Corrigé du devoir maison

EXERCICE N°1 - Séries

1. $\forall n \ge 1, \ u_{n+1} - u_n = -u_n^2 \le 0 \text{ donc } (u_n) \text{ est décroissante.}$

On montre par récurrence sur n que (u_n) est à valeurs positives :

- $n=1: u_1=\frac{1}{2}>0$
- Soit $n \ge 1$, on suppose que $0 < u_n$; alors $u_{n+1} = u_n \ (1 u_n) > 0 \ \operatorname{car} \ 0 < u_n \le u_1 < 1$

On en déduit que la suite (u) converge car elle est décroissante et minorée par 0; soit ℓ sa limite. $(u_n) \to \ell$, de même $(u_{n+1}) \to \ell$ donc par passage à la limite, $\ell = \ell - \ell^2$ et $\ell = 0$.

La suite (u) est décroissante et converge vers 0.

2. Soit $N \in \mathbb{N}$, $\sum_{n=1}^{N} u_n^2 = \sum_{n=1}^{N} u_n - u_{n+1} = u_1 - u_{N+1}$ (somme télescopique); $\lim_{N \to +\infty} u_N = 0$ donc

La série
$$\sum u_n^2$$
 converge et $\sum_{n=1}^{+\infty} u_n^2 = u_1 = \frac{1}{2}$.

3. Montrons cette formule par récurrence sur n: elle est vraie pour n=1 car un produit vide est par convention égal à 1, donc la formule se réduit à $u_1 = u_1$.

Soit $n \ge 1$, supposons alors que $u_n = u_1 \prod_{i=1}^{n-1} (1-u_k)$; $u_{n+1} = u_n - u_n^2 = u_n (1-u_n)$. On obtient donc

$$u_{n+1} = u_n \ (1-u_n) = \left(u_1 \prod_{k=1}^{n-1} (1-u_k)\right) \times (1-u_n) = u_1 \prod_{k=1}^{n} (1-u_k) \text{ et l'hérédité est démontrée}.$$

On en déduit
$$\sum_{n=1}^{N} \ln(1-u_n) = \ln\left(\prod_{n=1}^{N} (1-u_n)\right) = \ln\left(\frac{u_{N+1}}{u_1}\right) = \ln(2u_{N+1})$$
, puis $\lim_{N \to +\infty} \ln(2u_{N+1}) = -\infty$.

Par conséquent

La série
$$\sum \ln (1 - u_n)$$
 diverge.

On montre à présent que la série $\sum u_n$ diverge : $\lim_{N\to+\infty}u_N=0$ donc $-\ln\left(1-u_N\right)\underset{N\to\infty}{\sim}u_N$

Par conséquent il existe une suite (α_n) convergeant vers 1, telle que $u_n = -\ln(1-u_n)$ α_n et donc un entier n_0 tel que $\forall N \in \mathbb{N}, (N \geqslant n_0) \Rightarrow \alpha_N \geqslant \frac{1}{2}$

Pour $N \geqslant n_0, u_N \geqslant -\frac{1}{2} \ln (1-u_n)$; u_N est minoré par le terme général d'une série à termes positifs divergente, donc

La série
$$\sum u_n$$
 diverge.

4. L'inégalité à prouver est équivalente à $\left(\frac{1}{n}\sum_{k=1}^n u_k\right)^2 \leqslant \frac{1}{n}\sum_{k=1}^n u_k^2$

Considérons une variable aléatoire X_n donc l'univers image $X_n(\Omega)$ est égal à $\{u_1, \dots u_n\}$ et telle que

$$\forall k \in [1, n], \ P(X_n = u_k) = \frac{1}{n}.$$
 On remarque alors que $E(X_n) = \frac{1}{n} \left(\sum_{k=1}^n u_k\right)$ et $E(X_n)^2 = \frac{1}{n} \sum_{k=1}^n u_k^2$

La variance de X_n est nécessairement positive, donc $E(X_n)^2 - (E(X_n))^2 = \frac{1}{n} \sum_{k=1}^n u_k^2 - \left(\frac{1}{n} \sum_{k=1}^n u_k\right)^2 \geqslant 0.$

