hold. Since
not all the pairs satisfy (60) for certain definite p and q, whose
existence we have just proved, we shall renumber all those pairs
[un, Vn] which satisfy (60) denoting them by [Rm 8n] . And so, the
infinite sequence of pairs [RJ, 8 1] , [R2, S2], ... , [Rm Sn], ... is
a subsequence of the sequence [un' Vn] which, in turn, is a subsequence
of the sequence of numerators and denominators of the even
convergents of ct. The pairs of numbers [Rh 81] , [R2, 82] , ... ,

... , [Rm Sn], ... satisfy equation (59) and yield the same remainders,
p and q, on division by k.

Now that we have established the existence of an infinite set
of such pairs of positive integers R; and 8m we can go on to the third
and last step of our proof. Note first of all that the pairs
[R m 8n] , being the numerators and denominators of convergents,
must be pairs of relatively prime numbers, i. e. pairs of
numbers which do not possess common divisors. Indeed, if we

P2k
replace k by 2k in relation (24) and set 021e = -Q,021c-l =

21e

= P2k-l, then from the equation
Q2k-l

P21c P2k-l

Q2k - Q2k-l = Q2kQ2k-l

multiplying both sides by Q2A:Q2k- b we get

P2tQ2t-l - Q2IcP21c-l = 1 (61)
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This relation between four integers, P2k, Q2k, P2k - 1

and Q2k- b shows that if P2kand Q2k have a common divisor greater
than unity, then its whole left-hand side must be divisible by this
common divisor. But the right-hand side of equality (61) is unity,
which cannot be divided by any integer greater than unity.
Thus it is established that the numbers R; and 8m which can
only be the numerators and denominators of convergents, are
relatively prime. From relation (7) it also immediately follows that

Q2 < Q4 < ... <Q2n < ...

From the fact that the numbers R; and S; are relatively prime
and from the fact that the numbers 8 1, S2, ... , Sm ..• , which are
taken. from the sequence of numbers Q2n all differing from one
another, are also all different from one another, it immediately
follows that in the infinite sequence of fractions

s, R2 e,
S;-' ·8;' ..., 8;'."

there are no numbers equal to one another. Let us write two
equalities following from the definition of the numbers R; and Sn:

Ri - Asi = (R1 - etSt)(RI + etSI ) = k (62)

and

R~ - AS~ = (R2 - <xS2)(R2 + <xS2) = k (63)

where, as above.>« = }IA.
Also,

(R 1 - aS t ) (R2 + etS2) = R I R2 - AStS2 + et(R1S2 - St R 2 ) (64)

since et2 = A. Similarly
(R I + as1) (R2 - etS2) = R tR2 - AS tS 2 - et(R1S2 - St R2 ) (65)

When divided by k, R; and S; leave remainders p and q independent
of n. Consequently, because of relations (60),

R; = cnk + p, S; = dnk + q (66)
A series of easy transformations and substitutions leads to

RtR 2 - AS1S2 = R, (c2k + p) - ASt (d2k + q) =

= R1 [(C2 - cl)k + clk + p] - ASI [(tl2 - dl)k + d1k + q] =

= R1 [(C2 - cl)k + RI ] - ASl [(d2 - d1)k + 8 1] = (67)

= k [R 1 (C2 - CI) - AS t (d2 - dt )] + Ri - Asi =
=k [R 1 (C2 - CI) - AS! (d2 - d t ) + 1] = kXt
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where Xl is an integer because Ri - ASi = k. Analogously

R 1S2 - SlR2 =
= R I [(d2 - d1)k + d1k+ q] - Sl [(C2 - cl)k + clk + p] =

= R1[(d2 - dl )k + Sl] - 8 1 [(C2 - c1)k + R1] = (68)

= k [R l (d2 - dl ) - 8 1 (C2 - el)] = kYl

where YI is again an integer. We can assert that Yt is not equal to
zero. For suppose Yl = 0, then

kYl = R182 - R2S 1 = 0
whence

R 1 R 2

SI S2

which is impossible as we established that all the fractions
Rn/Sn are different.

