Framework	Theorem and proof	Application to quadratic functions	Conclusion

Linear Convergence of Evolution Strategies with Derandomized Sampling Beyond Quasi-Convex Functions

Jeremie Decock

Olivier Teytaud

Inria

May 28, 2014

- < 同 > < 三 > < 三 >

Decock

Introduction	Framework 00000000	Theorem and proof	Application to quadratic functions	Conclusion 0000

Introduction

The aim of this presentation

Study convergence rate of a simple pattern search method

Introduction

Convergence of evolutionary algorithms

Proofs are almost always for (quasi-)convex objective functions

Non quasi-convex objective functions

- some proofs for convergence (asymptotically the optimum is found)
- few for linear convergence (precision $O(e^{-\Omega(n)})$ after *n* iterations)
 - in discrete space
 - not in continuous space

■▶ ■|= ののの

Introduction

Our contribution

- Prove the linear convergence of an algorithm
 - on non quasi-convex functions
 - on continuous domains
- Under some assumptions about
 - the sampling performed by the algorithm
 - the "conditioning" of the objective function
 - the unicity of the optimum

글 🔊 🖂 글 🖂 🗉

Introduction	Framework 00000000	Theorem and proof	Application to quadratic functions	Conclusion 0000

Overview

Framework

Theorem and proof

Application to quadratic functions

Conclusion

Decock

	Framework ●0000000	Theorem and proof	Application to quadratic functions	Conclusion 0000
Framework				

Framework

Inria

Decock

	Framework 0●000000	Theorem and proof	Application to quadratic functions	Conclusion 0000
Framework				

Algorithm

Initialize $\mathbf{x} \in \mathbb{R}^d$ Parameters $k \in \mathbb{N}^*, \delta_1, \ldots, \delta_k \in \mathbb{R}^d, \sigma \in \mathbb{R}^*_+, k_1 \in \mathbb{N}^*, k_2 \in \mathbb{N}^*$ for $t = 1, 2, 3, \ldots$ do // mutations For $i \in [[1, k]]$, $\mathbf{x}_i \leftarrow \mathbf{x} + \sigma \boldsymbol{\delta}_i$ useful auxiliary variables $n \leftarrow$ number of \mathbf{x}_i such that $f(\mathbf{x}_i) < f(\mathbf{x})$ $\mathbf{x}' \leftarrow \mathbf{x}_i$ with $i \in [[1, k]]$ such that $f(\mathbf{x}_i)$ is minimum . . . end for

→ 同 → → 目 → → 目 → つへの

Inria

Decock

	Framework 00●00000	Theorem and proof	Application to quadratic functions	Conclusion 0000
Framework				

Algorithm

```
Initialize \mathbf{x} \in \mathbb{R}^d
Parameters k \in \mathbb{N}^*, \delta_1, \dots, \delta_k \in \mathbb{R}^d, \sigma \in \mathbb{R}^*_+, k_1 \in \mathbb{N}^*, k_2 \in \mathbb{N}^*
for t = 1, 2, 3, \dots do
```

8

Inria

▲ E ► E E ■ 900

```
\begin{array}{ll} & & \\ // & & \text{step-size adaptation} \\ & \text{if } n \leq k_1 \text{ then} \\ & \sigma \leftarrow \sigma/2 \\ & \text{end if} \\ & \text{if } n \geq k_2 \text{ then} \\ & \sigma \leftarrow 2\sigma \\ & \text{end if} \end{array}
```

end for

	Framework 000●0000	Theorem and proof	Application to quadratic functions	Conclusion 0000
Framework				

Algorithm

Initialize $\mathbf{x} \in \mathbb{R}^d$ Parameters $k \in \mathbb{N}^*, \delta_1, \dots, \delta_k \in \mathbb{R}^d, \sigma \in \mathbb{R}^*_+, k_1 \in \mathbb{N}^*, k_2 \in \mathbb{N}^*$ for $t = 1, 2, 3, \dots$ do

Q

Inria

문 🛌 문 🖻

$$\begin{array}{ll} // & \mbox{win: accepted mutation} \\ \mbox{if } k_1 < n < k_2 \mbox{ then} \\ & \mbox{x} \leftarrow \mbox{x'} \\ \mbox{end if} \end{array}$$

end for

. . .

