Little Mathematics Library






MOMNVJIAPHBIE JEKIINN 110 MATEMATHKE

I1. TI. KopoBkum
HEPABEHCTBA

H3IATEJIIBCTBO «HAVHA»



LITTLE MATHEMATICS LIBRARY

P. P. Korovkin

INEQUALITIES

Translated from the Russian
by
Sergei Vrubel

MIR PUBLISHERS
MOSCOW



First Published 1975

Ha anzautickom asvike

© MUsparensctBo «Haykay, 1974
@© English translation, Mir Publishers, 1975



CONTENTS

Preface . . . . v v v i e e e e e e e e e e e e e e

Chapter 1. Inequalities
1.1. The Whole Part of a Number . . . . . . . . . . . ..

1.3. The Number . . . . . . . . . v e v v v v ..
1.4. The Bernoulli Imequality . . . . . ... ... ...
1.5. The Mean Power of Numbers . . . . . . . .. .. ..

Chapter 2. Uses of Inequalities

2.4. The Greatest and the Least Function Values . . . . .

2.2. The Hélder Inequality . . . . . . . . . ... .. ..

2.3. The Use of Inequalities for Calculation of Limits .

2.4. The Use of Inequalities for Approximate Calculation of
Quantities . . . . 0 0 0 0 e e e e e e e e e e

Solutions to Exercises . . . . . « « v ¢ v 4 e 4 0 0 4. .

12
19
23
27

32
32
40
43

49

58



PREFACE

In the mathematics course of secondary schools students
get acquainted with the properties of inequalities and me-
thods of their solution in elementary cases (inequalities
of the first and the second degree).

In this booklet the author did not pursue the aim of
presenting the basic properties of inequalities and made
an attempt only to familiarize students of senior classes
with some particularly remarkable inequalities playing an
important role in various sections of higher mathematics
and with their use for finding the greatest and the least
values of quantities and for calculating some limits.

The book contains 63 problems, 35 of which are provided
with detailed solutions, composing thus its main subject,
and 28 others are given in Sections 1.1 and 2.1, 2.3, 2.4
as exercises for individual training. At the end of the

book the reader will find the solutions to the' given
exercises.

The solution of some difficult problems carried out indi-
vidually will undoubtedly do the reader more good than
the solution of a large number of simple ones.

For this reason we strongly recommend the readers to
perform their own solutions before referring to the solutions
given by the author at the end of the book. However, one
should not be disappointed if the obtained results differ
from those of the patterns. The author considers it as
a positive factor.

When proving the inequalities and solving the given
problems, the author has used only the properties of inequa-
lities and limits actually covered by the curriculum on
mathematics in the secondary school.

P. Korovkin,



CHAPTER 1
Inequalities

The important role of inequalities is determined by their
application in different fields of natural science and engi-
neering. The point is that the values of quantities defined
from various practical problems (e.g. the distance to the
Moon, its speed of rotation, etc.) may be found not exactly,
but only approximately. If z is the found value of a quanti-
ty, and Az is an error of its measurement, then the real
value y satisfies the inequalities

r— Az [<y<z+ [Az ]

When solving practical problems, it is necessary to take
into account all the errors of the measurements. Moreover,
in accordance with the technical progress and the degree of
complexity of the problem, it becomes necessary to improve
the technique of measurement of quantities. Considerable
errors of measurement become inadmissible in solving
complicated engineering problems (i.e., landing the moon-
car in a specified region of the Moon, landing spaceships
on the Venus and so on).

1.1. The Whole Part of a Number

The whole (or integral) part of the number x (denoted by
[z ]) is understood to be the greatest integer not exceed-
ing z. It follows from this definition that [z] < z, since
the integral part does not exceed z. On the other hand,
since [z] is the greatest integer, satisfying the latter ine-
quality, then [z] + 1 > z.

Thus, [z] is the integer (whole number) defined by the
inequalities

[zl < z <ifz] +'1.



For example, from the inequalities

3<n<4 5<iL <6 —2<—VY2<—1, 5=5<6

it follows that
=3, [4]=5 (—V2=-2, BI=

The ability to find the integral part of a quantity is an
important factor in approximate calculations. If we have
the skill to find an integral part of a quantity z, then taking
[z] or [z] + 1 for an approximate value of the quantity z,
we shall make an error whose quantity is not greater than 1,

since
<z —lzl<zl +1 =[] =1,

O<lzl +1 —2<Llzl +1 =[] =

Furthermore, the knowledge of the integral part of a quanti-
ty permits to find its value with an accuracy up to -5 -

The quantity [z] + % may be taken for this value.

Yet, it is important to note, that the ability to find the
whole part of a number will permit to define this number
and, with any degree of accuracy. Indeed, since

[Nzl <Nz L[Nx] +1,
then

Thus, the number
[Nz]

+ 2N
differs from the number z not more than by % . With large

N the error will be small. The integral part of a number is
found in the following problems.

Problem 1. Find the integral part of the number

1 1 1 1
$=1+V§+V§+VZ+—V—§.




Solution. Let us use the following inequalities
1<1<1,

07<}) T<os,
05<}/ L<os,

05<)/ L<05,
04<}) t<os

(which are obtained by extracting roots (evolution) with
an'accuracy to 0.1 in excess or deficiency). Combining them

we get
1 4+07+054054+04<2<<
<1+08+06 4 0.5+ 0.5,

that is, 3.1 << z << 3.4, hence, [z] = 3.

In this relation, it is necessary to note that the number
3.25 differs from z not more than by 0.15.

Problem 2. Find the integral part of the number

1 1 1 1
y'_i—l‘ .Vi + .l/§ + VZ +-°°+ v——1000000 .

Solution. This problem differs from the previous one
only by the number of addends (in the first, there were only
5 addends, while in the second, 1000, 000 addends). This
circumstance makes it practically impossible to get the

solution by the former method.
To solve this problem, let us investigate the sum

1 1 1 1
tymty Tttt
and prove that
2V n+1-2YVn<— _V_ <2Vn —2Vn—1. (1)
Indeed. since
1oy = 2(VrF1—Vn) (Vati+Vn) _
2V n+1—-2Yn = VetttV

——
 Veti+ Ve
9



and

VaFi>Vn,

it follows that

2V nF1—-2Vn <2.V. .l}-

Thereby proof has been made for the first part of the inequa-
lity (1); its second part is proved in a similar way.

Assuming in the inequalities (1) n =2, 3, 4, .. ., n,
we get

—_— —_— 1 —
2Y3-2V2<——<2y2-2,
Vi-2y V 14

2V4— 21/3< <21/3—21/2
2Y5— 21/4< <21/4—2V3

2VnFl—2Vn< v <2Vn—2yYn—1.
Adding these inequalities, we get
2V n+1-2V2<
1 1 1 1 —
< % + V3 + Vi +...+—V7<21/n—2.

Adding 1 to all parts of the obtained inequalities, we
find

2V nFl—=-2V24+1<

1 1
<t yrtystartoetys

Since 2V 2< 3, and V' n+1>V n, it follows from the
inequalities (2) that

n<2]/n—1 (2)

2Vn—2<1+ 11/54- 1}_3_ + 1}_+

V‘ —<2Vn—=1. (3)

10



Using the inequalities (3) we can easily find the inte-
gral part of the number

1 1 1
y=1+ Vz + V3 + Vi Tt /1000000
Thus, taking in the inequalities (3) n=1000000, we get
21/1000000 —2<

<1+—

V Vs +. +V—TTTT6“<2V1000000 —1,

or
1998 << y << 1999.
Hence, [y] = 1998.

From the inequalities (2) it follows that the number
1998.6 differs from y not more than by 0.4. Thus we have

calculated the number y with an accuracy up to —e—— 1998 7 % =

= 0.02%. The numbers 1998 and 1999 differ from the num-
ber y not more than by unity, and the number 1998.5 differs
not more than by 0.5.

Now let us examine the next problem of somewhat diffe-
rent pattern.

Problem 3. Prove the inequality

3°%2°6 " 100 <10
Solution. Suppose

Since
1 _2 3 _4 5 _68 100
<3 T<F g7 '100<101 !
it follows that <<y and, consequently,
1 2 3 4 5 6 99 100 1
2 ~.,4, 85,4 00 B
L WY=z'3'Z7'FF T 100 100 ~ 10 °

Finding the square root of both members of the inequalities
yields

T ——=<0.1,
V—

11



Exercises

1. Prove the inequalities
1
—2 =+ —=—+...
2VrtT—2Vn< Vet Ve T
1 — —_—
...+—W<2Vn—2Vm—1.

2. Prove the inequalities

1
1,800 N
<1/10.000 1/10001 T +V1 000000 <
< 1,800.02.
3. Find [50z], where
_ 1 1 1
7/10,000 T 7/10,001 +"'+1/1,ooo,ooo '

Answer. [50z] = 90,000.

4. Prove the following inequality using the method of
mathematical induction

1 3 5 2n—1 1

2'%° 8 T SV md

1.2. The Arithmetic Mean and the Geometric Mean
If z,, z,, ..., z, are positive numbers, then the numbers
formed with them
Zy+Ia+ ...+ 2n

a= = ’

=Vzix,...xn

are called, respectively, the arithmetic mean and the geo-
metric mean of the numbers 2, z,, . .., ;. At the begin-
ning of the last century, the French mathematician O. Cau-
chy has established for these numbers the inequality

£< g,

often used in solving problems. Before proving the inequali-
ty we have to establish the validity of an auxiliary assertion

12




Theorem 1. If the product n of the positive numbers 2,,
Zgy « . .y Xy is equal to 1, then the sum of these numbers is
not less than n:

TZgy ooy Ly =12z, +2,+...4+ 2, =n.

Proof. Use the method of mathematical induction!. First
of all check up the validity of the theorem for n = 2, i.e.
show that

2y =1 =2, + 2, = 2.

Solving the question, examine the two given cases separa-
tely:

(1) Z =y = 1.
In this case 2; 4+ 2z, = 2, and the theorem is proved.
(2) 0 <z <,

Here z, << 1, and z, > 1, since their product is equal to 1.
From the equation

A—z) (@, — 1) =25 + 2y — 232, — 1
it follows that
z + 2y =22y + 1+ (1 — ) (25— 1). (4)

The equation (4) has been established without limitations to
the numbers z; and z, Yet, taking into account, that
z,r, = 1, we get

Ty xy =2+ 1 —2z) (zy —1).

