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Preface to the First Edition.

The new volume which I herewith offer to the mathematical public,

and especially to the teachers of mathematics in our secondary schools,
is to be looked upon as a first continuation of the lectures Uber den
mathematischen Unterricht an den hoheren Schulen*®, in particular, of those
on Die Organisation des mathematischen Unerrichis** by Schimmack and
me, which were published last year by Teubner. At that time our concern
was with the different ways in which the problem of instruction can be
-presented to the mathematician. At present my concern is with deve-
lopments in the subject matter of instruction. I shall endeavor to put
before the teacher, as well as the maturing student, from the view-point
of modern science, but in a manner as simple, stimulating, and con-
vincing as possible, both the content and the foundations of the topics
of instruction, with due regard for the current methods of teaching.
I shall not follow a systematically ordered presentation, as do, for
example, Weber and Wellstein, but I shall allow myself free excursions
as the changing stimulus of surroundings may lead me to do in the
course of the actual lectures.

The program thus indicated, which for the present is to be carried
out only for the fields of Arithmetic, Algebra, and Analysis, was indicated
in the preface to Klein-Schimmack (April 1907). I had hoped then that
Mr.. Schimmack, in spite of many obstacles, would still find the time to
put my lectures into form suitable for printing. But I myself, in a way,
prevented his doing this by continuously claiming his time for work in
another direction upon pedagogical questions that interested us both.
It soon became clear that the original plan could not be carried out,
particularly if the work was to be finished in a short time, which seemed
desirable if it was to have any real influence upon those problems of
instruction which are just now in the foreground. As in previous years,
then, I had recourse to the more convenient method of lithographing
my lectures, especially since my present assistant, Dr. Ernst Hellinger,

- showed himself especially well qualified for this work. One should not
underestimate the service which Dr. Hellinger rendered. For it is a
far cry from the spoken word of the teacher, influenced as it is by
accidental conditions, to the subsequently polished and readable record.

* On the teaching of mathematics in the secondary schools.
** The organization of mathematical instruction.
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In precision of statement and in uniformity of explanations, the lecturer
stops short of what we are accustomed to consider necessary for a printed
publication. » )

I hesitate to commit myself to still further publications on the
teaching of mathematics, at least for the field of geometry. I prefer to
close with the wish that the present lithographed volume may prove
useful by inducing many of the teachers of our higher schools to renewed
use of independent thought in determining the best way of presenting
the material of instruction. This book is designed solely as such a mental
spur, not as a detailed handbook. The preparation of the latter I leave
to those actively engaged in the schools. It is an error to assume, as
some appear to have done, that my activity has ever had any other
purpose. In particular, the Lehrplan der Unterrichiskommission der Ge-
sellschaft Deutscher Naturforscher und Arzte* (thc so-called ‘“‘Meraner”
Lehrplan) is not mine, but was prepared, merely with my cooperation,
by distinguished representatives of school mathematics.

Finally, with regard to the method of presentation in what follows,
it will suffice if I say that I have endeavored here, as always, to combine
geometric intuition with the precision of arithmetic formulas, and that
it has given me especial pleasure to follow the historical development
of the various theories in order to understand the striking differences
in methods of presentation which parallel each other in the instruction
of today.

Gottingen, June, 1908

Klein.

Preface to the Third Edition.

After the firm of Julius Springer had completed so creditably the
publication of my collected scientific works, it offerred, at the suggestion
of Professor Courant, to bring out in book form those of my lecture
courses which, from 1890 on, had appeared in lithographed form and
which were out of print except for a small reserve stock.

These volumes, whose distribution had been taken over by Teubner,
during the last decades were, in the main, the manuscript notes of my
various assistants. It was clear to me, at the outset, that I could not
undertake a new revision of them without again seeking the help of
younger men. In fact I long ago expressed the belief that, beyond a
certain age, one ought not to publish independently. One is still
qualified, perhaps, to direct in general the preparation of an edition, but
is not able to put the details into the proper order and to take into proper
account recent advances in the literature. Consequently I accepted the

* Curriculum prepared by the commission on instruction of the Society of
German Natural Scientists and Phvsicians.
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offer of Springer only after I was assured that liberal help in this respect
would be provided.

These lithographed volumes of lectures fall into two series. The
older ones are of special lectures which I gave from time to time, and
were prepared solely in order that the students of the following semester
might have at hand the material which I had already treated and ,upon
which I proposed to base further work. These are the volumes on Non-
Euclidean Geometry, Higher Geomeiry, Hypergeometric Functions, Linear
Differential Equations, Riemann Surfaces, and Number Theory. In-con-
trast to these, I have published several lithographed volumes of lectures
which were intended, from the first, for a larger circle of readers. These
are:

a) The volume on Applications of Differential and Integral Calculus
to Geometry, which was worked up from his manuscript notes by
C. H. Miiller. This was designed to bridge the gap between the needs
of applied mathematics and the more recent investigations of pure
mathematicians.

b) and c¢) Two volumes on Elementary Mathematics from an Advanced
Standpoint, prepared from his manuscript notes by E. Hellinger. These
two were to bring to the attention of secondary school teachers of mathe-
matics and science the significance for their professional work of their
academic studies, especially their studies in pure mathematics.

A thoroughgoing revision of the volumes of the second series seemed
unnecessary. A smoothing out, in places, together with the addition of
supplementary notes, was thought sufficient. With their publication
therefore, the initial step is taken. Volumes b), c), a) (in this order) will
appear as Parts I, II, III of a single publication bearing the title Ele-
mentary Mathematics from an Advanced Standpoint. The combining, in
this way, of volume a) with volumes b) and c) will meet the approval
of all who appreciate the growing significances of applied mathematics
for modern school instruction.

Meantime the revision of the volumes of the first series has begun,
starting with the volume on Non-Euclidean Geometry. But a more
drastic recasting of the material will be necessary here if the book is
to be a well-rounded presentation, and is to take account of the recent
advances of science. So much as to the general plan. Now a few words
as to the first part of the Elementary Mathematics.

I have reprinted the preface to the 1908 edition of b) because it
shows most clearly how the volume came into existencel. The second
edition (1911), also lithographed, contained no essential changes, and
the minor notes which were appended to it are now incorporated into

1 My co-worker, R. Schimmack, who is mentioned there, died in 1912 at the
age of thirty-one years, from a heart attack with which he was seized suddenly,
as he sat at his desk.
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the text without special mention. The present edition retains?, in the
main, the text of the first edition, including such peculiarities as were
incident to the time of its origin. Otherwise it would have been necessary
to change the entire articulation, with a loss of homogeneity. But during
the sixteen years which have elapsed since the first publication, science
has advanced, and great changes have taken place in our school system,
.changes which are still in progress. This fact is provided for in the
appendices which have been prepared, in collaboration with me, by
Dr. Seyfarth (Studienrat at the local Oberrealschule). Dr. Seyfarth also
made the necessary stylistic changes in the text, and has looked after
the printing, including the illustrations, so that I feel sincerely grateful
to him. My former co-workers, Messrs. Hellinger and Vermeil, as well
as Mr. A. Walther of Gottingen, have made many useful suggestions
during the proof reading. In particular, I am indebted to Messrs. Vermeil
and Billig for preparing the list of names and the index. The publisher,
Julius Springer has again given notable evidence of his readiness to
print mathematical works in the face of great difficulties.

Gottingen, Easter, 1924
Klein.

Preface to the English Edition.

Professor Felix Klein was a distinguished investigator. But he was
also an inspiring teacher. With the rareness of genius, he combined
familiarity with all the fields of mathematics and the ability to perceive
the mutual relations of these fields; and he made it his notable function,
as a teacher, to acquaint his students with mathematics, not as isolated
disciplines, but as an integrated living organism. He was profoundly
interested in the teaching of mathematics in the secondary schools, both
as to the material which should be taught, and as to the most fruitful
way in which it should be presented. It was his custom, during many
years, at the University of Gottingen, to give courses of lectures, prepared
in the interest of teachers and prospective teachers of mathematics in
German secondary schools. He endeavored to reduce the gap between
the school and the university, to rouse the schools from the lethargy
of tradition, to guide the school teaching into directions that would
stimulate healthy growth; and also to influence university attitude and
teaching toward a recognition of the normal function of the secondary
school, to the end that mathematical education should be a continuous
growth. '

These lectures of Professor Klein took final form in three printed
volumes, entitled Elementary Mathematics from an Advanced Standpoint.

1 Nawr rammentc ara nlarad in hrarlatc
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They constitute an invaluable work, serviceable alike to the university
teacher and to the teacher in the secondary school. There is, at present,
nothing else comparable with them, either with respect to their skilfully
integrated material, or to the fascinating way in which this material is
discussed. This English volume is a translation of Part I of the above
work. Its preparation is the result of a suggestion made by Professor
Courant, of the University of Go6ttingen. It is the expression of a desire
to serve the need, in English speaking countries, of actual and prospective
teachers of mathematics; and it appears with the earnest hope that, in
a rather free translation, something of the spirit of the original has
been retained.
The Translators.
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Introduction

In recent years!, a far reaching interest has arisen among university
teachers of mathematics and natural science directed toward a suitable
training of candidates for the higher teaching positions. This is really
quite a new phenomenon. For a long time prior to its appearance,
university men were concerned exclusively with their sciences, without
giving a thought to the needs of the schools, without even caring to
establish a connection with school mathematics. What was the result
of this practice? The young university student found himself, at the
outset, confronted with problems which did not suggest, in any particular,
the things with which he had been concerned at school. Naturally he
forgot these things quickly and thoroughly. When, after finishing his
course of study, he became a teacher, he suddenly found himself expected
to teach the traditional elementary mathematics in the old pedantic
way; and, since he was scarcely able, unaided, to discern any connection
between this task and his university mathematics, he soon fell in with
the time honored way of teaching, and his university studies remained
only a more or less pleasant memory which had no influence upon his
teaching.

There is now a movement to abolish this double discontinuity, helpful
neither to the school nor to the university. On the one hand, there is
an effort to impregnate the material which the schools teach with new

-ideas derived from modern developments of science and in accord with

modern culture. We shall often have occasion to go into this. On the
other hand, the attempt is made to take into account, in university
instruction, the needs of the school teacher. And it is precisely in such
comprehensive lectures as I am about to deliver to you that I see one
of the most important ways of helping. I shall by no means address
myself to beginners, but I shall take for granted that you are all ac-
quainted with the main features of the chief fields of mathematics. I
shall often talk of problems of algebra, of number theory, of function
theory, etc., without being able to go into details. You must, therefore,
be moderately familiar with these fields, in order to follow me. My task

- will always be to show you the mutual connection between problems in

[* Attention is again drawn to the fact that the wording of the text is, almost
throughout, that of the lithographed volume of 1908 and that comments which
refer to later years have been put into the appendices.]

Klein, Elementary Mathematics. 1



2 Introduction.

the various fields, a thing which is not brought out sufficiently in the
usual lecture course, and more especially to emphasize the relation of
these problems to those of school mathematics. In this way I hope
to make it easier for you to acquire that ability which I look upon as
the real goal of your academic study: the ability to draw (in ample
measure) from the great body of knowledge there put before you a
living stimulus for your teaching.

Let me now put before you some documents of recent date wh1ch
give evidence of widespread interest in the training of teachers and
which contain valuable material for us. Above all I think here of the
addresses given at the last Meeting of Naturalists held September 16,
1907, in Dresden, to which body we submitted the Proposals for the
Scientific Training of Prospective Teachers of Mathematics and Science
of the Committee on Instruction of the Society of German Naturalists
and Physicians. You will find these Proposals as the last section in the
Complete Report of this Committee! which, since 1904, has been con-
sidering the entire complex of questions concerning instruction in mathe-
matics and natural science and has now ended its activity; I urge you
to take notice, not only of these Proposals, but also of the other parts
of this very interesting report. Shortly after the Dresden meeting there
occurred a similar debate at the Meeting of German Philologists and
Schoolmen in Basel, September 25, in which, to be sure, the mathematical-
scientific reform movement was discussed only as a link in the chain
of parallel movements occurring in philological circles. After a report
by me concerning our aims in mathematical-natural science reform there
were addresses by P. Wendland (Breslau) on questions in Archeology,
Al. Brandl (Berlin) on modern languages and , finally , Ad. Harnack (Berlin)
on History and religion. These four addresses appeared together in one
broschure? to which I particulary refer you. I hope that this auspicious
beginning will develop into further cooperation between our scientists
and the philologists, since it will bring about friendly feeling and mutual
understanding between two groups whose relations have been unsympa-
thetic even if not hostile. Let us endeavor always to foster such good
relations even if we do among ourselves occasionally drop a critical
word about the philologists, just as they may about us. Bear in mind
that you will later be called upon in the schools to work together with
the philologists for the common good and that this requires mutual
understanding and appreciation.

Along with this evidence of efforts which reach beyond the borders
of our field, I should like to mention a few books which aim in the

1 Die Tatigkeit der Unterrichiskommission der Gesellschaft deutscher Natur-
forscher und Avrzte, edited by A.Gutzmer. Leipzig and Berlin, 1908.

2 Universitit und Schule. Addresses delivered by F. Klein, P. Wendland,
Al Brandl, Ad. Harnack. Leipzig 1907.
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same direction in the mathematical field and which will therefore be
important for these lectures. Three years ago I gave, for the first time,
a course of lectures with a similar purpose. My assistant at that time,
R. Schimmack, worked the material up and the first part has recently
appeared in print!. In it are considered the different kinds of schools,
including the university, the conduct of mathematical instruction in
them, the interests that link them together, and other similar matters.
In what follows I shall from time to time refer to things which appear
there without repeating them. This makes it possible for me to extend
somewhat those considerations. That volume concerns itself with the
organization of school instruction. I shall now consider the mathematical
content of the material which enters into that instruction. IfI frequently
advert to the actual conduct of instruction in the schools, my remarks.
will be based not merely upon indefinite pictures of how the thing
might be done or even upon dim recollections of my own school days;
for I am constantly in touch with Schimmack, who is now teaching in
the Géttingen gymnasium and who keeps me informed as to the present
state of instruction, which has, in fact, advanced substantially beyond
what it was in earlier years. During this winter semester I shall discuss
“the three great A’s”, that is arithmetic, algebra, and analysis, with-
holding geometry for a continuation of the course during the coming
summer. Let me remind you that, in the language of the secondary
schools, these three subjects are classed together as arithmetic, and
that we shall often note deviations in the terminology of the schools as
compared with that at the universities. You see, from this small illustra-
tion, that only living contact can bring about understanding.

As a second reference I shall mention the three volume Enzyklopddie
der Elementarmathematik by H. Weber and J. Wellstein, the work which,
among recent publications, most nearly accords with my own tendencies.
For this semester, the first volume, Enzyklopddie der elementaren Algebra
und Analysis, prepared by H. Weber?, will be the most important. I
shall indicate at once certain striking differences between this work and
the plan of my lectures. In Weber-Wellstein, the entire structure of
elementary mathematics is built up systematically and logically in the
mature language of the advanced student. No account is taken of how
these things actually may come up in school instruction. The present-
ation in the schools, however, should be psychological and not syste-
matic. The teacher so to speak, must be a diplomat. He must take
account of the psychic processes in the boy in order to grip his interest;

1 Klein, F., Vortrage iiber den mathematischen Untervicht an héhevem Schulen.
Prepared by von R. Schimmack. Part 1. Von der Organisation des mathematischen
Unterrichis. Leipzig 1907. This book is referred to later as “Klein-Schimmack”.

2 Second edition. Leipzig 1906. [Fourth edition, 1922, revised by P. Epstein.
— Referred to as ‘““Weber-Wellstein I".

1‘



4 Introduction.

and he will succeed only if he presents things in a form intuitively
comprehensible. A more abstract presentation will be possible only in
the upper classes. For example: The child cannot possibly understand
if numbers are explained axiomatically as abstract things devoid of
content, with which one can operate according to formal rules. On the
contrary, he associates numbers with concrete images. They are numbers
of nuts, apples, and other good things, and in the beginning they can
be and should be put before him only in such tangible form. While this
goes without saying, one should —mutatis mutandis—take it to heart,
that in all instruction, even in the university, mathematics should be
associated with everything that is seriously interesting to the pupil at
that particular stage of his development and that can in any way be
brought into relation with mathematics. It is just this which is back
of the recent efforts to give prominence to applied mathematics at the
university. This need has never been overlooked in the schools so much
as it has at the university. It is just this psychological value which I
shall try to emphasize especially in my lectures.

Another difference between Weber-Wellstein and myself has to do
with defining the content of school mathematics. Weber and Wellstein
‘are disposed to be conservative, while I am progressive. These things
are thoroughly discussed in Klein-Schimmack. We, who are called the
reformers, would put the function concept at the very center of in-
struction, because, of all the concepts of the mathematics of the past
two centuries, this one plays the leading role wherever mathematical
thought is used. We would introduce it into instruction as early as
possible with constant use of the graphical method, the representation
of functional relations in the xy system, which is used today as a matter
of course in every practical application of mathematics. In order to
make this innovation possible, we would abolish much of the traditional
material of instruction, material which may in itself be interesting, but
which is less essential from the standpoint of its significance in con-
nection with modern culture. Strong development of space perception,
above all, will always be a prime consideration. In its upper reaches,
however, instruction should press far énough into the elements of in-
finitesimal calculus for the natural scientist or insurance specialist to
get at school the tools which will be indispensable to him. As opposed
to these comparatively recent ideas, Weber-Wellstein adheres essentially
to the traditional limitations as to material. In these lectures I shall of
course be a protagonist of the new conception.

My third reference will be to a very stimulating book: Didaktik und
Methodik des Rechnens und der Mathematik* by Max Simon, who like

1 Second edition, Munich 1908. Separate reprint from Baumeister’s Hand-
buch der Evziehungs- und Unterrichtslehre filv hoheve Schulen, first edition, 1895.
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Weber and Wellstein is at Strassburg. Simon is often in agre ment
with our views, but he sometimes takes the opposite standpoint; and
inasmuch as he is a very subjective, temperamental, personality he often
clothes these contrasting views in vivid words. To give one example,
the proposals of the Committee on Instruction of the Natural Scientists
require an hour of geometric propaedeutics in the second year of the
gymnasium, whereas at the present time this usually begins in the third
vear. ‘It has long been a matter of discussion which plan is the better;
and the custom in the schools has often changed. But Simon declares
the position taken by the Commission, which, mind you, is at worst
open to argument, to be ‘“worse than a crime”, and that without in the
least substantiating his judgment. One could find many passages of
this sort. As a precursor of this book I might mention Simon’s Methodik
der elementaren Avithmetik in Verbindung mit algebraischer Analysist.
After this brief introduction let us go over to the subject proper,
which I shall consider under three headings, as above indicated.

1 Leipzig 1906.



First Part

Arithmetic
I. Calculating with Natural Numbers

We begin with the foundation of all arithmetic, calculation with
positive integers. Here, as always in the course of these lectures, we
first raise the question as to how these things are handled in the schools;
then we shall proceed to the question as to what they imply when
viewed from an advanced standpoint.

1. Introduction of Numbers in the Schools

I shall confine myself to brief suggestions. These will enable you
to recall how you yourselves learned your numbers. In such an exposi-
tion it is, of course, not my purpose to induct you into the practice
of teaching, as is done in the Seminars of the secondary schools. I shall
merely exhibit the material upon which we shall base our critique.

The problem of teaching children the properties of integers and how
to reckon with them, and of leading them on to complete mastery, is
very difficult and requires the labor of several years, from the first school
year until the child is ten or eleven years old. The manner of instruction
as it is carried on in this field in Germany can perhaps best be designated
by the words intuitive and genetic, i. e., the entire structure is gradually
erected on the basis of familiar, concrete things, in marked contrast to
the customary logical and systematic method at the university.

One can divide up this material of instruction roughly as follows:
The entire first year is occupied with the integers from 1 to 20, the
first half being devoted to the range 1 to 10. The integers appear at
first as numbered pictures of points or as arrays of all sorts of objects
familiar to the children. Addition and multiplication are then presented
by intuitional methods, and are fixed in mind.

In the second stage, the integers from 1 to 100 are considered and the
Arabic numerals, together with the notion of positional value and the
decimal system, are introduced. Let us note, incidentally, that the name
““Arabic numerals’’, like so many others in science, is a misnomer.
This form of writing was invented by the Hindus, not by the Arabs.
Another principal aim of the second stage is knowledge of the multi-
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plication table. One must know what 5X 7 or 3 X8 is in one’s sleep,
so to speak. Consequently the pupil must learn the multiplication table
by heart to this degree of thoroughness, to be sure only after it has
been made clear to him visually with concrete things. To this end the
abacus is used to advantage. It consists, as you all know, of 10 wires
stretched one above another, upon each of which there are strung ten
movable beads. By sliding these beads in the proper way, one can
read off the result of multiplication and also its decimal form.

The third stage, finally, teaches calculation with numbers of more
than one digit, based on the known simple rules whose general validity
is evident, or should be evident, to the pupil. To be sure, this evidence
does not always enable the pupil to make the rules completely his own;
they are often instilled with the authoritative dictum: “It is thus and
so, and if you don’t know it yet, so much the worse for you!”

I should like to emphasize another point in this instruction which is
usually neglected in university teaching. It is that the application of
numbers to practical life is strongly emphasized. From the beginning,
the pupil is dealing with numbers taken from real situations, with coins,
measures, and weights; and the question, ‘“What does it cost ?*’, which is so
important in daily life, forms the pivot of much of the material of instruc-
tion. This plan rises soon to the stage of problems, when deliberate
thought is necessary in order to determine what calculation isdemanded.
It leads to the problems in proportion, alligation, etc. To the words
intuitive and gemetic, which we used above to designate the character
of this instruction, we can add a third word, applications.

We might summarize the purpose of the number work by saying:
1t aims at reliability in the use of the rules of operation, based on a parallel
development of the intellectual abilities involved, and without special concern
for logical relations.

Incidentally, I should like to direct your attention to a contrast
which often plays a mischievous role in the schools, viz., the contrast
between the university-trained teachers and those who have attended -
normal schools for the preparation of elementary school teachers. The
former displace the latter, as teachers of arithmetic, during or after
the sixth school year, with the result that a regrettable discontinuity
often manifests itself. The poor youngsters must suddenly make the
acquaintance of new expressions, whereas the old ones are forbidden.
A simple example is the different multiplication signs, the X being pre-
ferred by the elementary teacher, the point by the one who has attended
the university. Such conflicts can be dispelled, if the more highly
trained teacher will give more heed to his colleague and will try to meet
him on common ground. That will become easier for you, if you will
realize what high regard one must have for the performance of the
elementary school teachers. Imagine what methodical training is ne-
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cessary to indoctrinate over and over again a hundred thousand stupid,
unprepared children with the principles of arithmetic! Try it with your
university training; you will not have great success!

Returning, after this digression, to the material of instruction, we
note that after the third year of the gymnasium*, and especially in the
fourth year, arithmetic begins to take on the more aristocratic dress of
mathematics, for which the transition to operations with letters is charac-
teristic. One designates by a, b, ¢, or x, y, z any numbers, at first only
positive integers, and applies the rules and operations of arithmetic to
the numbers thus symbolized by letters, whereby the numbers are
devoid of concrete intuitive content. This represents such a long step
in abstraction that one may well declare that real mathematics begins
with operations with letters. Naturally this transition must not be
accomplished rapidly. The pupils must accustom themselves gradually
to such marked abstraction.

It seems unquestionably necessary that, for this instruction, the
teacher should know thoroughly the logical laws and foundations of
reckoning and of the theory of integers.

2. The Fundamental Laws of Reckoning

Addition and multiplication were familiar operations long before
any one inquired as to the fundamental laws governing these operations.
It was in the twenties and thirties of the last century that particularly
English and French mathematicians formulated the fundamental pro-
perties of the operations, but I will not enter into historical details here.
If you wish to study these, I recommend to you, as I shall often do,
the great Enzyklopddie der Mathematischen Wissenschaften mit Ein-
schiuf threr Anwendungent, and also the French translation: Encyclopé-
die des Sciences mathématiques pures et appliguées? which bears in part
the character of a revised and enlarged edition. If a school library
has only one mathematical work, it ought to be this encyclo-
pedia, for through it the teacher of mathematics would be placed in
position to continue his work in any direction that might interest him.
For us, at this place, the article of interest is the first one in the first
volume?® H. Schubert: “‘Grundlagen der Arithmetik”, of which the trans-
lation into French is by Jules Tannery and Jules Molk.

