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Abstract

Computer role playing games, particularly those with persistent worlds, often allow players
to buy and sell goods and services with computer controlled non-player characters (NPCs).
The prices for these goods and services are often determined a priori, and remain fixed for the
game’s duration. As a result, prices do not respond to changes in supply and demand, nor does
supply and demand respond to changes in prices. We present an economic model suitable for
use with role playing games that will automatically determine prices for multiple goods, supply
and demand for each character, and an allocation of agents to roles that is sustainable given the
state of the game.
Keywords: Economics, Autonomous Trading Agents, Role-Playing Games, Machine Learning,
Agent Intelligence.

1 Introduction

While role playing games such as Oblivion, Fallout, Everquest, and World of Warcraft allow players
to trade goods and services with computer controlled non-player characters (NPCs), acceptable
prices in these games have been selected a priori by game designers. The drawback of such a
decision is that the prices are artificial, and do not reflect the state of the game. NPC vendors may
have an infinite supply of various commodities, and events in the world might not result in changes
to either the supply, demand, or price of these commodities, contrary to the goal of having a game
world that is immersive and engages willing suspension of disbelief.

One possible solution to this problem is to create an economic simulation as part of the game.
Such a simulation would determine the prices of various goods and services in the game, the available
supply for players to purchase, and the available demand for goods and services provided by the
player. If these values could be determined quickly using minimal memory and computer power
then world simulations such as these role playing games would have a powerful tool for extending
the realism of their worlds, and improving the quality of the game experience for players. Our aim
is to present such a system.

A game economy consists of a set of players and NPC agents that periodically trade with each
other. Any of these traders could at a particular point in time offer to buy or sell a commodity or
service from any other trader. This set will be referred to as a market, and the participants will
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be known as traders. Offers to buy a good or service will be referred to as bids, and offers to sell a
good or service will be known as asks.

While the most general form of an economy involves the trade of both goods and services, we
choose to simplify this model without loss of generality by considering all trades to involve only
goods, referred to as commodities. We are able to do this because a service can be mapped to a
tradable token such that the token may later be exchanged for the performance of the service. In
the real world we see this same type of conversion used with postage stamps and gift cards for pure
services such as haircuts.

In addition to the determination of prices, supply, and demand, an economic system will deter-
mine the allocation of resources. We consider both commodities and the NPC traders themselves
to be resources, the latter because the market is able to generate wealth through them. Each
NPC trader may be allocated or assigned one of several roles that govern its behavior, and we will
see later that if the market is in equilibrium the allocation is Pareto-optimal (meaning that no
trader may improve its position by modifying an action without making another trader worse off,
see Pareto [18]). This is a useful observation since it give us the ability to determine a reasonable
distribution of roles within a community. We are thus able to determine the exact number of agents
for each role that may be supported given current market conditions, and also to determine when
an agent is no longer contributing to the economy.

Given an allocation of NPCs to various roles within the game, we indirectly determine what
commodities will be purchased or sold. Supply and demand determine what roles are profitable,
and the allocation of NPCs to these roles determines future supply and demand. Thus the simulated
economy is a feedback loop, ideally with the behavior of all traders being interrelated.

We will demonstrate an economic system with the following properties:

• It determines internally consistent prices for a variety of commodities.
• It adapts to external perturbations and shocks.
• It determines allocations of agents to roles.
• It is not dependent on any one set of game rules.
• It requires little memory or computation per transaction.

2 Related Work

Researchers at Iowa State University have done a lot of work in the area of agent-based compu-
tational economics, and this has drawn our attention, particularly the price resolution technique
found in Nicolaisen, Petrov, and Tesfatsion [14]. Their work tends to focus more in qualitative
areas, such as learning relationships between factors in a market, while we are concerned primarily
with quantitative results: what is a good price for a commodity at this point in time? Agent-based
simulations have also been performed at Princeton, however we feel that our price behavior is
better, as our agents behave more rationally than those of Steiglitz, Honig, and Cohen [26].

The TAC-SCM competition has been ran annually for a number of years, and produced many
papers in the area of supply-chain management (see, for example, [4, 6, 11, 17]). In this competition,
agents buy and sell commodities and produce products for resale. They attempt to predict changes
in prices, and operate in a profitable manner. While supply-chain management is a substantially
different problem, some of the techniques used by these simulations are of interest to us.

Roth and Erev [20] used reinforcement learning to learn prices in a simulated economy. In
particular they used the acceptance or rejection of offers to provide reinforcement of a trading
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agent’s pricing policy. We considered this approach, but were concerned that the amount of state
we would need to consider would make policy convergence impractical. Flores and Garrido [8]
similarly used RL, and we experimented with their technique of linearly interpolating prices using
weights on the low and high end of the price range.

One advantage of reinforcement learning is the ability to update policies in an environment
where agents do not know their current state. Value-based approaches like Q-learning or TD-
learning do not work well in environments with hidden state, as agents need to know the current
state in order to select a corresponding action. However, one is able to create an equivalence set of
states based on observations of the system, and estimate which set likely contains the current state.
Dahl’s work with poker [7] shows that RL can work with hidden state, however for this problem the
current visible state allows one to know the exact trajectory through action space that has been
taken so far. POMDP’s have hidden state, and have been successfully used with RL.

Price determination for a set of commodities is a significant problem, and a variety of tech-
niques have been used with other problems. Several TAC-SCM entrants (for example, [4, 16, 21])
attempted to predict winning bids. The Botticelli trader estimated the probability of filling orders,
and adjusted offer prices until the expected trade volume matched its ability to fill them. The
probabilities are updated based on trading experience, which makes price a function of market
history. Many more factors could go into pricing (utility, pricing trends, market supply and de-
mand). There is also the question of whether probability is a linear function. Within a small range,
linear approximations are adequate, but with larger uncertainties a nonlinear update may be more
appropriate.

Pardoe and Stone [16] used a Bayes classifier to estimate the probability of an offer being
accepted, and trained their classifier using data from prior TAC scenarios. In our case, the state of
other agents is not known, limiting our ability to estimate prices. We chose instead to base offers
on each agent’s belief in the true price of a commodity, and not consider whether other agents
might agree. We chose this approach to more closely model the imperfect information real traders
have, and in turn we hope this leads to more realistic results.

