Algorithms 000000000	Experiments 00	Results 00000	Conclusion O	References

Advanced Image Cleaning CTA Consortium Meeting

Jérémie DECOCK

 $\mathsf{CEA}\ \mathsf{Saclay}\ \text{-}\ \mathsf{Irfu}/\mathsf{SAp}$

October 25, 2016

|□▶▲圖▶▲콜▶▲콜▶ 콜|ᆋ 釣९0

CEA Saclay - Irfu/SAp

Advanced Image Cleaning

Introduction	Algorithms		Conclusion	References

Introduction

▲□▶ ▲圕▶ ▲클▶ ▲클▶ 볼|= ∽)९(CEA Saclay - Irfu/SAp

2

Advanced Image Cleaning

Introduction •	Algorithms 000000000	Experiments 00	Results 00000	Conclusion O	References
Introduction					

Subject

Try to improve image cleaning before reconstruction (*Hillas*) Improve methods to remove:

- Instrumental noise
- Background noise

Motivations:

- Keep more signal (deeper into the noise)
- Reduce threshold
- Maybe eventually do cleaning and time-integration all at once

Decock

CEA Saclay - Irfu/SAp

Algorithms 000000000	Experiments 00	Results 00000	Conclusion O	References

Image cleaning algorithms

4

CEA Saclay - Irfu/SAp

Advanced Image Cleaning

	Algorithms		Conclusion	References
	• 0 00000000			
Tailcut				

The "Tailcut clean" algorithm

A very simple cleaning procedure:

- Keep pixels above a given threshold (e.g. 50% max)
- Keep some neighbors of these selected pixels: those above a second (lower) threshold (e.g. 25% max)

Advanced Image Cleaning

	Algorithms	Experiments	Results	Conclusion	References
Tailcut			00000	0	

- Fast and simple
- Sufficient for bright showers
- But surely we can do better for faint showers

Decock

CEA Saclay - Irfu/SAp

	Algorithms	Experiments	Conclusion	References
	000000000			
Wavelets				

Basic idea to go beyond

- Tailcut method: threshold in the main space
- Better idea: threshold in a different space where signal and noise can be easily separated
 - Wavelet transform
 - Cosmostat tools (iSAP/Sparse2D)
 (http://www.cosmostat.org/software/isap/)

CEA Saclay - Irfu/SAp

	Algorithms	Experiments	Conclusion	References
	00000000			
Wavelets				

We are considering *Wavelet Transform* method

Roughly the same idea than doing filtering with Fourier Transform

- Apply the transform on the signal
- Apply a threshold in the transformed space
- Invert the transform to go back to the original signal space

Differences with Fourier Transform

Use functions named *wavelets* instead sin and cos functions as new bases in the transformed space

CEA Saclay - Irfu/SAp

The transformed space contains spatial information

	Algorithms ○○○○●○○○○○	Experiments 00	Results 00000	Conclusion O	References
Wavelets					

Example of wavelet function (*Morlet wavelet*)

"A short wave-like oscillation with a beginning and an end"

Q

CEA Saclay - Irfu/SAp

	Algorithms 000000000	Experiments 00	Results 00000	Conclusion 0	References
Wavelets					

Cleaning procedure: general idea with Fourier Transform

- Input signal is converted to a weighted sum of sin and cos at different frequencies
- Threshold is applied on these weights to remove some frequencies in the input signal (e.g. high pass filter, low pass filter, ...)

10

Decock

	Algorithms ○○○○○○●○○○	Experiments 00	Results 00000	Conclusion O	References
Wavelets					

Cleaning procedure: general idea with Wavelet Transform

- Input signal is converted to a weighted sum of these wavelet functions at different scales (dilate factor) and positions (translate factor)
- Threshold is applied on these weights to remove locally (in space or time) some frequencies (or scales) in the input signal

11

Decock

	Algorithms 0000000000	Experiments 00	Results 00000	Conclusion O	References
Wavelets					

Find a base where signal and noise can be easily separated

In this example:

- Remove noise in direct space is difficult
- Remove noise in the transformed space is easy:
 - noise is uniformly distributed on small coefficients
 - signal is defined by few big coefficients

