Correction du devoir n°5

Exercice 1

Partie I

- 1. Les produits M(a) M(b) et M(b) M(a) sont égaux et l'identification des coefficients donne la réponse immédiate.
- 2. On remarque que $M(0) = I_3$ donc si $a \neq \frac{1}{3}$, en prenant $b = \frac{a}{3a-1}$ on obtient $M(a) M(b) = M(b) M(a) = M(0) = I_3$ donc M(a) est inversible, d'inverse M(b). D'autre part M(1/3) a tous ses coefficients égaux à $\frac{1}{3}$ donc est de rang 1, donc pas inversible.
- 3. Résoudre $[M(a)]^2 = M(a)$ équivaut à $2a 3a^2 = a$ c'est à dire a = 0 ou $\frac{1}{3}$, par conséquent le seul réel non nul qui convient est $a_0 = \frac{1}{3}$.

On a $M(a_0) \times (M(a_0) - I_3) = 0$, donc si $M(a_0)$ était inversible, on obtiendrait en faisant le produit à gauche par son inverse, $M(a_0) - I_3 = 0$ ce qui est faux bien sûr; par conséquent $M(a_0)$ n'est pas inversible.

- 4. (a) On résout $M(a) = P + \alpha Q$: $M(a) = (1 \alpha) M(a_0) + \alpha I$; par identification de coefficients diagonaux on obtient : $1 2a = \frac{1 \alpha}{3} + \alpha$ soit $\alpha = 1 3a$ et on vérifie que cette valeur convient en identifiant les autres coefficients.

$$P^2 = P$$
 , $Q^2 = Q$, $PQ = QP = 0$

On obtient alors, puisque P et Q commutent : $[M(a)]^2 = (P + \alpha Q)^2 = P + \alpha^2 Q = M(2a - 3a^2)$

(c) On peut établir par récurrence la formule $[M(a)]^n = (P + \alpha Q)^2 = P + \alpha^n Q$, ou faire un calcul direct par la formule du binôme :

Elle est vérifiée pour n=0 et n=1 d'après la question 4a et pour n=2 d'après le calcul précédent. Supposons la vérifiée pou un certain $n \in \mathbb{N}$, alors $[M(a)]^{n+1} = M(a) [M(a)]^n = (P+\alpha Q) (P+\alpha^n Q) = P^2 + \alpha Q P + \alpha^n P Q + \alpha^{n+1} Q^2 = P + \alpha^{n+1} Q$; d'où l'hérédité.

$$[M(a)]^n = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + \frac{\alpha^n}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2\alpha^n + 1 & 1 - \alpha^n & 1 - \alpha^n \\ 1 - \alpha^n & 2\alpha^n + 1 & 1 - \alpha^n \\ 1 - \alpha^n & 1 - \alpha^n & 2\alpha^n + 1 \end{pmatrix} \text{ avec } \alpha^n = (1 - 3a)^n.$$

Partie II

1. Le mobile est en A à l'instant 0 donc l'instant d'après il est en B avec une probabilité égale à a, en C avec une probabilité égale à a et en A avec une probabilité égale à 1-2a; ainsi

$$a_1 = 1 - 2a, b_1 = c_1 = a$$

- 2. (a) À tout instant n pour $n \ge 1$, A_n , B_n , C_n constituent un système complet d'événements. Ainsi, par la formule des probabilités totales : $P(A_{n+1}) = P(A_n) \times P_{A_n}(A_{n+1}) + P(B_n) \times P_{B_n}(A_{n+1}) + P(C_n) \times P_{C_n}(A_{n+1})$ De même, $P(B_{n+1}) = P(A_n) \times P_{A_n}(B_{n+1}) + P(B_n) \times P_{B_n}(B_{n+1}) + P(C_n) \times P_{C_n}(B_{n+1})$ et $P(C_{n+1}) = P(A_n) \times P_{A_n}(C_{n+1}) + P(B_n) \times P_{B_n}(C_{n+1}) + P(C_n) \times P_{C_n}(C_{n+1})$.

