Corrigé du devoir surveillé nº 1

Problème 1

Partie I

1. On résout l'équation homogène associée : (x-1)y'+y=0 sur $]-\infty$, 1[; les solutions sont les fonctions multiples de la fonction définie sur $]-\infty$, 1[par $x\longmapsto \exp\left(-\ln(1-x)\right)=\frac{1}{1-x}$

Puis on cherche une solution particulière f_0 de (E) en utilisant la méthode de variation de la constante :

soit λ une fonction définie et dérivable sur $]-\infty$, 1[, on pose pour tout $x \in]-\infty$, 1[, $f_0(x)=\frac{\lambda(x)}{1-x}$

 $f_0'(x) = \frac{\lambda'(x)}{1-x} + \frac{\lambda(x)}{(1-x)^2}$, d'où en substituant dans (E) : $\lambda'(x) = -e^{-x}$; on peut choisir $\lambda(x) = e^{-x}$ ce qui donne $f_0(x) = \frac{e^{-x}}{1-x}$

Ainsi les solutions de l'équation (E) sur $]-\infty$, 1[sont les fonctions de la forme

$$x \longmapsto \frac{K + e^{-x}}{1 - x}, \ K \in \mathbb{R}$$

2. On remarque que la fonction f proposée est bien solution de (E) sur l'intervalle $]-\infty$, 1[car c'est une fonction de la forme trouvée à la question précédente avec K=0.

Soit y une solution de (E), on a $y(0) = \frac{K + e^0}{1 - 0} = K + 1$, donc $y(0) = 1 \iff K = 0$

La fonction f est donc l'unique solution de (E) qui prend la valeur 1 en 0.

3. f est dérivable sur $]-\infty$, 1[et $f'(x)=\frac{f(x)}{1-x}=\frac{x\,e^{-x}}{(1-x)^2}$; ainsi f' est du signe de x.

f est décroissante sur] $-\infty$, 0[et croissante sur]0, 1[.

Au voisinage de $-\infty$, $1-x\sim -x$ donc $f(x)\underset{-\infty}{\sim}-\frac{e^{-x}}{x}$ par conséquent $\lim_{x\to -\infty}f(x)=+\infty$

 $\lim_{x \to 1^{-}} 1 - x = 0^{+} \text{ donc } \lim_{x \to 1^{-}} f(x) = +\infty$

La courbe représentative de f admet une asymptote verticale d'équation x=1 et une branche asymptotique d'axe (Oy) en $-\infty$.

4. Au voisinage de $0: e^{-x} = 1 - x + \frac{x^2}{2} + o(x^2)$ et $\frac{1}{1-x} = 1 + x + x^2 + o(x^2)$ donc $f(x) = 1 + \frac{x^2}{2} + o(x^2)$

Partie II

1. f est une fonction de classe \mathscr{C}^{∞} sur $]-\infty$, 1[, donc de classe \mathscr{C}^n pour tout $n \in \mathbb{N}$; d'après la formule de Taylor Young on a $\forall n \in \mathbb{N}$, $\forall x < 1$, $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k + o(x^n)$.

Donc $d_n = \frac{f^{(n)}(0)}{n!}$; en particulier $d_0 = 1$, $d_1 = 0$ et $d_2 = \frac{1}{2}$

2. On peut démontrer cette relation par récurrence sur n:

Initialisation : pour n=0 cette relation n'est rien d'autre que l'équation différentielle (E) dont f est effectivement solution.

Hérédité : soit $n \in \mathbb{N}$ un entier naturel donné tel que $\forall x < 1, \ (x-1) \, f^{(n+1)}(x) + (n+1) \, f^{(n)}(x) = (-1)^n e^{-x}$ On dérive cette relation et on obtient : $\forall x < 1, \ (x-1) \, f^{(n+2)}(x) + f^{(n+1)}(x) + (n+1) \, f^{(n+1)}(x) = -(-1)^n e^{-x}$, c'est à dire $\forall x < 1, \ (x-1) \, f^{(n+2)}(x) + (n+2) \, f^{(n+1)}(x) = (-1)^{n+1} e^{-x}$.

La formule proposée est donc vraie pour tout x < 1 et tout $n \in \mathbb{N}$.

3. En appliquant la formule en 0 pour n quelconque, on obtient : $-f^{(n+1)}(0) + (n+1)f^{(n)}(0) = (-1)^n$ ou encore $-(n+1)! d_{n+1} + (n+1)n! d_n = (-1)^n$, d'où la relation demandée entre d_n et d_{n+1} .