 $\sum u_n^2$ converge donc la suite des sommes partielles est majorée (par exemple par sa somme S) donc

1

$$\forall n \in \mathbb{N}^*, \ \sum_{k=1}^n u_k \leqslant \sqrt{n \sum_{k=1}^n u_k^2} \leqslant \sqrt{n \sum_{k=1}^\infty u_k^2} = \sqrt{n S} \ \text{ et } \ \sum_{k=1}^n u_k \underset{n \to \infty}{=} o\left(n\right).$$

EXERCICE N°2 - Tirages dans une urne

1. (a) On a $A_n = B_1 \cap B_2 \cap \ldots \cap B_n$ donc par la formule des probabilités composées :

$$q_n = P(A_n) = P(B_1) \times P_{B_1}(B_2) \times \dots \times P_{B_1 \cap \dots \cap B_{n-1}}(B_n)$$

Soit $k \in [1, n-1]$, si on a déjà obtenu k boules blanches au cours des k premiers tirages, alors l'urne contient exactement u_k boules blanches avant le tirage suivant (puisque $u_0 = b$) et toujours b boules noires. Par conséquent $P_{B_1 \cap ... \cap B_k}(B_{k+1}) = \frac{u_k}{b+u_k}$ et

$$q_n = \frac{b}{2b} \times \dots \times \frac{u_{n-1}}{b + u_{n-1}} = \prod_{k=0}^{n-1} \frac{u_k}{b + u_k}$$

(formule valable aussi pour k = 0 car $u_0 = b$ donc $\frac{b}{2b} = \frac{u_0}{b+u_0}$).

(b) Par la formule précédente, on a $q_{n+1} = q_n \times \frac{u_n}{b+u_n} < q_n$ puisque b>0 donc $0 < u_n < b+u_n$.

Ainsi, la suite (q) est décroissante, minorée par 0, elle converge donc vers ℓ avec $0 \le \ell < q_1 = \frac{1}{2}$.

(c) Soit $n \ge 2$; obtenir une boule noire au $n^{\rm e}$ tirage suppose que le $n^{\rm e}$ tirage a lieu, donc qu'on a obtenu boules blanches au cours des n-1 premiers tirages, c'est à dire que l'événement A_{n-1} est réalisé.

$$\text{Ainsi } p_n = P\left(A_{n-1} \cap \overline{B}_n\right) = P\left(A_{n-1}\right) \times P_{A_{n-1}}\left(\overline{B}_n\right) = P\left(A_{n-1}\right) \times \frac{b}{b + u_{n-1}} = q_{n-1} \times \left(1 - \frac{u_{n-1}}{b + u_{n-1}}\right)$$

Finalement
$$p_n = q_{n-1} - q_n$$
 et $\sum_{k=1}^n p_k = p_1 + \sum_{k=2}^n (q_k - q_{k-1}) = \underbrace{p_1 + q_1}_{1} - q_n = 1 - q_n$

On pouvait aussi remarquer que, les événements N_k =« Obtenir une boule noire au k^e tirage » étant deux à deux incompatibles, $\sum_{k=1}^{n} p_k$ est la probabilité d'obtenir une boule noire au plus tard au n^e tirage, qui est l'événement contraire de A_n .

On en déduit que
$$\sum_{k=1}^{+\infty} p_k = \lim_{n \to \infty} \sum_{k=1}^{n} p_k = 1 - \ell$$

(d) On remarque que $E = \bigcap_{k=1}^{\infty} \overline{N}_k$, ou encore $\overline{E} = \bigcup_{k=1}^{\infty} N_k$ donc, $P\left(\overline{E}\right) = \sum_{k=1}^{\infty} P\left(N_k\right) = \sum_{k=1}^{\infty} p_k$, donc

$$P(E) = 1 - \sum_{k=1}^{\infty} p_k = \ell$$

(e) • Supposons que la série de terme général $\frac{1}{u_n}$ converge; pour $x>0,\ 0<\ln(1+x)\leqslant x$ donc $0<\ln\left(1+\frac{1}{u_n}\right)\leqslant\frac{1}{u_n}$

Par le théorème de comparaison des séries à termes positifs, la série $\sum \frac{1}{u_n}$ converge.