Decock

	Framework 0000●000	Theorem and proof	Application to quadratic functions	Conclusion 0000
Framework				
Assump	tions			

Objective function

The objective function f is unimodal

The considered algorithms are invariant by translation or composition with increasing functions, therefore we can state that

x^{*} = 0 is the optimum

•
$$f(\mathbf{x}^*) = 0$$

3 × 3 = 4 0 0 0

	Framework 00000●00	Theorem and proof	Application to quadratic functions	Conclusion 0000
Framework				

Assumptions Conditioning of *f*

Conditioning of $f: \exists K' > 0, \exists K'' > 0 \text{ s.t. } \forall \mathbf{x} \in \mathrm{I\!R}^d$

 $|\mathcal{K}'||\mathbf{x}|| \leq f(\mathbf{x}) \leq \mathcal{K}''||\mathbf{x}||$

This assumption is not so strong as a constraint and in fact, quadratic positive definite forms with bounded condition number are covered

■ ► ■ = • • • • •

Inria

	Framework 000000●0	Theorem and proof	Application to quadratic functions	Conclusion 0000
Framework				

Assumptions

Deterministic sampling of the algorithm

The sampling of the algorithm is deterministic (like in pattern search methods)

- mutation vectors δ_i are constant
- \blacktriangleright the evolution of the step size parameter σ is deterministic

글 > 그리님 -

	Framework 0000000●	Theorem and proof	Application to quadratic functions	Conclusion
Framework				

Assumptions

Decock

Regular sampling of the algorithm

We assume
$$\exists b, b', c', c, \eta$$
 s.t.
 $0 < b < b' \le 2b' \le c' \le c, \ 0 < \eta < 1, \ \forall \mathbf{x} \in \mathbb{R}^d$
 $\sigma \ge b^{-1}||\mathbf{x}|| \Rightarrow n \le k_1 \quad (\sigma \text{ too large}) \quad (1)$
 $\sigma \le b'^{-1}||\mathbf{x}|| \Rightarrow n > k_1 \quad (\sigma \text{ small enough}) \quad (2)$
 $\sigma \ge c'^{-1}||\mathbf{x}|| \Rightarrow n < k_2 \quad (\sigma \text{ large enough}) \quad (3)$
 $\sigma \le c^{-1}||\mathbf{x}|| \Rightarrow n \ge k_2 \quad (\sigma \text{ too small}) \quad (4)$
 $b'^{-1}||\mathbf{x}|| \le \sigma \le c'^{-1}||\mathbf{x}|| \Rightarrow \exists i \in [[1, k]]; f(\mathbf{x}_i) \le \eta f(\mathbf{x}) \quad (5)$
with $n := \#\{i \in [[1, k]]; f(\mathbf{x} + \sigma \delta_i) < f(\mathbf{x})\}$

13 ヨョ つへで

Inria

	Framework 00000000	Theorem and proof •00000000000	Application to quadratic functions	Conclusion
Theorem				

Theorem

Inria

	Framework 00000000	Theorem and proof ○●○○○○○○○○○○○	Application to quadratic functions	Conclusion 0000
Theorem				

Define $l = \ln\left(\frac{||\mathbf{x}||}{\sigma}\right)$. Eqs. 1-5 can be rephrased as follows: $l \leq \ln(b) \Rightarrow n \leq k_1 \quad (\sigma \text{ too large}) \quad (6)$ $l \geq \ln(b') \Rightarrow n > k_1 \quad (\sigma \text{ small enough}) \quad (7)$ $l \leq \ln(c') \Rightarrow n < k_2 \quad (\sigma \text{ large enough}) \quad (8)$ $l \geq \ln(c) \Rightarrow n \geq k_2 \quad (\sigma \text{ too small}) \quad (9)$ $\ln(b') \leq l \leq \ln(c') \Rightarrow \exists i \in [[1, k]]; f(\mathbf{x} + \sigma \delta_i) \leq \eta f(\mathbf{x}) \quad (10)$

with $n := \#\{i \in [[1, k]]; f(\mathbf{x} + \sigma \delta_i) < f(\mathbf{x})\}$

Linear Convergence of Evolution Strategieswith Derandomized Sampling

<□> < => < => < => = = のへの

	Framework 00000000	Theorem and proof 00●0000000000	Application to quadratic functions	Conclusion 0000
Theorem				