Shapire [21] modeled price changes as a conditional density estimation problem. A price range
was discretized into a set of bins, and a probability distribution was created over this set. This
technique also modeled future prices as a function of historical prices, which works well if there are
no other factors that might affect prices.

Wellman et al. [27] used a novel approach by estimating future demand for a commodity and
adjusting prices in advance of the market.

Ketter [10] inferred market regimes (conditions such as oversupply of a commodity) based on
the results of attempted trades. Gaussian Mixture Models (GMMs) were fitted to historical price
data, and used as classifiers. We did not require these types of predictions, since our problem was
defined as allowing agents access to market statistics (for resolved offers), or market price history.
Ketter’s system modeled price as a function of demand (similar to Wellman) and estimated trade
volume as being similar to previous rounds.

Studies have been made of the economies of various massively multiplayer online role-playing
games (MMORPG) by Simpson [22] and Castronova [5]. While these do not tell us how to simulate
game economies, we see that game economies do behave similarly to real-world economies.

Meadows [13] developed models and a simulation to study social systems, however one could
argue that these were economic models since they addressed resource allocation, and growth. This
is also an excellent overview of model creation and simulation, we note in particular how one must
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describe the type of information a model is intended to produce. Following Meadows’ categorization,
our model provides projections of dynamic behavior modes. We omit the term “imprecise” as the
prices reported represent actual trades in the simulation, and would presumably be actual NPC
offer prices when used in a game.

3 An Economic System

A simulated economic system serves four major functions as shown in Figure 1. In addition to
determining the prices of commodities it also determines order quantities (supply and demand for
each commodity), the production and consumption of commodities (indirectly related to supply
and demand), and an allocation of commodities and roles to participating agents. This mirrors the
properties of real economic systems, in particular the coupling of price with supply and demand as
discussed by Adam Smith [23].

Each agent maintains a set of price beliefs for each commodity it is able to buy or sell. These
price beliefs are represented as an upper and lower price bound, with the agent believing the price
to be somewhere in this interval. Any time the agent needs to make a price estimation (for example
during offer creation), it will select a uniformly random value in this interval. The outcome of a
trade will provide either positive or negative reinforcement to this belief. Positive reinforcement
will result in the agent shrinking this interval around the mean, negative reinforcement may result
in the interval increasing about the mean and/or being translated to a different mean. A designer
interested in creating an economic system would need to decide when these updates occur, and the
magnitude of the changes.

Periodically agents will need to submit trade offers to the clearing house in order to buy or sell
commodities. When an agent wishes to create an offer, it will need to determine the commodity
to trade, a fair price, and the quantity of the commodity to trade. A designer may choose to
have agents buy only commodities they use for production and sell commodities they produce. In
this case, an agent would create bids when the inventory of needed commodities drops below some
threshold, and create asks anytime it has inventory to sell. The Create Bid routine creates an
offer to buy at most limit units of Commodity, and Create Ask creates an offer to sell at least
limit units of Commodity.

Create Bid(Commodity, limit)
1 bid-price ← PriceOf (Commodity)
2 ideal ← Determine-Purchase-Quantity(Commodity)
3 quantity-to-buy ← Min(desired, limit)

Create Ask(Commodity, limit)
1 bid-price ← PriceOf (Commodity)
2 ideal ← Determine-Sale-Quantity(Commodity)
3 quantity-to-sell ← Max(ideal, limit)

The determination of offer quantities is based on an agent’s need, the inventory on hand, and the
observed market price for that commodity. An agent might determine that it has no need to trade
in a particular commodity, or that a need is present but current market prices are unfavorable and
trades should be avoided. If an agent believes that a commodity is either overpriced or underpriced,
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Figure 1: Responsibilities of an economic system.

it will adjust the quantity in its order depending on whether the agent is buying or selling. The
quantity is scaled based on the location of the current market price within the trading range that
the agent has observed. Agents that trade more frequently will have observed more trades, and will
therefore have a better idea of the trading range. Agents that trade infrequently are more likely to
make mistakes in pricing, however the resolution of these trades will cause the price history to be
updated and the agent will improve its performance in future trades.

While there are likely many different means of determining trade quantity, we have had success
basing this number on how far the agent’s price belief is from the observed market average. This
introduces an important but subtle distinction, as prices may be expressed in two different forms. A
historical average price represents successful trades that have occurred in the past. Agents should
be aware that past performance is no guarantee of future results, and should therefore trust their
own beliefs more than the historical average. However, agents should question their belief if these
values diverge and their offers are being rejected.

Determine-Sale-Quantity(Commodity)
1 mean← historical mean price of Commodity
2 favorability ← position of mean within observed trading range
3 amount to sell ← favorability * excess inventory of Commodity
4 return amount to sell

Determine-Purchase-Quantity(Commodity)
1 mean← historical mean price of Commodity
2 favorability ← max price - position of mean within observed trading range
3 amount to sell ← favorability * available inventory space
4 return amount to sell

An economic model may be used as a tool for allocating resources, determining trade volumes,
or estimating commodity prices. These factors may be expressed as a set of coupled functions of
the other factors. In general, supply and demand determine price, and price determines supply
and demand (Smith [23]). For example, in an economy where wheat is sold, the amount of wheat
traded on the market is a function of the bid and ask prices, and the quantity traders are willing
to trade at these prices.
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The amount of each commodity that is produced and consumed is determined by having each
agent Perform-Production. In the most general form the agent will attempt to transform one
basket of commodities into a second basket of commodities. The commodities that are consumed
represent the raw materials used up during production, and the commodities that are produced
represent the products of the agent’s labor. Production may therefore reduce an agent’s inventory
of raw materials, and increase its inventory of products. As a result of an inventory reduction, the
agent may later find that its inventory is too low and create bids in an attempt to replace this
inventory. This creates demand in the market, and the agent competes against other buyers for
whatever supply is available on the market. Similarly, any increase in inventory may prompt the
agent to create asks in an attempt to sell excess inventory. This creates supply in the market, and
the agent competes against other sellers for whatever demand is available. There is therefore a
strong relationship between the results of Perform-Production and the supply and demand for
various commodities in the market. This in turn implies a strong relationship with future prices
for these commodities, as an increase in supply will tend to drive prices downwards and an increase
in demand will tend to drive prices upwards.

