Pyarm

Jérémie Decock

10 avril 2011

Table des matières

1	Mo	dèles d	le muscles et modèles de bras	2
	1.1	Préser	ntation des modèles	2
		1.1.1	Présentation	2
		1.1.2	Les modèles étudiés	3
		1.1.3	Historique	3
		1.1.4	Simulateur Pyarm	3
	1.2	Ciném	natique inverse du muscle	4
		1.2.1	Résolution numérique par la méthode des différences	
			finies du premier ordre	4
	1.3	Dynar	nique du muscle	6
		1.3.1	Katayama (Mitrovic et Kambara)	6
		1.3.2	Brown (Weiwei)	9
	1.4	Dynar	nique du bras	11
		1.4.1	Cas général	11
		1.4.2	Modèles étudiés	11
	1.5	Ciném	natique du bras	13
		1.5.1	Résolution numérique par la méthode des différences	
			finies du premier ordre	13
•				
2	Anr	iexe		14
	2.1	Modèl	e du bras	14
		2.1.1	Mitrovic	14
		2.1.2	Kambara	14
		2.1.3	Weiwei	15

Chapitre 1

Modèles de muscles et modèles de bras

1.1 Présentation des modèles

1.1.1 Présentation

- Bras 2D
- Plan transverse (Mitrovic, Weiwei) ou sagittal (Kambara)
- 2 membres (le bras et l'avant-bras)
- 2 articulations (épaule et coude)
- 6 muscles :
 - 1. fléchisseur de l'épaule
 - 2. extenseur de l'épaule
 - 3. fléchisseur du coude
 - 4. extenseur du coude
 - 5. double fléchisseur

6. double extenseur

Remarque : la numérotation des muscles est différente dans le modèle de Weiwei.

1.1.2 Les modèles étudiés

Trois modèles ont été étudiés :

- Katayama / Mitrovic [3, 9, 7, 8, 6]
- Kambara [2, 9]
- Brown / Weiwei [1, 4, 5, 10]

1.1.3 Historique

1.1.4 Simulateur Pyarm

- Codé en Python
- Implémente les 3 modèles
- http://code.google.com/p/pyarm/

Le simulateur est composé de 5 modules :

- Filtre sur signal d'entrée
- Modèle de bras
 - Cinématique directe
 - Dynamique directe
- Modèle de muscle
 - Cinématique inverse
 - Dynamique directe

1.2 Cinématique inverse du muscle

1.2.1 Résolution numérique par la méthode des différences finies du premier ordre

Cette méthode de résolution numérique est la plus simple : elle se base sur la discrétisation de l'intervalle d'étude en un certain nombre de pas.

$oldsymbol{l}_{oldsymbol{m}}(oldsymbol{q})\in\mathbb{R}^{6}$	Longueur constatée des muscles (m)
$\dot{m{l}_{m}}(m{q},m{\dot{q}})\in\mathbb{R}^{6}$	Vitesse de contraction des muscles $(m \cdot s^{-1})$
$oldsymbol{A}(oldsymbol{q}) \in \mathbb{R}^{6 imes 2}$	Matrice des bras de levier (m)
$oldsymbol{l_{m0}} \in \mathbb{R}^6$	Longueur des muscles quand les articulations sont d'angle nul (m)
$oldsymbol{q} \in \mathbb{R}^2$	Angle des articulations (rad)
$\dot{oldsymbol{q}} \in \mathbb{R}^2$	Vitesse angulaire des articulations $(rad \cdot s^{-1})$

$$egin{aligned} m{l_m(q)} &= m{l_{m0}} - m{A(q)} q \ m{\dot{l_m(q)}} &= m{\dot{\delta l_m(q)}} \ m{\delta t} \end{aligned}$$

Dans les modèles de Mitrovic et de Kambara, la longueur du bras de levier est constante.