* The German gymnasium is a nine-year secondary school, following a four-
year preparatory school. Hence the third year of the gymnasium is the student’s
seventh school year.

1 Leipzig (B. G. Teubner) from 1908 on. Volume I has appeared complete,
Volumes II—VI are nearing completion.

2 Paris (Gauthur-Villars) and Leipzig (Teubner) from 1904 on; unfortunately
the undertaking had to be abandoned after the death of its editor J. Molk (1914).

3 Arithmetik und Algebra, edited by W. Fr. Meyer (1896— 1904); in the French
edition, the editor was J. Molk.
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Going back to our theme, I shall enumerate the five fundamental
laws upon which addition depends:

1. a + b is always again a number, i. e., addition is always possible
(in contrast to subtraction, which is not always possible in the domain
of positive integers).

2. a + b is one-valued.

3. The assoctative law holds:

@+d+c=a+ (40,

so that one may omit the parentheses entirely.
4. The commutative law holds:

at+b=b+a.
5. The monotonic law holds:
If b>c,thena+b>a-+c.

These properties are all obvious immediately if one recalls the process
of counting; but they must be formally stated in order to justify logically
the later developments.

For multiplication there are five exactly analogous laws:

1. a - b is always a number.

2. a-b 1s one-valued.

3. Associative law: a-(b-c)=(a-b)-c=a-b-c.

4. Commutative law: a-b=1>-a.

5. Monotonic law: Ifb>c, then a-b>a-c.

Multiplication together with addition obeys also the following law.

6. Distributive law:

a-b+c)=a-b+a-c.

It is easy to show that all elementary reckoning can be based upon
these eleven laws. It will be sufficient to illustrate this fact by a simple
example, say the multiplication of 7 and 12. From the distributive
law we have:

712 =7- (10 + 2) = 70 + 14,

and if we separate 14 into 10 + 4 (carrying the tens), we have, by the
 associative law of addition, '

70 + (10 + 4) = (70 + 10) + 4 = 80 + 4 = 84.

You will recognize in this procedure the steps of the usual decimal
reckoning. It would be well for you to construct for yourselves more
complicated examples. We might summarize by saying that ordinary
veckoning with integers comsists in repeated use of the eleven fundamental
laws together with the memorized results of the addition and multiplication
tables.

.~ But where does one use the monotonic laws? In ordinary formal
reckoning, to be sure, they are superfluous, but not in certain other
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problems. Let me remind you of the process called abridged multiplication
and division with decimal numbers!. That is a thing of great practical
importance which unfortunately is too little known in the schools, as
well as among university students, although it is sometimes mentioned
in the second year of the gymnasium. As an example, suppose that
one wished to compute 567 + 134, and that the units digit in each number
was of questionable accuracy, say as a result of physical measurement.
It would be unnecessary work, then, to determine the product exactly,
since one could not guarantee an exact result. It is, however, important
to know the order of magnitude of the product, i. e., to know between
which tens or between which hundreds the exact value lies. The mono-
tonic law supplies this estimate at once; for it follows by that law that
the desired value lies between 560 - 134 and 570 - 134 or between 560 - 130
and 570 - 140. I leave to you the carrying out of the details; at least
you see that the monotonic law is continually used in abridged reckoning.

A systematic exposition of these fundamental laws is, of course, not
to be thought of in the secondary schools. After the pupils have gained
a concrete understanding and a secure mastery of reckoning with
numbers, and are ready for the transition to operations with letters,
the teacher should take the opportunity to state, at least, the associative,
commutative, and distributive laws and to illustrate them by means
of numerous obvious numerical examples.

3. The Logical Foundations of Operations with Integers

While instruction in the schools will naturally not rise to still more
difficult questions, present mathematical investigation really begins with
the question: How does one justify the above-mentioned fundamental laws,
how does one account for the notion of number at all? 1 shall try to explain
this matter in accordance with the announced purpose of these lectures
to endeavor to get new light upon school topics by looking at them from
another point of view. I am all the more willing to do this because
these modern thoughts crowd in upon you from all sides during your
academic years, but not always accompanied by any indication of their
psychological significance.

First of all, so far as the notion of number is concerned, it is very
difficult to discover its origin. Perhaps one is happiest if one decides
to ignore these most difficult things. For more complete information
as to these questions, which are so earnestly discussed by the philo-
sophers, I must refer you to the article, already mentioned, in the
French encyclopedia, and I shall confine myself to a few remarks. A
widely accepted belief is that the notion of number is closely connected
with the notion of time, with temporal succession. The philosopher Kant

1 The monotonic laws will be used later, also, in the theory of irrational numbers.
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and the mathematician Hamilton represent this view. Others think
that number has more to do with space perception. They base the
notion of number upon the simultancous perception of different objects
which are near each other. Still others see, in number concepts, the
expression of a peculiar faculty of the mind which exists independently
of, and coordinate with, or even above, perception of space and time.
I think that this conception would be well characterized by quoting
from Faust the lines which Minkowski, in the preface of his book on
Diophantine Approximation, applies to numbers:

“Goéttinnen thronen hehr in Einsamkeit,

Um sie kein Ort, noch weniger eine Zeit.”

While this problem involves primarily questions of psychology and
epistemology, the justification of our eleven laws, at least the recent
researches regarding their compatibility, implies questions of logic. We
shall distinguish the following four points of view.

1. According to the first of these, best represented perhaps by Kant,
the rules of reckoning are immediate necessary results of perception,
whereby this word is to be understood, in its broadest sense, as “inner
perception” or intuition. It is not to be understood by this that mathe-
matics rests throughout upon experimentally controllable facts of ex-
ternal experience. To mention a simple example, the commutative law
is established by examining the accompanying picture, which
consists of two rows of three points each, that is, 2-3 =3-2. If
the objection is raised that in the case of only moderately large
numbers, this immediate perception would not suffice, the reply is that
we call to our assistance the theorem of mathematical induction. If a
theovem holds for small numbers, and if an assumption of its validity for
a number n always insures its validity for n 4 1, then it holds generally
for every mumber. This theorem, which I consider to be really an in-
tuitive truth, carries us over the boundary where sense perception fails.
This standpoint is more or less that of Poincaré in his well known
philosophical writings.

If we would realize the significance of this question as to the source
of the validity of our eleven fundamental rules of reckoning, we should
remember that, along with arithmetic, mathematics as a whole rests
ultimately upon them. Thus it is not asserting too much to say, that,
according to the conception of the rules of reckoning which we have
- just outlined, the security of the entirve structure of mathematics rests upon
intuition, where this word ts to be understood in its most general semse.

2. The second point of view is a modification of the first. According
to it, one tries to separate the eleven fundamental laws into a larger
number of shorter steps of which one need take only the simplest
directly from intuition, while the remainder are deduced from these
by rules of logic without any further use of intuition. Whereas, before,
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the possibility of logical operation began after the eleven fundamental
laws had been set up, it can start earlier here, after the simpler ones
have been selected. The boundary between intuition and logic is displaced
in favor of the latter. Hermann Grassmann did pioneer work in this
direction in his Lehrbuch der Arithmetik! in 1861. As an example from
it, I mention merely that the commutative law can be derived from
the associative law by the aid of the principle of mathematical induction.
Because of the precision of his presentation, one might place by the
side of this book of Grassmann one by the Italian Peano, Arithmetices
principia nova methodo exposita®. Do not assume, however, because of
this title, that the book was written in Latin! It is written in a peculiar
symbolic language designed by the author to display each logical step
of the proof and emphasize it as such. Peano wishes to have a guarantee
in this way, that he is making use only of the principle which he specifi-
cally mentions, with nothing whatever coming from intuition. He wishes
to avoid the danger that countless uncontrollable associations of ideas
and reminders of perception might creep in if he used our ordinary
language. Note, too, that Peano is the leader of an extensive Italian
school which is trying in a similar way to separate into small groups
the premises of each individual branch of mathematics, and, with the
aid of such a symbolic language, to investigate their exact logical
connections.

3. We come now to a modern extension of these ideas, which has,
moreover, been influenced by Peano. I refer to that treatment of the
foundations of arithmetic which puts the theory of point sets into the
foreground. You will be able to form a notion of the wide range
of the idea of a point set if I tell you that the totality of all integers,
as well as that of all points on a line segment, are special examples
of point sets. Georg Cantor, as is generally known, was the first
to make this general idea the object of orderly mathematical
speculation. The theory of point sets, which he created, is now
claiming the profound attention of the younger generation of
mathematicians. Later I shall endeavor to give you a cursory view
of this subject. For the present, it is sufficient to characterize as follows
the tendency of the new foundation of arithmetic which have been based
upon it: The properties of integers and of operations with them are to
be deduced from the general properties and abstract relations of point sets,
in order that the foundation may be as sound and general as possible.

! With the addition to the title ‘‘fiir héhere Lehranstalten’” (Berlin 1861).
The corresponding chapters are reprinted in H. Grassmann’s Gesammelten mathe-
matischen und physikalischen Werken (edited by F. Engel), Vol. II, 1, pp. 295— 349.
Leipzig 1904.

2 Augustae Taurinorum. Torino 1889. [There is a more comprehensive
presentation in Peano’s Formulaire de Mathématiques (1892—1899).
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-One of the pioneers along this path was Richard Dedekind, who, in his
small but important book Was sind und was sollen die Zahlen?1, attempted
such a foundation for integers. H. Weber inclines to this point of view
in the first part of Weber-Wellstein, volume I (See p. 3). To be sure,
the deduction is quite abstract and offers, still, certain grave difficulties,
so that Weber, in an Appendix to Volume III2, gave a more elementary
presentation, using only finite point sets. In later editions, this appendix
is incorporated into Volume I. Those of you who are interested in such
questions are especially referred to this presentation.

4. Finally, I shall mention the purely formal theory of numbers, which,
indeed, goes back to Leibniz and which has recently been brought into
the foreground again by Hilbert. His address Uber die Grundlagen der
Logik und Arithmetik* at the Heidelberg Congress in 1904 is important
for arithemtic®. His fundamental conception is as follows: Once one
has the eleven fundamental rules of reckoning, one can operate with the
letters @, b, c, . . ., which actually represent arbitrary integers, without
bearing in mind that. they have a real meaning as numbers. In other
words: let a, b, c, . . ., be things devoid of meaning, or things of whose
meaning we know nothing; let us agree only that one may combine
them according to those eleven rules, but that these combinations need
not have any real known meaning. Obviously one can than operate
with @, b, c, . . ., precisely as one ordinarily does with actual numbers.
Only the question arises here whether these operations could lead one to
contradictions. Now ordinarily one says that intuition shows us the
existence of numbers for which these eleven laws hold, and that it is
consequently impossible for contradictions to lurk in these laws. But
in the present case, where we are not thinking of the symbols as having
definite meaning, such an appeal to perception is not permissible. In
fact, there arises the entirely new problem, to prove logically that no oper-
ations with our symbols which are based on the eleven fundamental laws
can ever lead to a contradiction, 1. e., that these eleven laws are consistent,
or compatible. While we were discussing the first point of view, we took
the position that the certainty of mathematics rests upon the €xistence
of intuitional things which fit its theorems. The adherents of this formal
standpoint, on the other hand, must hold that the certainty of mathematics
rests wpon the possibility of showing that the fundamental laws considered
formally and without reference to their imtustional comtent, comstitute a
.logically consistent system.

1 Braunschweig 1888; third edition 1911. o

* Angewandte Elementarmathematik. Revised by H. Weber, J. Wellstein,
R. H. Weber. Leipzig 1907.

* On the foundations of logic and arithmetic.

8 Verhandlungen des 3. internationalen Mathematikerkongresses in Heidelberg
August 8—13, 1904, p. 174 et seq., Leipzig 1905.
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I shall close this discussion with the following remarks:

a) Hilbert indicated all of these points of view in his Heidel-
berg address, but he followed none of them through completely.
Afterwards he pushed them somewhat farther in a course of lectures,
but then abandoned them. We can thus say that here is a field for
investigation.

b) The tendency to crowd intuition completely off the field and to
attain to really pure logical investigations seems to me not completely
feasible. It seems to me that one must retain something, albeit a minimum,
of intuition. One must always use a certain intuition in the most ab-
stract formulation with the symbols one uses in operations, in order to
recognize the symbols again, even if one thinks only about the shape of
the letters.

c) Let us even assume that the proposed problem has been solved
in a way free from objection, that the compatibility of the eleven funda-
mental laws has been proved logically. Precisely at this point an opening
is offered for a remark which I should like to make with the utmost
emphasis. One must see clearly that the real arithmetic, the theory of actual
integers, 1s neither established, nor can ever be established, by considerations
of this mature. It is impossible to show in a purely logical way that the
laws whose consistency is established in that manner are actually valid
for the numbers with which we are intuitionally familiar; that the
undefined things of which we speak, and the operations which we apply
to them, can be identified with actual numbers and with the processes
of addition and multiplication in their intuitively clear significance.
What is accomplished is, rather, that the tremendous problem of butlding
the foundations of arithmetic, unassailable in its complexity, is split into
two parts, and that the first, the purely logical problem, the setting up
of independent fundamental laws or axioms and the investigation of them
as to independence and comsistency has been made available to study.
The second, the more epistemological part of the problem, which has
to do with the justification for the application of these laws to actual
conditions, is not even touched, although it must of course be solved
also if one will really build the foundations of arithmetic. This second
part presents, in itself, an extremely profound problem, whose diffi-
culties lie in the general field of epistemology. I can characterize its
standing most clearly perhaps, by the somewhat paradoxical remark
that anyone who tolerates only pure logic in investigations in pure
mathematics must, to be consistent, look upon the second part of the
problem of the foundation of arithmetic, and hence upon arithmetic
itself, as belonging to applied mathematics.

[* Concerning more recent developments in these investigations, see the pre-
ceding footnote.] '
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I have felt obliged to go into detail here very carefully, in as much
as misunderstandings occur so often at this point, because people simply
overlook the existence of the second problem. This is by no means the
case with Hilbert himself, and neither my disagreement nor my agree-
ment with him is a warranted conclusion if it be based on such an
assumption.

Thomae of Jena, coined the neat expression ‘‘thoughtless thinkers’
for those persons who confine themselves exclusively to these abstract
investigations concerning things that are devoid of meaning, and to
theorems that tell nothing, and who forget not only that second problem
but often also all the rest of mathematics. This facetious term cannot
apply, of course, to people who carry on those investigations alongside
of many others of a different sort.

In connection with this brief survey of the foundation of arithmetic,
I shall bring to your notice a few general matters. Many have thought
that one could, or that one indeed must, teach all mathematics deduc-
tively throughout, by starting with a definite number of axioms and de-
ducing everything from these by means of logic. This method, which
some seek to maintain upon the authority of Euclid, certainly does not
correspond to the historical development of mathematics. In fact,
mathematics has grown like a tree, which does not start at its tiniest
rootlets and grow merely upward, but rather sends its roots deeper
and deeper at the same time and rate that its branches and leaves are
spreading upward. Just so — if we may drop the figure of speech —, mathe-
matics began its development from a certain standpoint corresponding
to normal human understanding, and has progressed, from that point,
according to the demands of science itself and of the then prevailing
interests, now in the one direction toward new knowledge, now in the
other through the study of fundamental principles. For example, our
standpoint today with regard to foundations is different from that of
the investigators of a few decades ago; and what we today would state
as ultimate principles, will certainly be outstripped after a time, in
that the latest truths will be still more meticulously analyzed and
referred back to something still more general. We see, then, that as
regards the fundamental investigations in mathematics, there is no final
ending, and therefore, on the other hand, no first beginning, which could
offer an absolute basis for instruction.

Still another remark concerning the relation between the logical and
the intuitional handling of mathematics, between pure and applied
mathematics. I have already emphasized the fact that, in the schools,
applications accompany arithmetic from the beginning, that the pupil
learns not only to understand the rules, but to do something with them.
And it should always be so in the teaching of mathematics! Of course,
the logical connections, one might say the rigid skeleton in the mathematical
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organism, must remain, in order to give it its peculiar trustworthiness.
But the living thing in mathematics, its most important stimulus, its
effectiveness in all directions, depends entirely upon the applications,
i. e., upon the mutual relations between those purely logical things and
all other domains. To banish applications from mathematics would be
comparable to seeking the essence of the living animal in the skeleton
alone, without considering muscles, nerves and tissues, instincts, in short,
the very life of the animal.

In scientific snvestigation there is often, to be sure, a division of labor
between pure and applied science, but when this happens, provision
must be made otherwise for maintaining their connection if conditions
are to remain sound. In any case, and this should be especially emphasiz-
ed here, for the school such a division of labor, such a fareaching specializ-
ation of the individual teacher, is not possible. To put the matter crassly,
imagine that at a certain school a teacher is appointed who treats
numbers only as meaningless symbols, a second teacher who knows how
to bridge the gap from these empty symbols to actual numbers, a third,
a fourth,.a fifth, finally, who understands the application of these
numbers to geometry, to mechanics, and to physics; and that these
different teachers are all turned lose upon the pupils. You see that
such an organization of teaching is impossible. -In this way, the things
could not be brought to the comprehension of the pupils, neither would
the individual teachers be able even to understand each other. The
needs of school instruction itself require precisely a certain many sided-
ness of the individual teacher, a comprehensive orientation in the field
of pure and applied mathematics, in the broadest sense, and in-
clude thus a desirable remedy against a too extensive splitting up of
science.

In order to give a practical turn to the last remarks I refer again to
our above mentioned Dresden Proposals. There we recommend outright
that applied mathematics, which since 1898 has been a special subject
in the examination for prospective teachers, be made a required part
in all normal mathematical training, so that competence to teach pure
and applied mathematics should always be combined. In addition to
this, it should be noted that, in the Meran Curriculum? of the Commis-
sion of Instruction, the following three tasks are announced as the
purpose of mathematical instruction in the last school year:

1. A scientific survey of the systematic structure of mathematics.

2. A certain degree of skill in the complete handling, numerical and
graphical, of problems.

1 Reformvorschldge fiir denm mathematischen und naturwissenschaftlichen Unter-
vicht, viberveicht dey Veysammlung der Natuyforscher und Arzte zu Mevan. Leipzig,
1905. — See also a reprint in the Gesamtbericht der Kommission, p. 93, as well as
in Klein-Schimmack, p. 208.
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3. An appreciation of the significance of mathematical thought for a
knowledge of nature and for modern culture. _
_All these formulations I approve with deep conviction.

‘4-. Practice in Calculating with Integers

Turning from discussions which have been chiefly abstract, let us
give our attention to more concrete things by considering the carrying
out of numerical calculation. As suitable literature for collateral reading,
I should mention first of all, the article on Numerisches Rechnen by
R. Mehnicke! in the Enzyclopidie. I can best give you a general view
of the things that belong here by giving a brief account of this article.
It is divided into two parts: A. Die Lehre vom genauen Rechmnen*, and
B. Die Lehre vom geniherten Rechmnen**. Under A occur all methods
for simplifying exact calculation with large integers. Convenient devices
for calculating, tables of products and squares, and in particular, calcu-
lating machines, which we shall discuss soon. Under B, on the other
hand, one finds a discussion of the methods and devices for all calculating
in which only the order of magnitude of the result is important, especially
logarithmic tables and allied devices, the slide rule, which is only an
expecially well-arranged graphical logarithmic table; finally, also, the
numerous important graphical methods. In addition to this reference I
can recommend the little book by J. Liiroth, Vorlesungen iiber nume-
risches Rechnen®***, which, written in agreeable form by a masterof the
subject, gives a rapid survey of this field.

From the many topics that have to do with calculating with integers,
I shall select for discussion only the calculating machine, which you will

“find in use, in a great variety of ingenious forms, by the larger banks
and business houses, and which is really of the greatest practical signi-
ficance. We have in our mathematical collection one of the most widely
used types, the “Brunsviga”, manufactured by the firm Brunsviga-
Maschinenwerke Grimme, Natalis & Co. A.-G. in Braunschweig. The design
originated with the Swedish engineer Odhner, but it has been much chan-
ged and improved. Is hall describe the machine here in some detail, asa
typicalexample. Youwill find otherkinds described in the books mentioned
above3. My description of course can give you a real understanding of the

1 Enzyklopidie der mathematischen Wissenschaften, Band I, Teil II. See
also v. Sanden, H., Practical Mathematical Analysis (Translation by Levy), Dutton
& Co. — Horsburgh, E. M., Modern Instruments and Methods of Calculation.
" Bell & Sons.

* The Theory of Exact Calculation.

** The Theory of Approximate Calculation.

2 Leipzig 1900.

**k Lectures on Numerical Calculation.

[® Concerning other types of calculating machines, see also A. Galle, Mathe-

matische Instrumente, Leipzig 1912.]

Klein. Elementarvy Mathematics. . 2
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machine only if you examine it afterwards personally and if you see,
by actual use, how it is operated. The machine will be at your disposal,
for that purpose, after the lecture.

So far as the exiernal appearance of the Brunsviga is concerned, it
presents schematically a picture somewhat as follows (see Fig. 1, p. 18).
There is a fixed frame, the “drum’’, below which and sliding on it, is
a smaller longish case, the “slide”. A handle which projects from the
drum on the right, is operated by hand. On the drum there is a series
of parallel slits, each of which carries the digits 0,1,2,...,9, read
downwards; a peg s projects from each slit and can be set at pleasure
at any one of the ten digits. Corresponding to each of these slits there
isan opening on the slide under which a digit can appear. Figure 3, p. 19
gives a view of a newer model of the machine.

I think that the arrangement of the machine will be clearer if I
describe to you the process of carrying out a definite calculation, and
the way in which the machine

. 9w fal 4 brings it about. For this I select
2[5 2| 5] 2|m T

14071 3s multiplication.
q19 {¢ H The procedure is as follows:
l HE KR E One first sets the drum pegs on the
multiplicand, 1i.e., beginning at
oo ©000 the riglt, one puts the first
Fig. 1. Before the first turn. lever at the one’s digit, the se-
- cond at the ten’s digit of the
b 2 e Z - multiplicand, etc. If, for example,
d|d|ys the multiplicand is 12, one sets
1 119 13 the first lever at 2, the second
s lever at 1; all the other levers
@O0 © 00 @ remain at zero (see Fig.1). Now
turn the handle once around,
Fig. 2. After the first. tum. clockwise. The multiplicand ap-

pears under the openmgs of the slide, in our case a 2 in the first opening
from the right, a 1 in the second, while zeros remain in all the others.
Simultaneously, however, in the first of a series of openings in the slide, at
the left, the digit 1 appears to indicate that we have turned the handle
once (Fig. 2). If now one has to do with amultiplier of one digit, one turns
the handle as many times as this digit indicates, the multiplier will then
be exhibited on the slide to the left, while the product will appear on the
slide to the right. How does the apparatus bring this result about? In
the first place there is attached to the under side of the slide, at the
left, a cogwheel which carries, equally spaced on its rim, the digits
0,1,2,...,9. By means of a driver, this cogwheel is rotated through
one tenth of its perimeter with every turn of the handle, so that a digit
becomes visible through the opening in the slide, which actually indicates
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the number of revolutions, in other words the multiplier. Now as to
the obtaining of the product, it is brought about by similar cogwheels,
one under each opening at the right of the slide. But how is it that
by one and the same turning of the handle, one of these wheels, in the
above case, moves by
one unit, the other
by two? This is
where the peculiarity

in construction of the
Brunsviga appears.
Under each slit of the
drum there is a;ﬂat
wheel-shaped  disc
(driver) attached to
the axle of the handle,
upon which there are ‘
nine teeth which are - "y ——
movable in a radial di- 5 e c
rection (see Fig. 4). By éfyg i
means of the projecting : éEﬂF

peg S, mentioned above,
one can turn a ring;R
which rests upon the
periphery of the disc, Nosars2 g/ rovig Moscranwere
so that, according to :

the mark upon which
one sets S in the slit,
0,1,2,...,9 of the
movable teeth spring outward (in
Fig. 4, two teeth). These teeth
engage the cogs under the corre-
sponding openings of the slide, so
that with one turn of the handle
each driver thrusts forward the corre-
sponding cogwheel by as many units
as there are teeth pushed out,i.e., by
as many teeth as one has set with the
corresponding peg S. Accordingly,
in the above illustration, when we start at the zero position, and
turn the handle once, the units wheel must jump to 2, the ten’s
wheel to 1, so that 12 appears. A second turn of the handle moves
the units wheel another 2 and the tens wheel another 1, so that 24 ap-
pears, and similarly, we get, after 3 or 4 times, 3 - 12 = 360r4-12 =48,
respectively.