 Comme $P(A_n) = P(C_n) + P(C$
 - (b) Une récurrence immédiate donne $\forall n \in \mathbb{N}, \ U_n = [M(a)]^n \ U_0$ et ainsi :

$$\begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2\alpha^n + 1 & 1 - \alpha^n & 1 - \alpha^n \\ 1 - \alpha^n & 2\alpha^n + 1 & 1 - \alpha^n \\ 1 - \alpha^n & 1 - \alpha^n & 2\alpha^n + 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \operatorname{donc} \boxed{a_n = \frac{2(1 - 3a)^n + 1}{3}, \ b_n = c_n = \frac{1 - (1 - 3a)^n}{3}}$$

3. (a) $D_n = A_0 \cap \overline{A}_1 \cap \overline{A}_2 \cap \ldots \cap \overline{A}_{n-1} \cap A_n$ donc par la formule des probabilités composées : $P(D_n) = 1 \times P(\overline{A}_1) \times P_{\overline{A}_1}(\overline{A}_2) \times \cdots \times P_{\overline{A}_{n-1}}(A_n)$ avec $P(\overline{A}_1) = 2 a$, $P_{\overline{A}_k}(\overline{A}_{k+1}) = 1 - a$ pour $k \in [\![1, n-2]\!]$ et $P_{\overline{A}_{n-1}}(A_n) = a$; donc $P(D_n) = 2 a \times (1-a)^{n-2} \times a$ pour $n \geqslant 2$ et $P(D_1) = P(A_1) = a_1 = 1 - 2 a$.

$$P(D_1) = 1 - 2a$$
 et pour $n \ge 2$, $P(D_n) = 2a^2(1-a)^{n-2}$

(b) $\sum_{n=1}^{\infty} P(D_n) = 1 - 2a + \sum_{n=2}^{\infty} 2a^2(1-a)^{n-2} = 1 - 2a + 2a^2 \sum_{j=0}^{\infty} (1-a)^j = 1 - 2a + \frac{2a^2}{1 - (1-a)} = 1$

 $\sum_{n=1}^{\infty} P(D_n)$ est la probabilité de revenir en A au bout d'un temps fini, c'est un événement quasi certain.

Exercice 2

1. Pour démontrer $0 < \sin x < x < \tan x$ on peut utiliser le théorème des accroissements finis : $\sin'(x) = \cos x \in]0,1[$ et $\tan'(x) = 1 + \tan^2 x \geqslant 1$ donc $\exists c \in]0,x[$ tel que $\sin x - \sin 0 = (x-0)\cos c$ et $\exists d \in]0,x[$ tel que $\tan x - \tan 0 = (x-1)\cos c$

On en déduit alors $\forall x \in \left]0, \frac{\pi}{2}\right[$, $0 < \frac{1}{\tan x} < \frac{1}{x} < \frac{1}{\sin x}$ puis en élevant au carré :

$$0 < \frac{1}{\tan^2 x} = \cot^2 x < \frac{1}{x^2} < \frac{1}{\sin^2 x} = 1 + \cot^2 x$$

La formule du binôme de Newton donne : $\sum_{k=0}^{2n+1} \left(\frac{2n+1}{k} \right)^{2(n+1)} \sin(x)^{2(n+1)} = \cos((2n+1)x) + i \sin((2n+1)x).$ La formule du binôme de Newton donne : $\sum_{k=0}^{2n+1} \left(\frac{2n+1}{k} \right) (i \sin x)^k (\cos x)^{2(n+1-k)} = \cos((2n+1)x) + i \sin((2n+1)x).$

On identifie les parties imaginaires des deux membres; pour celui de gauche elle est obtenue à partir des termes

de rang impair d'où :
$$\sum_{k=0}^{2n+1} {2n+1 \choose k} (i \sin x)^k (\cos x)^{2n+1-k} = i \sin((2n+1)x)$$