	Mitrovic			Kambara		
	a_s	a_e	l_{m0}	a_s	a_e	l_{m0}
fléchisseur de l'épaule	0.04	0	0.337	0.04	0	0.337
extenseur de l'épaule	0.04	0	0.388	-0.04	0	0.388
fléchisseur du coude	0	0.025	0.375	0	0.025	0.375
extenseur du coude	0	0.025	0.315	0	-0.025	0.315
double fléchisseur	0.028	0.028	0.257	0.028	0.028	0.257
double extenseur	0.035	0.035	0.256	-0.035	-0.035	0.256

1.3 Dynamique du muscle

1.3.1 Katayama (Mitrovic et Kambara)

Mitrovic :

$$oldsymbol{ au} = -oldsymbol{A}^T oldsymbol{T}(oldsymbol{l_m}, oldsymbol{ ilde u}, oldsymbol{ ilde u})$$

 $oldsymbol{T}(oldsymbol{l_m}, oldsymbol{ ilde u}, oldsymbol{ ilde u}) = oldsymbol{k}(oldsymbol{ ilde u}) \cdot (oldsymbol{l_r}(oldsymbol{ ilde u}) - oldsymbol{l_m}) + oldsymbol{
u}(oldsymbol{ ilde u}) \cdot oldsymbol{ ilde u})$

Kambara:

$$oldsymbol{ au} = oldsymbol{A}^T oldsymbol{T}(oldsymbol{l_m}, oldsymbol{ ilde u}) \ oldsymbol{T}(oldsymbol{l_m}, oldsymbol{ ilde u}, oldsymbol{ ilde u}, oldsymbol{ ilde u}) = -oldsymbol{k}(oldsymbol{ ilde u}) \cdot (oldsymbol{l_r}(oldsymbol{ ilde u}) - oldsymbol{l_m}) + oldsymbol{
u}(oldsymbol{ ilde u}) \cdot oldsymbol{ ilde u}, oldsymbol{ ilde u}) + oldsymbol{
u}(oldsymbol{ ilde u}) + oldsymbol{u}(oldsymbol{ ilde u}) + oldsymbol{
u}(oldsymbol{ ilde u}) + oldsymbol{
u}(oldsymbol{ ilde u}) + oldsymbol{ ilde u}(oldsymbol{ ilde u}) + oldsymbol{
u}(oldsymbol{ ilde u}) + oldsymbol{
u}(oldsymbol{ ilde u}) + oldsymbol{ ilde u}(oldsymbol{ ilde u}) + oldsymbol{
u}(oldsymbol{ ilde u}) + oldsymbol{ ilde u}(oldsymbol{ ilde u}) + oldsymbol{ ilde u}(oldsymbol{ ilde u}) + oldsymbol{
u}(oldsymbol{ ilde u}) + oldsymbol{ ilde u}(oldsymbol{ ilde u}) + o$$

$$\begin{array}{llll} k(\tilde{u}) &=& k_0 + k_1 \cdot \tilde{u} \\ \nu(\tilde{u}) &=& \nu_0 + \nu_1 \cdot \tilde{u} \\ l_r(\tilde{u}) &=& l_{r0} - l_{r1} \cdot \tilde{u} \end{array}$$