At length, since r, <<1 < z,, then the last number is
positive and z; 4+ z, > 2. Thus, for n = 2 the theorem is
already proved. Notice, that the equation

z, + x2, = 2
is realized only when z; = z,. But if 2, = x,, then
z, + xy > 2.

Now, making use of the method of mathematical induc-
tion, assume that the theorem is true for n = k, that is, sup-

1 More detailed information concerning mathematical induction
is published in the book by I. S. Sominsky “The Method of Mathemati
cal Induction”, Nauka, Moscow, 1974.

13



pose the inequality
da, bz, x>k
occurs, if zx,x,...2, =1, and prove the theorem for
n =1k + 1, i.e. prove that
T+ Ty + Tyt o+ T+ T =k 4,
if zyroxy. .. 2y, =1, for 2, >0, 2, >0, 2, >0, ...,
Ty > Os Trt1 > 0.
First of all, it is necessary to notice that if
TyToly . o o Tplpyg = 1,

then there may be two cases:

(1) when all the multipliers z;, z,, %3, . . ., Ty, ZTp+, are
equal, that is

Ty =2y =23 =+« =T = Tpty
(2) when not all multipliers are equal.
In the first case every multiplier is equal to unity, and
their sum equals % + 1, that is
T+ T+ T3+ T+ T =k 4 L

In the second case, among the multipliers of the product
Zy%y . . . TpTpy,, there may be both numbers greater than
unity and numbers less than unity (if all the multipliers
were less than unity, then their product as well would be
less than unity).

For example, suppose z; << 1, and zp+; > 1. We have

(B2 Tp41) ToTg . . . 2y = 1.
Assuming y; = x,x,4,, We get
YiToZg . . . T = 1.
Since here the product k& of positive numbers is equal to

unity, then (according to the assumption) their sum is not
less than %, that is

y1+x2+x3+~«-+xk>k.
But

T+ Ty T34 .0+ Tyt Ty =
=W+ Ttas+ ...+ T)+ Ty — U+ =
Zk+ o —un+ 2= EH)F 20—+ 2 — 1

14



Remembering that y, = z,2,4+, we get

Ty Ty F 23+ Tyt Ty =
=k 4+ 1)+ 241 — T Zpty + 23— 1 =
=Fk+1) + @, — 1) 1 — 2.
Since z; << 1, and x4+, > 1, then (244, — 1) (1 —2,) >0
and, hence,
T+ 2y + 23+ o+ Tyt Tpty =
=E+)+ @ =D —2)>k+ 1.

Thus the theorem is proved.

Problem 1. Prove, that if 2, z,, x5, . .., z, are positive
numbers then

| T2 Tn-1 In
zg + z3 +...+ Zn + z4 >,

the equality being valid only when

Ty =Tyg==xA3= ... =Tp.
Solution. Since

7 U B, = W, Sy |

zg 23 T zp oz !

then the inequality follows from Theorem 1, the sign of
equality holds only when

it DY I =2Znt __ *n 4
zg x3 77 Zn x4 !
namely, when z;, =z, =2;,=... = z,.
Problem 2. Prove the inequality
z2-+2
— 2.
Vari”

Solution. We have
2242 _ 241 !  _vZET1 1
VA Ve T ven Ve e
Since the product of addends in the right-hand member of the

equality equals unity, then their sum is not less than 2.
The sign of equality holds only for z = 0.

Problem 3. Prove that for a > 1
log a + log, 10 > 2.

15



Solution. Since log, 10-log a = 1, then

log a +log, 10 =1log a 4+ ﬁ}&
Problem 4. Prove the inequality

z? 1
14 <':z"
Solution. Divide by z? the numerator and denominator
of the left-hand member of the inequality:

22 1
1424 = 1 :
=z

Since L 22=1, then —2-—|- z2>>2 and, hence,
1
-T—— <7

—=

Now let us prove the statement made at the beginning
of the section.

Theorem 2. The geometric mean of positive numbers is
not greater than the arithmetic mean of the same numbers.

If the numbers z,, x5, ..., 2, are not all equal, then
the geometric mean of these numbers is less than their arithmetic
mean.

Proof. From the equality g:,’/x‘% ...z it follows

that

TP VS I TI RO S
g & g g8 8 g

Since the product n of the positive numbers equals 1,
then (Theorem 1) their sum is not less than n, that is

SR PP S

Multiplying both members of the last inequality by g and
dividing by n, we get

a =

ittt

n
16



Notice, that the equality holds only when %:fz- =

g
...=fg£=1, that is zy==axy,=...== =z, =g. But if the
numbers z;, z,, ..., Z, are not equal, then

a>g.

Problem 5. From all parallelepipeds with the given sum
of the three mutually perpendicular edges, find the parallele-
piped having the greatest volume.

Solution. Suppose m == a + b 4 ¢ is the sum of the
edges and V = abc is the volume of the parallelepiped.

Since
/V ‘/(lb a f—b a-tbte =_rg._ ,
then V< . The sign of equallty holds only when a=
=b:c=%, that is, when the parallelepiped is a cube.
Problem 6. Prove the inequality
i< (252)", n>2. (5)
Solution. Using Theorem 2, we get
Y T Tt
(n4+-Nn _ n-t1 ’
2n 2 7

Raising to the nth power both parts of the last inequality,
we get the inequality (5).

Definition. The number

1
o ( aT-+ag+ ... -}al ) o
* n
is termed the mean power of numbers a,, a,, ..., a, of the
order o.. Particularly, the number
ay--as+ ... 4-ay,
¢y =
n
is the arithmetic mean of the numbers a,, a,, ..., a,, the
number
1
2T
( ai + a2 -+ I ) 2
Cy=
n

2—0866 17



is named the root-mean-square, and the number

oyt 4agt4 . 4ot -t n
b= ( n ) -1 L 1
a4 as Tt an
is called the harmonic mean of the numbers a,, a,, . . ., a,.

Problem 7. Prove that if a,, a,, ..., a, are positive
numbers and o << 0 << B, then

Ca << € S Cpo (6)

that is, the mean power with a negative exponent does not
exceed the geometric mean, and the mean power with
a positive exponent is not less than the geometric mean.

Solution. From the fact, that the geometric mean of
positive numbers does not exceed the arithmetic mean,
we have

af+a§+... +9%

———
t/a?a%‘...aﬁ< - .

Raising both parts of the last inequality to a power—:‘—and

taking into consideration, that %< 0, we get
1
af+a§+ ... +af )E

n

g={ya,a2...an }( =Cq.
So the first part of the inequality (6) is proved; the second
is proved in a similar way.

b From the inequality (6) it follows, in particular, that
the harmonic mean ¢_; does not exceed the arithmetic
mean ¢;.

Problem 8. Prove that if a,, a,, ..., a, are positive
numbers, then

1 1 1
(a14as+ ...+ an) (71‘-!-@-}— e +a—") >n?.
Solution. Since ¢y <<g<c¢y, then
n ay+tas+...4a,
1 1 1 < n
———i———l-o--*l'z

aq ay

Cy = =C‘.

It follows from this inequality that
1 1 1
nP<(@a1+az+ ... 4-an) (W+a—2-+ e +a—n-) .
18



Problem 9. Prove the inequality

naya, . .. 4, < ay b ay 4+ ...+ an, (7
where a; >0, a, >0, ..., a, > 0.

Solution. Since the geometric mean does not exceed the
arithmetic mean, then

+a a
Ay ... Ap = / a1a2 < 2—};‘ - .
Multiplying both members of this inequﬁty by r, we shall
get the inequality (7).
From the inequality (7) it follows, that

2a40, L at+-a;, 3aja,a3<La}+ aj+ af,
4ayaza50, < aj+ a3+ a3+ aj,
that is, the doubled product of two positive numbers does not

exceed the sum of their squares, the trebled product of three
numbers does not exceed the sum of their cubes and so on.

1.3. The Number e

The number e plays an important role in mathematics.
We shall come to its determination after carrying out the
solution of a number of problems in which only Theorem 2
is used.

Problem 1. Prove that for any positive numbers a, b,
(a 5= b) the inequality

n+ / bt < a+nb
is true.
Solution. We have

n

— b b
n+1t U3 a+4-b4-b4...4b a+n
W abr =" abb ... b< — =

n
and that suits the requirement.

Problem 2. Prove that with the increase of the number
n the quantities

Tn = (1 +%)n and zn=(1—--;-)n

2* 19



increase, i.e.

In < Tnt = ( 1 —}-

1 n+1
n—+1 ) ’
1 +1
n<en= (1 —57)’
Solution. Setting in the inequality of the previous prob-

lem a=1, b=1+%, we get

14+n
n+l/1 U= )&’< n(—l-1 ) :Zi?:i-l—n—il—'l'

Raising both parts of the inequality to the (rn - 1)th power,
we shall obtain

(1 +%)n<(1+—;_1}_—1)n+1, that is z, << Zn44.

The second inequality is proved in a similar way.
Problem 3. Prove that

yn___(1+%)n+1

decreases with the increase of the numher n, that is
)n+2

yn>yn+1: (1 + n+1
Solution. We have

yn=(1+%)n+1=(n—:1 )n+1

(n+1)

1 1
)""’1 T Zpgy

(1_ n—41

(see designations of Problem 2). Since z, increases with
the increase of the number », then y, decreases.
In Problems 2 and 3 we have proved that

a=(1+41) =2<z=(1+5) =
=28 < <. . <ztp<...,
RGN
:(1+%)3=3.375>y3>...>yn>.

20



On the other hand,

2=y < 2n= (1 +1T)"< (1+4)""

:yn<y‘=4.

Thus, the variable z, satisfies two conditions:

(1) z, monotonically increases together with the increase
of the number n;

(2) z, is a limited quantity, 2 << z, << 4.