Equalities (67) and (65) show that

(R1 - ClSl)(R2 + ClS2) = kXl + ClkYl = k (Xl + exYI) (69)

and

(R1 + exSl)(R2 - etS2) = kx, - ClkYl = k(XI - Clyd (70)

Multiplying (62) and (63) termwise and taking into account
expressions (69) and (70), we arrive at

k2 = (Ri - ASi)(R~ ~ AS~) =
= (Rl - ClSl)(R2 + exS2)(RI + ClSl)(R2 - Cl82) = (71)

= k2(Xl + ClYl)(XI - ClYl) = k2(xi - AYT)

Cancelling k2 out of the result, we finally get

xi - Ayi = 1 (72)

But YI =1= 0 which means that Xl =1= 0, otherwise the left-hand side
would be negative while the right-hand side would be equal to
unity. Thus, even under the assumption that k 1: 1, we have
determined two non-zero integers, Xl and Yb which satisfy equation
(51). The theory of equations of this type is now complete since
we know that they do possess a solution for any positive
integer A and irrational VA; and we know how to construct all

the solutions with the aid of the least solution whose existence
has been proved.
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In practice the least solutions should be sought by trial
and error, choosing the values of Xo and Yo.

We have fully treated the equation

x 2 - Ay2 = 1

when A > 0 and a. = V4 is irrational.

If A > 0 and Ct = V4 is an integer, then this equation may be
written in the form

x 2
- a.2y2 = (x + Cty)(x - a.y) = 1

and since et is an integer and xo, Yo are integers satisfying the
equation, we must have

Xo + exYo = 1, Xo - etyo = 1

or

Xo + exYo = - 1, Xo - a.Yo = - 1

because the product of two integers is unity if and only if each of
these integers is either + 1 or -1. Each of the systems of two
equations in two unknowns Xo and Yo admits of only trivial
integral solutions, Xo = 1, Yo = 0 and Xo = - 1, Yo = 0 respectively.
Hence, when A is equal to the square of an integer, equation (51)
has only trivial solutions in integers Xo = ±1, Yo = o. ltnen A
is a negative integer, equation (51) has the same trivial integral
solutions. (When A = - 1, it also has the (symmetrical) trivial
solutions Xo = 0, Yo = ±1.)

Let us now consider a more general equation

x 2 - A y2 = C (73)

. where A and C are integers, A is positive and ('J., = V4 is irrational.
We have already seen that when C = 1 this equation always
possesses an infinite number of integral solutions (see Theorem III) .

.But for arbitrary values of C and A, this equation may not -have a
solution at all.

EXAMPLE. Show that the equation

x 2 - 3 y2 = -1 (74)

possesses no integral solution. First note that the square of an odd
number, when divided by 8, always leaves a remainder equal to 1.
Indeed, since any odd number ex may be written as a = 2N + 1,
where N is an integer, we have

a2 = (2N+ 1)2 =4N2+4N+ 1 =4N(N+ 1)+ 1 = 8M+ 1 (75)
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where M is an integer, as either N or N + 1 must be even.
Suppose now that [xo, Yo] is a solution of equation (74). Then
the two numbers, Xo and Yo, cannot have the same parity, that is, one
must be even, and the other odd. If Xo and Yo were both either
even or odd, then x5 - 3Y5 would be an even number and
could not be equal to 1. If Xo were odd, and Yo even,
then x~ divided by 4 would leave a remainder of 1, while
- 3Y5 would be divisible by 4. Hence the remainder upon the division
of x5 - 3Y5 by 4 would be unity. This is impossible because the
right..hand side of equation (74),when divided by 4, leaves a remainder
of -lor 3 = 4 - 1. Lastly, if Xo is even and Yo is odd, then
x5 is divisible by 4, and, according to (75), - 3Y5 may be written
in the form

- 3Y5 = - 3(8M + 1) = - 24M - 3 = 4 (- 6 M - 1)+ 1

and so yields a remainder of 1 when divided by 4. Hence
once again the remainder upon the division of x5 - 3Y5 by 4 must
be 1, which is impossible, as we have seen. Thus, no integers xo,
Yo can satisfy equation (74).

We shall not consider the problem of specifying conditions,
imposed on C and A, under which equation (73) will have
solutions. It is a difficult one and is solved with the aid of the
general theory of quadratic irrationalities which belongs to the
algebraic number theory. We shall only discuss the case when
equation (73) has non-trivial solutions. As above, we shall call a
solution [x', y'] non-trivial if x', y' #= o.