4. Fonction Python qui calcule d = n en fonction de n:

Le calcul de d(20) donne 0.36787944117144245

5. En sommant les égalités obtenues à la question 3 pour k variant de 0 à n on obtient :

$$\sum_{k=0}^{n} d_{k+1} = \sum_{k=0}^{n} d_k + \sum_{k=0}^{n} \frac{(-1)^{k+1}}{(k+1)!} \text{ puis } d_{n+1} = d_0 + \sum_{k=0}^{n} \frac{(-1)^{k+1}}{(k+1)!}, \text{ finalement}$$

$$\forall n \in \mathbb{N} \ d_n = \sum_{k=0}^n \frac{(-1)^k}{k!}$$

Partie III

1. Initialisation : soit n = 0, on a bien $\forall x \in \mathbb{R} \ e^{-x} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} x^k + (-1)^1 \int_0^x e^{-t} dt = 1 - \int_0^x e^{-t} dt$

Hérédité : soit $n \in \mathbb{N}$ donné, supposons que $\forall x \in \mathbb{R}$ $e^{-x} = \sum_{k=0}^{n} \frac{(-1)^k}{k!} x^k + (-1)^{(n+1)} \int_0^x \frac{(x-t)^n}{n!} e^{-t} dt$ (**)

Par intégration par partie on a : $\forall x \in \mathbb{R} \int_0^x (x-t)^n e^{-t} dt = \left[\frac{-(x-t)^{n+1}}{n+1} e^{-t} \right]_0^x - \int_0^x \frac{(x-t)^{n+1}}{n+1} e^{-t} dt$ et en substituant dans (\star) :

$$\forall x \in \mathbb{R} \ e^{-x} = \sum_{k=0}^{n} \frac{(-1)^k}{k!} x^k + \frac{(-1)^{n+1}}{n!} \left(\frac{x^{n+1}}{n+1} e^{-x} - \int_0^x \frac{(x-t)^{n+1}}{n+1} e^{-t} \, dt \right)$$
$$= \sum_{k=0}^{n+1} \frac{(-1)^k}{k!} x^k + (-1)^{n+2} \int_0^x \frac{(x-t)^{n+1}}{(n+1)!} e^{-t} \, dt$$

En conclusion on a bien montré que

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ e^{-x} = \sum_{k=0}^{n} \frac{(-1)^k}{k!} x^k + (-1)^{(n+1)} \int_0^x \frac{(x-t)^n}{n!} e^{-t} dt$$

2. La formule établie à la question précédente donne

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ \left| e^{-x} - \sum_{k=0}^{n} \frac{(-1)^k}{k!} x^k \right| = \left| \int_0^x \frac{(x-t)^n}{n!} e^{-t} \, \mathrm{d}t \right| = \int_0^x \frac{(x-t)^n}{n!} e^{-t} \, \mathrm{d}t$$

$$= \int_0^x \frac{(x-t)^n}{n!} e^{-t} \, \mathrm{d}t$$

$$= \int_0^x \frac{(x-t)^n}{n!} e^{-t} \, \mathrm{d}t$$

Donc pour tout $t \in [0, x], 0 < e^{-t} \le 1$ donc $0 < \int_0^x \frac{(x-t)^n}{n!} e^{-t} dt \le \int_0^x \frac{(x-t)^n}{n!} dt = \frac{x^{n+1}}{(n+1)!}$ On a donc prouvé le résultat suivant :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}^+, \ \left| e^{-x} - \sum_{k=0}^n \frac{(-1)^k}{k!} x^k \right| \leqslant \frac{x^{n+1}}{(n+1)!}$$

3. Soit $x \ge 0$ fixé, pour tout $n \in \mathbb{N}$ on peut écrire $u_{n+1} = \frac{x^{n+1}}{(n+1)!} = \frac{x^n}{n!} \times \frac{x}{n+1}$

 $\lim_{n \to +\infty} \frac{x}{n+1} = 0 \text{ donc il existe } n_0 \in \mathbb{N} \text{ tel que } \forall n \geqslant n_0, \ 0 < \frac{x}{n+1} \leqslant \frac{1}{2}; \text{ ainsi :}$

$$\forall n \geqslant n_0, \ 0 < u_{n+1} \leqslant \frac{1}{2} u_n$$

On montre alors par récurrence sur n que $\forall n \geqslant n_0, \ 0 < u_n \leqslant \left(\frac{1}{2}\right)^{n-n_0} u_{n_0}$ et par conséquent $\lim_{n \to +\infty} u_n = 0$