• Réciproquement, si la série de terme général $\ln\left(1+\frac{1}{u_n}\right)$ converge, alors son terme général tend vers 0 donc $\lim_{n\to+\infty}\frac{1}{u_n}=0$ et $\ln\left(1+\frac{1}{u_n}\right) \underset{n\to\infty}{\sim} \frac{1}{u_n}$

Par conséquent il existe une suite (α_n) convergeant vers 1, telle que $\frac{1}{u_n} = \ln\left(1 + \frac{1}{u_n}\right) \alpha_n$ et donc un entier n_0 tel que $\forall N \in \mathbb{N}, (N \geqslant n_0) \Rightarrow \alpha_N \leqslant \frac{3}{2}$

Ainsi, pour $n \geqslant N, 0 < \frac{1}{u_n} \leqslant \frac{3}{2} \times \ln\left(1 + \frac{1}{u_n}\right)$ et la série de terme général $\frac{1}{u_n}$ converge.

$$\sum_{k=1}^{\infty} \frac{1}{u_k} \text{ converge } \iff = \sum_{k=1}^{\infty} \ln\left(1 + \frac{1}{u_k}\right) \text{ converge}$$

(f) L'expression de q_n établie à la question 1a donne $\ln\left(\frac{1}{q_n}\right) = \ln\left(\prod_{k=0}^{n-1} \frac{b+u_k}{u_k}\right) = \sum_{k=0}^{n-1} \ln\left(1+\frac{b}{u_k}\right)$

2

Or la série de terme général $\ln\left(1+\frac{b}{u_k}\right)$ est de même nature que $\sum \frac{b}{u_k}$ d'après la question précédente.

La suite
$$\left(\ln\left(\frac{1}{q_n}\right)\right)_n$$
 et la série $\sum \frac{1}{u_n}$ sont de même nature

- de ne jamais obtenir de boule noire est nulle si $\ell = 0$ c'est à dire si $\sum_{i} \frac{1}{i}$ diverge.
- $2. \text{ (a) } q_n = \prod_{k=0}^{n-1} \frac{u_k}{b+u_k} = \prod_{k=0}^{n-1} \frac{a^k}{1+a^k} \text{ et } \frac{1}{u_n} = \frac{1}{b} \times \left(\frac{1}{a}\right)^n \text{ donc la suite } (u) \text{ est g\'eom\'etrique de raison } \frac{1}{a} \in]0,1[...]$

La série de terme général $\frac{1}{u_n}$ converge. Donc $\ell \neq 0$ et la probabilité de ne jamais obtenir de boule noire

- (b) $\sum_{k=0}^{n+p-1} \frac{1}{a^k} = \frac{1}{a^n} \times \frac{\left(1 \left(\frac{1}{a}\right)^p\right)}{1 \frac{1}{a^n}}$ (somme de termes consécutifs d'une suite géométrique) $<\frac{1}{a^n} \times \frac{1}{1-\frac{1}{a}} \operatorname{car} 1 - \left(\frac{1}{a}\right)^p < 1$ $<\frac{1}{a^{n-1}(a-1)}$
- (c) On étudie les variations des fonctions $f: x \mapsto e^x (1+x)$ et $g: x \mapsto e^x (1+2x)$ sur [0,1]:Elles sont dérivables, $\forall x \in [0,1], f((x) = e^x - 1 \ge 0 \text{ et } \forall x \in [0,1], g((x) = e^x - 2$ f est croissante sur [0,1], f(0)=0 donc f est positive sur [0,1] c'est à dire $\forall x \in [0,1]$, $e^x \geqslant 1+x$ q est décroissante sur $[0, \ln 2]$ et croissante sur $[\ln 2, 1]$ donc admet un minimum en $\ln 2$. D'autre part g(0) = 0 et g(1) = e - 3 < 0; ainsi $\forall x \in [0, 1], g(x) \leq 0$; finalement :