FIGURE 1.1 - Kelvin-Voigt model

$oldsymbol{ au} \in \mathbb{R}^2 \ oldsymbol{A} \in \mathbb{R}^{6 imes 2} \ oldsymbol{T}(oldsymbol{l_m},oldsymbol{l_m}, ilde{oldsymbol{u}}) \in \mathbb{R}^6$	=	Couple total exercé sur les articulations $(N \cdot m)$ Matrice des bras de levier (m) Tension exercée par les muscles (N)
$egin{aligned} & k(ilde{m{u}}) \cdot (m{l}_{m{r}}(ilde{m{u}}) - m{l}_{m{m}}) \ & m{ m v}(ilde{m{u}}) \cdot \dot{m{l}_{m{m}}} \end{aligned}$	=	Force élastique des muscles (raideur \cdot étirement) (N) Force de viscosité des muscles (N)
$egin{aligned} m{k}(m{ ilde{u}}) \in \mathbb{R}^6 \ m{k_0} \in \mathbb{R}^6 \ m{k_1} \in \mathbb{R}^6 \end{aligned}$	= = =	Raideur des muscles (N/m) Raideur intrinsèque des muscles (N/m) Coefficient de variation de l'élasticité des muscles (N/m)
$oldsymbol{ u}(ilde{oldsymbol{u}})\in\mathbb{R}^6 onumbol{ u}_{oldsymbol{0}}\in\mathbb{R}^6 onumbol{ u}_{oldsymbol{1}}\in\mathbb{R}^6$	=	Viscosité des muscles $(N \cdot s/m)$ Viscosité intrinsèque des muscles $(N \cdot s/m)$ Coefficient de variation de la viscosité des muscles $(N \cdot s/m)$
$egin{aligned} oldsymbol{l}_{oldsymbol{r}(ilde{oldsymbol{u}}) \in \mathbb{R}^6 \ oldsymbol{l}_{oldsymbol{r}0} \in \mathbb{R}^6 \ oldsymbol{l}_{oldsymbol{r}1} \in \mathbb{R}^6 \end{aligned}$	= =	Longueur des muscles au repos pour un taux d'activation donné (m) Longueur intrinsèque des muscles au repos (m) Coefficient de variation de la longueur des muscles au repos (m)
$oldsymbol{l_m} \in \mathbb{R}^6 \ oldsymbol{l_{m0}} \in \mathbb{R}^6$	=	Longueur constatée des muscles (m) Longueur des muscles quand les articulations sont d'angle nul (m)
$oldsymbol{u} \in \mathbb{R}^6 \ oldsymbol{ ilde{u}} \in \mathbb{R}^6$	=	Signaux d'activation des muscles $(u_i \in [0; 1])$ Signaux d'activation filtrés $(\tilde{u}_i \in [0; 1])$

Mitrovic [3] (p.356-357) :

٨	(0.04	0.04	0	0	0.028	0.035
$A \equiv$	(0	0	0.025	0.025	0.028	0.035)

	k_0	k_1	ν_0	ν_1	l_{r1}	$l_{m0} - l_{r0}$
fléchisseur de l'épaule	810.8	1621.6	54.1	108.1	$-3.49 \cdot 10^{-2}$	$9.08 \cdot 10^{-2}$
extenseur de l'épaule	810.8	1621.6	54.1	108.1	$3.49 \cdot 10^{-2}$	$-2.79 \cdot 10^{-2}$
fléchisseur du coude	810.8	1621.6	54.1	108.1	$-2.18 \cdot 10^{-2}$	$5.67 \cdot 10^{-2}$
extenseur du coude	810.8	1621.6	54.1	108.1	$2.18 \cdot 10^{-2}$	$0.44 \cdot 10^{-2}$
double fléchisseur	810.8	1621.6	54.1	108.1	$-5.50 \cdot 10^{-2}$	$14.29 \cdot 10^{-2}$
double extenseur	810.8	1621.6	54.1	108.1	$5.50 \cdot 10^{-2}$	$-1.34 \cdot 10^{-2}$

Kambara [2] (p.359-360) :

$$\boldsymbol{A} = \begin{pmatrix} 0.04 & -0.04 & 0 & 0 & 0.028 & -0.035 \\ 0 & 0 & 0.025 & -0.025 & 0.028 & -0.035 \end{pmatrix}^T$$

	k_0	k_1	ν_0	ν_1	l_{r1}	$l_{m0} - l_{r0}$
fléchisseur de l'épaule	1000	3000	50	100	0.15	0.077
extenseur de l'épaule	1000	2000	50	100	0.15	0.128
fléchisseur du coude	600	1400	50	100	0.15	0.100
extenseur du coude	600	1200	50	100	0.15	0.040
double fléchisseur	300	600	50	100	0.15	0.020
double extenseur	300	600	50	100	0.15	0.019

