Correction du devoir n°7

- 1. (a) A_2 est réalisé si et seulement si on a utilisé deux fois l'urne U ou deux fois l'urne V; donc $A_2 = (U_1 \cap U_2) \cup (\overline{U}_1 \cap \overline{U}_2)$. Cette réunion est disjointe donc $P(A_2) = (U_1 \cap U_2) + P(\overline{U}_1 \cap \overline{U}_2)$. U_1 et U_2 sont indépendants, donc \overline{U}_1 et \overline{U}_2 aussi, et $P(A_2) = (U_1) \times P(U_2) + P(\overline{U}_1) \times P(\overline{U}_2)$. $P(U_n)$ ne dépend pas de n et vaut α , $P(V_n)$ ne dépend pas de n et vaut β , d'où $P(A_2) = p^2 + q^2$
 - (b) B_2 est réalisé si et seulement si on a utilisé l'urne U puis l'urne V, ou bien l'urne V puis l'urne U; donc $B_2 = (U_1 \cap \overline{U}_2) \cup (\overline{U}_1 \cap U_2)$. On en déduit : $P(B_2) = P(U_1 \cap \overline{U}_2) + P(\overline{U}_1 \cap U_2)$ car la réunion est disjointe $P(B_2) = P(U_1) \times P(\overline{U}_2) + P(\overline{U}_1) \times P(U_2)$ car les événements U_1 et \overline{U}_2 sont indépendants ainsi que les événements et \overline{U}_1 et U_2 . Finalement $P(B_2) = 2pq$
- 2. (a) C_1 est l'événement certain puisqu'au départ les deux urnes sont vides; donc après une étape l'une des deux contient une boule et l'autre est vide; ainsi $\boxed{\gamma_1=1}$ C_2 est l'événement impossible puisqu'après une étape l'une des deux urnes est vide et l'autre pleine; donc soit on remplit l'urne vide, soit on vide l'urne pleine, et on ne peut réaliser que A_2 ou B_2 ; ainsi $\boxed{\gamma_2=0}$
 - (b) Supposons l'événement $A_n \cup B_n$ réalisé : à l'issue de l'étape n, les deux urnes sont dans le même état, vides toutes les deux ou pleines toutes les deux ; comme à l'étape suivante on travaille sur une et une seule des deux urnes, elles sont nécessairement dans des états différents après la $n+1^{\rm e}$ étape, ainsi C_{n+1} est réalisé.
 - De même si C_n est réalisé les deux urnes sont dans des états différents à l'issue de la n^e étape, soit on vide l'urne pleine à l'étape n+1 et on réalise A_{n+1} , soit on remplit l'urne vide et on réalise B_{n+1} ; ainsi on réalise $A_{n+1} \cup B_{n+1}$.
 - (c) $(A_n \cup B_n) \subset C_{n+1} \Longrightarrow P(A_n \cup B_n) \leqslant P(C_{n+1})$ et comme (A_n, B_n, C_n) forment un système complet d'événements, A_n et B_n sont incompatibles et $A_n \cup B_n = \overline{C_n}$; ainsi $P(A_n \cup B_n) = P(A_n) + P(B_n) = 1 P(C_n)$. On obtient donc $1 \gamma_n \leqslant \gamma_{n+1}$ De même, $C_{n+1} \subset (A_{n+2} \cup B_{n+2}) \Longrightarrow P(C_{n+1}) \leqslant P(A_{n+2} \cup B_{n+2})$, d'où $\gamma_{n+1} \leqslant \alpha_{n+2} + \beta_{n+2} = 1 \gamma_{n+2}$.
 - (d) Soit pour $k \in \mathbb{N}$, la propriété P_k : $\gamma_{2k} = 0$ et $\gamma_{2k+1} = 1$. On a vu (question 2a) que $\gamma_1 = 1$ et $\gamma_2 = 0$, et on convient (voir préliminaires) que $C_0 = \emptyset$ donc $\gamma_0 = 0$.
 - Soit $k \in \mathbb{N}$, supposons P_k vérifiée c'est à dire $\gamma_{2k} = 0$ et $\gamma_{2k+1} = 1$; on a alors d'après l'encadrement établi à la question précédente : $1 \gamma_{2k} \le \gamma_{2k+1} \le 1 \gamma_{2k+2}$ (avec n = 2k).
 - L'inégalité **2** donne $1 \le 1 \gamma_{2k+2}$, c'est à dire $\gamma_{2k+2} \le 0$ et comme il s'agit d'une probabilité, $\gamma_{2k+2} = 0$. On réutilise cet encadrement avec n = 2k + 2: $1 \gamma_{2k+2} \le \gamma_{2k+3} \le 1 \gamma_{2k+4}$
 - Cette fois, l'inégalité **1** permet de conclure : $1 \le \gamma_{2k+3}$ et comme γ_{2k+3} est une probabilité, on déduit $\gamma_{2k+3} = 1$.
 - On a bien établi la propriété P_{k+1} : $\gamma_{2(k+1)} = 0$ et $\gamma_{2(k+1)+1} = 1$.
- 3. (a) A_{2k} est réalisé si et seulement si les deux urnes sont vides après la $2k^e$ étape, donc $P_{A_{2k}}(A_{2k+2})$ est la probabilité d'avoir deux urnes vides après l'étape 2k + 2, sachant qu'elles le sont après l'étape 2k, c'est à dire de remplir puis vider U aux étapes 2k + 1 et 2k + 2 (proba p^2), ou de remplir puis vider V (proba q^2) ces deux possibilités étant incompatibles. Ainsi $P_{A_{2k}}(A_{2k+2}) = p^2 + q^2 = P(A_2)$