Linear Convergence of Evolution Strategieswith Derandomized Sampling

★ E ▶ ★ E ▶ E = • • • • • •

< 17 >

	Framework 00000000	Theorem and proof	Application to quadratic functions	Conclusion
Theorem				

Forced increase

Forced increase if $l \leq \ln(b)$, then

- $n \leq k_1$
- σ is divided by 2
- I is increased by In(2) (Eq. 6)

This is a case C at the bottom in the figure

Linear Convergence of Evolution Strategieswith Derandomized Sampling

글 🔊 🖂 글 🔁 🚽

	Framework 00000000	Theorem and proof	Application to quadratic functions	Conclusion 0000
Theorem				

Forced decrease if $l \ge \ln(c)$, then

- $n \ge k_2$
- σ is multiplied by 2
- I is decreased by ln(2) (Eq. 9)

This is a case ${\sf C}$ at the top in the figure

Linear Convergence of Evolution Strategieswith Derandomized Sampling

글 🖌 🖂 글 🖂

	Framework 0000000	Theorem and proof	Application to quadratic functions	Conclusion
Theorem				

Forced win

Decock

Forced win if $\ln(b') < l < \ln(c')$, then

- this is the "sure win" case (Eq. 10)
- ▶ $\mathbf{x} \leftarrow \mathbf{x}'$ (\mathbf{x}' is the best \mathbf{x}_i)
- / can be
 - increased (at most by max_i $||\delta_i||$) or decreased $(by \Delta = ln \left(\frac{||\mathbf{x}||}{||\mathbf{x}'||} \right))$

This is a case A in the figure

19

	Framework 00000000	Theorem and proof	Application to quadratic functions	Conclusion 0000
Theorem				

Uncertain outcome

Uncertain outcome if $\ln(b) \le l \le \ln(b')$ or $\ln(c) \le l \le \ln(c')$, then

- the iteration can be an improvement or not
- ▶ if not, the point is moved towards case A with steps of ln(2)
- ▶ if there's no "win" case, then in the mean time *I* will arrive between ln(b') and ln(c'), where a win is ensured

This is a case B in the previous figure

300 E E 4 E

	Framework 0000000	Theorem and proof 0000000●00000	Application to quadratic functions	Conclusion 0000
Theorem				

Theorem

There exists a constant K, depending on $\eta, K', K'', \max_i ||\delta_i||$ only such that for index t large enough

$$\frac{\ln(||\mathbf{X}_t||)}{t} \le K < 0$$

where \mathbf{X}_t is the tested solution \mathbf{x} at iteration t

Linear Convergence of Evolution Strategieswith Derandomized Sampling

■▶ ■|= ののの

	Framework 00000000	Theorem and proof	Application to quadratic functions	Conclusion
Theorem				
Proof				
Step 1				

Showing that there are infinitely many wins

- 1. I is increased or decreased when it is too low or too high
 - the algorithm eventually brings I to the "win" range
- 2. I can be increased or decreased at most by ln(2) and $b' \leq 2b' \leq c'$
 - ▶ the algorithm can not jump over the "win" range

This ensures that infinitely often we have a "win" : $\textbf{x} \leftarrow \textbf{x}'$

▲ Ξ ► Ξ Ξ = √QC

	Framework 00000000	Theorem and proof	Application to quadratic functions	Conclusion 0000	
Theorem					
Proof					
11001					
Step 2					

Showing that "wins" are big enough "Win" case implies

•
$$f(\mathbf{x}') \leq \eta f(\mathbf{x})$$

$$f(\mathbf{x}') \leq K'' ||\mathbf{x}'|| \leq \frac{K''}{K'} \frac{||\mathbf{x}'||}{||\mathbf{x}||} f(\mathbf{x})$$

so that $\ln(f(\mathbf{x}))$ is decreased by at least

$$\max\left(\ln\left(\frac{1}{\eta}\right) , \ln\left(\frac{K'}{K''}\right) + \ln\left(\frac{||\mathbf{x}||}{||\mathbf{x}'||}\right)\right)$$
(11)

Linear Convergence of Evolution Strategieswith Derandomized Sampling

ミト ミニ のへの

	Framework 00000000	Theorem and proof 0000000000000000	Application to quadratic functions	Conclusion 0000
Theorem				
Proof				
Step 2				