Thus, suppose equation (73) admits of a non-trivial solution
[x', y'], in other words, suppose that

X,2 - Ay,2.= C (76)

Consider for the same A equation

x 2
- Ay2 = 1 (77)

For A > 0 and el = vA irrational this latter equation possesses
an infinite number of integral solutions [x, y], each of which may be
determined by

x = ± Xm Y= ± Yn

where x, and Yn are determined by formulae (50) of § 4. Since
[x, y] is a solution of equation (77),

x2
- Ay2 = (x + elY)(x - elY) = 1

In its tum, equality (76) can he written as

(x' + cxy')(x' - elY') = C
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Multiplying the last two equations term by term we get

(x' + cxy')(x + cxy)(x' - ay')(x - ay) = C (78)

But

(x' + cxy')(x + cxy) = x'x + Ay'y + cx(x'y + y'x)

and, similarly,

(x' - cxy')(x - elY) = x'x + Ay'y - cx(x'y + y'x)

Using these two results, we can rewrite (78) in the form

[x'x + Ay'y + cx{x'y + y'x)] [x'x + Ay'y - a(x'y + y'x)] = c
or as

(x'x + Ay'y)2 - A (x'y + Y'X)2 = C

We have thus proved that if [x', y'] is a solution of equation
(73) then this equation is also satisfied by the pair of numbers
[x, y],

x = x'x + Ay'y, y = x'y + y'x (79)

where [.i, y] is an arbitrary solution of equation (77). Therefore
we have proved that if equation (73) has at least one
solution then it has an infinite number of solutions.

We must not assert of course that formulae (79) provide all the
solutions of equation (73). In the theory of algebraic numbers
it is proved that all the integral solutions of equation (73)
may be obtained by taking a certain finite number of solutions,
depending on A and C, and generating them with the aid of
formulae (79). When A is negative or equal to the square of an
integer, equation (73) cannot have more than a finite number of
solutions. The proof of this proposition is simple and we leave it for
the reader. The solutions in integers of the most general
equation of the second degree in two unknowns

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (80)

where A, B, C, D, E, and F are integers, may be reduced, by
change of variables, to the solution of equations of type (73) with a
positive or negative A. Hence the behaviour of the solutions, if they
exist, is the same as that for equations of type (73).

Summing up what has been proved, we can say that
equations of the second degree in two unknowns of type (SO) may
either have no integral solutions at all, or have only a finite number of
solutions, or they may have an infinite number of solutions. In the
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last case all the solutions can be obtained from a finite number of
generalizedgeometric progressions(79). A comparison of the behaviour
of integral solutions of equations of the second degree in two
unknowns with the behaviour of the solutions of linear equations
reveals an extremely important fact. Whereas the solutions of
linear equations, if they exist, form arithmetic progressions, the
solutions of equations of the second degree, when they are
infinite in number, are taken from a finite number of generalized
geometric progressions. In other words, pairs of integers which
provide solutions of an equation of the second degree occur much
less frequently than in the case of linear equations. This is not
accidental. It turns out that equations in two unknowns of degree
higher than the second, generally speaking, have only a finite
number of solutions. Exceptions to this rule are extremely rare.

§ 6. Equations in Two Unknowns of Degree
Higher Than the Second

Equations in two unknowns of degree higher than the second
almost always, with rare exceptions, have only a finite number of
solutions in integers x and y. Let us consider first of all equation

aoxn + alxn
- ly + a2X n - 2y2 + ... + anyn = c (81)

where n is an integer greater than two and all the numbers ao,
ab a2, ... , an and c are integers.

At the beginning of this century, A. Thue proved that this
equation possesses only a finite number of solutions in integers x
and y, with the possible exception of cases when the homogeneous
left-hand side is a power

(1) of a homoqeneous linear binomial

(ax + by)" = Co

or (2) of a homogeneous quadratic trinomial

(ax2 + bxy + cy2)" = Co

In both these instances integral solutions can exist only if Co is the
nth power of some integer and, consequently, if equation (81)
reduces to an equation of- the first or of the second degree
respectively.

Thue's method is too complicated for us to describe here.
We shall confine ourselves to a few notes explaining how the
finiteness of the number of solutions of equation (81) is
demonstrated.
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(83)

(82)

Divide both sides of equation (81) by y", then

(x)" (X )"- 1 X Cao - + at - + ... + an - I - + an = -
Y Y Y yn

For the sake of simplicity we shall suppose not only that all the
roots of the equation

aozn + al Zn- 1+ ... + an-l.z + an = 0

are different from one another and aoan i= 0, but also that these
roots cannot be the solutions of any equations of a lower
degree with integral coefficients. This case is the essential one for
our discussion.

