Introduction	

Experiments and results 0000000

Learning Cost-Efficient Control Policies with XCSF

Generalization Capabilities and Further Improvement

Jeremie Decock

Supervisor : Olivier Sigaud

UPMC ISIR

September 12, 2013

< 何

UPMC

ISIR

Decock

Introduction 00000	Overview 000000	Improved solution	Experiments and results

Paper

Learning Cost-Efficient Control Policies with XCSF: Generalization Capabilities and Further Improvement. Proceedings of the 13th annual conference on Genetic and evolutionary computation (GECCO'11), ACM Press, publisher. Pages 1235–1242.

UPMC

ISIR

- Didier Marin [ISIR]
- Jeremie Decock [ISIR]
- Lionel Rigoux [ISIR]
- Olivier Sigaud [ISIR]

Introduction •0000	Overview 000000	Improved solution	Experiments and results
Introduction			

Motor control

Aim

Let a mechanical system go from an initial state to a desired state

3

ISIR

UPMC

Introduction ○●○○○	Overview 000000	Improved solution	Experiments and results
Introduction			

Control loop

4

ISIR

UPMC

Decock

UPMC

ISIR

Our goal

- Control a complex system
- Generate realist and efficient movements that reproduce human motor properties

Introduction	Overview	Improved solution	
00000	000000	00	0000000
Issues			

Issues

Current techniques fail to fulfil these 2 needs :

Robotics

Complex systems but "unrealistic" and "inefficient" movements

Motor control Simple systems only (in simulation)

6

ISIR

UPMC

Introduction ○○○○●	Overview 000000	Improved solution	Experiments and results 0000000
Issues			

Plan

Decock

Overview QOPS controller QOPS drawback

Improved solution Improved solution

Experiments and results

Experiments Results

Decock

Experiments and results

Overview

Introduction	Overview	Improved solution	Experiments and results
00000	●00000		0000000
QOPS controller			

Realism and efficiency

We are looking for realistic and efficient movements

To optimise : choose the "best" movement among those who solve the task

UPMC

ISIR

Introduction 00000 QOPS controller Overview 00000 Improved solution

Experiments and results 0000000

10

ISIR

UPMC

Quasi-Optimal Planning System (QOPS) [Rigoux and Guigon 11]

QOPS has good features, we would like to use it :

- Efficient : it found the best movement even in noisy environment
 - Minimise energetic cost
 - Maximise movement speed
- Realistic : it reproduces known features of human motor control

Introduction 00000	Overview 00●000	Improved solution	Experiments and results 0000000
QOPS controller			

QOPS controller

QOPS mainly consider mechanical systems activated with muscles Why muscles driven systems ?

- Robotics is moving towards this kind of actuators
- Interesting features : stiffness regulation
- Get the advantages of elastic muscles : kinetic energy conservation and restitution

11

ISIR

UPMC

Introduction 00000	Overview 000●00	Improved solution	Experiments and results
QOPS controller			

QOPS controller

- Use Pontryagin's minimum principle (a calculus of variations methods) to find the best command u* that let the known the current state ξ be closer to the desired state ξ*
- State = joint position and angular velocity $(\boldsymbol{\xi})$
- Command = muscular activations (u)

12

Introduction 00000	Overview 0000●0	Improved solution	Experiments and results 0000000
QOPS controller			

QOPS controller

- Deterministic controller
- Noisy environment
- Movements are adjusted (computed) for each time step

13

ISIR

UPMC

QOPS drawback

QOPS make efficient and realistic movements but it's computationally very expensive due to the variational calculus process.

QOPS compute the whole trajectory to reach the desired state considering a deterministic environment. But state and command are noisy so we have compute a new trajectory for each time steps to fit the actual state.