- (b) $(A_{2k}, \overline{A_{2k}})$ est un système complet d'événements donc on peut utiliser la formule des probabilités totales : $P(A_{2k+2}) = P(A_{2k}) \times P_{A_{2k}}(A_{2k+2}) + P(\overline{A_{2k}}) \times P_{\overline{A_{2k}}}(A_{2k+2})$ d'où : $\alpha_{2k+2} = \alpha_{2k} \times \alpha_2 + \beta_{2k} \times \beta_2$; car $P_{\overline{A_{2k}}}(A_{2k+2}) = \beta_2$, la justification étant analogue à celle de la question 3a. Finalement, $\alpha_{2k+2} = (p^2 + q^2) \alpha_{2k} + 2pq\beta_{2k}$.
- (c) $\gamma_{2k} = 0$, donc $\beta_{2k} = 1 \alpha_{2k}$ ce qui donne : $\alpha_{2k+2} = (p^2 + q^2) \alpha_{2k} + 2 p q (1 \alpha_{2k})$ $= (p^2 + q^2 - 2pq) \alpha_{2k} + 2pq$ $= (p-q)^2 \alpha_{2k} + 2pq$

Pour k=0, on a $\alpha_0=1$, $\alpha_2=p^2+q^2=1-2\,p\,q$ donc la relation reste vérifiée.

(d) Une suite arithmético-géométrique vérifie une relation du type : $\forall n \in \mathbb{N}, \ u_{n+1} = a u_n + b$ où aet b sont des constantes; ici $a = (p - q)^2$ et b = 2 p q.

On résout l'équation $\ell = (p-q)^2\ell + 2\,p\,q$: $\ell\Big(1-(p-q)^2\Big) = 2\,p\,q$ $\ell((p+q)^2 - (p-q)^2) = 2 p q$

$$4pq\ell = 2pq \text{ donc } \ell = \frac{1}{2}$$

 $4pq\ell = 2pq \text{ donc } \boxed{\ell = \frac{1}{2}}$ On a donc $\forall k \in \mathbb{N}, \alpha_{2k} - \frac{1}{2} = \left((p-q)^2\right)^k (\alpha_0 - \frac{1}{2}) \text{ d'où } \forall k \in \mathbb{N}, \alpha_{2k} = \frac{1}{2} + \left(p-q\right)^{2k} \times \frac{1}{2}$.