In courses of higher algebra it is proved that any algebraic
equation has at least one root, whence, since any polynomial in z
is divisible by z - (X if (X is its root, it follows very simply that

. any polynomial may be represented as

aozn + alZ
n

-
1 + ... + an = ao(z - (Xl)(Z - (X2)" .(z - (Xn) (84)

where (Xh CX2, ... , (Xn are its n (different) roots. Using this
expression for a polynomial in the form of a product, we can
rewrite equation (82) in the form

ao(~ - ~1 ) (; - ~2). • • ( ; - ~n) = ;n (85)

Suppose there exist an infinite number of integral solutions
[XI:, Yk] to equation (85). This means that there exist solutions
with y" arbitrarily large in absolute value. If there existed an
infinite number of pairs with y" bounded, less in absolute value
than some definite number, and with x" arbitrarily large, then
there would be a contradiction, as with such x" the left-hand side
would be arbitrarily large, while the right-hand side would remain
bounded. Now suppose Yk is a very large number. Then the
right-hand side of equation (85) will be small and this means
its left-hand side must also be small. But the left-hand side of
the equation is a product of n factors containing xklYk and ao
which, being an integer, is not less than unity. Consequently,
the left term can become small only if at least one of the
factors

x"--CXm
y"

is small in modulus. Clearly, this difference can be small only when
(Xm is real, in other words, when the relation (Xm = a + hi,
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b =1= 0 does not hold. In the opposite case the modulus of our
difference cannot be arbitrarily small, since

Two differences, that is two factors of the left member of equation
(85), cannot be small in modulus simultaneously because

1(;: -crm ) - (;: - crs)1 = Icrm - crsl *0 (86)

as the numbers elm are all different. If one of the two factors

1
is less in modulus than "2

1
elm - rLs I, then, because of relation

(86), the other one must be greater than ~ I«; - «.I. This is

a consequence of the fact that the" absolute value of a sum does
not exceed the sum of the absolute values. Since the numbers
elm are all different, the smallest difference in absolute values,
Ielm - CIsI, will be greater than zero (m 1= s). Denoting it by 2d,
we will have that if for some sufficiently "large y" (which we
can assume since y" increases indefinitely),

I ;:- crm \ < d

then

I~ - «, I> d, s = 1, 2, ... , n, S *m (87)
y" I

Then, since the modulus of a product is equal to the product
of the moduli of its factors, it follows from equation (85)" that

,ao'l~- elll···1' Xk - crm-lll~ - elmll~ -.<Xm+ 1!:"Yk y" Yl Y" .

· .. 1 :: - crnl = 1~:lln (88)

If in this equation we replace each of the differences

I:: - crs I, s *m by the smaller quantity d and replace IaoI by
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unity, which must be smaller than the integer 1ao I, then the left-hand
side of equality (88) will become less than the right-hand side,
and we get the inequality

d"-ll~_ex 1< _lc_1
Yk m ly"l"

or

I
x" I Cl [c]--ex <-- c ---
Y" m IYkI"' 1 - d"- 1

(89)

where Cl does not depend on x, and Yn. There are not more
than n numbers elm' while the set of pairs [Xk' Yk] which satisfy
inequality (89) for some m is infinite. Therefore, there exists a certain
m for which, with the corresponding am, this inequality is valid
an infinite number of times. In other worlds, if equation (81) has
an infinite number of integral solutions, then the algebraic equa­
tion (83) with integral coefficients possesses a root el for which
inequality

1 (1 - l!- I < ~
q q"

(90)

holds for arbitrarily large values of q. Here, p and q are integers,
A is a constant, independent of them, and n is the degree of an
equation of which a is a root.

If ex were an arbitrary real number, it would have been possible
to choose it so that there were indeed an infinite number of
solutions to equation (90) in integers p and q. But in our case
a is the root of an algebraic equation with integral coefficients.
Such numbers are called algebraic and they possess special
properties. The degree of an algebraic number is the degree of the
algebraic equation of least degree with integral coefficients, which
is satisfied by this number.