Driving wheel
Cogwheel  Fig. 4.

2%
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But now turn the handle a fifth time: Again, according to the
account above, the units wheel should jump again by two units, in other
~ words back to 0, the tens wheel by one, or to 5, and we should have
the false result 512 = 50. In the actual turning, however, the slide
shows 50, to be sure, until just before the completion of the turn; but
at the last instant the § changes into 6, so that the correct result appears.
Something has come into action now that we have not yet described,
and which is really the most remarkable point of such machines: the
so called carrying the tens. Its principle is as follows: when one of the
number bearing cogwheels under the slide (e.g., the umits wheel) goes
~ through zero, it presses an otherwise inoperative tooth of the neighboring
driver (for the tems) into position, so that it engages the corresponding
cogwheel (the tens wheel) and pushes this forward ome place farther than
it would have gone otherwise. You can understand the details of this
construetion only by examining the apparatus itself. There is the less
need for my-going into particulars here because it is just the method
of carrying the tens that is worked out in the greatest variety of ways
in the different makes of machines, but I recommend a careful examina-
tion of our machine as an example of a most ingenious model. Our
collection contains separately the most important parts of the Brunsviga
—which are for the most part invisible in the assembled machine—so
that you can, by examining them, get a complete picture of its ar-
rangement..

We can best characterize the operation of the machine, so far as
we have made its acquaintance, by the words adding machine, because,
with every turn of the handle, it adds, once, to the number on the shide at
the right, the number which has been set on the drum.

Finally, I shall describe in general that arrangement of the machine
which permits convenient operation with multipliers of more than one
digit. If we wish to calculate, say,
15 + 12 we should have to turn the
:” handle fifteen times, according to

the plan already outlined ; moreover,

if one wished to have the multiplier
N

Q|
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indicated by the counter at the left

© @ © 000 of the slide, it would be necessary
Fig. 5. to have, there also, a device for

‘ carrying the tens. Both of these
difficulties are avoided by the following arrangement®. We first perform
the multiplication by five, so that 5 appears on the slide at the left
and 60 at the right (see Fig. 5). Now we push the slide one place to the

1 In the newer models the cogwheel device for ‘“carrying over” is likewise
very complete. :
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right, so that, as shown in Fig. 5, its units cogwheel is cut out, its
tens cogwheel is moved under the units slit of the drum, its hundreds
cogwheel under the tens slit, etc., while, at the left, this shift brings
it about that the tens cogwheel, instead of the units, is connected
with the driver which the handle carries. If we now turn the handle
once, 1 appears at the left, in ten’s place, so that we read 15; at the

+12
other words, 60 4 120, since the 2 is ““‘carried over” to the tens wheel,
the 1 to the hundreds wheel. Thus we get correctly 1512 = 180.
It is, as you see, the exact mechanical translation of the customary process
of written multiplication, in which one writes down under one another,
the products of the multiplicand by the successive digits of the
multiplier, each product moved to the left one place farther than the
preceding, and then adds. In just the same way ome proceeds quite
generally when the multiplier has three or more digits, that is, after the

6 .
right, however, we do not get the addition { % but { 1 SO or, in

usual multiplication by the ones, one moves the slide 1,2, ... places to
the right and turns the handle in each place as many times as the digit
wn the tens, hundreds, . .. place of the multiplier indicates.

Direct examination of the machine will disclose how one can perform
other calculations with it; the remark here will suffice that subtraction
and division are effected by turning the handle in the direction opposite
to that employed in addition.

Permit me to summarize by remarking that the theoretical principle
of the machine is quite elementary and represents merely a technical
realization of the rules which one always uses 1n numerical calculation.
That the machine really functions reliably, that all the parts engage
one another with unfailing certainty, so that there is no jamming, that
the wheels do not turn farther than is necessary, is, of course, the
remarkable accomplishment of the man who made the design, and the
mechanician who carried it out.

Let us consider for a moment the general significance of the fact that
there really are such calculating machines, which relieve the mathematician
of the purely mechanical work of numerical calculation, and which do
this work faster, and, to a higher degree free from error, than he himself
could do it, since the errors of human carelessness do not creep into
the machine. In the existence of such a machine we see an outright
. confirmation that the rules of operation alome, and not the meaning of
the numbers themselves, are of importance in calculating, for it is only
these that the machine can follow; it is constructed to do just that;
it could not possibly have an intuitive appreciation of the meaning of
the numbers. We shall not, then, wish to consider it as accidental that
such a man as Leibniz, who as both an abstract thinker of first rank
‘and a man of the highest practical gifts, was, at the same tine, both
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the father of purely formal mathematics and the inventor of a calcu-
lating machine. His machine is, to this day, one of the most prized
possessions of the Kastner Museum in Hannover. Although it is not
historically authenticated, still I like to assume that when Leibniz
invented the calculating machine, he not only followed a useful purpose,
but that he also wished to exhibit, clearly, the purely formal character
of mathematical calculation.

With the construction of the calculating machine Leibniz certainly
did not wish to minimize the value of mathematical thinking, and yet it
is just such conclusions which are now sometimes drawn from the
existence of the calculating machine. If the activity of a science can be
supplied by a machine, that science cannot amount to much, so it is
said; and hence it deserves a subordinate place. The answer to such
arguments, however, is that the mathematician, even when he is himself
operating with numbers and formulas, is by no means an inferior counter-
part of the errorless machine, “thoughtless thinker” of Thomae; but
rather, he sets for himself his problems with definite, interesting, and
valuable ends in view, and carries them to solution in appropriate and
- original manner. He turns over to the machine only certain operations
which recur frequently in the same way, and it is precisely the mathe-
matician—one must not forget this—who invented the machine for his
own relief, and who, for his own intelligent ends, designates the tasks
which it shall perform.

Let me close this chapter with the wish that the calculating machine,
in view of its great importance, may become known in wider circles
than is now the case. Above all, every teacher of mathematics should
become familiar with it, and it ought to be possible to have it demon-
strated in secondary instruction.

II. The First Extension of the Notion of Number

With the last section we leave operations with integers, and shall
treat, in a new chapter, the extension of the number concept. In the
schools it is customary, in this field, to take in order the following steps:

1. Introduction of fractions and operations with fractions.

2. Treatment of negative numbers, in connection with the beginnings
of operations with letters.

3. More or less complete presentation of the notion of irrational numbers
by examples that arise wpon different occasions, which leads, then, gra-
dually, to the notion of the continuum of real numbers.

It is a matter of indifference in which order we take up the first
two points. Let us discuss negative numbers before fractions.
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1. Negative Numbers

Let us first note, as to terminology, that in the schools, one speaks
of positive and negative numbers, inclusively, as relative numbers in
distinction from the absolute (positive) numbers, whereas, in universities
this language is not common. Moreover, in the schools one speaks of
‘“algebraic numbers’’! along with relative numbers, an expression which
we in universities employ, as you know, in quite another sense.

Now, as to the origin and introduction of negative numbers, I can
be brief in my reference to source material; these things are already
familiar to you, or you can at least easily make them so with the help
.the references I shall give. You will find a complete treatment, for
example, in Weber-Wellstein; also, in very readable form, in H. Burk-
hardt’s Algebraischer Analysis2. This book, moreover, you might well
purchase, as it is of moderate size.

The creation of negative numbers is motivated, as you know, by
the demand that the operation of subtraction shall be possible in all cases.
If a < b then a — b is meaningless in the domain of natural integers;
a number ¢ = b — a does exist, however, and we write

a—b=—c¢

which we call a negative number. This definition at once justifies the
representation of all integers by means of the scale of equidistant points

} . t 1
-4 -3 -2 -1 0 +1 42 +3  +4

on a straight line the ““axis of abscissas’” which extends in both directions
from an origi. “Tuc wi, ;7 ~nusider this picture as a common possession
of all educated persons today, and one can, perhaps, assume that it
owes its general dissemination, chie.'v. to the thermometer scale. The
commercial balance, with its reckonw _ " debits and credits, affords
likewise a graphic and familiar picture of ncgative numbers.

Let us, however, realize at once and emphaticaily how extr- .. Jn. I,
difficult in principle is the step, which is taken in school when negative
numbers are introduced. Where the pupil before was accustomed to
represent visually by concrete numbers of things the numbers, and,
later, the letters, with which he operated, as well as the results which
he obtained by his operations, he finds it now quite different. He has
to do with something new, the “‘negative numbers”’, which have, imme-
~ diately, nothing in common with his picture of numbers of things, but
he must operate with them as though they had, although the operations

1 See, e. g. Mehler, Hauptsdtze der Elementarmathematik, Nineteenth edition,
p. 77, Berlin, 1895.

2 Leipzig 1903. [Third edition, revised by G. Faber, 1920.]—See also Fine, H.,
The Number-System of Algebra treated Theoretically and Historically, Heath.
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have graphically a meaning much less clear than the old ones. Here,
for the first time, we meet the transition from concrete to formal mathe-
matics. The complete mastery of this transition requires a high order
of ability in abstraction.

We shall now inquire in detail what happens to the operations of
calculation when negative numbers are introduced. The first thing to
notice is that addition and subtraction coalesce, substantially: The
addition of a positive number is the subtraction of the equal and opposite
negative number, In this connection, Max Simon makes the amusing
remark that, whereas negative numbers were created to make the
operation of subtraction possible without any exception, subtraction as
an independent operation ceased to exist by virtue of that creation.
For this new operation of addition (including subtraction) in the domain
of positive and negative numbers the five formal laws stated before
hold without change. These are, in brief (see p. 9 et seq.):

1. Always possible.

2. Unique.

3. Associative law.

4. Commutative law.

5. Monotonic law.

Notice, in connection with 5, that @« << b means, now, that a lies to
the left of b in the geometric representation, so that we have, for
example —2 < —1, — 3 < —2.

The chief point in the multiplication of positive and negative numbers
is the rule of signs, thata - (— ¢) = (—¢)*a = — (a - ¢),and (— ¢) (—¢)
= + (¢ ¢/). Especially the latter rule: ‘““Minus times minus gives plus”

" is often a dangerous stumbling block. W shall return presantlv to the
inner significance of these rules; ji* 10w we shall combine them into
a statement defining multiplicst10n of a series of positive and negative
numbers: The absolute val-€¢ of a product is equal to the product of the
absolute values of the.«t0rS; its sign is positive or negative according as
an even or an oaa number of factors is megative. With this convention,
multiplication in the domain of positive and negative numbers has again
the following properties:

1. Always possible.

2. Unique.

3. Associative.

4. Commutative.

5. Distributive with respect to addition.

There is a change only in the monotonic law; in its place one has
the following law:

6. If a> b then a- ¢ 2 b ¢ according as ¢ = 0.

Let us inquire, now, whether these laws, considered again purely
formally, are consistent. We must admit at once, however, that a purely
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logical proof of consistency is as yet much less possible here than it is.
in the case of integers. Only a reduction is possible, in the sense that
the present laws are consistent if the laws for integers are consistent.
But until this has been completed by a logical consistency proof for
integers, one will have to hold that the consistency of our laws is based
solely on the fact that there are intuitive things, with intuitive relations,
which obey these laws. We noted above, as such, the series of integral
points on the axis of abscissas and we need only indicate what the rules
of operation signify there: The addition 2’ = x + a, where a is fixed,
assigns to each point x a second point %, so that the infinite straight
line is simply displaced along itself by an amount 4, to the right or to
“the left, according as « is positive or negative. In an analogous manner,
the multiplication %’ = a - ¥ represents a similarity transformation of
the line into itself, a pure stretchlng for 2 > 0, a stretching together
with a reflexion in the origin for a < 0.

Permit me now to explain how, historically, all these things arose.
One must not think that the negative numbers are the invention of
some clever man who menufactured them, together with their con-
sistency perhaps, out of the geometric representation. Rather, during
a long period of development, the use of negative numbers forced itself,
so to speak, upon mathematicians. Only in the nineteenth century,
after men had been operating with them for centuries, was the con-
sideration of their consistency taken up.

Let me preface the history of negative numbers with the remark
that the ancient Greeks certainly had no negative numbers, so that
one cannot yield them the first place, in this case, as so many people
are otherwise prone to do. One must attribute this invention to the
Hindus, who also created our system of digits and in particular our zero.
In Europe, negative numbers came gradually into use at the time of
the Renaissance, just as the transition to operating with letters had
been completed. I must not omit to mention here that this completion
of operations with letters is said to have been accomplished by Vieta
in his book In Artem Analyticam Isagoge®.

From the present point of view, we have the so called parenthesis
rules for operations with positive numbers, which are, of course, con-
tained in our fundamental formulas, provided one includes the correpond-
ing laws for subtraction. But I should like to take them up somewhat
. in detail, by means of two examples, in order, above all, to show the
possibility of extremely simple intuitive proofs for them, proofs which
need consist only of the representation and of the word ‘“‘Look”!, as
was the custom with the ancient Hindus.

1. Given a > b and c > a, where a, b, ¢ are positive. Then a — b
is a positive number and is smaller than c, that is, ¢ — (2 — b) must

1 Tours 1591.
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exist as a positive number. Let us represent the numbers on the axis
of abscissas and note that the segment between the points b and a has
the length @ — b. A glance at the representation shows that, if we
take away from c¢ the segment @ — b, the result is the same as though
‘we first took away the entire segment a and then restored the part 4, i. e.,

(1) c—(@—bd=c—a+b.

2. Givena >bandc > d,; thena — band ¢ — d are positive integers.
We wish to examine the product (@ — b) - (¢ — d); for that purpose

; ! H ¢
a—b

draw the diagonally hatched rectangle (Fig. 6) with sides @ — b and
¢ — d whose area is the number sought, (@ — d) - (¢ — d), and which
is part of the rectangle with sides @ and ¢. In order to obtain the former
rectarigle from the latter, we take away first the horizontally hatched
rectangle a-d, then the vertically
hatched one b-c¢; in doing this we
have removed twice the double-hatched
rectangle b-d, and we must put it back.
But these operations express precisely
the known formula

(2) (a—b)(c—d)=ac—ad—bc+bd.

z As the most important psycholog-

Fig. 6. ical moment to which the introduction

of negative numbers, upon this basis of

operatlons with letters, gave rise, that general peculiarity of human
nature shows itself, by virtue of which we are involuntarily inclined to
employ rules under circumstances more general than are warranted by the
special cases under which the rules were derived and have validity. This was
first claimed as a guiding principle in arithmetic by Hermann Hankel, in
his Theorie der komplexen Zahisysteme*!, under the name “Prinzip von
der Permanenz der formalen Gesetze” **. I can recommend to your notice
this most interesting book. For the particular case before us, of transition
to negative numbers, the above principle would declare that one desired
to forget, in formulas like (1) and (2) the expressed assumptions as to
the relative magnitude of @ and b and to employ them in other cases.
If one applies (2), for example, to @ = ¢ = 0, for which the formulas
were not proved at all, one obtains (—b) * (—d) = + bd, i.e., the sign
rule for multiplication of megative numbers. In this manner we may
derive, in fact almost unconsciously, all the rules, which we must now

-<————a-

* Theory of Complex Number Systems.
1 Leipzig 1867.
** Principle of the permance of formal laws.
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designate, following the same line of thought, as almost necessary as-
sumptions, necessary insofar as one would have validity of the old rules
for the new concepts. To be sure, the old mathematicians were not happy
with this abstraction, and their uneasy consciences found expression in
names like tnvented numbers, false numbers, etc., which they gave to
the negative numbefs on occasion. But, in spite of all scruples, the
negative numbers found more and more general recognition in the
‘sixteenth and seventeenth centuries, because they justified themselves
by their usefulness. To this end, the development of analytic geometry
without doubt contributed materially. Nevertheless the doubts per-
sisted, and were bound to persist, so long as one continued to seek for
a representation in the concept of a number of things, and had not
recognized the leading role of formal laws when new concepts are set
up. In connection with this stood the continually recurring attempts
to prove the rule of signs. The simple explanation, which was brought
out in the nineteenth century, is that it is idle to talk of the logical
necessity of the theorem, in other words, the rule of signs is not
susceptible of proof; ome can only be concerned with recognizing the
logical permissibility of the rule, and, at the same time, that it is
arbitrary, and regulated by considerations of expedience, such as the
principle of permanence.

In this connection one cannot repress that oft recurring thought
that things sometimes seem to be more sensible than human beings.
Think of it: one of the greatest advances in mathematics, the intro-
duction of negative numbers and of operations with them, was not
created by the conscious logical reflection of an individual. On the
contrary, its slow organic growth developed as a result of intensive
occupation with things, so that it almost seems as though men had
learned from the letters. The rational reflection that one devised here
something correct, compatible with strict logic, came at a much later
time. And, after all, the function of pure logic, when it comes to setting
up new concepts, is only to regulate and never fo act as the sole guiding
principle; for there will always be, of course, many other conceptual
systems which satisfy the single demand of logic, namely, freedom from
contradiction. ,

If you desire still other literature concerning questions about the
history of negative numbers, let me recommend Tropfkes Geschichte der
Elementarmathematik'*, as an excellent collection of material containing,
in lucid presentation, a great many details about the development of
elementary notions, views, and names.

1 Two volumes, Leipzig 1902/03. [Second edition revised and much enlarged, to
appear in seven volumes, of which six had appeared by 1924.]— See also Cajori, F.,
History of Mathematics, Macmillan.

* History of Elementary Mathematics.
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If we now look critically at the way in which negative numbers
are presented in the schools, we find frequently the error of trying to
prove the logical necessity of the rule of signs, corresponding to the
above noted efforts of the older mathematicians. One is to derive
(=) (—d) = + bd heuristically, from the formula (@ — b) (¢ — d) and
to think that one has a proof, completely ignoing the fact that the
validity of this formula depends on the inequalities 2 > b, ¢ > d*. Thus
the proof is fraudulent, and the psychological consideration which would
lead us to the rule by way of the principle of permanence is lost in favor
of quasi-logical considerations. Of course the pupil, to whom it is thus
presented for the first time, cannot possibly comprehend it, but in the end
he must nevertheless believe it; and if, as it often happens, the repeti-
. tion in a higher class does not supply the corrective, the conviction may
become lodged with some students that the whole thing is mysterious,

incomprehensible.

' In opposition to this practice, I should like to urge you, in general,
never to attempt to make impossible proofs appear valid. One should
convince the pupil by simple examples, or, if possible, let him find out
for himself that, in view of the actual situation, precisely these con-
ventions, suggested by the principle of permanence, are appropriate in that
they yield a uniformly convenient algorithm, whereas every other convention
would always compel the consideration of numerous special cases. To be
sure, one must not be precipitate, but must allow the pupil time for
the revolution in his thinking which this knowledge will provoke. And
while it is easy to understand that other conventions are not advanta-
geous, one must emphasize to the pupil how really wonderful the fact
is that a general useful convention really exists; it should become clear
to him that this is by no means self-evident.

With this I close my discussion of the theory of negative numbers
and invite you now to give similar consideration to the second extension
of the notion of number,

9. Fractions. l

Let us begin with the treatment of fractions in the schools. There
the fraction a/b has a thoroughly concrete meaning from the start. In
contrast to the graphic picture of the integer, there has been only a
change of base: We have passed from the number of things to their
measure, from the consideration of countable things to measurable things.
The system of coins, or of weights, affords, with some restriction, and
the system of lengths affords completely, an example of measurable mani-
folds. These are the examples with which the idea of the fraction is

.1 See, for example, E. Heis, Sammlung von Beispielen und Aufgaben aus der
Avithmetik und Algebra. Edition 1904, p. 46, 106—108. s ’
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given to every pupil. No one has great difficulty in grasping the meaning
of 1/, meter oder !/, pound. The relations =, >, <, between fractions
can be immediately developed by means of the same concrete intuition,
and likewise the operations of addition and subtraction, as well as the
multiplication of a fraction by an integer. After this, general multiplication
- can easily be made cqfnprehensible: To multiply a number by a/b means
to multiply it by a and then to divide by b; in other words: the product is
derived from the multiplicand just as alb is derived from 1. Division by
a fraction is then presented as the operation inverse to multiplication:
a divided by 2[3 is the number which multiplied by 2/3 gives a. These
notions of operations with fractions combine with that of negative
numbers so that one finally has the totality of all rational numbers.
I cannot enter into the details of this building-up process, which, in the
school, takes, of course, a long time. Let us rather compare it at once
with the perfected presentation of modern mathematics, using for
this purpose the above mentioned books of Weber-Wellstein and
Burkhardt!. »
Weber-Wellstein emphasizes primarily the formal point of view which,
from the multiplicity of possible interpretations, selects what is of
necessity common to all. According to this view, the fraction a/b is
a symbol, a “number-pair’” with which one can operate according to
certain rules. These rules, which in our discussion above arose naturally
from the meaning of fraction, have here the character of arbitrary con-
ventions. For example, that which, to the pupil, is an obvious theorem
concerning the multiplication or division of both terms of a fraction
by the same number, appears here as a definition of equality: fwo
fractions afb, c/d are called equal when ad = bc. Similarly, greater than

and smaller than are defined, and one agrees that the fraction (a db-;bo)

shall be called the sum of the two fractions alb, c/d, etc. It is thus proved
that the operations, so defined in the new domain of numbers, possess
formally exactly the properties of addition and multiplication for in-
tegers, i. e., they satisfy the eleven fundamental laws which have been
repeatedly enumerated.

Burkhardt does not proceed quite so formally as does Weber-Well-
stein, whose presentation we have sketched in its essentials. He looks
upon the fraction ajb as a sequence of two operations in the domain of
integers: a multiplication by a and a division by b, in which the object
- upon which these operations are performed is an arbitrarily chosen
- integer. If one undertakes two such “pairs bf operations” alb, c/d, this
is said to correspond to multiplication of the fractions, and one sees easily
that the operation so resulting is none other than multiplication by a - ¢
and division by b - d, so that the rule for the multiplication of fractions,

1 In what follows, the first editions of these books have been used.
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(—:—) (—2—) = (Z d) 1s obtained out of the clear meaning of the fractions,

but not determined merely as an arbitrary convention. One can, of
course, treat division in the same way. Addition and subtraction, on

the other hand, do not admit of such a simple explanation with this

representation ; thus the formula + d (a—db_%z'—)remains,withBurk-

hardt also, only a convention for which he adQuces only reasons of
plausibility.

Let us now compare the older presentatlon in the schools, with the
modern conception just sketched. According to the latter, in the one
book as well as in the other, we are left really completely in the field of
integers, in spite of the extension of the notion of number. It is merely
assumed that the totality of whole numbers is intuitively grasped, or
that the rules of operation with them are known; the things newly
defined as number-pairs, or as operations with whole numbers, fit
completely into this frame. The school treatment, on the other hand,
is based entirely on the newly acquired conception of measurable quan-
tities, which supplies an immediate intuitive picture of fractions. We
can best grasp this difference if we imagine a being who has the notion
of whole numbers, but no conception of measurable quantities. For him
- the school presentation would be wholly unintelligible, whereas he could
well comprehend the discussions of either Weber-Wellstein or Burkhardt.

Which of the two methods is the better? What does each accomplish?
The answer to this will be like the one we gave recently when we put
the analogous question concerning the different conceptions of integers.
The modern presentation is surely purer, but it is also less rich. For,
of that which the traditional curriculum supplies as a unit, it gives
really only one part: the abstract and logically complete introduction
of certain arithmetic concepts, called “fractions”, and of operations with
them. But it leaves unexplained an entirely independent and no less
important question: Can one really apply the theoretical doctrine so
derived, to the concrete measurable quantities about us? Again one
could call this a problem of “applied mathematics’’, which admits an
entirely independent treatment. To be sure, it is questionable whether
such a separation would be desirable pedagogically. In Weber-Wellstein,
moreover, this splitting of the problem into two parts finds characteristic
expression. After the abstract introduction of operations with fractions,
of which alone we have thus far taken account, they devote a special
(the fifth) division—called ‘“‘ratios’”’ —to the question of applying rational
numbers to the external world. The presentation is, to be sure, rather
abstract than intuitive.