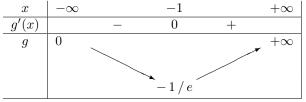
4. L'inégalité de la question 2 appliquée à x=1 donne : $\forall n \in \mathbb{N}, \ \left|e^{-1} - \sum_{k=0}^{n} \frac{(-1)^k}{k!}\right| = \left|\frac{1}{e} - d_n\right| \leqslant \frac{1}{(n+1)!}$

On a donc prouvé :
$$\lim_{n\to+\infty} d_n = \frac{1}{e}$$

Problème 2

Partie I

1. (a) La fonction g est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, $g'(x) = e^x + x e^x = (x+1) e^x$ donc $\forall x \in [-1; +\infty[$ $g'(x) \geqslant 0;$ g' ne s'annule que pour x = -1 donc est strictement positif sur $]-1; +\infty[$, ainsi g est injective sur l'intervalle $[-1; +\infty[$. De plus $g(-1) = -\frac{1}{e}$ et $\lim_{x \to +\infty} g(x) = +\infty$ donc la restriction de g à $[-1; +\infty[$ réalise une bijection vers $\left[-\frac{1}{e}; +\infty\right[$.



x	-1/e	$+\infty$
h'(x)	+	
h	-1	, +∞

(b) h est dérivable en x si et seulement si g' ne s'annule pas en h(x), or g' s'annule en $-1 = h\left(-\frac{1}{e}\right)$; ainsi h est dérivable sur $\left[-\frac{1}{e}; +\infty\right[$.

$$\forall x \in \left] -\frac{1}{e}; +\infty \right[, \ h'(x) = \frac{1}{g'(h(x))} = \underbrace{\frac{1}{h(x) \exp(h(x))} + \exp(h(x))}_{g \circ h(x)} = \frac{1}{x + \exp(h(x))} = \frac{h(x)}{x (1 + h(x))}$$

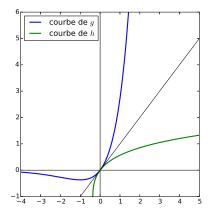
$$\forall x \in \left] -\frac{1}{e}; +\infty \right[, h'(x) = \frac{h(x)}{x(1+h(x))}$$

Remarques:

 \star cette formule n'est pas valable pour x=0, cependant h' est bien définie en 0 et vaut 1 puisque g'(h(0))=g'(0)=1. On retrouve ce résultat en remarquant que $h(x) \underset{\sim}{\sim} x$ donc

$$h'(x) \sim \frac{1}{1 + h(x)} = 1$$

 $\star h$ n'est pas dérivable pour x = -1/e et sa courbe admet une tangente verticale au point de coordonnées (-1/e; -1).



2. (a) α est défini par $\alpha=h\left(\frac{1}{2}\right)$ ce qui équivaut à $g\left(\alpha\right)=\frac{1}{2}.$

Or g est continue et strictement croissante entre 0 et $\frac{1}{2}$, $g(0) = 0 < \frac{1}{2}$, $g\left(\frac{1}{2}\right) = \frac{\sqrt{e}}{2} > \frac{1}{2}$, donc

$$\alpha \in \left]0, \frac{1}{2}\right[$$

(b) φ est continue et dérivable sur \mathbb{R} avec $\forall x \in \mathbb{R}, \ \varphi'(x) = -\frac{e^{-x}}{2}$, donc

$$\forall x \geqslant 0, \ 0 < e^{-x} \leqslant 1 \text{ et } |\varphi'(x)| = \frac{e^{-x}}{2} \leqslant \frac{1}{2}; \text{ d'autre part :}$$

$$g(\alpha) = \frac{1}{2} \text{ donc } \alpha e^{\alpha} = \frac{1}{2}; \text{ ainsi } e^{-\alpha} = 2 \alpha \text{ et } \varphi(\alpha) = \frac{e^{-\alpha}}{2} = \alpha$$