It is known, that monotonically increasing and restricted
variable has a limit. Hence, there exists a limit of the
variable quantity x,. This limit is marked by the letter e,
that is,

e= lim z, = lim (1 —f——}r)n.
n—o0o n—-+o0
As the quantity z, increases reaching its limit, then z, is
smaller than its limit, that is

m=(1+-)"<e. (8)

It is not difficult to check that e << 3. Indeed, if the num-
ber n is high, then

I <yn<ys=(1+75) =2.985984.

Hence,
e = lim z, << 2.985984 < 3.
n-o00

In mathematics, the number e together with the number 5t
is of great significance. It is used, for instance, as the base
of logarithms, known as natural logarithms. The logarithm
of the number N at the base e is symbolically denoted by
In N (reads: logarithm natural N).

It is common knowledge that the numbers ¢ and n are
irrational. Each of them is calculated with an accuracy of
up to 808 signs after the decimal point, and

e = 2.7182818285490 . . . .

Now, let us show that the limit of the variable y, also
equals e. Indeed,

lim yp = lim (1 —(—%)"H:: lim (1 +%)" (1 -g.,i) =



Since y, diminishes coming close to the number e (Pro-
blem 2), then

(1+%)n+1>e. 9
Problem 4. Prove the inequality

> (2)" (10)
Solution. We shall prove the inequality (10) using the

method of mathematical induction. The inequality is easily
checked for n = 1. Actually,

1|=1>(%)1.

Assume, that the inequality (10) is true for n==Fk, that is
k\k
H>(3)"

Multiplying both members of the last inequality by £ 1,
we get

. k\k k41 \k+1

(et K=+ D! >(5) B+ 1) = ()" —
(1+%)

Since, according to the inequality (8) (1 -+ %)h<e, then

e > (AL £ (L)

e e

that is the inequality (9) is proved for n = k + 1. Thus
the inequality (9) is proved to be true for all values of n.
Since e << 3, it follows from the inequality (9) that

> ()"
By means of the last inequality, it is easy to prove that
300! > 100%°°,
Indeed, setting in it n = 300, we get
3001 > (52)*” = 10030,

3
22



The inequality

! <e( n4-1 )n+1

is proved completely the same way as it is done with the
inequality of Problem 4.

1.4. The Bernoulli Inequality

In this section, making use of Theorem 2 we shall prove
the Bernoulli inequality which is of individual interest
and is often used in solving problems.

Theorem 3. If z>=—1and 0 << aa << 1, then

(1422 <1+ az. (11)
However if oo << 0 or oo > 1, then
(1 4 z)*>1+ azx. (12)

The sign of equality in (11) and (12) holds only when = = 0.

Proof. Suppose that « is a rational number, bearing in
mind that 0 << a << 1. Let o = -'nl, where m and n are
positive integers, 1 <C m << n. Since according to the condi-
tion, 1 4~z >0, then

(142 = (2™ = T T =
=y 0Ff(0+a)...0+z-1-1...1<

NS —
m n-m
d-to)++2)+...+(0+2)+14+14 ... +1
< ! ~
m(l+z)+n—m " ntms . m
~ = - *1—}——"—:1:_1—{—0&.

The sign of equality occurs only when all multipliers stand-
ing under the root sign are identical, i.e., when 1 4 = =1,
z == 0. But if x5 0, then

A 4+ 2)*< 1+ az.

Thus, we have proved the first part of the theorem conside-
ring the case, when o is a rational number.

23



Assume now, that o is an irrational number, 0 << o << 1.
Letry, ry, ..., Ty ... be the sequence of rational numbers,
having for a limit the number «. Bear in mind that 0 <C
< r, < 1. From the inequalities

A +2)rnl +ra,z2>—1,n=1, 2, 3,

already proved by us for the case when the exponent is
a rational number, it follows that

(1 +2)*= llm(1+x)n hm(i J-rpz) =1+ az.

Thus the mequahty (11) is proved for irrational values of o
as well. What we still have to prove is that for irrational
values of & when 250 and 0 << . << 1

(1 + x)a< 1‘*‘ a.’l‘,

i.e., that when x 5= 0 in (11), the sign Jf equality does not
hold. For this reason, take a rational number r such that
o< r<1. Obv1ously, we have

[0
I+ 2)*=[1+2)"]"
Since 0<%—< 1, then as it has already been proved

a
r

(1-+=x) 1—|———:r

Hence,
(1+x)a<(1+%x)’.
If 50, then (1 —}——o:— x)r<1—f—r—:‘—:c.—:1—]'—ax, that is
1+x)* <1+ oz

Thus the first part of the theorem is proved completely.
Now, move on to proving the second part of the theorem.
If 1 4 ax << 0, then the inequality (12) is obvious, since

its left part is not negative, and its right part is negative.
If 1 +ax >0, ax > —1, then let us consider both

cases separately.
Suppose a > 1; then by virtue of the first part of the
theorem proved above we have
1

1+ ax)* K 1+—ax 1+ 2.
24



Here the sign of equality holds only when x = 0. Raising
both parts of the last inequality to the power o we get

1+ ax<< (- 2)2
Now let us suppose o << 0. If 1 -+ ax << 0, then the ine-
quality (12) is obvious. But if 1 4 ax = 0, then select the
positive integer n, so that the inequality — _°ni<1 would
be valid. By virtue of the first part of the theorem we get

23

(142 "<l —2 g,

[
A4a)">—c—>1+22

1l——=x
n

2
(the latter ‘inequality is true, since 1 >1— %2—:52) . Raising
both parts of the latter inequality to the nth power we get

(1 +x)“>(1 —l——:— x)n>1—}—n%x=1—}—az.

Notice, that the equality is possible only when r = 0.
Thus, the theorem is proved completely.
Problem 1. Prove, that if 0 > o > —1, then
(n+1)a+1_na+1 G+1_(n_1)a+1
a1 o1

Solution. Since 0<<a--1<:1, then according to the
inequality (11) we have

<ne<<l

(13)

(1+)" <1420

(1__’11_)a+1<1__a—|—-1'

n

Multiplying these inequalities by n®*+!, we obtain
(n-}—1)°‘+1 < not+1 +(a+ '1) n%,
(n—1)2+t < nott — (a4 1) n*.

The inequalities (13) easily follow from these inequa-
lities.
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Problem 2. Prove, that if 0>a>—1, then
(n+1)a+1_ma+1

o1
o+l o g\a+1
<me4(m+1)*+...+ne<’ ;’L“ (14)

Solution.  Setting in the inequalities (13)n=m
m—+1, ..., n, we get
(m—l—-i)“'a'—mi'*'a
1+a
(m—|—2)1+°‘—(m+1)1+°‘
1+

1+a___(m_1)1+a.

1+ ’
(m+1)1+a_m1+a
1+a ’

(m4-3) % —(m - 2)1+* a_ (m42)H*—(mlte
1+a < (m+2) < 1+a ’

.................................

(n+1)1+°‘—n1+a o— n1+a_(n_1)1+a

m

<me<g

<(m—1)°<

Adding these inequalities we shall get the inequality (14).
Problem 3 Find the integral part of the number

=

/4 + %/5+%/‘ +- +“,/1000000 :
Solution. Setting in the inequality (14) m=4, n=
~1,000,000, &= ——, we get

2 2 o2
3 __ 43 3
1,000,0021 4 <z< 1,000, 020 3 ,
5 3
that is
2 2
21,000,007 —2 3 4% <a<-5.1,000, 0007 — 3.5
Since

2 2
%. 1,000,001 >%. 1,000,000 =-§—.10,000-_- 15,000,

%f/ﬁ:f/ﬁ<4, —g-f/§>%f/§=3,
then

15,000 —4 << z << 15,000— 3, that is 14,996 << x << 14,997.
From these inequalities it follows that [z] = 14,996.
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1.5. The Mean Power of Numbers

In Sec. 1.2 before Problem 7 we have already named the
number

n

ca::( af+af+ ... +d% )%

the mean power of order o of the positive numbers a,,
@y, . .., ay. In the same problem, it has been proved, that
Co << Cpy if << 0<< B.

Here, should be proved the validity of the inequality
cq < cg any time when o << f. In other words, the mean

power of order a is monotonically increasing together
with .

Theorem 4. If a,, a,, ..., a, are positive numbers and
a << B, then ¢y, < ¢, and ¢, = cg, only when a; = a, = . .
.= a,.

Proof. For the case, when the numbers a and B have
different signs the theorem has been proved above (refer
to Problem 7, Sec. 1.2 and the definition prior to it). Thus,
we have to prove the theorem only for the case when o
and B have the same signs.

Assume, that 0 << oo << B, and let

1
a§+a§4- ... +a% )E

n

k=ca:(

Dividing cg by k, we get

No_w, supposing
b= () = ()% (32)"

we obtain




Since

1
a

( di+dot...+dp )

(G (e) s ()Y’

\ n

1
1 4 af+af+ ... +a¥ e 4 1 B
=T( n ) =Tca._-z(,a...;1’
then
dybdyt ... 4dy
1%t 1, dybdyt .. ddn=n
Suppose

d =14z, dy=1+4z, ..., d, =14z,
From the equality d, + d, + . .. + d, = r it follows that
z,Hxy+. . .-z, = 0.

On the basis of Theorem 3 (nol.ice, that %> 1) we have

B B )

aF =(1+a)* >1+L 2,

B £

dy =(1 —I—xz)a>1+%x2, (*)
B 8

dy =(14+z,)* >14+ 2z,

Adding these inequalities, we get
s B B
i +d3 + ...+ dy >n+%(wi+xz+...+xn)=n- (16)

From the inequalities (15) and (16) it follows that

1
Cﬂ n

T>(—)F=1, s>k = cq.

n
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It is necessary to note that ¢y = k& = ¢4 only when the
signs of equality occur everywhere in (*), that is when

2, =2, =...=u1a, = 0 (Theorem 3). In this case d, =
=dy=...=4d,=1and, hence, a; =a, = ... =a, =
= k. But if the numbers a,, a,, . .., ¢, are not identical,
then

CB > Cq-

Thus Theorem 4 is proved regarding the case when 0 <
<a<f.
Ifa<B<0 then0<t

as before, we get in (*) and (16) the opposite signs of inc-
qualities. But since f << 0, then from the inequality

< 1. Reasoning the same way

£ B 8
d¥ +df 4 ... 4+dZ
a .