It is important to note that there is no single correct price for a commodity, but rather a price
that is acceptable to the community at a particular point in time. The individual trade prices
may not be an optimum price, nor indicate a market equilibrium, as noted by Vernon Smith [24].
Traders will sometimes trade at non-optimal prices, and that they will learn from their experiences
and adjust their future behavior, or they will fail and be removed from the market. While the
actions of individuals are not optimal, they are usually rational and reflect the self-interest of each
individual. These individuals tend to adjust their behaviors until they collectively behave in a
Pareto-efficient manner.

An economic system also serves to allocate resources within the market. We have seen how
agents compete to buy and sell commodities, and as a successful offer results in a trade it will also
result in an allocation of the commodity traded to the buyer. A buyer who offers a higher price
will have their offers accepted before lower priced offers, and therefore the market can be seen to
allocate resources first to those who will pay more for them.

Each trading agent is assigned a particular role or profession when it is created, and maintains
this role during its lifetime. This role determines the production rules that an agent will use when
Perform-Production is called, and subsequently the commodities that the agent will trade in.
In the most general case, agents would not have these restrictions, but as we are also interested in
determining a stable distribution of agent types, requiring agents to adhere to a limited set of rules
allows us to make statements about the ability of a particular ruleset to support a given number
of agents.

As the simulation progresses, successful agents will buy raw materials and sell their products.
Unsuccessful agents will fail in their attempts to buy or sell, and therefore generate no cash flow.
We have found that it is helpful to assess some fixed overhead, either in the form of required
consumption, or in taxes, to pressure each agent to be productive. Under such a system unsuccessful
agents will eventually go bankrupt as their money supply is exhausted, while successful agents will
earn a profit above their expenses. When an agent goes bankrupt we choose to replace the agent
with one of a profitable type, thereby adjusting the distribution of roles within the population of
agents. This represents a market allocation of agents to roles.
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3.1 Price Belief Updates

Agents will update their price beliefs in response to their offers being accepted or rejected. These
price beliefs are represented by a lower and upper bound for a price interval, with the agent believing
the true price of a commodity lies within this interval. Agents are able to expand, contract and
translate this interval as desired.

When an agent’s offer is accepted, this is taken as evidence that the agent’s price belief is
accurate. We had the agents check to see if they were paying significantly more than the mean or
asking significantly less than the mean price, and if so translate their interval towards the mean.
Accepted offers also caused the price interval to be contracted about its current mean (both of
the bounds are moved inward by 5% of the mean). This quantity was an arbitrary choice, and a
developer may choose to adjust this value if prices are not adjusting at an acceptable rate.

When an offer is rejected, the agent has a more difficult choice. The agent may have offered far
from the mean, causing its offer to be placed far enough down in the offer book that no matching
offer could be found, or the offer may have exceeded the limits of the matched agents. No seller
will agree to sell a product below the cost to produce that product, nor will any agent agree to
pay significantly above the observed trading range. In this case the rejected agent will want to
reevaluate its price belief, translating its price range towards the mean and increasing the size of
the interval to reflect its lack of confidence in the belief.

Agents that are very low on inventory and have had their bid rejected will make a more aggressive
adjustment of their price belief in an attempt to leapfrog their competitors.

If none of these special situations exist, a rejected agent will examine the current round’s supply
and demand for the commodity and if there is a large imbalance adjust their prices in antipation
of price adjustments by potential trading partners.

4 Experimental Procedure

Experiments were performed for both the general example and a large number of examples using
random production rules. We created simulators that allow computer controlled trading agents to
buy, sell, produce, and consume commodities. These agents were assigned roles so that an equal
number of agents were initially in each role. Between 1000 and 10000 rounds of simulation were
performed, during which time each agent interacts with other agents either as a buyer or a seller,
and unsuccessful agents are replaced by new agents in different roles.

The random number generator was assigned a unique seed for each run. The use of random
numbers to determine prices within a confidence interval, or to determine if an unexpected event
occurs caused the simulator to produce different results, but each similar in the general behavior.
As we will discuss in a later section, our simulation exhibits a chaotic sensitivity to small changes
in the initial conditions.

The following assumptions are made regarding the trading agents:

• Traders are heterogeneous, having unique pricing beliefs, roles, inventories, and money on
hand.
• Traders use an arbitrary unit of currency as a standard for pricing commodities.
• Traders follow role-specific rules for consuming and producing commodities.
• Traders only trade in commodities that they personally produce or consume.
• Traders act to maximize their long-term profits.
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• Traders are allowed to maintain a limited inventory of each commodity.
• Traders do not have perfect knowledge of the market.
• Traders learn from personal experience.

In each round of simulation each agent performs a production operation, generates offers to
buy or sell certain commodities, and delivers these offers to the auction house. The central auction
house collects these offers and stores them in separate offer books (one book for bids, one book for
asks). Once all agents have had an opportunity to enter their offers, the auction house resolves the
trades using a distributed double auction, as described by Steiglitz, Honig, and Cohen [26].

Simulation-Loop

1 for round← 1 to number-of-rounds
2 do for each trading agent
3 do perform production
4 generate offers
5 resolve offers

Production can be generalized as the conversion of one set of commodities (referred to as a
basket) into another basket of commodities. The details of how this is performed is implementation
dependent, but in general one verifies that the necessary materials are on hand, removes these
from an agent’s inventory, and adds the production product to the agent’s inventory. We therefore
assume that each agent maintains a separate inventory capable of holding an arbitrary number of
each commodity. In practice a game may place limitations on the size of this inventory.

An agent creates offers by examining all commodities that it either consumes or produces. If
the agent is running low on a commodity that it consumes, Create-Bid is called to create an
offer to buy an appropriate amount of this commodity. The offer is then sent to the clearing house
where it is added to the bid book for that commodity. Similarly, if an agent has produced some
commodities that it does not need, Create-Ask is called to create an offer to sell an appropriate
amount of this commodity. This offer is sent to the clearing house and is added to the ask book
for that commodity.