14

ISIR

UPMC

Decock

Improved solution

Improved solution

Main idea

Build a fast controller using Machine Learning (ML) and QOPS planning system

The ML system is supposed to :

- ▶ learn control policies generated by QOPS that is to say the function QOPS(\$\$_t\$,\$\$^*\$) = u^{*}_t
- generalize over the whole reachable space based on learning from only a few planned movements

< □ > < 同 >

16

ISIR

물 이 제품 이 물 문

UPMC

• quickly bring the control vector \mathbf{u}_t^* knowing $\boldsymbol{\xi}_t$ and $\boldsymbol{\xi}^*$

Introduction

000000

Improved solution

Experiments and results 0000000

UPMC

ISIR

Improved solution

XCSF Learning Classifier System [Butz 08]

We have selected the eXtended Classifier System for Function (XCSF) to learn control policies

- a Learning Classifier System dedicated to function approximation
- general purpose function approximation tool based on regression mechanisms
- excellent regression capabilities

18

ISIR

ъ

UPMC

Experiments and results

Decock

Introduction 00000	Overview 000000	Improved solution	Experiments and results
Experiments			

Mechanical system modelization

A model from [Li 2008] and [Rigoux et Guigon 11]

► State :
$$\boldsymbol{\xi} = (\dot{\mathbf{q}} \quad \mathbf{q})^T = (\dot{q}_1 \quad \dot{q}_2 \quad q_1 \quad q_2)^T$$

► Command : $\mathbf{u} = (u_1 \quad u_2 \quad u_3 \quad u_4 \quad u_5 \quad u_6)^T$

UPMC

ISIR

Decock

Introduction 00000	Overview 000000	Improved solution	Experiments and results
Experiments			

Task space

20

ISIR

ъ

UPMC

Э

Decock

Introduction 00000	Overview 000000	Improved solution	Experiments and results
Results			

Results

 Trajectories obtained with QOPS for the learning targets(a), testing targets (b) and of the XCSF-based policy for the testing targets (c)

UPMC

ISIR

- The starting position is represented by a dot
- The targets are represented by a cross
- ▶ In (b) and (c), the dots represents the learning targets

Introduction 00000	Overview 000000	Improved solution	Experiments and results
Results			

Results

 big dots = learning target positions

22

ISIR

UPMC

- Performance of the QOPS (a) and the XCSF policy (b) given the target position, obtained by interpolating the performances for the testing targets (smalldots)
- The performance is computed according to this equation :

$$\hat{\mathcal{C}}\left(\mathbf{u}_{\{0..t_f\}}, \boldsymbol{\xi}_t\right) = \epsilon \sum \mathbf{u}_t^2 - \rho \ g(\boldsymbol{\xi}_t) \tag{1}$$

Introduction 00000	Overview 000000	Improved solution	Experiments and results
Results			

Results

Decock

Videos

Introduction 00000	Overview 000000	Improved solution	Experiments and results
Results			

24

ISIR

UPMC

Computation cost

The average running time to get one trajectory :

- QOPS \approx 10 min
- XCSF \approx 2 sec

(Intel Core 2 Duo E8400 @ 3 GHz with 4 GB RAM)

Introduction 00000	Overview 000000	Improved solution	Experiments and results
Results			

Questions ?

Decock

Decock

Appendix

26

ISIR

2 ъ

Parameters

m	mass of segment i (kg)
1 111	mass of segment 1 (Kg)
I _i	length of segment i (m)
Si	inertia of segment i (kg.m ²)
di	distance between the center of
	segment i and its center of mass (m)
ĸ	Heaviside filter parameter
A	moment arm matrix
T	muscular tension
M	inertia matrix
J	J acobian matrix
Ċ	Coriolis force
τ	segments torque (N.m)
В	damping
u	raw muscular activation (action)
σ_{11}^2	multiplicative muscular noise
ũ	filtered noisy muscular activation
q*	target articular position (rad)
q	current articular position (rad)
q	current articular speed (rad.s ⁻¹)

Learning Cost-Efficient Control Policies with XCSF

ISIR

ъ

UPMC

Decock

Dynamics

$$\boldsymbol{\tau} = \mathbf{A}^T \mathbf{f}_{\max} \mathbf{u} \tag{2}$$

$$\boldsymbol{\tau} = \mathbf{M}(\mathbf{q}) \, \ddot{\mathbf{q}} + \mathbf{n}(\mathbf{q}, \dot{\mathbf{q}}) \tag{3}$$

$$\ddot{\mathbf{q}} = \mathbf{M}^{-1}(\mathbf{q}) \ \boldsymbol{\tau} - \mathbf{M}^{-1}(\mathbf{q}) \ \mathbf{n}(\mathbf{q}, \dot{\mathbf{q}})$$
(4)