1.3.2 Brown (Weiwei)

CE	Éléments contractiles
SE	Élasticité des tendons (ignorée)
PE	Élasticité du muscle
PE1	Résistance à l'étirement du muscle passif
PE2	Résistance à la compression du muscle actif
$oldsymbol{ au}_{oldsymbol{i}} \in \mathbb{R}^2 \ oldsymbol{a}_{oldsymbol{i}}(oldsymbol{q}) \in \mathbb{R}^2 \ T_i(l_m, \dot{l_m}, ilde{u}) \in \mathbb{R}$	Couple total exercé sur les articulations par le muscle $i (N \cdot m)$ Bras de levier du muscle i sur les deux articulations $(c_1 + c_2 \cos(c_3 q))$ (m) Tension exercée par le muscle i (N)
$f_a(\tilde{u}, l_m) \in \mathbb{R}$	Relation activation-fréquence
$f_l(l_m) \in \mathbb{R}$	Relation force-longueur
$f_v(l_m, \dot{l_m}) \in \mathbb{R}$	Relation force-vitesse
$f_e(l_m) \in \mathbb{R}$	Force élastique du muscle
$l_m \in \mathbb{R}$ $l_m \in \mathbb{R}$	Longueur constatée du muscle $i (m)$ Vitesse de contraction du muscle $i (m \cdot s^{-1})$
$u \in \mathbb{R}$	Signaux d'activation du muscle i ($u_i \in [0; 1]$)
$ ilde{u} \in \mathbb{R}$	Signaux d'activation filtrés ($\tilde{u}_i \in [0; 1]$)

$$\begin{cases} \boldsymbol{\tau_{total}} &= \sum_{i=0}^{6} \boldsymbol{\tau_{i}} \\ \boldsymbol{\tau_{i}} &= \boldsymbol{a_{i}(q)} T_{i}(l_{m}, \dot{l_{m}}, \tilde{u}) \\ T_{i}(l_{m}, \dot{l_{m}}, \tilde{u}) &= f_{a}(l_{m}, \tilde{u})(f_{e}(l_{m}) + f_{l}(l_{m})f_{v}(l_{m}, \dot{l_{m}})) \\ f_{a}(l_{m}, \tilde{u}) &= 1 - \exp\left(-\left(\frac{\tilde{u}}{0.56n_{f}(l_{m})}\right)^{n_{f}(l_{m}}\right)\right) \\ n_{f}(l_{m}) &= 2.11 + 4.16\left(\frac{1}{l_{m}} - 1\right) \\ f_{l}(l_{m}) &= \exp\left(-\left|\frac{l_{m}^{1.93} - 1}{1.03}\right|^{1.87}\right) \\ f_{v}(l_{m}, \dot{l_{m}}) &= \begin{cases} \frac{-5.72 - \dot{l_{m}}}{-5.72 + (1.38 + 2.09l_{m})l_{m}}, \dot{l_{m}} \leq 0 \\ \frac{0.62 - (-3.12 + 4.21l_{m} - 2.67l_{m}^{2})l_{m}}{0.62 + l_{m}}, \dot{l_{m}} > 0 \end{cases} \\ f_{e}(l_{m}) &= -0.02 \exp(13.8 - 18.7l_{m}) \end{cases}$$