A. Thue proved that for an algebraic number a of degree n the
inequality

Ia. - L I< -n1_0

, n ~ 3 (91)
q ~+1

q

can have only a finite number of integral solutions [p, q]. But
if n ~ 3 the right.hand side of inequality (90) for a sufficiently
large q will become less than the right-hand side of inequality

(91) since n > ~ + 1. Therefore, if inequality (91) can have only a
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finite number of solutions in integers p and q, then inequality
(90) must certainly have only a finite number of solutions. This
means that equation (81) can have only a finite number of solutions
in integers when all the roots of equation (83) cannot be roots of an
equation with integral coefficients of degree lower than n. It is not
difficult to ascertain that for n = 2 and given A inequality (90)
does indeed have an infinite number of integral solutions in p and q.
The theorem by A. Thue was subsequently strengthened significantly.
It should be mentioned that the method he used to prove
his theorem did not allow him to find an upper bound for the
solutions, in other words, a bound for the possible values
of Ix I and f y I for given coefficients. ao, a., ... , Cln and c.
This question still remains open. However, the method due to Thue
enables us to discover an upper bound, though a rather crude one,
for the number of solutions of equation (83). For certain classes of
equations of type (83) this bound may be made much more precise.
For example, the Soviet mathematician B. N.Delone proved
that, except for the trivial solution [0, 1], equation

ax 3 + y3 = 1

where Q is an integer, cannot have more than one integral
solution [x, y]. He also demonstrated that equation

ax 3 + bx 2y + cxy2 + dy3 = 1

where the coefficients a, b, c, d are integers can have no more
than five solutions .

.Let now P(x, y) denote an arbitrary polynomial in x and y with
integral coefficients Ales:

P (x, y) = LAksXkys

We shall say that the polynomial is irreducible if it cannot be
represented as a product of two other polynomials with integral
coefficients, each of which is not equal to a number. "

By using a special and extremely complicated method Siegel
proved that equation

P(x, y) = 0

where P (x, y) is an irreducible polynomial in x and y of degree
higher than the second (i.e. a polynomial which includes terms,
or" a single term, AksXky with k + s > 2), may have an infinite
number of integral solutions [x, y] only when there exist
numbers an, an - b ... , ao, a : b ... , Q- n and b; bn - b ... , bo,
b : b ... , b_", where n is some integer, such that when expressions
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where n is some integer, such that when expressions

_ n n-1 a-1 Q- n
X - ant + an - t t + ... + ao + -- + ... + -n-

t t

b
n n-1 b b_ 1 b s;

Y= nt +bn-tt + ... + o+-t-+···+71

are substituted into our equation for x and y an identity

P(x, y) == 0

is obtained with respect to t.

§ 7. Algebraic Equations in Three Unknowns of Degree
Higher Than the Second. Some Exponential Equations

Is the number of integral solutions of an equation finite or not?
Though we can give an answer to this question for equations in
tWj> unknowns, we can only answer it for very particular
types of equations in three or more unknowns of degree higher
than the second. Nevertheless, in these particular cases a more
difficult problem of actually determining all the integral solutions
can be' solved. Consider for example the so-called Fermat's
last theorem. Pierre Fermat, an eminent French mathematician,
asserted that for any integer n ~ 3 equation

x" + yn = Z' (92)

has no solutions in positive integers x, y, z. The case xyz = 0 is
excluded by the requirement that the unknowns be positive. He even
claimed to have a proof of this proposition (evidently, using
the method of infinite descent, see below), but it has never been
found. When the German mathematician E. Kummer subsequently
attempted to prove Fermat's theorem, he for some time thought he
has succeeded. However he discovered that one proposition, correct
for usual integers, does not hold for the more complicated number
formations which naturally arise in research connected with
the problem. This was that the factorization of what are called
algebraic integers, in other words, roots of algebraic equations with
integral rational coefficients and with a unit coefficient of the
leading term, into undecomposable prime integral factors of the same
algebraic nature is not unique. The factorization of the ordinary
integers is of course unique. For example, 6 = 2· 3, with no
other factorization being possible in the domain of ordinary integers.

Consider now the set of all algebraic integers of the type
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m + n v=s where m and n are ordinary integers, and note that
both the sum and the product of two such numbers are again
numbers of the same set. A set of numbers which contains any
sums and products of the numbers in it is called a ring.
By definition the ring under discussion contains the numbers 2, 3,

1 + 0 and 1 - 0. It is easy to ascertain that each of these
numbers is a prime; none of them can be represented as a product
of two integers of the ring neither of which are equal to unity. However,

6 = 2· 3 = (1 + ~C5) (1 - V~)

so that in our ring the number 6 does not factorize uniquely into
prime factors.