I shall now close this discussion of fractions with a general remark
concerning the totality of rational numbers, where, for the sake of
clearness, I shall make use of the representation upon a straight line.
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Think of all points with rational abscissas marked upon this line; we
designate them briefly as rational points. We say, then, that the totality
of these rational points on the axis of abscissas is ‘““dense”, meaning
that in every interval, however small, there are still infinitely many
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rational points. If we wish to avoid putting anything new into the
notion of rational numbers, we might say, more abstractly, that between
any two rational points there is always another rational point. It follows
that one can separate from the totality of rational points, finite parts
which contain neither a smallest nor a largest element. The totality
of all rational points between 0 and 1, these points excluded, is an
example. For, given any number between 0 and 1, there would still
be a number between it and 0, i.e., a smaller, and a number between
it and 1, i. e., a larger. In their systematic development, these concepts
belong to the theory of point sets of Cantor. In fact, we shall make use
later of the totality of rational numbers, together with the property
just mentioned, as an important example of a point set.

I shall pass now to the third extension of the number system: the
irrational numbers. ‘

3. Irrational Numbers.

Let us not spend any time in discussing how this field is usually
treated in the schools, for there one does not get much beyond a few
examples. Let us rather proceed at once to the historical development.
Historically, the origin of the cgncept of irrational
numbers lies certainly in geometric intuition and in
the requirements of geometry. If we consider, as , 124
we did just now, that the set of rational points is
dense on the axis of abscissas, then there are still -
other points onit. Pythagoras is said to have shown
this in a manner somewhat as follows. Given a right
triangle with each leg of length 1, then the hypotenuse is of length

Fig. 7.

VY2, and this is certainly not a rational number; for if one puts V2= %

where a and b are integers, prime to each other, one is led easily by the
laws of divisibility of integers to a contradiction. If we now lay off
geometrically on the axis of abscissas, beginning at zero, the segment thus
constructed, we obtain a non-rational point which is not one of the original
set that is dense on the axis. Furthermore, the Pythagoreans certainly
were aware that, in most cases, the hypotenuse, Ym?2 + %2, of a right
_ triangle with legs » and #, is irrational. The discovery of this extra-
. ordinarily essential fact was indeed worth the sacrifice of one hundred
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oxen with which Pythagoras is said to have celebrated it. We know.also
that the Pythagorean School was fond of searching out those special pairs
of values for m and » for which the right triangle has three commensurable
sides, whose lengths, in an appropriately selected unit of measure, can |
be expressed in integers (so called Pythagorean numbers). The simplest
example of one of these number-triples is'3, 4§&5 .

Later Greek mathematicians studied, in addition to these 31mp1est
irrationalities, others that were more complicated; thus one finds in

Euclid types such as ‘/}/a + }/3, and the like. We may say, however,
in general, that they confined themselves essentially to such irrationali-
ties as one obtains by repeated extraction of square root, and which
can therefore be' constructed geometrically with ruler and compasses.
The general idea of irrational number was not yet known to them.
1 must, modify this remark somewhat, however, in order to avoid
misunderstanding. The more precise statement is that the Greeks
possessed no method for producing or defining, arithmetically, the
general irrational number in terms of rational numbers. This is a result
of modern development and will soon engage our attention. Nevertheless,
from another point of view they were familiar with the notion of the
general real numbér which was not necessarily rational; but the concept
had an entirely different appearance to them because-they did not use
letters for general numbers. In fact they studied, and Euclid developed .
very systematically, ratios of two arbitrary segments. They operated with
such ratios precisely as we do today with arbitrary real numbers. In-
deed we find in Euclid definitions which suggest strongly the modern
theory of irrational numbers. Moreover the name used is different from
that of the natural number; the latter is called dgufuos, whereas the
line ratio, the arbitrary real number, is called Adyos.

I should like to add a remark concerning the word “irrational”. It
is without doubt the translation into Latin of the Greek ""i.o;-og .
The Greek word, however, meant presumably “inexpressible” and im-
plied that the new numbers, or line ratios, could not, like the rational
numbers, be expressed- by the ratio of two whole numbers!. The
misunderstanding put upon the Latin “ratio”, that it could convey
only the meaning “‘reason”, gave to “irrational” the meaning “unreaso-
nable”, which seems still to cling to the term srrational number.

The general idea of the irrational number appeared first at the end
of the sixteenth century as a consequence of the introduction of decimal
fractions, the use of which became established at that time in connection
with the appearance of logarithmic tables. If we transform a rational
number into a decimal, we may obtain-infinite decimals?, as well as finite

1 See Tropfke, second edition, Vol. 2, p. 71.
- For complete treatment of this subject see, p. 40 et seq.
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decimals, but they will always be periodic. The simplest example is
3 =0.333 ..., i.e., a decimal whose period of one digit begins imme-
diately after the decimal point. Now there is nothing to prevent our
thinking of an aperiodic decimal whose digits proceed according to any
definite law whatever, and anyone would instinctively consider it as
a definite, and hence# non-rational, number. By this means the general
notion of irrational number is established. It arose to a certain extent
automatically, by the consideration of decimal fractions. Thus, histori-
cally, the same thing happened with irrational numbers that, as we have
seen, happened with negative numbers. Calculation forced the intro-
duction of the new concepts, and without being concerned much as to
their nature or their motivation, one operated with- them, the more
particularly since they often proved to be extremely useful.

It was not until the sixth decade of the nineteenth century that the
need was felt for a more precise arithmetic formulation of the foun-
dations of irrational numbers. This occurred in the lectures which
Weierstrass delivered at about that date. In 1872, a general foundation
was laid simultaneously by G. Cantor of Halle, the founder of the theory
of point sets, and independently by R. Dedekind of Braunschweig. I
will explain Dedekind’s point of view in a few words. Let us assume
a knowledge of.the totality of rational numbers, but let us exclude
all space perception, which would force upon us forthwith the notion of
the continuity of the number series. With this understanding, in order
to attain to a purely arithmetic definition of the irrational number,
Dedekind sets up the notion of a “cuf” in the domain of rational numbers.
If 7 is any rational number, it separates the totality of rational numbers
into two parts 4 and B such that every number itn A is smaller than any
number in B and every rational number belongs to one of these two classes.
4 is the totality of all rational numbers which are smaller than 7, B those
that are larger, whereby 7 itself may be thought of indifferently as be-
longing to the one or to the other. Besides these “proper cuts’ there are
also “smproper cuts”, these being separations of all rational numbers
into two classes having the same properties except that they are not
brought about by a rational number, i. e., separations such that there
is neither a smallest rational number in B nor a largest in A. An example
of such an improper cut is supplied by, say, Y2 = 1.414... In fact,
every infinite decimal fraction defines a cut, provided one assigns to B
every rational number which is larger than every approximation to the
infinite decimal, and to 4 every other rational number; each number
in A would thus be equalled or exceeded by at least one approximation
(and hence by infinitely many). One can easily show that this cut is
proper if the decimal is periodic, improper if it is not periodic.

With these considerations as his basis, Dedekind sets up his definition,
which, from a purely logical standpoint, must be looked upon as an

Klein, Elementary Mathematics. 3
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arbitrary convention: A cut in the domain of rational numbers is called
a rational number or an irrational number according as the cut is proper
or improper. A definition of equality follows from this at once: Two
numbers are said to be equal if they yield the same cut in the domain of
rational numbers. From this definition we can immediately prove for
example, that, 1/, is equal to the infinite decimal 0.3333 . ... If we accept
this standpoint, we must demand a proof, i. e., a process of reasoning
depending upon the definition given, although this would appear quite
unnecessary to one approaching the subject naively. Moreover, such
a proof is immediate, if one reflects that every rational number smaller
than !/; will be exceeded ultimately by the decimal approximations,
whereas these are smaller than every rational number which exceeds 3.
The corresponding definition in the lectures of Weierstrass appears in
the following form: Two numbers are called equal if they differ by less
than awny preassigned constant, however small. The connection with the
preceding explanation is clear. The last definition becomes striking if
one reflects why 0.999 ... is equal to 1; the difference is certainly
smaller than 0.1, smaller than 0.01, etc., that is, it is exactly zero,
according to the definition.

If we enquire how it happens that we can admit the 1rrat10nal
numbers into the system of ordinary numbers and operate with them
in just the same way, the answer is to be found in the validity of the
monotonic law for the four fundamental operations. The principle is as
follows: If we wish to perform upon irrational numbers the operation of
addition, multiplication, etc., we can enclose them between ever narrowing
rational limits and perform wpon these limits the desired operations; then,
because of the validity of the monotonic law, the result will also be enclosed
between ever narrowing limits.

It is hardly necessary for me to explain these things in greater
detail, since very readable presenfations of them are easily available in
many books, especially in Weber-Wellstein and in Burkhardt. I hope
that you will read more fully than I could tell you here in these books,
about the definition of irrational numbers.

I should prefer, rather, to talk about something which you will
hardly find in the books, namely, how, after establishing this arithmetic
theory, we can pass to the applications in other fields. This applies in
particular, to analytic geometry, which to the naive perception appears
to be (and psychologically really is) the source of irrational numbers.
If we think of the axis of abscissa, with the origin and also the rational
points marked on it, as above, then these applications depend upon
the following fundamental principle: Corresponding to every rational or
wrrational number there is a point which has this number as abscissa and,
conversely, corresponding to every point on the line there is a rational or
an irrational number, viz., 1ts abscissa. Such a fundamental principle,
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which stands at the head of a branch of knowledge, and from.which
all that follows is logically deduced, while it itself cannot be logically
proved, may properly be called an axiom. Such an axiom will appear
intuitively obvious or will be accepted as a more or less arbitrary con-
vention, by each person according to his gifts. This axiom concerning
the one-to-one correspondence between real numbers on one hand, and
the points of a straight line on the other, is usually called the Cantor
axiom because G.Cantor was the first to formulate it specifically (in
the Mathematische Annalen, vol. 5, 1872).

This is the proper place to say a word about the nature of space
per.ccption.-r It is variously ascribed to two different sources of knowledge.
One the sensibly immediate, the empirical intuition of space, which we
can control by means of measurement. The other is quite different,
and consists in a subjective idealizing intuition, one might say, perhaps,
our inherent idea of space, which goes beyond the inexactness of sense
observation. I pointed out to you an analogous difference when we were
discussing the notion of number. We may characterize it best as follows:
It is immediately clear to us what a small number means, like 2 or 5,
or even 7, whereas we do not have such immediate intuition of a larger
number, say 2503. Immediate intuition is replaced here by the sub-
jective intuition of an ordered number series, which we derive from
the first numbers by mathematical induction. There is a similar situation
regarding space perception. Thus, if we think of the distance between
two points, we can estimate or measure it only to a limited degree of
exactness, because our eyes cannot recognize as different two line-scgments
whose difference in length lies below a certain limit. This is the concept
of the threshold of perception which plays such an important role in
psychology. This phenomenon still persists, in its essentials, when we
aid the eye with instruments of the highest precision; for there are
physical properties which prohibit our exceeding a certain degree of
exactness. For instance, optics teaches that the wave-length of light,
which varies with the color, is of the order of smallness of 1/,30o mm.
(= 1 micron); it shows also that objects whose dimensions are of this
order of smallness cannot be seen distinctly with the best microscopes
because diffraction enters then and hence no optical image can give
exact reproductions of the details. The result of this is the impossibility, by
divect optical means, of getting measures of length that are finer than to
within one micron, so that, when measured lengths are given in millimeters,
‘only the first three decimals can have an assured meawing. In the same
way, in all physical observations and measurements, one meets such
threshold values which cannot be passed, which determine the extreme
limits of possible exactness of lengths which have been measured and
expressed in millimeters. Statements beyond this limit have no meaning,
and are an evidence of ignorance or of attempted deception. One often
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finds such excessively exact numbers in the advertisements of medicinal
springs where the percentage of salt, which really varies with the
time, is given to a number of decimal places which could not p0551b1y
be determind by weighing.

In contrast with this property of empirical space perception which
is restricted by limitations on exactness, abstract, or ideal space perception
demands unlimited exactness, by virtue of which, in view of Cantor’s axiom,
it corresponds exactly to the arithmetic definition of the number concept.

In harmony with this division of our perception, it is natural to
divide mathematics also into two parts, which have been called mathe-
matics of approximation and the mathematics of precision. If we desire
to explain this difference by an interpretation of the equation f () = 0,
we may note that, in the mathematics of approximation, just as in our
empirical space perception, one is not concerned that f (¥) should be
exactly * zero, but merely that its absolute value |f (x)| should remain
below the attainable threshold of exactness e. The symbol f® =0is
merely an abbreviation for the inequality |f(x)| < &, with which one
is really concerned. It is only in the mathematics of precision that one
insists that the equation f (¥) = 0 be exactly satisfied. Since mathe-
matics of approximation alone plays a réle in applications, one might
say, somewhat crassly, that one needs only this branch of mathematics,
whereas the mathematics of precision exists only for the intellectual
pleasure of those who busy themselves with it, and to give valuable
and indeed indispensable support for the development of mathematics
of approximation.

In order to return to our real subject, I add here the remark that
the concept of trrational number belongs certainly only to mathematics of
precision. For, the assertion that two points are separated by an ir-
rational number of millimeters cannot possibly have a meaning, since,
as we saw, when our rigid scales are measured in meters, all decimal
places beyond the sixth are devoid of meaning. Thus in practice we can,
without concern, replace irrational numbers by rational ones. This may
seem, to be sure, to be contradicted by the fact that, in crystallography,
one talks of the law of rational indices, or by the fact that in astronomy,
one distinguishes different cases according as the periods of revolution
of two planets have a rational or an irrational ratio. In reality, however,
this form of expression only exhibits the many-sidedness of language;
for one is using here rational and irrational in a sense entirely different
from that hitherto used, namely, in the sense of mathematics of approxi-
mation. In this sense, one says that two magnitudes have a rational
ratio when they are to each other as two small integers, say 3/7; whereas
one would call the ratio 2021/7053 irrational. We cannot say how large
numerator and denominator in this second case must be, in general,
since that depends upon the problem in hand. I discussed all these
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interesting relations in a course of lectures in the Summer Semester
of 1901, which was lithographed 1n 1902 and which will constitute the
third volume of the present work (see the preface to the third edition,
p- V): Applications of Differential and Integral Calculus to Geometry,
a Revision of Principles [Elaborated by C. H. Miiller].

In conclusion let me say, in'a few words, how I would have these
matters handled in the schools. An exact theory of irrational numbers
would hardly be adapted either to the interest or to the power of com-
prehension of most of the pupils. The pupil will usually be content
with results of limited exactness. He will look with astonished approval
upon correctness to within 1/,390 mm and will not demand unlimited
exactness. For the average pupil it will be sufficient if one makes the
irrational number intelligible in general by means of examples, and
this is what is usually done. To be sure, especially gifted individual
pupils will demand a more complete explanation than this, and it will
be a laudable exercise of pedagogical skill on the part of the teacher
to give such students the desired supplementary explanation without
sacrificing the interests of the majority.

III. Concerning Special Properties of Integers

We shall now begin a new chapter which will be devoted to the
actual theory of integers, to the theory of numbers, or arithmetic in its
narrower sense. I shall first recall in tabular form the individual ques-
tions from this science which appear in the school curriculum.

1. The first problem of the theory of numbers is that of divisibility:
Is one number divisible by another or not?

2. Simple rules can be given which enable us easily to decide as to
the divisibility of any given number by smaller numbers, such as 2, 3, 4,
5, 9, 11, etc.

3. There are infinitely many prime numbers, that is, numbers which
have no tntegral divisors except one and themselves): 2,3, 4, 5,9, 11, etc.

4. We are in control of all of the properties of given integers if we
know their decomposition into prime factors.

5. In the transformation of rational fractions into decimal fractions
the theory of numbers plays an important role; it shows why the decimal
fraction must be periodic and how large the period is.

Although such questions may be considered in secondary schools,
when the pupils are between the ages of eleven and thirteen, the theory
of numbers comes up only in isolated places during the later years,
and, at most, the following points are considered.

6. Continued fractions are taught occasionally, although not in all
schools.

7. Sometimes instruction is given also in Diophantine equations, that
is, equations with several unknowns which can take only integral values,
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The Pythagorean numbers of which we spoke (see p.32), furnish an
example; here one has to do with triplets of integers which satisfy the
equation

a? 4 b2 = c2.

8. The problem of dividing the civcle into equal parts is closely related
to the theory of numbers, although the connection is hardly ever worked
out in the schools. If we wish to divide the circle into # equal parts,
using, of course, only ruler and compasses, it is easy to do it for n = 2, 3,
4, 5, 6. It cannot be done, however, if » = 7, hence we stop respect-
fully when we come to this problem in the school. To be sure, it is not
always stated definitely that this construction is really impossible when
n = 7,—a fact whose explanation lies somewhat deep in number-theo-
retic considerations. In order to forestall misunderstandings, which un-
fortunately often arise, let me say, with emphasis, that one is concerned
here again with a problem of mathematics of precision, which is devoid
of meaning for the applications. In practice, even in cases where an
““exact’”’ construction is possible, it would not be used ordinarily; for,
in the field of mathematics of approximation, the circle can be divided
into any desired number of equal parts more suitably by simple skillful
experiment; and any prescribed, practically possible, degree of exactness
can be attained. Every mechanician who makes instruments that carry
divided circles proceeds in this way.

9. The higher theory of numbers is touched by the school curriculum
in one other place, namely, when 7 ¢s calculated, during the study of the
quadrature of the circle. We usually determine the first decimal places
for 7, by some method or other, and we mention incidentally, perhaps,
the modern proof of the transcendence of 7 which sets at rest the old problem
of the quadrature of the circle with ruler and compasses. At the end of
this course I shall consider this proof in detail. For the present I shall
give merely a prescise formulation of the fact, namely, that the number
7 does mot satisfy any algebraic equation with integral coefficients:

an®+ba* 14+ ... +kn+1=0.

It is especially important that the coefficients be integers, and it is for
this reason that the problem belongs to the theory of numbers. Of
course here, again, one is concerned solely with a problem of the mathe-
matics of precision, because it is only in this sense that the number-
theoretic character of # has any significance. The mathematics of
approximation is satisfied with the determination of the first few
decimals, which permit us to effect the quadrature of the circle with
any desired degree of exactness.

I have sketched for you the place of the theory of numbers in
the schools. Let us consider now its proper place in university instruction
and in scientific investigation. In this connection I should like to divide
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research mathematicians, according to their attitude toward theory of
numbers, into two classes, which I might call the enthusiastic class and
the indifferent class. For the former there is no other science so beautiful
and so important, none which contains such clear and precise proofs,
theorems of such impeccable rigor, as the theory of numbers. Gauss
said “If mathematics is the queen of sciences, then the theory of numbers
is the queen of mathematics”. On the other hand, theory of numbers
lies remote from those who are indifferent; they show little interest in
its development, indeed they positively avoid it. The majority of
students might, as regards their attitude, be put into the second class.

I think that the reason for this remarkable division can be summarized
as follows: On the one hand the theory of numbers is fundamental for
all more thoroughgoing mathematical research; proceeding from entirely
different fields, one comes at last, with extraordinary frequency, upon
relatively simple arithmetic facts. On the other hand, however, the
pure theory of numbers is an extvemely abstract thing, and one does not
often find the gift of ability to understand with pleasure anything so
abstract. The fact that most textbooks are at pains to present the sub-
ject in the most abstract way tends to accentuate this unattractiveness
of the subject. I believe that the theory of numbers would be made more
accessible, and would awaken more gemeral interest, if it were presented
in connection with graphical elements and appropriate figures. Although
its theorems are logically independent of such aids, still one’s compre-
hension would be helped by them. I attempted to do this in my lectures
in 1895/96! and a similar plan is followed by H. Minkowski in his book
on Diophantische Approximationen®. My lectures were of a more ele-
mentary introductory character, whereas Minkowski considers at an
early point special problems in a detailed manner.

As to textbooks in the theory of numbers, you will often find all you
need in the textbooks in algebra. Among the large number of books
on the theory of real numbers, I would mention especially Bachman’s
Grundlagen der meueren Zahlentheorie®.

In the more special number-theoretic discussions which I shall give
here, I shall keep touch with the points mentioned above and I shall
endeavor especially to present the matter as graphically as possible,
While I shall restrict myself to material that is valuable for the teacher,
I shall by no means put it into a form suitable for immediate presentation
-to the pupils. The necessity for this arises from my experiences in

1 Ausgewdhltes Kapitel der Zahlentheorie (mimeographed lectures written up
by A. Sommerfeld and Ph. Furtwiangler). Second printing (already exhausted).
Leipzig 1907.

? With an appendix: Eine Einfihrung in die Zahlentheorie. Leipzig 1907.

3 Sammlung Schubert No. 53. Leipzig 1907. [Second edition published by
R. Hauszner 1921.] — See also Carmichael, R.-D., Theory of Numbers. Wiley.
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examinations, which show me that the number-theoretic information of
candidates is often confined to catchwords which have no thorough-
knowledge back of them. Every candidate can tell me that & is “trans-
cendental” ; but many of them do not know what that means; I was
told, once, that a transcendental number was neither rational nor ir-
rational. Likewise I often find candidates who tell me that the number
of primes is infinite, but who have no notion as to the proof, although
it is so simple.

I shall start my number-theoretic discussion with this proof, assuming
that you are acquainted with the first two points metioned in our list.
As a matter of history I remind you that this proof was handed on to
us by Euclid, whose “‘elements” (Greek groyeia) contained not only
his system of geometry, but also algebraic and arithmetic information in
geometric language. Euclid’s transmitted proof of the existence of in-
finitely many prime numbers is as follows: Assuming that the sequence

of prime numbers is finite, let it be 1, 2, 3, 5, ..., ; then the number
N=(1-2-3-5...p)—1 is not divisible by any of the numbers
2,3,5,...p since there is always the remainder 1; hence N must

either itself be a prime number or there are prime numbers larger than .
Either of these alternatives contradicts the hypothesis, and the proof
is complete. »

In connection with the fourth point, the separation into prime factors,
I should like to call to your attention one of the older factor tables:
Chernac, Cribum Avrithmeticum!, a large, meritorious work which de-
serves, historically, all the more attention because it is so reliable. The
name of the table suggests the sieve of Eratosthenes. The idea on which
it was based is that we should discard gradually from the series of all
integers those which are divisible by 2, 3,5,..., so that only the
prime numbers would remain. Chernac gives the decomposition into
prime factors of all integers up to 1020000 which are not divisible
by 2, 3, or 5; all the prime numbers are marked with a bar. It
was in the Chernac work that all the prime numbers lying within
the limits stated above were first given. During the nineteenth century
the determination was extended to all prime numbers as far as nine
million. ‘

I turn now to the fifth point, the transformation of ordinary fractions
tnto decimal fractions. For the complete theory I shall refer you to Weber-
Wellstein, and I shall explain here only the principle of the method by
means of a typical example. Let us consider the fraction 1/p, where $
is a prime number different from 2 and 5. We shall show that 1/p is equal
to an infinite periodic decimal, and that the number 8 of places in the
period is the smallest exponent for which 10°, when divided by p, leaves 1

1 Deventer 1811.
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as a remainder, or that, in the language of number theory, d is the
smallest exponent which satisfies the ‘“‘congruence” :

10° = 1 (modp).
The proof requires, in the first place, the knowledge that this congruence

always has a solution. This is supplied by the theorem of Fermat, which
states that for every prime number p except 2 and §:

107-1 = 1 (mod p).

"We shall omit here the proof of this fundamental theorem, which is

one of the permanent tools of every mathematician. Secondly, we must

borrow from the theory of numbers the theorem that the smallest

exponent in question, 8, is either p — 1 itself or a divisor of p — 1. We

109 — 1
p

can apply this to the given value p and find that
so that one has:

is an integer N

108 1

5= p + N.

If we now think of 10°/p, as well as 1/p, converted into a decimal,
the digits in the two decimals must be identical, since the difference
is an integer. But since 10%/p is got from 1/p by moving the decimal
point 0 places to the right, it follows that the digits in the decimal
expression of 1/p are unaltered by this operation, in other words that
the dectmal fraction 1/p consists of continued repetition of the same *“ period”
of O digits.

In order now to see that there cannot be a smaller period of & <
digits one needs only to prove that the digit number ¢’ of every period
must satisfy the congruence 10" =1; for we know that J was the
smallest solution of this congruence. This proof will result if we pursue
the preceding argument in the reverse direction. It follows from our
assumption that 1/p and 10%/p coincide in their decimal places, hence

& . s
that %- — % is an integer N’, and therefore that 10* — 1 is divisible by p,

or, in other words, that 10* = 1 (mod ). This completes the proof.