Showing that the number of steps between two "wins" is low enough

After a "win", the number of iterations to the next "win" is

- ▶ at most $z = 1 + \ln(\frac{c}{b}) \frac{\Delta}{\ln(2)}$ if $l' \le \ln(b')$
- ▶ at most $z = 1 + \frac{\max_i ||\delta_i||}{\ln(2)}$ if $l' \ge \ln(c')$
- less than both cases above otherwise

with
$$l' = \ln\left(\frac{||\mathbf{x}'||}{\sigma}\right)$$
 and $\Delta = \ln\left(\frac{||\mathbf{x}||}{||\mathbf{x}'||}\right)$

Linear Convergence of Evolution Strategieswith Derandomized Sampling

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

	Framework 00000000	Theorem and proof 000000000000000	Application to quadratic functions	Conclusion 0000
Theorem				
Proof				
Step 2				

Progress rate Eq. 11 divided by z is lower bounded by some positive constant

25

Inria

313

Decock

	Framework 00000000	Theorem and proof	Application to quadratic functions	Conclusion 0000
Theorem				
Draaf				

Proof Step 3

Summing iterations

Hence if $t > n_0$,

$$\begin{split} \ln(f(\mathbf{X}_t)) &\leq & \ln(f(\mathbf{X}_1)) - (t - n_0) \times \\ &\sum_{i} \frac{\max\left(\ln\left(\frac{1}{\eta}\right), \ \ln\left(\frac{K'}{K''}\right) + \Delta\right)}{\min\left(1 + \ln(\frac{c}{b})\frac{\Delta}{\ln(2)}, \ 1 + \frac{\max_{i} ||\boldsymbol{\delta}_{i}||}{\ln(2)}\right)} \Box \end{split}$$

where :

- summation is for i index of an iteration t with a "win"
- n₀ is the number of initial iterations before a "win"

★ E ► E E ● 9 Q Q

< 17 >

3 →

	Framework 00000000	Theorem and proof	Application to quadratic functions •00000000000	Conclusion 0000
Application to quadra	tic functions			

Decock

	Framework 00000000	Theorem and proof	Application to quadratic functions	Conclusion 0000
Application to quadra				

Considered family of objective functions

f is quadratic positive definite objective functions such that

 $\frac{maxEigenValue(Hessian(f))}{minEigenValue(Hessian(f))} < c_{max} < \infty$

Consider Q a positive definite quadratic form with optimum in 0

We work on $\mathbf{x} \mapsto \sqrt{Q(\mathbf{x} - \mathbf{x}^*)}$ instead of $\mathbf{x} \mapsto Q(\mathbf{x} - \mathbf{x}^*)$ so that the first assumption is verified:

$$|\mathcal{K}'||\mathbf{x}|| \leq f(\mathbf{x}) \leq \mathcal{K}''||\mathbf{x}||$$

$$\forall \mathbf{x} \in \mathrm{I\!R}^d, \ \exists K' > 0, \ \exists K'' > 0$$

Linear Convergence of Evolution Strategieswith Derandomized Sampling

(ロ) (同) (E) (E) (E) (G)

	Framework 00000000	Theorem and proof	Application to quadratic functions	Concl 0000
Application to gu	adratic functions			

Assumptions to verify (reminder)

We try to prove that f respects the following assumptions $\exists b, b', c', c, \eta \text{ s.t. } 0 < b < b' \leq 2b' \leq c' \leq c, \ 0 < \eta < 1, \ \forall \mathbf{x} \in \mathbb{R}^d$

$$\sigma \geq b^{-1}||\mathbf{x}|| \Rightarrow n \leq k_1 \quad (\sigma \text{ too large})$$

$$\sigma \leq b'^{-1}||\mathbf{x}|| \Rightarrow n > k_1 \quad (\sigma \text{ small enough})$$

$$\sigma \geq c'^{-1}||\mathbf{x}|| \Rightarrow n < k_2 \quad (\sigma \text{ large enough})$$

$$\sigma \leq c^{-1}||\mathbf{x}|| \Rightarrow n \geq k_2 \quad (\sigma \text{ too small})$$

$$b'^{-1}||\mathbf{x}|| \leq \sigma \leq c'^{-1}||\mathbf{x}|| \Rightarrow \exists i \in [[1, k]]; f(\mathbf{x}_i) \leq \eta f(\mathbf{x})$$
ith $n := \#\{i \in [[1, k]]; f(\mathbf{x} + \sigma \delta_i) < f(\mathbf{x})\}$

w

31

	Framework 00000000	Theorem and proof	Application to quadratic functions	Conclusion 0000
Application to quad	Iratic functions			

We note:

- ▶ $p = p_{\mathbf{x},\sigma,f}$ the probability that $\mathbf{x} + \sigma \delta_i$ is in $E = f^{-1}([0, f(\mathbf{x})])$
- $\hat{p} = \hat{p}_{\mathbf{x},\sigma,f}$ the frequency $\frac{1}{k} \sum_{i=1}^{k} \mathbf{1}_{\mathbf{x}+\sigma\delta_i \in E}$

The previous assumptions essentially mean that frequencies are close to expectations for

- ► $\mathbf{x} + \sigma \boldsymbol{\delta}_i \in f^{-1}([0, f(\mathbf{x})])$
- ▶ $\mathbf{x} + \sigma \boldsymbol{\delta}_i \in f^{-1}([0, \eta f(\mathbf{x})])$

uniformly in **x**, σ , f.

300 EIE 4EX 4E

	Framework 0000000	Theorem and proof	Application to quadratic functions	Conclusion 0000
Application to quadratic functions				

Corollary

Application of the main theorem to quadratic forms

Assume that the δ_i are uniformly randomly drawn in the unit ball B(0,1).

Assume that F is the set of quadratic functions with minimum in 0 (f(0) = 0) as defined before.

Then, almost surely on the sequence $\delta_1, \delta_2, \ldots, \delta_k$, for k large enough and some parameters k_1 and k_2 of our evolutionary algorithm, then assumptions hold, and therefore for some K < 0, for all t > 0,

$$\frac{\ln(||\mathbf{X}_t||)}{t} \leq K$$

where \mathbf{X}_t is the tested solution \mathbf{x} at iteration t

Decock

Linear Convergence of Evolution Strategieswith Derandomized Sampling

同 ト イヨト イヨト ヨヨ わらの

	Framework 00000000	Theorem and proof	Application to quadratic functions	Conclusion 0000
Application to quadra	atic functions			

Proof Step 1

Using VC-dimension for approximating expectations by frequencies

The finiteness of the VC-dimension of quadratic forms state that for all $\epsilon > 0$, almost surely in $\delta_1, \delta_2, \ldots, \delta_k$, for all $\delta > 0$ and k sufficiently large, with probability at least $1 - \delta$,

$$\sup_{\mathbf{x}, f, \sigma > 0} |\hat{p}_{\mathbf{x}, \sigma, f} - p_{\mathbf{x}, \sigma, f}| \le \epsilon/2$$

where \mathbf{x} ranges over the domain, f ranges over F

▲ 王 ▶ 王 = • • • •

	Framework 00000000	Theorem and proof	Application to quadratic functions	Conclusion 0000
Application to quadra	atic functions			

Proof

Step 2

Showing that small σ leads to high acceptance rate and high σ leads to small acceptance rate

Thanks to the bounded conditioning, there exists $\epsilon > 0$ s.t.

$$s' < \frac{1}{2}s$$

with
$$s = \sup\left\{\frac{\sigma}{||\mathbf{x}||}; \sigma, \mathbf{x}, f \text{ s.t. } p \ge \frac{\epsilon}{2}\right\}$$

and $s' = \inf\left\{\frac{\sigma}{||\mathbf{x}||}; \sigma, \mathbf{x}, f \text{ s.t. } p < \frac{1}{2} - \frac{\epsilon}{2}\right\}$

Indeed $s' \to 0$ and $s \to \infty$ as $\epsilon \to 0$.

Decock

	Framework 00000000	Theorem and proof	Application to quadratic functions	Conclusion 0000
Application to quadratic functions				

Proof

Step 2

Showing that small σ leads to high acceptance rate and high σ leads to small acceptance rate

The previous equations provide k_1 , k_2 , c' and b'

$$\begin{split} &\frac{1}{b'} &= \sup\left\{\frac{\sigma}{||\mathbf{x}||}; \sigma, \mathbf{x}, f \text{ s.t. } \hat{p} \geq \epsilon\right\} \\ &\frac{1}{c'} &= \inf\left\{\frac{\sigma}{||\mathbf{x}||}; \sigma, \mathbf{x}, f \text{ s.t. } \hat{p} < \frac{1}{2} - \epsilon\right\} \\ &k_1 &= \lfloor \epsilon k \rfloor \\ &k_2 &= \left\lceil (\frac{1}{2} - \epsilon) k \right\rceil \end{split}$$

