Weekly meeting Miscellaneous updates

Jérémie Decock

CEA Saclay - Irfu/SAp

September 7, 2016

Calibration

Calibration

Fix the calibration implementation

Pyhessio bug fix

- Error was due to get_pedestal fonction in pyhessio/src/pyhessio.c
- ► Loopingt over pixels then channels instead looping over channels then pixels as required
- Fixed by Jean Jacquemier
- I checked on images
- See https://github.com/cta-observatory/pyhessio/issues/34 (bug report)

Fix the calibration implementation

Calibration bug fix

Now it use the right channel, not only the first one...

```
peds, gains = get_mc_calibration_coeffs(tel_id)
85
86
       peds_ch0 = peds[0]
87
       peds_ch1 = peds[1]
88
89
       calibrated_image = [ (adc0 - ped0) * gain0 if adc0
90
        < adc_treshold else (adc1 - ped1) * gain1
                             for adc0, adc1, ped0, ped1,
91
      gain0, gain1
                              in zip(adcs[0], adcs[1], peds
       [0], peds[1], gains[0], gains[1]) ]
```

listings/extract_crop_and_plot_all_astri_images.py

Miscellaneous notes

- ▶ Improve the script used to generate FITS files (Calibrated image + PE image): much faster
- Re-generate FITS files for ASTRI events for Gammas and Protons with the right pedestal and fixed calibration

Benchmark

Former benchmark method

Benchmark

The mean distance of normalized images

The error function \mathcal{E} is given by:

$$\mathcal{E}(\hat{\mathbf{s}}, \mathbf{s}^*) = \text{mean} \left(\text{abs} \left(\varphi(\hat{\mathbf{s}}) - \varphi(\mathbf{s}^*) \right) \right)$$

Where:

- $\hat{\mathbf{s}}$ is the output image (the "cleaned" image) $\in \mathbb{R}^d$
- **s*** is the reference image (the "clean" image) $\in \mathbb{R}^d$
- $\triangleright \varphi$ is a normalization function

$$\varphi(\mathbf{s}) = \frac{\mathbf{s} - \min(\mathbf{s})}{\max(\mathbf{s}) - \min(\mathbf{s})}$$

New benchmark method

Benchmark

The error function \mathcal{E} is given by:

$$\begin{split} \mathcal{E}(\hat{\mathbf{s}},\mathbf{s}^*) &= (\mathcal{E}_1(\hat{\mathbf{s}},\mathbf{s}^*),\mathcal{E}_2(\hat{\mathbf{s}},\mathbf{s}^*))^T \\ \mathcal{E}_1(\hat{\mathbf{s}},\mathbf{s}^*) &= \mathsf{mean}\left(\mathsf{abs}\left(\frac{\hat{\mathbf{s}}}{\sum_i \hat{\mathbf{s}}_i} - \frac{\mathbf{s}^*}{\sum_i \mathbf{s}^*_i}\right)\right) \\ \mathcal{E}_2(\hat{\mathbf{s}},\mathbf{s}^*) &= \frac{\mathsf{abs}\left(\sum_i \hat{\mathbf{s}}_i - \sum_i \mathbf{s}^*_i\right)}{\sum_i \mathbf{s}^*_i} \end{split}$$

Where:

- $\hat{\mathbf{s}}$ is the output image (the "cleaned" image) $\in \mathbb{R}^d$
- **s*** is the reference image (the "clean" image) $\in \mathbb{R}^d$
- i is the index of a PMT (i.e. of a pixel) within an image

Optimization

Work in progress...

I started with scipy but I will probably switch to my own implementation.

Library

We started to merge Tino's code with mine to make a consistent unified library: https://github.com/jdhp-sap/data-pipeline-standalone-scripts (the name and location of this library may change in the future as it's purpose slightly changed since this merge).

Library

- Tino's scripts: https://github.com/tino-michael/tino_cta (reconstruction and classification)
- My scripts to manage simtel files: https://github.com/jdhp-sap/snippets
- My image cleaning scripts: https://github.com/jdhp-sap/ data-pipeline-standalone-scripts

Conclusion

TODO

TODO

Decock

References