I will give you a few of the simplest instructive examples, which will
show that 0 can take widely different values, both smaller than and
equal to p — 1. Notice first that for:

, $=0333...
-the number of digits in the period is 1, and that in fact, 10! = 1 (mod 3)°
Similarly we find
1 = 0.0909...,
whence 0 = 2, and correspondingly 10! = 10,102 = 1 (mod 11). The
maximum value = p — 1 appears in the example:

1 = 0.142857142857 ... .
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Here 0 = 6 and we have, in fact, 10! = 3, 102 = 2, 10 = 6, 10 = 4,
10° =5, and 10%® = 1 (mod 7).

Now let us take up, in a similar way, the sixth point of my list,
continued fractions. 1 shall not present this, however, in the usual
abstract arithmetic manner, since you will find it given elsewhere, €. g.,
in Weber-Wellstein. I shall take this opportunity to show you how
number-theoretic things take on a clear and easily intelligible form
through geometric and graphical presentation. In this use of geometric
aids in number theory we are really only retracing the steps followed
by Gauss and Dirichlet. 1t was the later mathematicians, say from 1860
on, who banished geometric methods from the theory of numbers. Of
course, I can give here only the most important trains of thought and
theorems, without proof, and I shall assume that you are not entire
strangers to the elementary theory of continued fractions. My litho-
graphed lectures on number theory?! contain a thoroughgoing account.

You know how the development of a given positive number w into a
continued fraction arises. We separate out the largest positive integer n,
contained in w and write:

o =ny+ 7, where 0 =7, <1,
then, if 7, + 0, we treat 1/7, as we did w:
1frg = ny + 74, where 0 =7, <1,
and continue in the same way: ,
1[ry = ny + 75, where 0 =7, <1,
Afry = 0y + 75, where 0 <7, <1,
The process terminates after a finite number of steps if w is rational,
because a vanishing remainder 7, must appear in that case; otherwise
the process goes on indefinitely. In any case, we write, as the development
of w into a continued fraction:
1
|
Ny + 1
ng + .

As an example, the continued fraction for 7 is
1

7= 3-14159265 --- =3 +

292 +,

1 See also Klein, F., Gesammelte Mathematische Abhandlungen, Vol. 11, pp. 209
to 211.
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If we stop the development after the first, second, third, . .. partial
denominator, we obtain rational fractions, called convergents:
bo 1 _h 1 2 .
o= g ”o'*“h—l;‘q"l» ”o‘f‘jﬂ“lii—:%,---,
N2
these give remarkably good approximations to the number w, or, to
speak more exactly, each one of them gives an approximation which is
closer than that given by any other vational fraction which does not have
a larger denominator. Because of this property, continued fractions are
of practical importance where onc seeks the best possible approximation
to an irrational number, or to a fraction with a large denominator (e. g.
a many-place decimal) by means of a fraction having the smallest -
possible denominator. The following convergents of the continued frac-
tion for m, converted into decimals, enable one to see how close the
approximations are to the value & = 3,14159265 . . .:

Lo b _ 22

=13, == = 3%,14285 ...,
do 3 51 7 3,14285
P 333 _ ps __ 355 _
(]2~106—-3,141509..., 7 113 3,14159202 ... .

You will observe, moreover, in this example, that the convergents are
alternately less than and greater than z. This is true in general, as is
well known, that is the successive convergents of the comtinued fraction
for w ave alternately less than and greater than w, and enclose it between
ever narrowing limats.

Let us now enliven these considerations with geometric pictures.
Confining our attention to positive numbers, let us mark all those points
in the positive quadrant of the xy plane (see Fig. 8) which have integral
coordinates, forming thus a so called point lattice. Let us examine this
lattice, I am tempted to say this “firmament” of points, with our point
of view at the origin. The radius vector from 0 to the point (¥ = «,
y = b) has for its equation

X a

y b’

and conversely, there are upon every such ray, ¥/y =4, where 4 = a/bis
rational, infinitely many integral points (ma, mb), where m is an arbi-
trary whole number. Looking from 0, then, one sees points of the
. lattice in all rational dirvections and only in such dirvections. The field of
view is everywhere ‘““densely’’ but not completely and continuously filled
with “stars”’. One might be inclined to compare this view with that
of the milky way. With the exception of 0 itself there is not a single
integral point lying upon an irrational ray x|y = w, where  is trrational,
which is very remarkable. If we recall Dedekind’s definition of irrational
number, it becomes obvious that such a ray makes a cut in the field
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of integral points by separating the points into two point sets, one lying
to the right of the ray and one to the left. If we inquire how these
point sets converge toward our ray x/y = w, we shall find a very simple
relation to the continued fraction for w. By marking each point (x =5,
y = q,), corresponding to the convergent p,/q,, we see that the rays
to these pointsapproximate to theray x/y = w better and better, alter-

y nately from the left and from the right,

A , just as the numbers ,/q, approxi-

. / /7s.95) mate to the number . Moreover, if

e o « 2. one makes use of the known number-

// theoretic properties of p,, ¢,, one

N finds the following theorem: Imagine

(7. %) ,//// pegs or needles affixed at all the integral

Y A points, and wrap a tightly drawn string

e oA /. .. about the sets of pegs to the right and to

//,(’ the left of the w-ray, then the vertices

y/ A ra% of the two convex string-polygons which

Y/ ‘ bound our two point sets will be precisely
/2 I L the points (p,, q,) whose coordinates are

%) S e .. the numerators and denominators of the
e ( T(ﬂ,, 77) successtve convergents to w , the left poly-
ol—i . : > 801 having the even convergents, the
Fig. 8. right one the odd. This gives a new,

‘ and, one may well say, an extremely
graphic definition of a continued fraction. The representation in Fig. 8
corresponds to the example

_¥V5—1 1
0= T 1
1+1
e

which is the irrationality associated with the regular decagon. In this
example, the first few vertices of the two polygons are
left:  pp=0,go=1; po=1, =2, py=3,¢=5;..
right: py=1,¢1=1; p3=2,¢=3; ps=5,¢=328;...
The values p,, ¢, for # grow much more rapidly, so that one could
hardly draw the corresponding representation. The proof of our theorem,
which I cannot give here, can be found in detail on page 43 of in my
lithographed lectures.

I shall now pass on to the treatment of the seventh point, the Pytha-
gorean numbers, where we shall use space perception in a somewhat
-different form. Instead of the equation: :

(1) a? + b? = ¢
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whose integral solutions are sought, let us set:

(2) ' Cae=§&,  ble=n
and consider the equation:
(3) E+n=1,

with the problem of finding all the rational number-pairs &, n which
satisfy it. Accordingly, we start from the representation of all rational
points &, 7 (i.e. all points with rational coordinates &, ), which will
fill the & #-plane ““‘densely”’. &2 + %2 =1 is the equation of the wunmit
circle about the origin in this plane. It is our
task to see how this circle threads its way through

+)
the dense set of rational points, in particular, to 5
see which of these points it contains. We know a

few such points of old, such as the intercepts < k‘

with the axes, one of which, S(§ =—1, 7=0),
we shall consider (see Fig.9). All rays through
S are given by the cquation

(4) n=2LE+1); Fig. o

we call such a ray rational or irrational according as the parameter 4 is
rational or not. We have now the double theorem that every rational
point of the circle is projected from S by a rational ray and that every rational
ray (4) meets the circle in a rational point. The first half of the theorem
is obvious. We prove the second half by substituting from (4) in (3).
This gives for the abscissas of the points of intersection the equation

8+ 1(E+ 1) =1
(1423 & 4+ 21264 12—1=0.

We know one solution of this equation, & = —1, which corresponds to
the intersection S; for the other, one gets by easy calculation

or

1 — 22
(5a) &= Ty
and from (4) the corresponding ordinate
24
(Sb) n = m; .

From (5a) and (5b) it follows that the second intersection is a rational
- point if 4 is rational. ‘

Our double theorem, now fully proved, can be stated also as follows.
All the rational points of the circle are represented by formulas (5) if A is
an arbitrary rational number. This solves our problem and we need only
to transform to whole numbers. For this purpose we put

A=un/m,
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where », m are integers and obtain from (5):

3

m?2 — n? 2mn
Twitnw 1T e
as the totality of rational solutions of (3). All integral solutions of the
original equation (1), i.e., all Pythagorean numbers are therefore given by
the equations
a=m?— n?, b=2mn, ¢ = m? + n?;

and one obtains the totality of solutions which have no common divisor if m
and n take all pairs of relatively prime integral values. We have thus a
graphic deduction of a result which usually appears very abstract.

In this connection I should like to discuss the great Fermat theorem.
It is quite after the manner of the geometers of.antiquity that one
should generalize the question regarding Pythagorean numbers, from
the plane to space of three and more dimensions in the following manner.
Is it possible that the sum of the cubes of two integers should be a cube?
Or that the sum of two fourth powers should be a fourth power, etc.?
In general, has the equation

xn + yn - zn’

where n is an arbitrary integer, solutions which are whole numbers? To
this question Fermat gave the answer %o, in the theorem named after
him: The equation x™ + y" = 2" has no integral solutions for integral values
of n except when n = 1 and n = 2. Let me begin with a few historical
notes. Fermat lived from 1601 to 1665 and was a parliamentary coun-
cillor, i.e., a jurist, in Toulouse. He devoted himself, however, extensively
and most fruitfully to mathematics so that he may counted as one of
the greatest of mathematicians. Fermat’s name deserves a prominent
place among those of the founders of analytic geometry, of infinitesimal
calculus, and of the theory of probability. Of special significance
however, are his attainments in the theory of numbers. All of his results
in this field appear as marginal notes on his copy of Diophantus, the
famous ancient master of number-theory who lived in Alexandria pro-
bably about 300 A. D,, i. e., about 600 years after Euclid. In this form
they were published by his son five years after Fermat’s death. Fermat
himself had published nothing, but he had, by means of voluminous
correspondance with the most significant of his contemporaries, made
his discoveries known, although only in part. It was in that edition
of Diphantus that the famous theorem with which we are now concerned
was found. Fermat wrote concerning it that ‘“‘he had found a really
wonderful proof, but the margin was too narrow to accommodate it™'1.
To this day, no one has succeeded in finding a proof of this theorem!

1 See the edition issued by the Paris Academy: (Ewwvres de Fermat, vol. I,
P- 291. Paris 1891, and vol. III, p. 241. Paris 1896.
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In order to orient ourselves somewhat as to its purport, let us
inquire, as in the case of # = 2, in the first place about the rational
solutions of the equation:

S+t =1,
1. e., about the relation of the curve which represents this equation to
the totality of the rational points in the & -plane. For#n = 3 and #» = 4

the curves have approximately the appearance indicated in Fig. 10, 11
They contain, at least, the points § =0, =1 and £ =1, 5 = 0 when

Fig. 10. Fig. 11.

n =3, and the points £ =0, y = +1 and § =41, y =0 when
n = 4. The assertion of Fermat means, now, that these curves, unlike
the circle considered above, thread through the dense set of the rational
points without passing through a single one, except those just noted.

The interest in this theorem rests on the fact that ail efforts to find
a complete proof of it have been, thus far, in vain. Among those who
have attempted proof, one should, above all, mention Kummer, who
advanced the problem materially by bringing it tnto relation with the
theory of algebraic numbers, in particular with the theory of the n-th roots

2ix
of unity (cyclotomic numbers). By using the #n-th root of 1, e =¢ ",
we can, indeed, separate z" — y" into # linear factors, and we may
write the Fermat equation in the form

= (z—)(z—ey)(z — ey) ... (z— " 1y).
The problem is therefore reduced to the separation of the #n-¢4 power
of the integer x into # linear factors which shall be built up from two
integers z and y and the number ¢, in the manner indicated. Kummer
developed, for such numbers, theories quite similar to those which have
long been known for the case of ordinary integers, theories, that is,
which depend on the notions of divisibility and factorization. One
speaks, accordingly, of integral algebraic numbers, and here, in particular,
of cyclotomic numbers, because of the relation of the number ¢ to the
division of the circle. Fermat's theorem is, then, for Kummer, a theorem
on factorization in the domain of algebraic cyclotomic numbers. From this
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theory he tried to deduce a proof of the theorem. He succeeded, in fact,
for a very large number of values of #, for example for all values of »
below 100. Among the larger numbers, however, there appeared ex-
ceptional values for which no proof has been found, either by him or
by the later mathematicians who continued his investigations.

I must content myself with these remarks. You will find particulars
concerning the state of the problem, and concerning Kummer’s publica-
tions in the Encyclopedia, Vol. I,, p. 714, at the end of the report by
Hilbert, Theorie der Algebraischen Zahlkorper. Hilbert himself is among
those who have continued and extended the investigations of Kummer?!.

It can indeed hardly be assumed that Fermat’s “wonderful proof”
lay in this direction. For it is not very likely that he could have operated
with algebraic numbers at a time when one was not even certain about
the meaning of the imaginary. At that time, also, the theory of numbers
was quite undeveloped. It received at the hands of Fermat himself far-
reaching stimulation. On the other hand, one cannot assume that a
mathematician of Fermat’s rank made an error in his proof, although
such errors have occurred with the greatest mathematicians. Thus we
must indeed believe that he succeeded in his proof by virtue of an
especially fortunate simple idea. But as we have not the slightest

.indication as to the direction in which one could search for that idea,
we shall probably expect a complete proof of Fermat’'s theovem only through
systematic extension of Kummer's work.

These questions assumed new signifance when our Géttingen Science
Association offered a prize of 100000 wmarks for the proof of Fermat's
theorem. This was a foundation of the mathematician Wolfskehl, who
died in 1906. He had probably been interested all his life in Fermat’s
theorem, and he bequeathed from his large fortune this sum for the
fortunate person who should either establish the truth of the theorem
of Fermat, or by means of a single example, exhibit its untruth2. Such
a refutation would, be no simple matter, of course, because the theorem
is already proved for exponents below 100 and one would have to start
one’s calculations with very large numbers.

It will be clear, from my foregoing remarks, how difficult the winning
of this prize must seem to the mathematician, who understands the
situation and who knows what efforts have been made by Kummer
and his successors to prove the theorem. But the great public thinks

[* A summarized account of the elementary investigations about Fermat’s
theorem is given in P. Bachmann, Das Fermatsche Problem. Berlin 1919.]

2 The detailed conditions governing competition for this prize (long since
become valueless) were published in the Nachrichten d. Ges. d. Wissenschaften
zu Gottingen, business announcements 1908, p. 103 et seq., and copied into many
other mathematical journals (Sec. e. g. Math. Ann. vol. 66, p. 143; Journal fiir
Mathematik, vol. 134, p. 313).
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otherwise. Since the summer of 1907, when the news of the prize was
published in the papers (without authorization, by the way) we have
received a prodigious heap of alleged “proofs”. People of all walks of
life, engineers, schoolteachers, clergymen, one banker, many women,
have shared in these contributions. The common thing about them all
is that they have no idea of the serious mathematical nature, of the problem.
Moreover, they have made no attempt to inform themselves regarding
it, but have trusted to finding the solution by a sudden flash of thought,
with the inevitable result that their work is nonsense. One can see
what absurdities are brought forth if one reads the numerous critical
discussions of such proofs by A. Fleck (who is a practising physician
by profession), Ph. Maennchen, and O. Perron, in Archiv fiir Mathematik
und Physik®. It is amusing to read these wholesale slaughterings, sad
as it is that they are necessary. I should like to mention one example,
which is related to our treatment of the case x2 + 92 = 22. The author
seeks a rational parameter representation for the function x" -+ y*
= z" (n > 2), and finds the result, long known from the theory of
algebraic functions, that this, unlike the case # = 2, is not possible.
Now this person overlooks the fact that a non-rational function can
very well take on rational values for single
rational values of the argument, and he 2
therefore believes that he has proved the

Fermat theorem.

Y -

.
exi
e 7,

With this I close my remarks about // Nf oz
Fermat’s theorem and come to the eighth

point of my list, the problem of the division ea’g.i

o

e

x-plane

of the circle. 1 shall make use here of opera-
tions with complex numbers, x -+ ¢y, as-
suming that they are familiar to you, although Fig. 12.

we shall consider them systematically later

on. The problem is to divide the circle into n equal parts, or to construct
a regular polygon of n sides. We identify the circle with the unit circle
about the origin of the complex xy-plane and take x + ¢y =1 as the
first of the » points of division (see Fig. 12), in which # is chosen equal

to five); then the » complex numbers belonging to the » vertices:

2kni

z=x+z’y=c052k7”—|—isin2—f:'-=e " (k=0,1,...,n—1)

-satisfy, according to De Moivre’s theorem, the equation:
=1,
and with this the problem of the division of the circle is resolved into the
solving of this simple algebraic equation. Since it has the rational root
[t Vols. XIV, XV, XVI, XVII, XVIII (1901—1911).]

Klein, Elementary Mathematics. 4
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z=1, 2" — 1 is divisible by 2 — 1, and there remains for the » — 1
other roots the so called cyclotomic equation

M4 o 422424 1=0,

an equation of degree » — 1, all of whose coefficients are +1.

Since ancient times, interest has centered in the question as to what
regular polygons can be constructed with ruler and compasses. It was
known to the ancients that this construction was possible for the
numbers # = 2*, 3, 5 (h an arbitrary integer), and likewise for the com-
posite values # = 2" -3 - 5. Here the problem rested until the end of
the eighteenth century when the young Gauss undertook its solution.
He found the desired construction was possible with ruler and compasses

for all prime numbers of the form p = 2(2”) + 1, but for no others. For
the first values 4 =0, 1, 2, 3, 4 this formula yields, in fact, prime
numbers, namely

3, 5,17, 257, 65537,

of which the first two cases were already known, while the others were
new. Of these the regular polygon of seventcen sides is especially famous.
The fact that it can be constructed with ruler and compasses was first
established by Gauss. Moreover, it is not known for what values of
the above formula yields prime numbers. It has been known, for
example, since Euler’s time, that for # = 5 the number is composite.
I shall not go farther into details, but rather outline the general con-
ditions, and the significance of this discovery. You will find in Weber-
Wellstein details concerning the regular polygon of seventeen sides.
I should like to call to your attention especially the reprint of Gawuss’
diary in the fifty-seventh volume of the Mathematische Annalen (1903)
and in Volume X, 1 (1917) of Gauss’ Works. It is a small, insignificant
looking book, which Gauss kept from 1796 on, beginning shortly before
his nineteenth birthday. It was precisely the first entry which had to
do with the possibility of constructing the polygon of seventeen sides
(March 30, 1796); and it was this early important discovery which led
Gauss to decide to devote himself to mathematics. The perusal of this
diary is of the highest interest for every mathematician, since it permits
one, farther on, to follow closely the genesis of Gauss’ fundamental
discoveries in the field of number theory, of elliptic functions, etc.
The publication of that first great discovery of Gauss appeared as
a short communication in the “ Jenaer Literaturzeitung” of June 1, 1796,
instigated by Gauss’ teacher and patron, Hofrat Zimmermann, of Braun-
schweig, and accompanied by a short personal note by the latterl. Gauss
published the proof later in his fundamental number-theoretic work,

1 Also reprinted in Mathematische Annalen, vol. 57, p. 6 (1903); and in Gauss’
Works, vol. 10, p. 1 (1917).
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Disquisitiones Arithmeticae in 1801; here one finds for the first time
the negative part of the theorem, which was lacking in his communica-
tion, that the construction with ruler and compasses is not possible for

prime numbers other than those of the form 22‘1 +1,eg, forp=7.1
shall put before you here an example of this important proof of impossi-
bility—the more willingly because there is such a lack of understanding
for proofs of this sort by the great public. By means of such proofs of
impossibility modern mathematics has settled an entire series of famous
problems, concerning the solution of which many mathematicians had
striven in vain since ancient times. I shall mention, besides the con-
struction of the polygon of seven sides, only the trisection of an angle
and the guadrature of the circle with ruler and compasses. Nevertheless
there are surprisingly many persons who devote themselves to these
problems without having a glimmering of higher mathematics and
without even knowing or understanding the nature of the proof of
impossibility. According to their knowledge, which is mostly limited
to elementary geometry, they make trials, by drawing, as a rule, auxiliary
‘lines and circles, and multiply these finally in such number that no
human being, without unduc expenditure of time, can find his way out
of the maze and show the author the error in his construction. A
reference to the arithmetic proof of impossibility avails little with such
persons, since they are amenable, at best, only to a direct consideration
of their own “‘proof”’ and a direct demonstration of its falsity. Every
year brings to every even moderately known mathematician a heap of
such consignments, and you also, when you are at your posts, will get
such proofs. It is well for you to be prepared in advance for such ex-
periences and to know how to hold your ground. Perhaps it will be well
for you, then, if you are master of a definite proof of impossibility in
its simplest form. '

Accordingly, I should like to give you, in detail, the proof that it
is tmpossible to comstruct the heptagon with ruler and compasses in the
sense of geometry of precision. It is well known that every construction
with ruler and compasses finds its arithmetic equivalent in a succession
of square roots, placed one above another, and, conversely, that one
can represent geometrically every such square root by the intersection
of lines and circles. This you can easily verify for yourselves. We can
formulate our assertion analytically, then, by saying that the equation
of degree six

b+ttt B+ +z24+1=0,

which characterizes the regular heptagon, cannot be solved by a succession
of square roots in finite number. Now this is a so-called reciprocal equation,

1 Reprinted Works, vol. L.
4*
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i. e., it has, for every root z, also 1/z as a root. This becomes obvious
if we write it in the form:

(1) B+ +z+1+ 4+ 5+ o5=0.
We can reduce by half the degree of such an equation, if we take
z2+ % =X

as a new unknown. By easy calculation, we obtain for x the cubic
equation
(2) %4 x2—2x—1=0,

and one sees at once that the equations (1) and (2) are, or are not, both
solvable by square roots. Moreover, we can represent ¥ geometrically
in connection with the construction of the heptagon. For, if we consider
the unit circle in the complex plane, we see easily that the following re-

lations are obvious. If one designates by ¢ = 2—775 the central angle of

the regular heptagon, and remembers that z = cos ¢ 4 ising and

%: cosp — ¢sing are the two vertices of the heptagon nearest to

x =1, then x =2 + 1? =2 cos ¢ (Fig. 13). Thus, if one knows x, one

can at once construct the heptagon.

We must now show that the cubic equation (2) cannot be solved by
square voots. The proof falls into an arithmetic and an algebraic part.
We shall start by showing that the equa-
tion (2) is srreducible, i.e. that its left side
! cannot be separated into two factors
: whose coefficients are rational numbers.
Let us assume that the equation is re-
ducible. Then its left side must have a
linear factor with rational coefficients,
and hence it must vanish for a rational

Fig. 13. number p/q, where p and ¢ are integers

without a common divisor. But that

means that p3 4 p2¢ — 2p92 — ¢3 =0, or that $3, and therefore p
itself, is divisible by ¢g. In the same way it follows that ¢3, and hence ¢,
must be divisible by . Consequently p = 4-¢ and the equation (2) must
have the root x = 4-1. But inspection shows that this is not the case.

The second part of the proof consists, in showing that an irreducible
cubic equation with rational coefficients is not solvable by square roots. It
is essentially algebraic in nature, but because of the connection I shall
give it here. Let us make the assertion in positive form. If a cubic
equation with rational coefficients A, B, C:

(8) f(#) =23+ Ax2+ Bx +C=0

z-plane
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can be solved by square roots, 1t must have a rational root, 1. e., it is reducible.
For the existence of a rational root « is equivalent to the existence of
a rational factor x — & of f (¥) and thus to reducibility. It is most
important that this proof be preceded by a classification of all expressions
that can be built up with square roots, or, more precisely, of all expressions
that can be built wp with square roots and rational numbers, in finite number,
by means of rational operations. A concrete example of such a number is
Va a+ybo+ V;
NawVervi

where a, b, . . ., f are rational numbers. Of course we are talking only
about square roots which cannot be extracted rationally. All others must
be simplified. Every such expression is a rational function of a certain
number of square roots. In our example there are three. We shall first
consider a single such square root, whose radicand, however, may have
a form as complicated as one pleases. By its ‘“order” we shall understand
the largest number of root signs which appear in 1t, one above another. In
the preceding example, &, the roots of the numerator have the orders
2 and 1, respectively, while that of the denominator has the order 3.