(k) f_l : force élastique

1.4 Dynamique du bras

1.4.1 Cas général

$oldsymbol{M}(oldsymbol{q}) \in \mathbb{R}^{2 imes 2}$	Matrice des moments d'inertie
$oldsymbol{C}(oldsymbol{q}, \dot{oldsymbol{q}}) \in \mathbb{R}^2$	Force de Coriolis et force centripète
$oldsymbol{B}(\dot{oldsymbol{q}})\in\mathbb{R}^2$	Force de viscosité et de friction
$oldsymbol{G}(oldsymbol{q})\in\mathbb{R}^2$	Force de gravité
$oldsymbol{ au} \in \mathbb{R}^2$	Couple total exercé sur les articulations $(N \cdot m)$
$m{\ddot{q}} \in \mathbb{R}^2$	Accélération angulaire des articulations $(rd \cdot s^{-2})$
$oldsymbol{\dot{q}} \in \mathbb{R}^2$	Vitesse angulaire des articulations $(rd \cdot s^{-1})$
$oldsymbol{q} \in \mathbb{R}^2$	Angle des articulations (rd)

Dynamique inverse :

$$oldsymbol{ au} = oldsymbol{M}(oldsymbol{q}) oldsymbol{\ddot{q}} + oldsymbol{C}(oldsymbol{q}, oldsymbol{\dot{q}}) + oldsymbol{B}(oldsymbol{\dot{q}}) + oldsymbol{G}(oldsymbol{q})$$

Dynamique directe :

$$\Leftrightarrow \ddot{oldsymbol{q}} = oldsymbol{M}(oldsymbol{q})^{-1}(oldsymbol{ au} - oldsymbol{C}(oldsymbol{q}, \dot{oldsymbol{q}}) - oldsymbol{B}(oldsymbol{\dot{q}}) - oldsymbol{G}(oldsymbol{q}))$$

1.4.2 Modèles étudiés

Mitrovic	$oldsymbol{ au} = oldsymbol{M}(oldsymbol{q})oldsymbol{\ddot{q}} + oldsymbol{C}(oldsymbol{q},oldsymbol{\dot{q}})$	$ec{m{q}} = m{M}(m{q})^{-1}(m{ au} - m{C}(m{q}, m{\dot{q}}))$
Kambara	$oldsymbol{ au} = oldsymbol{M}(oldsymbol{q})oldsymbol{\ddot{q}} + oldsymbol{C}(oldsymbol{q},oldsymbol{\dot{q}}) + oldsymbol{G}(oldsymbol{q})$	$\ddot{m{q}} = m{M}(m{q})^{-1}(m{ au} - m{C}(m{q}, \dot{m{q}}) - m{G}(m{q}))$
Weiwei	$oldsymbol{ au} = oldsymbol{M}(oldsymbol{q})oldsymbol{\ddot{q}} + oldsymbol{C}(oldsymbol{q},oldsymbol{\dot{q}}) + oldsymbol{B}(oldsymbol{\dot{q}})$	$\ddot{m{q}} = m{M}(m{q})^{-1}(m{ au} - m{C}(m{q}, \dot{m{q}}) - m{B}(\dot{m{q}}))$

 m_i Masse du membre i (kg)

- l_i Longueur du membre i(m)
- γ_i Distance séparant le centre de l'articulation au centre de masse du membre $i\ (m)$
- ι_j Moment d'inertie de l'articulation $j \ (kg \cdot m^2)$
- g Champ de pesanteur $(m \cdot s^{-2})$

Indices

- *u* Bras (supérieur)
- f Avant-bras
- s Épaule
- e Coude

$$\begin{split} \boldsymbol{M}(\boldsymbol{q}) &= \begin{pmatrix} f_1 + 2f_2\cos(q_e) & f_3 + f_2\cos(q_e) \\ f_3 + f_2\cos(q_e) & f_3 \end{pmatrix} \\ \boldsymbol{C}(\boldsymbol{q}, \boldsymbol{\dot{q}}) &= \begin{pmatrix} -\dot{q}_e(2\dot{q}_s + \dot{q}_e) \\ \dot{q}_s^2 \end{pmatrix} f_2\sin(q_e) \\ \boldsymbol{B}(\boldsymbol{\dot{q}}) &= \begin{pmatrix} 0.05 & 0.025 \\ 0.025 & 0.05 \end{pmatrix} \boldsymbol{\dot{q}} \\ \boldsymbol{G}(\boldsymbol{q}) &= \begin{pmatrix} m_u g \gamma_u \cos(q_s) + m_f g(l_u \cos(q_s) + \gamma_f \cos(q_s + q_e)) \\ & m_f g \gamma_f \cos(q_s + q_e) \end{pmatrix} \end{split}$$