Once each agent has had the opportunity to add a set of offers to the appropriate offer books,
the offer books are shuffled to remove any bias due to the order the agents were processed, and both
books are sorted by price. The central clearing house will then use a double-auction to determine
the resolution of each of these offers.

We are interested in the quality of the simulations only to the extent that it allows us to provide
prices that appear reasonable to players. So while we have no strict need for high quality results,
we sought techniques that were fast and gave us good behavior. Double auctions were selected
both for their efficiency, and their ability to approximate theoretically predicted behaviors (see,
for example, Smith [24], and Gode and Sunder [9]). The use of these auctions in experimental
economics for the past fifty years gives us confidence that they represent a sound technique.

In this type of auction, Resolve-Offers matches the highest bid with the lowest ask, a trade
occurs, the offers are updated to reflect the quantity of a commodity exchanged, and any offers
with zero units unfilled are removed from the book. This process continues until either the bid or
ask book is emptied. Note that when matching stops one of the books likely has offers remaining,
these are reported to the issuing agent as being rejected. During offer resolution, the minimum of
the bid and ask quantities are exchanged at the average of the bid and ask price as discussed by
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Nicaolaisen et al. [14]. Inventories of each agent are adjusted by the amount of the trade, and the
amount of currency each agent has is also adjusted.

Resolve-Offers (Commodity)
1 Shuffle both bid and ask books for Commodity
2 Sort bid book in order of decreasing offer price
3 Sort ask book in order of increasing offer price
4 while both books are non-empty
5 do buyer ← the first bid in the book
6 seller ← the first ask in the book
7 quantity traded ← Min(units offered by seller, units desired by buyer)
8 clearing price ← Average ( seller’s offer price, buyer’s offer price )
9 if quantity traded > 0

10 then
11 reduce units offered by seller by quantity traded
12 reduce units desired by buyer by quantity traded
13 transfer quantity traded units of Commodity from seller to buyer
14 transfer clearing price * quantity traded from buyer to seller
15 both seller and buyer update their price model
16 if quantity offered by seller = 0
17 then
18 remove the first ask from the book
19 if quantity desired by buyer = 0
20 then
21 remove the first bid from the book
22 Remaining offers are rejected and the issuing agent updates its price belief

At the end of each round, agents are notified of the quantity of commodity traded as a result of
their offer. This notification contains market statistics for the current round, such as trade volume,
the average price for trades, the high and the low price for the commodity in the offer. Agents will
then update their personal price models to reflect their belief in the true value of this commodity.
Note that there is no single true value for a commodity, but rather a set of beliefs held by each
agent that trades in a commodity. Over time it is observed that the agents converge to a single
shared belief in a commodity’s value, although external events (shocks) can cause the market to
shift to a new shared belief.

Although individual agents in our world maintain no personal history, the clearing house does
maintain some historical information that is available to all traders in the market. Agents are
therefore required to adjust their personal beliefs about the value of a commodity based on this
public information and any information privately learned from prior offer resolution. This public
information consists of:

• The average price for each commodity within some user-defined window.
• The average quantity of each commodity offered for sale within some user-defined window.
• The average quantity of each commodity bid on within some user-defined window.
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5 Agent Replacement

Adam Smith [23] theorized that people trading in an open market would lead to the production of
the proper quantities of commodities and the division of labor. Our results support this belief, since
agents that are not profitable are bankrupted and replaced by more profitable agents. We have
observed that the market tends to a set of agents supportable under the current economic conditions,
and reallocates agents when market conditions change. In practice, market conditions are constantly
changing so the market never converges to a stable set. However the market does converge to an
approximate allocation with slight variations until a major change in the market occurs. This
automatic reallocation of agents is a benefit to the game designer, as it allows adjustments in the
population of NPCs without explicitly coding for causative events. For example, an interruption in
supply for a commodity (such as timber) will affect industries directly dependent on the commodity
(shipbuilders for example) as well as indirectly (farmers who provide food to the shipbuilders).
These external events may, depending on the magnitude and duration, cause agents to go bankrupt.

An agent that is unable to remain profitable will eventually go bankrupt, and be replaced with
with a new agent of the currently most profitable type. This profitability statistic is a moving
average of profits for a particular type of agent over some user-define number of prior rounds,
ensuring that recent performance is evaluated. We have seen good results with windows between 8
and 15 rounds, but a particular set of production rules may work better with other values. It is a
reasonable assumption that a recently bankrupt agent was not in a profession that was doing well,
and therefore this replacement strategy acts to maintain a constant population size but varies the
composition of agent types. As a result, as long as bankruptcies occur, the simulation will make
adjustments to the distribution of agent types. Ideally, absent of some external disruption, there
will be a point where no future bankruptcies occur, as the market is capable of supporting each
agent indefinitely.

The first fundamental theorem of welfare economics states that a market with a supply/demand
equilibrium leads to a Pareto-efficient allocation of resources, meaning that no change to the re-
source allocation can be made without making at least one trader worse off [1]. This would suggest
that when the market is in equilibrium the allocation of agents to roles will over time tend to an
optimal value [12]. In practice the market never moves into equilibrium, but instead moves to a
neighborhood that is near equilibrium and oscillates about the equilibrium point [24]. As we will
discuss later, this is consistent with accepted theory. As a result, the economic system will attempt
to determine a distribution of agent roles that results in market equilibrium.

6 A General Example

Our simulation used various techniques to exercise this economic system. The most general form of
production was to allow the simulator to call agent-specific routines that would update inventory.
This allowed us to implement complex production rules without restriction, while updating the price
models in a manner consistent with an actual game. One such ruleset allowed agents to be either
farmers, miners, refiners, woodcutters, or blacksmiths. These agents produced, and consumed food,
ore, wood, metal, and tools according to the production rules defined by Farmer-Production,
Miner-Production, Refiner-Production, Woodcutter-Production, and Blacksmith-
Production.