Non-uniqueness in the factorization into prime factors also
occurs in other, more complicated, rings of algebraic integers.
Having discovered this, Kummer realized that his proof of Fermat's
theorem in the general case was false. In order to overcome the
difficulties connected with the non-uniqueness of the factorizatjpn
into factors Kummer constructed the theory of ideals, which is
extremely important in modern algebra and number theory.
Even with the aid of his new theory, Kummer was unable to prove
Fermat's theorem in the genera) case, and proved it only for
those nwhich are divisible by at least one of what are known as regular
prime numbers. We shall not go into what is meant by the
concept of regular prime number. It is not even known at the present
time whether there is a finite num~er of regular prime numbers
or infinitely many of them.

At the present time, Fermat's last theorem has been proved for
many values of n and, in particular, for any n divisible by a prime
number less than 100. Fermat's last theorem turned out to be
extremely important for the development of mathematics in general
because the attempts to prove it led to the discovery of the
theory of ideals. It should be mentioned that this theory was
independently constructed in quite another way and for a different
reason by E. I. Zolotarev, an eminent Russian mathematician who
regrettably died in the prime of his creative life. These days, a proof
of Fermat's last theorem, especially a proof based on the concepts
of the theory of divisibility of numbers, would have only curiosity
value. If, however, a proof were attained by a new and fruitful
method, then its importance, or, rather, the importance of
the method itself, might be quite great. Even now amateurs
continue to attack Fermat's theorem by elementary methods.
All such attempts are doomed to failure. Elementary arguments
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proceeding from the theory of divisibility of numbers were
used by Kummer and were further developed by some of the most
eminent mathematicians; yet nothing important was obtained.

We shall now prove Fermat's theorem for the case n = 4
~ince th~ method of infinite descent on which the proof is based is very
Interesting.

THEOREM IV. Fermat's equation

x4 + y4 = Z4 (93)

has no solutions in integers x, y, Z, xyz:# o.
Proof We shall prove an even stronger proposition, namely, that

equation

(94)

(97)
22

x=uv, y=---, Z= ---

has no solution in integers x, y, z, xyz -# O. From this theorem it
immediately follows that equation (93) has no solution. If equation
(94) has a solution in non-zero integers x, y, z, then we may
assume that these numbers are pairwise relatively prime. For if there
is a solution in which x and y have a greatest common
divisor d > 1, then

x = dx.; Y = dYI

where (Xb Yl) = 1.Dividing both sides of equation (94) by r, we have

x1 + y1 = ( ; y= zi (95)

But x 1 and Y1 are integers, therefore z1 = zjd? is also an integer.
Now, if ZI and Yl had a common divisor k > 1, then, because of
expression (95), xi would have to be divisible by k, which means Xl

and k could not have been relatively prime. Hence. we have proved
that if there exists a solution to equation (94) in non-zero integers,
then there also exists a solution in non-zero and pairwise
relatively prime integers. Therefore it is sufficient for us to
prove that equation (94) does not have solutions in non-zero
pairwise relatively prime integers. In the following proof, when we say
that equation (94) has a solution, we mean that it has a solution
in positive pairwise relatively prime integers.

In § 3 we proved that all the positive integral and pairwise
relatively prime solutions of equation (12)

x2 + y2 = Z2 (96)

are determined by formula (18) and have the form
u2 _ v2 u2 + v2
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where u and v are any pair of odd and relatively prime positive
numbers.

Let us give another form for formulae (97) determining all the
solutions of equation (96). Since u and v are odd numbers,
then setting

u+v
-2-= a,

u-v
-·-=b

.2
(98)

we determine u and v by

u = a + b, v = a - b (99)

where a and b are integers with different parity (one is even
and the other odd). Equalities (98) and (99) show that to any pair of
odd and relatively prime numbers u and v there corresponds a pair of
relatively prime numbers a and b of different parity and that
to any pair of relatively prime numbers a and b of different
parity there corresponds a pair of relatively prime odd numbers u
and v. Therefore substituting a and b for u and v respectively
in formulae (97) we find that all the triplets of positive and pairwise
relatively prime integers x, y, z (x odd), which are solutions of
equation (96), are determined by formulae

x = a2
- b2

, y = 2ab, Z = a2 + b2 (100)

where a and b are any two relatively prime numbers of different
parity, on the condition that x > o. These formulae show that the
two numbers, x and y, are of different parity. Now, if
[xo, Yo, zo] is a solution of equation (94), then