<1

it follows that

JLLA:)
cp _(df‘ tdF4...+a
& n

that is
cg >k =cq.

Thus, Theorem 4 is proved completely.

Further on we shall name the geometric mean by mean
power of the order zero, that is, we shall assume g = c,.

Notice, that Theorem 4 is applicable in this case as well,
since (see Problem 7, Sec. 1.2) ¢, << g = ¢, if <O,
and cg =g = ¢, if p > 0.

From the proved theorem it follows, in particular, that

€ <6< € < Cyy

i.e. the harmonic mean does not exceed the geometric mean,
the geometric mean in its turn does not exceed the arithme-
tic mean, while the arithmetic mean does not exceed the
root-mean-square of positive numbers. For example, if
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a; =1, a, =2, a; = 4, then
_ { eft+azttazt -1 3 12
cq_( L ) = ==17..,
TrZT 7

co=Va,a2a3=f/1-2-4=2,

c‘=1+—§+4=%=2.3
c2=( al+a2+a, l/ 1+4+16 —VT=26.
and therefore
co=17... <2=1¢<<2,3...=¢<<26...=c,
Problem 1. Prove, that z? 4 y? 4 22 > 12, if
r+y+ 2 =0=0.

Solution. Since the arithmetic mean does not exceed
the root-mean-square, then
1
ctytz (24Pt T
< (),

that is

x2+y2+zz> (-”'f‘é/‘f‘z)z .

In our problem z? + y? -+ 22 26—; = 12. The sign of equa-
lity holds only whenz = y = z = 2.

Problem 2. Prove, that if z, y, z are positive numbers
and z? + y* + 22 = 8, then

ﬁ+yt+ﬁ>46V[%.

Solution. Since ¢y <c3, then
1 1
a4yt \T (244 |\
() < (=)

In our problem 1
B4y3+3 |3 8
(=) =2V =
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that is

8 .,/ 8 ar
$3+y3+23>3'—3'l/-§-=1b‘/—3—.

Problem 3. Prove, that for positive numbers a,, a,,
ag, ..., @, the following inequalities are true

(a4 ay+ ... +a)*<n%1(@T+a5 + ... +a7), a>1, (17)
@+ag+ ... +an)*>
>ntt(@f+az+ ... +an), 0<a<l. (18)
Solution. If ¢ >1, then

1
NI I
Caz( aj+ay+...+a, ) > ai+a2tn-+an

n

=Cy.

The inequality (17) follows easily from this inequality.
The inequality (18) is proved in exactly the same way.
In particular, from the inequalities (17) and (18) it follows
that

(+y)*<2* (@249, a>1, 2>0, y>0,
()% >2% 1(.z"‘—}—y‘") l<a<1, z>0, y>0.

Problem 4. Prove, that if 2% 4 y3 4- 28 = 81,
>0, y>0, 2z>0, then

r4+y+2z2<9.
Solution. Since
(r+y+2° <3 @+ + 25 =981 = 729
(the inequality (17)), then
4y +2<<7 729 =09.
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CHAPTER 2

Uses of Inequalities

The use of inequalities in finding the greatest and the
least function values and in calculating limits of some
sequences will be examined in this chapter. Besides that,
some important inequalities will be demonstrated here as
well.

2.1. The Greatest and the Least Function Values

A great deal of practical problems come to various func-
tions. For example, if z, y, z are the lengths of the edges
of a box with a cover (a parallelepiped), then the area of
the box surface is

S = 2zy + 2yz + 2zz,
and its volume is
V = xys.

If the material from which the box is made is expensive,
then, certainly, it is desirable, with the given volume of
the box, to manufacture it with the least consumption of
the material, i.e., so that the area of the box surface should
be the least. We gave a simple example of a problem cunsi-
dering the maximum and the minimum functions of a great
number of variables. One may encounter similar problems
very often and the most celebrated mathematicians always
pay considerable attention to working oul methods of their
solution.

Here, we shall solve a number of such problems, making
use of the inequalities, studied in the first chapter!. First
of all, we shall prove one theorem.

1 Concerning the application of inequalities of the second degree
to solving problems for finding the greatest and the least values see
the book by I.P. Natanson “Simplest Problems for Calculating the
Maximum and Minimum Values”, 20d edition, Gostekhizdat, Moscow,
1952.
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Theorem 5. If a>0, a>1, 23>0, then the function
1
2% — ax takes the least value in the point xz= (-:—) e
a

equal to (1—a) (%)W.

Proof. The theorem is proved very simply for the
case when o =2, Indeed, since

2 gz (z—2)\_2

z ax-(x 2) T

the function has the least value when z ——> 0, this

2

value being equal to — 14-.

In case of arbitrary value of @ > 1 the theorem is proved
by using the inequality (12), demonstrated in Theorem 3.
Since a > 1, then

(1 +z)a>1 —I—(ZZ, Z>""1s
the equality holding only when z = 0. Assuming here,
that 1 + 2z = y, we get

yezl+ay—1), ¥*—ay=1—a, y=0,
the sign of equality holds only when y = 1. Multiplying
both members of the latter inequality by c%, we get
(ey)® — ac®t(cy) =2 (1 —a) % y=0.
Assuming
1

a a-1
z=cy and ac*-!=a, c=(?) R

we get
(21

2*—az>(1—a)c* (1—-a)( )ﬁa

here the equality occurs only when z=c= (%) ot
Thus, the function
% —az, o >1, a>0, z>

’
1

0
. . a \ 1-a
takes the least value in the point z= (7) , equal to

o

(1—a) (%) “=!, The theorem is proved.
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In particular, the function 22— az (@=2) takes the
1
. . a \2-1 a
least value 12n the point z= (T) =7, equal to-
a\ 2-1 2 .
(1—2) (7) = -——‘2— . This result is in accordance with
the conclusion, obtained earlier by a different method. The

function 2%—27z takes the least value in the point

- 3
27\ 3-1 EFTy
r= (T) =3, equal to (1—3) (-23—7) o 54
Note. Let us mark for the following, that the function
axr — % = —(z% — ax),
D C
where oo > 1, a > 0, £ > 0, takes the-
greatest value in the point
1
d y _ a '\ o-1
==(5) "
. equal to
A B “1
a\ a-
Fig. 1 (@—1) (?) :

Problem 1. It is required to saw out a beam of the grea-
test durability from a round log (the durability of the beam
is directly proportional to the product of the width of the
beam by the square of its height).

Solution. Suppose AB = z is the width of the beam,
BC = y is its height and AC = d is the diameter of the log
(Fig. 1). Denoting the durability of the beam by P, we get

P = kxy® = kx (d®> — %) = k (d®x — 23).

The function d®z — z® takes the greatest value when
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Thus, the beam may have the highest (greatest) durability
if the ratio of its height to its width will be equal to /2 ~

1
~ 1.4 = 5-
Problem 2. Find the greatest value of the function
y = sin x sin 2z.

Solution. Since sin 2z = 2 sin x cos z, then sin z sin 2=
= 2cosz sin?z = 2 cosz (1 — cos?z) = 2 (z — 2%), where
z =_cos z and, hence, —1 << z <C 1. The function z — z* =
= z(l — 2% takes a negative value when —1 <z<O,

| 1 1 1 L 1 /l\l/
TAN_3%x /t _x 0] =x =\ 3r/f1N\ 5% /3t 7% 2 X
4/2 74 4 2\ 4 4 /2 4 .

. Fig, 2

is equal to 0 when z = 0 and takes a -positive value when
0 << z<< 1. Therefore, the greatest value of the function
is gained in the interval 0 << z <C'1.
It is shown in Theorem 5 that the function z — 23, z > 0,
takes the greatest value in the point
1
1\ 3-1 A
= ()T =t

In this point
sinzsin22=2z (1 —2%) = V_ ( L)=ﬁ/§ .

So, the function y = sin z sin 2z takes the greatest value
in those points, where z = cosz = % and this value is
equal to 314/§~ 0.77. The graph of the function y =

= sin z sin 2z is shown in Fig. 2.
Problem 3. Find the greatest value of the function
"y = cos z cos 2. '
3* 35



Solution. The function y = ¢os x cos 2z does not exceed
1, since each of the cofactors cos z and cos 2z does not
exceed 1. But in the points x = 0, +2n, 4-4mn, .

cos x cos 2z = 1.

Thus, the function y = cos z cos 2x takes the greatest value
of 1 in the points # = 0, +2n, +4mn, ... . The graph of
the function y = cos z cos 2z is drawn in Fig. 3.

y

]
LN\ N\ /N /l\
-% 3 oSz 0] a\_/t 3n\ r /5% 3ann_'7x 2% x
/ 4 2 4 i 2 4 4 2 4

Iig. 3
Problem 4. Find the least value of the function
z* 4 azx,
where a >0, oo << 0, > 0.
Solution. Since o << 0, then according to the inequali-
ty (12)
A + 2% >1 + az

and the sign of equality holds only when z = 0. Assuming
1 +z=y, 2=y—1, we get

ya>1+a(y__1)’ y>0’

the sign of equality occurring only when y = 1. From the last
inequality it follows, that

v —ay =1 —a, (y)* —ac®(cy) =1 — a)

Assuming a = —ac®-l, 2 = cy, we get

#tar>(t—a)er=(1—a) (5) ",

—

L
a-1

the equality holding only when x=c==( _aa) .
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Thus, the function z*-4-ax takes the least value in the
point

a a-1
—
For example, the function

1
3_1/5 + 27z, >0,

takes the least value in the point

equal to (1—a)(

This value equals

() ()

Problem 5. Find the optimum dimensions of a cylin-
drical tin having a bottom and a cover (dimensions of a
vessel are considered to be the most profitable, if for a given
volume the least amount of material is required for its
manufacture, that is, the vessel has the least surface
area).

Solution. Let V = nr?h be the volume of the vesscl,
where r is the radius, 2 is the height of the cylinder. The
total surface area of the cylinder is

S = 2nr? 4 2nrh.
, then

Since h=

mrd

S =2nr2 4 2nr

V o 5, 2V
— =24 ——.
Assuming x=-:—, we get

S=2nz"242Vz=2n (x‘z-l——%’- x) .
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The function x‘z—l——x—x, according to the solution of the
previous problem, takes the least value when

1
vV \-2—1 i/ 21
T= ( 2n ) = 72
Returning back to our previous designations, we find

14 nreh h
r= 5

o 2n !’
h = 2r =d.