CEA Saclay - Irfu/SAp

12

Advanced Image Cleaning

	Algorithms		Conclusion	References
	0000000000			
Wavelets				

Example

run1001.simtel.gz (Tel. 1, Ev. 1909) 1.62E+00TeV

CEA Saclay - Irfu/SAp

13

Decock

	Algorithms ○○○○○○○●	Experiments 00	Results 00000	Conclusion O	References
Wavelets					

The same example with Tailcut

run1001.simtel.gz (Tel. 1, Ev. 1909) 1.62E+00TeV

CEA Saclay - Irfu/SAp

14

Decock

Algorithms 000000000	Experiments	Results 00000	Conclusion 0	References

Experimental setting

□ > < 큔 > < 글 > < 글 > < 글 > < 三 >
 CEA Saclay - Irfu/SAp

15

Advanced Image Cleaning

	Algorithms 000000000	Experiments ●○	Results 00000	Conclusion O	References
Data					

Dataset used to assess cleaning algorithms

"ASTRI mini-array" test set

- Kindly provided by the Astri team
- 33 ASTRI telescopes
- Cropped to get squared pixel arrays

CEA Saclay - Irfu/SAp

16

Advanced Image Cleaning

	Algorithms 000000000	Experiments ○●	Results 00000	Conclusion 0	References
Benchmark					

Benchmark function

The error on the shape:

$$\mathcal{E}_{\mathsf{shape}}(\hat{\mathbf{s}}, \mathbf{s}^*) = \mathsf{mean}\left(\mathsf{abs}\left(\frac{\hat{\mathbf{s}}}{\sum_{i}\hat{\mathbf{s}}_{i}} - \frac{\mathbf{s}^*}{\sum_{i}\mathbf{s}^*_{i}}\right)\right)$$

The error on the energy:

$$\mathcal{E}_{\text{intensity}}(\mathbf{\hat{s}}, \mathbf{s}^*) = \frac{\text{abs}\left(\sum_i \mathbf{\hat{s}}_i - \sum_i \mathbf{s}^*_i\right)}{\sum_i \mathbf{s}^*_i}$$

Where:

- ŝ the image "cleaned" by algorithms
- s* the actual "clean" image
- ▶ *i* is the index of a PMT (i.e. of a pixel) within an image

CEA Saclay - Irfu/SAp

Algorithms 000000000	Experiments 00	Results 00000	Conclusion 0	References

Preliminary results

18 《ロ》《書》《콜》《토》 토言 少오(~ CEA Saclay - Irfu/SAp

Advanced Image Cleaning

	Algorithms 000000000	Experiments 00	Results ●0000	Conclusion O	References
Gammas					

CEA Saclay - Irfu/SAp

Dataset used to assess cleaning algorithms

Realistic event set:

- Gamma photons: 4461 events, 14899 images
- Protons: 747 events, 2203 images

	Algorithms 000000000	Experiments 00	Results 0●000	Conclusion O	References
Gammas					

 \mathcal{E}_{shape} (gamma photons)

CEA Saclay - Irfu/SAp

Decock

	Algorithms 000000000	Experiments 00	Results 00●00	Conclusion O	References
Gammas					

 $\mathcal{E}_{intensity}$ (gamma photons)

CEA Saclay - Irfu/SAp

Decock

	Algorithms 000000000	Experiments 00	Results ○○○●○	Conclusion O	References
Protons					

 \mathcal{E}_{shape} (protons)

CEA Saclay - Irfu/SAp

	Algorithms 000000000	Experiments 00	Results ○○○○●	Conclusion O	References
Protons					

 $\mathcal{E}_{\textit{intensity}}$ (protons)

CEA Saclay - Irfu/SAp

23

Decock

Algorithms 000000000	Experiments 00	Results 00000	Conclusion O	References

Conclusion

24 < □ > < ঐ > < ই > < ই > ই ≣ জি ৫ ৫ CEA Saclay - Irfu/SAp

Advanced Image Cleaning

	Algorithms	Experiments	Results	Conclusion	References
Conclusion			00000		

Conclusion

This is a work is in progress...