(c) φ est à valeurs positives sur $[0\,,\,+\infty[$ donc on montre par récurrence sur n que $\forall n\in\mathbb{N},\ u_n\geqslant 0$: $u_0=0\geqslant 0$ et pour $n\in\mathbb{N}$ donné, si on suppose $u_n\geqslant 0$, alors $\varphi(u_n)\geqslant 0$ donc $u_{n+1}\geqslant 0$. On peut donc appliquer le théorème des accroissements finis à φ entre u_n et α :

$$\exists c \in]u_n, \alpha[\text{ ou }]\alpha, u_n[\text{ tel que } \left| \varphi(u_n) - \varphi(\alpha) \right| = \left| \varphi'(c) \right| \times |u_n - \alpha| \leqslant \frac{1}{2} \left| u_n - \alpha \right|$$

Comme
$$\varphi(u_n) = u_{n+1}$$
 et $\varphi(\alpha) = \alpha$, on en déduit : $\forall n \in \mathbb{N}, \ \left| u_{n+1} - \alpha \right| \leqslant \frac{1}{2} \left| u_n - \alpha \right|$

On montre ensuite par récurrence sur n que $\forall n \in \mathbb{N}, |u_n - \alpha| \leq \left(\frac{1}{2}\right)^n |u_0 - \alpha|$:

C'est vrai de façon évidente pour n=0 car $\left(\frac{1}{2}\right)^0=1$.

Soit $n \ge 0$ donné, supposons que $|u_n - \alpha| \le \left(\frac{1}{2}\right)^n |u_0 - \alpha|$, on a alors :

$$|u_{n+1} - \alpha| \leqslant \frac{1}{2} |u_n - \alpha|$$

$$\leqslant \frac{1}{2} \times \left(\frac{1}{2}\right)^n |u_0 - \alpha| \quad (d'après l'hypothèse de récurrence au rang n)$$

$$\leqslant \left(\frac{1}{2}\right)^{n+1} |u_0 - \alpha|$$

On conclut en appliquant le théorème d'encadrement, dit "théorème des gendarmes" : comme $\lim_{n\to+\infty} \left(\frac{1}{2}\right)^n = 0$, alors $\lim_{n\to+\infty} |u_n - \alpha| = 0$ donc la suite (u_n) converge vers α .

(d) $|u_0 - \alpha|$ est majoré par $\frac{1}{2}$ donc $\forall n \in \mathbb{N}$, $|u_n - \alpha| \leqslant \left(\frac{1}{2}\right)^{n+1}$; ainsi on est certain que si $\left(\frac{1}{2}\right)^{n+1} \leqslant 10^{-2}$ alors $|u_n - \alpha| \leqslant 10^{-2}$.

$$\left(\frac{1}{2}\right)^{n+1} \leqslant 10^{-2} \iff -(n+1) \ln 2 \leqslant -2 \ln 10 \iff n+1 \geqslant \frac{2 \ln 10}{\ln 2} \simeq 6,64$$

Cela donne $n+1\geqslant 7$ d'où $n\geqslant 6$; ainsi u_6 est une valeur approchée de α à 10^{-2} près au maximum.

Remarque : si on connaît les premières valeurs de puissances de 2, entre autres $2^7 = 128$ parce qu'on joue

au 2048 par exemple, on peut se passer des logarithmes : $2^7 > 100 > 2^6$ donc $\left(\frac{1}{2}\right)^7 < 10^{-2} < \left(\frac{1}{2}\right)^6$.

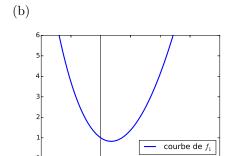
Partie II

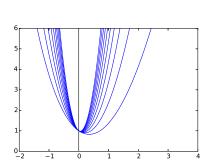
1. (a) f_{λ} est continue et dérivable sur \mathbb{R} , avec $\forall x \in \mathbb{R}$, $f'_{\lambda}(x) = -e^{-x} + 2\lambda x$ et $f'_{\lambda}(x) \geqslant 0 \iff 2\lambda x \geqslant e^{-x} \iff x e^{x} \geqslant \frac{1}{2\lambda}$, ou encore $g(x) \geqslant \frac{1}{2\lambda}$, ce qui donne en composant par $h: x \geqslant h\left(\frac{1}{2\lambda}\right)$. En posant $m_{\lambda} = h\left(\frac{1}{2\lambda}\right)$ on obtient le tableau de variations suivant :

x	$-\infty$		m_{λ}		$+\infty$	
$f'_{\lambda}(x)$		_	0	+		
f_{λ}	$+\infty$			_	$+\infty$	
		_	/			
		$f_{\lambda}\left(m_{\lambda} ight)$				

h est croissante et h(0)=0, or $\frac{1}{2\,\lambda}>0$ donc $m_\lambda=h\left(\frac{1}{2\,\lambda}\right)>0$