This example was created to illustrate a typical economy, as might be found in a fantasy role

10



playing game. As the rules were implemented using arbitrary code, the designer is free to create as
complex a ruleset as desired.

Farmer-Production

1 if has-wood and has-tools
2 then
3 produce 4 units of food
4 consume 1 unit of wood
5 break tools with prob 0.1
6 elseif has-wood and has-no-tools
7 then
8 produce 2 units of food
9 consume 1 unit of wood

10 else
11 agent is fined $2 for begin idle

Miner-Production

1 if has-food and has-tools
2 then
3 produce 4 units of ore
4 consume 1 unit of food
5 break tools with prob 0.1
6 elseif has-food and has-no-tools
7 then
8 produce 2 units of ore
9 consume 1 unit of food

10 else
11 agent is fined $2 for being idle

Refiner-Production

1 if has-food and has-tools
2 then
3 convert all ore in inventory into metal
4 consume 1 unit of food
5 break tools with prob 0.1
6 elseif has-food and has-no-tools
7 then
8 convert at most 2 units of ore into metal
9 consume 1 unit of food

10 else
11 agent is fined $2 for being idle
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Woodcutter-Production

1 if has-food and has-tools
2 then
3 produce 2 units of wood
4 consume 1 unit of food
5 break tools with prob 0.1
6 elseif has-food and has-no-tools
7 then
8 produce 1 unit of wood
9 consume 1 unit of food

10 else
11 agent is fined $2 for being idle

Blacksmith-Production

1 if has-food
2 then
3 convert all metal in inventory into tools
4 consume 1 unit of food
5 else
6 agent is fined $2 for being idle

7 Random Generation of Production Rules

In addition to testing with the production rules described above we have developed a second
simulator that creates random production rules, in order to demonstrate that our results are not
dependent on any single set of rules. To achieve this we expressed the production rules in a
matrix format, allowing us to assign random values to the matrix and then simulate a set of agents
operating under these rules. We claim that if we observe acceptable behavior from economies using
randomly generated rules, then we have a suitably general solution that will perform well with rules
that a designer might select. We do not claim that all rules will perform well, only that a large set
will. In particular rules that express a non-closed economy (where agents consume a commodity
that is not produced) are not going to produce pleasing results under any economic system.

The matrix form for production rules defines a rule as a set of commodities that is converted
into another set under a probability distribution. For example, the rule shown in Equation (1)
allows an agent to convert two units of Commodity1 into one unit of Commodity4. Additionally,
the agent is required to possess one unit of Commodity3 that is consumed 10% of the time. In a
simulation round, an agent is permitted to perform production using one of these rules. If the agent
does not possess inventory listed on the left-hand side of a rule, the production is not allowed and
the agent must consider other rules. It is therefore possible for an agent to be unable to perform
production in a given round due to inadequate inventory. In this situation we assesses an idleness
tax, to ensure that non-productive agents were eventually driven bankrupt. As each type of agent
was allowed to select among several rules, we ranked the production rules in order of preference
and had agents use the first rule in their set that they were able to execute.

This use of multiple production rules for an agent-type along with probabilities for terms in
production rules allows us to model complex behavior including conditionals (such as, does the
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agent possess a tool or catalyst represented by Commodity3 in our example).

2 ∗ Commodity1 + Commodity3 ⇒ Commodity4 + Commodity3(p = 0.9) (1)

Since these simulations were requiring large numbers of calls to the random number generator,
we were concerned that we might exceed the default random number generator’s period and bias our
results. We replaced this generator with a Mersenne Twister random number generator (MT19937),
which has a period of 219937 − 1.

Due to the large number of random experiments we performed, we were unable to study all of
the results. We therefore established a screening criteria to filter out unacceptable results, with
the intention of counting the number of simulation runs that were well behaved. We arbitrarily
selected a set of desirable features for a price graph, and then modified the filters until we were
seeing only these types of graphs. The final criteria used was as follows:

• Each commodity was produced by at least one type of agent.
• Each commodity was consumed by at least one type of agent.
• No commodity goes more than 20% of the total number of rounds without trading.
• The average trade volume for a commodity is greater than one unit per round.
• The variance in commodity price is between 0.025 and 7.5 times the largest trading price.
• The average change in price is between 0.02 and 0.9, the variance of this change is also between

0.02 and 0.9.
• Fewer than 2 price inflections occur per round on average.
• The variance in the time between price inflections is less than 1.2 times the number of rounds.

We are therefore comparing both the variance in price and the variance in the first derivative
of the price.

8 Experimental Results and Evaluation

We first consider our general example, which allows agents to be farmers, miners, refiners, woodcut-
ters, or blacksmiths. As mentioned above, these production rules are intended to be representative
of the types of rules used in a fantasy-based RPG. Figure 2 shows the behavior of a simulation over
1000 rounds. If we arbitrarily decide that each round represents one day’s activity in game time,
we have almost 3 years of price data. We note in particular that trading generally occurs within
a bounded range, although some prices occasionally move outside of this range. We also note that
prices are not precisely predictable, although some relationships can be seen over time. A close up
of one part of the graph is shown in Figure 3. There is a correlation between commodities that
are dependent on one another, as the prices of products move with the price of the raw materials.
At the same time, there is independent movement of prices and most prices vary by a noticeable
amount. Even the relatively flat line at the top of the graph is undergoing small magnitude changes
from round to round. This long-term stability is desirable, as it shows that the system does not
undergo runaway inflation, but instead self-corrects.

Many choices a game designer will make will have a significant influence on the performance of
an economy, independent of the production rules or the price-belief model used. We have observed
that allowing agents to maintain larger inventories reduces price volatility. Figure 4 shows the
detail of a price graph where inventory was increased from 10 units per commodity to a possible 15
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Figure 2: Long Term Behavior with 5 Agent Types and 5 Commodities

Figure 3: Detail of Behavior with 5 Agent Types and 5 Commodities

units. We have observed that reducing the amount of currency agents start with will result in more
bankruptcies and increase the magnitude of price swings. Figure 5 shows the effects of a larger
inventory, an increase in wood production, and a decrease in starting money from $1000 to $500
per agent. A designer must form policies such as how much inventory an agent will try to keep
on hand, and what constitutes a favorable market price. The designer should establish a nominal
price range for all commodities, noting that agents are encouraged to stay within this range but
not required to. For example, agents will always include their production costs when deciding their
sales price for a commodity.