- Optimize algorithms setting:
 - wavelet function
 - wavelet filtering methods
 - filtering thresholds
 - pre processing
 - post processing
 - Þ ...
- Compare to optimized Tailcut
- Adapt the cleaning method to real cameras (full pixel array, hexagonal shapes, ...)

25

CEA Saclay - Irfu/SAp

Check ability to do real time analysis

	Algorithms 0000000000	Experiments 00	Results 00000	Conclusion O	References
Reference	es l				

- CK Bhat, Search for diffuse galactic/extra-galactic tev gamma rays.
- Search for diffuse cosmic gamma-ray flux using fractal and wavelet analysis from galactic region using single imaging cerenkov telescopes, Astroparticle Physics 34 (2010), no. 4, 230–235.
- Stefan Funk, *Hadron suppression using wavelet transformations for the hess telescope system*, Master's thesis, 2002.
- A Haungs, J Knapp, I Bond, and R Pallassini, *Application of fractal and wavelet analysis to cherenkov images of the whipple telescope*, Proceedings of ICRC, vol. 2001, 2001.

	Algorithms 000000000	Experiments 00	Results 00000	Conclusion O	References
-					

References II

- A Haungs, AK Razdan, CL Bhat, RC Rannot, and H Rebel, First results on characterization of cherenkov images through combined use of hillas, fractal and wavelet parameters, Astroparticle Physics 12 (1999), no. 3, 145–156.
- RW Lessard, L Cayón, GH Sembroski, and JA Gaidos, Wavelet imaging cleaning method for atmospheric cherenkov telescopes, Astroparticle Physics 17 (2002), no. 4, 427-440.

S. Mallat, A wavelet tour of signal processing: The sparse way, Elsevier Science, 2008.

CEA Saclay - Irfu/SAp

Algorithms 000000000	Experiments 00	Results 00000	Conclusion O	References

References III

- A Razdan, A Haungs, H Rebel, and CL Bhat, Image and non-image parameters of atmospheric cherenkov events: a comparative study of their γ-ray/hadron classification potential in ultrahigh energy regime, Astroparticle Physics 17 (2002), no. 4, 497–508.
 - _____, Novel image and non-image parameters for efficient characterisation of atmospheric cerenkov images.

28

Algorithms 000000000	Experiments 00	Results 00000	Conclusion O	References

References IV

BM Schaefer, W Hofmann, H Lampeitl, M Hemberger, HEGRA Collaboration, et al., Particle identification by multifractal parameters in γ-astronomy with the hegra-cherenkov-telescopes, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment **465** (2001), no. 2, 394–403.

29

CEA Saclay - Irfu/SAp

Appendix

Advanced Image Cleaning

Wavelets: why is it promising ?

- Should handle more complex signal (faint signal, ...)
- May use coefficients for photon/hadron discrimination

31

CEA Saclay - Irfu/SAp

- Data compression on site
- Require few calibration

Wavelets: mother wavelet $\boldsymbol{\Psi}$

Family $\psi_{a,b}$ (where $(a, b) \in \mathbb{R}^{+*} \times \mathbb{R}$) is defined from the "mother wavelet" Ψ :

$$\forall t \in \mathbb{R}, \psi_{a,b}(t) = \frac{1}{\sqrt{a}} \Psi\left(\frac{t-b}{a}\right)$$

32

CEA Saclay - Irfu/SAp

イロン イヨン イヨン イ

where a is the scale factor, b is the translation factor.

Wavelets: general case (1D continuous case)

The original signal *f* defined as:

$$f(t) = rac{1}{C_\Psi} \int_{-\infty}^\infty \int_{-\infty}^\infty rac{g(a,b)}{|a|^2} \psi_{a,b}(t) da \ db$$

where \mathcal{C}_{Ψ} is a constant which depends on the chosen wavelet mother $\Psi.$

Weights are given by:

$$g(a,b) = \int_{-\infty}^{\infty} f(t)\psi_{a,b}^*(t) dt$$

33

CEA Saclay - Irfu/SAp

Wavelets: general case (1D continuous case)

CEA Saclay - Irfu/SAp

ъ

34

Decock

Wavelets: general case (2D hints)

ъ

35

Advanced Image Cleaning

Fourier transform: general case (1D continuous case)