(b)
$$f_{\lambda}(m_{\lambda}) = e^{-m_{\lambda}} + \lambda m_{\lambda}^2$$
; or $e^{-m_{\lambda}} = 2 \lambda m_{\lambda} \operatorname{donc} f_{\lambda}(m_{\lambda}) = 2 \lambda m_{\lambda} + \lambda m_{\lambda}^2 = \lambda m_{\lambda} (2 + m_{\lambda})$.





```
from matplotlib.pyplot import *
1
    from numpy import linspace, exp
    def f(lamda,x):
         \underline{\textbf{return}} \ \exp(-x) + \text{lamda} * (x * * 2)
    figure(2, figsize = (6,4))
6
7
8
    lamda=1
    ylim (0,6)
9
    axhline(color='k')
11
    axvline (color='k')
12
    x = linspace(-2, 4, 1000)
13
    y=f(lamda, x)
    \verb|plot(x,y,linewidth=2,color='blue',...|
14
15
    label='courbe_de_$f_1$')
    legend(loc=4)
```

```
from matplotlib.pyplot import *
     from numpy import linspace, exp
3
     \underline{\mathbf{def}} f(lamda,x):
4
           \underline{\mathbf{return}} \ \exp(-\mathbf{x}) + \mathrm{lamda} * (\mathbf{x} * * 2)
     figure(3, figsize = (6,4))
     ylim(0,6)
10
     axhline (color='k')
     axvline (color='k')
11
12
     x = linspace(-2,4,1000)
13
     \#legend(loc=4)
14
15
     \underline{\mathbf{for}} lamda \underline{\mathbf{in}} \underline{\mathbf{range}}(1,11):
16
           y=f(lamda,x)
             plot(x,y,linewidth=1,color='blue')
```

(c)

- 2. (a) Par définition $m(1) = h\left(\frac{1}{2\times 1}\right)$ donc $m(1) = \alpha$.
 - (b) La fonction m est la composée de $\lambda \mapsto \frac{1}{2\lambda}$ qui est décroissante sur $]0, +\infty[$ et de la fonction h qui est croissante, donc m est décroissante.
 - $\star \text{ Lorsque } \lambda \to +\infty, \ \frac{1}{2\,\lambda} \to 0, \text{ donc par continuit\'e de h en 0, on d\'eduit } \lim_{\lambda \to +\infty} m_\lambda = \lim_{\lambda \to +\infty} h\left(\frac{1}{2\,\lambda}\right) = \lim_{u \to 0} h(u) = h(0) = 0$
 - $\star \text{ De même, lorsque } \lambda \to 0^+, \ \frac{1}{2 \ \lambda} \to +\infty, \\ \text{donc par composition de limites, on déduit } \lim_{\lambda \to 0} m_\lambda = \lim_{\lambda \to 0} h\left(\frac{1}{2 \ \lambda}\right) = \lim_{u \to +\infty} h(u) = +\infty \; ; \; \\ \text{en résumé}$

m réalise une bijection strictement décroissante de $]0,+\infty[$ vers $]0,+\infty[$

(c) $g(m_{\lambda}) = \frac{1}{2\lambda} = m_{\lambda} e^{m_{\lambda}}$ donc on a bien $2\lambda m_{\lambda} = e^{-m_{\lambda}}$.

Lorsque $\lambda \to +\infty$, $m_{\lambda} \to 0$ donc $e^{-m_{\lambda}} \to 1$ par conséquent, $m_{\lambda} \underset{\lambda \to +\infty}{\sim} \frac{1}{2\lambda}$.