$$\begin{aligned} f_1 &= \iota_s + \iota_e + m_f l_u^2 \\ f_2 &= m_f l_u \gamma_f \\ f_d &= m_f l_u \gamma_f \end{aligned}$$

$$f_3 = \iota_e$$

	m_u	m_f	l_u	l_f	γ_u	γ_f	ι_s	ι_e	g
Mitrovic [3] (p.356)	1.59	1.44	0.3	0.35	0.18	0.21	$4.77 \cdot 10^{-2}$	$5.88 \cdot 10^{-2}$	-
Kambara [2] (p.359)	1.59	1.44	0.3	0.35	0.18	0.21	$6.78 \cdot 10^{-2}$	$7.99 \cdot 10^{-2}$	N/C
Weiwei [4] (p.23)	1.4	1.1	0.3	0.33	0.11	0.16	$2.5 \cdot 10^{-2}$	$4.5 \cdot 10^{-2}$	-

1.5 Cinématique du bras

1.5.1 Résolution numérique par la méthode des différences finies du premier ordre

Cette méthode de résolution numérique est la plus simple : elle se base sur la discrétisation de l'intervalle d'étude en un certain nombre de pas.

$$\dot{q} = \delta \ddot{q} \cdot \delta t$$
$$q = \delta \dot{q} \cdot \delta t$$

Chapitre 2

Annexe

2.1 Modèle du bras

2.1.1 Mitrovic

Écriture originale [3] (p.355).

$$\begin{pmatrix} \tau_s \\ \tau_e \end{pmatrix} = \begin{pmatrix} \iota_s + \iota_e + m_f l_u^2 + 2m_f l_u \gamma_f \cos(q_e) & \iota_e + m_f l_u \gamma_f \cos(q_e) \\ \iota_e + m_f l_u \gamma_f \cos(q_e) & \iota_e \end{pmatrix} \begin{pmatrix} \ddot{q}_s \\ \ddot{q}_e \end{pmatrix}$$

$$+ m_f l_u \gamma_f \sin(q_e) \begin{pmatrix} -2\dot{q}_e & -\dot{q}_e \\ \dot{q}_s & 0 \end{pmatrix} \begin{pmatrix} \dot{q}_s \\ \dot{q}_e \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} \boldsymbol{\tau} &= \boldsymbol{M}(\boldsymbol{q}) \boldsymbol{\ddot{q}} + \boldsymbol{C}(\boldsymbol{q}, \boldsymbol{\dot{q}}) \\ \boldsymbol{M}(\boldsymbol{q}) &= \begin{pmatrix} \iota_s + \iota_e + m_f l_u^2 + 2m_f l_u \gamma_f \cos(q_e) & \iota_e + m_f l_u \gamma_f \cos(q_e) \\ \iota_e + m_f l_u \gamma_f \cos(q_e) & \iota_e \end{pmatrix} \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} \boldsymbol{\tau} &= \boldsymbol{M}(\boldsymbol{q}) \boldsymbol{\ddot{q}} + \boldsymbol{C}(\boldsymbol{q}, \boldsymbol{\dot{q}}) \\ \boldsymbol{M}(\boldsymbol{q}) &= \begin{pmatrix} \iota_s + \iota_e + m_f l_u^2 + 2m_f l_u \gamma_f \cos(q_e) & \iota_e + m_f l_u \gamma_f \cos(q_e) \\ \iota_e + m_f l_u \gamma_f \cos(q_e) & \iota_e \end{pmatrix} \end{pmatrix}$$

