CTA Data Processing Introduction

Jérémie Decock

 $\mathsf{CEA}\ \mathsf{Saclay}\ \text{-}\ \mathsf{Irfu}/\mathsf{SAp}$

July 28, 2016

CEA Saclay - Irfu/SAp

<ロ> < 回 > < 回 > < 回 >

Decock

CTA Data Processing

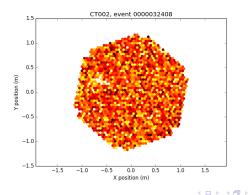
Introduction	The problems 00000	Work plan 00	References

Subject

What

New algorithms and tools to improve:

- ▶ the *data processing pipeline* in CTA, HESS and (maybe) Fermi
- the sky image creation and analysis (gamma sources)


Goals

- For the data processing pipeline:
 - A better detection and discrimination of events
 - Face a big increase in data volume with CTA
- For the sky image creation and analysis:
 - Rebuild events more accurately
 - Make cleaner and more accurate sky images

	The problems ●0000	Work plan 00	References
The problems			
The problems			

Detect events

▶ A lot of "noise" (instrumental noise, background noise, ...)

CEA Saclay - Irfu/SAp

Decock

CTA Data Processing

	The problems ○●○○○	Work plan 00	References
The problems			

Discriminate events

- What kind of cosmic ray is observed ?
 - ▶ a photon (gamma) ?
 - an atomic nucleus (mostly protons) ?
 - an electron ?
- Keep photons only

CEA Saclay - Irfu/SAp

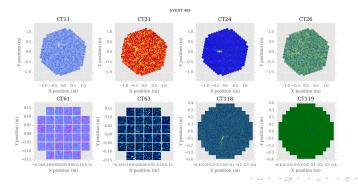
	The problems ○○●○○	Work plan 00	References
The problems			

Data volume (for CTA)

- ${\sim}10$ telescopes
- $\times \sim \! 1000$ pixels
- $\times \sim \!\! 10$ times
- $\times \sim \! 10000 \text{ events/sec}$
- = several Giga bytes per second
 - That's more than the LHC!
 - Implies *real-time analysis* to reduce by a factor of 20 to 100 the data volume on-site

	The problems 000●0	Work plan 00	References
The problems			

Rebuild events


- Where does it come from spatially ?
- What is it's energy ?

< 17 ▶

	The problems 0000●	Work plan 00	References
The problems			

"Unusual" camera and pixel shape

- Hexagonal pixels, gaps, ...
- Most "general" tools and algorithms are not adapted

CEA Saclay - Irfu/SAp

CTA Data Processing

	The problems 00000	Work plan ●0	References
Work plan			

Work plan

Step 1 Detect and locate events in raw images

- Reduce noise form images with sparse methods: DFT, wavelets, curvelets, ...
- Recover missing parts with inpainting methods

CTA Data Processing

	The problems 00000	Work plan ●O	References
Work plan			

Work plan

Step 1 Detect and locate events in raw images

- Reduce noise form images with sparse methods: DFT, wavelets, curvelets, ...
- Recover missing parts with inpainting methods
- Step 2 Distinguish "useful" events (gammas photons) to "useless" ones (atomic nuclei and electrons)
 - Shapelet based classification
 - Machine Learning or other methods ?

	The problems 00000	Work plan ●○	References
Work plan			

Work plan

Step 1 Detect and locate events in raw images

- Reduce noise form images with sparse methods: DFT, wavelets, curvelets, ...
- Recover missing parts with inpainting methods
- Step 2 Distinguish "useful" events (gammas photons) to "useless" ones (atomic nuclei and electrons)
 - Shapelet based classification
 - Machine Learning or other methods ?
- Step 3 Rebuild events (source, energy, ...) + make sky images
 - Machine Learning, likelihood minimization, data synchronization, and other methods (to be defined)

CEA Saclay - Irfu/SAp

	The problems 00000	Work plan ○●	References
Work plan			

Next presentations

CTA data pipeline - Image cleaning:

- PDF: http://www.jdhp.org/dl/ cta-data-pipeline-image-cleaning.pdf
- Source code: https://github.com/jdhp-sap-docs/ cta-data-pipeline-image-cleaning

< 17 >

- < ∃ >

The problems 00000	Work plan 00	References

References I

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆

CEA Saclay - Irfu/SAp

Decock

CTA Data Processing