Thus, the vessel has the most profitable dimensions, if the
height and diamcter of the vessel are equal.

1 3/,
=V v r=

Exercises

6. Find the greatest value of the function z (6 — z)?
when 0 < z << 6.
Indication. Suppose y = 6 — «z.

7. From a square sheet whose side is equal to 2a it is
required to make a box without a cover by cutting out a
square at each vertex and then bending the obtained edges,

Fig. 4

so that the box would be produced with the greatest volume
(Fig. 4). What should the length of the side of the cut-out
squares be?
8. Find the least value of the function
.IG'+ 8x2 'i' 5|
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9. Find the least value of the function
x% — 82% 4 5.
10. Find the greatest value of the function
2 —ar when 0<<a<1, a>0, z>=0.

11. Prove that, when z >0, the following inequality
is true

{'/5<—g——|— 2z,
12. Prove that, when n == 3, the following inequality is

true
V> .
Indication. Make use of the inequality (8).
13. Find the greatest of the numbers

L VI Y Y YT, Y
14. Prove the inequality
n/— 2
/n<1+—_‘/—; .
15. Prove the inequality
T4+a)l+a)...(1+a)>=
=>14a +ay,+ ...+ an,

if the numbers a; are of the same sign and are not less
than —1.

16. Prove the inequality
(ayby + asby 4+ . . . 4 anbp)* <
<@+t ... +ad) B0+ B (19)
Indication. First prove, that the polynomial
(@2 — by)* + (2,7 — b)) + . .. + (a7 — b,)? =
=uat(@+al+ ...+ a}) —
— 2z (ayby + azb, -+ ... + aub,) +
(bR b bY)
cannot have two different real roots.

17. Using the inequality (19), prove, that the arithmetic
mean is not greater than the root-mean-square.
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18. Prove the inequality
1
_ 1—Vn—1.
Ve <Vn+ Vn

19. Using the inequality of Exercise 18, prove the inequa-
lity
1 1
n 1+Vn—]/2>1 — . ==
Vit + == 1/ 75 +7
20. Find the greatest value of the functions
z3
0
=, 2'— 0.6z10,

T 5
3
A . ——; 0.4.
nswer Vel 0

21. At what value of a is the least value of the function
]/5—}—% equal to 2.5?

Answer. a = 8.

2.2, The Holder Inequality

In Theorem 7, by means of Theorems 5 and 6, the Hélder
inequality is proved. This inequality will find application
in solving problems.

Theorem 6. If p>1, i-}—L:i, >0, y>0, then

sy <+ L (20)

Proof. By virtue of Theorem 9, 1f a<<l,a>0,z>=0,

then
a

¢ —axr > (1—oc)

Assuming in this inequality that o =p, a= py, we get
p

P
2 —(py) 2> —p) (BL) =(t—p T, (@1
. 1 1
Since T—I——q——i, then

p—1 P
P IS =1

11 —q=PF
q—l > p—1 7"
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Putting these values into the inequality (21), we get
o —pyr> — Lyt

Dividing all the members of the latter inequality by p and
transposing the negative members to the opposite side, we
get the inequality (20).

Theorem 7. If a;, a,, ..., a,, by, by, ..., b, are posi-
tive numbers, and p and q satisfy the conditions of Theorem 6,
then

ab+ae+ ... Fab, <

L@ +ab+ ... +ab)
Proof. Suppose
al+ad+...4+ah =47, b} 43+ ... +0i=B?

Then the right member of the inequality (22) will be equal to
11

(AP)? (B%)? = AB.

L L
P q

Bl +B3+ ... +B)7.  (22)

Now suppose
ay=Acy, ag=A4Ac,, ..., an=Acp,
b1=Bd1, b2=:Bd2, ...,bn+Bdn.
Since
A=t dt ... +al=

= AP+ AP+ .. AP = AP (Y B+ ...+ ch),
then
4ed4 ... feh=1.

In a similar way, it is checked that
dA+di+... +di=1.
Now using the inequality (20), we get

by = AB (¢,dy) <AB(— -'?)
ad<ap (E 4 2, ¢)
aybs < AB (%-F-Zi) . J
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From these inequalities it follows, that
aby+ashy 4 . . . - azbn <
A+b+...+E . dq+dg+...+dg)
p q
1 1
=AB (54 ) =48

<AB (

(let us recall that
1 1
7-|—_q_=1, Atch+ ... Fch=1,

di+di+... +di=1).

Thus, it is proved that the left-hand member of the inequa-
lity (22) does not exceed AB, that is, does not exceed the
right-hand member.

It is not difficult to mark the case when the sign of equali-
ty is valid in (22). Indeed, the sign of equality holds in (21)
only when

X = (-——)—p_:_i=yp-_i-—1.:y%’ xP:yq

(refer to Theorem 6). Just in the same way, the equality
sign will be valid in each line of (*) only when

9. a 2
)4 D 14
cl:di ) 62=d2 ) ) cn—dn )
i.e., when
D P p
c1=d‘i, Cz*——d%, ey cnzd%.

Finally, multiplying these equalities by APB?, we get
B? (Ac))? = AP (Bd,)?, that is, B%}= APb],

A _a 44 o _ A

v BT by BT T g B

b

Thus, in (22) the sign of equality is valid if

& _9d _
a9 —q'
b1 bg brp



Note. Taking in the inequality (22) p = 2, ¢ = 2, we get
the inequality (19) (refer to Exercise 16):

aiby+ashy+- . . .+ apbn <
KV @Fat .. @) GFo+...+5).

2.3. The Use of Inequalities for Calculation of Limits

In the following problems, the limits of quite complicated
sequences are calculated by means of previously proved
inequalities.

Problem 1. Prove the inequality

< (141) < @

n(i—]—%) denotes the logarithm from. (1+%) with
base e (see pp. 21-22).
Solution. Combining the inequalities (8) and (9), we get
(1 2y <e<(1+2)""

Finding the logarithm of these inequalities with hase e,
we finally get

nln(1+i)<lne=1<(n+1)ln(1 +-,1;) )

< (t+3)<%

Problem 2. Assuming

1 1 1 1
=14+, 2a=5+35+7
1 1 1 1
23_'3'—"—4'*_5 I 6 ?

find lim z,.

n-+o00

Solution. Substituting n—1 for » in the first member of
the inequality (23), we get
1 1 n
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From this inequality and the second member of the inequality
(23) it follows that

n n+1

<it<h-—2_. (24)

Now, using the 1nequallty (24), we write the inequa-
lities

n+4-1 1 n
1 n <7<l n—1"
n—+42 1 n-1
In n-+1 < n-+1 <lIn n ’
n+3 1 n-+2
In +2 < n-2 <In n41"’
2n—]—1
In ——<<— 2n<ln 1

Adding them and taking into consideration that the sum
of logarithms is equal to the logarithm of the product,
we get

(n+1)(n+2)(n+3) .. (2n+1)
In n(n+1)(nt2). <5t nt1 + -
n(n+1)(n+2)...2n
‘+W<l (n—Dn(n+1)...2n—1)

that is
In 221 o <In 22, (25)

Since

2n -1 1

n =2+ 7 then
lim In2"t1 —lim In(2++)=In2.

Exactly in the same way from 2_ni =24+ n-2—1 it fol-
lows, that

lim In —ln2

n->o00 n—

Thus, the extreme terms of the inequalities (25) have the
same limits. Hence, the mean term has also the same
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limit, that is
. 1 1 1 . ‘
ll*n;(';—l- n+1+...+2—n)=llmzn=1n2.

N - o0

Problem 3. Taking z; =1, z, = 1_%, x3=1—%+%, ..

1 1 1 1 1 41
o Iy=1l—gtar— ot —F+ . (=),
calculate lim z,.
n->o00

Solution. We have
1

1 1 1 1 1 1
tm=l—gtg—7ts—st Ftmoa ==

m(t b gt )
(i d )
—(tHp gt rbrhst e
—(1+%+%+...+%)=n—1+1—+7j_—2—+ oo
In the previous problem, we have supposed that
to=m ot g

Therefore, x2n=zn-——i—. But lim z,=1In2 (refer to the
n-»o0o

previous problem). Thus,
. . 1
— — 2 Y=mn2.
lim oy =lim (20— ) =1n

It is necessary to note also, that Zy,44:=Zsn +
hence,

1
T and,

lim 4,44 = lim (xzn -+ '2771—}7) =In 2.

n- o0 n->00

Thus,
lim z, = In 2.

n-» 00

Note. The numbers z, = a,, z, = a, + a,, =3 = a; +
Qy + €G3 .oy Ty =a; + a5 -+ ...+ a, are termed

45



partial sums of the series
apt+aytag+..oodn .0

The series is said to be convergent, if the sequence of its
partial sums has a finite limit. In this case the number
= lim z, is called the sum of the series.

n-oo

From Problem 3, it follows that the series
1 1 1 1 1 1 1
l=gtz—zts—s+t-tomm—=t--
converges and its sum equals In 2.
Problem 4. The series

A 1 1 1
1—7—?—}-?-}"1:—[- ‘e —|—-;-+ .o
is called harmonic series. Prove that the harmonic series

diverges.
Solution. According to the inequality (23)

-:T>ln n+1 .

n

Assuming n=1, 2, 3, ..., n, write n inequalities
2
1 > In T

1 3
?>ln'2—1

Adding them, we get

1 1 1 2:34 ... 1
xn=1+—2—+—3—+ “ o +""1">1n —ﬁ:ln(n+1).

It follows from this inequality that

lim z,>1im In(n +1) = oo;

n-+oco n-+o00
hence, the harmonic series diverges.
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Problem 5. Prove that the series
1 1 1 i
+'2—O;+§+---+F+'~ (26)
converges at any a>1.

Solution. The sequence of partial sums of this series
x,=1,

1
Ty=1+—c,

1 1
rg=1+—4+—=,
2 3

1 1 1
a=ltmtmw+o

1 1 1
Zp= +§'+?+ ot

is monotonically increasing, that is
Ty << Ly < Ty Ty < vv o < Xy < ‘
On the other hand, it is known that monotonically in-'
creasing limited sequence of numbers has a finite limit.
Therefore, if we prove that the sequence of numbers z, is
limited, then the convergence of the series (26) will be proved.
as well. Suppose

1 1 1 1 1
=ttt w

.+ 1 1

@n—1)%  (@2n)* "

vn=1— (=) — (= 5)—

_ t 1 1
( @2n—2%  (2n—1)* ) 2n)%’
then (the numbers in each bracket are positive)

Yan < 1.
On the other hand
1 1 1 1 1
Yon=1——g + o 4o‘+—(,-L——<,L+---Jr(zn_i)m—(zn)(,g--
1
—(+—+ +oz ot T 1)m+(2n),,‘)—
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1,1 1 1y
—2gtmtet ot aE)=
(g ittt t )
_(1+ pTmtEtmtat T (2n_1)°°+ (2n)°‘)
2 1 1 1
—(tgetgt - 4).

. 1 1 1
Since 1'n='1+?+-37+--. F, then
y2n=x2n—"ia'xn-

Now, since Tyn > z,, Yn <<1, then

2 2% 2
1>y >0 — 5 Tn="—5— Zn.
2 2
Hence, it follows that
2G
S w g

that is, the numbers z, are limited when o >1. Thus,

it is proved that the series (26) converges and its sum is
(v/

not greater than o

For example, if a =2, then
1 1 1 22
h=ltgmgtgt  ta<gz=2
. 1 1 1
S=hmxn=1+—27+¥—|—...—i——n—z—l—...<2.
n-»o00

In the course of higher mathematics it is proved that

S=1tmgptart . .dot...=2. (@7

Exercises

22. Find the sum of the series
1 1 1 ney 1
S=l—gtm—pt+ -  H(=D"" 4.

Indication. Use the equality (27).
2
Answer. S=%.
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23. Prove the inequalities
pott

L T e
a--1 h a1 ’

24, Assuming
Tp=14+2%13% ... +n%
prove that
ITL

. 1
lim groen uh e u a>0.

n-oo N
25. Prove the inequality
(asbses 4 agbocs + . . . Fanbpcn)®* <
@A @it o+ 08) (BB e A BE) (€ A+ S . B,
if a;, by, ¢, are positive numbers.

Indication. Use the inequality (7) and the method
given in (22).
. 1 1 1 1
26. Assuming x":7+m+7—?2_+ «+++7;s Whe-
re k is a positive integral number, prove that

lim z, =1nk.

n—+o00

Indication. Use the method of solving Problem 2 of the
present section.

2.4. The Use of Inequalities
for Approximate Calculation of Quantities

At the very beginning of Chapter 1, we have paid attention
to the fact that practical problems require, as a rule, an
approximate calculation of quantities and, as well, an abili-
ty to treat- such approximately calculated quantities.
A more accurate estimation of such quantities will certainly
permit to decrease errors in solving problems.

In the present section, we are going to return to an appro-
ximate calculation of numbers of the form

1 1 1
k_°‘+m+" s 0<a <<, k<n.

15 4—0866 49
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In Sec. 1.1 we have succeeded in finding the number Sy,
with an accuracy of up to 0.4 for £ = 1, n = 1,000,000

and o = —;— (refer to Problem 2). In the same section (see

Exercises 2 and 3), for n = 10 and £ = 10,000, we were
able to find the number §,,; already with an accuracy of
up to 0.01. The comparison of these two examples shows,
that the indicated method of their solution yields much
better results of calculation for greater values of k.

In Sec. 1.4 (Problem 3) we found the integral part of the

number S,,, for £k = 4, n = 10° and « = —:13- . Thus, this

number was also calculated with an accuracy of up to 0.5.
However, we could not find the integral part of the number
Sp,1 for o = —;— and n = 10% because the method of calcu-
lation of such quantities, indicated in Chapter 1, did not
permit doing it. In this section, we shall improve the method
of calculation of the quantity §,,,. This improvement will
make it possible to find similar quantities with a higher
degree of accuracy quite easily.

Lemma 1. If 2, >z, >2,>...> x,, then
O<A=ua—a,+253— 24+ ...+ (—=D"'2, <<z,

Proof. The number of positive terms in the written
algebraic sum is not less than the number of negative terms.
Besides this, the preceding positive terms are greater than
the following negative term. This proves that their algebraic
sum is positive, A > 0. On the other hand, since

A=z — (@, — 23+ 2%— ...+ (—1)" )

and the quantity in brackets is positive too, then 4 << z,.
Thus, the lemma is proved.

Lemma 2. If 0 << a << 1, then the following inequalities
are true
@n+D1"%—(n4-1)l-2 1 1
1—a < CERTCRNA
1 (2n)1—a__ ni—a

et < T (@)

Proof. The inequality (28) follows from the inequality (14)
(see Sec. 1.4, Problem 2) when substituting n 4 1 for m,
2n for n and —o for o.
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Theorem 8. True is the equality

Sn,,=1+%+_{;+... =
=2-2-a2°‘[(n'1 - nliz) +.'.+(2:L)“J~
- 2ia2°‘ [1 _L“_’" (2:11)"‘ ] (29)
Proof. We have
R R T
et (21)“ —[<n+1) e j2) T +(2:»"‘]'

Adding and subtracting from the right-hand member of
the equality the number

gtatwt taE)

we get

Sa, 121—%+%—L+ . e ——1—a+

+2[mtmtost- +(2)]

_[n'i (n'2)°‘+"'+(r:)°‘]'

The numbers of the first square brackets have a common
factor — . Taking it out of the brackets, we get
2a .

1
(2n)*

1
Sn.1=1.’—'%+¥—...—
2 1 1 1
+§(1+§+3—a+---+—na)—

1 1 1 -
_[ (nL1)* + (n+2)* Tt (2n)* J




Since in round brackets there 'is the number S, 4, then

1 1 1
Gt F TaagE T

—[1 _%'F?—'”—(z—i)“"]:

Hence, after multiplying by 2% and dividing by 2 — 2%,
we get the equality (29).

The equality (29) is of interest because it brings the calcu-
lation of the quantity S,,; to the computation of the qu;mti—

. . 1 1
ty Son, n+1 and’ the quantity 1 — —207—|-? — ..

N
The first of these quantities for great n is calculated with
a high degree of accuracy by means of the inequality (28).

Concerning the second quantity, we know from Lemma 1
o

that it is less than zero and greater than — —2—206— But

if we find the sum of the first four summands of the latter

quantity, then the remaining quantity (the error) will be

{04
less than zero and greater than 1.2

5q 2—2%
In the following problems we shall perform the calcula-
tion of this quantity with a higher degree of accuracy as well.

Problem 1. Find the sum
1
=14+ —=
A + e +
accurate to 0.002.
Solution. By virtue of Theorem 8

K

1 1
75+...+-W5-

V2 o 1 1 , 1
A=593 ( Viert Ve T Vﬂ‘e)_
N R R ST S | -
2_1/2( Vi T Vs T Ve,
5 1 1
=(V2Z+1) (-1— et 1/2-106)—
= 1 1 1 _
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where

1 1 1
B= -- —_—
Vi1 | Ve 2 Tt V2106’
1 1 1
C=1——_ T = T e T T ITT—— .
I V2 T V3 V2108

According to Lemma 2, the number B satisfies the inequa-
lities

2(V210 41—y 105+ 1) < B< 2(V 2-105 — Y 10°).

The extreme numbers of the inequalities differ from each
other by less than 3.10-% Indeed,

2(YV105t1—VY108) —2 (Y 2105+ 1 — )/ 2.10°) =

2 2 1
T Y1614 Y106 /20061 1+ V2108 /106
1 V-1 1
—_—— — 3-107%,
V/2-108 V2 1,000<

Thus, the middle number will differ from the number B
by less than 2.10-%. Calculating the first number and
subtracting from it 2.10-%, we get

B = 828.4269 + A,,
' A ' < 2104,
Now, proceed to calculating the number C. Let m be an
odd number. Estimate the quantity
1 1 1 1
D: —_ — —— A )
Vm Vm+1 + V'm+2 - V2n

For this reason, it is necessary to notice, that

T 2
S+ 1—Vh—1=—x —
Vit1—V k=1 VEI A4+ VE=1
and
Y 2 2 '
E= Vm-14- V:)z—1— Vm4i4-Vm T
2 2

+ Vm+-34 Vm+41 o Vm+é4 VYmI-2 +
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_'l/2n+1i'l/2n——1=1/m+1_1/m—1—vm+2+

+Vm+VYm+E3—Vm+-1—Vm+4+
+VYm+2+ oo —Vomr 1 +V2n 1=V m—
Y ey WV SR Ve |

Thus, the number E is quite easily calculated. Subtracting
the quantity D from the quantity £, we get

D=y )
B e o AR
e vE)

Demonstrate, that all the numbers in the brackets are posi-
tive and monotenically decreasing. Indeed,

2t 2Vm—(VmrEi4+Ve—1) _
VatitVa—1 Vo Va(VeriiVeD
2m—2Vm?2—1

TV (Vati+ VD) @Vm+Vati+Vm_1
2

T VaWVerd Ve Ve Varir Vehx
X (m+/m2=1)
Hence, it is proved, that such numbers are positive and

monotonically decreasing with the increase of m. According
to Lemma 1

O<E—-D<

2
S Vn(Var i Vao) @V + Vi + VoD x|
X (m +V/mi=1)

We shall not make a great mistake, substituting m for the
numbers m 4+ 1 and m — 1 in the denominator. Here, we get
2 1
O<E—-D — = — = .
< < m-2Vm-4Y m-2m >
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Taking m=9 we get
0<E—D << g5 << 0.0006.
This proves, that when m=9 and n=10¢
E—D=0.0003 £ A,, |A;]<<0.0003,
D=E—0.0003+A,=V9 -V 8+V2-10°—
— ) 2105+ 1—0.0003 4= A, = 0.1710 == A,,
Now let us return to the quantity C. We have

1 1 1 1 1 1 -1
C=1—— ———+ —_— ————1+ D=
VETVE VAT vE v v e

1 1 1 1 1
Vit vsTVvEtYvE TR T
1 1
————=4-017T10 £ A, =
+ v7 .l/g + — 22
1 1 1 1 1 1 1
=l—a5———7(14+5 — = — — =
t-—5 'Vz( +2)_'_1/3%”1/5 '1/6+'l/7+
1 2 3 5 7
+04710 + Ay = 5 — 31/2 + K + K — 1g§+ 1{7 +
+0.4710 = A,.
Thus, for the calculation of the number C with an accuracy
of up to 3.10-* it will be required to find only 5 roots and

to produce a number of arithmetic operations. Using the
tables and carrying out necessary calculations, we find

C = 0.6035 & A,.