$$\Rightarrow \begin{cases} \boldsymbol{\tau} &= \boldsymbol{M}(\boldsymbol{q}) \boldsymbol{\ddot{q}} + \boldsymbol{C}(\boldsymbol{q}, \boldsymbol{\dot{q}}) \\ \boldsymbol{M}(\boldsymbol{q}) &= \begin{pmatrix} f_1 + 2f_2 \cos(q_e) & f_3 + f_2 \cos(q_e) \\ f_3 + f_2 \cos(q_e) & f_3 \end{pmatrix} \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} \boldsymbol{C}(\boldsymbol{q}, \boldsymbol{\dot{q}}) &= \begin{pmatrix} -\dot{q}_e(2\dot{q}_s + \dot{q}_e) \\ \dot{q}_s^2 \end{pmatrix} f_2 \sin(q_e) \\ f_1 &= \iota_s + \iota_e + m_f l_u^2 \\ f_2 &= m_f l_u \gamma_f \\ f_3 &= \iota_e \end{cases}$$

2.1.2 Kambara

Écriture originale [2] (p.360).

$$\begin{pmatrix} \tau_s \\ \tau_e \end{pmatrix} = \begin{pmatrix} M_{11}\ddot{q}_s + M_{12}\ddot{q}_e + h_{122}\dot{q}_e^2 + 2h_{112}\dot{q}_s\dot{q}_e + g_1 \\ M_{21}\ddot{q}_s + M_{22}\ddot{q}_e + h_{211}\dot{q}_s^2 + g_2 \end{pmatrix}$$

$$= \begin{pmatrix} M_{11}\ddot{q}_s + M_{12}\ddot{q}_e \\ M_{21}\ddot{q}_s + M_{22}\ddot{q}_e \end{pmatrix} + \begin{pmatrix} h_{122}\dot{q}_e^2 + 2h_{112}\dot{q}_s\dot{q}_e \\ h_{211}\dot{q}_s^2 \end{pmatrix} + \begin{pmatrix} g_1 \\ g_2 \end{pmatrix}$$

$$= \boldsymbol{M}(\boldsymbol{q})\boldsymbol{\ddot{q}} + \boldsymbol{C}(\boldsymbol{q},\boldsymbol{\dot{q}}) + \boldsymbol{G}(\boldsymbol{q})$$

$$\begin{split} \mathbf{M}(\mathbf{q}) &= \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \\ \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) &= \begin{pmatrix} -f_2 \sin(q_e) \dot{q}_e^2 - 2f_2 \sin(q_e) \dot{q}_s \dot{q}_e \\ f_2 \sin(q_e) \dot{q}_s^2 \end{pmatrix} = \begin{pmatrix} -\dot{q}_e (2\dot{q}_s + \dot{q}_e) \\ \dot{q}_s^2 \end{pmatrix} f_2 \sin(q_e) \\ \mathbf{G}(\mathbf{q}) &= \begin{pmatrix} g_1 \\ g_2 \end{pmatrix} \end{split}$$

$$\begin{array}{rcl} M_{11} & = & \iota_{s} + \iota_{e} + m_{f}(l_{u}^{2} + 2l_{u}\gamma_{f}\cos(q_{e})) = f_{1} + 2f_{2}\cos(q_{e}) \\ M_{12} & = & \iota_{e} + m_{f}l_{u}\gamma_{f}\cos(q_{e}) = f_{3} + f_{2}\cos(q_{e}) \\ M_{21} & = & \iota_{e} + m_{f}l_{u}\gamma_{f}\cos(q_{e}) = f_{3} + f_{2}\cos(q_{e}) \\ M_{22} & = & \iota_{e} = f_{3} \\ h_{122} & = & -m_{f}l_{u}\gamma_{f}\sin(q_{e}) \\ h_{112} & = & -m_{f}l_{u}\gamma_{f}\sin(q_{e}) \\ h_{211} & = & m_{f}l_{u}\gamma_{f}\sin(q_{e}) \\ g_{1} & = & m_{u}g\gamma_{u}\cos(q_{s}) + m_{f}g(l_{u}\cos(q_{s}) + \gamma_{f}\cos(q_{s} + q_{e})) \\ g_{2} & = & m_{f}g\gamma_{f}\cos(q_{s} + q_{e}) \\ \end{array}$$