In the case of a general square root expression we examine the orders
of the different “‘simple square root expressions” of the sort just discussed,
out of which the general expression is rationally constructed, and we
designate the largest among them as the order i of the expression in question.
In our example, # = 3. Now several ‘“‘simple square root expressions”
of order 4 might appear in our expression and we consider their number,
n, the “‘number of terms’ of order u, as a second characteristic. This
number is thought of as so determined that no one of the n simple
expressions of order jcan be rationally expressed in terms of the others of
order @, or of lower order. For example, the expression of order 1

Y2+ 73+ 76
has 2, not 3, as the “number of terms” since ]/6 =J2- 1/3. The example
o given above has # = 1.

We have thus assigned to every square root expression two finite
numbers #, #» which we combine in the symbol (1, n) as the ‘‘characteristic”
or “‘vank’ of the root expression. When two root expressions have different

‘orders we assign a lower rank to the one of lower order; when the orders
‘are the same, the lower number of terms determines the lower rank.

Now let us suppose that a root x, of the cubic equation (8) is expres-

sible by means of square roots; and, to be explicit, by means of an

expression of rank (u, n). Selecting one of the # terms ]/E of rank u, let ¥
be written in the form
«+BVR

=Y eVR
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where &, 8, 7, 0 contain at most n — 1 terms of order u and where R
is of order w — 1.- Here y — 0 YR is certainly different from zero;
for y — 6}/—1_3 = 0 would imply either 6 =y = 0, which is obviously
impossible, or ]/73_ y:9,ie., ]/72 would be rationally expressible by
means of the other (» — 1) terms of order u, which appear in x, and
hence it would be superfluous. Multiplying numerator and denominator
by y — 6 YR, we find
_ YR -0VR) _ o

17 72 —682- R

where P, Q are rational functions of «,f,7,0, that is, they contain
at most (# — 1) terms of order u, and, besides, only those of order
M —1, so that they have at most the rank (u, n — 1). Substituting this
value of % in (8), we get

%) = (P+ QYR+ 4(P+ QYR) + B(P +QVR)+C=o,
and when we remove parentheses we obtain a rclation of the form
fn) =M+ NVR =0,
where M, N are polynomials in P, Q, R, that is, rational functions of

«, B, y, 8, R."If N 4 0, we should have YR = —M/N, i.c., VR would
be express1ble rationally in terms of &, 8, 7, 6, 'R, that is, by means of
the other (n — 1) terms of order # and others of lower order. But
that is impossible, as remarked above, according to the hypothesis.
Thus it follows necessarily that N = 0 and hence also M = 0. From
this we may conclude, that

%y =P — QYR
1s also a root of the cubic equation (8). For a comparison with the last
equations yields at once '

fxe) = M — NYR = 0.

The proof may now be finished very simply and surprisingly. If x, is
the third root of our cubic equation, we have

%+ %+ x5 =—A4,
and hence Xg=—A — (%, + %) =—A—2P

is of the same rank as P and therefore certainly of lower rank than x,.

If x; is itself rational, our theorem is proved. If not, we can make
it the starting point of the same series of deductions. It appears that,
in the case of the other roots, the higher rank must have been an illusion,
SO that, in particular, one of them has, actually, lower rank than x,. 1f
we keep this up, back and forth among the roots, we see, each time,
that the rank is really lower than we had thought. We must, then,
of necessity, come finally to a root with the order u = 0. This demon-
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strates the existence of a rational root of the cubic equation. We cannot
continue our procedure beyond this point. The two other roots must

then be, either themselves rational, or else of the form P = Q}/R ,
where P, Q, R are rational numbers. Hence we have shown that | (x)
separates into a quadratic and a linear rational factor and is therefore
reducible. Every irreducible cubic equation, and in particular, our equation
for the regular heptagon, is insoluble by means of square roots. The proof
is therefore complete that-the regular heptagon cannot be constructed with
ruler and compasses.

You observe how simply and obviously this proof proceeds, and
how little knowledge it really presupposes. For all that, some of the
steps, especially the explanation of the classification of square root ex-
pressions, demand a certain measure of mathematical abstraction.
Whether the proof is simple enough to convince one of those mathe-
matical laymen, mentioned above, of the futility of his attemps at an
elementary geometric proof, I do not presume to decide. Nevertheless
one should try to explain the proof slowly and clearly to such a person.

In conclusion, I shall mention some of the literature on the question
of regular polygons together with some, on the broader question of
geometric constructibility in general which we have touched upon on
this occasion. First of all, there is again Weber-Welistein 1 (Sections 17
and 18 in the fourth edition). Next let me mention the souvenir booklet
Vortrige iiber ausgewdihite Fragen der Elementargeometrie'* which 1 pre-
pared in 1895, on the occasion of a gathering of teachers in Goéttingen.
I might mention, as a more detailed and comprehensive substitute for
this little book (which is out of print) the German translation, Fragen
der Elementargeometrie?**, of a compilation by F. Enriques in Bologna,
where you will find information on all allied questions.

I leave now the discussion of number theory, reserving the last
point, the transcendence of 7, for the conclusion of this course of lectures,
and turn, in the next chapter, to our final extension of the number system.

IV. Complex Numbers.
1. Ordinary Complex Numbers
Let me give, as a preliminary, some historical facts. Imaginary

numbers are said to have been used first, incidentally, to be sure, by
Cardan in 1545, in his solution of the cubic equation. As for the further

! Worked up by F. Tagert. Leipzig 1895.

2 Teil I1: Die geometrischen Aufgaben, ihre Lésung und Lisbarkeit. Deutsch
von H. Fleischer. Leipzig 1907. [2. Aufl. 1923.]—See also Young, J. W. 4., Mono-
graphs on Topics in Modern Mathematics.

* Translation by Beman and Smith: Famous Problem of Geometry. Ginn,
reprinted by Stechert, New York.

** Pyoblems of Elementary Geometry.
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development, we can make the same statement as in the case of negative
numbers, that imaginary numbers made their own way into arithmetic
“calculation without the approval, and even against the desires of individual
mathematicians, and obtained wider civculation only gradually and to
the extent to which they showed themselves useful. Meanwhile the mathe-
maticians were not altogether happy about it. Imaginary numbers
long retained a somewhat mystic coloring, just as they have today for

every pupil who hears for the first time about that remarkable 1 =} —1.
As evidence, I mention a very significant utterance by Leibniz in the
year 1702, “Imaginary numbers are a fine and wonderful refuge of the
divine spirit, almost an amphibian between being and non-being”. In
the eighteenth century, the notion involved was indeed by no means
cleared up, although Euler, above all, recognized their fundamental
significance for the theory of functions. In 1748 Euler set up that remark-
able relation:
) €® = cosx + isinx

by means of which one recognizes the fundamental relationship among
the kinds of functions which appear in elementary analysis. The
nineteenth century finally brought the clear wnderstanding of the nature
of complex numbers. In the first place, we must emphasize here the
geometric interpretation to which various investigators were led about
the end of the century. It will suffice if I mention the man who certainly
went deepest into the essence of the thing and who exercised the most
lasting influence upon the public, namely Gauss. As his diary, men-
tioned above, proves incontrovertibly, he was, in 1797, already in full
possession of that interpretation, although, to be sure, it was published
very much later. The second achievement of the nineteenth century
is the creation of a purely formal foundation for complex numbers,
which reduces them to dependence upon real numbers. This originated
with English mathematicians of the thirties, the details of which I
shall omit here, but which you will find in Hankel’s book, mentioned
above.

Let me now explain these two prevailing foundation methods. We
. shall take first the purely formal standpoint, from which the consistency
of the rules of operation among themselves, rather than the meaning
of the objects, guarantees the correctness of the concepts. According
to this view, complex numbers are introduced in the following manner,
which precludes every trace of the mysterious.

1. The complex number x + ¢y is the combination of two real numbers
%,v, that is, a number-pasr, concerning which one adopts the conven-
tions which follow.

2. Two complex numbers x + ¢y, 2’ + iy’ are called equal when
x=x,y=19"

-
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3. Addition and subtraction are defined by the relation

@+1y) £ (@ +9y)=@£2)+ily £5).
All the rules of addition follow from this, as is easily verified. The mono-
tonic law alone loses its validity in its original form, since complex
numbers, by their nature, do not have the same simple order in which
natural or real numbers appear by virtue of their magnitude. For the
sake of brevity I shall not discuss the modified form which this gives
to the monotonic law.

4. We stipulate that in multiplication one operates as with ordinary
letters, except that one always puts 22 = —1; in particular, that

(x +1y) (&' +3y) = (22" — yy') + i(xy" + 27y).
It is easy to see that, with this, all the laws of multiplication hold, with
the exception of the monotonic law, which does not enter into consideration.

5. Division is defined as the inverse of multiplication; in particular,
we may easily verify that

1 x . Yy
R R
This number always exists except for x =y = 0, i.e., division by zero
has the same exceptional place here as in the domain of real numbers.

It follows from this that operations with complex numbers cannot
lead to contradictions, since they depend exclusively upon real numbers
and known operations with them. We shall
assume here that these are devoid of contra-
diction.

Besides this purely formal treatment, we
should of course like to have a geometric, or
otherwise visual, interpretation of complex
numbers and of operations with them, in which
we might see a graphical foundation of consi-
stency. This is supplied by common geometric
interpretation, which, as you all know and as
we have already mentioned, looks upon the
totality of points (x,y) of the plane in an Fig. 14.
xy-coordinate system as representing the totality
of complex numbers z = x + iy. The sum of two numbers z, a follows
by means of the familiar parallelogram construction with the two
corresponding points and the origin 0, while the product z-a is
obtained by constructing on the segment 0z a triangle similar to
a01, where 1 is the point (¥ = 1,y = 0) (Fig. 14). In brief, addition
2 =z + a 1s represented by a translation of the plane into tiself, mul-

tiplication 2’ = z' a by a similarity transformation, i.e., by a turning
and a stretching, the origin remaining fixed. From the order of the points

z-plane
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in the plane, considered as representatives of complex numbers, one
sees at once what takes the place here of the monotonic laws for real
numbers. These suggestions will suffice, I hope, to recall the subject
clearly to your memory.

I must call to your attention the place in Gauss in which this founda-
tion of complex numbers, by means of their geometric interpretation,
is set out with full emphasis, since it was this which first exhibited the
general importance of complex numbers. In the year 1831 Gauss’
researches carried him into the theory especially of integral complex
numbers a + 1b, where a, b are real integers, in which he developed
for the new numbers the theorems of ordinary number theory concerning
prime factors, quadratic and biquadratic residues, etc. We mentioned
such generalizations of number theory, in connection with our discussion
of Fermat’s theorem. In his own abstract! of this paper Gauss
expresses’ himself concerning what he calls the “true metaphysics of
imaginary numbers”. For him, the right to operate with complex
numbers is justified by the geometric interpretation which one gives
to them and to the operations with them. Thus he takes by no means
the formal standpoint. Moreover, these long, beautifully written ex-
positions of Gauss are extremely well worth reading. I mention here,
also, that Gauss proposes the clearer word ‘“‘complex”, instead of
“imaginary”’, a name that has, in fact, been adopted.

2. Higher Complex Numbers, especially Quaternions

It has occurred to everyone who has worked seriously with complex
numbers to ask if we cannot set up other, higher, complex numbers,
with more ne wunits than the one 2 and if we cannot operate with them
logically. Positive results in this direction were obtained about 1840
by H. Grassmann, in Stettin, and W. R. Hamsilton, in Dublin, indepen-
dently of each other. We shall examine the invention of Hamilton, the
calculus of quatermions, somewhat carefully later on. For the present
let us look at the general problem.

We can look upon the ordinary complex number x 4 7y as a linear
combination )
x149y-
formed from two different “‘units” 1 and ¢, by means of the real parameters
% and y. Similarly, let us now imagine an arbitrary number, #, of units
€, €, - .., ey all different from one another, and let us call the totatily
of combinations of the form x = x,¢; + %065 + ..., + %xnen a higher
complex number system formed from them with # arbitrary real numbers
%y Xg, ..., %n. If there are given two such numbers, say x, defined
above, and
y=9161+ Yaba+ ..., + Yntn,

1 See Werke, vol. II.
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it is nearly obvious that we should call them equal when, and only when,
the coefficients of the individual units, the so called ‘“‘components” of the
number, ave equal in pairs

X, =Y1, Xg =Ys, ... Xn = Yn.

T he definition of addition and subtraction, which reduces these operations
simply to the addition and subtraction of the components,

x4y = (% Fy)es + (xa £ va)ea + ..., 4 (%0 L yn) €n,

is equally obvious.

The matter is more difficult and more interesting in the case of
multiplication. To start with, we shall proceed according to the general
rule for multiplying letters, i.e., multiply each ¢-th term of x by every
k-th term of v (1,2 =1,2,...,n). This gives:

Xy = Z XiYCiCi -
(, k=1, ..., n)
In order that this expression should be a number in our system, one must
have a rule which represents the products e; - ex as complex numbers
of the system, i.e., as linear combinations of the units. Thus one must
have n? equations of the form:

;6 = Z Cir1*Cr. ('l,k:'l,,n)
(=1,....n)

Then we may say that the number
xey= 2 { _ > )xiykcikl}gl

will always belong to our complex number system. Each particular
complex number system is characterized by the wmethod of determining
this rule for multiplication, i.e., by the table of the coefficients Cigy.

If one now defines division as the operation inverse to multiplication,
it turns out that, under this general arrangement, division s nof always
uniquely possible, even when the divisor does not vanish. For, the
determination of y from x -y = z requires the solution of the # linear
equations > %yxCizz = z for the # unknowns ¥, ..., y», and these

ik :
would have either no solution, or infinitely many solutions, if their
determinant happened to vanish. Moreover, all the z; may be zero
even when not all the x; or not all the y; vanish, i.e., the product of two
numbers can vanish without either factor being zero. 1t is only by a skillful
special choice of the numbers C;;; that one can bring about accord here
with the behavior of ordinary numbers. To be sure, a closer investigation
shows, when n > 2, that, to attain this, we must sacrifice one of the other
rules of operation. We choose as the rule that fails to be satisfied, one
which appears less important under the circumstances.
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Let us now follow up these general explanations by a more detailed
discussion of quaternions as the example which, by reason of its applica-
tions in physics and mathematics, constitutes the most important higher
complex number system. As the name indicates, these are four-term
numbers (n = 4); as a sub-class, they include the fthree-term vectors,
which are generally known today, and which are sometimes discussed
in the schools.

As the first of the four units with which we shall construct quaternions,
we shall select the real unit 1, (as in the case of ordinary complex num-
bers). We ordinarily denote the other three units, as did Hamilton,
by 1,4, k2, so that the general from of the quaternion is

p=d+1ia—+7b+ ke,

where a, b, c,d are real parameters, the coefficients of the quaternion.
We call the first component, the one which is multiplied by 1, and
which corresponds to the real part of the common complex number,
the “scalar part” of the quaternion, the aggregate at + bj -+ ck of the
other three terms its ‘““vector part”’.

The addition of quaternions follows from the preceding general
remarks. I shall give an obvious geometric interpretation, which goes
back to that interpretation of vectors which is familiar to you. We
imagine the segment, corresponding to the vector part of p, and having
the projections «, b, ¢ on the coordinate axes, as loaded with a weight
equal to the scalar part. Thenadditionofpandp’ = d’ + ia’ + jb' + k¢’
is accomplished by constructing the resultant of the
two segments, according to the well known parallelogram
law of vector addition (see Fig. 15), and then loading it
with the sum of the weights, for this would then in fact
represent the quaternion:

() p+p=@+d)+ia+a)+70+b)+Ek(c+c).

We come first to specific properties of quaternions

when we turn to multiplication. As we saw in the general

Fig. 15. case, these properties must be implicit in the conventions

adopted as to the products of the units. To begin with,

I shall indicate the quaternions to which Hamilton equated the

sixteen products of two units each. As its symbol indicates, we shall
operate with the first unit 1 as with the real number 1, so that:

(2a) 12=1, i-1=1+1=1, j*1=1-j=7f, k-1=1-k=k.
1

As something essentially new, however, we agree that, for the squares of
the other units:

(2b) =2 =k2=—1,
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and for their binary ‘products:

(2¢) k=414, ki=j, 1j=+k
whereas for the inverted position of the factors:
(2d) kj=—1i, ik=—7, ji=—k.

One is struck here by the fact that the commutative law for multiplication
is not obeyed. This is the inconvenience in quaternions which one must
accept in order to rescue the uniqueness of division, as well as the theorem
that a product should vanish only when one of the factors vanishes.
We shall show at once that not only this theovem but also all the other laws
of addition and multiplication remain valid, with this one exception, in
other words, that these simple agreements are very expedient.
We construct, first, the product of two general quaternions

p=d+ia+jb+ke and ¢=w +ix+ gy + ka.
Let us start from the equation
¢ =p q=(d+ia-+jb+ ko) (w+ix+jy+ k2);

and let us multiply out term by term. In carrying out this multiplication,
we must note the order in the case of the units 7, §, 2. We must follow
the commutative law for products composed of the components «, b, ¢, 4,
and for products of components and one unit, we must replace the
products of units in accordance with our multiplication table, and we
must then collect the terms having the same unit. We must then
collect the terms having the same unit. We then have

¢ =pg=w +1ix' + 7y 4+ ki = (dw — ax — by — c2)

+i(aw 4+ dx + bz — c_z)_
®) + (0w +dy + cx — az)

+k(cw+dz+ay-—_lzic).

The components of the product quaternion are thus definite simple
bilinear combinations of the components of the two factors. If we
invert the order of the factors, the six underscored terms change their
signs, so that g - p, in general, is different from p - q, and the difference
is more than a change of sign as was the case with the individual units.

Although the commutative law fails for multiplication, the d¢stribu-
tive and associative laws hold without change. For, if we construct on
the one hand p(q + ¢;), on the other p¢g + p¢, by multiplying out
formally without replacing the products of the units, we must, of
necessity, get identical results, and no change can be brought about
by then using the multiplication table. Further, the associative law
must hold in general, if it holds for the multiplication of the units.
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But this follows at once from the multiplication table, as the following
example shows:

(@) k=1(jk).

() =h-k=—1,

In fact, we have:

and
t(jR)=1-7=—1.

We shall now take up division. It will suffice to show that for every
quaternion p = d + ia + b + kc there is a definite second one, q, such
that:

prg=1.
We shall denote ¢ appropriately by 1/p. Division in general can be
reduced easily to this special case, as we shall show later. In order to
determine ¢, let us put, in equation (3),

'=1=140-7140"74+0"%,

and obtain, by equating components, the following four equations for
four unknown components x,y, z, w of ¢:

dw —ax — by —cz=1

aw +dx —cy+bz=0

bw+cx +dy —az=0

cw — bx + ay +dz = 0.
The solvability of such a system of equations depends, as is well known,
upon its determinant, which, in the case before us, is a skew symmetric
determinant, in which all the elements of the principal diagonal are the
same, and all the pairs of elements which are symmetrically placed with
respect to that diagonal are equal and opposite in sign. According to

the theory of determinants, such determinants are easily calculated;
and we find

d —a —b —c|
a d —c b
b c d —a
c —b a d

= (@% + b% + ¢ + d%)>2.

By direct calculation this result can be easily verified. The real elegance
of Hamilton’s conventions depends upon this result, that the determinant
is a power of the sum of squares of the four components of p; for it
follows that the determinant is always different from zero except when
a=b=c=d=0. With this one self evident exception (p = 0),
the equations are umiquely solvable and the reciprocal quaternion g is
uniquely determined.. l
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The quantity

T =7a%+ b2+ c? + a2

plays an important role in the theory, and is called the fensor of $.
It is easy to show that these unique solutions are

a b c d

xz—?) y:_ﬁ! Z=—F)

so that we have as the final result
1 1 _d—tia—jb—kec

p - d¥iatjbtkc a@FbfE+a’

If we introduce the conjugate value of $, as in ordinary complex numbers:
p=d—ia—jb— kc,
we can write the last formula in the form

1_ P
T

p_' T2
or

7‘)-;5:1‘2:a2—+—b2+02+d2.

These formulas which are immediate generalizations of certain properties
of ordinary complex numbers. Since p is also the number conjugate
to p, it follows also that:

pep=1%
so that the commutative law holds in this special case.
The general problem of division can now be solved. For, from the
equation
pra=4d,
it follows, by multiplication by 1/p, that

q=%4=%wﬁ
whereas the equation
g-p=4q,
which one gets by changing the order of the factors, has the solution

T ,.__12
q——q-;——q T2®

This solution is different, in general, from the other.

Now we must inquire whether there is a geometric interpretation of
quaternions in which these operations, together with their laws, appear
in a natural form. In order to arrive at it, we start with the special
case in which both factors reduce to simple vectors, i.e., in which the



64 Arithmetic: Complex Numbers.

scalar parts w, d, are zero. The formula (3) for multiplication then
becomes

¢ =p"9=0a+7b+ke)@x+iy+ k2 :
= —(ax + by.4+ c2) + i (bz — cy) + j(cx — az) + k(ay — bx),
i. e., when each of two quaternions reduces to a vector, their product consists
of a scalar and a vector part. We can easily bring these two parts into

relation with the different kinds of vector multiplication which are in
use. The notions of vector calculus, which is far more wide spread than

rbc-cy, ) quaternion calculus, go back to Grassmann, although

o Ulsing

the word vector is of English origin. The two kinds

la,b,c) of vector product with which one usually operates

f are designated now, mostly, by inner (scalar) product

- ©%%) 4% + by + cz (i.e., the scalar part of the above

Fig. 16 quaternion product, except for the sign), and outer

(vector) product i (bz—cy) +j(cx—az) +k(ay—bx),

(i. e., the vector part of the quaternion product. We shall give a geo-
metric interpretation of each part separately.

Let us lay off both vectors (a, b, ¢) and (x, y, 2), as segments, from
the origin O (Fig. 16). They terminate in the pomts (a,b,c) and (x ¥y, z)
respectively,and have the lengths!= Vaz +b24c2and I’ = sz +y2+ 2,
If @ is the angle between these two segments; then, according. to well
known formulas of analytic geometry,
which I do not need to develop here,

Z

¥ the tnmer product is:
x ax +by+cz=1-1"-cosgp;

and the outer product, on the other
hand, is itself a wvector, which, as is
easily seen, is perpendicular to the
plane of | and I’ and has the length
L+l -sing.

It is essential now to decide as to
the sense of the product vector, i.e.,
toward which side of the plane deter-
mined by ! and /' one is to lay off

Fig. 17. this vector. This sense is different

according to the coordinate system

which one chooses. As you know, one can choose two rectangular co-
ordinate systems which are not congruent, i.e., which cannot be made to
coincide with one another, by holding, say, the y- and the z-axis fixed
and reversing the sense of the x-axis. These systems are then sym-
metric to each other, like the right and the left hand (Fig. 17). The distinction
between them can be borne in mind by the following rule: In the one
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system, the %,y, and z axis lie like the outstretched thumb, fore finger and
middle finger, vespectively, of the right hand; in the other, like the same
fingers of the left hand. These two systems are used confusedly in the
literature; different habits obtain in different countries, in different
fields, and, finally, with different writers, or even with the same writer.
Let us now examine the simplest case, where p = 7, ¢ = §, these being
the unit lengths laid off on the x and y axis. Then, since 7-7 =&,
the outer vector product is the unit length laid off '
on the z-axis. (See Fig.18.) Now one can trans-
form ¢ and § continuously into two arbitrary vectors g
p and g so that % transforms continuously into the
vector component of $-g without going through
zero. Consequently the first factor, the second factor, z
and the vector product must always lie, with respect to Fig. 18.

each other, like the x, vy, and z-axis of the system of

coordinates, . e., right-handed (as in I'ig. 18) or left-handed (as in Fig. 16),
according to the choice of coordinate system. (In Germany, now, the choice
indicated in Fig. 18 is customary.)

