Exercice 1

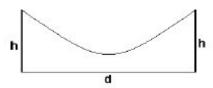
L'ensemble des points $(x \; ; \; y)$ du plan cartésien qui satisfont $t^2-t-6=0$ avec t=|x-y| est composé de :

- 1) une droite
- 2) deux droites
- **3)** quatre droites
- **4)** une parabole
- **5)** deux paraboles

D. LE FUR $$1/\ 12$$

Exercice 1

On suppose qu'un fil suspendu entre deux colonnes de même hauteur h situées à une distance d prend la forme d'une parabole.



On suppose de plus que :

- le point le plus bas du fil se trouve à deux mètres du sol;
- la hauteur par rapport au sol d'un point se trouvant à une distance $\frac{d}{4}$ d'une colonne est égale à $\frac{h}{2}$.

Si $h = \frac{3d}{8}$, alors d vaut :

- **1)** 14
- **2)** 16
- **3)** 18
- **4)** 20
- **5)** 22

Exercice 1

Soit f la fonction qui associe à chaque nombre réel x le plus petit des nombres (x+3) et (-x+5).

Alors, la valeur maximale de f(x) est :

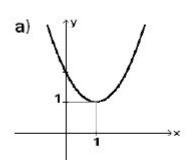
- **1)** 1
- **2)** 2
- **3)** 4
- **4)** 6
- **5)** 7

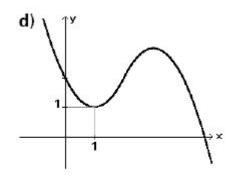
D. LE FUR 3/ 12

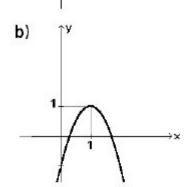
Exercice 1

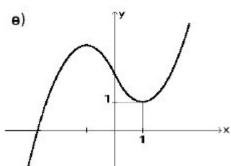
La valeur absolue de x est notée |x| et est définie de la façon suivante : |x|=x si $x\geqslant 0$ et |x|=-x si x<0.

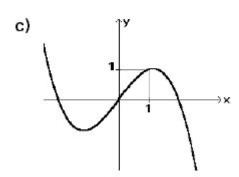
Parmi les courbes suivantes, laquelle représente le mieux la fonction f(x) = x|x| - 2x + 2?







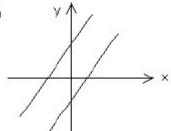




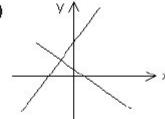
Exercice 1

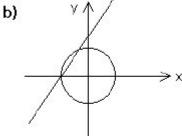
L'ensemble des points de coordonnées $(x\;;\;y)$ du plan cartésien tels que $(x^2+y^2+1)(2x+3y-1)(3x-2y+3)=0$ peut être représenté graphiquement par :

a)

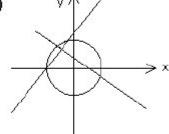


d)

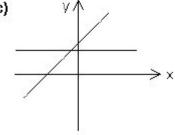




e)



c)



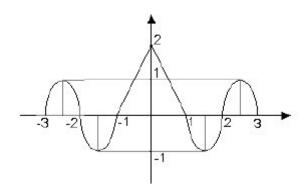
D. LE FUR

L'ellipse d'équation $x^2 + \frac{y^2}{2} = \frac{9}{4}$ et la droite d'équation y = 2x + 1 du plan cartésien se coupent en deux points A et B.

Alors, le milieu du segment [AB] a pour coordonnées :

- 1) $\left(-\frac{2}{3}; -\frac{1}{3}\right)$
- **2)** $\left(\frac{2}{3}; -\frac{7}{3}\right)$
- **3)** $\left(\frac{1}{3}; -\frac{5}{3}\right)$
- **4)** $\left(-\frac{1}{3}; \frac{1}{3}\right)$
- **5)** $\left(-\frac{1}{4}; \frac{1}{2}\right)$

La fonction f définie pour $-3 \leqslant x \leqslant 3$ a pour graphique



On suppose que $\alpha \leqslant 0$.

Pour quelles valeurs de α la courbe représentative du polynôme $p(x)=\alpha(x^2-4)$ intercepte la courbe représentative de f en 4 points distincts ?