- (d) En composant par l
n dans l'égalité de la question précédente, on obtient bien $m_{\lambda} + \ln{(m_{\lambda})} = -\ln{(2\,\lambda)}$.
 Lorsque $\lambda \to 0$, $m_{\lambda} \to +\infty$ donc $\ln(m_{\lambda}) = o(m_{\lambda})$ par conséquent $m_{\lambda} \underset{\lambda \to 0^{+}}{\sim} -\ln{(2\,\lambda)}$.
- 3. (a) Soient $\lambda_1 \leqslant \lambda_2$: $f_{\lambda_2}(m_{\lambda_2}) f_{\lambda_1}(m_{\lambda_2}) = (\lambda_2 \lambda_1) m_{\lambda_2}^2 \geqslant 0$ et $f_{\lambda_1}(m_{\lambda_2}) f_{\lambda_1}(m_{\lambda_1}) \geqslant 0$ car f_{λ_1} atteint son minimum en m_{λ_1} , par définition de m_{λ_1} . En utilisant la remarque de l'énoncé, on obtient alors $f_{\lambda_2}(m_{\lambda_2}) - f_{\lambda_1}(m_{\lambda_1}) = \theta(\lambda_2) - \theta(\lambda_1) \geqslant 0$ ce qui signifie que la fonction θ est croissante.
 - (b) θ est monotone sur $]0, +\infty[$ donc admet des limites en 0 et en $+\infty$.

 $\star m_{\lambda} \underset{\lambda \to 0^{+}}{\sim} -\ln(2\,\lambda) \operatorname{donc} m_{\lambda} + 2 \underset{0^{+}}{\sim} -\ln(2\,\lambda) \operatorname{par cons\'equent} \theta(\lambda) = \lambda m_{\lambda} \left(m_{\lambda} + 2\right) \underset{0^{+}}{\sim} \lambda \left(\ln(2\,\lambda)\right)^{2} \underset{\lambda \to 0^{+}}{\longrightarrow} 0$

 $\star m_{\lambda} \underset{\lambda \to +\infty}{\sim} \frac{1}{2\lambda} \operatorname{donc} m_{\lambda} + 2 \underset{+\infty}{\sim} 2 \operatorname{et} \lambda m_{\lambda} \underset{+\infty}{\sim} \frac{1}{2}, \operatorname{par cons\'equent} \theta(\lambda) = \lambda m_{\lambda} (m_{\lambda} + 2) \underset{\lambda \to +\infty}{\longrightarrow} 1, \operatorname{ainsi}$

θ réalise une bijection strictement croissante de $]0,+\infty[$ vers]0,1[

- (c) On a donc $\theta(0) = 0$ et θ est dérivable en 0 si et seulement si $\frac{\theta(\lambda) \theta(0)}{\lambda 0} = \frac{\theta(\lambda)}{\lambda}$ admet une limite finie en 0^+ . Or $\frac{\theta(\lambda)}{\lambda} = m_{\lambda} (m_{\lambda} + 2) \underset{\lambda \to 0^+}{\sim} \left(\ln(2\lambda) \right)^2 \underset{\lambda \to 0^+}{\longrightarrow} +\infty$ donc θ n'est pas dérivable en 0, sa courbe représentative admet une tangente verticale en ce point.
- (d) $\theta(1) = f_1(m_1) = f_1(\alpha) = e^{-\alpha} + \alpha^2$, or $e^{-\alpha} = 2\alpha$ donc $\theta(1) = \alpha (\alpha + 2)$ D'autre part on a $\theta(\lambda) = f_{\lambda}(m_{\lambda}) = \lambda m_{\lambda} (m_{\lambda} + 2)$. m est composé de fonctions dérivables sur $]0, +\infty[$ donc est dérivable en tout point de cet intervalle : $m(\lambda) = h\left(\frac{1}{2\lambda}\right) \operatorname{donc} m'(\lambda) = \frac{-1}{2\lambda^2} \times h'\left(\frac{1}{2\lambda}\right) = \frac{-1}{2\lambda^2} \times \left(\frac{h\left(\frac{1}{2\lambda}\right)}{\frac{1}{2\lambda}\left(1 + h\left(\frac{1}{2\lambda}\right)\right)}\right) = \frac{-1}{\lambda} \times \left(\frac{m_{\lambda}}{1 + m_{\lambda}}\right)$ Alors $\theta'(\lambda) = m_{\lambda} (m_{\lambda} + 2) + \lambda (2m'_{\lambda} m_{\lambda} + 2m'_{\lambda}) = m_{\lambda} (m_{\lambda} + 2) + 2\lambda m'_{\lambda} (1 + m_{\lambda}) = m_{\lambda} (m_{\lambda} + 2) - 2m_{\lambda}$ On obtient finalement l'expression de θ' pour tout $\lambda \in]0, +\infty[$: $\theta'(\lambda) = m_{\lambda}^2 \operatorname{donc} \theta'(1) = m_1^2 = \alpha^2$
- (e) Tracé de la fonction θ sur l'intervalle $[0,1\,;\,8]$:

