Terminale S₄ – baccalauréat S, Pondichéry, 2014 Corrigé de l'exercice 3 (enseignement spécifique)

$$z_0 = 1 \text{ et } z_{n+1} = \left(\frac{3}{4} + \frac{\sqrt{3}}{4}i\right) z_n$$

1. Forme exponentielle de $\omega = \frac{3}{4} + \frac{\sqrt{3}}{4}i$

On obtient
$$|\omega| = \frac{\sqrt{3}}{2}$$
 et arg $\omega = \frac{\pi}{6}$ (à 2π près), donc $\omega = \frac{\sqrt{3}}{2}e^{\frac{i\pi}{6}}$.

2. a. Nature de la suite (r_n) avec $r_n = |z_n|$

Pour tout entier
$$n \in \mathbb{N}$$
, $r_{n+1} = |z_{n+1}| = |\omega z_n| = |\omega| \times |z_n| = \frac{\sqrt{3}}{2} r_n$

Donc la suite (r_n) est une suite géométrique de raison $q = \frac{\sqrt{3}}{2}$.

Son premier terme est $r_0 = |z_0| = 1$.

b. Expression de r_n en fonction de n

Pour tout entier
$$n \in \mathbb{N}$$
, $r_n = r_0 \times q^n = \left(\frac{\sqrt{3}}{2}\right)^n$.

c. Comportement de la longueur OA_n lorsque n tend vers $+\infty$

Pour tout entier
$$n \in \mathbb{N}$$
, $OA_n = |z_n| = r_n = \left(\frac{\sqrt{3}}{2}\right)^n$.

$$\text{Comme } 0 < \frac{\sqrt{3}}{2} < 1, \lim_{n \to +\infty} OA_n = \lim_{n \to +\infty} \left(\frac{\sqrt{3}}{2}\right)^n = 0.$$

3. a. Valeur affichée par l'algorithme pour P = 0.5

On utilise l'algorithme avec P = 0.5:

	n	R	Р	R > P
Initialisation	0	1	0,5	Vrai
Traitement	1	0,866	0,5	Vrai
	2	0,75	0,5	Vrai
	3	0,649 5	0,5	Vrai
	4	0,562 5	0,5	Vrai
	5	0,487	0,5	Faux
Sortie	La valeur affichée est 5			

b. Rôle de l'algorithme

Cet algorithme s'arrête dès que $R \le P$ et affiche alors la valeur de n, c'est-à-dire qu'il affiche la plus petite valeur de n pour laquelle R donc $r_n = OA_n$ est inférieur ou égal à P.

On peut donc dire que $OA_{32} > 0.01$ et que $OA_{33} \le 0.01$.

(Avec la calculatrice on obtient, à 10^{-5} près : $r_{32} = 0.010 02$ et $r_{33} = 0.008 68$.)

4. a. Nature du triangle OA_nA_{n+1}

On a, pour tout entier
$$n \in \mathbb{N}$$
, $\frac{z_{n+1} - z_n}{z_{n+1}} = \frac{\omega z_n - z_n}{\omega z_n} = \frac{\omega - 1}{\omega}$.

Or,
$$\frac{\omega - 1}{\omega} = \frac{-\frac{1}{4} + \frac{\sqrt{3}}{4}i}{\frac{3}{4} + \frac{\sqrt{3}}{4}i} = \frac{-1 + i\sqrt{3}}{3 + i\sqrt{3}} = \frac{i(\sqrt{3} + i)}{\sqrt{3}(\sqrt{3} + i)} = \frac{i}{\sqrt{3}} = \frac{i\sqrt{3}}{3}.$$

Comme $\arg\frac{i\sqrt{3}}{3}=\frac{\pi}{2}\pmod{2\pi}, \left(\overrightarrow{OA_{n+1}}; \overrightarrow{A_nA_{n+1}}\right)=\frac{\pi}{2}\pmod{2\pi}, \text{ le triangle }OA_nA_{n+1} \text{ est rectangle en }A_{n+1}.$

b. Valeurs de $\mathfrak n$ pour lesquelles $A_{\mathfrak n}$ est un point de l'axe des ordonnées

Comme
$$z_n = r_n e^{\frac{in\pi}{6}}$$
 on a arg $z_n = \frac{n\pi}{6} \pmod{2\pi}$.

Le point A_n , d'affixe z_n , est sur l'axe des ordonnées si, et seulement si arg $z_n = \frac{\pi}{2} + k\pi$ avec $k \in \mathbb{Z}$, donc si, et seulement si $\frac{n\pi}{6} = \frac{\pi}{2} + k\pi$, soit n = 3 + 6k.

Comme n est un entier naturel, l'entier k doit être positif.

Donc, le point A_n est sur l'axe des ordonnées si, et seulement si n=3+6k avec $k\in\mathbb{N}$.

c. Figure

Le point A_6 a pour affixe z_6 dont un argument est $\frac{6\pi}{6} = \pi$, donc le point A_6 sur l'axe des abscisses.

Comme le triangle OA_5A_6 est rectangle en A_6 , le point A_6 est le projeté orthogonal du point A_5 sur l'axe des abscisses.

Le point A_7 a pour affixe z_7 dont un argument est $\frac{7\pi}{6}$, ainsi les points A_1 , O et A_7 sont alignés.

Comme le triangle OA_6A_7 est rectangle en A_7 , le point A_7 est le projeté orthogonal du point A_6 sur la droite (OA_1) .

On procède de même pour les points A₈ et A₉.