Taking into consideration the found quantities B and C,
and returning to the quantity A, we get

A=VZ+1)(B—C) = (VI + 1) (827.8226+A,) =
= (V2 4+ 1).827.8226 + 2.5A,,

where
|2.5A; | <25 (A |+ 14A;]) < 2.5:5:10-% < 2.10-3,

Thus, the calculation with an accuracy of up to 2.10-3
will be

A = (V2 + 1) 827.8226 = 1998.539.
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Problem 2. Calculate the number

A=1 V-+“ e —
with an accuracy of up to unity.
Solution. By virtue of Theorem 8

.
2 1 1 1
A= V2 ) -
2—y2 (‘{ 101231 +é/ 101212 T T 3 2101
Yz (1_ 1 - __1_)
2—32 vz V3o T yazaor /T

The first term can be easily found and with a high degree
of accuracy by means of the inequalities (28). By virtue of
these inequalities the first term can bhe substituted by the
number

3 3

45 oz oz 53

32 (21015 (1012 o VZ 4 100
P - =100 (48— —/ _3 100,

4
By virtue of Lemma 1 the sum
V2 1 1 1 1
Z—i/i( 1/5+%/§ ‘Vm)

is positive and is not greater than the first term. Since the
term is less than two, then

A0 —2<a< 00,

The extreme numbers differ from each other by 2, and from
the number A by less than 2. The middle number —;—-109 —1

differs from A by less than unity. Substituting this number,
we get
A = 1333333332.3 + A, | A | < 1.

Notice that the accuracy of calculating the number 4, con-
taining a trillion of addends, is extremely high. The relative
error is less than

100 : 1333333332.3 << 0.0000001 % .
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Exercises

27. Calculate (with an accuracy of up to unity) the sum
1 1 1
1 = rr— o« s e Qq —
=+ 73 + 73 + + R
Answer. 14,999.
28. Show that the equality

1 ni-

1 1 ___i_
1+2—a+?¢-+ ‘f—F— 1—o C+ﬁn

is true, where B, is an infinitely small quantity, lim g, =0,
TN~ 00

and

_ At (=]
C=m[l—mtm—mt -+ =0+ ]

2—2%L



SOLUTIONS TO EXERCISES

1. Setting in the inequalities (1) (p. 9 nrn =m,
m -+ 1, n:

21/m+1—2l/m< <2V m—2Y m—1,

1/_
2v’m+2_21/m+1<V=<2vm+1—2v}ﬁ,

2Y m+3— 2Vm+2<VT<2Vm—r-2 2V m+1,

................................

2V nFl—2Vn< —=<2Vn—2Vn—1.

Vn

Adding these inequalities we get
2V n+1—2Vm<

1 1
vr*ﬁ Ve "
1

2. Taking in the inequalities of Exercise 1 m = 10,000,
n = 1,000,000, we obtain

2y 1,000,001 —2 )/ 10, 000<_0T+
1 1
'*__l/-io—,oo—i“}" e +‘l/m<

<2 V 1,000,000 — 2 V9,999.
Since

2/ 1,000,001 > 2}/ 1,000,000 — 2,000, 2}/ 10,000 — 200,
21/9,999 = V' 39,996 > 199.98

(the last inequality can be easily checked, extracting the
square root with an accuracy of up to 0.01), then

=1,80 _—
2,000 — 200 = 180<V0000+

1 1
T — . e o "L
1/10,001 +

T " /1,000,000 <

<< 2,000—199.98 = 1800.02.
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3. Multiplying the inequalities of Exercise 2 by 50, we
shall get in our designation

90,000 << 50z << 90,001;
hence
[50z] = 90,000.

4. For n = 1, it is obivous, that the inequality is true
le 1 1
2SVsart 20
Assuming now that the inequality is true for n =%
135 mbto 4 @
2 4 6 2k ]/3k—|—1 ’
prove that it is true for n == & + 1, that is, prove that
1 3 5 2k—1  2k+4-1 1

—_——— —

%8 T e S th)

Multiplying the inequality (a) by 241 e get

22
_’l_i 5 2k —A1 2k—}—2< 1 2k 41
2°%°6 " T2k 23 2k+2
What is left is to prove the inequality
1 '2k—l—1< 1
Va1 2 Vakrd
Multiplying it by (2k + 2) V' 3k + 1 V 3k + 4 and squaring
both parts of the obtained inequality, we get

2k + 1) (3k + 4) < (2k + 2)% (2k + 1),

or
12k 4+ 28k? - 19k + 4 << 12K® + 28k® 4 20k + 4.
The latter inequality is obvious, since & > 1.
This proves that the inequality
1 3 2n—1 1
2% T SV
is true for all n.

5. Assuming in the inequality of Exercise 4 that n = 50,
we get
1 3 99 1 1 1 1
270 S Vst Vel - Vid 12
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6. Assuming y =6 — z, x = 6 — y, we shall bring the
problem to finding the greatest value of the function

(6 —y) y* = 6y —

when 0 << y << 6. Assuming then, that y? == z, we shall get

the function
3

6z — 22,
whose greatest value (refer to note on p. 34) is equal to
3
3 6\ 2 s o
(7—1)(7) . 1_0.5-4 =32
2) 2"

and is obtained in the point

The function 6y? — y® takes the greatest value in the

point y = V/z = 4, and this value equals 32.
The function z (6 — x)? attains the greatest value of 32
in the point £ =6 —y =6 — 4 = 2.

7. The volume of a box (see Fig. 4, p. 38) equals
V=2@ —22)=4x @ —1zx)? 0<2<a.

Assuming y = a — z, Y = z, we get
3

V =4 (az — 22).
3
The greatest value of the function az — 22 is obtained

in the point

Therefore,

y=V;=2—3a-, {L‘:a—y:a-——:—,



Thus, the volume of a box will be the greatest, if the
length of the side of the cut-out square is % that of the

side of the given square.
8. The least value of the function z® + 822 4 5 equals 5
and is obtained when z = 0.
9. Assuming y = z2%, we shall bring the problem to finding
the least value of the function
¥ —8y +5
for positive values of y.
In Theorem 5, we have proved that the least value of the
function y® — 8y is equal to
3 3

8\3-1 8% 3276
1 ()77 282y
32
The least value of the function y® —8y-+5 is equal to
— 3291/5 +5=—36....

10. Assuming y=z* we get the function
1 1
— 1 — 1
y—ay® =a (7y—y°‘) , a>0, ?>1.
By virtue of Theorem 5, the greatest value of the function
1

1 —
—y—ye is

1
1—a [ a\o-1
— (?) ’
Multiplying the last quantity by a, we shall find the greatest
1

value of the function a (% y — ya) which is, hence, equal to

1 1_*_1

M=o (3)7 =u-a () T
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11. The function ;¥ 7 — 2z, ©3>0, a=1, a=2, has the
greatest value, equal to

14

-9(G) -4

ol

3
=

4
Therefore, for all 2>>0 the following inequality is true

,V'E—2x<%, or 1‘/E<-Z—+2x.

12. Write down the inequality (8) in the form of
n-4-1
(=

)n<e, (r+1)"<<en™

If n>>3>e, then
(n+1)"<en < 3In" L nn" =np"
Raising both members of the latter inequality to the power of

1 we get
nnt 1D VO 8

Y ntl< Y n.
13. Since 1<V 2=,/8< /9 =,)3, then /'3 is the

greatest of the numbers 1, J/'2, ;7'3. On the other hand,
in the previous problem we have shown that the sequence

of the numbers ;7'3, /%, ..., /'n, ... decreases. Hence,
‘3/3 is the greatest of the numbers 1, V2, ,3/3,

ny—
s n, .
14. Suppose Vﬁ=1+an, a, >0. Raising to a power
of n we get
r n -2
n=(1+a I 1+an J .

n

Assuming that n>2, 7}1, taking Theorem 3 as the

basis, we get

r 2 2
(1 +a)? >1—2an, n>(1—l—%an) =14 na, + 7 ad.
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HOI]OB, it follows that
2
Va'

Note. Using Newton’s binomial, it is easy to check that

Vﬁ<1+]/g.

n>Feh < an<gm, V=1ta <ty

Indeed,
R e —
(4+]/ 2) =1+nl/.i_+w%+ o> 14
n(n—1) 2
T

Hence, it follows that _
n/= </ 2
Vr<t+) 2.
15. When n = 1 and @, > —1, the inequality is obvious
1+a, =1+ a,.

Let us assume, that the inequality is true for n = &,
that is

A4a) +ay)...1+ap) =
=>14+a +ay+ ...+ ag

Multiplying both members of the inequality by (1 + az+4),
we get

(T 4+a)d+ay)...(0+ap)(+ apsy) =
=0 +a +ay+ ...+ ap) (1 + apyy) =
=14a + ...+ ap+ apt; + a@p+1 +

+ g@pty + . .o Oplpg.
Since the numbers a,, a,, ..., ay, ar+, are of the same
sign, then
@18pty + Q9Qpty + . . . + Apapy =0

and, therefore,
(1 +a)(4ay)...(14+a)(l+ apy) =
=1+a +a+ ...+ ap + apeyy
that is, the inequality is proved also for n = k& + 1.
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This finally proves the inequality to be true
(14+a)(l+a)...(1+a)=

>1+a1+a2+--‘-"r'an
for all n.