I should like to add a few words concerning the much disputed
question of notation tn vector analysis. There are, namely, a great many
different symbols used for each of the vector operations, and it has been
impossible, thus far, to bring about a generally accepted notation.
At the meeting of natural scientists at Kassel (1903) a commission was
set up for this purpose. Its members, however, were not able even to
come to a complete understanding among themselves. Since their -
intentions were good, however, each member was willing to meet the
others part way, so that the only result was that about three new
notations came into existence! My experience in such things inclines
me to the belief that real agreement could be brought about only if
important material interests stood behind it. It was only after such
pressure that, in 1881, the uniform system of measures according to
volts, amperes, and ohms was generally adopted in electrotechnics and
afterward settled by public legislation, due to the fact that industry
was in urgent need of such uniformity as a basis for all of its calculations.
But there are no such strong material interests behind vector calculus,
as yet, and hence one must agree, for better or worse, to let every
mathematician cling to the notation which he finds the most convenient,
or—if he is dogmatically inclined—the only correct one.

x

3. Quaternion Multiplication — Rotation and Expansion
Before we proceed to the consideration of the geometric meaning
of multiplication of general quaternions, let us consider the following
question. Let us consider the product ¢’ = p - ¢ of two quaternions $
and ¢, and let us replace $ and g by their conjugates $ and g, that

Klein, Elementary Mathematics. : 5
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is, let us change the signs of a4, b,¢, x,y,2z. Then the scalar part of
the product, as given in (3), p. 61, remains unchanged, and only those
factors of 7, 7, 2 which are not underscored will change sign. On the
other hand, if we also reverse the order of the factors $ and ¢, the
factors of 7,7, 2 which are underscored will change sign. Hence the
product ¢'= g - p is precisely the conjugate of the original product ¢-;
and we have

¢=¢9 gq¢=92
where ¢’ is the conjugate of ¢’. If we multiply these two equations
together, we obtain '
' ¢ ¢=p4q9p.
In this equation the order of the factors is essential, since the com-
mutative law does not hold. We may apply the associative law, however,
and we may write

¢¢=¢(q"9" 2.
Since we have, by p. 63,
g g=x*+y*+ 2%+ w?
we may write
w’Z + x’2 + y'2 + z’2 j— p(w2 + x2 + y2 + zZ)ﬁ.

The middle factor on the right is a scalar, and the commutative law
does hold for multiplication of a scalar by a quaternion, since M - p
= Md + i(Ma) + §(Mb) + k(Mc) = pM. Hence we have

w2+ &2+ y'2 4 22 = pp(w? + 2 + y? + 27),
and, since p - p is the square of the tensor of p, we find?!
() w2422 4y 4 2% = (@ +a® + 52+ o) (w2 + 22 + 92 + 29)

that is, the tensor of the product of two quaternions is equal to the product
of the tensors of the factors. This formula can be obtained also by direct
calculation, by taking the values of »’, ', y’, 2’ from the formula for
a product given on p. 61.

We shall now represent a quaternion as the segment joining the
origin of a four-dimensional space to the point (¥, y, z, »), in a manner
exactly analogous to the representation of a vector in three-dimensional
space. It is no longer necessary to apologize for making use of four-
dimensional space, as was the custom when I was a student. All of
you are fully aware that no metaphysical meaning is intended, and that
higher dimensional space is nothing more than a convenient mathematical
expression which permits us to use terminology analogous to that of

1 This formula, in all that is essential, occurs in Lagrange’s works.
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actual space representation. If we regard p as a constant, that is, if
we regard @, b, c,d as constants, the quaternion equation
¢ =pq .

represents a certain linear tranformation of the points (x,y, z, w) of
the four-dimensional space into the points (¥, 9", 2’, w’), since the
equation assigns to every four-dimensional vector ¢ another vector ¢’
linearly. The explicit equations for this transformation, i.e., the ex-
pressions for x', ', 2’, w’ as linear functions of x, y, 2, w, may be obtained

by comparison of the coefficients of the product formula (3), p. 61.
The tensor equation (I) shows that the distance of any point from the
origin, Va2 + y® + 22 + w?, is multiplied by the same constant factor
T = }/az -+ 62 + ¢ 4 42, for all points of the space. Finally, by
p. 62, the determinant of the linear transformation is surely positive.

It is shown in analytic geometry of three-dimensional space that
if a linear transformation of the coordinates x,y, z is orthogonal (that
is, if it carries the expression 22 4 22 into itself), and if the deter-
minant of the transformation is positive, the transformation represents
a rotation about the origin. Conversely, any rotation can be obtained in
this manner. If the linear transformation carries x2 4 y2 - 22 into
the similar expression in %', y’, 2/ multiplied by a constant factor T2,
however, and if the determinant is positive, the transformation re-
presents a rotation about the origin combined with an expansion in the
ratio T about the origin, or, briefly, a rotation and expansion.

The facts just mentioned for three-dimensional space may be ex-
tended to four-dimensional space. We shall say that our transformation
of four-dimensional space represents in precisely the same sense a
rotation and expansion about the origin. It is easy to see, however, that
in this case we do not obtain the most general rotation and expansion
about the origin. For our transformation contains only four arbitrary
constants, namely, the components a, b, ¢, d of $, whereas, as we shall
show immediately, the most general rotation and expansion about the
origin in the four-dimensional space R, contains seven arbitrary con-
stants. Indeed, in order that the general linear transformation should
be a rotation and expansion, we must have

x/g "’[" yrz + 212 + w12 — Tz(x2 + yZ + 22 + w2).

If we replace x',9’, 2, w’ by linear integral functions of x,vy,z,w,
we obtain a quadratic form in four variables, which contains (4-5)/2 =10
terms. Equating coefficients, we obtain ten equations, Since T is still
arbitrary, these reduce to nine equations among the sixteen coefficients
of the transformation. - Hence there remain seven arbitrary constants.

It is remarkable that in spite of this the most general rotation and
expansion can be obtained by quaternion multiplication. Let # = 0 +io

5*
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<+ 7B + ky be another constant quaternion. Then we may show, just as
before, that the transformation ¢’ = g-x, which differs from the
preceding one only in that the order is reversed, represents a rotation
and expansion of R,. Hence the combined transformation

() ¢ =p-q-n=d+iatib+h) g-(O+in+ip+h)

also represents such a rotation and expansion. This transformation
contains only seven (not eight) arbitrary constants, for the trans-
formation remains unchanged if we multiply a,b,c¢,d by any real
number and divide &, f,y, 0 by the same number. It is therefore
plausible that this combined transformation represents the general
rotation and expansion of four-dimensional space. This beautiful result
- is actually true, as was shown by Cayley. I shall restrict myself to the
mention of the historical fact, in order not to be drawn into too great
detail. The formula is given in Cayley’s paper on the homographic
transformation of a surface of the second order into itself1, in 1854, and also
in certain other papers of his2.

This formula of Cayley’s has the great advantage that it enables
us to grasp at once the combination of two rotations and expansions.
Thus, if a second rotation and expansion be given by the equation

g =w' 4 ix" gy + kR =p"-q - A,

where p’ and @’ are new given quaternions, we find, by (II),

¢ =p-t-q-n-,
whence, by the associative law,

7= p)g (77
or

¢'=r-q-0
where # = p' - p and ¢ = @ - 2’ are definite new quaternions. We have
therefore obtained an expression for the rotation and expansion that
carries g into ¢’ in precisely the old form, and we see that the multipliers
which precede and follow ¢ in the quaternion product are, respectively,
the products of the corresponding multipliers of g in the separate trans-
formations which were combined, the order of the factors being neces-
sarily as shown in the formula.

This four-dimensional representation may seem unsatisfactory, and
there may be a desire for something more tangible which can be re-
presented in ordinary three-dimensional space. We shall therefore
show that we can obtain similar formulas for the similar three-dimensional

1 Journal fiir Mathematik, 1855. Reprinted in Cayley’s Collected Papers, vol. 2,
p- 133. Cambridge 1889.
2 See, for example, Recherches ultérieures sur les déterminants gauches, loc. cit.,
p. 214. :
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operations by a simple specialization of the formulas just given. Indeed
the importance of quaternion multiplication for ordinary physics and
mechanics is based upon these very formulas. I have said “ordinary”,
because I do not desire at this point to explain those generalizations
of these science for which the preceding formulas apply without any
modification. These generalizations are more immediate, however, than
you may suppose. The new developments of electrodynamics which
are associated with the principle of relativity, are essentially nothing
else than the logical use of rotations and expansions in a four-dimensional
space. These ideas have been presented and enlarged upon recently
by Minkowskil.

Let us remain, however, in three-dimensional space. In such a space,
a rotation and expansion carries a point (x, y, 2) into a point (x', y’, 2’)
in such a way that

4yt gt = MOt 4yt 22),

where M denotes the ratio of expansion of every length. Since the
general linear transformation of (x, v, z) into («’,y’, z’) contains nine
coefficients, and since the left-hand side of the preceding equation,
after the insertion of the values of #’, y’, 2’, becomes a quadratic form
in x, vy, z with six terms, the comparison of coefficients in the preceding
"equation leads to six equations, which reduce to five if the value
of M is supposed arbitrary. Therefore the nine original coefficients
of the linear transformation, which are subject to these five conditions,
are reduced to four arbitrary constants. (Compare p. 67.) If such a
linear transformation has a positive determinant, it represents, as was
stated on p. 67, a rotation of space about the origin, together with an
expansion in the ratio 1/M. If the determinant is negative, however,
the transformation represents a rotation and expansion, combined with
a reflection, such as, for example, the reflection defined by the equations
¥ =—x',y =—y', z =—2". Moreover, it can be shown that the deter-
minant of the transformation must have one of the two values 4 M3.

In order to represent these relationships by means of quaternions,
let us first reduce the variable quaternions ¢ and ¢’ to their vectorial
parts:

_ g =1x" + 7y + k2, q=1x+ 7y + kz,

which we shall think of as the three-dimensional vectors joining the
_origin to the positions of the point before and after the transformation,
" respectively. We shall show that the gemeral rotation and expansion

1 Since this was written, an extensive literature on the special theory of
relativity mentioned above has appeared. Let me mention here my address Uber
die geometrischen Grumdlagen dev Loventzgruppe, Jahresbericht der deutschen
" Mathematiker-Vereinigung, vol. 19 (1910), p. 299, reprinted in Klein’s Gesammelte
mathematische Abhandlungen, vol. 1, p. 533. '
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of the three-dimensional space is given by the formula (1I) if p and =
have conjugate values, that is, if we write ¢’ = p -q - p; or, in expanded

form,
() ' + 5y + k2’

= (d+1a+ b+ kc) (6x + 7y + k2) (d — 1a — b — ke).
In order to prove this, we must show first that the scalar part of the
product on the right vanishes; that is, that ¢’ is indeed a vector. To do
this, we first mutiply ¢ by ¢ according to the rule for quaternion
multiplication, and we find

g =[—ax —by —cz+1(dz+ bz — cvy)
+j@y +cx —az) + k(dz+ ay — bx)] - [d —ia — jb — kc].
After another quaternion multiplication, we actually find the scalar

part of ¢’ to be zero, whereas we find for the components of the vector
part the expressions

2 =A%+ a®—b2—cHx + 2(ab —cd)y + 2(ac 4 bd)z
(2 1y = 2(ba + cd)x + (A% b2—c:—a?)y |- 2(bc — ad)z
2= 2(ca — bd) x - 2(co+ad)y+ (@2 +c2—a?—b?)z

That these formulas actually represent a rotation and expansion becomes
evident if we write the tensor equation for (1), which, by (I), is
24y 2= (d2 4 a2+ b 4 c?) (4 v 4 22) (@2 - a® b+ c?),
or

x'2 _IL y’:! + 272 = T4. (x‘.l + y‘.z -+ 2.'2) ,

where T = ]fdz + a? + b% + ¢? denotes the tensor of . Hence, our
transformation is precisely a rotation and expansion (see p. 69), provided
the determinant is positive; otherwise it is such a transformation
combined with a reflection. In any case, the ratio of expansionis M = T2
As remarked above, the determinant must have one of the two values
4+ M3 = 4 T%. If we consider the transformation for all possible values
of the parameters a, b, ¢, d which correspond to the same tensor value T,
which must obviously be different from zero, we see that the determinant
must always have the value + 7% if it has that value for any single
system of values of a,b,c,d; for the determinant is a continuous
function of a, b, ¢, d, and therefore it cannot suddenly change in value
from +7% to —7T% without taking on intermediate values. One set
of values for which the determinant is positiveisa =b=c =0, d =T,
since, by (2), the value of the determinant for these values of 2, b, ¢, d, is

a, 0, 0
0, 4, 0
0, 0, a

—=d8 = +T°.
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It follows that the sign is always positive, and hence (1) always re-
presents actually a rotation and expansion. It is easy to write down
a transformation which combines a reflection with a rotation and an ex-
pansion, for we need only combine the preceding transformation with
the reflection 4’ = —x,y’' = —y,2 = —z, which is equivalent to
writing the quaternion equation ¢’ =p-q-p.

We shall now show that, conversely, every rotation and expansion
may be written in the form (1), or in the equivalent form (2). In the
first place, this formula contains the four arbitrary constants which,
as we saw on p. 69, are' necessary for the general case. That we can
actually obtain any desired value of the expansion-ratio M = T2,
any desired position of the axis of rotation, and any desired angle of
rotation, by a suitable choice of the four arbitrary constants, can be
seen by means of the following formulas. Let &, #, { denote the direction
cosines of the axis of rotation, and let w denote the angle of rotation.
We have, of course, the well known relation

(3) &4+ 2=1.

I shall now prove that a, b, c,d are given by the equations

w
= T-cos?,
(4)

-~ . - . P . W
a=1-§-sm»;—, b-——T-n-smg—, c=1‘-£-sm5-,

which, by (3), obviously satisfy the condition
dz 4+ a? 4 b2 4 c2 = T2

When these relations have been proved, we can evidently obtain the
correct values of a, b, c,d for any given values of T,&,7,(, w.

To prove the relations (4), let us remark first that if @, b, ¢, d are
given, the quantities w, &, 7, are determined, and in such a way
that (3) is satisfied. For, squaring and adding the equations (4), since T
is the tensor of the quaternion p =d + 1a 4 7b + kc, we have

1= cosZ%{ + sinZ% (&2 + 92 4 07,

whence we see that (3) holds. It follows that &, 77, { are fully determined
by the relations

(4) abic=¢&:n:C,

which appear directly from (4). These equations express the fact that
the point (a, b, ¢) lies on the axis of revolution of the transformation.
This fact is easy to verify, for if we put x =a,y =5,z =c in (2),

we find
@+a2+ 024+ c)a=7T2% a,

i =
y =@*+at+b2+c})b="T2b,
2 =@d*4+ a2+ b2+ c%)c=T2%-c
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that is, the point (@, b, ¢) remains on the same ray through the origin,
which identifies it as a point on the axis of revolution. It remains
only to prove that the angle w defined by (4) is actually the angle of
rotation. This demonstration requires extended discussion which
I can avoid now by remarking that the transformation (2) for T'=1
reduces precisely to the transformation given by Euler for the revolution
of the axes through the angle w about an axis of revolution whose
direction cosines are &, 7, {. This is to be found, for example, in Klein-
Sommerfeld, Theorie des Kreisels, volume 11, where explicit mention
of the theory of quaternions is given, or in Baltzer, Theorie und An-
wendung der Determinanten 2.

Finally, if we substitute the values given by (4) in the equation (1),
we obtain the very brief and convenient equation in quaternion form
for the revolution through an angle w about an axis whose direction
cosines are &, 7, , combined with an expansion of ratio 7'%:

i 4y ke = Tz{cosg— +sin 2 (i€ + oy + kC)}-{ix iyt k2

-{cosﬁz’ — sin 2 (i& + 7 + kC)}.

This formula expresses in a form that is easy to remember Euler’s
formulas for rotation: the multipliers which precede and follow the
vector ix + jy + kz, are, respectively, the two conjugate quaternions
whose tensor is unity (so-called versor, that is, “rotator”’, in contra-
distinction to femsor, ‘‘stretcher’”), and then the whole result is to be
multiplied by a scalar factor- which is the expansion-ratio.

We shall proceed now to show that when we specialize these formulas
still further to two-dimensions, they become the well known formulas
for the representation of a rotation and expansion of the xy plane by
means of the multiplication of two complex numbers. (See p.57.)
For this purpose, let us choose the axis of rotation as the z axis
(6 =mn=0,{=1). Then the formula (5), for z =2 =0, may be
written in the form

ix 47y = T2 (cosf'z—- + ksin%) (tx +1v) (cosi; — ksin%),

(5)

or, upon multiplication with due regard to the rules for products of the
units,

ix +jy = Tz{cos—;i(z'x +7y) + sin%(;ix — iy)}{cos%’- — ksin%}
= Tz{cos‘zg(ix +7y) + ZSing—cos—Z—(jx—iy) —sinZ% (1x 4 jy)}
= T*{(ix + {y) cosw + (jx — iy)sinm}
o= T?(cosw + ksinw) (x +7y).
1 Leipzig 1897; 2nd printing, 1914. 2 Fifth edition, Leipzig 1881.
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If we now multiply both sides by the right-hand factor (—?), we obtain
% + ky = T2 (cosw + ksinw) (x + ky),
which is precisely the rule for multiplying two ordinary complex numbers;
and which can be interpreted as a rotation through an angle w, together
with an expansion in the ratio T2, except that we have used the letter &
in place of the usual letter 7 to denote the imaginary unit } —1.
Let us now return to three-dimensional space, and let us modify
the formula (1) so that it shall represent a pure rotation without an
expansion. To do so, we must replace x’, y', 2’ by x" - T2, 9" - T2, 2’ - T?,
that is, we must replace ¢’ by ¢’ - T2 If we notice that p~1=1/p=p/T?,
we may write the formula for a pure rotation in the form

(6) i 4y ke =iz + iy + k2) - p .
There is no loss of generality if we assume that $ is a quaternion whose
tensor is unity, that is,

p = cos . +sinZ- (i& +jn + k¢), where &4 240 =1,

whence we see that (6) results from (5) if T is set equal to unity. The
formula was first stated in this form by Cayley in 18451

We may express the composition of two rotations in a particularly
simple form, precisely as we did above for four-dimensional space.
Given a second rotation

ixll+jyll+kzII:PI (ix'+7'yl _+_ kzl) pl—l
where
p = cos% + sin%— (1& +1iq + kL)

" the direction cosines of the axis of rotation being &', ', {’, and the
angle of rotation being w’, we may write

i ]y + R = p e p e lix -y + k) pTh
as the equation for the resultant rotation. Hence the direction cosines

of the axis or rotation, &, ", (", and the angle of rotatlon w", for
the resultant rotation, are given by the equation

P” = COS -—a;— + sin%__ (1:5” + 7-17// + kC”) — p/.p.

We have therefore found a brief and simple expression for the com-
" position of two rotations about the origin, whereas the ordinary formulas
for expressing the resultant rotation appear rather complicated. Since
any quaternion may be expressed as the product of a real number

1 On certain vesulls velating to quaternioms, Collected Mathematical Papers,
vol. 1 (1889), p. 123. According to Cayley’s own statement (vol. 1, p. 586), however,
Hamilton had discovered the same formula independently.
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(its tensor) and the versor of a rotation, we have also found a simple
geometric interpretation of quaternion multiplication as the com-
position of the rotations. The fact that quaternion multiplication is
not commutative then corresponds to the well known fact that the
order of two rotations about a point cannot be interchanged, in general,
without changing the result.

If you desire to make a study of the historical development of
the representations and applications of quaternions which we have
discussed, I would recommend to you an extremely valuable report
on dynamics written by Cayley himself: Report on the progress of the
solution of certain special problems of dynamics?.

I shall close with certain general remarks on the value and the
dissemination of quaternions. For such a purpose, one should distinguish
between the general quaternion calculus and the simple rule for
quaternion multiplication. The latter, at least, is certainly of very
great usefulness, as appears sufficiently from the preceding discussion.
The general quaternion calculus, on the other hand, as Hamilton
conceived it, embraced addition, multiplication, and division of
quaternions, carried to an arbitrary number of steps. Thus Hamilton
studied the algebra of quaternions; and, since he investigated also
infinite processes, he may be said to have created a quaternion theory
of functions. Since the commutative law does not hold, such a theory
takes on a totally different aspect from the theory of ordinary complex
variables. It is just to say, however, that these general and far-reaching
ideas of Hamilton have not justified themselves, for there have not
arisen any vital relationships and interdependencies with other branches
of mathematics and its applications. For this reason, the gencral theory
has aroused little general interest.

It is in mathematics, however, as it is in other human affairs: there
are those whose views arc calmly objective; but there are always some
who form regrettable personal prejudices. Thus the theory of quaternions
has enthusiastic supporters and bitter opponents. The supporters, who
are to be found chiefly in England and in America, adopted in 1907
the modern plan by founding an ““Association for the Promotion of the
Study of Quaternions’’. This organization was established as a thoroughly
international institution by the Japanese mathematician Kimura, who
had studied in America. Sir Robert Ball was for some time its president.
They foresaw great possible developments of mathematics to be secured
through intensive study of quaternions. On the other hand, there are
those who refuse to listen to anything about quaternions, and who go
so far as to refuse to consider the very useful idea of quaternion mul-

1 Report of the British Association for the Advancement of Science, 1862;
reprinted in Cayley’s Collected Mathematical Papers, Cambridge, vol. 4 (1891),
Pp. 5521f.
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tiplication. According to the view of such persons, all computation
with quaternions amounts to nothing but computation with the four
components; the units and the multiplication table appear to them to
be superfluous luxuries. Between these two extremes, there are many
who hold that we should always distinguish carefully between scalars
and vectors.

4. Complex Numbers in School Instruction

I shall now leave the theory of quaternions and close this chapter
with some remarks about the role which these concepts play in the cur-
riculum of the schools. No one would ever think of bringing up
quaternions in a secondary school, but the common complex numbers
x -+ 1y always come up for discussion. Perhaps it will be more interesting
if, instead of telling you at length how it is done and how it ought to
be done, I exhibit to you, by means of three books from different periods,
how instruction has developed historically.

I put before you, first, a book by Késtner who had a leading position
in Gottingen in the second half of the eighteenth century. In those
days one still studied, at the university, those elementary mathematical
things which later, in the thirties of the nineteenth century, went over
to the schools. Accordingly, Késtner also gave lectures on elementary
mathematics, which were heard by large numbers of non-mathematical
students. His book, which formed the basis of these lectures, was called
Mathematische Anfangsgriinde*. The portion which interests us here
is the second division of the third part: Anfangsgriinde der Analysis
endlicher Grofen**1. The treatment of imaginary quantities begins there
on page 20 in something like the following words: ‘““Whoever demands
the extraction of an even root of a ‘denied’ quantity (one said ‘denied’,
then, instead of ‘negative’), demands an impossibility, for there is no
‘denied’ quantity which would be such a power”. This is, in fact, quite
correct. But on page 34 one finds: “Such roots are called impossible
or imaginary”’, and, without much investigation as to justification, one
proceeds quietly to operate with them as with ordinary numbers,
notwithstanding their existence has just been disputed—as though, so
to speak, the meaningless became suddenly usable through receiving
aname. You recognize here a reflex of Leibniz’s point of view, according
to which, imaginary numbers were really something quite foolish but
they led, nevertheless, in some incomprehensible way, to useful results.

Kistner was, moreover, a stimulating writer; he achieved quite
a place in the literature as a coiner of epigrams. To cite only one of many
examples, he expatiates, in the introduction of this book mentioned

1 Third edition. Goéttingen 1794.
¥ Elements of Mathematics.
** Elemements of Analysis of Finite Quantities.
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above, on the origin of the word algebra, which, indeed, as the article
“al” indicates, comes from the Arabic. According to Kistner, an
algebraist is a man who ‘““makes” fractions ‘““whole’’, who, that is, treats
rational functions and reduces them to a common denominator, etc.
It is said to have referred, originally, to the practice of a surgeon in
mending broken bones. Kistner then cites Don Quixote, who went to
an algebraist to get his broken ribs set. Of course, I shall leave undecided,
whether Cervantes really adopted this form of expression or whether
this is only a lampoon.

The second work which I put before you is more recent, by a whole
series of years, and comes from the Berlin professor M. Ohm: Versuch
eines vollstindig komsequenten Systems der Mathematik*'; a book with
purpose similar to that of Kastner and at one time widely used. But
Ohm is much nearer the modern point of view, in that he speaks clearly
of the principle of the extension of the number system. He says, for

example, that, just like negative numbers, so ' — 1 must be added to
the real numbers as a new thing. But even his book lacks a geometric
interpretation, since it appeared before the epoch-making publication
by Gauss (1831).
_ Finally, I lay before you, out of the long list of modern school books,
one that is widely used: Bardeys Aufgabensammlung?®. The principle
of extension comes to the fore here, and, in due course, the geometric
interpretation is explained. This may be taken as the general position
of school instruction today, even if, at isolated places, the development
has remained at the earlier level. The point of view adopted in this
book seems to me to yield the treatment best adapted to the schools.
Withhout tiring the pupil with a systematic development, and without,
of course, going into logically abstract explanations, one should explain
complex numbers as an extension of the familiar number comcept, and
should avoid any touch of mystery. Above all, one should accustom
the pupil, at once, to the graphic geometric interpretation in the complex
plane!