[xij]2 + [Y5]2 = z5
so that the. triplet [x5, Y5, zo] satisfies equation (96). But then
there must exist two relatively prime numbers a and b, a > b, of
different parity, such that

x6 = a2
- b2

, y6.= 2ab, Zo = a2 + b2 (101)

We have assumed here for the sake of definiteness that Xo is
odd and Yo even. In the contrary case nothing is changed since Xo

could be changed for Yo and vice versa. We already known from
equality (75) of § 5 that the square of an odd number
divided by' 4 leaves a remainder of 1. Therefore from equality

x5 = a2
- b2 (102)

it follows that a is odd and b even. If otherwise, the left-hand
side of equality (102) divided by 4 would leave a remainder of 1
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while the right-hand side would leave a remainder 'of - 1, as we
assumed a. to be even and b odd. Since "a is odd and (a, b) =" 1,
we have (a, 2b) = 1. But then from equality

Y5 = 2bd

it follows that

(103)

where t and s are some integers. But it follows from relation
(102) that [xo, b, a] is a solution of equation (96) and therefore

xo=m2-n2
, b=2mn, a=m2+n2

where m and n are some relatively prime numbers of different parity.
From (103) we have

mn= ~ =(~y
whence, as m and n are relatively prime, it follows that

m = p2, n = q2 (104)

where p .and q are non-zero integers. Since a = t2 and a = m2 + n2
,

it follows that

(105)

But

Therefore

o< t = ~ <~ < Zo (zo < 1) (106)

Setting q = Xl' P = Y1 and t = z1 we see that if there exists a
solution [Xo, Yo, zo], then there must exist another solution
[X., Y., ZI] for which 0 < ZI < Z00 This process of obtaining
solutions of equation (94) may be continued indefinitely, and we
obtain a sequence of solutions

[xo, Yo, zo], [X., y., ZI], ... , [xm Ym zn], ...
in which the positive integers Zo, z1, Z2, ... , Zm ••• decrease
monotonically; in other words, inequalities

.zo> ZI > Z2 > ... > Zn > ...
hold for them. But positive integers cannot form an infinite and
monotonically decreasing sequence as there cannot be more than Zo

terms in it. We have thus come to a contradiction by assuming
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that equation (94) has at least one solution in integers x, y, Z, XYZ·=I= o.
This serves as a proof that equation (94) does not have a solution..
Accordingly equation (93) has no solutions in positive integers
[x, y, z] either, since, if otherwise, if [x, y, z] were a solution
of equation (93), then [x, y, Z2] would be a solution to (94).

The method of proof we have employed, consisting in using
one solution to construct an innumerable sequence of solutions with
indefinitely decreasing positive z, is called the method of infinite
descent.

As was remarked above, Fermat's last theorem in the general
case does not yet yield to this method because of the non­
uniqueness of the factorization of the integers of an algebraic
ring into prime factors from the same ring.

Note that we have demonstrated the non-existence of integral'
solutions not only for equation (94), but also for equation

x 4 n + y4 n = z2n

It is interesting to note that equation

x4 + y2 = Z2

possesses an infinite number of positive integral solutions. For
example, one solution is [2, 3, 5]. It is left to the reader to find
general expressions for all such solutions of this equation in
integers x, y, z.

We shall now consider another example which illustrates the
method of infinite descent, but the argument will be 'somewhat
different.

EXAMPLE. Prove that equation

x 4 + 2 y4 = Z2 (107)
has no solutions in non..zero intege.rs x, y, z. Let us suppose that
a positive integral solution [xo, Yo, zo] does exist. These
numbers may be immediately assumed to be relatively prime, since
if they had a greatest common divisor d > 1, then the numbers

x;, y;, z; would also be solutions of equation (107).