On pose alors k = 2j + 1 avec $j \in [0, n]$ d'où $\sum_{i=0}^{n} {2n+1 \choose 2j+1} (i \sin x)^{2j+1} (\cos x)^{2n-2j} = i \sin((2n+1)x)$

De $i^{2j+1} = (-1)^j i$ on déduit $\sum_{j=0}^n {2n+1 \choose 2j+1} (-1)^j (\sin x)^{2j+1} (\cos x)^{2(n-j)} = \sin((2n+1)x)$, puis en divisant

les deux membres par $(\sin x)^{2n+1} \neq 0$, $\sum_{j=0}^{n} {2n+1 \choose 2j+1} (-1)^{j} \frac{(\cos x)^{2(n-j)}}{(\sin x)^{2(n-j)}} = \sum_{j=0}^{n} {2n+1 \choose 2j+1} (-1)^{j} \cot^{2(n-j)} x = \sum_{j=0}^{n} (-1)^{j} \cot^{2(n-j)} x = \sum_{j=0}^{n$

$$\frac{\sin((2n+1)x)}{(\sin x)^{2n+1}}$$

(b) On a ainsi le polynôme $P_n(X) = \sum_{j=0}^n \binom{2n+1}{2j+1} (-1)^j X^{n-j}$. Il est de degré n, son terme de degré k est égal à

 $\binom{2\,n+1}{2\,k}(-1)^{n-k}$; cherchons à présent ses racines. On pose $y=\cot n^2x$ et on a : pour $n\in\mathbb{N}^*$ et $x\in]0,\pi/2[$, $P_n(y)=0$ lorsque $\sin\left((2\,n+1)x\right)=0$ c'est à dire $(2\,n+1)x=k\,\pi,\ k\in\mathbb{Z}$.

En fait
$$x \in \left]0, \frac{\pi}{2}\right[$$
 entraı̂ne $0 < k < \frac{2\,n+1}{2}$ mais comme k est entier, $k \in [\![1,n]\!].$

La fonction $\cot a^2$ est strictement croissante sur $]0,\pi[$ donc les n valeurs $\cot a^2\left(\frac{k\,\pi}{2\,n+1}\right)$ pour $k\in[\![1,n]\!]$ sont distinctes. On obtient donc n racines distinctes de P_n et comme son degré est égal à n il ne peut pas en avoir d'autres.

Le coefficient dominant de P_n vaut 2n+1 donc la somme de ses racines est égal à l'opposé de son coefficient de degré n-1 c'est à dire $\binom{2n+1}{3}$ divisé par 2n+1 soit $\frac{n(2n-1)}{3}$.

3. D'après l'encadrement de la question 1 et le résultat précédent, on peut écrire :

$$\forall k \in [1, n], \cot^2\left(\frac{2n+1}{k\pi}\right) < \left(\frac{2n+1}{k\pi}\right)^2 < 1 + \cot^2\left(\frac{2n+1}{k\pi}\right) \text{ puis }$$

$$\sum_{k=1}^{n} \cot^2 \left(\frac{2n+1}{k\pi} \right) < \left(\frac{2n+1}{\pi} \right)^2 \sum_{k=1}^{n} \frac{1}{k^2} < n + \sum_{k=1}^{n} \cot^2 \left(\frac{2n+1}{k\pi} \right)$$

ainsi
$$\frac{n(2n-1)}{3} < \left(\frac{2n+1}{\pi}\right)^2 \sum_{k=1}^n \frac{1}{k^2} < \frac{2n(n+1)}{3}$$
 et $\frac{n(2n-1)\pi^2}{3(2n+1)^2} < S_n < \frac{2n(n+1)\pi^2}{3(2n+1)^2}$.

4. Finalement les deux termes encadrant S_n convergent vers $\frac{\pi^2}{6}$, donc S_n également, ce qui prouve que la série converge et que sa somme est égale à $\frac{\pi^2}{6}$