With this, we come to the end of the first main part of the course,
which was dedicated to arithmetic. Before going over to similar dis-
cussions of algebra and analysis, I should like to insert a somewhat
extended historical appendix in order to throw new light upon the
general conduct of instruction at present, and upon those features of it
which we would improve.

1 Nine volumes. Berlin 1828. Vol. I: Arithmetik und Algebra, p. 276.

* An Attempt to Construct a Consistent System of Mathematics.

[2 See also the Reformausgabe of Bardeys Aufgabensammlung, revised by
W. Lietzmann and P. Ziilke. Oberstufe. Verlag Teubner. Leipzig.]—See also
Fine, H., The Number-System tn Algebra. Heath. Fine, H., College Algebra.
Ginn.
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Concerning the Modern Development and the General
Structure of Mathematics

Let me proceed from the remark that, in the kistory of the development
of mathematics up to the present time, we can distinguish clearly fwo
different processes of growth, which now change places, now run side
by side independent of one another, now finally mingle. It is difficult
to put into vivid language the difference which I have in mind, because
none of the current divisions fits the case. You will, however, under-
stand from a concrete example, namely, if I show how one would compile
the elementary chapters of the system of analysis in the sense of each of
these two processes of development.

If we follow the one process, which we will call briefly Plan A,
the following system presents itself, the one which is most widespread
in the schools and in elementary textbooks.

1. At the head stands the formal theory of equations, that is to say,
the operating with rational integral functions and the handling of the
cases in which algebraic equations can be solved by radicals.

2. The systematic pursuit of the idea of power and its inverses yields
logarithms, which prove to be so useful in numerical calculation.

3. Whereas (up to this point) the analytic development is kept quite
separate from geometry, one now borrows from this field, which yields
the definitions of a second kind of transcendental functions, the trigono-
metric functions, the further theory of which is built up as a new separate
subject.

4. Then follows the so called ‘“‘algebraic analysis”’, which teaches
the development of the simplest functions into infinite series. One considers
the general binomsial, the logarithm and its inverse, the exponential func-
tion, together with the trigonometric functions. Similarly, the general
theory of infinile series and of operations with them belongs here. It is
here that the surprising relations between the elementary transcendentals
appear, in particular the famous Euler formula

€'*= cos x + 4 sin x.
Such relations seem the more remarkable because the functions which
occur in them had been originally defined in entirely separate fields.

5. The consistent continuation, beyond the schools, of this structure,
is the Weierstrass theory of functions of a complex variable, which
begins with the properties of power series.

Let us now set over against this, in condensed form the second
process of development, which I shall call Plan B. Here the controlling
thought is that of analytic geometry, which seeks a fusion of the perception
of number with that of space.

1. We begin with the graphical representation of the simplest functions,
of polynomials, and rational functions of one variable. The point in
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which the curves so obtained meet the axis of abscissas put in evidence
the zeros of the polynomials, and this leads naturally to the theory of the
approximate numerical solution of equations.

2. The geometric picture of the curve supplies naturally the intuitive
source both for the idea of the differential quotient and that of the integral.
One is led to the former by the slope of the curve, to the latter by the
area which is bounded by the curve and the axis of abscissas.

3. In all those cases in which the #ntegration process (or the process
of quadrature, in the proper sense of that word) cannot be carried out
explicitly with rational and algebraic functions, the process itself gives
rise to mew functions, which are thus introduced in a thoroughly natural
and uniform manner. Thus, the gquadrature of the hyperbola defines the

~ logarithm
/‘ = =logx
1 x g )

while the guadrature of the circle can easily be reduced to the integral

T adx

T = = arcsinx,

that is, to the ‘nverses of the trigonometric fumnctions. You know that
the same line of thought, pursued farther, leads to new classes of
functions of higher order, in particular to elliptic functions.

4. The development into infinite power series of the fumctions thus
introduced is obtained by means of a uniform principle, namely Taylor’s
theorem.

5. This method carried higher, yields the Cauchy-Riemann theory of
analytic functions of a complex variable, which is built upon the Cauchy-
Riemann differential equations and the Cauchy integral theorem. 1f we
try to put the reswlt of this survey into definite words, we might say
that Plan A is based upon a more particularistic conception of science
which divides the total field into a series of mutually separated parts and
attempts to develop each part for itself, with a minimum of resources and
with all possible avoidance of borrowing from mneighboring fields. Its ideal
is to crystallize out each of the partial fields into a logically closed system.
On the contrary, the supporter of Plan B lays the chief stress upon the
organic combination of the partial fields, and upon the stimulation which
these exert one upon another. He prefers, therefore, the methods which open
for kim an understanding of several fields under a uniform point of view.
His ideal is the comprehension of the sum total of mathematical science
as a great connected whole.

One cannot well be in doubt as to which of these two methods has
more life in it, as to which would grip the pupil more, in so far as he is
not endowed with a specific abstract mathematical gift. In order to
bring this home, think only of the example of the functions €* and sin x,
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about which we shall later have much to say along just this line! In
Plan 4, which the schools, unfortunately, follow almost exclusively,
both functions come up in thoroughly heterogeneous fashion: & or,
as the case may be, the logarithm, is introduced as a conventent aid in
numerical calculation, but sin x appears in the geometry of the triangle.
How can one understand, thus, that the two are so simply connected,
and, more, that the two appear again and again in the most widely
differing fields which have not the least to do, either with the technique
of numerical calculation or with geometry, and always of their own
accord, as the natural expression of the laws that govern the subject .
under discussion? How far these possibilities of application go is shown
by the names compound interest law or law of organic growth, which have
been applied to ¢°, and likewise by the fact that sin x plays a central
role wherever one has to do with uvibrations. But in Plan B these
connections make their appearance quite intelligibly, and in accord with
the significance of the functions, which is emphasized from the start. The
functions ¢ and sin x arise here, indeed, from the same source, the
quadrature of simple curves, and one is soon led from there, as we shall
see later on, to the differential equations of simplest type
de” - d?sinx .
;Z; = s ‘—‘EZT = —SInx,

respectively, which lie naturally at the basis of all those applications.

For a complete understanding of the development of mathematics
we must, however, think of still a third Plan C, which, along side of
and within the processes of development A4 and B, often plays an
important role. It has to do with a method which one denotes by the
word algorithm, derived from a mutilated form of the name of an Arabian
mathematician. All ordered formal calculation is, at bottom, algorithmic,
in particular, the calculation with letters is an algorithm. We have
repeatedly emphasized what an important part in the development of
the science has been played by the algorithmic process, as a quasi-
independent, onward-driving force, inherent in the formulas, operating
apart from the intention and insight of the mathematician, at the time,
often indeed in opposition to them. In the beginnings of the infinitesmal
calculus, as we shall see later on, the algorithm has often forced new
notions and operations, even before one could justify their admissibility.
Even at higher levels of the development, these algorithmic considera-
tions can be, and actually have been, very fruitful, so that one can justly
call them the groundwork of mathematical development. We must then
completely ignore history, if, as is sometimes done today, we cast these
circumstances contemptuously aside as mere ‘“formal” developments.

Let me now follow more carefully through the history of mathematics
the contrast of these different divections of work, confining myself of course
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to the most important features of the development. The thoroughgoing
difference between A and B, within the whole field of mathematics, will
appear here more clearly than it did above, where our thoughts were
directed only to analysis.

With the ancient Greeks we find a sharp se;bamtwn between pure and
applied mathematics, which goes back to Plato and Aristotle. Above all,
the well known Euclidean structure of geometry belongs to pure mathe-
matics. In the applied field they developed, especially, numerical calcula-
tion, the so called logistics (Adyos = general number, see p.32). To
be sure, the logistics was not highly regarded, and you know that this
prejudice has, to a considerable extent, maintained itself to this day
—mainly, it is true, with only those persons who themselves cannot
calculate numerically. The slight esteem for logistics may have been
due in particular to its having been developed in connection with
trigonometry and the needs of practical surveying, which to some does not
seem sufficiently aristocratic. In spite of this fact, it may have been
raised somewhat in general esteem by its application in astronomy,
which, although related to geodesy, always has been considered one of
the most aristocratic fields. You see, even with these few remarks,
that the Greek cultivation of science, with its sharp separation of the
different fields, each of which was represented with its rigid logical
articulation, belonged entively in the plan of development A. Nevertheless
the Greeks were mot entive strangers to reflections in the sense of Plan B,
and these may have served them for heuristic purposes, and for a first
communication of their discoveries, even if the form A4 appeared to
them indispensable for the final presentation. This is indicated quite
pointedly in the recently discovered manuscript of Arvchimedes', in which
he exhibits his calculations of volume through mechanical considerations,
in a thoroughly modern, pleasing way, which has nothing to do with
the rigid Euclidean system.

Besides the Greeks, in ancient times, the Hindus, especially, played
a mathematical role as creators of our modern system of numerals, and
later the Arabs, as its transmatters. The first beginnings of operating with
letters were made also by the Hindus. These advances belong obviously
to the algorithmic course of development C.

Coming now to modern times, we can, first of all, date the mathematical
renaissance from about 1500, which produced an entire series of great’
discoveries. As an example, I mention the formal solution of the cubic
equation (Cardan’s formula), which was contained in the “Ars Magna’
of Cardano, published in 1545, in Nirnberg. This was a most significant
work, which holds the germs of the modern algebra, reaching out beyond -

1 Cf. Heiberg und Zeuthen, Eine neue Schyvift des Archimedes. Leipzig 1907.
Reprint from Bibliotheca Mathematica. Third series, vol. VIII. See also HEATH,"
T. L., The Works of Archimedes. Cambridge University Press.
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the scheme of ancient mathematics. To be sure, this work is not Cardano’s
own, for he is said to have taken from other authors not merely his
famous formula but other things as well.

After 1550 trigonometric calculation was in the foreground. The first
great trigonometric tables appeared in response to the needs of astronomy,
in connection with which I will mention only the name of Copernicus.
From about 1600 on, the invention of logarithms continued this develop-
ment. The first logarithmic tables, which a Scotchman Napier (or Nepér)
compiled, contained, in fact, only the logarithms of trigonometric
functions. Thus we see, during these hundred years,.a path of develop-
ment which corresponds to the Plan A.

We come now, in the seventheenth century, to the modern era proper,
in which the Plan B comes distinctly into the foreground. In 1637
appeared the analytic geometry of Descartes, which supplies the funda-
mental connection between number and space for all that follows. A
reprint® makes this work conveniently accessible. Now come, in close
sequence with this, the two great problems of the seventeenth century, the
problem of the tangent, and the problem of quadrature, in other words,
the problems of differentiating and integrating. For the development of
differential and integral calculus, in a proper sense, there was lacking
only the knowledge that these two problems are closely connected, that
one s the inverse of the other. A recognition of this fact was the principal
item in the great advance which was made at the end of the seventeenth
century.

But before this, in the course of the century, the theory of infinite
series, in particular, of power series, made its appearance, and not, in-
deed, as an independent subject, in the sense of the algebraic analysis
of today, but in closest connection with the problem of quadrature. Nicolaus
Mercator (the German name “Kaufmann’ latinized; 1620—1687), not
the inventor of the Mercator projection, was a pioneer here. He had
the keen idea of converting the fraction 1/(1 4 %) into a series, by dividing
out, and of integrating this series term by term, in order to get the series
development for log (1 + x):

z 4 z ) ) 2 3
Iog(1+x)=f0 1-:;::/0 (1—x+x2—+-o-)dx=x——;—+%—+---

That is the substance of his procedure, although he did not, of course,
use our simple symbols [ , dx, ..., but rather a much more clumsy

form of expression. In the sixties, Isaac Newton (1643 —1727) took over
this process, to apply it to the series for the general binomial, which he
had set up. In this process he drew his conclusions by analogy, basing

1 Descartes, R., La Géométrie. Nouvelle édition. Paris 1886. Translation
by Smith, D. E., and Latham, M. L., 1925. Open Court.

Kle}n, Elementary Mathematics. 6
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them on the known simplest cases, without having a rigorous proof
and without knowing the limits within which the series development
was valid. We observe here, again, the operation of the algorithmic

process C. By applying the binomial series to V__._— = (1 — x?)~12

and using Mercator’s process, he gets the series for f m
o V1 —

By a very skillful inversion of this series, and also of the one for log x,
he finds the series for sin x and for ¢®. The conclusion of this chain of
discoveries is due to Brook Taylor (1685—1731) who, in 1715, published
his general principle for developing functions into power series.

As is indicated above, the origin of infinitesimal calculus, at the end
 of the seventeenth century, was due to G. W. Leibniz (1646—1716) and
Newton. The fundamental idea with Newton is the notion of flowing. Both
variables«, y, are tought of as functions, ¢ (), ¥ (¢), of the time ¢; and as
the time “flows”, they flow also. Newton, accordingly, calls the variable
fluens and designates as fluxion %, y, that which we call differential
coefficient. You see how everything here is based firmly on intuition.

It was much the same with the representation of Leibniz, whose first
publication appeared in 1684. He himself declares that his greatest
discovery was the principle of continuity in all natural phenomena, that
““Natura non facit saltum’’. He bases his mathematical developments
upon this concept, another example of the Plan B. However, the
influence of the algorithm C is very strong, also, with Leibniz. We get
from him the algorithmically valuable symbols dy/dx and f /(%) dx

The sum total, however, of this cursory view is that the great discov-
eries of the seventeenth cemtury belong primarily to the plan of develop-
ment B.

In the eighteenth century, this period of discovery continues at first
in the same dirvection. The most distinguished names to be mentioned
here are L. Euler (1707—1783) and J. L. Lagrange (1736—1813). Thus
the theory of differential equations, in the most general sense, including
the calculus of variations, were developed, and analytical geometry and
analytical mechanics were extended. Everywhere there was a gratifying
advance, just as in geography, after the discovery of America, the new
countries were first traversed and explored in all directions. But just
as there was, as yet, no thought of exact surveys, just as at first one had
entirely false notions as to the location of these new places (Columbus,
indeed, thought at first, that he had reached Eastern Asial!), just so,
in the newly conquered region of mathematics, that of infinitesimal
calculus, one was, at first, far removed from a reliable logical orientation.
Indeed one even cherished illusions concerning the relation of the calculus
to the older familiar fields, in thateone looked upon infinitesimal calculus
as something mystical that in no way submitted to a logical analysis.

= arc sinx.
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Just how untrustworthy the ground was on which the theory stood,
became manifest only when it was attempted to prepare textbooks which
should present the new subject in an intelligible way. Then it became
evident that the method of procedure B was no longer adequate, and it
was Euler who first abandoned it. He had, to be sure, no serious doubts
concerning infinitesimal calculus, but he thought that it caused too
many difficulties and misgivings for the beginner. For this pedagogical
reason he thought it advisable to give a preparatory course, such as
he provided in his text book Introductio in analysin infinitorum (1748),
and which we call today algebraic analysis. To this he relegated, in
particular, the theory of infinite series and other infinite processes, which
- he then afterwards used as a foundation in constructing the infinitesimal
calculus.

Lagrange took a much more radical course, nearly fifty years later,
in his Théorie des fonctions analytiques, in 1797. He could satisfy his
scruples as to the current foundations of infinitesimal calculus only by
discarding it entirely, as a general branch of knowledge, and by consider-
ing it as an aggregate of formal rules applying to certain special classes
of functions. Indeed, he considers exclusively such functions as can be ex-
pressed by means of power series:

f(%) = ag + ayx + a,x? + a,x® + ...

He calls these analytic functions, meaning thereby functions which appear
in analysis and with which one can reasonably hope to do something.
The differential quotient of such a function, f (x), is then defined, purely
formally , by means of a second power series, as we shall see later. Diffe-
rential and integral calculus was concerned, then, with the mutual
relations of power series. This restriction to formal consideration ob-
viated, for a time, of course, a number of difficulties.

As you see, the turn which Euler gave, and still more, the entive method
of Lagrange, belongs strictly to the direction A, in that the perceptual genetic
development is replaced by a rigorous closed circle of reasoning. These
two investigators have had a profound influence upon instruction in the
secondary schools, and when the schools today study infinite series, or
solve equations by means of power series according to the so called
method of indeterminate coefficients, but decline to take up differential
and integral calculus proper, they are exkibiting precisely the after effect
of Euler’s “introductio” awd of Lagrange’s thought.

‘The nineteenth century, to which we come now, begins primarily
with a more secure foundation of higher analysis, by means of criteria of
convergence, about which one had hitherto thought but little. The
eighteenth century was the ‘“‘blissful” period, during which one did
not distinguish between good and bad, convergent and divergent. Even
in Euler’s Introductio, divergent and convergent series appear peaceably
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side by side. But, at the beginning of the new century Gauss (1777—1855)
and Abel (1802—1829) made the first rigorous investigations regarding
convergence; and in the twenties Cauchy (1789—1857) developed, in
lectures and in books, the first rigorous founding of infinitesimal calculus
in the modern sense. He not only gives an exact definition of the differential
quotient, and of the integral, by means of the limit of a finite quotient and
of a finite sum, respectively, as had previously been done, at times; but,
by means of the mean-value theorem he erects upon this, for the first
time, a consistent structure for the z'nfi'nitesimal calculus. We shall come
back to this fully later on. These theories also partake of the nature
of Plan A, since they work over the field in a logical sytematic way,
quite apart from other branches of knowledge. Meanwhile they had no
influence upon the schools, although they were thoroughly adapted to
dispel the old prejudice against differential and integral calculus.

I shall now emphasize only a very little of the further development of
the nineteenth century. In the first place, I shall speak of a few advances
which lie in the direction B: modern geometry, mathematical physics,
along with theory of functions of a complex variable, according to Cauchy
and Riemann. The leaders, in the first working over of these three
great fileds, were the French. This is the place to say a word, also, about
the style of mathematical presentation. In Euclid, one finds everything
according to the scheme “hypothesis, conclusion, proof’’, to which is
added, sometimes, the “‘discussion”’, i.e., the determination of the limits
which the considerations are valid. The belief is widespread that
mathematics always moves thus four steps at a time. But just in the
period of which we are speaking, there arose, especially among the
French, a new art form in mathematical presentation, which might be
called artistically articulated deduction. The works of Monge or, to mention
a more recent book, the Traité d’ Analyse, by Picard, read just like a
well written gripping novel. This is the style which fits the method of
thought B, whereas the Euclidean presentation is rvelated, in essence, to
the method A. ,

Of Germans who achieved distinction in these fields I should mention
Jacobi (1804—1851), Riemann (1826—1866), and, coming to a somewhat
later time, Clebsch (1833 —1872), and the Norwegian Lie (1842—1899).
These all belong essentially to the direction B, except that occasionally an
algorithmic touch is noticeable with them.

From the middle of the century on, the method of thought A comes
again to the front with Weierstrass (1815—1897). His activity, as teacher
in Berlin, began in 1856. I have already instanced Weierstrass function
theory as an example of A. The more recent investigations concerning the
axtoms of geometry belong, likewise, to the fype A. One is concerned .
here with studies entirely in the Euclidean d1rect10n, which approach it,
also, in the manner of presentation.
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With this I bring our brief historical résumé to an end. Many points
of view which could only be alluded to here will be brought up later for
more complete discussion. Asa summary, we might say that, iz the history
of mathematics during the last centuries, both of our chief methods of investiga-
tion were of importance; that each of them, and sometimes the two tn suc-
cession, have resulted in important advances of the sciemnce. It is certain
that mathematics will be able to advance uniformally in all directions,
only if neither of the two methods of investigation is neglected. May each
mathematician work in the direction which appeals to him most strongly.

Instruction in the secondary schools, however, as I have already
indicated, has long been wunder the one-sided comtrol of the Plan A.
Any movement toward reform of mathematical teaching must, therefore,
press for more emphasis upon divection B. In this connection I am
thinking, above all, of an impregnation with the genetic method of
teaching, of a stronger emphasis upon space perception, as such, and,
particularly, of giving prominence to the notion of function, under fusion
of space perception and number perception! It is my aim that these
lectures shall serve this tendency, especially since these elementary
mathematical books to which we are in the habit of going for advice,
e g., those of Weber-Wellstein, Tropfke, M. Simon, represent the direc-
tion A almost exclusively. I called your attention, in the introduction,
to this one-sidedness.

And now, gentlemen, enough of these diversions; let us pass to the
next main subdivision of this course.



Part 1T -
Algebra

Let me commence by mentioning a few textbooks of algebra, in order
to introduce you somewhat to a very extensive literature. I suggest,
first, Serret’s Cours d’ algébre! which was much used in Germany, formerly,
and had great merit. Now, however, we have two great widely used
German textbooks: H. Weber’s Lehrbuch der Algebra? and E. Netto’s
Vorlesungen iiber Algebra®, each in two volumes; both treat with great
fullness the most difficult parts of algebra and are well adapted for
extensive special study; they seem to me to be too comprehensive for
the average needs of prospective teachers and also too expensive. More
fitting in the latter respect is the handy Vorlesungen iiber Algebra* by
G. Bauer, which hardly goes beyond what the teacher should masters5.
On the practical side, for the numerical solution of equations, this book
is supplemented by the little book Praxis der Gleichungen by C. Runge§,
which I can highly reccomend.

Turning now to the narrower subject, let me remark that I cannot,
in the limits of this course of lectures, give a systematic presentation of
algebra; 1 can give, rather, only a one sided selection, and it will be most
fitting if I emphasize those things which are, unfortunately, neglected
elsewhere, and which are calculated nevertheless to throw light upon
school instruction. All of my algebraic developments will group them-
selves about one point, namely, about the application to the solution of
equations of graphical and, generally speaking, of geometrically perceptual
methods. This field alone is a very extensive and widely related chapter
of algebra. Even from it, it is obviously possible to select only the most

1 Third edition. Paris 1866 [sixth edition, 1910].

2 Second edition. Braunschweig 1898/99. [New revision by R. Fricke. Vol. I.
1924.]

3 Leipzig 1896/99. See also: Chrystal, Textbook in Algebra (2 volumes).
Macmillan. Bécher, M., Introduction to Higher Algebra. Macmillan.

[4 Second edition. Leipzig 1910.] .

5 See also: Netto, E., Elementare Algebra, akademische Vorlesungen fiir
Studierende der ersten Semester. [Second edition. Leipzig 1913, and H. Weber,
Lehrbuch der Algebra. Small edition in one volume. Second printing. Braunschweig
1921.] See also: Fine, H., College Algebra. Ginn. Hall und Knight, Higher
Algebra. Macmilian. *

[¢ Second edition. Leipzig 1921.] See also: v. Sanden, H., Practical Mathemat-
ical Analysis. Dutton & Co.
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important and interesting things; in doing this we shall come into
organic relation with the most widely differing fields, so that we shall
be studying mathematics quite in the spivit of our system B. In the first
place, we shall treat equations in real unknowns in order that we may
follow, later, with the consideration of complex quantities.

I. Real Equations with Real Unknowns
1. Equations with one parameter
We begin with a very simple case, which is susceptible of geometric

treatment, namely with a real algebraic equation for the unknown «,
in which a parameter 1 appears:

f(x,4) =o0.

We shall obtain a geometric representation most simply if we replace 4
by a second variable y and think of

f,y)=0
as a curve tn the xy plane (see Fig. 19). The points of intersection of
this curve with the line y = i, parallel to the x-axis, give the real roots
of the equation f (x, 2) = 0. When we have
drawn the curve approximately, as we can
easily do if { is not too complicated, we can YA
see at a glance by displacing the parallel
as 1 varies, how the number of real roots
changes. This plan is especially effective N >z
when f is linear in A, i.e. with equations \mﬁ(
of the form :
Fig. 19.
@) —iy(x) =0
If @ and v are rational, the curve y = ¢ (x)/y (x) will also be rational, and
is easy to draw. In these cases one can often use this method to ad-
vantage in calculating approximately the roots of equations.
As an example consider the quadratic equation

x4 ax —1=0.

\Y

The curve y = x2 + ax is a parabola, and one can see at once for what
value