The sensibility of prices is a subjective measurement, but as long as our simulated agents behave
rationally we must accept that the prices they trade at make sense. We note in particular that as the
prices of raw materials go up, the prices of finished goods increases with a slight delay as inventories
are used up. Allowing an agent to stockpile a certain amount of a commodity provides a short-term
buffer against price changes, and tends to dampen price swings. An internal consistency in prices
occurs since the economy is a closed system, and each transaction influences future transactions.
This consistency is predicted by accepted economic theory, and to the extent that our results agree
with theory we are able to claim that our system’s behavior makes sense.

Proponents of General Equilibrium Theory believe that supply and demand will equalize over
time, however our results do not support this. In particular Arrow and Debreu [2] argued in favor
of this equalization, assuming that traders in the market had perfect information and responded
instantly to market changes. Their argument is intuitive when one considers that an imbalance
in the supply/demand ratio should result in price changes that result in changes to supply and
demand and return the system to equilibrium. However in the real world Arrow and Debreu’s
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Figure 4: Increasing the inventory from 10 to 15 units

Figure 5: Larger inventories but half the starting money
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Figure 6: The supply/demand ratio over time for wood.

constraints do not hold, nor do they hold in our simulation. Traders create offers based on their
belief in the market price, but without knowing the beliefs of other individuals. Traders are able
to estimate the beliefs of others based on their observations of trades that complete, but only have
perfect information on their own trades and their own price beliefs. Traders also do not respond
instantly to market changes, as they only update beliefs after they have tendered an offer and seen
how it was received. This delay, coupled with the time needed for market averages to converge
following a shift in belief cause the agent to respond slowly to market changes. We believe this is
a useful property, as it prevents agents from overreacting to short-term market changes, as well as
better reflecting how a trader in the real world would respond.

We look to Vernon Smith [24], a pioneer in the field of experimental economics for an expla-
nation. Smith explains that supply and demand can only set broad limits on the behavior of the
market, as any successful trades remove a quantity of supply and demand from the market and
therefore alter the supply and demand curves. In a later paper Smith [25] explains that “all infor-
mation on the economic environment is private; far from having perfect or common information”
and “prices and allocations converge quickly to the neighborhood of the predicted rational expec-
tations competitive equilibrium”. So in the ideal case supply and demand would converge to the
same value, in real experiments they will only be in the same neighborhood. This agrees with our
observations of the supply/demand ratio over time.

A representative graph of supply/demand over time for a single commodity is shown in Fig-
ure 6, and shows that in the long term there is a slight oversupply of this commodity. In this
experiment 500 heterogeneous agents were simulated for 10000 rounds of trading. One should note
the supply/demand ratio is not constant, but instead varies between approximately 0.5 and 2. As
a result, the ratio is repeatedly crossing the line y=1 which represents equivalence of supply and
demand. So the market is constantly trying to make these values equivalent, but overshooting and
then correcting itself. As this behavior agrees with Smith’s observations, our claim that our results
are acceptable is further strengthened.

We have observed that agent profitability tends to zero over time, as prices for raw materials
increase to the point where buyers refuse to bid on them. Adam Smith [23] discusses a similar
phenomenon in the Wealth of Nations (Chapter 10, Part II) where he notes that the landlord will
raise prices until the tenant is left with “the smallest share with which the tenant can content
himself without being a loser, and the landlord seldom means to leave him any more”. If we look
at the average agent profit (by type) over time in Figure 8 we see this convergence early on, the
disruption due to the external event, and the recovery as profits again trend towards zero. The
long-term behavior of our simulated economies therefore agrees with accepted economic theory in
this aspect.

Our system is able to adapt and recover from external perturbations and shocks. This is a useful
feature since it addresses the type of market manipulation that players might choose to engage in.
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Figure 7: The great wood shortage of round 600.

Figure 8: Agent profitability by type for the forest-fire scenario.

Figure 7 shows the effect of a short term interruption in the supply of wood. Between round 600 and
round 700 woodcutters were unable to harvest wood, simulating a forest fire that has eliminated
the resource. We see the price of wood increase to the $40 level, above this level agents refuse to
buy wood. The prices of ore and tools begin to rise during this period as both products use wood
(to shore up mine shafts and for tool handles) and existing wood inventories are depleted. While
wood production resumes on round 700, traders are able to maintain high prices for another 120
rounds before the price collapses to its pre-crisis levels. The prices of products that depend even
indirectly on wood continue to increase as long as wood maintains its premium price. These too
will eventually resume their previous pricing behavior, but there is a time lag as inventories are
depleted and agents start to believe that wood is no longer scarce. Even a serious shock to the
economy such as the fire creates no long-term harm, as eventually we observe the system returning
to equilibrium.

One should keep in mind when looking at these graphs that the prices are partially a function
of random chance. Tools break at random times, and agents enter bids based on random guesses
within their price confidence interval. As a result there can be large price fluctuations if enough of
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Figure 9: The distribution of agent roles over time.

these random events occur in a short interval. This can be a good thing for both the designer and
the player, as it means that one may never exactly predict price behavior. However, the overall
price trends do follow patterns, and do react to major events (such as the forest fire in Figure 7).
It should be possible for players to engage in arbitrage if they so choose. A knowledgeable player
who becomes aware of the lack of wood could buy up tools and ore and wait for the market prices
to increase, then sell them at a profit. Short term price shocks are therefore not a problem as long
as the long-term behavior of the economy is consistent.

The allocation of roles to agents was observed to change over time, allowing the market to
attempt to find an optimal assignment, as seen in Figure 9. Short-term random events prevent the
market from reaching equilibrium, however there are stable patterns observed. We also observe
that roles producing commodities that are high in demand will have more agents than the those
producing less needed commodities. As supply and demand change over time, the need for certain
roles changes over time, and the market moves towards a different allocation. At each point in
time, the number of agents in a particular role approximates the number of profitable agents under
current market conditions. As a result, a census of agents in the market allows us to determine a
reasonable distribution of agent types, and we are therefore able to create a community of N agents
and know that the market will reallocate the roles until an acceptable distribution is found.