(e)
$$\beta_{2k} = 1 - \alpha_{2k} = 1 - \frac{1}{2} - (p - q)^{2k} \times \frac{1}{2} = \frac{1}{2} (1 - (p - q)^{2k})$$

- 4. (a) $V_n = \overline{A_1} \cap \overline{A_2} \cap \ldots \cap \overline{A_{n-1}} \cap A_n$ donc $\forall n \in \mathbb{N}^*, V_n \subset A_n$; or pour n impair, $n = 2k+1, \ \gamma_{2k+1} = 1$ donc $A_{2k+1} = \emptyset$; d'où $V_{2k+1} = \emptyset$ et $P(V_{2k+1}) = 0$.
 - (b) $V_2 = A_2$ car le premier retour à des urnes vides ne peut se faire avant la deuxième étape $(A_1 = \varnothing)$; donc $P(V_2) = P(A_2) = \alpha_2 = 1 - 2 p q$.
 - (c) $V_4 = \overline{A_2} \cap A_4 = B_2 \cap A_4$, car $\overline{A_1} = \overline{A_3} = \Omega$ (événement certain) et $\overline{A_2} = B_2$ ($C_2 = \varnothing$). $P(V_4) = P(B_2) \times P_{B_2}(A_4) = \beta_2 \times \beta_2 \mid P(V_4) = 4 p^2 q^2$
 - (d) Aux étapes de rang n impair, C_n est l'événement certain, aux étapes de rang n pair (A_n, B_n) est un système complet d'événements, donc V_{2k+2} est réalisé si et seulement si B_2, B_4, \ldots, B_{2k} le sont, puis $A_{2k+2}: V_{2k+2} = \overline{A_2} \cap \overline{A_4} \cap \ldots \cap \overline{A_{2k-2}} \cap A_{2k} = B_2 \cap B_4 \cap \ldots \cap B_{2k} \cap A_{2k+2}$. $P(V_{2k+2}) = \underbrace{P(B_2)}_{\beta_2} \times \underbrace{P_{B_2}(B_4)}_{\alpha_2} \times \cdots \times \underbrace{P_{B_2 \cap \dots \cap B_{2k-2}}(B_{2k})}_{\alpha_2} \times \underbrace{P_{B_2 \cap \dots \cap B_{2k}}(A_{2k+2})}_{\beta_2} = \beta_2(\alpha_2)^{k-1}\beta_2$
- 5. (a) F est réalisé si et seulement si l'un des V_n est réalisé, ce qui se produit nécessairement après un nombre pair d'étapes, et supérieur ou égal à deux : $F = \bigcup_{n=1}^{\infty} V_n = \bigcup_{k=1}^{\infty} V_{2k}$.
 - (b) Les événements V_n sont deux à deux incompatibles donc :

$$P(F) = \sum_{k=1}^{\infty} P(V_{2k}) = P(V_2) + \sum_{k=2}^{\infty} (\beta_2)^2 (\alpha_2)^{k-2} = (1 - 2pq) + 4p^2 q^2 \sum_{j=0}^{\infty} (1 - 2pq)^j$$
$$= 1 - 2pq + \frac{4p^2q^2}{1 - (1 - 2pq)} = 1$$

F est un événement presque certain donc le jeu s'arrête au bout d'un temps fini avec la probabilité 1.

Remarque: on a plusieurs façons de voir que $1-2pq \in]0,1[$:

- * C'est la probabilité de réaliser B₂ et comme la pièce a une probabilité non nulle de donner pile et de donner face, B_2 ne peut ni être l'événement certain, ni l'événement impossible.
- $\star 1 2pq = 2p^2 2p + 1$, donc on peut étudier la fonction $p \mapsto 2p^2 2p + 1$ sur]0,1[et montrer qu'elle admet un minimum égal à 1/2 pour p=1/2, et qu'elle est maximale en 0 et en 1, égale à 1 en ces deux points.