2.1.3 Weiwei

Écriture originale [4] (p.22).

$$\begin{aligned} \boldsymbol{\tau} &= \boldsymbol{M}(\boldsymbol{q}) \boldsymbol{\ddot{q}} + \boldsymbol{C}(\boldsymbol{q}, \boldsymbol{\dot{q}}) + \boldsymbol{B}(\boldsymbol{\dot{q}}) \\ \boldsymbol{M}(\boldsymbol{q}) &= \begin{pmatrix} f_1 + 2f_2 \cos(q_e) & f_3 + f_2 \cos(q_e) \\ f_3 + f_2 \cos(q_e) & f_3 \end{pmatrix} \\ \boldsymbol{C}(\boldsymbol{q}, \boldsymbol{\dot{q}}) &= \begin{pmatrix} -\dot{q}_e(2\dot{q}_s + \dot{q}_e) \\ \dot{q}_s^2 \end{pmatrix} f_2 \sin(q_e) \\ \boldsymbol{B}(\boldsymbol{\dot{q}}) &= \begin{pmatrix} 0.05 & 0.025 \\ 0.025 & 0.05 \end{pmatrix} \boldsymbol{\dot{q}} \\ f_1 &= \iota_s + \iota_e + m_f l_u^2 \end{aligned}$$

$$\begin{array}{rcl} f_1 & = & \iota_s + \iota_e + m_f \\ f_2 & = & m_f l_u \gamma_f \\ f_3 & = & \iota_e \end{array}$$

Bibliographie

- I.E. Brown, E.J. Cheng, and G.E. Loeb. Measured and modeled properties of mammalian skeletal muscle. II. The effects of stimulus frequency on force-length and force-velocity relationships. *Journal of muscle re*search and Cell Motility, 20(7) :627–643, 1999.
- [2] H. Kambara, K. Kim, D. Shin, M. Sato, and Y. Koike. Learning and generation of goal-directed arm reaching from scratch. *Neural Networks*, 22(4) :348–361, 2009.
- [3] M. Katayama and M. Kawato. Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse models. *Biological Cybernetics*, 69(5):353–362, 1993.
- [4] W. Li. Optimal control for biological movement systems. PhD thesis, University of California, San Diego, 2006.
- [5] W. Li and E. Todorov. Iterative linear-quadratic regulator design for nonlinear biological movement systems. In *Proceedings of the First International Conference on Informatics in Control, Automation, and Robotics*, pages 222–229. Citeseer, 2004.
- [6] D. Mitrovic, S. Klanke, R. Osu, M. Kawato, and S. Vijayakumar. Impedance Control as an Emergent Mechanism from Minimising Uncertainty. 2009.
- [7] D. Mitrovic, S. Klanke, and S. Vijayakumar. Adaptive optimal control for redundantly actuated arms. *From Animals to Animats 10*, pages 93–102.
- [8] D. Mitrovic, S. Klanke, and S. Vijayakumar. Optimal control with adaptive internal dynamics models. In In proceedings of the 5th International Conference on Informatics in Control, Automation and Robotics (ICINCO), 2008.
- [9] N. Ozkaya and M. Nordin. Fundamentals of Biomechanics : Equilibrium, Motion and Deformation. Van Nostrand Reinhold, New York, 1991.
- [10] E. Todorov and W. Li. A generalized iterative LQG method for locallyoptimal feedback control of constrained nonlinear stochastic systems.

In American Control Conference, 2005. Proceedings of the 2005, pages 300–306, 2005.