In addition to our experiments with the general example, we performed a large number of
experiments using random economic rules. As discussed earlier, we applied a filtering function to
test price graph characteristics and decide if a particular set of rules produced acceptable results.
We used UNT LARC’s cluster of PS3 consoles to evaluate these random economies, with the
simulation performed on the Cell processors’ SPE units. The high degree of parallelism and the
high performance of these Cell processors allowed us to evaluate millions of distinct rule sets in
a few hours. We tested 5,338,000 random economies and found 10,140 (0.19%) that passed all of
the filter criteria. These economies appear to be uniformly distributed, as we observed roughly the
same fraction for multiple smaller runs using different random number seeds. We calculated that
there were approximately 2160 distinct matrices, and assuming that 0.19% of these have acceptable
performance we have more than 2150 economies to choose from. Based on these results, we believe
that the behavior of this economic system is independent of any single ruleset, and we are confident
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Figure 10: Two random economies

that a designer would be able to create a ruleset with similar performance.
The calculations required to update the economy can be carried out very quickly. A single

3.2GHz SPE can perform approximately 200000 agent updates per second, including all of the
simulator overhead such as data logging. Most games do not have this many NPCs, nor do they
require them to be constantly buying and selling. Only two floating point values are required per
commodity per agent, which we feel to be particularly light. We are confident that adding an
economic simulation to a game will not add a significant burden in terms of either processing time
or memory requirement, and as a result this technique is feasible.

9 Chaos

Chaos is defined as a sensitivity to initial conditions affecting the outcome, and this describes be-
havior seen in our simulation. We first became aware of the issue when we observed differences
in the output when the compiler’s optimizer was turned on. Our investigation of this phenom-
ena concluded that even though we used double-precision floating point in our implementation,
discretization errors were present in our intermediate results due to the inability of the compiler
to express certain floating point values (such as 0.1) as exact values in binary. Furthermore, the
optimizer was reordering floating point operations, causing these discretization errors to propagate
differently than they would in an unoptimized version.

The magnitude of the sensitivity was demonstrated by a one-time addition of 10−9 units of
currency to a single agent during a simulation. We observed that several agents went bankrupt
who would otherwise have remained solvent. In addition, after 500 rounds of simulation the price of
certain commodities varied by around 20% from the normal runs. This magnitude of error is within
the observed discretization error for 0.1, and can be expected to occur normally during simulation
when calculating moving averages.

This chaotic behavior is not an error, but can be expected in an iterative simulation that
employs feedback. Our model was tested with production rules that coupled different agent types.
This means that each type of agent produces a product needed by at least one other type of agent,
and uses a product produced by at least one other type of agent. As a result of this coupling,
any perturbation of one agent will propagate to other agents. Furthermore, an amplification effect
occurs as a result of continuous errors becoming discrete errors. Say that one agent is saving money
to buy a needed tool, and in one case the agent comes within ε of being able to afford the tool
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before going bankrupt. In another run, due to chaotic effects, this same agent may gain an extra ε
of currency and buy the tool. And as a result of owning this tool, the agent may become profitable
and remain in business. As a result, this agent continues to have an impact on the economy, buying
and selling goods and affecting prices on these goods. A small error of ε has a much larger affect,
once it results in a discrete change (the number of tools owned by the agent changing from 0 to 1).

We believe that this behavior is desirable, since it makes the impact of player actions harder to
predict. It is important to note that the changes to the economy outside of the ε error are justifiable
under the production rules.

Oxley and George [15] note that economics can be chaotic. Rosser [19] also gives a good
explanation of economics as a complex dynamic system. Our model does indeed have the following
characteristics found in chaotic complex systems (see Arthur, Durlauf, and Lane [3]):

• Disperse interaction: Agents interact with a subset of other agents
• No global controller: No single agent may control the market
• Tangled interactions: The production models are usually coupled.
• Continual adaptation: Agents constantly update their beliefs about prices
• Perpetual novelty: In a chaotic phase, markets are created and destroyed as the agent mix

stabilizes. Also until agents’ beliefs in commodity prices converge commodities will frequently
trade at prices that contradict these beliefs.
• Out of equilibrium dynamics: Prices may not move to an attractor, but may orbit perpetually.

10 Conclusion and Future Work

Assessing the quality of an artificial economic model is difficult, as we are not able to compare
prices and trade volumes to those from an actual economy. The behavior of prices and agent roles
appears to be of acceptable quality, as they demonstrate constant small magnitude changes and yet
respond to significant events in the market with larger changes. As prices are a function of supply
and demand, any event that alters either of these values will result in a corresponding change to
prices.

Trade volumes were observed to update in response to aggregate supply and demand by indi-
vidual agents. The quantities of a product available for purchase depend on how profitable it is
to produce this product, and how much competition there is to buy this commodity. During the
forest fire scenario we observed trade volumes decrease as existing inventories were depleted, prices
rose as the competition for the shrinking inventory increased, eventually the supply disappeared
entirely and the demand began to disappear as it was no longer profitable to be in a role that
required raw materials that were not available.

We have presented a technique for simulating a game economy, resulting in changing prices,
trade volumes, and a distribution of roles within the economy. We have shown this economic
system produces reasonable prices for arbitrary sets of commodities and agent types, and that the
performance is independent of any particular ontology. We have demonstrated this system adapting
to and recovering from external shocks, and that the system returns to the neighborhood of market
equilibrium after the shock has abated. We also saw how the simulation was able to assign roles to
individual agents, and modify the distribution of roles as changes in market conditions warranted.
Finally, our analysis of the time and memory requirements for this simulation suggest that this
system is feasible for use in computer games, where machine resources are often at a premium.
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We hope to investigate using this economic data to create towns and villages populated by
NPCs. The statistical techniques used by pencil and paper games tend to create communities that
look very similar, and we hope that we are able to use simulated economic data to introduce variety
into the world while preserving believability.