Moreover, the existence of a common divisor for any two numbers
would mean that all three of them had a common divisor.
Let us also assume that Zo is the least of all the possible
values of z in the positive integral solutions of equation (107).
Now since [xo, Yo, zo] satisfies equation (lQ7), [x5, Y5, zo] will be a
solution of equation

(108)
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Using formulae (19') from § 3 which provide all the positive
integral solutions of equation (108), we see that there exist positive
integers a and b with (a, b).= 1 and a odd, such that

x~ = ± (a2
- 2b2

), Y5 = 2ab, Zo = a2 + 2b2 (109)

From Y5 = 2 ab it follows that b must be even since Yo is even,
y~ is divisible by 4 and a is odd. Now as b/2 and a are relatively
prime, equality

directly yields

a = m2 ~ = n2
, 2

where m and n are positive integers and (m, 2n) = 1. But from
equalities (109) it follows that

x~ = ± (a2
- 2 b2

) = ± [a2
- 8 ( ~y ] (110)

where Xo and a are odd. We have seen that the square of an odd
number divided by 4 leaves a remainder of 1. Therefore, the
left-hand side of equality (110),upon division by 4, gives a remainder

of 1 while a2
- 8 ( ~ )

2

, when divided by 4, also leaves a remainder

of 1. This means that the bracket on the right-hand side of (110)
may be taken only with the plus sign. Now (110) may be written
in the form

or in the form
x~ + 2(2n2)2 = (m2)2 (111)

where xo, nand m are positive and relatively prime integers.
Thus, the numbers xo, 2n2 and m2 constitute a solution of equation
(108) and are relatively prime. Again, according to formula (19')
of § 3, there may be found integers p and q, with p odd and
(p, q) = 1, such that

2n2 = 2pq, m2 = p2 + 2q2, Xo = ± (p2 - 2q2) (1.12)

But since (p, q) = 1 and n2 = pq, we have

p = 8
2, q = r2

where sand r are relatively prime integers. Finally, from here
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there follows the relation

S4 + 2 r4 = m2 (113)
which shows that the triplet s, r, m is a solution of equation
(107). But from the results

Zo = a2 + 2b2
" a = m2

obtained above it follows that Zo > m. Thus, proceeding from a
solution [xo, Yo, zo], we. have found another solution [8, r, m],
in which 0 < m < zo .. This contradicts the assumption we made
that Zo was the least possible value. Thus we have arrived at a
contradiction by assuming the existence of a solution to equation
(107),and we have proved that this equation is unsolvable in non-zero
integers. .

We leave it to the reader to show that equations

x4 + 4 y4 = Z2, x4 _ y4 = z2

x" - y4 = 2z 2, x 4 _ 4y 4 = Z2

have no positive integral solutions.
We shall conclude with a few remarks about exponential

equations. The equation

(114)

where a, b and c are integers, not equal to any power of 2 or to zero
can have no more than a finite number of solutions in integers
x, y, z, The same proposition with a weak condition being added is
valid for arbitrary algebraic numbers a, band c. Moreover, equation

A(l~l ... cx:n + B~il ... ~~m + Cy:l . . .1;1' = 0 (115)

where A, Band C,ABC =1= 0, are integers, (lb ••• , am ~h •••

... , Pm and 1., ... , 1,. are integers and the numbers

cx = a 1 • •• CXm Ii = Ii1 ••• ~m? Y = Y1 ••• YI'

are relatively prime, can only have a finite number of integral
solutions [Xh ... -, X m Yh .•• , Ym, Zh ... , zp]. A generalization
of this proposition with A, Band C' and (Xb ~k and 115 being
algebraic numbers is also possible. Equations of the type (115) and
their generalizations are of great .interest because, as is shown in the
theory of algebraic numbers, to each algebraic equation of type
(81), there corresponds a certain exponential equation of type (115)
and: to each solution of equation (81) there corresponds a solution
of equation (115) in integers. This correspondence extends to equa­
tions of a more general type than (81) and (115).
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The book is devoted to one of the most interesting branches of
number theory, the solution of equations in integers. The solution
in integers of algebraic equations in more than one unknown with
integral coefficients is a most difficult problem in the theory of
numbers. The theoretical importance of equations with integral
coefficients is quite great as they are closely connected with many
problems of number theory. Moreover, these equations are
sometimes encountered in in physics and so they are also
important in practice. The elements of the theory of equations with

integral coefficients as presented in this book are suitable for

broadening the mathematical outlook of high-school students and

students of pedagogical institutes. Some of the main results in the

theory of the solution of equations in integers have been given and

proofs of the theorems involved are supplied when they are

sufficiently simple.
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