The original signal *f* defined as:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nt) + b_n \sin(nt))$$

Weights are given by:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt$$

CEA Saclay - Irfu/SAp

36

Advanced Image Cleaning

Fourier transform: general case (1D continuous case)

CEA Saclay - Irfu/SAp

3 →

37

Decock

Fourier transform: remarks

FFT can be applied to any T-periodic function f verifying the *Dirichlet conditions*:

- f must be continuous
- and monotonic
- ▶ on a finite number of sub-intervals (of *T*)

Signals defined on bounded intervals (e.g. images) can be considered as periodic functions (applying infinite repetitions)

38

CEA Saclay - Irfu/SAp

A (1) > A (1) > A

Fourier transform: analyse

Works well:

- when the Fourier coefficients for the signal and the noise can easily be separated in the Fourier space (obviously...)
- e.g. when either the signal or the noise can be defined with few big Fourier coefficients (i.e. signal or noise have a few number of significant harmonics)

30

CEA Saclay - Irfu/SAp

Fourier transform: a bad example

run1001.simtel.gz (Tel. 1, Ev. 1909) 1.62E+00TeV

CEA Saclay - Irfu/SAp

40

Decock

Different kind of "noise" in telescope images

- 1. Instrumental noise (Photomultiplier Tubes, ...)
 - Thermionic emission
 - Radiations
 - Electric noise
- 2. Background noise (Night Sky Background or NSB)
 - Parasite light (moon, stars, planes, light pollution, ...)

41

CEA Saclay - Irfu/SAp

MC simulations

"ASTRI mini-array" configuration

Number of events per simtel files:

File	Num. events
gamma/run_1001.simtel.gz	4461
gamma/run_1002.simtel.gz	4567
gamma/run_1003.simtel.gz	4425
gamma/run_1004.simtel.gz	4401
gamma/run_1005.simtel.gz	4451
gamma/run_1006.simtel.gz	4451
gamma/run_1007.simtel.gz	4614
gamma/run_1008.simtel.gz	4423
gamma/run_1009.simtel.gz	4411

ъ

42

MC simulations

"ASTRI mini-array" configuration

Number of events per simtel files:

File	Num. events
proton/run_10000.simtel.gz	747
proton/run_10001.simtel.gz	680
proton/run_10002.simtel.gz	763
proton/run_10003.simtel.gz	792
proton/run_10004.simtel.gz	763
proton/run_10005.simtel.gz	776
proton/run_10006.simtel.gz	738
proton/run_10007.simtel.gz	749
proton/run_10008.simtel.gz	760
proton/run_10009.simtel.gz	812

メロト メヨト メヨト メ

43 ≡ ∽) q (~

CEA Saclay - Irfu/SAp

Advanced Image Cleaning

Appendix

Results (Gamma)

46

Advanced Image Cleaning

ъ

47

Decock

Decock

Appendix

Results (Gamma)

49

CEA Saclay - Irfu/SAp

50

51

52

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< ∃>

53

= 990

54

CEA Saclay - Irfu/SAp

Advanced Image Cleaning

58

Decock

59

CEA Saclay - Irfu/SAp

CEA Saclay - Irfu/SAp

Decock

62 ≡ ∽) < (~

63

CEA Saclay - Irfu/SAp

64

65

Papers

Decock

Advanced Image Cleaning

"Hadron suppression using Wavelet Transformations for the H.E.S.S. Telescope system" (2002, Stefan Funk)

CEA Saclay - Irfu/SAp

- Uses Wavelets for γ-ray/hadron separation
- Mention a little bit image cleaning but no experiments (e.g. section 3.3 and conclusion)

CEA Saclay - Irfu/SAp

Stefan's Paper

Methodology

- 1. Add margins on the input image
- 2. Map the orthogonal camera coordinates into a hexagonal coordinate system
- 3. Apply the hexagonal wavelets to the hexagonal grid ; get wavelets coefficients for each scale
- 4. Compute the standard deviation of wavelet coefficients for each plane

68

CEA Saclay - Irfu/SAp

→ Ξ →

5. Give these moments to the neural network used to discriminate γ -rays to hadrons (in addition to Hillas parameters)