It would be useful to expand the simulation from a single market to a set of markets intercon-
nected by slow trade routes, and then introduce regional resources. We wonder if regional markets
would converge to a common set of prices, or would remain distinct in their beliefs. The speed and
cost of transportation likely will play a major role in this behavior, as an infinitely fast and free
transportation network would reduce problem to the single market discussed in this paper.

We leave open the problem of measuring the extent to which a dynamic economy modifies or
improves the user experience in an RPG. This would benefit most from researchers with a strong
social sciences background.

References

[1] K. Arrow. The Organization of Economic Activity: Issues Pertinent to the Choice of Market
versus Nonmarket Allocation. The analysis and evaluation of public expenditure: The PPB
System, 1:59–73, 1969.

[2] K. J. Arrow and G. Debreu. Existence of an Equilibrium for a Competitive Economy. Econo-
metrica, 22(3):265–290, 1954.

[3] W. Arthur, S. Durlauf, and D. Lane. The Economy as an Evolving Complex System II.
Addison-Wesley Reading, MA, 1997.

[4] M. Benisch, A. Greenwald, I. Grypari, R. Lederman, V. Naroditskiy, and M. Tschantz. Bot-
ticelli: A Supply Chain Management Agent Designed to Optimize Under Uncertainty. ACM
Transactions on Computational Logic, 4(3):29–37, 2004.

[5] E. Castronova. Virtual Worlds: A First-Hand Account of Market and Society on The Cyberian
Frontier, December 2001.

[6] K. Chatzidimitriou, A. Symeonidis, I. Kontogounis, and P. Mitkas. Agent Mertacor: A Robust
Design For Dealing With Uncertainty And Variation In SCM Environments. Expert Systems
with Applications, 35(3):591–603, 2008.

[7] F. A. Dahl. A Reinforcement Learning Algorithm Applied to Simplified Two-Player Texas
Hold’em Poker. In Proceedings of the 12th European Conference on Machine Learning (ECML-
01), pages 85–96. Springer, 2001.

[8] C. Flores and L. Garrido. Learning of Market Prices Based on Temporal Differences for a
TAC-SCM Agent. In Proceedings of the 2008 Seventh Mexican International Conference on
Artificial Intelligence, pages 414–419. IEEE Computer Society, 2008.

[9] D. Gode and S. Sunder. Allocative Efficiency Of Markets With Zero-Intelligence Traders:
Market As A Partial Substitute For Individual Rationality. The Journal of Political Economy,
101(1):119–137, 1993.

21



[10] W. Ketter, J. Collins, M. Gini, P. Schrater, and A. Gupta. A Predictive Empirical Model
For Pricing And Resource Allocation Decisions. In Proceedings Of The Ninth International
Conference On Electronic Commerce, pages 449–458, Minneapolis, 2007. ACM.

[11] W. Ketter, E. Kryzhnyaya, S. Damer, C. McMillen, A. Agovic, J. Collins, and M. Gini.
MinneTAC Sales Strategies For Supply Chain TAC. In Proc. of the Third Intl Conf. on
Autonomous Agents and Multi-Agent Systems, pages 1372–1373, New York, New York, July
2004. ACM.

[12] L. Makowski and J. Ostroy. Appropriation and Efficiency: A Revision of the First Theorem
of Welfare Economics. The American Economic Review, 85(4):808–827, 1995.

[13] D. Meadows. Tools for Understanding the Limits to Growth: Comparing a Simulation And a
Game. Simulation & Gaming, 32(4):522, 2001.

[14] J. Nicolaisen, V. Petrov, and L. Tesfatsion. Market Power And Efficiency In A Computa-
tional Electricity Market With Discriminatory Double-Auction Pricing. IEEE Transactions
on Evolutionary Computation, 5(5):504–523, 2001.

[15] L. Oxley and D. George. Economics on the Edge of Chaos: Some Pitfalls of Linearizing
Complex Systems. Environmental Modelling & Software, 22(5):580–589, 2007.

[16] D. Pardoe and P. Stone. Bidding For Customer Orders In TAC SCM. In AAMAS 2004
Workshop on Trading Agent Design and Analysis, pages 143–157. Springer, 2004.

[17] D. Pardoe and P. Stone. Adapting In Agent-Based Markets: A Study From TAC-SCM. In
Proceedings Of The 6th International Joint Conference On Autonomous Agents And Multiagent
Systems, pages 677–679, Honolulu, Hawai’i, May 2007. ACM.

[18] V. Pareto. The New Theories of Economics. The Journal of Political Economy, pages 485–502,
1897.

[19] J. Rosser Jr. On The Complexities of Complex Economic Dynamics. The Journal of Economic
Perspectives, pages 169–192, 1999.

[20] A. Roth and I. Erev. Learning in Extensive-Form Games: Experimental Data and Simple
Dynamic Models in the Intermediate Term. Games and Economic Behavior, 8(1):164–212,
1995.

[21] R. Schapire, P. Stone, D. McAllester, M. Littman, and J. Csirik. Modeling Auction Price
Uncertainty Using Boosting-Based Conditional Density Estimation. In Proceedings of the
Nineteenth Intl. Conference on Machine Learning, pages 546–553, 2002.

[22] Z. Simpson. The In-Game Economics of Ultima Online. San Jose, 2000. Game Developers
Conference.

[23] A. Smith. An Inquiry Into the Nature and Causes of the Wealth of Nations. Adam and Charles
Black, 1863.

[24] V. Smith. An Experimental Study of Competitive Market Behavior. The Journal of Political
Economy, 70(2):111–137, 1962.

22



[25] V. Smith. Rational Choice: The Contrast Between Economics and Psychology. Journal of
Political Economy, 99(4):877–897, 1991.

[26] K. Steiglitz, M. Honig, and L. Cohen. A Computational Market Model Based on Individual
Action. Market-Based Control, 1996.

[27] M. Wellman, J. Estelle, S. Singh, Y. Vorobeychik, C. Kiekintveld, and V. Soni. Strategic
Interactions In A Supply Chain Game. Computational Intelligence, 21(1):1–26, 2005.

23


	LARC-2010-03 cover
	econ