1)
$$-\frac{1}{2} < \alpha < 0$$

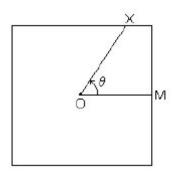
2)
$$-1 < \alpha < -\frac{1}{2}$$

3)
$$-\frac{3}{2} < \alpha < -1$$

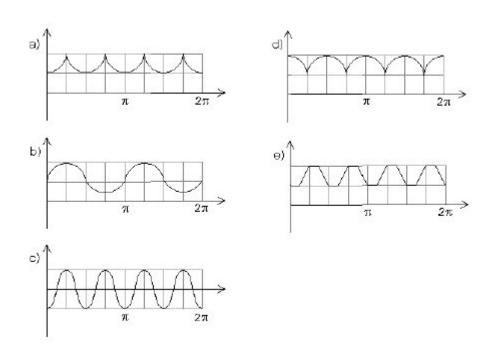
4)
$$-2 < \alpha < -\frac{3}{2}$$

5)
$$\alpha < -2$$

Le carré ci-dessous a pour centre O et M est le milieu d'un de ses côtés. Pour chaque point X d'un côté du carré, soit θ l'angle \widehat{MOX} , mesuré en radians dans le sens positif.



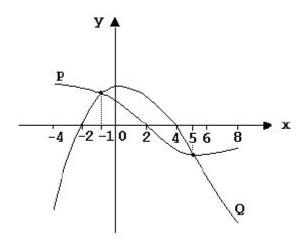
Le graphique qui représente le mieux la distance de O à X en fonction de θ est :



D. LE FUR 8/ 12

Exercice 1

Les courbes représentatives des fonctions polynomiales P et Q sont données sur le graphique suivant :



Alors, dans l'intervalle $[-4\ ;\ 8]$, P(x)Q(x)<0 pour :

1)
$$-2 < x < 4$$

2)
$$-2 < x < -1$$
 ou $5 < x < 8$

3)
$$-4 \leqslant x < -2$$
 ou $2 < x < 4$

4)
$$-4 \leqslant x < -2$$
 ou $5 < x \leqslant 8$

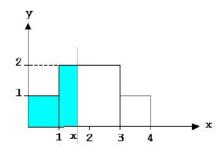
5)
$$-1 < x < 5$$

Exercice 1

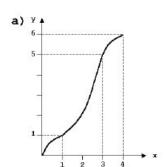
L'équation $2^x = -3x + 2$, avec x réel,

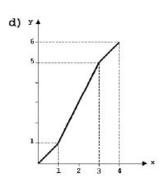
- 1) n'admet pas de solution.
- 2) admet une solution unique entre 0 et $\frac{2}{3}$.
- 3) admet une solution unique entre $-\frac{2}{3}$ et 0.
- 4) admet deux solutions, une positive et une négative.
- 5) admet plus de deux solutions.

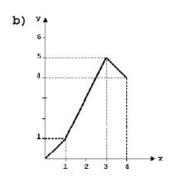
Sur la figure ci-dessous, l'aire A(x) est celle de la région intérieure à la figure formée par les trois carrés et comprise entre l'axe des ordonnées et la droite verticale passant par le point de coordonnées (x; 0).

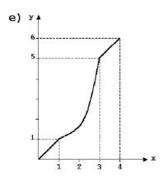


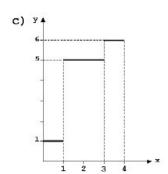
Alors, le graphique représentant la fonction A(x) pour $0 \le x \le 4$ est :







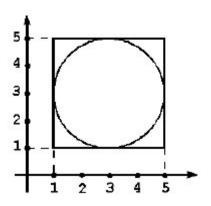




D. LE FUR 11/12

Exercice 1

Une droite de coefficient directeur m>0 passe par le point de coordonnées (2;0) et est tangente au cercle inscrit dans le carré de sommets de coordonnées (1;1), (5;1), (5;5) et (1;5).



Alors,

- 1) $0 < m < \frac{1}{3}$
- **2)** $m = \frac{1}{3}$
- **3)** $\frac{1}{3} < m < 1$
- **4)** m = 1
- **5)** $1 < m < \frac{5}{3}$