16. If the polynomial (a,2 — b))% + (a,x — by)® + . ..
.. + (a,z — b,)? has a true root r = z,, that is
(a2 — by)® + (@92 — b)) + . . . + (@pzy — by)* = 0,

then every number a,2; — b,, @z, — b,, ..., apz, — b, is
equal to zero, that is,
0 =ayx; — b, =axy — by, =...=a,z;, — by,
— bl — by - _ bn
1—a‘ —a2.—...——-an.

Thus we proved that the polynomial
(a,z — b))% + (@ — b)) + . ..+ (apx — by)® =
=2a2%(al +al+ ...+ a}) —
— 2x (ayby + agby + . . . + anby) +
+ (b7 + b5+ . .. 4 03)
cannot have two different true roots and, therefore,
(albl + (L2b2 + v + anbn)2 -
— @A ad) (Bt ) <O,
From this follows the inequality (19)
(albl + a2b2 + e + anbn)2 <
<(af+ai+ ... +ah) (B4 b + ... 4 b3).
Notice, that the sign of equality holds only when the

polynomial under consideration has a true root, i.e. when
a4 ) an

B T T B
17. Using the inequality (19), we get
2 _ ( ay+ag4-... +ap )2:

Cy n

<(L4d 4+ L) (ot )=

n n

n
_ a}4-a34-...4a} — ¢
n 2
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Hence, it follows that ¢; << ¢, (the arithmetic mean does
not exceed the root-mean-square).

18. From the inequality
Vrn+1+Vn—1) =n+1+4+2V2—1+n—1=
=212V = 1<2n+2) n=4n

it follows that _
Ve+ti+Vn=1<2Vn,

1 < 1
2Vr T Vati+Va—1
_ Vafi—1n—1 I A o
(Ve F1+Vn—1) (Ve +1—Vr—1) 2 '

Multiplying by 2, we get
-—1—<Vn+1——]/n—1.

n
19. Setting in tl;‘e/inequality of Exercise 18n=2,3, ...,V n
ﬁ <V3-1,
% <Vi-VZ
7 <V5-V3,
§€<v€_vz

..............

A eVrFI—Vr—1.
Ve <Vnrn+1-Vn
Combining the written inequalities, we get
1 1 1 — - 5
—_—t—=t .. == 1 —V2—1.
Adding 1 to both parts o\f the inequality, we finally get
1 1 1 1 1
= = = et <<
st atvatEt ot
<VrnHi+Vrn-Va
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Note. It was proved in Sec. 2.1 that
1 1 1 — Y

The numbers Vet 1+Vn—y2 and 2Vn +1 —
— 2 V2 + 1 differ from each other less than by 0.42. Each

of these numbers could be taken for an approximate value
of the sum

47t e =

Let us notice without proving, that the number V'n + 1 +
+ Vn — V2 differs less from the number z,, than the
number 2V n +1 —2V2+ 1.

3
20. The function %_*_5 takes a negative value when

z << 0. Therefore, the greatest value of the function is
obtained for positive values of z.
Since
23 1

A¥S T 5 (—%—x—{—x‘3)

then the greatest value of the function is reached in the
same point in which the function -% z 4 z-3 takes the least

value. It follows from Problem 4 Sec. 2.1 that the least
value of this function is equal to

-3

1

31 3
5 1\%
“*3)(7) =4(5) -
3
The greatest value of the function 142_-;-5 is equal to
3
1 _15% 15 3
——3 =% T i s i
(] 3 203715 43/15
4(75)

To find the greatest value of the function x6-0.6x‘°, we
get y=a8. It is clear that y>0. The function

y—0.65% 0.6 (Sy— y%o)
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takes the greatest value (see the note on p. 34) equal to
10
6
10
—6—- -1

¢ 10
10 v 6
0.6 (5 —1) (T) =0.4.
6
21 A-suming in this exercise that y=712-, we get

1
P a - %
“ X .'7: I‘—f—-ay.
1

The least value of the lunction y %4-ay, as it follows
from Problem 4 Sec. 2.1, ix ('qlml to

| . 1
('1+——) (4a)° (hajy?.
Assuming —- (4a)§=2 5, we get
(4a)€=2, 4a=32, a=38.
y 1 1 1 1
22. S=1— +32—F+—5T""W+"':
1 1 1
=(1+§+§+ﬁ+'5—g+ﬁ+ )—
1 1 1
2(m+ptet );
(gt ) -
_%(1+—217+%+ )=
2 2
(1+2,+3,+ )_%‘—ne_zn_

(we have used the equality (27)).
23. Since >0, then aa4+1>1 and, hence,

(144)" >ttt

(1_%)1+a>1_1_|';a.
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Multiplying these inequalities by rn!+®, we get
(1) >nt+e (1 4+ a) n,
(n— 1)1 >npi+e (1 4-a)ne.

From these inequalities it follows that

ni+a_(n_1)1+a (n_|_1)1+a_n1+a
Tra <n*< Tra
Write these inequalities for the values n=1, 2, 3, ..., n:
1 21+a_1
T <!<—17=
21+a__1 - 31+a_21+a
1+a <2< 1+a ’
n1+a_(n_1)1+a (n+1)1+a_n1+a
14a <n< 1+a
Adding them, we get
14o pita 140
n <1+2a+3a+_ ”._*_na<("'i_1) 1 /(n+1) .

T1a ~T1fra
24. Tt follows from the inequalities of Exercise 23 that

_ (1_]!__21_)1+a.

n1+a 1Ta

1~,—a

11 <1+2°‘+3°‘+...+n°‘
T

The left-hand member of the latter inequalities isa constant

number ﬁ , and the right-hand member tends toalimit

equal to , when n tends to infinity. Hence, the mean

1
14a
member of the inequalities tends to the same limit as well,
that is
14+2%4 3% ... 4-n% 1

lim s =TTa"

n-> oo

25. Let us introduce the designations
MB=add+al+...+a},
B3=b}4+-b3+ ...+ b},
C=cl+eg+ ... +cp
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a a: a
It=_Ai—1 $z——AL, ’ xn=TZ—’

by b b
Bi=-F» h="F, -+, b="F)

cq c 4
2y = C Z2=—g-, ) zn=’cl

On the basis of the inequalities (7) we have
a,b‘ct = ABC$1!/1Z1<ABC —xf—*-%ﬂ

-

Gabacy = ABCoyyta < ABC BTHTH

.....................

@nbun = ABCE,ynz, < ABC IR T 5

Adding the written inequalities we get
aybycy + ashsCs - . . . F-anbnc, <
<ABC ( ¢?+r%+3-~-+-‘¢% + y¥+y%+3~ R _11}¥+7-%+3- - +a, ) .

Taking into consideration the introduced designations, it is
easy to calculate that

34 g3 ' a3 3
3 3 s _ ai+4afH{...4ap A4
ot a,= yE =—3

PP+ k=1 28 2 =1
Hence,

AgbiCy+ ashocs+ - . . + apbnc, < ABC (% +% +%) — ABC.

Raising both members of the inequality to a cube, we finally
obtain

(@1bicy 4 aghgCo+ . . . + anbnc,)? <AB(C3 =

=@ & @) O 4B B (. ).

26. Write down the inequalities (24) for different values of n

=1,

n n

In —

1 1
< <In
n-+42 1
n-41 n-1

................

kn+1 L n kn
kn kn kn—1 "

,

In

In
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Adding these inequalities, we get
(n+1)(n+2). (kn+1) 1 1 1
In <staErt e A<

n(n-|—1)
" n n-+1
<ln[n_1. - "'kn——1]‘

that is
kn 1 1
ln—n—f:'-ln (k+7)<

1 1 1 1 kn
<z taartaiet ot <=
k
n (k+ n—1 )

If n tends to infinity, then In (k +~17) tends to In & and

In (lc -+ nk_1 ) tends to the same limit as well. Therefore,

llm(1+n+1+ +—I;1;)=lnk.

n-o00

27. By virtue of Theorem 6

L I
1+T]/2——,- +%/Ws'
V2 1 1

i Tty %/2106)_
S 7 S DR S S S
vty )

-
The second addend is negative but greater than— % >

—1.9. The first addend, according to the inequalities (28),
satisfies the inequalities

—_ — 3,5
3 (YT 1— Y T r 1) 2'/;‘%

V2 1 1
< 2—Y3 Y108 11 T %/106+2 SRR %/2 T

<. V2 (Y2105 — Y T0F) 2 — 15,000
2—y2 E B
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Since the extreme terms of the latter inequalities -differ
from each other very slightly (less than 0.1), then

15,000_2<1+—V%+ +'“3,71_m"<15’000'

108

The mean number 14,999 differs from ) -%/i’_c- less than by 1.
k=1

28. By virtue of Theorem 6

1
-i- L. et =
_ 2% [ 1 + 1 + + 1 :I_
2= L )® (2% T T T @n)
2% 1 1 1
e llETE T T A
where
2% 1 1 1
A= T [(n+1)“+(n+2)°‘+ e T (2n)* ]’
2% 1 1 1 -
= ey — .. — .
Bn 2—2% [ 2% + 3% (2n)°‘J
The number B, is a partial sum of the series
> (— )"’
he 4 2— 2“

This series is sign-alternating with monotonically decrea-
sing (by absolute value) terms. Its remainder (by absolute
value) is not greater than the absolute value of the first
2% 1
2—2% %’

Since this number tends to zero when n— oo, then the
series converges and

term of the remainder, that is, the number

lim B, = 3 =2 (—1-L ¢,

n-+00 2_2@
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that is y, =B, —C is an infinitesimally small value. Now,
using the inequalities (28), we get

2% 1-a 1-c
o len— 1) = ()7 <4, <
2% 1-a t-a, nl™®
< - [(2n) —n 7= —a
Since the difference -between the extreme terms of the ine-
qualities tends to zero when n— oo, then §,= A4, — n'—®
—--a
is an infinitesimally small value.
Thus,
1 1
1 +-2—a'+ .« .. +n—a=An-—B"' =

ni -a

=2 b —Chya=2C C ot

1—a 1—a

where §, =39, + v, is an infinitesimally small value.
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The booklet contains some particularly interesting
inequalities playing an important role in various sections of
higher mathematics. These inequalities are used for finding
the greatest and least values as well as for calculating the
limits. The booklet contains 63 problems and most of them
are provided with detailed solutions.
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