$$\forall x \in [0,1], \ 1 + x \leqslant e^x \leqslant 1 + 2x$$

On a vu question 2a, l'expression de q_n donc

$$\frac{q_n}{q_{n+p}} = \frac{\prod_{k=0}^{n-1} \frac{a^k}{1+a^k}}{\prod_{k=0}^{n+p-1} \frac{a^k}{1+a^k}} = \prod_{k=n}^{n+p-1} \frac{1+a^k}{a^k} \text{ et } \ln\left(\frac{q_n}{q_{n+p}}\right) = \sum_{k=n}^{n+p-1} \ln\left(1+\frac{1}{a^k}\right) \leqslant \sum_{k=n}^{n+p-1} \frac{1}{a^k}$$

D'après le résultat de la question 2b, $\sum_{k=n}^{n+p-1} \frac{1}{a^k} \leqslant \frac{1}{a^{n-1}(a-1)}$, de plus (q) est décroissante donc $\frac{q_n}{q_{n+p}} \geqslant 1$

Par conséquent, en composant par exp qui est croissante, on a bien :

$$1 \leqslant \frac{q_n}{q_{n+p}} \leqslant \exp\left(\frac{1}{a^{n-1}(a-1)}\right)$$

On fixe alors n et on passe à la limite lorsque $p \to +\infty$: $1 \leqslant \frac{q_n}{\ell} \leqslant \exp\left(\frac{1}{a^{n-1}(a-1)}\right)$ puis

 $0\leqslant\frac{q_{n}-\ell}{\ell}\leqslant\exp\left(\frac{1}{a^{n-1}\left(a-1\right)}\right)-1\leqslant2\times\frac{1}{a^{n-1}\left(a-1\right)}$ d'après l'encadrement obtenu en début de question. En conclusion:

$$0 \leqslant q_n - \ell \leqslant \frac{1}{a^{n-1}(a-1)}$$

(d) Pour a=2, l'encadrement précédent donne $q_n-\frac{1}{2^{n-1}}\leqslant \ell\leqslant q_n$ donc si $\frac{1}{2^{n-1}}\leqslant 10^{-6}$, on obtient un encadrement de q_n à 10^{-6} près.

$$\frac{1}{2^{n-1}} \le 10^{-6} \iff -\ln(2^{n-1}) \le \ln(10^{-6}) \iff n \ge 1 + \frac{6\ln 10}{\ln 2} \simeq 20,9 \text{ En conclusion}:$$

Pour $n \ge 21$, q_n est une valeur approchée de ℓ à 10^{-6} près ; donc $\ell \simeq q_{21} \simeq 0,209711$

Exercice n°3

```
import random
#*********
def LANCER DE():
   R=1+int(6*random.random())
#*********
def SOMME(n):
   S=0
   for k in range(n):
       S+=LANCER DE()
   return S
#*********
def CRAPS():
   S=SOMME(2)
   L=1
   if S==7 or S==11:
       B=True
   elif S==2 or S==3 or S==12:
       B=False
   else:
       T=0
       while T!=7 and T!=S:
           L+=1
           T=SOMME(2)
           if T==S:
               B=True
           elif T==7:
               B=False
   return B,L
def Simulation(Nb):
   B, L, Var = 0, 0, 0
   for k in range(Nb):
       [b,l]=CRAPS()
       B=B+b; L=L+l; Var+=L**2
   FREO, MOY=B/Nb, L/Nb; VAR=Var/Nb-MOY**2
    return FREQ, MOY, VAR
#**********************
[FREQ, MOY, VAR]=Simulation(1000000)
print("L'estimation ponctuelle de p vaut :",FREQ)
EcarType95=1.96*((FREQ*(1-FREQ))/1000000)**(1/2)
EcarType99=2.5758*((FREQ*(1-FREQ))/1000000)**(1/2)
print ("L'intervalle de confiance de p à 95% vaut : ")
print("[",FREQ-EcarType95," , ",FREQ+EcarType95,"]")
print ("L'intervalle de confiance de p à 99% vaut : ")
print("[",FREQ-EcarType99," , ",FREQ+EcarType99,"]")
```