Equations above imply $c' \geq 2b'$

Decock

Linear Convergence of Evolution Strategieswith Derandomized Sampling

글 🔊 그리는 🗸

	Framework 00000000	Theorem and proof	Application to quadratic functions	Conclusion 0000
Application to quadratic functions				

Proof Step 3

Showing that k large enough and σ well chosen leads to at least one mutation with significant improvement Similarly, k large enough yield

$$b^{-1} = \sup \left\{ \frac{\sigma}{||\mathbf{x}||}; \sigma, \mathbf{x}, f \text{ s.t. } \hat{p} > k_1/k \right\}$$
$$c^{-1} = \inf \left\{ \frac{\sigma}{||\mathbf{x}||}; \sigma, \mathbf{x}, f \text{ s.t. } \hat{p} < k_2/k \right\}$$

which provide Eqs. 4 and 1 with b < c. Eqs. 1-4 then imply b < b' and c' < c.

글 🛌 🖃 글 🖃

	Framework 00000000	Theorem and proof	Application to quadratic functions	Conclusion 0000
Application to quadra	atic functions			

Proof Step 3

Showing that k large enough and σ well chosen leads to at least one mutation with significant improvement We now have to ensure the last assumption:

$$b'^{-1}||\mathbf{x}|| \leq \sigma \leq c'^{-1}||\mathbf{x}|| \Rightarrow \exists i \in [[1, k]]; f(\mathbf{x} + \sigma \delta_i) \leq \eta f(\mathbf{x})$$

For now on, we note:

► $q = q_{\mathbf{x},\sigma,f}$ the probability that $\mathbf{x} + \sigma \delta_i$ is in $E' = f^{-1}([0,\eta f(\mathbf{x})])$ ► $\hat{q} = \hat{q}_{\mathbf{x},\sigma,f}$ the frequency $\frac{1}{k} \sum_{i=1}^{k} \mathbf{1}_{\mathbf{x}+\sigma\delta_i \in E'}$

Decock

Linear Convergence of Evolution Strategieswith Derandomized Sampling

	Framework 00000000	Theorem and proof	Application to quadratic functions	Conclusion 0000
Application to quadratic functions				

Proof

Step 3

Showing that k large enough and σ well chosen leads to at least one mutation with significant improvement

Lets us assume

$$b^{-1} \leq rac{\sigma}{||\mathbf{x}||} \leq c^{-1}$$

this implies $q > \epsilon_0$ for some $\epsilon_0 > 0$

For k sufficiently large for ensuring $\sup_{\sigma,\mathbf{x},f} |q_{\mathbf{x},\sigma,f} - \hat{q}_{\mathbf{x},\sigma,f}| \le \epsilon_0/2$, by VC-dimension, we get $q' \ge \epsilon_0/2 > 0$

This implies that at least one δ_i verifies $\mathbf{x} + \delta_i \in E'$. This is the last assumption.

Decock

Linear Convergence of Evolution Strategieswith Derandomized Sampling

▲ ミ ▶ 王 = つ ٩

	Framework 00000000	Theorem and proof	Application to quadratic functions 000000000●	Conclusion
Application to quadratic functions				

Proof Step 4

Concluding

We have shown our assumptions for square roots of positive definite quadratic normal forms with bounded conditioning. Therefore, the main theorem can be applied and leads to

$$rac{\mathsf{ln}(||\mathbf{X}_t||)}{t} \leq \mathcal{K} < 0$$

Linear Convergence of Evolution Strategieswith Derandomized Sampling

315

	Framework 00000000	Theorem and proof	Application to quadratic functions	Conclusion ••••
Conclusion				

Conclusion

	Framework 00000000	Theorem and proof	Application to quadratic functions	Conclusion ○●○○
Conclusion				

Conclusion

Decock

This is the first proof of linear convergence of an evolutionary algorithm in continuous domains on non quasi-convex functions.

Even the application to quadratic positive definite forms is new.

