{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"tags": [
"meta"
]
},
"source": [
"# Mandelbrot set"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Definition"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let $\\left( z_i \\right)$ be a sequence of complex numbers defined as follow\n",
"\n",
"$$\n",
"z_{i+1} = z^2_i + c\n",
"$$\n",
"\n",
"with $z_0 = 0$ and $c \\in \\mathbb C$ a fixed constant.\n",
"\n",
"The Mandelbrot set is the set of all the complex numbers $c$ for which this sequence does not diverge (i.e. remains bounded in absolute value) ;\n",
"in other words, the sequence tends to infinity for the numbers $c$ which do not belong to the Mandelbrot set\n",
"(i.e. $\\lim_{i \\to +\\infty}{|z_i|} = +\\infty$ where $|z_i|$ is the modulus of $z_i$).\n",
"\n",
"Here we will make a graphical representation of the Mandelbrot set.\n",
"\n",
"Reference: *Toutes les mathématiques et les bases de l'informatique*, H. Stöcker, Dunod, p.696"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"hide_code"
]
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from mpl_toolkits.mplot3d import axes3d\n",
"from matplotlib import cm\n",
"\n",
"EPSILON_MAX = 2.\n",
"NUM_IT_MAX = 32\n",
"Z_INIT = complex(0, 0)\n",
"\n",
"def mandelbrot_version1(x, y):\n",
" it = 0\n",
" z = Z_INIT\n",
" c = complex(x, y)\n",
"\n",
" # Rem: abs(z) = |z| = math.sqrt(pow(z.imag,2) + pow(z.real,2))\n",
" while it < NUM_IT_MAX and abs(z) <= EPSILON_MAX:\n",
" z = z**2 + c\n",
" it += 1\n",
"\n",
" return 1 if it == NUM_IT_MAX else 0\n",
"\n",
"REAL_RANGE = np.linspace(-2.0, 1.0, 800).tolist()\n",
"IMAG_RANGE = np.linspace(-1.2, 1.2, 800).tolist()\n",
"\n",
"# Compute datas #############\n",
"xgrid, ygrid = np.meshgrid(REAL_RANGE, IMAG_RANGE)\n",
"data = np.array([mandelbrot_version1(x, y) for y in IMAG_RANGE for x in REAL_RANGE]).reshape(len(IMAG_RANGE), len(REAL_RANGE))\n",
"\n",
"# Plot data #################\n",
"# (nice color maps: summer, magma, gist_gray, gist_yarg, gist_heat, Blues, coolwarm, copper)\n",
"fig, ax = plt.subplots(figsize=(14, 14))\n",
"ax.imshow(data, extent=[xgrid.min(), xgrid.max(), ygrid.min(), ygrid.max()], interpolation=\"none\", cmap=cm.gray_r)\n",
"\n",
"ax.set_axis_off()\n",
"\n",
"# Set title and labels\n",
"plt.title(\"Mandelbrot set\", fontsize=26)\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## A Python implementation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note: the following Python script is also available [there](https://raw.githubusercontent.com/jeremiedecock/snippets/master/python/matplotlib/mandelbrot/mandelbrot.py)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, lets import some packages."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from mpl_toolkits.mplot3d import axes3d\n",
"from matplotlib import cm"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then lets define the Mandelbrot set:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"EPSILON_MAX = 2.\n",
"NUM_IT_MAX = 32\n",
"Z_INIT = complex(0, 0)\n",
"\n",
"def mandelbrot_version1(x, y):\n",
" it = 0\n",
" z = Z_INIT\n",
" c = complex(x, y)\n",
"\n",
" # Rem: abs(z) = |z| = math.sqrt(pow(z.imag,2) + pow(z.real,2))\n",
" while it < NUM_IT_MAX and abs(z) <= EPSILON_MAX:\n",
" z = z**2 + c\n",
" it += 1\n",
"\n",
" return 1 if it == NUM_IT_MAX else 0\n",
"\n",
"def mandelbrot_version2(x, y):\n",
" it = 0\n",
" z = Z_INIT\n",
" c = complex(x, y)\n",
"\n",
" # Rem: abs(z) = |z| = math.sqrt(pow(z.imag,2) + pow(z.real,2))\n",
" while it < NUM_IT_MAX and abs(z) <= EPSILON_MAX:\n",
" z = z**2 + c\n",
" it += 1\n",
"\n",
" return it"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`mandelbrot_version1` defines the Mandelbrot set whereas `mandelbrot_version2` is an alternative version that shows how fast the sequence diverges for a number $c = x + iy$.\n",
"\n",
"Finally, lets display the Mandelbrot set in the complex plane (pixels are colored according to how rapidly the sequence diverges, the sooner the sequence diverges, the clearer the point)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"REAL_RANGE = np.linspace(-2.0, 1.0, 800).tolist()\n",
"IMAG_RANGE = np.linspace(-1.2, 1.2, 800).tolist()\n",
"\n",
"# Compute datas #############\n",
"xgrid, ygrid = np.meshgrid(REAL_RANGE, IMAG_RANGE)\n",
"data = np.array([mandelbrot_version2(x, y) for y in IMAG_RANGE for x in REAL_RANGE]).reshape(len(IMAG_RANGE), len(REAL_RANGE))\n",
"\n",
"# Plot data #################\n",
"fig, ax = plt.subplots(figsize=(14, 14))\n",
"ax.imshow(data, extent=[xgrid.min(), xgrid.max(), ygrid.min(), ygrid.max()], interpolation=\"bicubic\", cmap=cm.Blues)\n",
"\n",
"# Set title and labels\n",
"plt.title(\"Mandelbrot set\", fontsize=26)\n",
"ax.set_xlabel(\"Re(c)\", fontsize=18)\n",
"ax.set_ylabel(\"Im(c)\", fontsize=18)\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It can also be represented in 3 dimensions to illustrate the iterative process."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"REAL_RANGE = np.arange(-2.0, 1.0, 0.05).tolist()\n",
"IMAG_RANGE = np.arange(-1.2, 1.2, 0.05).tolist()\n",
"\n",
"# Compute datas #############\n",
"xgrid, ygrid = np.meshgrid(REAL_RANGE, IMAG_RANGE)\n",
"data = np.array([mandelbrot_version2(x, y) for y in IMAG_RANGE for x in REAL_RANGE]).reshape(len(IMAG_RANGE), len(REAL_RANGE))\n",
"\n",
"# Plot data #################\n",
"fig = plt.figure(figsize=(14, 10))\n",
"ax = axes3d.Axes3D(fig)\n",
"ax.plot_surface(xgrid, ygrid, data, cmap=cm.jet, rstride=1, cstride=1, color='b', shade=True)\n",
"\n",
"# Set title and labels\n",
"plt.title(\"Mandelbrot set\", fontsize=26)\n",
"ax.set_xlabel(\"Re(c)\", fontsize=18)\n",
"ax.set_ylabel(\"Im(c)\", fontsize=18)\n",
"ax.set_zlabel(\"Iterations\", fontsize=18)\n",
"\n",
"plt.show()"
]
}
],
"metadata": {
"anaconda-cloud": {},
"celltoolbar": "Tags",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}