	Framework 00000000	Theorem and proof	Application to quadratic functions	Conclusion
Conclusion				

Future work

 Evaluate the convergence rate as a function of condition numbers

41

Inria

∃ ► Ξ|= -0 Q 0

Extend results to randomized algorithms

	Framework 00000000	Theorem and proof	Application to quadratic functions	Conclusion 000●
Conclusion				

Thank you for your attention

Questions ?

Decock

Theorem's proof Step 2

$$(11) \iff \ln\left(\frac{f(\mathbf{x})}{f(\mathbf{x}')}\right) \ge \max\left(\ln\left(\frac{1}{\eta}\right), \ln\left(\frac{K'}{K''}\right) + \ln\left(\frac{||\mathbf{x}||}{||\mathbf{x}'||}\right)\right)$$

$$f(\mathbf{x}') \le \eta f(\mathbf{x}) \iff \frac{1}{\eta} f(\mathbf{x}') \le f(\mathbf{x})$$

$$\Leftrightarrow \frac{1}{\eta} \le \frac{f(\mathbf{x})}{f(\mathbf{x}')}$$

$$\Leftrightarrow \ln\left(\frac{f(\mathbf{x})}{f(\mathbf{x}')}\right) \ge \ln\left(\frac{1}{\eta}\right)$$

$$f(\mathbf{x}') \le \frac{K''}{K'} \frac{||\mathbf{x}'||}{||\mathbf{x}||} f(\mathbf{x}) \iff f(\mathbf{x}') \frac{K'}{K''} \frac{||\mathbf{x}||}{||\mathbf{x}'||} \le f(\mathbf{x})$$

$$\Leftrightarrow \frac{K'}{K''} \frac{||\mathbf{x}||}{||\mathbf{x}'||} \le \frac{f(\mathbf{x})}{f(\mathbf{x}')}$$

$$\Leftrightarrow \ln\left(\frac{K'}{K''} \frac{||\mathbf{x}||}{||\mathbf{x}'||}\right) \le \ln\left(\frac{f(\mathbf{x})}{f(\mathbf{x}')}\right)$$

$$\Leftrightarrow \ln\left(\frac{f(\mathbf{x})}{f(\mathbf{x}')}\right) \ge \ln\left(\frac{K'}{K''}\right) + \ln\left(\frac{||\mathbf{x}||}{||\mathbf{x}'||}\right)$$

Decock

Linear Convergence of Evolution Strategieswith Derandomized Sampling

Theorem's proof

Step 2 if $l' \ge \ln(c')$ then l < ln(c) (otherwise it couldn't be a "win")

$$\begin{split} l' - \ln(c') &\leq & \ln(c + \max_{i} ||\delta_{i}||) - \ln(c') \\ &\leq & \ln(c) + \ln(1 + \max_{i} ||\delta_{i}||/c) - \ln(c') \\ &\leq & \ln(c/c') + \max_{i} ||\delta_{i}||/c \\ &\leq & \max_{i} ||\delta_{i}||/c \end{split}$$

$$l' - \ln(c') = \ln(\frac{||x + \sigma\delta_i||}{\sigma}) - \ln(c') \leq \ln(\frac{||x||}{\sigma} + \delta_i) - \ln(c')$$

$$\leq \ln(c * (1 + \frac{\delta_i}{c})) - \ln(c')$$

$$\leq \ln(c) + \ln(1 + \max_i^{x} ||\delta_i||/c) - \ln(c')$$

$$\leq \ln(c/c') + \max_i^{x} ||\delta_i||/c$$

44

Inria

◆□▶ ◆□▶ ◆目▶ ◆日▶ ◆□▶ ◆○

Decock

Theorem's Proof Step 3

Summing iterations

Hence if $t > n_0$,

$$\begin{aligned} \ln(f(\mathbf{X}_{t})) &\leq \ln(f(\mathbf{X}_{1})) - (t - n_{0}) \times \sum_{i} \frac{\max\left(\ln\left(\frac{1}{\eta}\right), \ln\left(\frac{K'}{K''}\right) + \Delta\right)}{\min\left(1 + \ln\left(\frac{c}{b}\right) \frac{\max_{i} \ln(||\delta_{i}||)}{\ln(2)}\right)} \\ &\iff \quad \ln(f(\mathbf{X}_{t})) - \ln(f(\mathbf{X}_{1})) \leq -(t - n_{0}) \times C \\ &\iff \quad \frac{\ln\left(\frac{f(\mathbf{X}_{t})}{t(\mathbf{X}_{1})}\right)}{\frac{1}{t(\mathbf{X}_{t}|)}} \leq -C \\ &\Rightarrow \quad \frac{\ln(||\mathbf{X}_{t}||)}{t} \leq K < 0 \quad (\text{theorem}) \end{aligned}$$

with C a positive constant.

45 ∢□▷ < @▷ < 분▷ < 분▷ 분들 ↔ 옷이 ↔ Inria

Decock

Corollary's proof Step 2 (1/4)

Step 2: showing that σ small leads to high acceptance rate and σ high leads to small acceptance rate.

Thanks to the bounded conditioning, there exists $\epsilon > 0$ s.t.

$$s' < \frac{1}{2}s$$
with $s = \sup\left\{\frac{\sigma}{||\mathbf{x}||}; \sigma, \mathbf{x}, f \text{ s.t. } p \ge \frac{\epsilon}{2}\right\}$
and $s' = \inf\left\{\frac{\sigma}{||\mathbf{x}||}; \sigma, \mathbf{x}, f \text{ s.t. } p < \frac{1}{2} - \frac{\epsilon}{2}\right\}$

because $s' \to 0$ and $s \to \infty$ as $\epsilon \to 0$.

Linear Convergence of Evolution Strategieswith Derandomized Sampling

▲ 글 ▶ _ 글 | 글 |

Corollary's proof Step 2 (2/4)

Notes

$$\hat{\mathbf{s}} = \sup\left\{\frac{\sigma}{||\mathbf{x}||}; \sigma, \mathbf{x}, f \text{ s.t. } \hat{p} \ge \epsilon\right\}$$
$$\hat{\mathbf{s}'} = \inf\left\{\frac{\sigma}{||\mathbf{x}||}; \sigma, \mathbf{x}, f \text{ s.t. } \hat{p} < \frac{1}{2} - \epsilon\right\}$$

Then

$$\sup_{\mathbf{x},f,\sigma>0}|\hat{p}-p|\leq\epsilon/2$$

implies

$$rac{1}{2}\hat{s}\geqrac{1}{2}s$$
 and $s'\geq\hat{s'}$

Decock

Linear Convergence of Evolution Strategieswith Derandomized Sampling

Corollary's proof Step 2 (3/4)

So $\hat{s'} \leq s' < \frac{1}{2}s \leq \frac{1}{2}\hat{s}$ and $\hat{s'} \leq \frac{1}{2}\hat{s}$

Decock

Linear Convergence of Evolution Strategieswith Derandomized Sampling

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Corollary's proof Step 2 (4/4)

This provides k_1 , k_2 , c' and b' as follows for Eqs. 3 and 2:

$$\begin{aligned} \frac{1}{b'} &= \hat{s} &= \sup\left\{\frac{\sigma}{||\mathbf{x}||}; \sigma, \mathbf{x}, f \text{ s.t. } \hat{p} \ge \epsilon\right\} \\ \frac{1}{c'} &= \hat{s'} &= \inf\left\{\frac{\sigma}{||\mathbf{x}||}; \sigma, \mathbf{x}, f \text{ s.t. } \hat{p} < \frac{1}{2} - \epsilon\right\} \\ k_1 &= \lfloor \epsilon k \rfloor \\ k_2 &= \left\lceil (\frac{1}{2} - \epsilon) k \right\rceil \end{aligned}$$

Eqs. above imply $c' \ge 2b'$

Linear Convergence of Evolution Strategieswith Derandomized Sampling

(日) (문) (문) (문) (문)

Corollary's proof Step 3

k large enough yield

$$\begin{aligned} b^{-1} &= \sup \left\{ \frac{\sigma}{||\mathbf{x}||}; \sigma, \mathbf{x}, f \text{ s.t. } \hat{p} > k_1/k \right\}, \\ c^{-1} &= \inf \left\{ \frac{\sigma}{||\mathbf{x}||}; \sigma, \mathbf{x}, f \text{ s.t. } \hat{p} < k_2/k \right\}, \end{aligned}$$

50

Inria

글 🔊 🖂 글 🔁 🚽

which provide assumptions 2 and 5 with b < cAssumptions 2 and 5 then imply b < b' and c' < c

Non quasi-convex functions

Linear Convergence of Evolution Strategieswith Derandomized Sampling

(★ 문) 사 문) 님,

< 冊